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ABSTRACT 
 

College Education and Wages in the U.K.: 
Estimating Conditional Average Structural Functions in 
Nonadditive Models with Binary Endogenous Variables 

 
We propose and implement an estimator for identifiable features of correlated random 
coefficient models with binary endogenous variables and nonadditive errors in the outcome 
equation. It is suitable, e.g., for estimation of the average returns to college education when 
they are heterogeneous across individuals and correlated with the schooling choice. The 
estimated features are of central interest to economists and are directly linked to the marginal 
and average treatment effect in policy evaluation. The advantage of the approach that is 
taken in this paper is that it allows for non-trivial selection patterns. Identification relies on 
assumptions weaker than typical functional form and exclusion restrictions used in the 
context of classical instrumental variables analysis. In the empirical application, we relate 
wage levels, wage gains from a college degree and selection into college to unobserved 
ability. Our results yield a deepened understanding of individual heterogeneity which is 
relevant for the design of educational policy. 
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1. Introduction

In many econometric applications, the characterization of the impact of binary variables on

an outcome variable is of central interest. Examples are the impact of an additional year of

schooling, or attending college, on wages, or the impact of participation in a labor market

program on unemployment duration. Often, conditional on observable covariates, these effects

are considered to be heterogeneous across individuals and possibly correlated with the binary

choice variable. This is true if the choice is based upon knowledge of the outcome that is

superior to what is observed in the data. In general, estimates of effects of interest will be

biased if we do not properly account for such non-trivial selection patterns.

In this paper, we model the log of individual wages, which we denote by Y , by a correlated

random coefficient model of the form

Y = X′ϕ(D,U,V)(1)

D = 1I{P(Z) ≥ V},(2)

where D is the binary endogenous variable. It is equal to one if the individual graduated from

college. X is a K-vector of observable covariates in the wage equation, (1). In our applica-

tion, we exploit a uniquely rich birth cohort data set, the British National Child Development

Survey (NCDS), and include in X, among other variables, the type of secondary school that

was attended, the social class of the parents, as well as other family background variables and

accurately measured ability test scores at the age of 7 and 11. Z is a vector of covariates in

the selection equation, (2), and includes the variables in X as well as the father’s interest in the

education of the child for which we assume that it can be excluded from the wage equation.

As we will see below, such an exclusion restriction is not necessary for identification in our

model but yields additional identifying power. X and Z include a constant as their respective

first elements. U is a vector and represents “luck”, and V is a scalar entering both the wage and
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the selection equation. It represents unobservable costs, benefits, and most importantly, talent

and unobserved ability which we suppose to have an impact on both wages and the decision

whether to attend college. Modelling this link is of economic interest and important once we

aim at estimating the impact of changes in D or X on Y from non-experimental field data. As

for stochastic restrictions, we assume that (U,V) are jointly independent of (X,Z) and that U is

independent of V . This implies that P(Z) is identified from observations.

In this model, ceteris paribus effects of changes in observables, D and X, on wages are

allowed to depend on unobservables U and V . In general, the model is not identified.1 However,

Heckman and Vytlacil (1999, HV in the remainder) establish nonparametric identification of

several features of the wage equation.2

One of those features is the expected level of wages, Y , for a given D, X, and V ,3

E[Y |D = d, X = x,V = v] = x′E[ϕ(d,U, v)].

We call it the conditional average structural function (CASF). Here, the right hand side reflects

the functional form restriction in (1). It is imposed to achieve dimensionality reduction in the

direction of the observable covariates, X. E[ϕ(d,U, v)] is the vector of conditional average

ceteris paribus effects, understanding the notion of ceteris paribus as holding all other factors

constant, including V , averaging only over U.

We believe that not only average ceteris paribus effects, where we average over V and U,

are of interest but also their dependence on V . In Section 3, we define the parameters of interest

1The model in (1) and (2) is nonadditive in the unobservables. Moreover, the vector X, in principle, could
include approximating functions in a way such that the number of approximating functions grows with the sample
size. Then, along with Newey (1997), (1) could be interpreted as a series approximation of a general nonseparable
structural equation Y = g(X,D,U,V). Together with (2) this is a triangular structure similar to the ones considered
by Chesher (2003) and Imbens and Newey (2003). The key difference, however, is that here (2) is not invertible
in V and hence identification fails since V enters as an argument. Chesher (2005) shows that in this case set
identification may still be feasible.

2See also Heckman and Vytlacil (2000a,b, 2005) as well as Heckman, Urzua, and Vytlacil (2006) for a com-
prehensive discussion.

3We will denote (vectors of) random variables by uppercase letters and their respective typical elements by
lowercase letters.
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more formally and link them to a variety of treatment effect parameters that are considered in

the literature on program evaluation.

For nonparametric identification, HV assume that (U,V) are jointly independent of Z con-

ditional on X, instead of our assumption that (U,V) are jointly independent of (X,Z). At the

same time, they require conditions on the support of P(Z) to hold conditional on X, whereas we

require them to hold only unconditionally.

Nonparametric estimation is not feasible in our application because not only the expected

level of wages needs to be estimated conditional on X = x, D = d, and P(Z) = p, but also its

partial derivative with respect to p. This requires continuous variation of P(Z) conditional on

D and X, a requirement that is not met in our data because there is no such continuous variable

in Z. This shows that there is a tradeoff between flexibility of the model—the model by HV is

fully nonparametric—and data requirements.

Instead of estimating a fully nonparametric model, Carneiro, Heckman, and Vytlacil (2005)

and Carneiro and Lee (2005) propose estimation of what we shall refer to as the additive model.

Write X as (1, X′
−1)′. Then, instead of (1), which can be written as

Y = ϕ1(D,U,V) + X′−1ϕ−1(D,U,V),

they consider a wage equation of the form

Y = µ(D,U,V) + X′−1γ(D,U)

and show that the CASF is identified under the same stochastic restrictions and conditions on

the support of P(Z) that we use in this paper.

One limitation of their model is that it does not allow for the effect of elements of X on

Y to depend on V . As we have argued before, this nonseparability is an important aspect of

unobserved heterogeneity and is of economic interest in many applications with binary endoge-
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nous variables. Estimates for the more general model that is proposed in this paper indicate that

these nonseparabilities are present in our data. For example, the expected effect of the parents’

social class measured by the father’s occupation depends on the level of unobserved ability, V .

Moreover, we find that imposing separability results in biases which are significant.

We estimate the model by local linear smoothing. Our estimator is a local instrumental

variables estimator built on the conventional two stage least squares IV estimator, except that

we let the coefficients in the second stage depend on the value of P(Z). It turns out that it is

easier to implement than the estimator that is used for the additive model.4

Our results indicate that the returns of attending college relative to obtaining just A-levels

are sizable. Moreover, we find evidence for heterogeneity of monetary returns. They are lower

for individuals who actually attend college as compared to the returns for those who don’t. This

can be traced back to both observable and unobservable factors, and the interaction of the two.

One finding is that returns are decreasing in the father’s years of education. Unlike other studies,

we don’t find clear cut evidence for sorting that is based on individuals’ comparative or absolute

advantage with respect to wages.

The paper is organized as follows. In Section 2, we embed our study into the literature.

The full characterization of the econometric model, the identification result, and the proposed

estimator are presented in Section 3. Section 4 contains the results from the empirical analysis.

Section 5 concludes.
4First applications are Carneiro, Heckman, and Vytlacil (2005) and Carneiro and Lee (2005). There, the

model is estimated using a double residual regression involving several additional steps, see Robinson (1988) and
Heckman, Urzua, and Vytlacil (2006).
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2. Related Results

In this section, we briefly relate our model to the literature.5 Furthermore, we discuss aspects

of modelling unobserved heterogeneity, and most importantly ability.

In our application, we model two types of ability. The first consists of math and verbal ability

test scores at the age of 7 and 11, which we include in our set of covariates. The availability

of this information is a key advantage of the NCDS since in many other data sets, e.g. the

Family Expenditure Survey, the General Household Survey, or the Labor Force Survey, such

precisely measured information is not available. Blundell, Dearden, and Sianesi (2005, BDS in

the remainder) analyze the same data using OLS, IV, matching, and control function techniques.

In Section 4, we compare our estimates of average returns to the ones of BDS.

The second type of ability is contained in V which enters both the wage and the selection

equation. In the statistics literature, V is sometimes referred to as a confounding variable, see

e.g. Fisher (1935, Ch. 7) and Yates (1937). For simplicity, we refert to V as unobservable

ability. By the selection model, (2), V is an unobserved threshold so that high values of V are

associated with a low level of unobserved ability.

This is well in line with the economics literature, where the term “ability” is often used

in different contexts and with different meanings. Griliches (1977, p. 7) defines it as “an

unobserved latent variable that both drives people to get relatively more schooling and earn

more income, given schooling, and perhaps also enables and motivates people to score better

on various tests.” Along those lines, Taubman and Wales (1972) and Taubman (1973) call it

“mental ability” and Willis and Rosen (1979) use the expression “talent”. On the other hand,

Griliches (1977, p. 8) suggests that one could also interpret ability as “initial human capital”.

More broadly, Becker (1967) elaborates on whether there are several types of ability and Willis

and Rosen (1979, p. S29) note that ability is potentially multi factoral.

5The question of how to estimate the returns to schooling and college education, which is closely related to
the estimation of respective counterfactual wage levels, is one of the classical questions in econometrics. For two
excellent surveys of the literature on the returns to schooling see Griliches (1977) and Card (2001). For an early
survey on the returns to college education see Solmon and Taubman (1973).
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In fact, in our model, V is the projection of all unobservable factors that are common to

the wage and the selection equation onto a scalar. Ashenfelter and Mooney (1968), Griliches

and Mason (1972), Hansen, Weisbrod, and Scanlon (1970), Weisbrod and Karpoff (1968) and

Leibowitz (1974) discuss and partly analyze the link between ability as well as other factors and

earnings in more detail. Examples of such other factors include wealth, parent’s income, status,

social origin, motivation, quality of schooling, and idiosyncratic preferences. Here, we reach a

natural limitation of our data since not all of those factors are observable. We proxy for some of

these factors by including accurately measured family background variables, that are contained

in the NCDS, in our set of covariates so that only the remaining variation is captured by V if it

is common to the wage and the selection equation, and U if its only impact is on wages.

In general, econometric challenges arise from the fact that, via what we call unobserved

ability, V , the return to schooling and college education is likely to be correlated with schooling

and college choice once it results from optimizing behavior by economic agents who act on their

knowledge of their ability. This gives rise to the classical selection problem in econometrics

which could be overcome relatively easily if a perfect measure of ability was available, for

example by including this measure into the set of regressors in the wage equation. Griliches

(1977) discusses econometric consequences when an imperfect measure is used, i.e. when

ability is measured with error. Along these lines, Chamberlain (1977) argues that it is instructive

to think of unobserved ability as being a left-out variable.

Early contributions discussing the selection problem in detail include Heckman (1978),

Heckman and Robb (1985, 1986) and Willis and Rosen (1979). A variety of approaches to

this challenging problem has been taken over the last four decades. Identifying assumptions in-

clude parametric assumptions, as well as conditional (mean) independence and monotonicity in

order to identify mean returns. Also, quantile invariance has proved to be a powerful identifying

assumption.6

6For distributional assumptions see, e.g., Heckman (1978), and Aakvik, Heckman, and Vytlacil (2005). Condi-
tional independence is assumed in Rosenbaum and Rubin (1983). Heckman and Vytlacil (1998) exploit additivity
of the error term in a random coefficient framework. Imbens and Angrist (1994), Angrist, Graddy, and Imbens
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Most of these approaches rely on the presence of IVs that can be excluded from the earnings

equation. IVs that have been used are quarter of birth Angrist and Krueger (1991) and parental

interest in education (BDS) as well as, e.g., the level of tuition fees, distance to college, and

parental education, see Card (2001) for details. Angrist and Krueger (2001) advocate the use of

natural experiments such as institutional changes as instruments giving rise to variation exoge-

nous to the earnings equation. In our application, we derive additional identifying power from

the assumption that the father’s interest in the education of the child can be excluded from the

wage equation.

The approach we take in this paper has several key advantages. First, we do not restrict

selection to be based solely on observables which underlies OLS regressions, classical IV esti-

mation, the random coefficient model suggested by Heckman and Vytlacil (1998), and match-

ing.7 Second, we do not have to specify the joint distribution of unobservables which underlies

parametric approaches. Third, our model is nonparametric in the dimension of the unobserved

heterogeneity since the dependence of the random coefficients on D and V is not constrained

by functional form assumptions as they are in the additive model of Carneiro, Heckman, and

Vytlacil (2005).

(2000), HV, Carneiro, Heckman, and Vytlacil (2005), Heckman and Vytlacil (2005), and Abadie, Angrist, and
Imbens (2002) exploit monotonicity, which is implied by the selection model. In Section 3, it will become clear
that this is what we do in this paper as well. Quantile invariance is relied on in Chernozhukov, Imbens, and Newey
(2004) and Chernozhukov and Hansen (2005). It is well beyond the scope of this paper to review the literature.
However, the reader is referred to, e.g. Blundell and Powell (2003) for the relationship between IV and control
function estimators, HV as well as Heckman and Vytlacil (2005) for the relationship between estimators based on
monotonicity and classical IV estimators and OLS, and BDS for a comparison of OLS, IV, matching and control
function estimators.

7These models assume that conditional on observables, D is independent of either the effect from changes in
D, or the error term in the outcome equation, or both. Garen (1984), Heckman (1978), Newey, Powell, and Vella
(1999) as well as Pinske (2000) and Blundell and Powell (2003) pursue a control function approach. Imbens and
Newey (2003) generalize this approach. Newey and Powell (2003), Darolles, Florens, and Renault (2003), and Das
(2005) investigate the case in which the error term is additive. Notice that in our case identification is complicated
by the fact that the endogenous variable is binary so that a control function approach in which we include the
first stage residual into the second stage is not feasible because the selection equation is not invertible in V . It
will become clear in Section 3 that the estimation step in our approach boils down to estimation of the expected
outcome conditional on D, X, and P(Z). Identification of the parameters of interest is achieved by exploiting the
monotonicity implied by the selection model.
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3. Econometric Approach

This section contains the formal results underlying our analysis in Section 4. Our point of

departure is the correlated random coefficients model that was given in (1) and (2). We restate

it for convenience:

Y = X′ϕ(D,U,V)(1)

D = 1I{P(Z) ≥ V}.(2)

(1) is the wage equation and (2) is the selection equation. We impose the following stochas-

tic restrictions.

A 1 (Stochastic Restrictions): (i) (U,V) are jointly independent of (X,Z) and (ii) U

is independent of V.

This allows Z to contain variables also included in X and vice versa. Assumption 1(i) requires

the unobservables (U,V) to be jointly independent of the observables (X,Z). This is consid-

erably weaker than the IV type assumption that D is independent of the unobservables in the

outcome equation conditional on Z and X. Assumption 1(ii) restricts the randomness in Y

through U to be completely random so that U represents luck, whereas V can be thought of as

a confounding factor.8

Apart from the stochastic restrictions we assume that the following regularity conditions

hold.
8Assumption 1(ii) is not restrictive. ϕ(D,U,V) is a nonparametric function of the observable D and unobserv-

ables (U,V). Therefore, it can at most be identified up to normalizations on the joint distribution of unobservables.
Assume that the joint distribution of unobservables is absolutely continuous with respect to Lebesgue measure.
Then, the restrictions on the joint distribution of observables imposed by any joint distribution of (Ũ, Ṽ) are the
same as the ones imposed by the joint distribution of (U,V), where v = FṼ |Ũ (̃v) with V being uniformly distributed
independently of U. For example, we could have U = Ũ or any positive monotone transformation thereof. See
also Imbens and Newey (2003) for a related discussion.
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A 2 (Regularity Conditions): (i) All first moments exist and (ii) the distribution of V

is absolutely continuous with respect to Lebesgue measure.

Assumption 2(i) ensures that all parameters of interest are well defined. Assumption 2(ii) im-

plies that V is a continuous random variable. This allows us, w.l.o.g., to normalize V from now

on to be uniformly distributed on the unit interval, see, e.g., Vytlacil (2002) for details. From

Assumption 1(i) it follows immediately that P(Z) is identified from observations since it is equal

to Pr(D = 1|Z). For simplicity, we will write P for P(Z) in the remainder, with typical element

p.

3.1. Parameters of Interest

We have already argued in the introduction that the CASF,

E[Y |D = d, X = x,V = v] = x′E[ϕ(d,U, v)]

is of special interest in our application. The terminology we use was introduced by Blundell

and Powell (2003) who suggest to focus on the average structural function, E[Y |D = d, X =

x]. Likewise, Imbens and Newey (2003) call it the average conditional response. Following

Goldberger (1972), who calls an equation structural if it represents a causal link rather than a

mere empirical association, we prefer to think of the wage equation as a structural equation. We

believe that for a given D and X the dependence of the average structural function on V is of

central economic interest by itself and hence focus on the average conditional on V .

A second object of interest that is related to the CASF is the conditional average ceteris

paribus effect of changes in Xk, e.g. the type of secondary school that was attended or the social
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class of the father, for a given D, X−k, and V ,9

∂E[Y |D = d, X = x,V = v]
∂xk

= E[ϕk(d,U, v)].

Moreover, we are interested in the expected ceteris paribus effect of changes in D for a given X

and V ,

E[Y |D = 1, X = x,V = v] − E[Y |D = 0, X = x,V = v]

=x′
(
E[ϕ(1,U, v)] − E[ϕ(0,U, v)]

)
.

This is Björklund and Moffit’s (1987) marginal treatment effect. It is the expected effect of

a college degree on wages for a given level of unobserved ability and for a given vector of

covariates. The well-known average treatment effect, averaged over the population distribution

of unobserved ability, for a given X = x is given by

(3) x′
∫ 1

0

(
E[ϕ(1,U, v)] − E[ϕ(0,U, v)]

)
dv,

recalling that we have normalized V to be uniformly distributed.

3.2. Identification

In this subsection, we show identification of the CASF at a given D, X, and V under Assumption

1 and 2. The estimator we implement, which is built on local linear smoothing, is proposed

thereafter.

Because of the multiplicative structure of the wage equation, identification of the CASF at

D = d, V = v, and any X = x is equivalent to identification of the conditional average ceteris

9The kth element of a vector x is denoted by xk. The remaining elements are denoted by x−k. For discrete Xk

the partial derivative is replaced by an appropriate difference.
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paribus effects. The average structural function as well as average ceteris paribus effects are

identified at D = d if the CASF is identified at all V in the open unit interval, recalling that

we have normalized its distribution to be uniformly distributed and that the endpoints have

probability measure zero. Finally, if the (conditional) average structural function is identified at

both D = 0 and D = 1, the average (marginal) treatment effect is as well.

From the model in (1), it follows that

(4) E[Y |D = 1, P = p, X = x] = x′E[ϕ(1,U,V)|D = 1, P = p, X = x]

which is equal to

x′E[ϕ(1,U,V)|P ≥ V, P = p, X = x]

by the selection model in (2). But this is

x′E[ϕ(1,U,V)|X = x, p ≥ V].

By Assumption 1(i) we get that this is equal to

E[x′ϕ(1,U,V)|p ≥ V] = x′E[ϕ(1,U,V)|p ≥ V] =: x′β(1, p).

Note that E[ϕ(1,U,V)|p ≥ V] is a function of p which we will denote by β(1, p) in the remain-

der. Since the left hand side of (4) is identified from observations at points of support X = x

and P = p, β(1, p) is identified if we observe at least K linearly independent values of X of non

zero probability for D = 1 (rank condition). β(0, p) is defined accordingly and a similar result

holds for D = 0.

Starting from this, we show that the CASF is identified. We state the result in a proposition

which resembles Lemma 1 from Carneiro and Lee (2005). Following HV, they show nonpara-
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metric identification under weaker stochastic restrictions than the ones in Assumption 1, at the

price of stronger support conditions that need to hold for their result. Only when they estimate

the model they impose the restrictions in Assumption 1. We show the proof for two reasons.

First, strictly speaking, our identification result is not implied by their Lemma 1, even though

their proof is similar to ours. Second, our rank condition differs from theirs.

We call p a limit point of the support of P, if P has a continuous density in a neighborhood

around p which is bounded away from zero. Note that at P = p derivatives of differentiable

functions of P are identified from observations.

P 1 (Identification): Assume that β(0, p) and β(1, p) are continuously differentiable

with respect to p and that we observe at least K linearly independent realizations of X of non

zero probability for every D and P = p (rank condition). Then, under Assumptions 1 and 2 the

CASF is identified at V = p, where p is a limit point of the support of P, and given by

x′E[ϕ(0,U, p)] = x′
(
β(0, p) − (1 − p)

∂β(0, p)
∂p

)

x′E[ϕ(1,U, p)] = x′
(
β(1, p) + p

∂β(1, p)
∂p

)
.

Proof. We prove identification of E[ϕ(D,U,V)|D = 1,V = p]. The proof for E[ϕ(D,U,V)|D =

0,V = p] is similar. Recall that we have normalized V to be uniformly distributed. By defini-

tion,

x′E[ϕ(1,U,V)|p ≥ V] = x′β(1, p).
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From the normalization on V and Assumption 1(ii) it follows that

(5) x′
∫ p

0

∫ ∞

−∞

ϕ(1, u, v) µ(du) dv/p = x′β(1, p),

where µ(du) is the marginal probability measure of u. Multiplying both sides by p gives

x′
∫ p

0

∫ ∞

−∞

ϕ(1, u, v) µ(du) dv = x′β(1, p)p

and differentiating both sides with respect to p using Leibnitz’ rule reveals that

x′
∫ ∞

−∞

ϕ(1, u, p) µ(du) = x′β(1, p) + px′
∂β(1, p)
∂p

.

If p is a limit point of the support of P both β(1, p) and ∂β(1, p)/∂p are identified from obser-

vations at P = p. The left hand side is the object of interest. �

Finally, notice that the proof relies on the monotonicity of D in P implied by the selection

model which allows us to formulate (5). See also Klein (2007) for a discussion and an analysis

of the case in which monotonicity does not hold, but is wrongly assumed.

3.3. Estimation

We have established in our discussion that from the model and the conditions of Proposition 1

it follows that

E[Y |D = d, P = p, X = x] = x′β(d, p) , d ∈ {0, 1},

where β(d, p) is a coefficient vector with coefficient functions βk(d, p), k = 1, . . . ,K. Both

depend on the observable D, and P which is identified from observations. This is a version of
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the varying coefficient model which was suggested by Cleveland, Grosse, and Shyu (1991) and

Hastie and Tibshirani (1993).

In a first step, we parametrically estimate P. For the second step we assume that the coeffi-

cient functions are bounded and have bounded second derivatives which allows us to estimate

them by local linear smoothing. See, for example Fan and Zhang (1999) and Xia and Li (1999)

for details as well as a proof of consistency and results on rates of convergence of the estimator.

This estimation procedure is usually motivated by a Taylor expansion of the coefficient function

in p̃ about p̃ = p which yields

βk(d, p̃) = βk(d, p) +
∂βk(d, p)
∂p

(p̃ − p) +
1
2
∂2βk(d, p̄)
∂p2 (p̃ − p)2,

where p̄ is a point between p and p̃. We select all observations with D = d and index them by i,

i = 1, . . . , n. Our estimator of β(d, p) and ∂β(d, p)/∂p is the solution of a and b to the following

minimizer

arg min
a,b



n∑

i=1

K
( pi − p

h

)
·


yi −


xi

(pi − p) · xi



′ 
a

b





2
,

where K(·) is a kernel function with the usual properties and h is the bandwidth. Since fitted

values pi were parametrically estimated in a first step we do not expect them to have an impact

on the distribution of the second step estimator in a first order asymptotic sense. However,

we obtain confidence intervals, accounting for the first step estimation error, using a bootstrap

procedure.

Estimates of the objects of interest can be obtained from these estimates of β(d, p) and

∂β(d, p)/∂p using the formulas from Proposition 1.
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4. College Education and Wages in the U.K.

4.1. Data

We implement the estimation procedure which was proposed in Section 3 for U.K. data from

the NCDS. The NCDS is conducted by the Centre for Longitudinal Studies at the Institute of

Education in London. It is a longitudinal data set and keeps detailed records for all those living

in Great Britain who were born between March 3 and 9, 1958. The data were collected in 1958,

in 1965 (when members were aged 7 years), in 1969 (age 11), in 1974 (age 16), in 1981 (age

23), in 1991 (age 33) and 1999-2000 (age 41-42). The NCDS has gathered data from respon-

dents on child development from birth to early adolescence, child care, medical care, health,

physical statistics, school readiness, home environment, educational progress, parental involve-

ment, cognitive and social growth, family relationships, economic activity, income, training,

and housing.

Recently, BDS study these data using IV estimation, a control function estimator, and

matching techniques. For a more detailed data description and variable definitions the reader is

referred to their paper.

Their, as well as our, outcome of interest is log hourly wages in 1991, this is at the age of

33. We select individuals who at least completed their A levels, from which 51.4% are higher

education graduates. We say that an individual completes his A levels if he completed at least

one A level which is generally obtained at the end of secondary school, see BDS for details.

Notably, we distinguish between college graduates (D = 1), who have completed some kind of

higher education, and those who have obtained A levels only (D = 0). We focus on employed

males and select individuals with non-missing verbal and math ability test scores. This leaves

us with 1501 observations.

The NCDS contains a host of accurately measured variables including information about the

type of secondary school that was attended and a number of family background variables. In
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no college (49%) college (51%)
mean std. mean std.

       33 2.04 0.40 2.32 0.37
’            7

expects too much 0.01 0.07 0.03 0.17
very interested 0.28 0.45 0.43 0.50
some interest 0.24 0.43 0.23 0.42

’            7
expects too much 0.03 0.17 0.05 0.21
very interested 0.38 0.49 0.56 0.50
some interest 0.44 0.50 0.31 0.46

 

math ability at 7 55.17 23.97 66.40 21.53
math ability at 11 57.39 16.06 67.25 14.26
verbal ability at 7 80.15 20.74 90.45 13.32
verbal ability at 11 59.52 20.52 72.05 16.98

  

Secondary Modern 0.15 0.36 0.09 0.29
Comprehensive school 0.52 0.50 0.42 0.49
Grammar 0.08 0.28 0.21 0.41
Private 0.04 0.20 0.10 0.29
other 0.02 0.14 0.01 0.11
missing school information 0.19 0.39 0.17 0.37

    

professional 0.03 0.17 0.10 0.30
intermediate 0.16 0.37 0.23 0.42
skilled non-manual 0.09 0.29 0.09 0.29
skilled manual 0.34 0.48 0.25 0.44
semi-skilled non-manual 0.01 0.09 0.01 0.07
semi-skilled manual 0.09 0.29 0.06 0.23
unskilled 0.19 0.39 0.18 0.39
missing/unemployed/no father 0.08 0.27 0.08 0.28

       16
father’s years of education 7.84 4.32 8.35 5.11
missing 0.21 0.41 0.23 0.42
mother’s years of education 8.04 4.17 8.20 4.65
missing 0.20 0.40 0.22 0.41
father’s age 44.17 11.69 45.06 10.89
missing 0.05 0.22 0.04 0.19
mother’s age 42.41 8.76 42.75 8.83
missing 0.02 0.15 0.03 0.16
mother was employed 0.58 0.49 0.55 0.50
number of siblings 1.70 1.57 1.47 1.41

     16
North Western 0.10 0.30 0.10 0.30
North 0.07 0.26 0.08 0.27
East and West Riding 0.06 0.24 0.07 0.25
North Midlands 0.08 0.28 0.07 0.25
Eastern 0.07 0.26 0.09 0.28
London and South East 0.14 0.34 0.14 0.35
Southern 0.06 0.23 0.07 0.25
South Western 0.07 0.26 0.07 0.25
Midlands 0.09 0.28 0.07 0.26
Wales 0.06 0.23 0.06 0.23
other 0.20 0.40 0.19 0.39

Table 1: Summary Statistics.
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the U.K., secondary school is attended from the age of 11 to 12 on for 7 years. The individuals

in our sample were born in 1958 so that they entered secondary school in the late 1960s. At that

time the public school system was changing. Until then, there were two basic types of public

secondary schools in the U.K., Secondary modern and Grammar schools. Secondary modern

schools were intended for children who would be going into a trade and focussed on practical

skills. Grammar schools were intended to prepare pupils for higher education. In the 1960s,

comprehensive schools were promoted as an alternative and started to partly replace the old

system providing complete and general education. But in fact, which route was pursued for the

school system highly depended on the respective local authority. Nowadays, there is a mixture

of types of public schools. Alongside public schools there are prestigious Private schools such

as Eton college, which are sometimes still referred to as “public schools” since they are open

for the paying public as opposed to a religious school.10

In our analysis we proxy social class by the type of occupation of the father when the child

was 16. Categories are professional, intermediate, skilled and semi-skilled non-manual as well

as skilled or semi-skilled manual, and unskilled.

Table 1 contains summary statistics for our data. Notably, wages are higher for college grad-

uates, and as compared to college non-graduates more college graduates (i) went to Grammar

or Private school, (ii) have a father who is professional or intermediate, and (iii) have better

educated parents on average.

4.2. First Stage Estimates

The first stage of our two stage estimator consists of fitting values of P by estimating a probit

model. Our set of variables in the selection equation, Z, consists of the parent’s interest in the

education of the child, math and reading ability test scores at the age of 7 and 11, indicator

variables for secondary school type, the father’s social class when the child was 16, as well as

10See, e.g., http://en.wikipedia.org/wiki/Education in the United Kingdom (February 2006).
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other family background variables and, in some specifications, region. As was shown in Section

3 an exclusion restriction is not needed for identification of the CASF in our model—unlike for

nonparametric identification as in HV.

Note that whereas the interpretation of the estimated probit coefficients as ceteris paribus

effects heavily relies on the distributional assumptions in a probit model, the fitted values of

the propensity score are less sensitive to violations of those assumptions once we interpret the

usual probit model as a reduced form.11 As suggested by the literature, and in order to undertake

a sensitivity analysis, we estimated these fitted values by ordinary least squares, see Kelejian

(1971) and the discussion in Angrist and Krueger (2001). However, our results did not change

qualitatively.

Table 2 contains coefficient estimates for 5 different specifications. Throughout, the direc-

tion of the impact is as expected and in line with the literature which takes a closer look at

the channels though which parents’ education is transmitted to the children, see Goldberger

(1989) and Haveman and Wolfe (1995) for an overview and discussions. Column (1) is the

full specification in which indicator variables for region were included. Column (2) is the same

specification except that secondary school type was left out because it could arguably be en-

dogenous. This is the case whenever conditional on measured ability and all other controls in

Z, those who know already that they will be more likely to go to college attain a special kind

of secondary school, e.g. Grammar school. The remaining coefficients are largely unchanged.

In the first two specifications, the region indicator variables were all insignificant. Column (3)

and (4) contain estimates obtained from the specification in (1) and (2), respectively, except

that these indicator variables were left out. Again, in comparison to the first two columns, the

estimates remained largely unchanged. For our final specification in column (5) we left out the

mother’s interest in the education of the child since it is highly correlated with father’s interest.

Moreover, we left out some of the insignificant indicator variables for secondary school

11Willis and Rosen (1979) invoke a set of assumptions which allows them to estimate both a reduced form and
a structural probit.
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Figure 1: Sample distribution of the propensity score conditional on D.

type, social class and family background. Our estimates show throughout that parents’ interest

has a significant impact on the probability of attending college, so do the ability measures,

whether the child went to Grammar school, and whether the father is professional.

Figure 1 shows the the sample distributions of the fitted values of P. For both D = 0 and

D = 1 the support is almost equal to the full unit interval. Note that the distributions differ

between D = 0 and D = 1. This shows that the variables in Z have explanatory power.

4.3. Second Stage Implementation

In the second stage, drawing on Section 3’s results we estimate the mean coefficient functions,

β(d, p) and their derivatives with respect to p. For smoothing in the direction of p we use an

Epanechnikov kernel and estimated the coefficient vectors at 101 grid points between 0 and

1. As we have seen, this is a one-dimensional nonparametric problem. The bandwidths were

chosen using a standard leave-one-out cross validation procedure. It turns out that the optimal

bandwidth for D = 0 is infinitely large, implying estimation of a fully interacted model without

any smoothing. For D = 1 the optimal bandwidth is 1.7. The required rank conditions hold in
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(1) (2) (3) (4) (5)

coeff. t-stat. coeff. t-stat. coeff. t-stat. coeff. t-stat. coeff. t-stat.
’       

expects too much 1.12 3.09 1.11 3.11 1.13 3.15 1.13 3.18 1.23 3.72
very interested 0.13 1.16 0.12 1.10 0.12 1.11 0.11 1.04 0.27 3.17
some interest 0.26 2.73 0.25 2.61 0.26 2.68 0.24 2.57 0.22 2.47

’       
expects too much 0.16 0.70 0.15 0.65 0.17 0.74 0.15 0.69
very interested 0.20 1.44 0.21 1.57 0.22 1.59 0.23 1.70
some interest -0.02 -0.13 -0.01 -0.05 0.00 -0.01 0.01 0.05

 

math ability at 7 0.00 1.90 0.00 2.17 0.00 1.98 0.00 2.28 0.00 2.24
math ability at 11 0.01 3.83 0.01 3.87 0.01 3.86 0.01 3.93 0.01 3.79
verbal ability at 7 0.01 3.97 0.01 4.16 0.01 4.01 0.01 4.15 0.01 4.04
verbal ability at 11 0.00 1.36 0.00 1.63 0.00 1.28 0.00 1.55 0.00 1.19

     C 
Secondary Modern 0.01 0.09 0.00 -0.02
Grammar 0.27 2.32 0.27 2.36 0.29 2.71
Private 0.11 0.71 0.11 0.72 0.12 0.78
other -0.33 -1.17 -0.32 -1.15
missing school information -0.07 -0.59 -0.07 -0.59

       

professional 0.57 2.63 0.62 2.84 0.58 2.65 0.62 2.86 0.45 2.56
intermediate 0.17 1.06 0.22 1.37 0.18 1.09 0.23 1.41 0.04 0.45
skilled non-manual 0.13 0.72 0.14 0.80 0.14 0.75 0.15 0.83
skilled manual 0.16 1.05 0.17 1.09 0.16 1.06 0.17 1.10
semi-skilled non-manual -0.01 -0.03 0.01 0.02 0.03 0.07 0.06 0.13
semi-skilled manual 0.14 0.75 0.14 0.72 0.15 0.78 0.14 0.76
missing/unemployed/no father 0.14 0.63 0.04 0.23 0.07 0.37 -0.05 -0.31

       16
father’s years of education 0.02 0.39 0.02 0.37 0.02 0.38 0.02 0.37 0.03 1.42
missing 0.79 2.12 0.83 2.26 0.78 2.11 0.83 2.26 0.36 1.45
mother’s years of education 0.03 0.48 0.03 0.53 0.02 0.41 0.02 0.45
missing -0.47 -1.21 -0.43 -1.11 -0.48 -1.25 -0.44 -1.15
father’s age 0.00 -0.10 0.00 -0.11 0.00 -0.21 0.00 -0.22
missing -0.49 -0.95 -0.48 -0.94 -0.55 -1.07 -0.54 -1.06
mother’s age 0.02 1.19 0.01 1.11 0.02 1.23 0.01 1.14
missing 0.97 1.68 0.93 1.62 0.99 1.74 0.96 1.68
mother was employed -0.09 -1.04 -0.09 -1.08 -0.09 -1.05 -0.09 -1.06 -0.08 -1.00
number of siblings -0.04 -1.58 -0.04 -1.56 -0.05 -1.60 -0.04 -1.59 -0.04 -1.48
interaction father’s education x age 0.00 0.65 0.00 0.78 0.00 0.64 0.00 0.75
interaction mother’s education x age 0.00 -0.98 0.00 -0.99 0.00 -0.94 0.00 -0.93

     16
indicator variables yes yes no no no

 -3.34 -5.69 -3.48 -6.03 -3.21 -5.62 -3.32 -5.94 -2.59 -8.40
McFadden R-squared 0.14 0.14 0.14 0.14 0.13

Table 2: First stage probit coefficient estimates.
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estimate 95% conf. int.
ATE population 0.46 0.04 0.89
ATE treated 0.26 -0.11 0.64
ATE untreated 0.63 0.03 1.22
OLS 0.21 0.17 0.25
IV 0.43 0.09 0.75
BDS 0.24 0.21 0.28
additive 0.40 0.05 0.74

Table 3: Comparison of the estimated average treatment effect (ATE) for different subpopula-
tions to OLS and IV estimates as well as the BDS matching estimates, and the additive model
of Carneiro and Lee (2005).

our data, i.e. the weighted n × 2K matrix of explanatory variables and interaction terms is of

rank 2K at all evaluation points p.

From these estimates, which we provide with hats in the remainder, we calculate the vector

of conditional average ceteris paribus effects for a given d and v, Ê[ϕ(d,U, v)], and the CASF,

x′Ê[ϕ(d,U, v)] as well as other identifiable features of interest. In our bootstrap procedure for

respective confidence intervals we acknowledge the fact that the propensity score is estimated

in a first step by estimating it within every one of 1,000 bootstrap replications. For illustration,

Figure 2 in the appendix contains estimates of the CASF and the marginal treatment effect

for a representative individual with median characteristics. In particular, this representative

individual went to comprehensive school, its father has 9 years of education and is neither

professional nor intermediate, his mother is employed, and he has 1 sibling. Next, we go though

the results in detail.

4.4. Average Returns to College Education

We calculate average returns using (3), replacing x by the population mean of X. For the average

treatment effect on the untreated and treated, we simulate the distribution of V conditional on D

by exploiting the structure of the selection model. For example, if we observe an individual with

D = 0 and P = p, we would draw values of V from a uniform distribution on (p, 1]. Respective
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confidence intervals account for the simulation error. In Table 3, we compare our estimates

to estimates obtained from an OLS regression, two stage IV estimates, as well as matching

estimates obtained by BDS. The OLS estimate can be interpreted as the average difference in

earnings observed in the population once we control for differences in covariates. This observed

difference in earnings can be traced back to a selection effect and a causal effect of a higher

education degree. Not surprisingly, the OLS estimate is very close to the matching estimate of

BDS since matching is built on the assumption that conditional on observables, D is independent

of the error term in the outcome equation. As covariates in the wage equation we used the

variables from the final specification in Table 2, except for the father’s interest in the education

of the child.

Commonly, the linear IV estimate is interpreted as estimating the average treatment effect

of those who are induced to attend college by the variables that are excluded from the outcome

equation, see, e.g. the discussion in BDS and Imbens and Angrist (1994) as well as Card (2001).

In our specification, following BDS, we have excluded the father’s interest in the education of

the child from the outcome equation. The estimate obtained from the additive model is close to

our estimate for the population.

Notably, we estimate the average treatment effect to be lower for those who actually attend

college. This difference can partly be explained by differences in observables since the average

treatment effect depends on those observables in our model.

In general, all estimates which are obtained from a two stage (ours, OLS, IV, additive)

procedure are relatively imprecise. We suppose that this is due to the first stage estimation error

which is carried over into the second stage.

4.5. Average Ceteris Paribus Effects

Panel (1) in Table 4 contains estimates of average ceteris paribus effects and respective 95%

confidence intervals. The set of covariates we included into the second step is the same as the
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one in the final specification for the first step, except that we leave out the father’s interest in

the education of the child. We also calculated estimates for alternative specifications, but the

results did not change qualitatively.

The top rows contain estimates for D = 0 and the bottom rows for D = 1. Statistically

significant determinants of wages are whether the father was professional, which resulted in

a large wage increase both for D = 0 and even more so for D = 1 and the father’s years of

education, but only for D = 0. In general, our estimates were quite imprecise. Yet, as we have

already seen above, this is also the case for the standard linear IV estimates. Therefore, we feel

that this lack of precision is not a property of our estimation procedure, but a feature of our data.

Panel (2) contains the result of a test for unobserved heterogeneity. We say that unobserved

heterogeneity is present whenever the impact of a component of X, including the constant, de-

pends on V . Therefore, the null hypothesis is that the derivative of the conditional average

ceteris paribus effect with respect to V is zero at all V = v. This implies that the linear ap-

proximation to the slope is zero. (2) contains estimated linear approximations to the slope of

Ê[ϕ(d,U, v)], as well as bootstrapped confidence intervals. Notice that here, we face two sources

of estimation error. First, the error that stems from estimating the conditional average ceteris

paribus effect itself and second, the error from estimating the linear approximation to its slope.

The presence of essential heterogeneity is significant at the 5% level if 0 lies outside the con-

fidence interval. Using this test, we find evidence for essential heterogeneity in the impact of

the father being professional for both D = 0 and D = 1 and overall for D = 1, via the constant

term.12

This essential heterogeneity has the interpretation of a nonseparability between the effect

of X and V on Y . It is a key advantage of the techniques developed in this paper to allow

us to control for this nonseparability. In panel (3), we raise the question whether imposing

the absence of this nonseparability, i.e. imposing the additive model of Carneiro, Heckman,

12Carneiro, Heckman, and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2006) suggest to test for essential
heterogeneity by checking whether the expected value of wages given P and X is linear in P by fitting polynomials
to the data. Using this test, we were not able to reject the null of no essential heterogeneity for our data.
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(1) (2) (3)

average ceteris test for unobserved bias in estimates
paribus effect heterogeneity when additivity is imposed

estimate 95% conf. int. est. slope 95% conf. int. bias 95% conf. int.

NO COLLEGE DEGREE
 

math ability at 7 0.001 -0.001 0.003 0.000 -0.008 0.009 0.000 -0.002 0.002
math ability at 11 0.002 -0.002 0.006 0.000 -0.014 0.016 0.000 -0.006 0.003
verbal ability at 7 0.003 -0.002 0.007 0.007 -0.007 0.018 -0.002 -0.006 0.002

verbal ability at 11 0.000 -0.004 0.003 -0.001 -0.014 0.012 0.000 -0.005 0.002
     C 

Grammar 0.021 -0.230 0.275 0.099 -1.063 1.267 -0.003 -0.293 0.210
Private 0.159 -0.099 0.418 0.040 -1.260 1.295 -0.026 -0.362 0.158

       

professional 0.293 0.007 0.757 -1.662 -3.386 -0.245 -0.316 -0.663 0.095
intermediate -0.022 -0.116 0.087 -0.224 -0.680 0.257 0.017 -0.130 0.074

       16
father’s years of education 0.034 0.007 0.064 -0.008 -0.145 0.114 -0.010 -0.041 0.016

missing 0.331 0.053 0.660 0.062 -1.305 1.358 -0.109 -0.441 0.165
mother was employed 0.023 -0.053 0.119 0.007 -0.328 0.426 -0.003 -0.035 0.137

number of siblings -0.019 -0.053 0.011 -0.022 -0.126 0.084 0.006 -0.016 0.048
 1.269 0.566 2.014 -0.318 -1.970 1.368 0.253 -0.542 0.901

COLLEGE DEGREE
 

math ability at 7 -0.002 -0.010 0.005 -0.003 -0.011 0.006 0.003 -0.004 0.012
math ability at 11 0.004 -0.010 0.015 0.002 -0.012 0.015 -0.003 -0.014 0.012
verbal ability at 7 -0.011 -0.024 0.004 -0.010 -0.022 0.003 0.010 -0.004 0.024

verbal ability at 11 -0.013 -0.024 0.000 -0.014 -0.025 0.000 0.013 -0.003 0.021
     C 

Grammar 0.238 -0.396 0.758 0.303 -0.464 0.932 -0.259 -0.752 0.399
Private 0.528 -0.079 1.139 0.569 -0.197 1.331 -0.435 -1.048 0.170

       

professional 0.794 0.054 1.540 1.035 0.080 2.090 -0.823 -1.611 -0.130
intermediate 0.174 -0.286 0.633 0.152 -0.364 0.686 -0.188 -0.721 0.200

       16
father’s years of education -0.006 -0.093 0.063 -0.014 -0.124 0.071 0.015 -0.046 0.110

missing 0.108 -0.873 0.911 0.006 -1.161 0.943 -0.012 -0.692 1.077
mother was employed -0.001 -0.277 0.298 -0.075 -0.374 0.269 0.033 -0.253 0.323

number of siblings -0.017 -0.123 0.074 0.003 -0.108 0.102 -0.004 -0.071 0.126
 4.126 2.578 5.583 1.998 0.474 3.147 -2.078 -3.821 -0.773

Table 4: Average ceteris paribus effects, test for unobserved heterogeneity, and estimates for the bias from imposing additivity.
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and Vytlacil (2005) and Carneiro and Lee (2005), results in biases of average ceteris paribus

effects. We report estimates of the bias that results from imposing separability. The estimates

were obtained by comparing our estimator to a simple series estimator of the additive model

Y = µ(D,U,V) + X′
−1β(D,U) in which the effect of X on Y is not allowed to depend on V . A

cross validation yields that only a linear term in P should be included into the regression of Y

on X conditional on D in order to calculate estimates of average ceteris paribus effects. Clearly,

this proceeding is far less elaborate than the double-residual regression procedure that is carried

out in, e.g., Carneiro, Heckman, and Vytlacil (2005) and Carneiro and Lee (2005). Therefore,

we prefer to interpret our estimates of the biases only as rough estimates or first approximations.

However, the results in panel (2) indicate already that the additive model is misspecified for our

data so that it is not surprising that we estimate the bias to be significant for the impact of the

father being professional and the constant term for D = 1.

4.6. Conditional Average Ceteris Paribus Effects and Sorting

Figure 3 and 4 in the Appendix contain estimates of conditional average ceteris paribus effects.

They show the respective dependence of the impact of covariates on wages as a function of

D and V . Notice that according to the selection model low values of V induce individuals to

attend college so that we should think of low values of V as representing high unobservable

ability. For example, whereas the impact of the father being professional on wages is increasing

in unobservable ability for D = 0, it is decreasing for D = 1.

Since X varies across individuals, it is helpful to take a closer look at the dependence of

the marginal treatment effect on V when X varies across individuals. Carneiro and Lee (2004,

footnote 3) point out that individuals base their selection into educational on their comparative

advantage with respect to monetary benefits if the marginal treatment effect is higher for those

individuals who go to college, i.e. if the marginal treatment effect is falling in V conditional on
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fraction 95% conf. int.
level, D = 0 0.62 0.04 0.93
level, D = 1 0.65 0.32 0.96
marginal treatment effect 0.54 0.47 0.60

Table 5: Fractions of observations for which the CASF (level) and the marginal treatment effect
is increasing in V . Linear approximations to the slope were calculated.

observables X.13 Variation in covariates induces variation in the slope of the marginal treatment

effect. Therefore, we estimated a linear approximation to the slope of the marginal treatment

effect for every individual.

Table 5 contains the fractions of the population for which, respectively, the slope of the

CASF and the marginal treatment effect are positive. In order to obtain those numbers, linear

approximations to the slope were estimated. The numbers indicate that the way wages depend

on what we labelled unobserved ability, V , is nontrivial.

As for the slope of the levels, the slope is positive in about 60 per cent of the cases. A

positive slope implies that

x′E[ϕ(0,U,V)|D = 1] < x′E[ϕ(0,U,V)|D = 0]

x′E[ϕ(1,U,V)|D = 1] < x′E[ϕ(1,U,V)|D = 0].

Hence, the numbers indicate that in about 60 per cent of the cases those who actually graduated

from college earn less compared to what those, who did not graduate from college, would earn,

had they been forced to do so. Conversely, those who did not go to college earn more than those

who did go to college would have earned, had they been prevented from doing so. This is in line

with our earlier finding that treatment effects are higher for college non-graduates compared to

13See, e.g., Roy (1951) for the impact of selection of individuals based on their comparative advantage on the
income distribution, Sattinger (1978) for an empirical study of respective comparative advantages of individuals
in the performance of tasks, Willis and Rosen (1979) for a parametric study of the returns to college education in
the presence of such selection, as well as Carneiro and Lee (2004) for a semiparametric analysis. Heckman and
Sedlacek (1985, 1990) develop models of the sectoral allocation of workers based on comparative advantage.
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college graduates. However, notice that this is only an analysis of monetary benefits, neglecting

the costs of attending college which could have been prohibitively high for those who did not

in fact attend college.

Surprisingly, only for about 46 per cent of the individuals the slope of the marginal treatment

effect is negative. Hence, the comparative advantage hypothesis is only supported for these 46

per cent of the individuals. For about 54 per cent of the individuals, the slope is positive. This

is in contrast to the findings in previous studies including Willis and Rosen (1979) and Carneiro

and Lee (2004). One explanation could be that both of these studies do not allow the effect of V

on wages to depend on X. In fact, as we have seen in Table 3, such estimates would be biased

for our data.

We shall end with the conjecture that the comparative advantage hypothesis, which is a

central concept in Economics, could well be reconciled with these findings once nonmonetary

costs and benefits are included in the analysis. Just to give an example, it could well be that a

college degree is associated with nonpecuniary benefits such as the pleasure of being educated

which represent an additional return that has not been focussed on in this study. Clearly, such

nonmonetary costs and benefits might again well be correlated with unobserved ability, family

background, and social class. After all, we understand our results as evidence for nontrivial

sorting patterns that are not solely based on monetary considerations. Therefore, we strongly

believe that more research, and other data, are of need in order to better understand the sorting

patterns into educational levels.

5. Concluding Remarks

In this paper, we have proposed and implemented a semiparametric estimator for expected wage

levels and their dependence on the endogenous schooling choice.

The virtue of our approach to the problem lies in dimensionality reduction along the dimen-

sion of the usually higher dimensional vector of exogenous covariates. Moreover, we are able to
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circumvent the problem of limited support of the propensity score given the vector of covariates

since we require only conditions on the unconditional support of P to hold. At the same time,

we do not impose any limiting restrictions on the joint distribution of unobservables.

The estimator we propose is a two step version of a local linear regression estimator. The

usefulness of our approach was shown in turn of the empirical analysis. In particular, our results

suggest that differences in wages can be attributed to differences in observables in interaction

with unobserved ability. In previous studies, e.g. by Carneiro, Heckman, and Vytlacil (2005)

and Carneiro and Lee (2005), this complementarity between observables and unobservables

was largely neglected for reasons of tractability. In this paper, we have suggested an estimation

procedure which does allow for such effects on the one hand and which is easily implementable

on the other.

The results of the empirical analysis are manyfold. First, we find that measured ability,

social class, secondary school type, and family background have explanatory power for the

decision to attend college. Second, with an estimate of 0.46 for the population, we find the

monetary return to college education to be sizable with returns for college graduates being lower

than for college non-graduates. Third, our estimates do not support the hypothesis of sorting

into schooling based on comparative advantage with respect to the monetary returns. Forth

and last, we find nonseparabilities between the impact of observables, e.g. whether the father

is professional, and unobserved ability on wages and show that biases arise once an additive

structure is imposed. We feel that this shows the usefulness of our approach.
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Figure 2: Point estimates and bootstrapped 95% confidence intervals of the conditional average
structural function (top) and the marginal treatment effect (bottom). Reported for a representa-
tive individual with median characteristics.
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Figure 3: Conditional average ceteris paribus effects 1/2. Point estimates and bootstrapped 95%
confidence intervals.
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Figure 4: Conditional average ceteris paribus effects 2/2. Point estimates and bootstrapped 95%
confidence intervals.
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