TU Darmstadt / ULB / TUprints

Structural assessment of composite bolted joints under bearing-bypass load interaction using analytical methods

Nguyen-Hoang, Minh (2022)
Structural assessment of composite bolted joints under bearing-bypass load interaction using analytical methods.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00021264
Ph.D. Thesis, Primary publication, Publisher's Version

[img] Text
dissertation_nguyen-hoang.pdf
Copyright Information: CC BY-NC-ND 4.0 International - Creative Commons, Attribution NonCommercial, NoDerivs.

Download (2MB)
Item Type: Ph.D. Thesis
Type of entry: Primary publication
Title: Structural assessment of composite bolted joints under bearing-bypass load interaction using analytical methods
Language: English
Referees: Becker, Prof. Dr. Wilfried ; Altenbach, Prof. Dr. Holm
Date: 2022
Place of Publication: Darmstadt
Collation: xiv, 130 Seiten
Date of oral examination: 13 April 2022
DOI: 10.26083/tuprints-00021264
Abstract:

Bolted joints are a common means to connect thin parts due to benefits such as inexpensive manufacturing and their ability to be disassembled. These parts can be plates made of composite laminates, which is common practice for many lightweight structures such as air- and spacecraft. However, holes need to be introduced and stress concentrations arise. In structural analysis, special focus should lie on preventing fatal tension failure. This is the most critical failure mode leading to instantaneous destruction of the connection and must not occur in safety-relevant structures. Hence, precise structural assessment means are crucial to create safe and lightweight optimal designs. These means can be based on analytical methods, which are advantageous in terms of computational effort. Hence, the purpose of the present thesis is to develop an efficient and comprehensive framework for tension failure assessment of composite bolted joints using analytical means. Usually, rows of fasteners are placed in a plate. Then, one part of the load is introduced into a bolt while the remaining load stays in the plate. This problem setting is also referred to as bolted joint under combined bearing-bypass load and is treated analytically in this work using linear two-dimensional models. In doing so, the bolted joint under bearing-bypass load is idealised as a superposition of the open- and pin-loaded hole in a plate with finite dimensions. Regarding the latter setting, the bolt contact is idealised by sinusoidal radial tractions along half of the hole edge. First, the stress field of the joint’s mechanical model is determined. In doing so, use is made of the complex potential method in the Lekhnitskii formalism for stress state representation of orthotropic composite laminates. One objective is to render finite plate dimensions since narrow connections are prone for tension failure. This is achieved by an iterative calculation scheme. Therein, an important part is the development of a novel periodic arrangement technique that enables the efficient and robust implementation of stress-free edges of symmetric finite-domain problems. The results are validated against Finite Element analyses showing excellent agreement for common geometries and layups. Further, the impact of finite dimensions, material orthotropy and ratio between bearing and bypass loads on the characteristic stresses and the corresponding stress concentration factors is extensively investigated. Based on the stress results, a failure analysis is conducted, which aims to precisely predict the critical and minimal loads that lead to tension failure. This part is dedicated to quasi-isotropic laminates only. The following nonlocal concepts capable of capturing the hole size effect are employed: first, the Theory of Critical Distances (TCD), which is frequently used in industry contexts and second, the recent state-of-the-art concept of Finite Fracture Mechanics serving as reference to assess the limits of the TCD. The predictions for the special cases of open and filled holes are validated against test data and good agreement is found. Then, the failure load reduction with increasing hole and bolt diameter in the context of the hole size effect is analysed and effects by finite dimensions as well as the ratio between bearing and bypass load are investigated. Furthermore, the sustained bolt loads are discussed with focus on the nonlinear load interaction. Moreover, failure envelopes that enable the engineer to graphically obtain the critical bearing and bypass stresses are provided.

Alternative Abstract:
Alternative AbstractLanguage

Bolzen- und Nietverbindungen werden häufig verwendet, um dünne und flächige Strukturbauteile zu verbinden. Hierbei sind sowohl die kostengünstige Fertigung als auch die Demontierbarkeit als wesentliche Vorteile zu nennen. Die zu fügenden Bauteile können Faserverbunde sein, was gängige Praxis in vielen Leichtbaustrukturen, zum Beispiel in der Luft- und Raumfahrt, ist. Jedoch sind Löcher in den zu fügenden Strukturen erforderlich, so dass Spannungskonzentrationen entstehen. Im Rahmen der Strukturanalyse ist dem kritischsten Versagensmodus Tension Failure (auch Flankenzugbruch) besondere Aufmerksamkeit zu schenken. Dieser führt zur instantanen Zerstörung der Verbindung und ist in sicherheitsrelevanten Strukturbauteilen zu verhindern. Präzise Tools zur Ermittlung der Versagenslasten sind daher essentiell. Diese können auf analytischen Methoden basieren, welche Vorteile im Berechnungsaufwand mit sich bringen. Das Ziel der vorliegenden Arbeit ist deswegen die Entwicklung einer effizienten und physikalisch basierten Berechnungsmethode zur Bewertung von Tension Failure in Bolzen- und Nietverbindungen von Faserverbundstrukturen. Üblicherweise werden Bolzenreihen gesetzt, so dass sich die gesamte eingeleitete Last aufteilt: Ein Teil der Last verbleibt in dem Strukturbauteil (Bypass-Last), während der restliche Anteil in den Bolzen übertragen wird (Bearing- oder Lochleibungslast). Diese Struktursituation wird auch als Bolzen- oder Nietverbindung unter Bearing-Bypass-Last bezeichnet. Zur analytischen Berechnung soll die vorliegende Situation als lineares 2D-Scheibenproblem idealisiert werden. Dabei sind folgenden Teilprobleme zu superponieren: Der Bypass-Lastfall wird als Open Hole (lastfreies Loch), der Bearing-Lastfall als Pin-loaded Hole (rein Bolzen-belastetes Loch) jeweils mit finiter Scheibengeometrie modelliert. Bei letzterem Teilproblem ist eine Bolzenkontaktidealisierung in Form von sinusförmigen Radialspannungen entlang des halben Lochrandumfangs vorgesehen. Zunächst wird das Spannungsfeld dieses mechanischen Modells der Bolzenverbindung bestimmt. Dabei werden komplexe Potentiale im Lekhnitskii-Formalismus zur Berechnung von Spannungen in orthotropen Faserverbunden verwendet. Ein wichtiges Ziel ist es finite Fügeteilabmessungen zu berücksichtigen, zumal Verbindungen mit schmaler Breite für Tension Failure prädestiniert sind. Dieses Ziel wird durch ein iteratives Berechnungsverfahren erreicht. Dessen wesentlicher Bestandteil ist dabei eine neuartige Methode periodischer Anordnungen, welche die effiziente und robuste Implementierung spannungsfreier Ränder von symmetrischen Randwertproblemen mit endlicher Geometrie ermöglicht. Die Spannungslösung zeigt exzellente Übereinstimmung mit Finite-Elemente-Analysen für typische Fügeteilgeometrien und Lagenaufbauten des Faserverbunds. Mit den ermittelten Spannungen als Input wird eine Festigkeitsanalyse durchgeführt. Deren Ziel ist es die kritischen und minimalen Lasten zu ermitteln, welche zu Flankenzugbruch führen. Gegenstand dieses Teils der Arbeit sind ausschließlich quasi-isotrope Faserverbunde. Im Zuge dessen werden folgende nichtlokale Konzepte zur Modellierung von Bruchvorgängen in spröden Materialien verwendet, welche den Lochgrößeneffekt abbilden können: Erstens die Theorie kritischer Distanzen (TCD), die im industriellen Umfeld häufig Anwendung findet und zweitens die Finite Bruchmechanik. Letztere entspricht dem derzeitigem Stand der Forschung und dient als Referenz zur Ermittlung der Modellgrenzen der TCD. Die Teilprobleme Open Hole und Pin-loaded Hole werden mittels Versuchsergebnisse validiert. Anschließend wird der Lochgrößeneffekt und in diesem Kontext der Abfall der Effektivfestigkeit mit zunehmendem Loch- und Bolzendurchmesser modelliert. Des Weiteren wird ein möglicher Einfluss von finiten Bauteilabmessungen sowie von dem Verhältnis zwischen Bearing- und Bypass-Lasten auf die Versagensspannungen analysiert. Diese werden auch im Hinblick auf eine nichtlineare Lastinteraktion untersucht. Schlussendlich werden Versagenskurven (auch Versagensenveloppen oder failure envelopes) zur Verfügung gestellt, mit denen die kritischen Bearing- und Bypass-Spannungen bei Versagen grafisch ermittelt werden können.

German
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-212643
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 16 Department of Mechanical Engineering > Institute of Structural Mechanics (FSM)
Date Deposited: 11 May 2022 13:10
Last Modified: 10 Aug 2022 13:08
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/21264
PPN: 495512168
Export:
Actions (login required)
View Item View Item