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Abstract Cellular reactions have a multi-scale nature in the sense that the abundance 
of molecular species and the magnitude of reaction rates can vary across orders of 
magnitude. This diversity naturally leads to hybrid models that combine continu-
ous and discrete modeling regimes. In order to capture this multi-scale nature, we 
proposed jump-diffusion approximations in a previous study. The key idea was to 
partition reactions into fast and slow groups, and then to combine a Markov jump 
updating scheme for the slow group with a diffusion (Langevin) updating scheme for 
the fast group. In this study we show that the joint probability density function of the 
jump-diffusion approximation over the reaction counting process satisfies a hybrid 
master equation that combines terms from the chemical master equation and from the 
Fokker-Planck equation. Inspired by the method of conditional moments, we propose 
a efficient method to solve this master equation using the moments of reaction coun-
ters of the fast reactions given the reaction counters of the slow reactions. For each 
time point of interest, we then solve a set of maximum entropy problems in order 
to recover the conditional probability density from its moments. This finally allows 
us to reconstruct the complete joint probability density over all reaction counters and 
hence obtain an approximate solution of the hybrid master equation. Finally, we show 
the accuracy of the method applied to a canonical model of gene expression.
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1 Introduction

Reactions are inherently discrete and stochastic in nature [12,15,16]. Ignoring stochas-
tic fluctuations and the integer nature of molecule counts can result in inappropriate
models which especially fail for small reaction compartments as encountered in cell
biology. Traditionally, the stochastic approach explains reaction dynamics using a
discrete-state continuous-time Markov chains and describes the state of the system
by the integer-valued number of molecules of each involved species. In this approach,
the state vector of the system satisfies the random time change model (RTCM), which
defines the reaction counting processes using time-warped Poisson processes [2].
Also, the probability mass function of these systems satisfies a set of differential
equations referred to as the chemical master equation (CME) in the literature [18,20].
When the number of molecules of the species in the system of interest is very high,
the state vector of the system can be defined by real-valued concentrations instead
of integer-valued particle numbers. Dynamics of such systems can approximately be
capture through diffusion processes, and the state vector of the system satisfies an
Itô stochastic differential equation (SDE) known as the chemical Langevin equation
(CLE). Similarly, probability density function of these systems satisfies the Fokker-
Planck equation (FPE) [18,21]. In the thermodynamic limit, in which the number of
molecules of species and the system volume both approach to infinity while the con-
centrations of species stay constant, the state of the system is given by the reaction
rate equation (RRE) of the traditional deterministic modeling approach.

A major challenge of modeling the reaction networks using the CME is the curse
of dimensionality. Each species of the system adds one dimension to the correspond-
ing CME. Therefore, when the number of reachable states is high, it is infeasible to
obtain the numerical solution of the CME. To avoid this drawback, different stochas-
tic simulation algorithms (SSAs), such as the Doob-Gillespie algorithm and its vari-
ants, are proposed to obtain sample paths of the biochemical reaction system of in-
terest [10,19,22]. The computational cost of these algorithms increases with the size
or reactivity of the system and slow convergence of Monte Carlo estimates usually
results in massive amounts of necessary simulation runs.

Moment approximations that analyze the dynamics of the reaction network un-
der consideration using moments of the probability distribution satisfying the corre-
sponding CME are often considered as an alternative [39]. In [13], the author propose
the method of moments that computes the moments for any reaction network from the
corresponding CME. In [31], a moment closure approximation that contains a finite
set of ordinary differential equations (ODE) for the mean and the central moments
by truncating the moment hierarchy at a certain order and using the Taylor series is
introduced. Another moment closure method that approximates the moments with
higher order, compared to the order of truncation, utilizing nonlinear closure func-
tions of the lower order moments is introduced in [38]. A variational formulation is
used in [6] to identify principled closure schemes and to relate moment closure to
other approximation techniques.
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Cellular reaction systems involve reactions with very different rates and species
with very different abundances. Models only based on the traditional deterministic
modeling approach fail to account for this nature. Therefore, different hybrid methods
that couple the stochastic and deterministic modeling approaches were investigated.
In general, hybrid methods separate reactions and/or species into different groups
of reactions and/or species, and they use the diffusion or the deterministic modeling
approach to describe the dynamics of fast reactions and/or species with high copy
numbers, while a discrete Markov chain representation is utilized for slow reactions
and/or species with low copy numbers. For example, in [8], the authors propose dif-
ferent hybrid models in four steps. In the first step, they partition the reactions/species
into different classes, in the second step, they apply cycle averaging in reaction net-
work, in the third step, they find super reactions which are fast enough to change the
amount of continuous variables or have large stoichiometric vectors and finally, they
propose their hybrid model based on Kramer’s Moyal expansion. In [32], the authors
express the probability density function (PDF) of a hybrid representation as a prod-
uct of the probability distribution function of the discrete species and the conditional
probability density function (CPDF) of the continuous species given discrete species.
Then, they scale the population levels of the continuous species and use the Wentzel-
Kramers-Brillouin approximation to approximate the CPDF. Finally, they derive a
hybrid system involving the evolution equations for the PDF of the discrete species
and for the expectation of the CPDF of the continuous species conditioned on the
discrete species. In [37], another hybrid stochastic method which separates reactions
into fast, slow subgroups is proposed. It uses the CLE to describe the dynamics of
the fast reaction while the next reaction variant of the stochastic simulation algorithm
[19] is applied for the slow ones. Different algorithms which take into account the
fact that one or multiple slow reaction can fire within a time step of numerical inte-
gration of the corresponding Langevin equation were introduced. In [26], the authors
proposed a hybrid method which splits the state vector into two class of stochastic
variables. In this method, it is assumed that stochastic variables in the first class are
normally distributed with a small variance while stochastic variables in the second
class are Markovian. Then, Monte Carlo and Quasi Monte Carlo methods are used
to approximate the expected values of the stochastic variables in the first class while
SSA is used to obtain marginal probability of the variables in the second class. Dif-
ferent types of hybrid models can be seen in [7,11,14,27].

In [25], the authors introduced the method of conditional moments (MCM) that
can be considered as the combination of a hybrid method and a moment approxima-
tion method. The MCM separates species into two different classes involving species
with high copy number of molecules and species with low copy number of molecules.
Based on this decomposition, the joint probability density function satisfying the
corresponding CME is also represented as a product of the marginal probabilities
of species with low copy number of molecules and the conditional probabilities of
species with high copy number of molecules conditioned on the remaining species
with low copy numbers of molecules. To describe the dynamics of species with low
copy number of molecules, the authors used marginal probabilities, while the condi-
tional means and the centered conditional moments are used to model the dynamics
of species with high copy numbers. In comparison to [25], in [3], the authors obtained
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moments of the system of interest directly from the corresponding CME without us-
ing any partitioning of the species, and the maximum entropy approach is used to
construct the corresponding probability distribution.

In [17], we developed a jump-diffusion approximation to model multi-scale be-
havior of cellular reactions. Based on an error bound, we separated reactions into fast
and slow groups. We employed diffusion approximation for the fast reactions, while
Markov jump process was kept for the slow ones. As a result, the state of the system
was defined as the summation of the RTCM and the solution of the corresponding
CLE. In this paper, based on this representation, we present the hybrid master equa-
tion (HME), which is the evolution equation for the joint probability density function
of the jump diffusion approximation over the reaction counting process. The main
contribution of the paper is to obtain evolution equation for the probability density
function over the reaction counting process. Different than other studies [8,25,26,
32,37], we define the probability density functions in terms of reaction counters and
prove that evolution equation for this PDF which is called HME is the summation
of the corresponding CME and the corresponding FPE [34]. Although it is possible
to use different numerical methods to approximate the solution of the HME [35], we
use the strategy proposed in [25].To solve the HME, we obtain the evolution equa-
tion for the marginal probability of slow reactions and the evolution equations for
the conditional moments of the fast reactions given slow reactions [25]. Differently
than [32], we don’t use any scaling parameter for the probability density functions
and don’t approximate the conditional probability density function by using any se-
ries expansion. Also, we use not only expected values [26] of the reaction counters
of the fast reactions given the reaction counters of slow reactions but also centered
conditional moments of them. Using the maximum entropy approach, we construct
the corresponding conditional probability at the time point of interest, which in turn
gives the approximate solution of the corresponding HME. We note that the proposed
algorithm approximates the joint probability density function over reaction counting
process at a desired time point without counting firings of slow and fast reactions
[37].

The rest of the paper is organized as follows: In Section 2, we describe the basic
concepts of the stochastic modeling approach. In Section 3, we give a brief summary
of the jump-diffusion approximation. We introduce the HME in Section 4. In Section
5, we construct an ODE system that will be used to obtain the approximate solution
of the HME. In Section 6, we introduce the maximum entropy approach. In Section
7, we present numerical results and also explain the details of how we use the maxi-
mum entropy approach to construct the joint probability density function describing
the HME. Section 8 concludes the paper.
Notation
Before we give the details of the mathematical derivations, we present the basic no-
tations used through the present paper. We represent all random variables and their
realizations by upper-case (i.e. A) and lower case (i.e. a) symbols, respectively, and
we use bold symbols to represent the support of a random variable (i.e. A). Also, e j,
ē j denote (R−L)×1, L×1, unit vectors with 1 in the j−th component and 0 in other
coordinates.
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2 Stochastic Modeling of Chemical Kinetics

In this study, we consider a well-mixed reaction system of M species, S1,S2, . . . ,SM ,
interacting through R ≥ 1 reaction channels R1,R2, . . . ,RR inside the reaction com-
partment with volume V . The k−th reaction channel of the system is described as
follows:

r1kS1 + r2kS2 + r3kS3 + . . .+ rMkSM
`k−→ p1kS1 + p2kS2 + p3kS3 + . . .+ pMkSM,

where r jk, p jk ∈ N, j = 1,2, . . . ,M, represent the number of molecules of species S j
consumed and produced with a single occurrence of the reaction Rk, respectively,
and `k is the real-valued stochastic reaction rate constant. Let Xi(t) ∈ N0 denote the
number of molecules of species Si, i = 1,2, . . . ,M, at time t ≥ 0. Then, the state of
the system at time t is X(t) = (X1(t),X2(t), . . . ,XM(t))T ∈ NM

0 .
The classical stochastic modeling of biochemical networks assumes that the pro-

cess of X is a continuous time Markov chain (CTMC). In this approach, the state vec-
tor, X(t), is defined as a random variable of the Markov jump process. Each reaction
channel Rk , k = 1,2, . . . ,R, is specified by its stoichiometric vector (state-change vec-
tor) and its propensity function. The stoichiometric vector νk = (ν1k,ν2k, . . . ,νMk) ∈
ZM with ν jk = p jk − r jk, j = 1,2, . . . ,M, represents the change in the state of the
system after one occurrence of the reaction Rk. In other words, when the reaction Rk
fires, the system state X(t) = x jumps to a new state x+νk. Given X(t) = x, the prob-
ability that one Rk reaction takes place in the time interval [t, t + h) is ak(x)h+ o(h)
where ak(x) : NM

0 → R+ represents the propensity function calculated by the law of

mass action kinetics, i.e., ak(x) = `k

M

∏
i=1

(
xi

rik

)
. Let Zk(t) denote the number of occur-

rence of the reaction Rk by the time t, then the state of the system at time t can be
obtained as follows:

X(t) = X(0)+
R

∑
k=1

Zk(t)νk.

If we represent the counting process Zk(t) in terms of the independent Poisson process

denoted by ξk, such that Zk(t) = ξk

(∫ t

0
ak(X(s))ds

)
, then the state vector of the

above CTMC satisfies the following RTCM [2]

X(t) = X(0)+
R

∑
k=1

ξk

(∫ t

0
ak(X(s))ds

)
νk. (2.1)

Let define the following probability mass function

pt(x) = P(X(t) = x).

Another way of analyzing this CTMC process is to consider the time evolution
of the probability function pt(x). This probability mass function is the solution of the
following Kolmogorov’s forward equation, which is known as the CME [20]

∂ pt(x)
∂ t

=
R

∑
k=1

[ak(x−νk)pt(x−νk)−ak(x)pt(x)]. (2.2)
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When the number of molecules in the system is very high, then the abundance of the
species at time t can be represented by the real valued concentrations of the form
U(t) = V−1X(t) ∈ RM

≥0. In most cases, reaction channels in biochemical systems
are bimolecular or monomolecular. If the k−th reaction channel Rk is bimolecular
or monomolecular, then its propensity function satisfies the equality ak(x) =V ãk(u)
where ãk is the propensity function obtained involving the deterministic reaction rate
constant ˜̀k.

It is well known that the centered version of each independent Poisson process,
ξk, in Equation (2.1) can be approximated through the independent Brownian motions
Wk(t) [2,30]. Considering the fact that (ξk(Vt)−Vt)/

√
V converges in distribution

to the Brownian motion Wk(t) for large V , we obtain the diffusion approximation of
Equation (2.1) as given

U(t) =U(0)+
R

∑
k=1

νk

∫ t

0
ãk(U(s))ds+

1√
V

R

∑
k=1

νkWk(
∫ t

0
ãk(U(s))ds). (2.3)

The first and the second summand in the right hand-side of Equation (2.3) are
called drift and diffusion terms, respectively. The time derivative of the state vector
U(t) satisfies an SDE, namely the CLE.

Let define the following probability density function

qt(u)du = P(U(t) ∈ [u,u+du]).

Then, analog of the CME for this continuous process is represented by the following
FPE [21]

∂qt(u)
∂ t

=−
M

∑
i=1

∂

∂ui
[(

R

∑
k=1

νikãk(u))qt(u)]+
1
2

M

∑
i,i′=1

∂ 2

∂ui∂ui′

[
(

R

∑
k=1

νikνi′kãk(u))qt(u)
]
.

Cellular processes consist of bimolecular reactions of very different speeds involving
reactants of largely different abundances. Therefore, the models based only on the
RTCM or only the diffusion approximation may be inappropriate to explain the dy-
namics of such multi-scale processes. In [17], we developed a jump-diffusion approx-
imation to model such processes. In the following section, we will give a summary
of this approximation.

3 Jump Diffusion Approximation

In jump-diffusion approximation [17], we partition the reactions into the fast sub-
group, C , and the slow subgroup, D , and model the fast group using a diffusion
process, while Markov chain representation is kept for the slow group.

In this approach instead of the CTMC process represented by X , we focus on the
scaled abundances X̄N

i = Xi/Nζi , i = 1,2, . . . ,M, and the scaled stochastic reaction
rates κ j = ` j/Nη j , j = 1,2, . . . ,R, such that X̄N

i = O(1), κ j = O(1). Naturally, these
scaled quantities will produce new scaled propensity functions as follows

ak (X(t)) = Nηk+rk·ζ āk(X̄N(t)),
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where rk = (r1k,r2k, . . . ,rMk) and ζ = (ζ1,ζ2, . . . ,ζM). We note that āk(.) functions
are also O(1). Finally, scaling the time t → tNθ and defining XN(t) = X̄N(tNθ ), we
transform the state vector, X(t), given by Equation (2.1) into the following scaled
state vector

XN (t) = XN (0)+
R

∑
k=1

ξk

(∫ t

0
αk(XN(s))ds

)
µk, (3.1)

where αk(XN(t))=Nρk āk(XN(t)), ρk = θ +ηk+rk ·ζ and µik = νik/Nζi , i= 1,2, . . . ,M.
Modeling the fast reactions through diffusion approximation and modeling the

slow reactions through Markov chains give the state vector of the jump diffusion
approximation as follows:

Y (t) = Y (0)+ ∑
i∈D

ξi(
∫ t

0
αi(Y (s))ds)µi + ∑

j∈C

∫ t

0
α j(Y (s))ds µ j (3.2)

+ ∑
j∈C

Wj(
∫ t

0
α j(Y (s))ds)µ j,

where Y (0) = XN(0), and Wj is a standard Brownian motion. If τ1, τ2 denote the
successive firing times of reactions from the slow group, then for τ1 < t < τ2, only
reactions from the fast group can fire. Therefore, in this time interval, the state vector
of the system is given by

Y (t) = Y (τ1)+ ∑
j∈C

∫ t

τ1

α j(Y (s))ds µ j + ∑
j∈C

Wj(
∫ t

τ1

α j(Y (s))ds)µ j. (3.3)

The main contribution of this study is the derivation of an error bound for the mean
e(t) = E | XN(t)−Y (t) |, which is used to partition the reaction set into fast and slow
subgroups. Based on this error bound, we construct a dynamic partitioning algorithm
that takes into account the fact that a fast reaction can return to a slow reaction or vice
versa during the course of time.

By describing the state vector of the system as the summation of purely discrete
and purely continuous components, we can introduce the HME, which defines the
joint probability density function of the jump diffusion approximation over the reac-
tion counting process. In the following section, we will obtain the HME.

4 Hybrid Master Equation

In jump diffusion approximation, we partition the reaction set into two subsets. As
mentioned before, the first subset C involves reactions modeled by diffusion approx-
imation, while the rest of the reactions constituting the slow set D are modeled by
Markov chains. In the rest of the study, we will consider that there are L slow reac-
tions, i.e., |D |= L, and R−L fast reactions in the system, i.e., | C |= R−L.

Let Z(t) = (Z1(t),Z2(t), . . . ,ZR(t))T be a vector of reaction counters such that
Zi(t) denotes the number of occurrences of the reaction Ri, i = 1,2, . . . ,R, during
the time of the process until time t > 0. Similar to the idea of splitting the state



8 Derya Altıntan, Heinz Koeppl

vector of the system into purely discrete and purely continuous parts, we also separate
Z(t) = (D(t),C(t))T into purely discrete and continuous parts corresponding to the
reaction counters of the slow, D(t) ∈ NL, and the fast reaction set, C(t) ∈ RR−L

≥0 such
that Di(t)= Zi(t), i∈D , and C j(t)= Z j(t), j ∈C . We also separate the stoichiometric
vectors such that µD

i = µi, i ∈D , and µC
j = µ j, j ∈ C .

By using Equation (3.2), we will define reaction counters as follows:

Di(t) = ξi

(∫ t

0
αi(Y (s))ds

)
= ξi

(∫ t

0
α̃i(D(s),C(s))ds

)
, i ∈D ,

C j(t) =
∫ t

0
α j(Y (s))ds+Wj

(∫ t

0
α j(Y (s))ds

)
=
∫ t

0
α̃ j(D(s),C(s))ds+Wj

(∫ t

0
α̃ j(D(s),C(s))ds

)
, j ∈ C ,

where

αk(y) = αk(y(0)+ ∑
i∈D

diµ
D
i + ∑

j∈C
c jµ

C
j ) = α̃k(d,c), k = 1,2, . . . ,R. (4.1)

We note that if τ1, τ2 denote the successive firing times of reactions from the slow
group, then for τ1 < t < τ2, C(t) satisfies the following equation

C(t) =C(τ1)+ ∑
j∈C

(∫ t

τ1

α̃ j(d,C(s))ds
)

e j + ∑
j∈C

Wj

(∫ t

τ1

α̃ j(d,C(s))ds
)

e j, (4.2)

where d denotes the number of slow reactions fired until time τ1 > 0.
The HME is the time derivative of the joint probability density function

pt : NL×RR−L
≥0 → R≥0

pt(d,c)dc = P(D(t) = d,C(t) ∈ [c,c+dc]). (4.3)

Then, we can write
pt(d,c) = pt(c | d)pt(d),

where

pt(c | d)dc = P(C(t) ∈ [c,c+dc] | D(t) = d)

pt(d) = P(D(t) = d).

To obtain the evolution equation for pt(d,c), which is called the HME, we need the
following result whose details can be found in [34].
Result : Let D(t) ∈ D ⊂ NL be a discrete process and C(t) ∈ RR−L

≥0 be a continuous
process. Define the joint probability density function as follows:

pt(d,c) = pt(c | d)pt(d).

Then, the time derivative of this joint probability function, which is referred to as
generalized Fokker-Planck equation (GFPE), has the following form
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∂

∂ t
pt(d,c)= ∑

d′∈D
add′ pt(d′,c)+

∞

∑
n1,n2,...,nR−L=1

R−L

∏
i=1

(−1)ni ∂ ni

∂c
ni
i

ni!

 [An1,n2,...,nR−L pt(d,c)],

(4.4)
where

An1,n2,...,nR−L = lim
h→0

1
h
E[

R−L

∏
i=1
{Ci(t +h)−Ci(t)}ni | D(t) = d,C(t),D(t +h) = d],

and

add′ = lim
h→0

1
h
[P(D(t +h) = d | D(t) = d′,C(t))−δdd′ ]. (4.5)

where E[C(t) | d] =
∫
RR−L
≥0

c pt(c | d)dc. It is also proved that An1,n2,...,nR−L = 0 for all

R−L

∑
i=1

ni ≥ 3. This gives us

∞

∑
n1,n2,...,nR−L=1

R−L

∏
i=1

(−1)ni ∂ ni

∂c
ni
i

ni!

 [An1,n2,...,nR−L pt(d,c)] = −
R−L

∑
j=1

∂

∂c j
[B j pt(d,c)](4.6)

+
1
2

R−L

∑
i, j=1

∂ 2

∂ci∂c j
[Bi j pt(d,c)],

where

B j = lim
h→0

1
h
E[(C j(t +h)−C j(t)) | D(t) = d,C(t),D(t +dt) = d],

and

Bi j = lim
h→0

1
h
E[{Ci(t +h)−Ci(t)}{C j(t +h)−C j(t)} | D(t) = d,C(t),D(t +dt) = d].

Theorem 4.1 Let Z(t) = {D(t),C(t)} be a joint reaction counting process where
D(t) is a discrete random process with states d ∈ D ⊂ NL, L > 0, and C(t) is a
continuous random process with states c ∈ RR−L

≥0 , R− L > 0. Define Y as a multi-
scale process whose state vector is given in Equation (3.2). Then, the joint counting
probability density function given in Equation (4.3) satisfies the following GFPE,
which is referred to as the HME in the present paper.

∂

∂ t
pt(d,c) = ∑

i∈D

(
α̃i(d− ēi,c)pt(d− ēi,c)− α̃i(d,c)pt(d,c)

)
(4.7)

− ∑
j∈C

∂

∂c j
(α̃ j(d,c)pt(d,c))+

1
2 ∑

j∈C

∂ 2

∂c2
j
(α̃ j(d,c)pt(d,c)).
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Proof By using Equation (4.4) and Equation (4.7), we obtain

∂

∂ t
pt(d,c) = ∑

d′∈D
add′ pt(d′,c)− ∑

j∈C

∂

∂c j
(B j pt(d,c))+

1
2 ∑

i, j∈C

∂ 2

∂ci∂c j
(Bi j pt(d,c)).

(4.8)
Now, let’s focus on the first summand on the right hand-side of Equation (4.8), which
can be rewritten as follows:

∑
d′∈D

add′ pt(d′,c) = ∑
d′ ∈ D
d 6= d′

add′ pt(d′,c)+add pt(d,c). (4.9)

Using Equation (4.5) gives

add = lim
h→0

1
h
[P(D(t +h) = d | D(t) = d,C(t))−1],

which can be reformulated as follows

add = lim
h→0

1
h
[− ∑

d′ ∈ D
d 6= d′

P(D(t +h) = d′ | D(t) = d,C(t))].

By using this representation, we can rewrite Equation (4.9) in the following form

∑
d′∈D

add′ pt(d′,c) = ∑
d′ ∈ D
d 6= d′

(
add′ pt(d′,c)−ad′d pt(d,c)

)
.

In our multi-scale process, we have L slow reactions, and one firing of the reaction
R j in this set updates d to d + ē j. Starting from d, the system can jump to d′ =
d+ ē j, meaning that ad+ē j ,d = α̃ j(d,c). In the same vein, to reach d, the system must
supervene on d− ē j, by definition ad,d−ē j = α̃ j(d− ē j,c). As a result, we obtain the
desired summand as follows:

∑
d′∈D

add′ pt(d′,c) = ∑
i∈D

(
α̃i(d− ēi,c)pt(d− ēi,c)− α̃i(d,c)pt(d,c)

)
. (4.10)

Now, we can concentrate on the second and the third summands of Equation (4.8).
Jump diffusion approximation is based on the idea that between two successive firing
times of the slow reactions, the fast reactions continue to fire. Hence, the state vector
and also the reaction counting process of the fast reaction set will satisfy diffusion
processes (see Equation 3.3,4.2). Therefore, B j and Bi j values have the forms [21,
29]

B j = ∑
k∈C

e jkα̃k(d,c), Bi j = ∑
k∈C

eike jkα̃k(d,c).
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Substitution of B j and Bi j values and Equation (4.10) into Equation (4.8) gives

∂

∂ t
pt(d,c) = ∑

i∈D

(
α̃i(d− ēi,c)pt(d− ēi,c)− α̃i(d,c)pt(d,c)

)
− ∑

j∈C

∂

∂c j

(
∑

k∈C
e jkα̃k(d,c)

)
+

1
2 ∑

i, j∈C

∂ 2

∂ci∂c j
(∑

k∈C
eike jkα̃k(d,c)pt(d,c))

= ∑
i∈D

(
α̃i(d− ēi,c)pt(d− ēi,c)− α̃i(d,c)pt(d,c)

)
− ∑

j∈C

∂

∂c j
(α̃ j(d,c)pt(d,c))+

1
2 ∑

j∈C

∂ 2

∂c2
j
(α̃ j(d,c)pt(d,c)),

which completes the proof.

Based on the properties of the joint counting probability density function, we can
write

pt(d,c) = pt(c | d)pt(d).

Since we partition reaction counters into two subsets, we will also decompose the
propensity functions. Using mass action kinetics to compute propensities is very pop-
ular, and for this large class we partition the propensity function of the reaction Rk,
α̃k(d,c), k = 1,2, . . . ,R, as follows:

α̃k(d,c) = αk(y(0)+ ∑
i∈D

diµ
D
i + ∑

j∈C
c jµ

C
j ) = κk

M

∏
s=1

(ys(0)+ ∑
i∈D

diµ
D
si + ∑

j∈C
c jµ

C
s j)

rsk

= κk

M

∏
s=1

(βs(d)+ γs(c))rsk = κk

M

∏
s=1

rsk

∑
n=0

(
rsk

n

)
β

n
s (d)γ

rsk−n
s (c)

where βs(d) = ys(0)+ ∑
i∈D

diµ
D
si , γs(c) = ∑

j∈C
c jµ

C
s j. With a slight abuse of notation but

in order to avoid clutter, we will subsequently subsume the binomial coefficient into
the definitions of βs and γs. Based on this representation, the HME given in Equation
(4.7) can be rewritten in the following form

∂

∂ t
pt(d,c) = ∑

i∈D

M

∏
s=1

rsi

∑
n=0

κi

(
β

n
s (d− ēi)γ

rsi−n
s (c)pt(d− ēi,c)−β

n
s (d)γ

rsi−n
s (c)pt(d,c)

)
− ∑

j∈C

∂

∂c j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
+

1
2 ∑

j∈C

∂ 2

∂c2
j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
. (4.11)

Let f (d) : D→ R and g(c) : RR−L
≥0 → R be any functions of d and c variables, re-

spectively. To simplify the notation, we introduce one step operator in the following
form

F ēi
(

f (d)g(c)
)
= f (d + ēi)g(c), i ∈D .
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Based on this representation, we define

Γ (β (d),γ(c)) = ∑
i∈D

(F−ēi − I)
(

κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)γ

rsi−n
s (c)

)
− ∑

j∈C

∂

∂c j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)

)
+

1
2 ∑

j∈C

∂ 2

∂c2
j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)

)
.

Then, we can write Equation (4.11) in the following form

∂

∂ t
pt(d,c) = Γ (β (d),γ(c))pt(d,c). (4.12)

In the rest of the study, we will assume that pt(d,c) is zero at c = 0, c = ∞ [24,36].
In the folllowing section, we will explain how we obtain the solution of this HME.

5 Solution of the Hybrid Master Equation

To obtain the joint counting probability density function, pt(d,c), described by the
HME given in Equation (4.12), we will approximate the process C(t) | D(t) us-
ing its moments. Solving a maximum entropy problem for each conditional mo-
ment will produce the conditional probability function, pt(c | d). The multiplica-
tion of pt(c | d) with the marginal probabilities of the remaining discrete states, i.e.,

pt(d) =
∫
RR−L
≥0

pt(d,c)dc, will give us the desired joint probability density function

pt(d,c) .
In the rest of the study, time dependent conditional means and the centered con-

ditional moments of the process C(t) | D(t) will be denoted by

Et [Cm | d] =
∫
RR−L
≥0

cm pt(c | d)dc, m ∈ C ,

Et [C̃M | d] =
∫
RR−L
≥0

∏
j∈C

c̃
M j
j pt(c | d)dc,

where c̃ = c−Et [C | d], M = (M1,M2, . . . ,MR−L)
T ∈ NR−L. Now, based on the study

[25], we want to construct a differential equation system to obtain pt(d), Et [Cm | d],
Et [C̃M | d]. To construct this system, we will need the following Lemma [13,25].

Lemma 5.1 Let Ft : RR−L
≥0 −→ R be a polynomial function of c, and pt(d,c) satisfy

differential Equation (4.12). Assume that sufficiently many moments of pt(d,c) with
respect to c exist, and the joint counting probability density vanishes at c = 0 and
c = ∞. Define the following conditional mean

Et [Ft(C) | d] =
∫
RR−L
≥0

Ft(c)pt(c | d)dc.
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Then,

∂

∂ t
(Et [Ft(C) | d]pt(d)) = Γ̃ (β (d),Ft(c)γ(c))pt(d)+Et [

∂

∂ t
Ft(C) | d]pt(d),

where

Γ̃ (β (d),Ft(c)γ(c)) = ∑
i∈D

(F−ēi − I)
(

κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [Ft(C)γ

rs j−n
s (C) | d]

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)

∂

∂c j
Ft(C) | d]

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

Et [γ
rs j−n
s (C)

∂ 2

∂c2
j
Ft(C) | d].

Proof The proof of the Lemma can be found in Appendix A.1.

When Ft(c) = 1 in Lemma 5.1, we obtain the time derivative of the marginal
probability pt(d), which is given in the following proposition.

Proposition 5.1

∂

∂ t
pt(d) = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [γ

rsi−n
s (C) | d]pt(d)

)
(5.1)

The strategy of our method is to obtain pt(d) and pt(c | d) separately and construct the
joint probability function using the equality pt(d,c) = pt(c | d)pt(d). To obtain the
conditional probability pt(c | d), we will use evolution equations of the conditional
means Et [Cm | d], m ∈ C , and the centered conditional moments Et [C̃M | d], M ∈
NR−L, which are the functions of pt(d), Et [Cm | d], Et [C̃M | d]. Equation (5.1) will be
the first equation of our system. We note that the differential equation defining the
marginal probability only depends on the slow reactions. To solve this differential
equation, we need to reformulate the unknown conditional means Et [γ

rsi−n
s (C) | d]

through the known Et [Cm | d], Et [C̃M | d]. The details of this transformation can be
found in Appendix A.2.

In the following proposition, we will obtain the time evolution equation for the
conditional means Et [Cm | d], m ∈ C .

Proposition 5.2

pt(d)
∂

∂ t
Et [Cm | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [Cmγ

rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)δ jm | d]pt(d)

− Et [Cm | d]
∂

∂ t
pt(d) (5.2)

where δ jm is the Kronecker delta function.
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Proof The proof of the proposition can be found in Appendix A.3.

In the following proposition, we will obtain pt(d)
∂

∂ t
Et [C̃M | d].

Proposition 5.3

pt(d)
∂

∂ t
Et [C̃M | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [C̃M

γ
rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M jγ

rs j−n
s (C)C̃M−e j | d]pt(d) (5.3)

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M j(M j−1)γ

rs j−n
s (C)C̃M−2e j | d]pt(d)

− ∑
j∈C

M jEt [C̃M−e j | d]pt(d)
∂

∂ t
Et [C j | d]−Et [C̃M | d] ∂

∂ t
pt(d).

Proof The proof of the theorem can be found in Appendix Section A.4.

Up to this section, we have obtained the time derivatives of the marginal probabilities
as well as those of the conditional means and the centered conditional moments.
These three equations will give us the following differential equation system.

Theorem 5.4 Let pt(d,c) = pt(c | d)pt(d) satisfy Equation (4.7). Then, the time
derivative of pt(d), Et [Cm | d], m ∈ C and Et [C̃M | d], M = (M1,M2, . . . ,MR−L), sat-
isfies the following system

∂

∂ t
pt(d) = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [γ

rsi−n
s (C) | d]pt(d)

)
pt(d)

∂

∂ t
Et [Cm | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [Cmγ

rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)δ jm(C) | d]pt(d)

− Et [Cm | d]
∂

∂ t
pt(d)

pt(d)
∂

∂ t
E[C̃M | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [C̃M

γ
rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M jγ

rs j−n
s (C)C̃M−e j | d]pt(d) (5.4)

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M j(M j−1)γ

rs j−n
s (C)C̃M−2e j | d]pt(d)

− ∑
j∈C

M jEt [C̃M−e j | d]pt(d)
∂

∂ t
Et [C j | d]−Et [C̃M | d] ∂

∂ t
pt(d),
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where δ jm is kronecker delta function. Also, F ēi is a one step operator as follows:

F ēi
(

f (d)g(c)
)
= f (d + ēi)g(c), i ∈D .

where f (d) : D→ R and g(c) : RR−L
≥0 → R be any functions of d and c variables,

respectively.

In the following section, we will explain the details of the maximum entropy
method which will be used to construct the conditional probability distribution
pt(c | d).

6 Maximum Entropy

Assume that we want to obtain the solution of the HME under consideration at a spe-
cific time point τ > 0. Solving the ODE system in (5.4) gives pτ(d), Eτ [Cm | d],
Eτ [C̃M | d], m ∈ C , M = (M1,M2, . . . ,MR−L)

T ∈ NR−L values for the system of in-
terest. Although the marginal probabilities, pτ(d), can directly be obtained from the
ODE system, we still do not know the corresponding conditional probability density
function, pτ(c | d), which will be used to construct the joint probability, pτ(d,c),
solving the corresponding HME.

To estimate the unknown conditional probability density functions using its mo-
ments, we will use the maximum entropy approach proposed by Jaynes [28]. Assume
that we have a state space Ω = D×RR−L

≥0 and our goal is to estimate the unknown
probability density function pτ : Ω → R≥0. Let

S M
τ =

∫
RR−L
≥0

∏
j∈C

c
M j
j pτ(c | d)dc, M = (M1,M2, . . . ,MR−L) ∈ NR−L,

denote the moments of the joint probability density function at time point τ . It should
be noted that when M = em, we obtain Eτ [Cm | d]. To guarantee that pτ(c | d) is a
probability function, we must impose the condition S 0

τ = 1. Then, the approximation
for the conditional probability density function pτ(c | d) will be obtained solving the
following constrained convex optimization problem

Minimize
∫
RR−L
≥0

pτ(c | d) ln(pτ(c | d))dc

Subject to S 0
τ =

∫
RR−L
≥0

pτ(c | d) = 1

S em
τ = Eτ [Cm | d] =

∫
RR−L
≥0

cm pτ(c | d)

S M
τ = Eτ [CM | d] =

∫
RR−L
≥0

∏
j∈C

c
M j
j pτ(c | d)

Let N be the number of moment constraints and Mk, k = 0,1, . . . ,N, denote differ-
ent choices of vectors Mk = (Mk

1 ,M
k
2 , . . . ,M

k
R−L) ∈ NR−L. To impose the conditions
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given above, we will have M0 = 0, M j = e j, j = 1,2, . . . ,R−L. Then, the solution
of this constrained optimization problem can be obtained maximizing the following
Lagrange function

L (pτ(c | d),λ (τ)) = −
∫
RR−L
≥0

pτ(c | d) ln(pτ(c | d))dc

+
N

∑
k=0

λk(τ)
(∫

RR−L
≥0

∏
j∈C

c
Mk

j
j pτ(c | d)dc−S Mk

τ

)
,

where λk ∈ R, k = 1,2, . . . ,N are referred to as Lagrange multipliers. Taking the
derivative of L (pτ(c | d),λ (τ)) with respect to pτ(c | d) will give the approximate
solution of the conditional probability density for pτ(c | d) in the following form

p∗τ(c | d) = argmax(L (pτ(c | d),λ (τ))) =
1

Z(N,λ (τ))
exp
(
−

N

∑
k=0

λk(τ) ∏
j∈C

c
Mk

j
j

)
,

where Z(N,λ (τ)) is a normalization constant [1,4,5]. Now, we can obtain the approx-
imate solution of the joint probability density function which solves the HME under
consideration by multiplying the obtained conditional probability function p∗τ(c | d)
with the marginal probability function pτ(d).

7 Application

In the following we will apply our framework to a simple, illustrative reaction system.
We will consider two reactions of the form

R1 : ηS1
κ1−→ ηS2, R2 : S2

κ2−→ S1

with η ∈N and η > 1. Hence, conversion of S1 into S2 appear in infrequent bursts of
size η , while the reverse reaction happens in frequent single conversions. The latter
reaction may thus be amenable to a diffusion approximation. The state vector of the
system at time t ≥ 0 is defined by Y (t) = (Y1(t),Y2(t))T ∈ Z2

≥0, where Yi(t) denote
the number of molecules of species Si, i = 1,2.

The joint probability mass function, pt(d,c) over both reaction counters satisfies
the following CME

∂

∂ t
pt(d,c) = α̃1(d−1,c)pt(d−1,c)− α̃1(d,c)pt(d,c)

α̃2(d,c−1)pt(d,c−1)− α̃2(d,c)pt(d,c). (7.1)

For the sake of simplicity and in order not to introduce another approximation step
due to nonlinear propensity, we deviate from mass-action and assume linear propen-
sities, i.e., affine in the counting variables

α̃1(d,c) = κ1(β1(d)+ γ1(c)), α̃2(d,c) = κ2(β2(d)+ γ2(c)),

with
β1(d) = y1(0)−ηd, γ1(c) = c, β2(d) = y2(0)+ηd,γ2(c) =−c.
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According to the time scale separation mentioned above we now separate reactions
and stoichiometric vectors as follows

D = {1}, C = {2}, µ
D
1 = (−η ,η)T , µ

C
2 = (1,−1)T .

Then, the HME for the joint probability density function, pt(d,c), is defined as :

∂

∂ t
pt(d,c) = κ1(y1(0)−η(d−1)+ c)pt(d−1,c)−κ1(y1(0)−ηd + c)pt(d,c) (7.2)

− ∂

∂c

(
κ2(y2(0)+ηd− c)pt(d,c)

)
+

1
2

∂ 2

∂c2

(
κ2(y2(0)+ηd− c)pt(d,c)

)

The system of differential equation defining the marginal probabilities, the condi-
tional means and the centered conditional moments has the following form (which
we illustrate for the remainder of this section for η = 2)

∂

∂ t
pt(d) =

(
κ1(y1(0)−2(d−1))+κ1Et [C | d−1]

)
pt(d−1)

−
(

κ1(y1(0)−2d)−κ1Et [C | d]
)

pt(d) (7.3)

pt(d)
∂

∂ t
Et [C | d] = κ1(y1(0)−2(d−1))Et [C | d−1]pt(d−1)

− κ1(y1(0)−2d)Et [C | d]pt(d)+κ1Et [C2 | d−1]pt(d−1)
− κ1Et [C2 | d]pt(d)+κ2(y2(0)+2d)pt(d)−κ2Et [C | d]pt(d)

− Et [C | d]
∂

∂ t
pt(d)

pt(d)
∂

∂ t
Et [C̃2 | d] = κ1(y1(0)−2(d−1))Et [C̃2 | d−1]pt(d−1)

− κ1(y1(0)−2d)Et [C̃2 | d]pt(d)+κ1Et [C̃2C | d−1]pt(d−1)
− κ1Et [C̃2C | d]pt(d)+κ2(y2(0)+2d)pt(d)

− κ2Et [C | d]pt(d)−2κ2Et [C̃C | d]pt(d)−Et [C̃2 | d] ∂

∂ t
pt(d).

Based on our previous discussions, we get the following system of differential equa-
tion which will be referred to as the moment equation system of the HME in the rest
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of the study

∂

∂ t
pt(d) =

(
κ1(y1(0)−2(d−1))+κ1Et [C | d−1]

)
pt(d−1)

−
(

κ1(y1(0)−2d)−κ1Et [C | d]
)

pt(d) (7.4)

pt(d)
∂

∂ t
Et [C | d] = κ1(y1(0)−2(d−1))Et [C | d−1]pt(d−1)

− κ1(y1(0)−2d)Et [C | d]pt(d)

+ κ1Et [Ψ̃
2 | d−1]pt(d−1)+κ1(Et [C | d−1])2 pt(d)

− κ1Et [C̃2 | d]pt(d)−κ1(Et [C | d])2 pt(d)+κ2(y2(0)+2d)pt(d)

− κ2Et [C | d]pt(d)−Et [C | d]
∂

∂ t
pt(d) (7.5)

pt(d)
∂

∂ t
Et [C̃2 | d] =

(
Et [Ψ̃

2 | d−1]+{Et [C | d−1]−Et [C | d]}2
)

κ1(y1(0)−2(d−1))pt(d−1)

− κ1(y1(0)−2d)Et [C̃2 | d]pt(d)+κ1Et [C | d−1]Et [Ψ̃
2 | d−1]pt(d−1)

+ 2κ1{Et [C | d−1]−Et [C | d]}Et [Ψ̃
2 | d−1]pt(d−1)

+ κ1{Et [C | d−1]−Et [C | d]}2Et [C | d−1]pt(d−1)

− κ1Et [C | d]Et [C̃2 | d]pt(d)+κ2(y2(0)+2d)pt(d)−κ2Et [C | d]pt(d)

− 2κ2Et [C̃2 | d]pt(d)−Et [C̃2 | d] ∂

∂ t
pt(d), (7.6)

where Ψ̃ = c−Et [C | d−1].

Substitution
∂

∂ t
pt(d) into pt(d)

∂

∂ t
Et [C | d], pt(d)

∂

∂ t
Et [C̃2 | d] will give a system

of differential equations that is expressed only in terms of the marginal probabilities,
the conditional means and the second centered moments. In our application, we close
moment equations setting the third and the higher moments to zero. If pt(d) = 0 ,
then we will not be able to obtain Et [C | d],Et [C̃2 | d]. To avoid this drawback, in
[25], the authors proposed a successful initialization procedure.

Based on the fact that propensity functions must be non negative, we define the
state space of the system as follows:

Ω = D×C = {(d,c) ∈ D×R≥0 : y1(0)−2d + c≥ 0,y2(0)+2d− c≥ 0,D⊂ N}.

To obtain each conditional probability density function by solving the corresponding
convex optimization problem on the state space of interest, we use the CVX toolbox
of the MATLAB [23]. When the size of Ω is very high, the dimensionality of the
optimization problem increases. Therefore, the CVX cannot produce accurate results.

To keep the dimension of the optimization problems small for the CVX, we con-
struct state space iteratively using a similar strategy to the sliding window method
[40]. In summary, our strategy is to solve the moment equation system of the HME
using an appropriate discretization method. At each discretization step, we check the
marginal probabilities. If they are higher than a given threshold, then we extend the
state space of the variable d. This procedure continues until the time point of the in-
terest is reached. Finally, depending on the state space of the variable d, we construct
a state space for the variable c. Now, we can explain the details of the method.

In the first step of this construction, we define a feasible subset Ω 0 of Ω , Ω 0 =
D0×C0, in which the dimension of the optimization problem is acceptable for the
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CVX. To avoid the problem of having p0(d) = 0, we choose an initial Poisson distri-
bution, p0(d,c), in the state space Ω 0 and compute the corresponding p0(d),
E0[C | d], E0[C̃2 | d], which will be considered as the initial conditions for the moment
equation of the system of the HME.

Assume that we want to obtain the conditional counting probability density at
time point τ > 0. Then, we approximate the solution of the moment equation system
of the HME on [0,τ] time interval using a numerical method. We choose a discretiza-
tion time step ∆ and define t j = j∆ , j = 0,1, . . . ,J such that t0 = 0, tJ = τ . As a result,
we obtain subintervals [t j, t j+1], j = 0,1, . . . ,J− 1. Let p j(d), E j[C | d], E j[C̃2 | d]
represent the approximate solution of the ODE system given in Equation (7.5) and
D j represents the state space of d at time point t j. To construct D1, we will solve
the moment equation system of the HME using initial conditions p0(d) ≡ p0(d),
E0[C | d] ≡ E0[C | d], E0[C̃2 | d] ≡ E0[C̃2 | d]. Then, we will obtain p1(d), E1[C | d],
E1[C̃2 | d] values for each d variable in the state space

D0 = {d : min(D0)≤ d ≤max(D0)}.

To extend D0, we define a threshold ε > 0 and check the marginal probability
p1

max ≡ p1(max(D0)). If p1
max > ε , then we extend D0 as follows:

D1 = {d : min(D0)≤ d ≤max(D0)+1}.

To approximate the solution of Equation (7.5) at time point t2, we need to initialize
the system on D1. Although we know p1(d), E1[C | d], E1[C̃2 | d] for d ∈D0, we have
to impose initial conditions for d = max(D0)+1

p1(max(D0)+1) =
∑

d∈D0

p1(d)

| D0 |+1
, E1[C |max(D0)+1] = E1[C |max(D0)],

E1[C̃2 |max(D0)+1] = E1[C̃2 |max(D0)],

where | D0 | denotes the cardinality of the subset D0. We employ this procedure
successively until the desired time point τ is reached. Let D∗ denote the state space
of d at time point τ . Here, we must choose ε > 0 such that, D∗ must also be in the
feasible region of the CVX. Now, we can construct the feasible state space for c
denoted by C∗. Since we know initial domain Ω 0 = D0×C0, we only need to obtain
(d,c) pairs for d ∈ D∗ \D0. Then, for a given ε > 0, we construct the feasible region
C∗ for variable c as follows:

C∗ = C0∪ C̄ with C̄ =
⋃

d∈D∗\D0

Cd ,

where

Cd =
{

c : max(min(C0)−εσ ,0)≤ c≤max(C0)+εσ)∧y1(0)−2d+c≥ 0∧y2(0)+2d−c≥ 0∧d ∈D∗\D0
}
,

where σ =
√
EJ [C̃2 | d]. Here max(C0) and min(C0) denote the maximum and the

minimum values of c of pairs (c,max(D0)) ∈ Ω 0,respectively. As a result, we have
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a feasible region Ω ∗ = D∗×C∗ for the CVX. Then, we can solve the correspond-
ing convex optimization problems for each conditional counting probability density
pτ(c | d),d ∈ D∗ using the CVX. Finally, we can compute the approximate solution
of pτ(d,c). The resulting algorithm is presented in Algorithm 1.

Algorithm 1: Constructing feasible region for the CVX
Input: The state vector Y , the error bound ε , a discretization time step ∆ , stoichiometric vectors

µD
1 , µC

2 , the initial domain Ω 0 = D0×C0,D0,C0 ⊂ N0, end of the simulation time τ > 0.
Output: The conditional probability at time point τ , pτ (c | d).

1 Set t = 0.
2 Calculate p0(d), E0[C | d], E0[C̃2 | d] on domain Ω 0 by using a Poisson distribution.
3 Set J = τ/∆ and define t j = j∆ , j = 0,1, . . . ,J.
4 Set p0(d)≡ p0(d), E0[C | d]≡ E0[C | d], E0[C̃2 | d]≡ E0[C̃2 | d].
5 for j = 1,2, . . . ,J do
6 Solve moment equation of the HME by using any discretization based numerical method

and obtain p j(d), E j[C | d], E j[C̃2 | d] for d ∈ D j

7 if p j(max(D j))> ε then
8 Set D j+1 = D j ∪{max(D j)+1}
9 Set p j(d) = p j(d) for d ∈ D j

10 Define p j(max(D j)+1) =
∑

d∈D
p j(d)

|D j |+1 , E j[C | max(D j)+1] = E j[C | max(D j)],

E j[C̃2 | max(D j)+1] = E j[C̃2 | max(D j)],
11 end
12 Set D∗ = DJ

13 Set C∗ = C0

14 for d ∈ D∗ \D0 do
15 Obtain

Cd =
{

c : max(min(C0)−εσ ,0)≤ c≤max(C0)+εσ)∧y1(0)−2d+c≥ 0∧y2(0)+2d−c≥ 0∧d ∈D∗\D0
}

16 C∗ = C∗ ∪Cd

17 end
18 For each d ∈ D∗ obtain pτ (c | d) using the CVX.

In our numerical simulation study, the state of the system is initialized y(0) =
(50,0)T and the reaction rate constants of R1, R2 are given by κ1 = 0.2s−1, κ2 =
0.4s−1, respectively. We define

Ω = {(d,c) : 50−2d + c≥ 0, 2d− c≥ 0, d,c ∈ {0,1,2, . . . ,30}}.

The initial state space Ω 0 is

Ω
0 = {(d,c) ∈Ω : (d,c) ∈ {0,1,2, . . . ,8}}.

In Figures (7.1a) and (7.2a), one can see the state space Ω shown by the points
with only green markers and Ω 0 shown by the points with black edged markers.
The threshold for extending the region of the variable d is ε = 10−6, and ε = 2. We
obtain joint counting probability density function at time points τ = 0.5 and τ = 1.
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We have used the Euler method with fixed time step ∆ = 10−4. Figures (7.1a) and
(7.2a) also show the Ω ∗ at time points τ = 0.5 and τ = 1, respectively. In both fig-
ures, the state space Ω ∗ is the union of the points denoted by markers with black and
red edges. Figures (7.1b) and (7.2b) show the joint counting probability satisfying
the CME given in Equation (7.1) at time points τ = 0.5 and τ = 1, respectively. To
obtain these figures, we solve CME in this given restricted domain. To achieve this
goal, we obtain the ODE system satisfying the CME and use Euler method with fixed
time step ∆ = 10−4.

Figures (7.1c) and (7.2c) indicate the approximate solution of the pτ(d,c) satis-
fying Equation (7.2) obtained with Algorithm 1 at time points τ = 0.5 and τ = 1,
respectively.
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Fig. 7.1: The joint counting probability density function at time point τ = 0.5. (a)
The state space Ω is shown by the points only with green markers; Ω 0 is shown by
the points with black edges; and Ω ∗ is the union of the points with black and red
edges. (b) The joint counting probability density function satisfying the CME given
in Equation (7.1) (c)The joint counting probability density function satisfying the
HME given in Equation (7.2)
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Fig. 7.2: The joint counting probability density function at time point τ = 1. (a) The
state space Ω is shown by the points only with green markers; Ω 0 is shown by the
points with black edges; and Ω ∗ is the union of the points with black and red edges.
(b) The joint counting probability density function satisfying the CME given in Equa-
tion (7.1) (c)The joint counting probability density function satisfying the HME given
in Equation (7.2)
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In Table 7.1, one can see two norm of the differences between the joint probabili-
ties, marginal probabilities, conditional means and second central moments obtained
from CME given in the Equation (7.1) and from the moment equation of the HME
given in Equation (7.4). We should note that the error between the joint probability
distributions decresases when the size of the domain of the HME increases. On the
other hand, the errors in the marginal probabilities and centered means increases as
the size of the domain of the HME increases, this is the result of only taking the
evolution equations of the centered moments up to order 2.

Time
∥∥pτ,CME (d,c)− pτ,HME (d,c)

∥∥
2

∥∥pτ,CME (d)− pτ,HME (d)
∥∥

2

∥∥Eτ,CME [C | d]−Eτ,HME [C | d]
∥∥

2

∥∥Eτ,CME [C̃2 | d]−Eτ,HME [C̃2 | d]
∥∥

2

τ = 0.5 0.0164 6.1171e−05 0.1800 1.4027

τ = 0.75 0.0109 1.0088e−04 0.3883 1.7907

τ = 1 0.0078 1.4058e−04 0.4050 1.9396

Table 7.1: The errors between the joint probability distributions, marginal distribu-
tions, centered conditional means and the second centered conditional moments of
the CME satisfying Equation (7.1) and HME obtained by the Algorithm 1.

8 Conclusion

In this study, we present the hybrid master equation for jump-diffusion approxima-
tion, which models systems with multi-scale nature. The idea of jump diffusion ap-
proximation is to separate reactions into fast and slow groups based on an obtained
error bound. Fast reactions are modeled using diffusion approximation, while Markov
chain representation is employed for slow reactions. In this study, based on the study
of Pawula [34], we prove that joint probability density of this hybrid model over re-
action counting process satisfies the hybrid master equation, which is the summation
of the corresponding chemical master equation and the Fokker-Planck equation. It
can be said that while [17] presents a state vector representation for reaction net-
works with multi-scale nature, the current study complements it by obtaining evolu-
tion equation for the corresponding joint probability density over reaction counting
process. We note that the main contribution of the paper is to prove that the joint
probability density function of jump-diffusion approximation satisfies the HME that
correspondingly involves terms from the chemical master equation modeling the re-
action counters of the slow reactions and from the Fokker-Planck Equation modeling
the reaction counters of fast reactions given the reaction counters of slow reactions.
Although different solution procedures such as finite difference method or finite el-
ement method [35] can be used to approximate the solution of the corresponding
HME, we propose an algorithm based on the method of conditional methods [25].
In our algorithm, we write the joint probability density function as the product of
the conditional counting probability density of the fast reactions conditioned on the
counting process of the slow reactions and the marginal probability of the counting
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process of the slow reactions. To construct the conditional probability density func-
tions at a specific time point, we used the maximum entropy approach. We use the
CVX toolbox of the MATLAB to solve the constrained optimization problems. Based
on restrictions of the CVX on the dimensionality of the optimization problems, we
present a method which constructs feasible regions for the CVX. Although we con-
sider that the main contribution of the paper is the derivation of the HME, there are
two open questions in the proposed simulation study which obtains an approximation
for the solution of the HME. The first question is about the application area of the
proposed algorithm. In the present paper, we have applied the algorithm to a gene
model which is a very small system. In our application, we have used zero or first
order mass action rate laws to utilize the linearity of the conditional means. Although
there is no restriction on propensity functions to obtain evolution equations for the
conditional means and centered conditional moments, it is not easy to implement the
proposed algorithm to systems involving nonlinear propensity functions. The second
question is about the extension of the state space when the size of the system of in-
terest is too large. In our application, we have one slow and one fast reaction. As a
result, after solving the moment equation system of the HME on the feasible region
which can be acceptable for the CVX, we can extend the state space of the discrete
variable by adding 1 to the initial feasible state space of the discrete variable. Based
on the new extended state space of the discrete variable, we can extend the state space
of continuous variable. When we have more than one slow reaction in the system, the
discrete variable will be a vector and we will not be able to extend the feasible region
which in turn will cause problems for extension of the feasible region of the state
space of the continuous variable. We will try to answer these two open questions in
our future works.

A Appendix

A.1 Proof of Lemma 5.1

Proof Using Leibniz integral rule and the boundary conditions gives

∂

∂ t
(Et [Ft(C) | d]pt(d)) =

∂

∂ t

(∫
RR−L
≥0

Ft(c)pt(c | d)pt(d)dc
)
=
∫
RR−L
≥0

Ft(c)
∂

∂ t
pt(d,c)dc

+
∫
RR−L
≥0

pt(d,c)
∂

∂ t
Ft(c)dc

Inserting Equation (4.11) into the first integral yields

∂

∂ t
(Et [Ft(C) | d]pt(d)) =

∫
RR−L
≥0

Ft(c) ∑
i∈D

κi

M

∏
s=1

rsi

∑
n=0

(
β

n
s (d− ēi)γ

rsi−n
s (c)pt(d− ēi,c)−β

n
s (d)γ

rsi−n
s (c)pt(d,c)

)
dc

−
∫
RR−L
≥0

Ft(c) ∑
j∈C

∂

∂c j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
dc

+
1
2

∫
RR−L
≥0

Ft(c) ∑
j∈C

∂ 2

∂c2
j

(
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
dc

+
∫
RR−L
≥0

pt(d,c)
∂

∂ t
Ft(c)dc.
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Since Ft(c) is a polynomial function and sufficiently many moments of pt(d,c) with respect to c exist, we
can manipulate the integral as follows:

∂

∂ t
(Et [Ft(C) | d]pt(d)) = ∑

i∈D
κi

∫
RR−L
≥0

M

∏
s=1

rsi

∑
n=0

(
β

n
s (d− ēi)Ft(c)γrsi−n

s (c)pt(d− ēi,c)−β
n
s (d)Ft(c)γrsi−n

s (c)pt(d,c)
)

dc

− ∑
j∈C

κ j

∫
RR−L
≥0

Ft(c)
∂

∂ci

( M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
dc

+
1
2 ∑

j∈C
κ j

∫
RR−L
≥0

Ft(c)
∂ 2

∂c2
j

( M

∏
s=1

rs j

∑
n=0

β
n
s (d)γ

rs j−n
s (c)pt(d,c)

)
dc

+
∫
RR−L
≥0

pt(d,c)
∂

∂ t
Ft(c)dc.

Here, we want to draw the attention of the reader to the following mean which is used in our equations

Et [Ft(C)γ
rs j−n
s (C)βs(d) | d] =

∫
RR−L
≥0

Ft(c)γ
rs j−n
s (c)β n

s (d)pt(c | d)dc = βs(d)Et [Ft(C)γ
rs j−n
s (C)β n

s (d) | d].

Using this equality and the properties of the FPE will give us the following equation [9,33]:

∂

∂ t
(Et [Ft(C) | d]pt(d)) = ∑

i∈D
κi

M

∏
s=1

rsi

∑
n=0

Et [Ft(C)γrsi−n
s (C) | d− ēi]β

n
s (d− ēi)pt(d− ēi)

− ∑
i∈D

κi

M

∏
s=1

rsi

∑
n=0

Et [Ft(C)γrsi−n
s (C) | d]β n

s (d)pt(d)

+ ∑
j∈C

κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)

∂

∂c j
Ft(C) | d]pt(d)

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)

∂ 2

∂c2
j
Ft(C) | d]pt(d)

+ Et [
∂

∂ t
Ft(C) | d]pt(d).

Define

Γ̃ (β (d),Ft(c)γ(c)) = ∑
i∈D

(F−ēi − I)
(

κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [Ft(C)γ

rs j−n
s (C) | d]

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)

∂

∂c j
Ft(C) | d]

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

Et [γ
rs j−n
s (C)

∂ 2

∂c2
j
Ft(C) | d]

Then, we obtain

∂

∂ t
(Et [Ft(C) | d]pt(d)) = Γ̃ (β (d),Ft(c)γ(c))pt(d)+Et [

∂

∂ t
Ft(C) | d]pt(d)

which completes the proof.
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A.2 Mean of the propensity functions

To express Et [γ
rsi−n
s (C) | d] in terms of Et [Cm | d], Et [C̃M | d], we will use the Taylor series expansion

of γ
rsi−n
s (C) around Et [C | d]. The Taylor polynomial of degree q for γ

rsi−n
s (C) around Et [C | d] has the

following form

Gq(c) = ∑
k1+...+kR−L≤q

∂
k1
1 . . .∂

kR−L
R−L

k1! . . .kR−L!
γ

rsi−n
s (Et [C | d])(ck1 −Et [Ck1 | d])

k1 . . .(ckR−L −Et [CkR−L | d])
kR−L ,

(A.1)

where ∂ `
j =

∂ `

∂c`j
, `= k1, . . . ,kR−L. In general cellular reactions are unimolecular or bimolecular. Therefore,

the third and the higher order derivatives will be zero, meaning that the conditional mean of the function
γ

rsi−n
s (C) satisfies [25]

Et [γ
rsi−n
s (C) | d] = γ

rsi−n
s (Et [C | d])+

1
2

R−L

∑
k,`=1

∂ 2

∂ck∂c`
γ

rsi−n
s (Et [C | d])Et [C̃ek+e` | d]. (A.2)

Here, we use the fact that Et [Ci−Et [Ci | d] | d] = 0, i ∈ C . As a result, if we have a reaction with lin-
ear propensity, the second term in Equation (A.2) will also be zero and we will get Et [γ

rsi−n
s (C) | d] =

γ
rsi−n
s (Et [C | d]).

A.3 Proof of Proposition 5.2

Proof We will use the product rule for derivatives as follows:

pt(d)
∂

∂ t
Et [Cm | d] =

∂

∂ t

(
Et [Cm | d]pt(d)

)
−Et [Cm | d]

∂

∂ t
pt(d). (A.3)

By setting Ft(c) = cm in Lemma 5.1, we can obtain the first derivative on the right hand-side of Equation
(A.3) as follows:

∂

∂ t

(
Et [Cm | d]pt(d)

)
= Γ̃ (β (d),cmγ(c))pt(d)+Et [

∂

∂ t
Cm | d]pt(d).

By using equalities
∂

∂ t
Cm = 0,

∂ 2

∂c2
j
Cm = 0, we get

pt(d)
∂

∂ t
Et [Cm | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [Cmγ

rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [γ

rs j−n
s (C)δ jm | d]pt(d)−Et [Cm | d]

∂

∂ t
pt(d),

where δ jm is the Kronecker delta function.

In Equation (5.2), we have the conditional mean Et [γ
rs j−n
s (C)δ jm | d]. If j 6=m, then this term equals to

zero; otherwise, we will have Et [γ
rs j−n
s (C) | d]. By using Equation (A.2), we can express Et [γ

rs j−n
s (C) | d]

also in terms of the conditional means and the centered conditional moments. Additionally, in Equation
(5.2), we have Et [Cmγ

rsi−n
s (C) | d], which must also be reformulated in terms of the conditional means

Et [Cm | d], m ∈ C , and the centered conditional moments Et [C̃M | d]. To achieve this goal, we will add and
subtract Et [Cm | d] term to and from Et [Cmγ

rsi−n
s (C) | d] as follows [25]:

Et [Cmγ
rsi−n
s (C) | d] = Et [(Cm−Et [Cm | d]+Et [Cm | d])γrsi−n

s (C) | d]
= Et [C̃em γ

rsi−n
s (C) | d]+Et [Cm | d]Et [γ

rsi−n
s (C) | d].
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Similarly, adding and subtracting Et [Cm | d− ēi] terms to and from Et [Cmγ
rsi−n
s (C) | d− ēi] will produce

Et [Cmγ
rsi−n
s (C) | d− ēi] = Et [(Cm−Et [Cm | d− ēi]+Et [Cm | d− ēi])γ

rsi−n
s (C) | d− ēi]

= Et [Ψ̃
em γ

rsi−n
s (C) | d− ēi]+Et [Cm | d− ēi]Et [γ

rsi−n
s (C) | d− ēi],

where Ψ̃ = c−Et [C | d− ēi] and for M ∈ NR−L, Ψ̃ M = ∏
j∈C

Ψ̃
M j
j . Inserting the obtained Et [Cmγ

rsi−n
s (C) |

d] and Et [Cmγ
rsi−n
s (C) | d− ēi] values into Equation (5.2) will give us the following equation

pt(d)
∂

∂ t
Et [Cm | d] = ∑

i∈D

M

∏
s=1

rsi

∑
n=0

κi

(
Et [Ψ̃

em γ
rsi−n
s (C) | d− ēi]+Et [Cm | d− ēi]Et [γ

rsi−n
s (C) | d− ēi]

)
β

n
s (d− ēi)pt(d− ēi)

− ∑
i∈D

M

∏
s=1

rsi

∑
n=0

κi

(
Et [C̃em γ

rsi−n
s (C) | d]+Et [Cm | d]Et [γ

rsi−n
s (C) | d]

)
β

n
s (d)pt(d) (A.4)

+ ∑
j∈C

κ j

M

∏
s=1

rs j

∑
n=0

(
Et [γ

rs j−n
s (C)δ jm | d]β n

s (d)pt(d)
)
−Et [Cm | d]

∂

∂ t
pt(d).

As mentioned before, the Taylor series expansion of γ
rsi−n
s (C) around Et [C | d] will give us the possi-

bility to reformulate Et [γ
rsi−n
s (C) | d] using the conditional means and the centered conditional moments.

Here, we must reformulate Et [C̃em γ
rsi−n
s (C) | d] and Et [Ψ̃

em γ
rsi−n
s (C) | d− ēi] using the corresponding con-

ditional means and the centered moments. To do this, we will use the Taylor expansion given in Equation
(A.1) as follows:

Et [C̃M
γ

rsi−n
s (C) | d] = γ

rsi−n
s (Et [C | d])Et [C̃M | d]+ ∑

k∈C

∂

∂ck
γ

rsi−n
s (Et [C | d])Et [C̃M+ek | d]

+
1
2 ∑

k∈C

∂ 2

∂ck∂c`
γ

rsi−n
s (Et [C | d])Et [C̃M+ek+e` | d], (A.5)

where M = (M1,M2, . . . ,MR−L)
T ∈NR−L. It is clear that Et [Ψ̃

Mγ
rsi−n
s (C) | d− ēi] can also be reformulated

by using the Taylor expansion of γ
rsi−n
s (C) around Et [C | d− ēi]. Substitution of the new representations

of Et [C̃Mγ
rsi−n
s (C) | d] and Et [Ψ̃

Mγ
rsi−n
s (C) | d− ēi], which only depend on the conditional means and the

centered conditional moments conditioned on the corresponding discrete variable into Equation (5.2) will

produce pt(d)
∂

∂ t
Et [Cm | d] in terms of the marginal probabilities, the conditional means and the centered

conditional moments.

A.4 Proof of Proposition 5.3

Proof Similar to our previous proofs, again we will use the product rule for derivatives as follows:

pt(d)
∂

∂ t
Et [C̃M | d] = ∂

∂ t

(
Et [C̃M | d]pt(d)

)
−Et [C̃M | d] ∂

∂ t
pt(d).

The first term in the right hand-side of the equation above can be obtained from Lemma 5.1 choosing
F(c) = c̃M . Then, we obtain

∂

∂ t

(
Et [C̃M | d]pt(d)

)
= Γ̃ (β (d), c̃M

γ(c))pt(d)+Et [
∂

∂ t
C̃M | d]pt(d).

Since, we have

∂

∂ci
C̃M =

∂

∂ci
∏
k∈C

(ck−Et [Ck | d])Mk = MiC̃M−ei

∂ 2

∂c2
j
C̃M =

∂ 2

∂c2
j

∏
k∈C

(ck−Et [Ck])
Mk = M j(M j−1)C̃M−2e j

Et [
∂

∂ t
C̃M | d] = − ∑

j∈C
M jEt [C̃M−e j | d]pt(d)

∂

∂ t
Et [C j | d].
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We get

pt(d)
∂

∂ t
Et [C̃M | d] = ∑

i∈D
κi

M

∏
s=1

rsi

∑
n=0

(
β

n
s (d− ēi)Et [C̃M

γ
rsi−n
s (C) | d− ēi]pt(d− ēi)−β

n
s (d)Et [C̃M

γ
rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M jγ

rs j−n
s (C)C̃M−e j | d]pt(d)

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M j(M j−1)γ

rs j−n
s (C)C̃M−2e j | d]pt(d)

− ∑
j∈C

M jEt [C̃M−e j | d]pt(d)
∂

∂ t
Et [C j | d]−Et [C̃M | d] ∂

∂ t
pt(d).

As a result, we obtain

pt(d)
∂

∂ t
Et [C̃M | d] = ∑

i∈D
(F−ēi − I)

(
κi

M

∏
s=1

rsi

∑
n=0

β
n
s (d)Et [C̃M

γ
rsi−n
s (C) | d]pt(d)

)
+ ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M jγ

rs j−n
s (C)C̃M−e j | d]pt(d)

+
1
2 ∑

j∈C
κ j

M

∏
s=1

rs j

∑
n=0

β
n
s (d)Et [M j(M j−1)γ

rs j−n
s (C)C̃M−2e j | d]pt(d)

− ∑
j∈C

M jEt [C̃M−e j | d]pt(d)
∂

∂ t
Et [C j | d]−Et [C̃M | d] ∂

∂ t
pt(d),

which completes our proof.

To formulate the right hand-side of Equation (5.3) in terms of the marginal probabilities, the condi-
tional means and the centered conditional moments, we must restate Et [C̃Mγ

rsi−n
s (C) | d−ei], Et [C̃Mγ

rsi−n
s (C) |

d] terms using these terms. Et [C̃Mγ
rsi−n
s (C) | d] , Et [M jγ

rs j−n
s (C)C̃M−e j | d], Et [MiM jγ

rsk−n
s (C)C̃M−ei−e j |

d] can be expressed utilizing the corresponding Taylor series expansion given in Equation (A.5). To ex-
press Et [C̃Mγ

rsi−n
s (C) | d−ei] in terms of the marginal probabilities, the conditional means and the centered

conditional moments, we will add and subtract Et [C | d− ei] to and from C̃M as follows:

c̃M =
(

c−Et [C | d]
)M

=
(

c−Et [C | d− ēi]+Et [C | d− ēi]−Et [C | d]
)M

= ∑
0≤k≤M

(
M
k

)(
Et [C | d− ēi]−Et [C | d]

)M−k
Ψ̃

k.

Then, we obtain

E[C̃M
γ

rsi−n
s (C) | d− ēi] = ∑

0≤k≤M

(
M
k

)(
Et [C | d− ēi]−E[C | d]

)M−k
E[Ψ̃ k

γ
rsi−n
s (C) | d− ēi].

Using the Taylor series expansion of γ
rsi−n
s (C) around Et [C | d− ēi] gives us the corresponding Taylor series

representation for Et [Ψ̃
kγ

rsi−n
s (C) | d− ēi]. As a result, we can obtain the right hand-side of Equation (5.3)

in terms of the marginal probabilities, the conditional means and the centered moments.
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