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ABSTRACT 
 

A Note on Allen-Uzawa Partial Elasticities of Substitution: 
The Case of the Translog Cost Function 

 
This note provides a useful property of the Allen-Uzawa partials for the translog cost function. 
It also suggests how the main results extend to any functional form with certain properties. 
The curvature of the Allen-Uzawa matrix is the same as the curvature of the Hessian matrix. 
Intuitively and empirically, the Allen-Uzawa partials allow for the verification of curvature 
properties. 
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I. Introduction 
 
 

Since its inception the Allen-Uzawa partial elasticity of substitution has been 

a controversial concept.1  After the seminal work by Uzawa (1962), it has been a 

widely reported statistic in empirical studies of production.  However, Blackorby and 

Russell (1989) show that the Allen-Uzawa partials (σ ij ) are “(incrementally) 

completely uninformative.”  They provide counterfactual examples and conclude that 

these elasticities are not a measure of the “ease of change” or substitution, reveal no 

information about relative factor shares, and cannot be interpreted as a logarithmic 

derivative of quantity ratios to marginal rates of substitution (Blackorby and Russell, 

1989, p. 883).  They reason the Morishima elasticity of substitution is the natural 

generalization of the original Hicksian concept.  Extending their work, Anderson and 

Moroney (1993) confirm this to be the case and show how it applies to nested (multi-

stage) production technologies.  This note, however, deviates from this controversy 

and addresses a technical property overlooked earlier in the empirical literature.  

It shows an unambiguous result for the Allen-Uzawa partials in the special 

case of the translog (TL) functional form, where its application is straightforward, 

and extends it to any functional form with certain properties.  Its use is somewhat 

different from what was originally conceived for σ ij .  It turns out that the Allen-

Uzawa partial elasticity of substitution provides useful information about the 

curvature of the Hessian matrix in this particular instance, i.e., checking the 

curvature of the Allen-Uzawa partials matrix ( Σ ) is the same as checking the 

curvature of the Hessian matrix of second order partial derivatives of the TL cost 

                                                           
1 For the original definition of the elasticity of substitution, see Hicks (1932), p. 177 and Allen (1938), 
p. 340-3, p. 503-9. For an early review of the concept and its uses, refer to Morrisset (1953) and the 
citations therein. 
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function with respect to prices.  Section two of this note derives the main result.  We 

will also show how the main result of this note extends to any functional form. 

Economic theory implies that well-behaved cost functions must be concave 

with respect to prices.  Often, estimated TL cost functions fail to satisfy this property.  

Section three discusses the issue and shows the implications for  when concavity is 

imposed “globally” as in Diewert and Wales (1987) and “locally” as in Ryan and 

Wales (2000).  The final Section concludes.  The appendix offers a step-by-step 

proof of the main result. 

Σ

 

II. The Translog (TL) Cost Function, Concavity and the Allen-Uzawa Partial 

Elasticities of Substitution (Σ): A Simple Algebra 

 

Following Diewert and Wales (1987), we can specify the TL cost function 

with  inputs as: n
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where  is a vector of  input prices, y is output, C(w,y,t) is cost, t is time in the 

sample and t

W n

* is a chosen reference point.2  Standard (necessary and sufficient) 

conditions to ensure that C is linearly homogeneous in w are given by: 

 

                                                           
2 In defining the cost function, we use (t-t*) instead of t. This facilitates the imposition of local 
concavity in what follows (see, Ryan and Wales, 2000). They also show that this has no effect on the 
likelihood function, in estimation, or the elasticities of interest. For regularity conditions on C(w,y,t) 
see Diewert and Wales (1987, p. 45). 
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The share equations for the TL cost function are: 
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where Si(w,y,t) is the ith input’s share in the cost function.  Assume we set all prices 

and output to one at the reference point t*, this implies that bi=Si for all i at this 

point.3  For estimation one uses a system that is completely identified omitting a 

share equation.  Next we derive the main result. 

It is known that the logarithmic second order derivatives of a cost function are 

related to its ordinary first and second order partial derivatives in the following way 

(see Diewert and Wales, 1987, p. 47): 
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where δij is the Kronecker delta defined as: 
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     (4) 

 

and C≡C(w,y,t), Ci≡∂C(w,y,t)/∂wi, and Cij≡∂2C(w,y,t)/∂wi∂wj.  For the TL cost 

function defined in (1), the left-hand side of (3) is the parameter bij.  Let  be 

a N by N symmetric matrix.  Shephard’s Lemma gives C

[ ]B bij≡

i=xi(w,y,t)—input demands.  

 
3 Because of duality, all derivations that follow can easily be shown to hold for the indirect translog 
profit function, see Diewert (1974), Hertel (1984), Diewert and Wales (1987).  The derivation of the 
price elasticities (own and cross) used below is found therein as well. 
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Define the ith share function (2) in the following way: S w y t
w x w y t
C w y ti
i i( , , )

( , , )
( , , )

= , and 

the share vector [S S Sn≡ ]′1…… . Let S  be a N by N diagonal matrix with the share 

vector S on the main diagonal.  Define  in a similar fashion.W 4  These definitions 

and a simple algebraic manipulation of (3) result in: 
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ij i j i ij
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= + − δ .      (5) 

 

Necessary and sufficient conditions for the concavity property to hold require that 

the gradient  (in our case ) be negative semi-definite for all w≥0∇ 2
wwC w y t( , , ) Cij N, 

y>0 and t=1…T.  (5) can further be expressed as: 
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or equivalently: 

 

,
WHW

C
SS S= = + ′ −Γ Β        (6’) 

where H is the Hessian matrix.  This expression gives rise to a useful procedure to 

impose concavity “globally” as in Diewert and Wales (1987) and “locally” as in 

Ryan and Wales (1998, 2000). 

 

                                                           
4 More formally, a diagonal matrix is defined as S Si ij= δ , where  varies with i=1…n; and Si

W wi ij= δ . 

 4



Next we express Allen-Uzawa partial elasticity of substitution in terms of 

price elasticities and shares.  For the translog the ith own price elasticity is 

ηii i
ii

i
S

b
S

= − + +1  and the cross price elasticity ηij j
ij

i
S

b
S

= +  (refer to footnote two).  

Given σ
η

ij
ij

jS
≡  (see Blackorby and Russell, 1989, p. 883) and since 

σ
δ

ij
ij

i j

ij

j

b
S S S

= − + 15, it is straightforward to show that the parameters bij of the model 

have the following representation: 

 

b S S S S Sij i j ij i j i ij= − +σ δ .       (7) 

In matrix form then (7) becomes 

 

Β Σ= − ′ +S S SS S         (8) 

 

where S  is as above (a diagonal N by N matrix with the share vector S on the main 

diagonal) and Σ≡[σij].  A close examination of (6’) and (8) reveals the following 

expression: 

 

Γ Σ= S S          (9) 

 

This simply implies, in the case of the TL functional form, that checking the 

curvature of the matrix of Allen-Uzawa partials is the same as checking the curvature  
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Appendix 1. 

 5



of the Hessian matrix. The conclusion is as follows: assuming C(w,y,t) > 0 in (6), the 

Hessian matrix will be negative semi-definite if and only if  is a 

negative semi-definite matrix.  It can be verified that 

[B S SS− − ′]

[ ]− − ′S SS  is negative semi-

definite, provided vector S is nonnegative (i.e., S≥0N, refer to Appendix 2).  Thus, if 

B is negative semi-definite, then global concavity of the TL cost function is assured 

(nonnegative sums of concave functions).6  However, (9) suggests  

that if Σ is negative semi-definite, it follows the Hessian must also have the same 

property, provided nonnegative shares and cost.  Furthermore, (9) can be expressed 

to yield: 
WHW

C
S S= Σ , which rearranging and observing that 7S W CC− =1  becomes:  

CCHC .= Σ          (10) 

 

As above,  is a diagonal matrix with a typical term 1/CC i.  This result provides a 

simple but useful property of the Allen-Uzawa partials in the case of the TL 

functional form.  The matrix of Allen-Uzawa partials Σ can be used to study and 

check curvature for this particular functional form.  In addition, this result applies for 

any functional form.  As in Uzawa (1962, p. 293), write his equation (9) as 

σ ij
ij

i j

C C
C C

= , then in matrix form Σ = CCHC , where the matrices are as defined 

above. 

 

                                                           
6  Diewert and Wales (1987) provide some additional insight.  They refer to the work of Diewert, 
McFadden and Barnett. 

7 Since Si w y t
wixi w y t

C w y t

wiCi
C

( , , )
( , , )

( , , )
= = , and rearranging, in matrix form it gives the desired 

expression. 
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III. An Exercise with Curvature Imposed 

 

A. Globally imposed curvature 

The TL cost function will satisfy the concavity in prices property globally if the 

matrix B  is negative semi-definite.  A general procedure, proposed by Diewert and 

Wales (1987), for ensuring that a matrix of estimated parameters is negative semi-

definite involves a reparameterization in which the matrix is replaced by minus the 

product of a triangular matrix and its transpose.8  The elements of the triangular 

matrix are estimated guaranteeing the desired concavity.  For our purposes, the 

elements of B are replaced by b DDij ij= − ′( ) .  From (8), it follows the Allen-Uzawa 

partials can be expressed as: 

 

( ) ( )[[Σ = − ′ + − − ′−S DD S SS S1 ]] −1

                                                          

      (11) 

 

Now provided the Hessian matrix is negative semi-definite, (11) implies  must 

also exhibit the same property.  Unfortunately, imposed curvature may lead to biased 

elasticity estimates, a priori unacceptable restrictions and loss of the flexibility of the 

functional form (see Diewert and Wales (1987, p. 47-48, and p. 62).  The upward 

bias induced in own- and cross- price elasticities will adversely influence the Allen-

Uzawa partials in (11) as well. 

Σ

 

B. Locally (at a reference point t*) imposed curvature 

 
8 This is the so-called Cholesky decomposition (Lau, 1978). The appropriate curvature is imposed by 
substituting the original parameter matrix with its Cholesky decomposition. See Featherstone and 
Moss (1994) for an application. 
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Alternatively, as discussed by Ryan and Wales (1998, 2000), curvature can be 

imposed locally.9  This “data-oriented” method selects carefully a single point to 

impose curvature, which then results in satisfaction at all or almost all points of the 

sample.  This procedure has the advantage that it does not destroy the flexibility of 

the TL cost function.10  To impose curvature locally, set Γ = − ′DD , where again D 

is a triangular matrix as above and solve for B.  The elements of the parameter 

matrix are then replaced in estimation with the resulting matrix.  This assures the 

concavity at the reference point.  For the Allen-Uzawa partials, this implies (by (6’) 

and (8)): 

 

[ ]Σ = − ′−S DD S1 −1 .        (12) 

 

IV. Conclusion 

 
This note derives the following result for the TL cost function: 

[ ]( , , )
( , , )

W C w y t W
C w y t

S Sww∇
=

2

Σ .  It proves that checking the curvature of the matrix of 

Allen-Uzawa partials is the same as checking the curvature of the Hessian matrix for 

this particular functional form.  It also shows how this result extends to any 

functional form.  In estimation, when curvature is imposed (either globally or 

locally), it also provides the resulting restrictions on Σ .  Since the main result of this 

note allows an additional procedure for checking curvature, future empirical work 

may find it useful to study and report the matrix of Allen-Uzawa partial elasticity of 

substitution. 

                                                           
9 For a discussion of the differences between their method and the Cholesky decomposition, see Ryan 
and Wales (1998, p. 332). They also discuss several alternative methods for imposing curvature in 
recent literature. 
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Appendix: 

 

1. Proof of the main result: 

Write η δij
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b
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S= + − ∀ , ,i j  and where δ ij  is the Kronecker delta. Then it follows: 

η
σ

δij

j
ij

ij

i j

ij

jS
b

S S S
= = + −1 , thus  

 

b S S S S Sij i j ij i j i ij= − +σ δ . 

 

Write the ijth element of the left-hand side of (6’) as: 

 

γ δij ij i ij i jb S S S= − + . Substitute for b to obtain: ij

 

γ σij i j ijS S i j= ∀ , . 

 

2. Negative semi-definiteness of the shares expression in (6’): 
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Provided nonnegative shares ( ), this expression is negative semi-definite. Si ≥ 0
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