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ABSTRACT 
 

Heterogeneity, State Dependence and Health*

 
We investigate the evolution of health over the life-cycle. We allow for two sources of 
persistence: unobserved heterogeneity and state dependence. Estimation indicates that 
there is a large degree of heterogeneity. For half the population, there are modest degrees of 
state dependence. For the other half of the population, the degree of state dependence is 
near unity. However, this may be the result of a high frequency of people in our data who 
never exit healthy states, potentially resulting in a failure to pin down the state dependence 
parameter for this segment of the population. We conclude that individual characteristics that 
trace back to early adulthood and before can have far reaching effects on health. 
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1 Introduction

We explore the dynamics of health and, in doing so, concern ourselves with two tasks. First,

we aim to gain a better understanding of how to model the evolution of health. While many

empirical studies have investigated the dynamics of both the level of earnings (Lillard and Willis

1978; Abowd and Card 1989) and, more recently, the variance of earnings (Meghir and Pistaferri

2004), few have investigated the dynamics of health.1 As health status becomes a more common

state variable in structural models, it is becoming increasingly more important that researchers

arrive at a better understanding of its dynamics.2 Second, we quantify the relative contributions

of unobserved heterogeneity and state dependence in the determination of health. Doing so is

important as this will have implications for health policy.

Utilizing data on Self-Reported Health Status (SRHS) from the Panel Study of Income Dy-

namics (PSID), we observe that health is highly persistent. The first order auto-correlation of

a dummy variable indicating bad health is 0.5661 and 0.5643 for men and women, respectively.

While these correlations do indicate a high degree of persistence, they are not informative of the

underlying stochastic properties of the health process.

To gain additional insight, we model the evolution of health over the life-cycle as a first order

Markov process which allows for two sources of persistence. The first is unobserved heterogeneity

or the (unobserved) ability to cope with health shocks. The second is state dependence or the

1Contoyannis, Jones and Rice (2004) and Contoyannis, Jones and Leon-Gonzalez (2004) are notable exceptions.
2For examples of structural models using health as a state variable, see Rust and Phelan (1997), French (2005)

and Arcidiacono, Heig and Sloan (2007).
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degree to which the ability to cope with a shock depends on health status. Estimation will shed

light on the relative contributions of both of these sources of persistence.

The balance of this paper is organized as follows. Section 2 describes the data. In Section

3, we set up our model. In Section 4, we describe our estimation procedure. Section 5 discusses

our findings. Finally, in Section 6, we conclude and discuss the relevance of our findings for

health policy.

2 Data

We use data from the PSID spanning the years 1984 to 1997. The variables that we employ

are SRHS, age and gender. The SRHS question was only asked of heads of household and their

spouses and, thus, our sample is restricted to these individuals. We do not employ data prior to

1984 since the SRHS question was not asked in these years. The PSID contains an over-sample

of low-income families called the Survey of Economic Opportunity (SEO). Because the sample

was chosen based on income, we follow Lillard and Willis (1978) and drop it due to endogenous

selection.

SRHS is a five-point categorical variable that measures the respondent’s assessment of their

own health. One is excellent and five is poor. While these data are subjective measures, there

is an extensive literature that has shown a strong link between SRHS and more objective health

outcomes such as mortality and the prevalence of disease (Mossey and Shapiro 1982; Kaplan and

Camacho 1983; Idler and Kasl 1995; Smith 2003).3 To lower the number of parameters that we

3 Many objective health measures are not without their limitations. For example, self-reports of specific
morbidities such as diabetes or cancer are often inaccurate since many people are unaware that they even have
these conditions due to low consumption of medical services. In addition, these measures typically do not account
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estimate, we map reports of fair or poor health into unity and all others into zero.

We restrict our sample to individuals between ages 22 and 60. We do not include people

younger than age 22 because there are not that many household heads younger than this age.

We do not include people older than age 60 to mitigate any possible bias resulting from attrition

due to mortality. We drop individuals whose age declines or increases by more than two years

across successive survey years. Finally, we restrict our sample to white men and women. Table

1 reports the descriptive statistics from the resulting sample.

3 The Empirical Model

We let hi,t ∈ {0, 1} denote the health of individual i at age t. When hi,t = 1 then the individual

is “ill” and when hi,t = 0 she is “well.” Health evolves according to the following process:

hi,t = 1(αi + γihi,t−1 + ρiT+ εi,t ≥ 0), (1)

where T = [t, t2]0.4 The residual in the model represents idiosyncratic risk or “health shocks”

such as accident occurrence, disease onset or exposure to bacteria. We assume that εi,t is inde-

pendent of (αi, γi,ρ
0
i,hi,0) and that it is distributed i.i.d. across time with a logistic distribution.

for the severity of the condition.
4While we acknowledge that a thorough understanding of the linkages between income and health is of vital

importance to policy makers, we do not incorporate income into the analysis as doing so would involve much more
than simply including income as a strictly exogenous explanatory variable in equation (1). To include income in
the analysis, we would have to model income as a predetermined or endogenous variable. This would have made
the exercise substantially more complicated.
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These assumptions imply that

P (hi,t = 1|hi,t−1, ..., hi,0, θi) =
exp(θ0iZi,t−1)

1 + exp(θ0iZi,t−1)
, (2)

where θi ≡ (αi, γi,ρ
0
i)
0 and Zi,t−1 = (1, hi,t−1,T

0)0.

The model has three other key aspects. First, ρ0i models aging and, thus, allows the effects

of health shocks to increase with age. Within the context of the Grossman model of health

investment (Grossman 1972), these coefficients can be interpreted as the rate at which the health

capital stock depreciates. Second, γi models state dependence or the notion that the ability

to cope with a given shock will depend on health status. To give a concrete (albeit extreme)

example, exposure to a flu virus is more likely to affect a person’s health if she is HIV positive

than if she is HIV negative.5 Third, the model allows for a large degree of heterogeneity by

allowing all of the elements of θi to vary across individuals. Unobserved heterogeneity models

an individual’s ability to resist health shocks. Finally, it is important to point out that, while

this discussion provides a motivation for our model that is rooted in epidemiology, there are

economic motivations which we describe below.

3.1 A Reduced Form Model of Health Investment

Our model can be viewed as a reduced form model of health investment. Suppose that agents

live until age T with certainty and derive utility from a consumption good denoted by ci,t. Utility

5It is important to contrast our model with an obvious alternative formulation in which health is determined
by a continuous index given by Hi,t which follows an AR(1) process and agents report ill health when Hi,t is
beyond some threshold i.e. hi,t = 1 (Hi,t ≥ 0). While this alternative model does allow health shocks to have
persistent effects, it does not allow for state dependence. In other words, in this model, the effects of a shock on
future health outcomes are not conditioned by the agent’s current health status.
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in a given period depends on the health state a la Viscusi and Evans (1990) and is denoted by

u (ci,t, hi,t). The agent’s expected lifetime utility is then E0

µ
TP
t=0

βtu (ci,t, hi,t)

¶
. The health

state is (partly) the consequence of an endogenous investment decision, ii,t ∈ {0, 1}:

hi,t = 1 (gi,t(ii,t−1) + εi,t ≥ 0) , (3)

where gi,t(ii,t) is an individual-specific return to health investment with the property that gi,t (0) >

gi,t (1). Income is given by yi,t and investment imposes pecuniary costs of the form λi,1 ∗ hi,t +

λi,0 ∗ (1− hi,t) with λi,1 > λi,0. Assuming no storage, the individual’s budget constraint will be

given by

ci,t + ii,t ∗ [λi,1 ∗ hi,t + λi,0 ∗ (1− hi,t)] ≤ yi,t. (4)

In this simple set-up, health will be a dynamic process similar to equation (1) because investment

in equation (3) will depend on health status in the previous period due to state-dependent utility

and investment costs. Consequently, a positive degree of state dependence might indicate that

health investment is less likely when people are ill.

3.2 An Exogenous State Variable

Our model can be viewed as an exogenous state variable in a life-cycle consumption model.

Many recent investigations into life-cycle consumer behavior such as Arcidiacono, Sieg and Sloan

(2007), French (2005) and Rust and Phelan (1997) have incorporated exogenous uncertainty over

health states. Our investigation will provide additional insights into how this uncertainty should

be modeled. Proper modeling is crucial for the conclusions of these models to be valid. Indeed,
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Deaton (1992) provides a discussion of how different income processes can lead to radically differ-

ent consumption behaviors and, thus, demonstrates the sensitivity of the outcomes of economic

models to their underlying assumptions.

3.3 An Analogy to State Dependence in Labor Market Outcomes

It is important to point out the relationship between state dependence in health and labor market

outcomes. As discussed by Hyslop (1999), many sources of state dependence in labor force par-

ticipation have been cited including intertemporally nonseparable preferences for leisure (Hotz,

Kydland and Sedlacek 1988) and search costs which depend on participation states (Eckstein

and Wolpin 1990). However, regardless of the underlying source, understanding the magnitude

of state dependence in labor force participation will have policy implications since this tells us

about the effectiveness of policies that alleviate short-term unemployment. Similarly, the mag-

nitude of state dependence in health will be informative of the relative importance of unobserved

individual characteristics vis-a-vis idiosyncratic health shocks. To the extent that the effects of

these shocks can be mitigated by improvements in health care and its delivery, understanding the

magnitude of state dependence in health will have implications for many health policy debates.

In both the cases of labor and health economics, the statistical properties of the data will contain

information that is pertinent to the conduct of policy.
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4 Maximum Likelihood Estimation

We estimate the model in equation (1) using a Maximum Likelihood Estimation (MLE) procedure

which has been discussed in Heckman (1981a and 1981b). Individual i ( i = 1, ..., N) experiences

hi,t at time t ∈ {0, ..., Ti}. However, the econometrician only observes hi,t for t ∈ {τ i, ..., Ti}

where τ i ≥ 0. This causes an initial conditions problem. The procedure that we use accounts

for this.

We now construct the likelihood function. The likelihood of a sequence of health outcomes

conditional on (θ0i, hi,τ i) for individual i for t = τ i, ..., Ti is given by

P (hi,Ti , ..., hi,τ i+1|hi,τ i ,θ0i) =
TiY

t=τ i+1

Λ (θ0iZi,t−1(2hi,t − 1)) . (5)

We assume that the heterogeneity vector has a discrete support where it can take on one of A

values so that θi ∈ {θ1, ...,θA}. The probability weight that is associated with each point of

support is πa. Our approach is the same as Deb and Trivedi (1997) in that we assume that the

population is drawn from a finite number of distinct classes corresponding to varying degrees of

latent health.6 Let Pτ i(hi,τ i|θ0a) denote the probability of the first observation conditional on

6This approach is also similar to Heckman and Singer (1984) who use a discrete distribution to approximate
the distribution of unobserved heterogeneity.
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θi = θa. We can now obtain the unconditional likelihood via

P (hi,Ti , ..., hi,τ i) =

AX
a=1

P (hi,Ti , ..., hi,τ i|θ0a)πa = (6)

AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa.

Summing over the heterogeneity addresses the incidental parameters problem (Neyman and Scott

1948).

Our model implies a recursive definition for Pτ i(hi,τ i|θ0a). To compute this, we let the

probability of being well in t = 0 conditional on θa be given by pa ≡ P0(hi,0 = 0|θ0a). The

probability of observing hi,t conditional on θa in any subsequent period is then given by

Pt(hi,t|θ0a) =
1X

dt−1=0

Pt(hi,t|hi,t−1 = dt−1,θ
0
a)Pt−1(hi,t−1 = dt−1|θ0a) (7)

=
1X

d=0

Λ (αa + γadt−1 + ρaT)Pt−1(hi,t−1 = dt−1|θ0a).

Substituting, we get

Pt(hi,t|θ0a) =
1X

dt−1=0

Λ((αa + γadt−1 + ρaT)(2hi,t − 1))∗ (8)

1X
dt−2=0

(Λ((αa + γadt−2 + ρa(T− 1))(2dt−1 − 1))Pt−2 (hi,t−2 = dt−2|θ0a)) .

Using the above formulation, we can calculate Pτ i(hi,τ i|θ0a).7 Of course, this is a burdensome task

7Heckman (1981a) proposes using this method which involves using the underlying statistical model to calcu-
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if τ i is large since computation will involve calculating the sum of the probabilities of all possible

sequences of health outcomes that could have led to hi,τ i. Fortunately, the above recursive

definition simplifies matters greatly.

We now obtain the likelihood function:

L(β) = (9)

NX
i=1

log

Ã
AX
a=1

TiY
t=τ i+1

Λ(θ0aZi,t−1(2hi,t − 1))Pτ i(hi,τ i|θ0a)πa

!
,

where β ≡ (θ01, ...,θ0A, π1, ..., πA−1, p1, ..., pA) and has dimension 7A− 1. The likelihood function

was maximized using the Fletcher-Powell algorithm, a variant of Newton’s Method, which only

requires the computation of the the gradient vector. To save on computation time, we calculated

analytical gradients.8

When the number of support points for the mixing distribution exceeds two, estimating

πa directly will often result in some trivial probabilities so that the number of support points

effectively collapses to two or (sometimes) three. To avoid this, we follow Arcidiacono and Jones

late Pτ i(hi,τ i |θ0a) which can in turn be used to calculate P (hi,Ti , ..., hi,τ i). This procedure addresses the initial
condition problem that occurs when the stochastic process has been running prior to τ i. Since our underly-
ing statistical model does not have any time varying regressors, we do not need to concern ourselves with the
distribution of the time varying regressors for t < τ i. However, in the presence of time varying regressors,
auxiliary distributional assumptions must be made. In addition, the computations become rather involved. An
alternative to this is provided by Wooldridge (2005) who proposes modeling the distribution of the heterogeneity
conditional on hi,τi and any time varying regressors that may be present. Doing this does not require internal
consistency with the underlying statistical model nor does it require computations that are as involved as the
previous method, but it does require additional distributional assumptions. A third solution to the initial condi-
tions problem assumes that the process has been running sufficiently long prior to the sampling period and that
the process is in equilibrium. It then uses the stationary distribution for the process as the probability of the
first observation. However, this will not work in our case as health is non-stationary process.

8All computer programs and data used are available upon request from the author.
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(2003) and note that the MLE of πa is given by

bπa = 1

N

NX
i=1

fi,a
qi

, (10)

where fi,a ≡
TiQ

t=τ i+1

Λ(θ0aZi,t−1(2hi,t−1))Pτ i(hi,τ i|θ0a)πa and qi ≡
AP
a=1

fi,a. This insight suggests the

following iterative strategy. First, choose a set of values for the mixing distribution probabilities

and call these values π1a. Similarly, choose initial values for ' ≡ (θ01, ...,θ0A, p1, ..., pA) and call

these values '1. Next, calculate the gradient with respect to ' using the probabilities π1a and

'1 and iterate to get '2. Then, evaluate equation (10) using π1a and '1 to obtain π2a. Repeat

the process.9

5 Estimation Results

5.1 Model Selection

We investigate model selection along two dimensions. The first is the specification of the index

inside equation (1) and the second is the number of support points.10 Our model selection

criterion is the Akaike Selection Criterion (AIC) which is proportional to the absolute value of

the likelihood function plus the number of estimated parameters (Amemiya 1985). The preferred

9To verify that this procedure does, in fact, work, using two support points, we calculated the MLE using
this method and using the alternative method in which the probabilities πa were estimated directly (i.e. we
differentiated the likelihood function with respect to πa as well). Both procedures yielded the same estimates.
10When testing for the number of support points, likelihood-based test statistics are inappropriate because,

under the null hypothesis, one of the probabilities πa must be set to zero. This places the parameter vector at
the edge of a compact set and, thus, violates the regularity conditions of MLE. Consequently, the resulting test
statistic will not be χ2. However, as pointed out by Leroux (1992), model selection criteria do not require that
the true parameter lie in the interior of a compact set and, thus, they are an appropriate means of testing for the
number of support points.
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model has the lowest AIC.

5.1.1 Index

In Table 2, we report the AIC for four indices with two and three support points. The indices

are defined in the table. When we only have two points of support, we see that the AIC

slightly favors the homogeneous quadratic model for both men and women. When we move to

three points, the AIC still favors the homogeneous quadratic model for men, but now favors the

heterogeneous quadratic model for women. What is important to note, however, is that our

choice of index does not alter the AIC by a large margin.

5.1.2 Support Points

Table 3 reports the AIC results for the number of support points. We consider up to four points

of support. We did not venture beyond four points due to computational limitations. For each

value of A that we considered, we estimated the model with a homogeneous quadratic function

of age.11 We see that the AIC increases with the number of support points, but at a decreasing

rate. In contrast to altering the index, adding support points has a dramatic effect on the

AIC. The preferred model has four points of support which suggests that there is a tremendous

amount of heterogeneity in health.12 The results of this table stand in contrast to results in Deb

and Trivedi (1997) who find that only two points of support were necessary when estimating a

11When choosing the number of support points, we did not concern ourselves with the index selection for two
reasons. The first is that, as indicated by Table 2, changing the index did not alter the AIC tremendously. The
second is that the computations in this exercise were quite intensive. Utilizing more complicated indices, such
as the heterogeneous quadratic model, would only have made it worse.
12Presumably, if we had continued to add support points, we would have found evidence of even more hetero-

geneity. However, because the relationship between the AIC and A appears to be concave, we conjecture that
eventually the selection criterion would have started to decline.
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model for the demand of medical care.

5.2 Health Dynamics

Tables 4 and 5 report the parameter estimates and their standard errors for the homogeneous

quadratic model with four support points for men and women.13 This model had the lowest

AIC of all the models that we considered.14 Each column of the tables corresponds to a separate

support point which we call a “type.” We have defined each according to the magnitude of αa.

The lowest value (i.e. most negative) of αa is defined to be “Type 1” and the highest is “Type

4.”15

In Figures 1 through 4, we take the parameter estimates for men and map them into health

transition probabilities.16 Each figure corresponds to a separate type and plots two profiles.

The first is the probability of being ill today conditional on having been ill yesterday. We call

this profile the persistence of illness. The second is the probability of being ill today conditional

on having been well yesterday. We call this profile the onset of illness. We plot 95% confidence

bands around each profile.17 It is important to realize that because many of the standard errors

in Tables 4 and 5 are quite large, some of these confidence bands include zero or unity.

The figures show a large degree of heterogeneity in health. Figure 1, which corresponds to

13Standard errors were calculated using the “sandwich” standard errors. The gradient vector from the likelihood
function was used to calculated the average of its outer product. To calculate the Hessian, we numerically
differentiated the gradient vector.
14We also calculated the AIC for a homogeneous quadratic model with a homogeneous state dependence para-

meter for A = 4. The model with the heterogeneous state dependence parameter was preferred.
15It is important to emphasize that the probability of being a certain type is independent of age in our analysis.

However, if we were to have modeled mortality as well, then the probability of being a particular type would
depend on age since the unhealthy types would have higher probabilities of dying.
16The figures for women, which we do not report, were similar.
17The δ-method was used to calculate the standard errors.
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Type 1 men, shows that the persistence of illness is close to unity and that the onset of illness is

close to zero at all ages. Taken at face value, this suggests that Type 1 men exhibit a tremendous

degree of state dependence. Figures 2 through 4 correspond to Types 2 through 4. Type 2 men

are the healthiest and Type 4 men are the unhealthiest. These figures show far more muted

degrees of state dependence than Figure 1.

Figures 5 through 8 display the degree of state dependence, which is defined to be the differ-

ence between the persistence and onset profiles for men. Each figure corresponds to a separate

type and includes a 95% confidence band. The degree of state dependence is close to unity for

Type 1 men and women. The degree of state dependence for Type 2 men and women is very

low - below 10% for most ages. For Types 3 and 4, we see a more intermediate degree of state

dependence that is somewhere between 10% and 20%.

At this point, we subject the reader to a caveat concerning the high degree of state dependence

that we uncovered for Type 1 people. We conjecture that this is a consequence of the fact that

these individuals have an initial probability of being ill that is below 1% and an extremely low

probability of falling ill from that point onward. Consequently, the data do not contain a wealth

of information on the persistence of illness for these types. This makes it difficult to pin down γ1.

Thus, we believe that our estimations are telling us that these types have very low propensities of

falling ill, but are not terribly informative of their degree of state dependence. Also, it is worth

mentioning that Halliday (2007a) used the same data, but alternative semi-parametric tests, and

did not find strong evidence of state dependence.

To better see this, in Tables 6 and 7, we report the frequencies of 4 year sequences of health,

for men and women, starting from ages 30, 40 and 50. Both tables show that the sequence
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(0, 0, 0, 0) is, by far, the most frequent and so, the healthy state is highly persistent for the vast

majority of the individuals in our data. In contrast, if it were the case that the degree of state

dependence actually was unity for half of the population, we would also expect to see a large

frequency for the sequence (1, 1, 1, 1) , but we do not.

6 Conclusion

This paper investigated the evolution of health over the life-course by estimating several spec-

ifications of a flexible model of health dynamics which allowed for two sources of persistence:

unobserved heterogeneity and state dependence. Our analysis suggested that altering the linear

index of our model did little to improve its fit. In contrast, adding support points to the mixing

distribution led to large improvements in fit. We found that at least four support points were

necessary, indicating a large degree of heterogeneity in our data. This suggests that much of

what determines health in adulthood can be traced back to childhood and is consistent with re-

cent work by Case, Paxson and Lubotsky (2002). We found modest degrees of state dependence

for approximately half of the population. For the other half, we found that it was near unity.

However, because the likelihood of falling ill was so low for this part of the population, we do

not believe that we can say anything conclusive about their degree of state dependence.

Can the estimates in this paper inform us about health policy? While this paper can be crit-

icized as being too “reduced form,” we believe that our approach, which is focused on deepening

our understanding of the statistical properties of the data while make parametric restrictions

that are as weak as possible, can be informative of policy. In fact, because measuring health

is so difficult and incorporating it into life-cycle consumption models often results in models
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that are very hard to estimate and potentially fragile in the face of mis-specified distributional

and modeling assumptions, many authors such as Adams, Hurd, McFadden, Merrill and Ribeiro

(2003), Adda, Banks and Van Gaudecker (2006) and Halliday (2007b) have also adopted less

structural approaches in health applications.

To this end, we contend that the results of this paper shed light on the gradient: the much-

studied but little-understood statistical correlation between health and socioeconomic status

(Adams, Hurd, McFadden, Merrill and Ribeiro 2003). If it is the case that the gradient is

largely determined by the causal impact of health status on earnings and wealth - as suggested

by Smith (1999) - then the relevant policy prescription is to directly target health via improve-

ments in health care and its delivery (Deaton 2002). The argument for health policies is further

strengthened if health exhibits a high degree of state dependence since this implies that inter-

ventions will have large dynamic effects.

Our reading of the results leads us to conclude that, while improvements in medical care will

lead to modest improvements in health, there may be larger potential gains to identifying and

then targeting factors that influence individual heterogeneity. Our reasoning for this is that

we uncover relatively modest degrees of state dependence for most people. For the rest of the

population, we do uncover an enormous degree of state dependence, but we have good reasons,

which we outlined above, for thinking that this is a result of the fact that this segment of the

population almost never gets sick prior to age 60. On the other hand, we do uncover a large

amount of heterogeneity which indicates that much of the persistence that we observe in the

aggregate is driven by individual characteristics which can be traced back to early adulthood

and before.
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Table 1: Descriptive Statistics
Women

Mean 25% Quantile 75% Quantile Standard Deviation
SRHS (5-Point) 2.22 1 3 0.99
SRHS (2-Point) 0.10 0 0 0.30
Age 39.10 31 46 9.82
Panel Duration∗ 8.21 4 14 4.45
N = 4186∗∗

Men
SRHS (5-Point) 2.10 1 3 0.98
SRHS (2-Point) 0.08 0 0 0.27
Age 39.34 32 46 9.56
Panel Duration∗ 8.44 4 14 4.46
N = 3923∗∗

∗Panel duration refers to the length of time that the individual was in the panel.
∗∗N is the number of individual observations, not individual-time observations.

Table 2: AIC for Index Selection
A = 2 A = 3

Aging
Function

ρ
Hetero?

γ
Hetero?

Men Women Men Women

Linear Model Linear No Yes 6163.8 7564.5 6084.9 7453.9
Homo Quad -
Homogeneous γ

Quad No No 6164.5 7564.4 6083.8 7451.9

Homo Quad Quad No Yes 6163.1∗ 7563.2∗ 6083.5∗ 7452.9
Hetero Quad Quad Yes Yes 6163.9 7564.7 6085.6 7450.9∗

∗Denotes the model with the lowest AIC.

Table 3: AIC for Selection of the Number of Support Points
Points of Support Men Women
A = 1 11798.0 13631.0
A = 2 6163.1 7563.2
A = 3 6083.5 7452.9
A = 4 6062.9 7422.3

The homogeneous quadratic model was employed in
the estimation.
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Table 4: Parameter Estimates for Preferred Model - Men
Type 1 Type 2 Type 3 Type 4

αa
−8.0789
(0.7920)

−5.6632
(0.7537)

−3.7868
(0.7400)

−1.9916
(0.7238)

γa
9.9901
(0.9093)

0.8776
(0.3874)

0.9597
(0.1915)

0.8335
(0.2075)

ρ1
0.3598
(0.3657)

0.3598
(0.3657)

0.3598
(0.3657)

0.3598
(0.3657)

ρ2
3.9879
(4.3498)

3.9879
(4.3498)

3.9879
(4.3498)

3.9879
(4.3498)

pa
0.9907
(0.0055)

0.9578
(0.0655)

0.8757
(0.1387)

0.9999
(0.0001)

πa 0.5353 0.2721 0.1296 0.0630

Table 5: Parameter Estimates for Preferred Model - Women
Type 1 Type 2 Type 3 Type 4

αa
−6.8666
(0.7049)

−5.5826
(0.6721)

−3.1537
(0.6584)

−1.4090
(0.6586)

γa
9.5925
(1.0865)

0.7514
(0.5424)

0.8067
(0.1340)

0.8779
(0.2033)

ρ1
0.2494
(0.3267)

0.2494
(0.3267)

0.2494
(0.3267)

0.2494
(0.3267)

ρ2
4.4630
(3.8702)

4.4630
(3.8702)

4.4630
(3.8702)

4.4630
(3.8702)

pa
0.9997
(0.0054)

0.9587
(0.0285)

0.8874
(0.0868)

0.7432
(0.2245)

πa 0.4093 0.3495 0.1804 0.0608

26



Table 6: Health Sequence Frequencies - Men
(hi,t−3, hi,t−2, hi,t−1, hi,t) t = 33 t = 43 t = 53

(1, 1, 1, 1) 14 19 42
(1, 1, 1, 0) 20 35 44
(1, 1, 0, 1) 3 7 15
(1, 0, 1, 1) 6 9 8
(0, 1, 1, 1) 20 35 44
(1, 1, 0, 0) 30 63 58
(1, 0, 1, 0) 8 15 11
(0, 1, 1, 0) 13 35 29
(1, 0, 0, 1) 4 9 9
(0, 1, 0, 1) 11 17 4
(0, 0, 1, 1) 27 61 65
(1, 0, 0, 0) 123 137 109
(0, 1, 0, 0) 97 83 59
(0, 0, 1, 0) 100 85 52
(0, 0, 0, 1) 123 137 108
(0, 0, 0, 0) 3649 3153 1327

Table 7: Health Sequence Frequencies - Women
(hi,t−3, hi,t−2, hi,t−1, hi,t) t = 33 t = 43 t = 53

(1, 1, 1, 1) 10 29 44
(1, 1, 1, 0) 22 49 39
(1, 1, 0, 1) 5 13 12
(1, 0, 1, 1) 6 19 12
(0, 1, 1, 1) 22 49 39
(1, 1, 0, 0) 42 84 54
(1, 0, 1, 0) 12 18 15
(0, 1, 1, 0) 25 48 27
(1, 0, 0, 1) 10 12 17
(0, 1, 0, 1) 13 24 15
(0, 0, 1, 1) 41 78 55
(1, 0, 0, 0) 142 168 134
(0, 1, 0, 0) 110 96 97
(0, 0, 1, 0) 111 102 97
(0, 0, 0, 1) 142 168 135
(0, 0, 0, 0) 3736 2853 1258
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