Ground-motion model selection and adjustment for seismic hazard analysis

Auswahl und Anpassung von Bodenbewegungsmodellen für die seismische Gefährdungsanalyse

  • The prediction of the ground shaking that can occur at a site of interest due to an earthquake is crucial in any seismic hazard analysis. Usually, empirically derived ground-motion prediction equations (GMPEs) are employed within a logic-tree framework to account for this step. This is, however, challenging if the area under consideration has only low seismicity and lacks enough recordings to develop a region-specific GMPE. It is then usual practice to adapt GMPEs from data-rich regions (host area) to the area with insufficient ground-motion recordings (target area). Host GMPEs must be adjusted in such a way that they will capture the specific ground-motion characteristics of the target area. In order to do so, seismological parameters of the target region have to be provided as, for example, the site-specific attenuation factor kappa0. This is again an intricate task if data amount is too sparse to derive these parameters. In this thesis, I explore methods that can facilitate the selection of non-endemic GMPEs in a logic-treeThe prediction of the ground shaking that can occur at a site of interest due to an earthquake is crucial in any seismic hazard analysis. Usually, empirically derived ground-motion prediction equations (GMPEs) are employed within a logic-tree framework to account for this step. This is, however, challenging if the area under consideration has only low seismicity and lacks enough recordings to develop a region-specific GMPE. It is then usual practice to adapt GMPEs from data-rich regions (host area) to the area with insufficient ground-motion recordings (target area). Host GMPEs must be adjusted in such a way that they will capture the specific ground-motion characteristics of the target area. In order to do so, seismological parameters of the target region have to be provided as, for example, the site-specific attenuation factor kappa0. This is again an intricate task if data amount is too sparse to derive these parameters. In this thesis, I explore methods that can facilitate the selection of non-endemic GMPEs in a logic-tree analysis or their adjustment to a data-poor region. I follow two different strategies towards this goal. The first approach addresses the setup of a ground-motion logic tree if no indigenous GMPE is available. In particular, I propose a method to derive an optimized backbone model that captures the median ground-motion characteristics in the region of interest. This is done by aggregating several foreign GMPEs as weighted components of a mixture model in which the weights are inferred from observed data. The approach is applied to Northern Chile, a region for which no indigenous GMPE existed at the time of the study. Mixture models are derived for interface and intraslab type events using eight subduction zone GMPEs originating from different parts of the world. The derived mixtures provide satisfying results in terms of average residuals and average sample log-likelihoods. They outperform all individual non-endemic GMPEs and are comparable to a regression model that was specifically derived for that area. The second approach is concerned with the derivation of the site-specific attenuation factor kappa0. kappa0 is one of the key parameters in host-to-target adjustments of GMPEs but is hard to derive if data amount is sparse. I explore methods to estimate kappa0 from ambient seismic noise. Seismic noise is, in contrast to earthquake recordings, continuously available. The rapidly emerging field of seismic interferometry gives the possibility to infer velocity and attenuation information from the cross-correlation or deconvolution of long noise recordings. The extraction of attenuation parameters from diffuse wavefields is, however, not straightforward especially not for frequencies above 1 Hz and at shallow depth. In this thesis, I show the results of two studies. In the first one, data of a small-scale array experiment in Greece are used to derive Love wave quality factors in the frequency range 1-4 Hz. In a second study, frequency dependent quality factors of S-waves (5-15 Hz) are estimated by deconvolving noise recorded in a borehole and at a co-located surface station in West Bohemia/Vogtland. These two studies can be seen as preliminary steps towards the estimation of kappa0 from seismic noise.show moreshow less
  • Erdbeben können starke Bodenbewegungen erzeugen und es ist wichtig, diese in einer seismischen Gefährdungsanalyse korrekt vorherzusagen. Üblicherweise werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem logischen Baum zusammengefügt. Wenn jedoch die Bodenbewegung in einem Gebiet mit geringer Seismizität bestimmen werden soll, dann fehlen in der Regel die Daten, um regionsspezifische GMPEs zu entwickeln. In diesen Fällen ist es notwendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zurückzugreifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden seismologische Informationen aus der Zielregion wie beispielsweise die standortspezifische Dämpfung kappa0 benötigt. Diese Parameter lassen sich jedoch ebenfalls nur unzuverlässig bestimmen, wenn die Datengrundlage schlecht ist. In meiner Dissertation beschäftige ich mich daher mit der Auswahl von GMPEs für den logischen Baum beziehungsweise deren Anpassung an Regionen mit geringer Seismizität. Ich folge dabei zwei verschiedenenErdbeben können starke Bodenbewegungen erzeugen und es ist wichtig, diese in einer seismischen Gefährdungsanalyse korrekt vorherzusagen. Üblicherweise werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem logischen Baum zusammengefügt. Wenn jedoch die Bodenbewegung in einem Gebiet mit geringer Seismizität bestimmen werden soll, dann fehlen in der Regel die Daten, um regionsspezifische GMPEs zu entwickeln. In diesen Fällen ist es notwendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zurückzugreifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden seismologische Informationen aus der Zielregion wie beispielsweise die standortspezifische Dämpfung kappa0 benötigt. Diese Parameter lassen sich jedoch ebenfalls nur unzuverlässig bestimmen, wenn die Datengrundlage schlecht ist. In meiner Dissertation beschäftige ich mich daher mit der Auswahl von GMPEs für den logischen Baum beziehungsweise deren Anpassung an Regionen mit geringer Seismizität. Ich folge dabei zwei verschiedenen Strategien. Im ersten Ansatz geht es um das Aufstellen eines logischen Baumes, falls kein regionsspezifisches Modell vorhanden ist. Ich stelle eine Methode vor, in der mehrere regionsfremde Modelle zu einem Mixmodell zusammengefügt werden. Die Modelle werden dabei je nach ihrer Eignung gewichtet und die Gewichte mittels der wenigen verfügbaren Daten aus der Zielregion ermittelt. Ein solches Mixmodell kann als sogenanntes 'Backbone'-Modell verwendet werden, welches in der Lage ist, mittlere Bodenbewegungen in der Zielregion korrekt vorherzusagen. Ich teste diesen Ansatz für Nordchile und acht GMPEs, die für verschiedene Subduktionszonen auf der Welt entwickelt wurden. Die Resultate zeigen, dass das Mixmodell bessere Ergebnisse liefert als die einzelnen GMPEs, die zu seiner Erzeugung genutzt wurden. Es ist außerdem ebenso gut in der Vorhersage von Bodenbewegungen wie ein Regressionsmodell, welches extra für Nordchile entwickelt wurde. Im zweiten Ansatz beschäftige ich mich mit der Bestimmung der standortspezifischen Dämpfung kappa0. kappa0 ist einer der wichtigsten Parameter zur Anpassung eines GMPEs an eine andere Region. Mein Ziel ist es, kappa0 aus seismischer Bodenunruhe anstelle von Erdbeben zu ermitteln, da diese kontinuierlich aufgezeichnet wird. Mithilfe von Interferometrie kann die Geschwindigkeit und Dämpfung von seismischen Wellen im Untergrund bestimmt werden. Dazu werden lange Aufzeichnungsreihen seismischer Bodenunruhe entweder kreuzkorreliert oder entfaltet (Dekonvolution). Die Bestimmung der Dämpfung aus Bodenunruhe bei Frequenzen über 1 Hz und in geringen Tiefen ist jedoch nicht trivial. Ich zeige in meiner Dissertation die Ergebnisse von zwei Studien. In der ersten Studie wird die Dämpfung von Love-Wellen zwischen 1-4 Hz für ein kleines Testarray in Griechenland ermittelt. In der zweiten Studie verwende ich die Daten einer Bohrloch und einer Oberflächenstation aus dem Vogtland, um die Dämpfung von S-Wellen zwischen 5-15 Hz zu bestimmen. Diese beiden Studien stellen jedoch nur den Ausgangspunkt für zukünftige Untersuchungen dar, in denen kappa0 direkt aus der seismischer Bodenunruhe hergeleitet werden soll.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Annabel HändelORCiD
URN:urn:nbn:de:kobv:517-opus4-418123
Supervisor(s):Frank Scherbaum, Frank Krüger
Publication type:Doctoral Thesis
Language:English
Publication year:2018
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/08/22
Release date:2018/11/13
Tag:Bodenbewegungsmodelle; Bodenunruhe; Mixmodelle; Modellanpassung; seismische Dämpfung
GMPE adjustment; ground-motion models; mixture models; seismic attenuation; seismic noise
Number of pages:122
RVK - Regensburg classification:UT 1800
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.