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Trade, Wages, and Productivity 
 
We develop a new general equilibrium model of trade with heterogeneous firms, variable 
demand elasticities and endogenously determined wages. Trade integration favors wage 
convergence, intensifies competition, and forces the least efficient firms to leave the market, 
thereby affecting aggregate productivity. Since wage and productivity responses are 
endogenous, our model is well suited to study the impacts of trade integration on aggregate 
productivity and factor prices. Using Canada-U.S. interregional trade data, we first estimate a 
system of theory-based gravity equations under the general equilibrium constraints 
generated by the model. Doing so allows us to measure ‘border effects’ and to decompose 
them into a ‘pure’ border effect, relative and absolute wage effects, and a selection effect. 
Using the estimated parameter values, we then quantify the impacts of removing the 
Canada-U.S. border on wages, productivity, markups, the share of exporters, the mass of 
varieties produced and consumed, and welfare. We finally provide a similar quantification 
with respect to regional population changes. 
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1 Introduction

Over the last decade, empirical research in international trade has revealed the existence of

substantial firm-level heterogeneity. Only a small share of firms is engaged in foreign trade,

and these firms differ along various dimensions from purely domestic ones. Exporters tend,

in particular, to be larger and more productive than non-exporters. These firm-level produc-

tivity differences act as channels through which trade liberalization brings about aggregate

productivity gains, by forcing the least efficient firms to leave the market and by reallocating

market shares from low to high productivity firms (e.g., Bernard and Jensen, 1999; Aw et al.,

2000; Pavcnik, 2002; Bernard et at., 2007). While these firm-level facts are intrinsically incom-

patible with the paradigm of the ‘representative firm’ that has dominated international trade

theory for decades, several models with heterogeneous firms have been recently put forward

to accomodate them. In his seminal contribution, Melitz (2003) extends Krugman’s (1980)

model of intra-industry trade to cope with productivity differences across firms and shows that

the most productive firms self-select into export markets and that trade liberalization forces

the least efficient firms to exit, thus leading to aggregate productivity gains.

Although Melitz’s (2003) model has greatly increased our understanding of intra-industry

reallocations in a trading world it is fair to say that it relies on two restrictive assumptions:

factor price equalization (FPE) and constant elasticity of substitution (CES). First, as is well

known, FPE need not hold in models of monopolistic competition with differentiated goods

and trade costs (e.g., Helpman and Krugman, 1985). Nevertheless, it does hold in Melitz’s

model because countries are assumed to be symmetric so that no wage differences can arise in

equilibrium. Though analytically convenient, such an assumption masks the fact that different

productivity gains across countries map quite naturally into different changes in factor prices

and incomes, both of which are bound to affect trade in various ways in general equilibrium.

Second, the CES framework generates constant markups over marginal costs, i.e., price-cost

margins are unaffected by trade integration, by firms’ productivities, and by local market size.

These features do not accord with abundant recent empirical evidence.1

The recent literature on heterogeneous firms has addressed either one of these restrictive

features. First, Bernard et al. (2003) relax FPE by imposing exogenous cross-country wage

differences within a Ricardian framework. However, their model offers the stark prediction

of identical distributions of markups across countries. Second, Melitz and Ottaviano (2008)

provide a model where markups decrease with trade integration and can be distributed differ-

ently across countries, depending on both market size and accessibility. However, they assume

1For example, Badinger (2007) finds solid evidence that the Single Market Programme of the European

Union has reduced markups in aggregate manufacturing. Foster et al. (2008) show that more productive firms

set lower prices and charge higher markups. Finally, Syverson (2004) documents that areas of high economic

density and large local market size have higher average productivity and less productivity dispersion.
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quasi-linear preferences which channel all income effects towards a homogeneous numeraire

good. The quasi-linear specification also implies FPE given identical technologies across coun-

tries and free trade in the numeraire good. Last, Bernard et al. (2007) embed Melitz’s model

into a two-country Heckscher-Ohlin framework, which allows for factor price differences across

countries. They, however, rely again on the CES specification and therefore obtain constant

markups that are invariant to trade liberalization and market size.2

We are unaware of a full-fledged general equilibrium model with heterogeneous firms in

which wages and markups are endogenous and need not be equalized across countries. De-

veloping such a framework is the first contribution of this paper. To this end, we extend

the recent model by Behrens and Murata (2007) to accommodate heterogeneous firms and

multiple countries which may differ in size, accessibility, and their underlying productivity

distributions. Within this setting, we shed light on the impacts of trade integration and mar-

ket size on wages, firm selection, and markups. Falling trade barriers increase expected profits

in the foreign markets and encourage firms to start exporting. This induces tougher selection,

increases average productivity and reduces average markups as in, for instance, Melitz and

Ottaviano (2008). Furthermore, higher average productivity maps into wage changes which

differ across asymmetric countries. Put differently, trade integration spurs additional effects

due to changes in relative and absolute wages. On the one hand, wages in some regions will

rise relatively to those in others. Consequently, there is a cost increase for the firms located in

regions where relative wages rise, which erodes their competitive position in foreign markets.

On the other hand, absolute wages also rise in some regions which are then reflected in higher

export prices and larger local demands. These various price and income effects must be taken

into consideration to understand how trade liberalization may affect productivity and wages.

Despite the richness of effects and economic mechanisms at work, our model remains highly

tractable even when extended to multiple asymmetric countries. This makes it particularly well

suited as a basis for applied work. Therefore, turning to our second contribution, we take our

model to data and quantify it using a methodology similar to the ones developed in Anderson

and van Wincoop (2003) and Bernard et al. (2003). To do so, we derive a gravity equation

under the general equilibrium constraints generated by the model, and structurally estimate

it using a well-known dataset on interregional trade flows between U.S. states and Canadian

provinces.3 This quantified framework is particularly useful, because it allows us to finely assess

2Other important contributions to the heterogeneous firms literature with a different focus include Helpman

et al. (2004), who extend Melitz’s (2003) model to include multinational firms; and Antràs and Helpman (2004),

who introduce outsourcing into a heterogeneous firms framework. For an overview of recent advances in the

literature, see Helpman (2006).
3Our empirical analysis supplements Anderson and van Wincoop (2003) in that our general equilibrium

constraints include both endogenous wages and firm heterogeneity. Several recent contributions have derived

gravity equations with heterogeneous firms (e.g., Chaney, 2008; Helpman et al., 2008; Melitz and Ottaviano,

2008). In all these models, wages are either equalized or assumed to differ exogenously via Ricardian differences
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how and through which economic channels various exogenous shocks would affect the different

Canadian provinces and U.S. states. We provide two such ‘counterfactual analyses’. First, we

simulate the effects of eliminating the trade distortion generated by the Canada-U.S. border on

regional trade flows, which represents a hypothetical scenario where only distance still matters

as an impediment to trade. We compute a series of bilateral border effects which summarize

how trade flows between any two regions (within or across countries) would be affected by

the hypothetical border removal. These bilateral border effects can then be decomposed

into a ‘pure’ border effect, relative and absolute wage effects, and a selection effect, thereby

providing a detailed account of which factors drive these effects in the first place. We show

that both endogenous wage responses and firm selection systematically increase measured U.S.

and decrease measured Canadian border effects as compared to previous estimates from the

literature. Second, we quantify the impacts of this full removal of the Canada-U.S. border

on other key economic variables at the regional level. In particular, we show that all regions

would experience welfare gains since average productivity increases and product diversity

expands everywhere, but that some regions quite naturally gain more than others. Finally, we

investigate how local market size affects the equilibrium via changes in regional populations.

To this end, we hold trade frictions fixed at their initial levels and consider how the observed

population changes between 1993 and 2007 affect the different provinces and states. We find

that the western Canadian provinces and the southern U.S. states gain the most in terms of

productivity and wages, whereas small peripheral regions like Newfoundland may experience

productivity and welfare losses.

The remainder of the paper is organized as follows. Section 2 deals with the closed economy

case. In Section 3 we extend it to a multi-country framework. Section 4 derives the gravity

equation system, describes the data, and presents the estimation procedure. In Section 5 we

illustrate the counterfactual experiment of removing the border. Section 6 concludes.

2 Closed economy

Consider a closed economy with a final consumption good, provided as a continuum of hori-

zontally differentiated varieties. We denote by Ω the endogenously determined set of available

varieties, with measure N . There are L consumers, each of whom supplies inelastically one

unit of labor, which is the only factor of production.

in some costlessly tradable numeraire sector. Balistreri and Hillberry (2007) are, to the best of our knowledge,

the first to structurally estimate a gravity equation with endogenous wages, but they neglect firm heterogeneity.
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2.1 Preferences and demands

All consumers have identical preferences which display ‘love of variety’ and give rise to demands

with variable elasticities. Following Behrens and Murata (2007), the utility maximization

problem of a representative consumer is given by:

max
q(j), j∈Ω

U ≡

∫

Ω

[
1 − e−αq(j)

]
dj s.t.

∫

Ω

p(j)q(j)dj = E, (1)

where E denotes expenditure; p(j) > 0 and q(j) ≥ 0 stand for the price and the per capita

consumption of variety j; and α > 0 is a parameter. As shown by Behrens and Murata (2007),

solving (1) yields the following demand functions:

q(i) =
E

Np
−

1

α

{
ln

[
p(i)

Np

]
+ h

}
, ∀i ∈ Ω, (2)

where

p ≡
1

N

∫

Ω

p(j)dj and h ≡ −

∫

Ω

ln

[
p(j)

Np

]
p(j)

Np
dj

denote the average price and the differential entropy of the price distribution, respectively.

Since marginal utility at zero consumption is bounded, the demand for a variety need not be

positive. Indeed, as can be seen from (2), the demand for variety i is positive if and only if its

price is lower than the reservation price pd. Formally,

q(i) > 0 ⇐⇒ p(i) < pd ≡ Np e
αE
Np

−h. (3)

Note that the reservation price pd is a function of the price aggregates p and h. Combining

expressions (2) and (3) allows us to express the demand for variety i concisely as follows:

q(i) =
1

α
ln

[
pd

p(i)

]
. (4)

2.2 Technology and market structure

The labor market is assumed to be perfectly competitive so that all firms take the wage rate w

as given. Prior to production, each firm engages in research and development, which requires

a fixed amount F of labor paid at the market wage. Each entrant discovers its marginal labor

requirement m(i) ≥ 0 only after making this irreversible investment. We assume that m(i) is

drawn from a common and known, continuously differentiable distribution G. Since research

and development costs are sunk, a firm will remain active in the market provided it can charge

a price p(i) above marginal cost m(i)w.

Each surviving firm sets its price to maximize operating profit

π(i) = L
[
p(i) − m(i)w

]
q(i), (5)
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where q(i) is given by (4). Since there is a continuum of firms, no individual firm has any

impact on pd so that the first-order conditions for (operating) profit maximization are given

by:

ln

[
pd

p(i)

]
=

p(i) − m(i)w

p(i)
, ∀i ∈ Ω. (6)

A price distribution satisfying (6) is called a price equilibrium. Multiplying both sides of (6)

by p(i), integrating over Ω, and using (4) yield the average price as follows:

p = mw +
αE

N
, (7)

where m ≡ (1/N)
∫
Ω

m(j)dj denotes the average marginal labor requirement of the surviving

firms. Observe that expression (7) displays pro-competitive effects, i.e., the average price is

decreasing in the mass of surviving firms N .

Equations (4) and (6) imply that q(i) = (1/α)[1 − m(i)w/p(i)], which allows us to derive

the upper and lower bounds for the marginal labor requirement. The maximum output is given

by q(i) = 1/α at m(i) = 0. The minimum output is given by q(i) = 0 at p(i) = m(i)w, which

by (6) implies that p(i) = pd. Therefore, the cutoff marginal labor requirement is defined

as md ≡ pd/w. A firm that draws md is indifferent between producing and not producing,

whereas all firms with a draw below (resp., above) md remain in (resp., exit from) the market.

Since firms differ only by their marginal labor requirement, we can express all firm-level

variables in terms of m. Solving (6) by using the Lambert W function, defined as ϕ =

W (ϕ)eW (ϕ), the profit-maximizing prices and quantities as well as operating profits can be

expressed as follows:

p(m) =
mw

W
, q(m) =

1

α
(1 − W ), π(m) =

Lmw

α

(
W−1 + W − 2

)
, (8)

where we suppress the argument em/md of W to alleviate notation (see Appendix A.1 for

the derivations). It is readily verified that W ′ > 0 for all non-negative arguments and that

W (0) = 0 and W (e) = 1. Hence, 0 ≤ W ≤ 1 if 0 ≤ m ≤ md.4 The expressions in (8) then

show that a firm with draw md charges a price equal to marginal cost, faces zero demand,

and earns zero profit. Since W ′ > 0, we readily obtain ∂p(m)/∂m > 0, ∂q(m)/∂m < 0 and

∂π(m)/∂m < 0. In words, firms with better draws charge lower prices, sell larger quantities,

and earn higher operating profits than firms with worse draws.

2.3 Equilibrium

We now state the equilibrium conditions for the closed economy, which consist of zero expected

profits and labor market clearing. First, given the mass of entrants NE , the mass of surviving

4Clearly, ϕ = W (ϕ)eW (ϕ) implies that W (ϕ) ≥ 0 for all ϕ ≥ 0. Taking logarithms on both sides and

differentiating yield W ′(ϕ) = W (ϕ)/{ϕ[W (ϕ) + 1]} > 0 for all ϕ > 0. Finally, we have 0 = W (0)eW (0), which

implies W (0) = 0, and e = W (e)eW (e), which implies W (e) = 1.
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firms can be written as N = NEG(md). Using (5), the zero expected profit condition for each

firm is given by

L

∫ md

0

[p(m) − mw] q(m)dG(m) = Fw, (9)

which, combined with (8), can be rewritten as

L

α

∫ md

0

m
(
W−1 + W − 2

)
dG(m) = F. (10)

As the left-hand side of (10) is strictly increasing in md from 0 to ∞, there always exists

a unique equilibrium cutoff (see Appendix A.2). Furthermore, the labor market clearing

condition is given by:5

NE

[
L

∫ md

0

mq(m)dG(m) + F

]
= L, (11)

which combined with (8) can be rewritten as

NE

[
L

α

∫ md

0

m (1 − W ) dG(m) + F

]
= L. (12)

Given the equilibrium cutoff md, equation (12) can be uniquely solved for NE .

How does population size affect firms’ entry and survival probabilities? Using the equilib-

rium conditions (10) and (12), we can show that a larger L leads to more entrants NE and a

smaller cutoff md, respectively (see Appendix A.3). The effect of population size on the mass

of surviving firms N is in general ambiguous. However, under the commonly made assumption

that firms’ productivity draws 1/m follow a Pareto distribution

G(m) =
( m

mmax

)k

,

with upper bound mmax > 0 and shape parameter k ≥ 1, we can show that N is increasing

in L.6 Using this distributional assumption, we readily obtain closed-form solutions for the

equilibrium cutoff and mass of entrants:

md =

[
αF (mmax)k

κ2L

] 1
k+1

and NE =
κ2

κ1 + κ2

L

F
,

5Note that using (9) and the budget constraint NE
∫ md

0 p(m)q(m)dG(m) = E, we obtain EL/(wNE) =

L
∫ md

0 mq(m)dG(m) + F which, together with (11), yields E = w in equilibrium.
6The Pareto distribution has been extensively used in the previous literature on heterogeneous firms

(Bernard et al., 2007; Helpman et al., 2008; Melitz and Ottaviano, 2008). Such a distribution is also consistent

with the U.S. firm size distribution (see Axtell, 2001).
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where κ1 and κ2 are positive constants that solely depend on k (see Appendices B.1 and B.2).7

The mass of surviving firms is then given as follows:

N =
κ

1
k+1

2

κ1 + κ2

( α

mmax

) k
k+1

(
L

F

) 1
k+1

,

which is increasing in population size. One can further check that N is decreasing in the fixed

labor requirement F and in the upper bound mmax. Finally, since m = [k/(k + 1)]md holds

when productivity follows a Pareto distribution, a larger population also maps into higher

average productivity.

3 Open economy

We now turn to the open economy case. As dealing with two regions only marginally alleviates

the notational burden, we first derive the equilibrium conditions for the general case with K

asymmetric regions that we use when taking our model to the data. We then present some

clear-cut analytical results for the special case of two asymmetric regions in order to guide the

intuition for the general case.

3.1 Preferences and demands

Preferences are analogous to the ones described in the previous section. Let psr(i) and qsr(i)

denote the price and the per capita consumption of variety i when it is produced in region s

and consumed in region r. It is readily verified that the demand functions in the open economy

case are given as follows:

qsr(i) =
Er

N c
r pr

−
1

α

{
ln

[
psr(i)

N c
rpr

]
+ hr

}
, ∀i ∈ Ωsr,

where N c
r is the mass of varieties consumed in region r; Ωsr denotes the set of varieties produced

in region s and consumed in region r; and

pr ≡
1

N c
r

∑

s

∫

Ωsr

psr(j)dj and hr ≡ −
∑

s

∫

Ωsr

ln

[
psr(j)

N c
rpr

]
psr(j)

N c
rpr

dj

denote the average price and the differential entropy of the price distribution of all varieties

consumed in region r. As in the closed economy case, the demand for domestic variety i (resp.,

foreign variety j) is positive if and only if the price of variety i (resp., variety j) is lower than

the reservation price pd
r . Formally,

qrr(i) > 0 ⇐⇒ prr(i) < pd
r and qsr(j) > 0 ⇐⇒ psr(j) < pd

r ,

7For this solution to be consistent, we must ensure that md ≤ mmax, i.e., mmax ≥ (αF/L)1/k.
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where pd
r ≡ N c

rpre
αEr/(Nc

r pr)−hr is a function of the price aggregates pr and hr. The demands

for domestic and foreign varieties can then be concisely expressed as follows:

qrr(i) =
1

α
ln

[
pd

r

prr(i)

]
and qsr(j) =

1

α
ln

[
pd

r

psr(j)

]
. (13)

3.2 Technology and market structure

Technology and the entry process are identical to the ones described in Section 2. We assume

that shipments from r to s are subject to trade costs τrs > 1 for all r and s, that markets are

segmented, and that firms are free to price discriminate.

Firms in region r independently draw their productivities from a region-specific distribution

Gr. Assuming that firms incur trade costs in terms of labor, the operating profit of firm i in r

is given by:

πr(i) =
∑

s

πrs(i) =
∑

s

Lsqrs(i) [prs(i) − τrsmr(i)wr] . (14)

Each firm maximizes (14) with respect to its prices prs(i) separately. Since it has no impact

on the price aggregates and on the wages, the first-order conditions are given by:

ln

[
pd

s

prs(i)

]
=

prs(i) − τrsmr(i)wr

prs(i)
, ∀i ∈ Ωrs. (15)

We first solve for the average price in region r. To do so, multiply (15) by prs(i), use (13),

integrate over Ωrs, and finally sum the resulting expressions to obtain

pr ≡
1

N c
r

∑

s

∫

Ωsr

psr(j)dj =
1

N c
r

∑

s

τsrws

∫

Ωsr

ms(j)dj +
αEr

N c
r

, (16)

where the first term is the average of marginal delivered costs in region r. Expression (16)

shows that pr is decreasing in the mass N c
r of firms competing in region r, which is similar to

the result on pro-competitive effects established in the closed economy case.

Equations (13) and (15) imply that qrs(i) = (1/α)[1−τrsmr(i)wr/prs(i)], which shows that

qrs(i) = 0 at prs(i) = τrsmr(i)wr. It then follows from (15) that prs(i) = pd
s. Hence, a firm

located in r with draw mx
rs ≡ pd

s/(τrswr) is just indifferent between selling and not selling in

region s. All firms with draws below mx
rs are productive enough to sell to region s. In what

follows, we refer to mx
ss ≡ md

s as the domestic cutoff in region s, whereas mx
rs with r 6= s is

the export cutoff. Export and domestic cutoffs are linked as follows:

mx
rs =

τss

τrs

ws

wr
md

s . (17)

Expression (17) reveals how trade costs and wage differentials affect firms’ ability to break into

foreign markets. When wages are equalized (wr = ws) and internal trade is costless (τss = 1),

9



all export cutoffs must fall short of the domestic cutoffs since τrs > 1. In that case, breaking

into any foreign market is always harder than selling domestically. However, in the presence of

wage differentials and internal trade costs, the domestic and the foreign cutoffs can no longer

be clearly ranked. The usual ranking, namely that exporting to s is more difficult than selling

domestically in s, prevails only when τssws < τrswr.

The first-order conditions (15) can be solved as in the closed economy case. Switching to

notation in terms of m, the profit-maximizing prices and quantities as well as operating profits

are given by:

prs(m) =
τrsmwr

W
, qrs(m) =

1

α
(1 − W ) , πrs =

Lτrsmwr

α
(W−1 + W − 2), (18)

where W denotes the Lambert W function with argument eτrsmwr/p
d
s. It is readily verified

that more productive firms again charge lower prices, sell larger quantities, and earn higher

operating profits.

Observe that in an open economy, the masses of varieties consumed and produced in each

region need not be the same. Given a mass of entrants NE
r , only Np

r = NE
r Gr (maxs {m

x
rs})

firms survive, namely those which are productive enough to sell at least in one market. Finally,

the mass of varieties consumed in region r is given by

N c
r =

∑

s

NE
s Gs(m

x
sr), (19)

which, contrary to Np
r , depends on the distributions Gs of all its trading partners.

3.3 Equilibrium

The zero expected profit condition for each firm in region r is given by

∑

s

Ls

∫ mx
rs

0

[prs(m) − τrsmwr] qrs(m)dGr(m) = Frwr, (20)

where Fr is the region-specific fixed labor requirement. Furthermore, each labor market clears

in equilibrium, which yields

NE
r

[∑

s

Lsτrs

∫ mx
rs

0

mqrs(m)dGr(m) + Fr

]
= Lr. (21)

Last, trade is balanced for each region:

NE
r

∑

s 6=r

Ls

∫ mx
rs

0

prs(m)qrs(m)dGr(m) = Lr

∑

s 6=r

NE
s

∫ mx
sr

0

psr(m)qsr(m)dGs(m).

As in the foregoing section, we can restate the equilibrium conditions using the Lambert W

function (see Appendix C for details).
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In what follows, we assume that productivity draws 1/m follow a Pareto distribution with

identical shape parameters k ≥ 1. However, to capture local technological possibilities, we

allow the upper bounds to differ across regions, i.e., Gr(m) = (m/mmax
r )k. A lower mmax

r

implies that firms in region r have a higher probability of drawing a better productivity.

Under the Pareto distribution, the equilibrium conditions can be greatly simplified. First,

using the expressions in Appendices B.1 and C.1, labor market clearing requires that

NE
r

[
κ1

α (mmax
r )k

∑

s

Lsτrs

(
τss

τrs

ws

wr

md
s

)k+1

+ Fr

]
= Lr. (22)

Second, using Appendices B.2 and C.2, zero expected profits imply that

µmax
r ≡

αFr (mmax
r )k

κ2
=

∑

s

Lsτrs

(
τss

τrs

ws

wr
md

s

)k+1

, (23)

where µr is a simple monotonic transformation of the upper bounds. Last, using Appendices

B.3 and C.3, balanced trade requires that

NE
r wr

(mmax
r )k

∑

s 6=r

Lsτrs

(
τss

τrs

ws

wr

md
s

)k+1

= Lr

∑

s 6=r

τsr
NE

s ws

(mmax
s )k

(
τrr

τsr

wr

ws

md
r

)k+1

. (24)

The 3K conditions (22)–(24) depend on 3K unknowns: the wages wr, the masses of entrants

NE
r , and the domestic cutoffs md

r . The export cutoffs mx
rs can then be computed using (17).

Combining (22) and (23) immediately shows that

NE
r =

κ2

κ1 + κ2

Lr

Fr
. (25)

The mass of entrants in region r therefore positively depends on that region’s size Lr and

negatively on its fixed labor requirement Fr.

Adding the term in r that is missing on both sides of (24), and using (23) and (25), we

obtain the following equilibrium relationship:

1

(md
r)

k+1
=

∑

s

Lsτrr

(
τrr

τsr

wr

ws

)k
1

µmax
s

. (26)

Expressions (23) and (26) summarize how wages, upper bounds, cutoffs, trade costs and

population sizes are related in general equilibrium.

3.4 Two-region case

Our model allows for clear-cut comparative static results with two asymmetric regions. Using

(23)–(25), an equilibrium can be characterized by a system of three equations with three
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unknowns ω ≡ w1/w2, md
1 and md

2 as follows:

(
w1

w2

)2k+1

=

(
τ21

τ12

)k (
τ22

τ11

)k+1 (
md

2

md
1

)k+1 (
µmax

2

µmax
1

)
(27)

µmax
r = Lrτrr

(
md

r

)k+1
+ Lsτrs

(
τss

τrs

ws

wr

md
s

)k+1

, (28)

for r = 1, 2 and s 6= r. Equation (28) for regions 1 and 2 can readily be solved for the cutoffs

as a function of ω:

(md
1)

k+1 =
µmax

1

L1τ11

1 − ρ
(

τ22
τ12

)k

ω−(k+1)

1 −
(

τ11τ22
τ12τ21

)k
and (md

2)
k+1 =

µmax
2

L2τ22

1 − ρ−1
(

τ11
τ21

)k

ωk+1

1 −
(

τ22τ11
τ21τ12

)k
, (29)

where ρ ≡ µmax
2 /µmax

1 captures relative technological possibilities. A larger ρ implies, ceteris

paribus, that firms in region 2 face a higher probability of drawing a worse productivity than

those in region 1. Substituting the cutoffs (29) into (27) and simplifying then yields

LHS ≡ ωk = ρ
L1

L2

(
τ21

τ12

)k
ρτ−k

11 − τ−k
21 ωk+1

τ−k
22 ωk+1 − ρτ−k

12

≡ RHS. (30)

Assume that intraregional trade is less costly than interregional trade, i.e., τ11 < τ21 and

τ22 < τ12. Then, the RHS of (30) is decreasing in ω on its relevant domain, whereas the

LHS is increasing in ω. Hence, there exists a unique equilibrium such that the equilibrium

relative wage ω∗ is bounded by relative trade costs τ22/τ12 and τ21/τ11, relative technological

possibilities ρ, and the shape parameter k (see Appendix A.4).

Since the RHS of (30) is decreasing, the comparative static results are straightforward to

derive. In Appendix A.5 we show that, everything else equal: (i) the larger region has the

higher wage; (ii) the region with better technological possibilities has the higher wage; (iii)

higher internal trade costs in one region reduce its relative wage; (iv) better access for one

region to the other market raises its relative wage; and (v) wages converge as bilateral trade

barriers fall.

4 Estimation

In this section we take the model with K asymmetric regions to the data. To this end, we first

derive a theory-based gravity equation with general equilibrium constraints. Using Canada-

U.S. regional trade flow data, we then structurally estimate trade friction parameters as well

as other parameters of the model.8 In the next section we turn to counterfactual analyses,

8Since our model is one of intra-industry trade, it is better suited to analyze trade among similar regions

where factor proportions are less likely to matter. Furthermore, the Canada-U.S. regional trade data has been

widely used in the literature, which makes it possible to compare our results to existing ones.
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where we consider the impacts of a decrease in trade frictions as well as changes in population

sizes on various economic variables.

4.1 Gravity equation system

Using the results established in the previous section, the value of exports from region r to

region s is given by

Xrs = NE
r Ls

∫ mx
sr

0

prs(m)qrs(m)dGr(m).

Using (18), (25), and the Pareto distribution for Gr(m), we obtain the following gravity

equation:9

Xrs

LrLs
= τ−k

rs τk+1
ss (ws/wr)

k+1wr

(
md

s

)k+1
(µmax

r )−1 . (31)

As can be seen from (31), exports depend on bilateral trade costs τrs, internal trade costs in

the destination τss, origin and destination wages wr and ws, destination productivity md
s , and

origin technological possibilities µmax
r . A higher relative wage ws/wr raises the value of exports

as firms in r face relatively lower production costs, whereas a higher absolute wage wr raises

the value of exports by increasing export prices prs. Furthermore, a larger md
s raises the value

of exports since firms located in the destination are on average less productive. Last, a lower

µmax
r implies that firms in region r have higher expected productivity, which quite naturally

raises the value of their exports.

From conditions (23) and (26) we obtain the following general equilibrium constraints:

1

(md
s)

k+1
=

∑

v

Lvτ
−k
vs τk+1

ss

(
ws

wv

)k
1

µmax
v

s = 1, 2, . . .K (32)

µmax
r =

∑

v

Lvτ
−k
rv τk+1

vv

(
wv

wr

)k+1 (
md

v

)k+1
r = 1, 2. . . .K (33)

The gravity equation system consists of the gravity equation (31) and the 2K general equilib-

rium constraints (32) and (33) that summarize the interactions between the 2K endogenous

variables, wages and cutoffs. Expressions (32) and (33) are reminiscent of the constraints

in Anderson and van Wincoop (2003), who argue that general equilibrium interdependencies

need to be taken into account when conducting counterfactual analysis based on the gravity

equation.10 One of our contributions is to go a step further by extending their approach to

9Contrary to the standard gravity literature, we do not move the GDPs but instead the population sizes

to the left-hand side. Applying the former approach to our model would amount to assuming that wages are

exogenous in the gravity estimation, which is not the case in general equilibrium (see Bergstrand, 1985, for an

early contribution on this issue).
10It might be tempting to treat wr, ws, md

s and µmax
r as fixed effects in equation (31), as has been frequently

done before. However, although fixed effect estimation yields consistent estimates for trade friction parameters,
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include firm heterogeneity and endogenous wages. Note that expression (31) is similar to

gravity equations that have been derived in previous models with heterogeneous firms. These

models rely, however, on exogenous wages (Chaney, 2008; Melitz and Ottaviano, 2008) and

also often disregard general equilibrium constraints when being estimated (Helpman et al.,

2008). Furthermore, models with endogenous wages such as Balistreri and Hillberry (2007)

do not consider firm heterogeneity.

4.2 Estimation procedure

To estimate the gravity equation system (31)–(33) requires data for trade flows and population

sizes. We also need to specify trade costs τrs. In what follows, we stick to standard practice

by assuming that τrs ≡ dγ
rse

θbrs , where drs stands for distance between r and s and where brs

is a border dummy valued 1 if r and s are not in the same country and 0 otherwise. This

specification, which assumes that regional trade is not only affected by physical distance but

also by the presence of the Canada-U.S. border, allows us to relate our first counterfactual to

the vast literature on border effects following McCallum (1995).

There are three key issues for the estimation. First, we need to recover a value for the

shape parameter k, which requires statistics computed from micro-level data. Such figures for

the U.S. are provided by Bernard et al. (2003) and Bernard et al. (2005) from 1992 Census

data. The precise choice for k is discussed in the next subsection.

Second, there exists no data for µmax
r since it depends on the unobservables α, Fr and

mmax
r . To address this issue, we use the general equilibrium constraints (32)–(33). Ideally, we

would plug data for µmax
r into these 2K constraints to solve for the 2K endogenous variables

wr and md
s . However, as the µmax

r are unobservable, we rely instead on data for the K

endogenous cutoffs md
s . This allows us to solve the 2K equilibrium constraints (32) and (33)

for theoretically consistent values of the 2K variables wr and µmax
r .

Last, the estimates of the trade friction parameters γ and θ depend on wr, µmax
r and md

r ,

which depend themselves on the estimates of γ and θ. Put differently, the constraints (32)

and (33) include the trade friction parameters, but to estimate the parameters of the gravity

equation we need the solution to these constraints. We tackle this problem by estimating the

gravity equation system iteratively.

In sum, our estimation procedure consists of the following four steps:

1. Given our specification of τrs, the gravity equation (31) can be rewritten in log-linear

this approach cannot be used for counterfactual analysis since the effect of the counterfactual on the estimated

fixed effects is not known. In our approach, the endogenous responses of wages and cutoffs are crucial when

evaluating the counterfactual scenarios.
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stochastic form as follows:

ln

(
Xrs

LrLs

)
= −kγ ln drs−kθbrs + ζ1

r + ζ2
s + εrs, (34)

where all terms specific to the origin and the destination are collapsed into exporter and

importer fixed effects ζ1
r and ζ2

s ; and where εrs is an error term with the usual properties.

From (34), we obtain initial unconstrained estimates of the parameters (γ̂′, θ̂′).11

2. Using the initial estimates (γ̂′, θ̂′) and the observed cutoffs md
s in (32) and (33), we solve

simultaneously for the equilibrium wages and the upper bounds (ŵ′
r, µ̂

max
r

′
).

3. We use the computed values (ŵ′
r, µ̂

max
r

′
) to estimate the gravity equation (31) as follows:

ln

(
Xrs

LrLs

)
+ klnŵr

′ − (k + 1)lnŵs
′ − ln md

s + ln µ̂max
r

′

= −γk ln drs + γ(k + 1) ln drr − kθbrs + εrs,

which yields constrained estimates (γ̂′′, θ̂′′).

4. We iterate through steps 2 to 3 until convergence to obtain (γ̂, θ̂) and (ŵr, µ̂max
r ).

The estimates of trade frictions (γ̂, θ̂) and of wages and upper bounds (ŵr, µ̂max
r ) are consistent

with theory as they take into account all the equilibrium information of the model. We then

have all the elements needed to conduct counterfactual analyses and we can retrieve the fitted

(predicted) value of trade flows X̂rs for all regions.

4.3 Data

We use the same regional trade data as Anderson and van Wincoop (2003) and Feenstra

(2004). The dataset contains detailed information for 51 U.S. regions (50 states plus the

District of Columbia) and 10 Canadian provinces.12 The variables consist of bilateral trade

flows Xrs and internal absorption Xrr for the year 1993, and geographical distances between

regional capitals drs. We augment this dataset by adding regional population sizes Lr in 1993,

which are obtained from Statistics Canada and the U.S. Census Bureau. Internal distances

are measured as drr = (1/4) mins 6=r{drs} like in Anderson and van Wincoop (2003). As

a robustness check we also consider the alternative measure drr = (2/3)
√

surfacer/π as in

Redding and Venables (2004).

11It is worth emphasizing that our estimates do not depend on the starting values used for γ and θ. However,

the fixed effects estimates provide a reasonable ‘guess’ for the starting values and allow for faster convergence

of the iterative procedure.
12Because of their very small population sizes and predominant reliance on natural resources, we exclude

Yukon and Northwest Territories in what follows.
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Under the Pareto distribution, the domestic cutoff in each region is proportional to the

inverse of the average productivity, i.e., md
r = [(k+1)/k]mr. We measure mr by using the GDP

per employee in Canadian dollars for each state and province in 1993 obtained from Statistics

Canada and the U.S. Census Bureau. We choose the shape parameter k as follows. First, if

productivity 1/m is distributed Pareto with parameter k, then log(1/m) follows an exponential

distribution with parameter k and standard deviation 1/k (see Norman et al., 1994). Therefore,

one can estimate k by computing the standard deviation of log productivity across plants. The

standard deviation of log U.S. plant-level labor productivity in 1992, provided by Bernard et

al. (2003, Table 2), suggests that k is around 1.4. However, as pointed out by these authors,

productivity is likely to be measured with error, thus delivering a downward biased estimate

of k. To cope with this problem, Bernard et al. (2003) calibrate the parameter governing the

variance of productivity in order to match the size and productivity advantage of exporters.

Since they work with a Fréchet distribution, we can retrieve the relevant value of k = 3.6

for our Pareto distribution.13 In what follows, we consider k = 3.6 as our baseline value. As

robustness checks, we also consider k = 1.4 and k = 6.5. As will become clear, our key results

are little sensitive to the choice of k.

To estimate the gravity equation system, we restrict ourselves to the same subset of 40

regions used by both Anderson and van Wincoop (2003) and Feenstra (2004). Doing so allows

for better comparability of results. In addition, it circumvents the problem of missing and zero

flows which are mainly concentrated on the 21 remaining regions in the sample. Note, however,

that once we obtain initial unconstrained estimates for the structural parameters (γ̂′, θ̂′), we

can solve (32) and (33) for the wages and upper bounds (ŵr
′, µ̂max

r

′
) even when we have no

data on the trade flows between regions r and s. We can hence use a maximum amount

of information, namely the full set of 61 regions, in the general equilibrium constraints.14

Furthermore, we can retrieve the predicted value of trade flows X̂rs for all regions (even those

not in the sample), once we have estimated the gravity equation system. Even when focusing

on the 40 regions, we still have to deal with 49 zero trade flows out of 1600 observations. Since

there is no generally agreed-upon methodology to deal with this problem (see, e.g., Anderson

and van Wincoop, 2004; Disdier and Head, 2008), we include a dummy variable for zero flows

in the regressions.15 As a robustness check, we estimate the system by dropping the 49 zero

13In Bernard et al. (2003), the lowest cost exporter is the only supplier in any destination. If all potential

exporters draw their productivity from a Pareto distribution with shape parameter k, then the productivity

distribution of the lowest cost exporter is Fréchet with shape parameter k (see Norman et al., 1994).
14See Tables 3 and 4 for a list of the regions used in the gravity equation (‘In Gravity sample’) and for a list

of regions not used in the gravity equation but used in the equilibrium constraints (‘Out of Gravity sample’).
15Although this is somewhat crude, alternative methods like truncating the sample are not known to perform

better or to be theoretically more sound. Note that our zeros are unlikely to be ‘true zeros’, as this would

imply no aggregate manufacturing trade between several U.S. states. In the case of ‘true zeros’, a Heckman

procedure would perform better (Helpman et al., 2008).
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flows. Results are little sensitive to the specification used, thus suggesting that the zero flows

are true outliers and do not contain relevant information.

4.4 Estimation results

Our estimation results for the gravity equation system are summarized in Table 1. Column 1

presents the benchmark case, whereas columns 2-6 contain alternative specifications used as

robustness checks. As can be seen from column 1, all coefficients have the correct sign and

are precisely estimated. In our benchmark case, the estimated distance elasticity is −1.2287,

which implies that γ̂ = 0.3413. The border coefficient estimate is 1.6809, which implies that

θ̂ = 0.4669. Note that our estimated coefficient is very similar to the one of 1.65 obtained by

Anderson and van Wincoop (2003). However, as shown later, the impacts of a border removal

on trade flows differ substantially once endogenous wages and firm selection are taken into

account.

Insert Table 1 about here.

Columns 2 and 3 report results for different values of k. Column 4 presents results when

we use the alternative measure for internal distances, whereas colums 5 and 6 present results

obtained when we include internal absorption Xrr and when we exclude zero trade flows,

respectively. Note that the coefficient of the border dummy remains almost unchanged across

all specifications, with adjusted R2 values close to 0.9.

4.5 Model fit

As stated in the foregoing, we solve the general equilibrium constraints for the wages and upper

bounds (ŵr, µ̂max
r ). While there is no data for the latter, we can compare the relative wages

generated by our model with observed ones.16 In our benchmark case, the correlation is 0.68.

Thus, the predicted relative wages match observed ones fairly well. Our model also predicts

an average exporter share of 1.24% for the U.S.17 This fits decently with the fact reported

by Bernard et al. (2005) that 2.6% of all U.S. firms were exporters in 1993. Although the

prediction of our model is slightly lower, one should keep in mind that their figure includes

exporters to all foreign countries and not just to Canada.

16We construct average yearly wages across provinces and states using hourly wage data from Statistics

Canada and the Bureau of Labor Statistics. To match the unit of measurement of trade and GDP data, we

compute average yearly wages in million Canadian dollars based on an average of 1930 hours worked yearly in

Canada, and 2080 hours worked yearly in the U.S. in 1993.
17The share of exporters in a U.S. state is defined as the share of firms selling to at least one Canadian

province. Formally, it is given by Gr(maxs∈CA{m
x
rs})/Gr(maxs{m

x
rs}). The share of U.S. exporters is then

computed as the population weighted average of the states’ exporter shares. All figures for the Canadian

provinces are computed in an analogous way.
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5 Counterfactual analysis

Having estimated the gravity equation system, we now turn to a counterfactual analysis in the

spirit of Bernard et al. (2003) and Del Gatto et al. (2006). We first investigate the impacts

of reducing trade frictions generated by the Canada-U.S. border to zero. It is clear that such

trade integration would induce various general equilibrium effects, and that regions would

be affected differently depending on geography, technology and population sizes. Second,

we investigate the impacts of regional population changes between 1993 and 2007, holding

trade frictions fixed at their intial level. In both cases, we quantify the changes in wages,

productivity, markups, the share of exporters, the mass of varieties produced and consumed,

as well as welfare.

5.1 The impacts of removing the border on trade flows

McCallum’s (1995) seminal work on border effects shows that, conditional on regional GDP

and distance, trade between Canadian provinces is roughly 22 times larger than trade between

Canadian provinces and U.S. states. Anderson and van Wincoop (2003) argue that this

estimate is substantially upward biased due to the omission of general equilibrium constraints.

They find that, on average, the border increases trade between Canadian provinces ‘only’ by

a factor of 10.5 when compared to trade between Canadian provinces and U.S. states. The

corresponding number for the U.S. is 2.56. We now investigate how these figures are modified

when endogenous wages and firm selection are taken into account.

5.1.1 Computing border effects

We define bilateral border effects as the ratio of trade flows from r to s in a borderless world

to those in a world with borders:

Brs ≡
X̃rs

X̂rs

= ekbθbrs

(
w̃s/w̃r

ŵs/ŵr

)k+1 (
w̃r

ŵr

) (
m̃d

s

md
s

)k+1

, (35)

where variables with a tilde refer to values in a borderless world and where variables with a

hat denote estimates. To compute Brs we first use the estimated wages ŵr and the observed

cutoffs md
s in the presence of the border to obtain the relevant information for the initial fitted

trade flows X̂rs in (35). Second, holding the shape parameter k as well as the estimated upper

bound µ̂max
r and trade frictions (γ̂, θ̂) constant, we solve (32) and (33) by setting brs = 0 for

all r and s. This yields the wages w̃r and the cutoffs m̃d
s that would prevail in a borderless

world. Plugging these values into (35), we obtain 61× 61 = 3721 bilateral border effects, each

of which gives the change in the trade flows from r to s after the border removal.

The bilateral border effects Brs are typically greater than one when regions r and s are

in different countries. The reason is that exports from region r to region s partly replace
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domestic sales as international trade frictions are reduced. For analogous reasons, the values

of Brs are typically less than one when r and s are in the same country. Table 2 provides some

descriptive statistics on the computed bilateral border effects. One can see that the various

specifications yield virtually identically distributed and strongly correlated bilateral border

effects, thus showing that the results are robust to the choice of k.

Insert Table 2 about here.

In order to evaluate the impact of the border removal on overall Canadian and U.S. trade

flows, we need to aggregate bilateral border effects at the national level. As an intermediate

step, we first define the regional border effect for Canadian province r as follows:

Br =

∑
s∈US X̃rs/

∑
s∈US X̂rs∑

s∈CA X̃rs/
∑

s∈CA X̂rs

=

∑
s∈US λUS

rs Brs∑
s∈CA λCA

rs Brs

,

where λUS
rs = X̂rs/

∑
s∈US X̂rs and λCA

rs = X̂rs/
∑

s∈CA X̂rs are the fitted trade shares. The

numerator is the trade weighted average of international bilateral border effects, whereas the

denominator is the trade weighted average of the intranational Brs. It can be easily verified

that the national border effect for Canada can be simplified as follows:

BCA ≡

∑
r∈CA

∑
s∈US X̃rs/

∑
r∈CA

∑
s∈US X̂rs∑

r∈CA

∑
s∈CA X̃rs/

∑
r∈CA

∑
s∈CA X̂rs

=
1

KCA

∑

r∈CA

Br,

where KCA is the number of Canadian provinces. An analogous definition applies to the U.S.

We find that BCA = 7.15 while BUS = 4.03. Below we compare these findings with the

corresponding figures provided by Anderson and van Wincoop (2003), who report a national

border effect of 2.56 for the U.S. and 10.5 for Canada, respectively.18

5.1.2 Decomposing bilateral border effects

What drives bilateral border effects? As can be seen from expression (35), Brs can be decom-

posed into four components:

• The pure border effect: ekbθbrs

• The relative wage effect: ∆(ws/wr) ≡ [(w̃s/w̃r)/(ŵs/ŵr)]
k+1

• The absolute wage effect: ∆wr ≡ w̃r/ŵr

18Strictly speaking, our definition of national border effect differs from that of Anderson and van Wincoop

(2003). When using their definition in terms of geometric means (see Feenstra, 2004), we obtain 7.18 for

Canada and 4.02 for the U.S. The advantage of our definition of national border effect is that it precisely

measures the (multiplicative) impact of the border removal on trade flows.
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• The selection effect: ∆md
s ≡

(
m̃d

s/m
d
s

)k+1

Insert Table 3 about here.

Table 3 illustrates this decomposition for our benchmark case. The left half of the table

reports the components of Brs for exports from British Columbia (BC) to all possible destina-

tions. Consider, for example, the bilateral border effect with Washington (WA). First, there

is a pure border effect of 5.3704, i.e., the value of exports from BC to WA would rise by a

factor of 5.3704 after the border removal. This is the bilateral border effect that would prevail

if endogenous changes in wages and cutoffs were not taken into account. Second, there are

relative and absolute wage effects. On the one hand, the relative wage effect reduces the value

of BC exports to WA by a factor of 0.8500. As the relative wage in BC rises, BC firms become

less competitive in WA due to relatively higher production costs, which reduces exports by

15%. The absolute wage effect, on the other hand, raises BC exports by a factor of 1.0451 as

the higher wage is reflected in the higher prices. When taken together, these two wage effects

reduce the bilateral border effect from BC to WA by about 11% (as 0.8500×1.0451 = 0.8883).

Put differently, neglecting the endogenous reaction of wages to the border removal leads to

overstating the bilateral border effects by about 11%. Finally, there is a selection effect. The

border removal lowers the cutoff productivity level for firms to survive in WA. In other words,

trade integration induces tougher selection and makes it harder for BC firms to sell in WA.

This selection effect reduces the export value by a factor of 0.9081. Hence, the selection effect

further reduces the border effect by about 9.2%. The bilateral border effect is therefore given

by 5.3704×0.8500×1.0451×0.9081 = 4.3322, which is about 19% lower than the pure border

effect mentioned above.

Trade flows between regions within the same country are also affected by the removal of the

border, and the bilateral border effects can be decomposed for these cases as well. Consider,

for example, exports from BC to Ontario (ON). There is of course no pure border effect for

this intranational trade flow, but due to the endogenous changes in wages and cutoffs we find

a bilateral border effect equal to 1 × 1.2324 × 1.0451 × 0.4683 = 0.6032. The border removal

thus reduces the value of exports from BC to ON by about 40%. This sizeable reduction is

entirely attributable to tougher selection in ON, despite the fact that the wage in ON rises

relative to that in BC.

The right half of Table 3 provides the Brs for exports from New York (NY) to all possible

destinations. As one can see, exports from NY to Québec (QC) would rise by a factor of

5.3704 × 1.2894 × 1.0013 × 0.6139 = 4.2565. Although the bilateral border effect from NY

to QC is roughly similar to the one from BC to WA, their decomposition is quite different.

Whereas the selection effect reduces exports significantly in the former case, it is the relative

wage effect that mainly does so in the latter case. Last, exports from NY to California (CA)
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change little after the border removal (1×0.9851×1.0013×0.9920 = 0.9785). The explanation

is that CA is large and far away from the border, so that little additional selection is induced

there, while the wage in NY rises only slightly when compared to that in CA, both in relative

and absolute terms.

To sum up, our findings suggest that any computation of border effects needs to take into

account changes in wages and firm selection in order to yield accurate results. Neglecting these

endogenous adjustments leads to biased predictions for changes in inter- and intra-national

trade flows in a borderless world.

5.2 The impacts of removing the border on key economic aggre-

gates

Moving our focus away from the effects on trade flows, we now investigate the predictions of

our model on how trade integration affects other key economic aggregates.

5.2.1 Wages and productivity

Column 1 in Table 4 shows that the border removal favors wage convergence, as wages in

Canadian provinces rise relative to those in U.S. states.19 For our benchmark specification,

wages in Canadian provinces rise by between 4.51% in British Columbia and 12.27% in Man-

itoba. It is worth pointing out that wages rise more in less populated regions like Manitoba,

Newfoundland, Prince Edward Island and Saskatchewan. Turning to U.S. states, the wage

changes are much smaller and can go either way. Less populated regions closer to the border

benefit the most, with wage gains of about 1.43-2.02% in Maine, Montana, North Dakota

and Vermont. The most remote states like California, Florida, Louisiana and Texas may even

experience a slight decrease in their relative wages.

Insert Table 4 about here.

As for changes in cutoffs, one can see from column 2 of Table 4 that they are negative

for all regions. This shows that removing the border induces tougher selection and increases

average productivity everywhere. The productivity gains are larger in Canada, which can be

explained by the fact that it is the smaller economy, so that there is less selection than in the

U.S. prior to the border removal. Columns 1 and 2 also reveal that productivity gains always

exceed wage gains. Hence, our counterfactual analysis suggests that the border removal yields

cost reductions ranging from 3.86% to 9.08% in Canada, and from 0.36% to 2.06% in the U.S.

19All wages are expressed in terms of that in Alabama, which we set to one by choice of numeraire. Doing

so entails no loss of generality.
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The role of endogenous wages is crucial for explaining the difference of our results with

those of Anderson and van Wincoop (2003). The border removal raises productivity and thus

expected profits everywhere, but relatively more in Canada than in the U.S. Consequently, the

relative wages should rise in Canada and fall in the U.S. In a fixed-wage model, the measured

Canadian border effect would be overstated, because the export dampening effects of the

higher relative wage would not be taken into account. The measured U.S. border effect would

be understated for analogous reasons. This may explain why Anderson and van Wincoop

(2003), who do not consider endogenous wages, find highly dissimilar border effects for the

Canada and the U.S. (10.5 and 2.56, respectively). By contrast, the gap is much smaller in

our model (7.15 in Canada and 4.03 in the U.S.) due to endogenous wages and selection.

5.2.2 Markups, exporters, and varieties produced and consumed

Next, we quantify the pro-competitive effects of trade integration. Column 3 of Table 4

shows that average markups fall in all regions, yet not uniformely. There is a reduction

by 3.90% to 9.14% in Canada, whereas the corresponding figures for the U.S. range from

0.37% to 2.07%. These pro-competitive effects are driven by the fact that removing the

border substantially increases, in every region, the share of firms engaged in cross-border

transactions. Initially, 1.24% of U.S. firms export, whereas the corresponding figure for Canada

is 5.14% (Column 4). After completely removing the border these figures increase to 2.13%

for the U.S. and 13.6% for the Canada (Column 5). This increase in the share of exporters

raises consumption diversity everywhere, with values ranging from 0.17-4.17% in the U.S to

8.76-23.6% in Canada (Column 6). Hence, more firms compete in each market, which puts

downward pressure on markups.

Last, Column 7 shows that there is a reduction in production diversity everywhere due

to firm selection. This effect is more pronounced in Canada than in the U.S.20 Even though

the magnitudes predicted by our model are too large, they are qualitatively in line with Head

and Ries (1999), who report that in the first six years after the Canada-U.S. FTA the number

of Canadian plants decreased by about 21%. Exit of firms also occurs in the U.S., but on a

smaller scale as the U.S. market is already more competitive and has tougher selection. States

close to the border (e.g., Maine, Montana, North Dakota and Vermont) are on average more

affected as they are more strongly exposed to competition from Canadian firms.

20Consumption diversity expands even when the mass of local firms decreases in all regions. The reason is

that less domestic firms are more than compensated for by additional foreign firms. One can indeed check

that removing the border decreases all the domestic cutoffs, thus reducing domestic consumption diversity.

However, all export cutoffs increase, thereby raising import consumption diversity.
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5.2.3 Welfare

Finally, we can quantify the impact of trade integration on welfare. This can be done as

follows. Since e−αqsr(m) = psr(m)/pd
r by (13), the indirect utility in region r is given by

Ur =
∑

s

NE
s

∫ mx
sr

0

[
1 − e−αqsr(m)

]
dGs(m) = N c

r

(
1 −

pr

pd
r

)
.

Using expression (16), one can verify that pr = [k/(k + 1)]pd
r + αwr/N

c
r , which allows us to

express the indirect utility as Ur = N c
r/(k + 1)−α/(τrrm

d
r). Since N c

r is defined as in (19), and

making use of the fact that expression (26) holds in equilibrium, we can rewrite the indirect

utility as:

Ur =

[
1

(k + 1)κ3

− 1

]
α

τrrmd
r

.

Hence, welfare is inversely proportional to the cutoff md
r .

21 Column 8 of Table 4 provides the

changes in welfare due to the border removal. As expected, removing the border would yield

welfare gains in all provinces and states. However, Canadian provinces would benefit more. In

particular, welfare would rise by approximately 10% in Canada and by roughly 3% in the U.S.

The reason for this asymmetry is that consumption diversity expands more strongly, cutoffs

fall by a larger margin, and markups decrease more substantially in Canada than in the U.S.

5.3 The impacts of population changes on key economic aggregates

The counterfactual analysis of the border removal is just one of the possible applications of

our model. We now propose a second one which quantifies the potential impacts of regional

changes in factor endowments. How do regional population changes affect the key economic

aggregates? To answer this question, we proceed as follows. First, we estimate the gravity

equation system for our benchmark case. Second, holding the shape parameter k as well as

the estimated upper bounds µ̂max
r and trade frictions (γ̂, θ̂) constant, we solve (32) and (33) by

replacing the 1993 regional population sizes with those of 2007. This yields the wages w̃r and

the cutoffs m̃d
s that would prevail in a hypothetical world where trade frictions are unchanged

with respect to 1993 and in which only population would have changed. Table 5 summarizes

our main results.

Insert Table 5 about here.

Note first from column 1 that regions and provinces experienced substantially different

patterns of population change between 1993 and 2007. Whereas most regions grew in absolute

21Alternatively, the equilibrium utility can be written as Ur = [1/(k + 1)− κ3]N
c
r ., i.e., it is proportional to

the mass of varieties consumed.
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terms (Newfoundland, Saskatchewan and West Virginia being the exceptions) the relative

growth rates vastly differ across regions. As is well known, the western provinces (Alberta,

British Columbia), and the southern states (Nevada, Arizona, California, Florida, Texas,

Georgia) experienced the largest relative growth. As can be seen from column 2 of Table 5,

those provinces and states naturally experience the largest cutoff falls and wage gains. Most

other regions experience a decline in their relative wage, yet still enjoy lower cutoffs because

of tougher selection driven by population growth in the different regions. The only exception

is Newfoundland, which experiences a strong decline in its relative wage and a 0.5% decline

in its average productivity due to its loss of population.

Note, finally, that welfare changes again mirror the changes in cutoffs and the mass of

varieties consumed as shown in Section 5.2.3. Two differences with respect to the border

removal counterfactual are worth noting. First, the U.S. states gain on average more than the

Canadian provinces because of more sustained increases in regional populations. Second, not

all regions gain, as shown by the welfare losses in Newfoundland. This small peripheral region

is hurt by its population exodous, its decreasing share of exporters, its lower wages and its

worsening average productivity.

6 Conclusions

We have developed a new general equilibrium model of trade with heterogeneous firms and

variable demand elasticities in which both wages and productivity respond to trade liberal-

ization and population changes. Trade integration, or a larger local population, intensifies

competition and forces the least efficient firms to leave the market, thereby affecting aggre-

gate productivity and factor prices. Our framework, which takes into account the endogenous

responses of productivity and wages to changes in the economic environment, is therefore well

suited to the analysis of various counterfactuals.

First, we have decomposed the impacts of a full border removal between Canada and the

U.S. on trade flows into: (i) a pure border effect; (ii) relative and absolute wage effects; and (iii)

a selection effect. We find that ignoring endogenous wages and selection effects systematically

biases border effects: Canadian border effects are in fact overestimated, while U.S. border

effects are underestimated. Our counterfactual analysis indicates that such a bias is largely

due to fixed wages. Indeed, allowing for flexible wages, we show that trade integration induces

wage convergence between the two countries, thus narrowing the gap in the border effects

between Canada and the U.S. Although there is substantial regional heterogeneity, our results

further suggest that aggregate productivity, the share of exporters and the mass of varieties

consumed rise everywhere, whereas average markups and the mass of varieties produced fall in

all regions. These changes, which largely arise because of selection effects induced by a more
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competitive environment, map into welfare gains for all U.S. states and, to a larger extent, for

all Canadian provinces.

Second, we have investigated how regional population changes between 1993 and 2007 affect

wages and average productivity holding trade frictions fixed. The key insight is that differential

population growth would mostly benefit the fastest growing regions in western Canada and the

southern U.S., whereas small peripheral regions like Newfoundland experience falling wages,

a deterioration of their productivity and, ultimately, welfare losses.

As shown in this paper, our model is tractable enough to allow for various extensions. A

first one could be to endogenize population changes through interregional and international

migration, which would nicely fit with our focus on North America. Doing so would, as a by-

product, partly bridge the gap between trade models with heterogeneous firms and the ‘new’

economic geography literature. A second extension could be an application to the international

context where factor prices vastly differ across countries. Given the absence of FPE in our

model, it should be especially suited to this exercise. We keep these avenues open for future

research.
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Appendix A: Proofs and computations

A.1. Derivation of (8). Using pd = mdw, the first-order conditions (6) can be rewritten

as

ln

[
mdw

p(m)

]
= 1 −

mw

p(m)
.

Taking exponential of both sides and rearranging terms, we have

e
m

md
=

mw

p(m)
e

mw
p(m) .

Noting that the Lambert W function is defined as ϕ = W (ϕ)eW (ϕ) and setting ϕ = em/md,

we obtain W (em/md) = mw/p(m), which implies p(m) as given in (8). The derivations of

q(m) and π(m) follow straightforwardly.

A.2. Existence and uniqueness of the equilibrium cutoff md. We show that there

exists a unique equilibrium cutoff md. To see this, applying the Leibnitz integral rule to the

left-hand side of (10) and using W (e) = 1 to obtain

eL

α(md)2

∫ md

0

m2
(
W−2 − 1

)
W ′dG(m) > 0,

where the sign comes from W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Hence, the left-hand side

of (10) is strictly increasing. This uniquely determines the equilibrium cutoff md, because

lim
md→0

∫ md

0

m
(
W−1 + W − 2

)
dG(m) = 0 and lim

md→∞

∫ md

0

m
(
W−1 + W − 2

)
dG(m) = ∞.

A.3. Market size, the equilibrium cutoff, and the mass of entrants. Differentiating

(10) and using the Leibniz integral rule, we readily obtain

∂md

∂L
= −

αF
(
md

)2

eL2

[∫ md

0

m2
(
W−2 − 1

)
W ′dG(m)

]−1

< 0,

because W ′ > 0 and W−2 ≥ 1 for 0 ≤ m ≤ md. Differentiating (12) with respect to L yields

∂NE

∂L
=

F (NE)2

L2

{
1 −

eL3

αF (md)2

[∫ md

0

m2W ′dG(m)

]
∂md

∂L

}
> 0,

where the sign comes from ∂md/∂L < 0 as established in the foregoing.
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A.4. Existence and uniqueness in the two-region case. Under our assumptions

on trade costs, the RHS of (30) is non-negative if and only if ω < ω < ω, where ω ≡

ρ1/(k+1) (τ22/τ12)
k/(k+1) and ω ≡ ρ1/(k+1) (τ21/τ11)

k/(k+1). Furthermore, the RHS is strictly de-

creasing in ω ∈ (ω, ω) with limω→ω+ RHS = ∞ and limω→ω− RHS = 0. The LHS of (30) is,

on the contrary, strictly increasing in ω ∈ (0,∞). Hence, there exists a unique equilibrium

ω∗ ∈ (ω, ω).

A.5. Market size, trade frictions, and wages. (i) First, ω∗ is increasing in L1/L2 as an

increase in L1/L2 raises the RHS of (30) without affecting the LHS. This implies that if the two

regions have equal technological possibilities (ρ = 1) and face symmetric trade costs (τ12 = τ21

and τ11 = τ22), the larger region has the higher relative wage. (ii) Since (τ11τ22)
k < (τ12τ21)

k

holds by assumption, the RHS of (30) shifts up as ρ increases, which then also increases ω∗.

This implies that if the two regions are of equal size (L1 = L2) and face symmetric trade costs

(τ12 = τ21 and τ11 = τ22), the region with the better technological possibilities has the higher

wage. (iii) Higher internal trade costs in one region reduce the relative wage of that region,

because

∂(RHS)

∂τ11
< 0 iff ω∗ > ω and

∂(RHS)

∂τ22
> 0 iff ω∗ < ω.

(iv) Better access to the foreign market raises the domestic relative wage, whereas better

access to the domestic market reduces the domestic relative wage because

∂(RHS)

∂τ12
< 0 iff ω∗ < ω and

∂(RHS)

∂τ21
> 0 iff ω∗ > ω.

(v) Assuming that τ12 = τ21 = τ and that τ11 = τ22 = t, one can verify that

∂(RHS)

∂τ
= −

kρtk

τk+1

L1

L2

ρ2 − ω2(k+1)

[ωk+1 − ρ(t/τ)k]2





>

=

<





0 for





ω < ρ
1

k+1 < ω∗ < ω

ω < ω∗ = ρ
1

k+1 < ω

ω < ω∗ < ρ
1

k+1 < ω





. (36)

Note that when regions are of equal size, but have different upper bounds (ρ > 1), the first

case of (36) applies since ω∗ > ρ1/(k+1) in equilibrium. To see this, evaluate (30) at ω = ρ1/(k+1)

and recall that τ21 = τ12 = τ and L1 = L2. The LHS is equal to ρk/(k+1), which falls short

of the RHS given by ρ (since ρ > 1 and k ≥ 1). Since the LHS is increasing and the RHS is

decreasing, it must be that ω∗ > ρ1/(k+1). Hence, lower trade costs reduce the relative wage

of the more productive region. Furthermore, when regions have the same upper bounds but

different sizes (L1 > L2), we obtain ω∗ > ρk/(k+1) = 1, so that the first case of (36) applies

again.
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Appendix B: Integrals involving the Lambert W function

To derive closed-form solutions for various expressions throughout the paper we need to com-

pute integrals involving the Lambert W function. This can be done by using the change in

variables suggested by Corless et al. (1996, p.341). Let

z ≡ W
(
e

m

I

)
, so that e

m

I
= zez, where I = md

r , m
x
rs,

where subscript r can be dropped in the closed economy. The change in variables then yields

dm = (1+z)ez−1Idz, with the new integration bounds given by 0 and 1. Under our assumption

of a Pareto distribution for productivity draws, the change in variables allows to rewrite

integrals in simplified form.

B.1. First, consider the following expression, which appear when integrating firms’ outputs:

∫ I

0

m
[
1 − W

(
e
m

I

)]
dGr(m) = κ1 (mmax

r )−k Ik+1,

where κ1 ≡ ke−(k+1)
∫ 1

0
(1− z2) (zez)k ezdz > 0 is a constant term which solely depends on the

shape parameter k.

B.2. Second, the following expression appears when integrating firms’ operating profits:

∫ I

0

m

[
W

(
e
m

I

)−1

+ W
(
e
m

I

)
− 2

]
dGr(m) = κ2 (mmax

r )−k Ik+1,

where κ2 ≡ ke−(k+1)
∫ 1

0
(1+z) (z−1 + z − 2) (zez)k ezdz > 0 is also a constant term which solely

depends on the shape parameter k.

B.3. Finally, the following expression appears when integrating firms’ revenues:

∫ I

0

m

[
W

(
e

m

I

)−1

− 1

]
dGr(m) = κ3 (mmax

r )−k Ik+1,

where κ3 ≡ ke−(1+k)
∫ 1

0
(z−1 − z) (zez)k ezdz > 0 is a constant term which solely depends on

the shape parameter k. Using the expressions for κ1 and κ2, one can verify that κ3 = κ1 + κ2.

Appendix C: Equilibrium in the open economy

In this appendix we restate the equilibrium conditions using the Lambert W function.
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C.1. Using (18), the labor market clearing condition can be rewritten as follows:

NE
r

{
1

α

∑

s

Lsτrs

∫ mx
rs

0

m

[
1 − W

(
e

m

mx
rs

)]
dGr(m) + Fr

}
= Lr. (37)

C.2. Plugging (18) into (20), zero expected profits require that

1

α

∑

s

Lsτrs

∫ mx
rs

0

m

[
W

(
e

m

mx
rs

)−1

+ W

(
e

m

mx
rs

)
− 2

]
dGr(m) = Fr. (38)

As in the closed economy case, the zero expected profit condition depends solely on the cutoffs

mx
rs and is independent of the mass of entrants.

C.3. Finally, trade balance condition is given by

NE
r wr

∑

s 6=r

Lsτrs

∫ mx
rs

0

m

[
W

(
e

m

mx
rs

)−1

− 1

]
dGr(m)

= Lr

∑

s 6=r

NE
s τsrws

∫ mx
sr

0

m

[
W

(
e

m

mx
sr

)−1

− 1

]
dGs(m). (39)

Applying the region-specific Pareto distributions Gr(m) = (m/mmax
r )k to (37)–(39) yields

after some algebra expressions (22)–(24) given in the main text.
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Table 1: Estimations of the gravity equation system

Benchmark(1) Robustness(2) Robustness(3) Robustness(4) Robustness(5) Robustness(6)

Regions 61 (40) 61 (40) 61 (40) 61 (40) 61 (40) 61 (40)

Flows 1560 1560 1560 1560 1600 1511

k 3.6 1.4 6.5 3.6 3.6 3.6

Internal dist. AvW AvW AvW RV AvW AvW

Coefficients:

constant −4.4403 −3.9970 −4.4655 −4.2331 −4.4228 −4.4217

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

lndrs −1.2287 −1.4766 −1.2006 −1.5222 −1.2380 −1.2233

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

lndrr 1.5700 2.5312 1.3853 1.9450 1.5819 1.5630

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

brs −1.6809 −1.5378 −1.6812 −1.6504 −1.6795 −1.7682

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

0 − dummy −17.772 −17.813 −17.748 −17.569 −17.775 —

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) —

Adjusted R2 0.8911 0.8861 0.8916 0.9060 0.8957 0.6094

Notes: p-values in parentheses. Benchmark(1) uses 1560 trade flows (excluding Xrr as in Anderson and van Wincoop,

2003). AvW refers to Anderson and van Wincoop’s (2003) measure of internal distance while RV refers to Redding and

Venables’ (2004) measure. The convergence criterion for the iterative procedure is based on the norm of the vector of

regression coefficients between two successive iterations, with threshold 10−12. Starting points for the iterative solver

are obtained via OLS with importer-exporter fixed effects. We choose wAlabama = 1 as numeraire and set starting

wages to wr = 1 for all r. Results are invariant to that choice.

Table 2: Descriptive statistics for bilateral border effects

Descriptive statistics for bilateral border effect series:

Benchmark(1) Robustness(2) Robustness(3) Robustness(4) Robustness(5) Robustness(6)

Minimum 0.4241 0.5837 0.3903 0.3255 0.4285 0.4142

Maximum 4.5036 4.2804 4.3914 4.6622 4.5107 4.8886

Mean 1.7284 1.7480 1.6847 1.7142 1.7323 1.8117

Std. dev. 1.3042 1.2867 1.2433 1.2908 1.3094 1.4440

Median 0.9650 0.9824 0.9629 0.9746 0.9654 0.9638

Skewness 1.0636 1.0413 1.0769 1.1623 1.0629 1.0656

Kurtosis 2.2443 2.1429 2.3035 2.5842 2.2404 2.2459

Correlation matrix for bilateral border effect series:

(1) (2) (3) (4) (5) (6)

(1) 1 0.9978 0.9960 0.9708 0.9979 0.9979

(2) 1 0.9997 0.9595 0.9999 0.9999

(3) 1 0.9545 0.9997 0.9997

(4) 1 0.9599 0.9593

(5) 1 0.9999

(6) 1
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Table 3: Bilateral border effects decomposition for the province of British Columbia

and the state of New York

Benchmark(1)

Exporter: British Columbia Exporter: New York

Pure border Rel. wage Abs. wage Selection Bil. border Pure border Rel. wage Abs. wage Selection Bil. border

e
bθbrs ∆(ws/wr) ∆wr ∆md

s Brs e
bθbrs ∆(ws/wr) ∆wr ∆md

s Brs

Importer: In Gravity sample

Alberta 1.0000 1.1415 1.0451 0.5368 0.6404 5.3704 1.3902 1.0013 0.5368 4.0129

British Columbia 1.0000 1.0000 1.0451 0.6796 0.7103 5.3704 1.2179 1.0013 0.6796 4.4509

Manitoba 1.0000 1.3902 1.0451 0.3778 0.5489 5.3704 1.6931 1.0013 0.3778 3.4394

New Brunswick 1.0000 1.2588 1.0451 0.4509 0.5932 5.3704 1.5331 1.0013 0.4509 3.7172

Newfoundland 1.0000 1.3673 1.0451 0.3892 0.5561 5.3704 1.6651 1.0013 0.3892 3.4845

Nova Scotia 1.0000 1.0793 1.0451 0.5932 0.6692 5.3704 1.3144 1.0013 0.5932 4.1930

Ontario 1.0000 1.2324 1.0451 0.4683 0.6032 5.3704 1.5009 1.0013 0.4683 3.7795

Prince Edw. Isl. 1.0000 1.2753 1.0451 0.4406 0.5872 5.3704 1.5532 1.0013 0.4406 3.6795

Quebec 1.0000 1.0587 1.0451 0.6139 0.6793 5.3704 1.2894 1.0013 0.6139 4.2565

Saskatchewan 1.0000 1.3150 1.0451 0.4171 0.5733 5.3704 1.6015 1.0013 0.4171 3.5924

Alabama 5.3704 0.8162 1.0451 0.9761 4.4717 1.0000 0.9941 1.0013 0.9761 0.9715

Arizona 5.3704 0.8256 1.0451 0.9565 4.4321 1.0000 1.0054 1.0013 0.9565 0.9629

California 5.3704 0.8089 1.0451 0.9920 4.5036 1.0000 0.9851 1.0013 0.9920 0.9785

Florida 5.3704 0.8133 1.0451 0.9824 4.4844 1.0000 0.9905 1.0013 0.9824 0.9743

Georgia 5.3704 0.8156 1.0451 0.9773 4.4742 1.0000 0.9934 1.0013 0.9773 0.9721

Idaho 5.3704 0.8543 1.0451 0.9000 4.3151 1.0000 1.0404 1.0013 0.9000 0.9375

Illinois 5.3704 0.8169 1.0451 0.9747 4.4690 1.0000 0.9948 1.0013 0.9747 0.9710

Indiana 5.3704 0.8222 1.0451 0.9636 4.4465 1.0000 1.0013 1.0013 0.9636 0.9661

Kentucky 5.3704 0.8223 1.0451 0.9633 4.4459 1.0000 1.0014 1.0013 0.9633 0.9659

Louisiana 5.3704 0.8143 1.0451 0.9802 4.4801 1.0000 0.9917 1.0013 0.9802 0.9734

Maine 5.3704 0.8948 1.0451 0.8286 4.1614 1.0000 1.0897 1.0013 0.8286 0.9041

Maryland 5.3704 0.8126 1.0451 0.9838 4.4872 1.0000 0.9897 1.0013 0.9838 0.9749

Massachusetts 5.3704 0.8181 1.0451 0.9720 4.4636 1.0000 0.9964 1.0013 0.9720 0.9698

Michigan 5.3704 0.8406 1.0451 0.9263 4.3701 1.0000 1.0237 1.0013 0.9263 0.9495

Minnesota 5.3704 0.8355 1.0451 0.9362 4.3906 1.0000 1.0176 1.0013 0.9362 0.9539

Missouri 5.3704 0.8190 1.0451 0.9703 4.4601 1.0000 0.9974 1.0013 0.9703 0.9690

Montana 5.3704 0.8813 1.0451 0.8514 4.2114 1.0000 1.0733 1.0013 0.8514 0.9150

New Hampshire 5.3704 0.8467 1.0451 0.9144 4.3454 1.0000 1.0311 1.0013 0.9144 0.9441

New Jersey 5.3704 0.8206 1.0451 0.9669 4.4531 1.0000 0.9994 1.0013 0.9669 0.9675

New York 5.3704 0.8211 1.0451 0.9658 4.4509 1.0000 1.0000 1.0013 0.9658 0.9670

North Carolina 5.3704 0.8199 1.0451 0.9683 4.4561 1.0000 0.9985 1.0013 0.9683 0.9681

North Dakota 5.3704 0.8715 1.0451 0.8685 4.2482 1.0000 1.0614 1.0013 0.8685 0.9230

Ohio 5.3704 0.8250 1.0451 0.9576 4.4344 1.0000 1.0048 1.0013 0.9576 0.9634

Pennsylvania 5.3704 0.8236 1.0451 0.9607 4.4406 1.0000 1.0030 1.0013 0.9607 0.9648

Tennessee 5.3704 0.8202 1.0451 0.9677 4.4548 1.0000 0.9989 1.0013 0.9677 0.9679

Texas 5.3704 0.8148 1.0451 0.9792 4.4780 1.0000 0.9923 1.0013 0.9792 0.9729

Vermont 5.3704 0.8852 1.0451 0.8446 4.1965 1.0000 1.0781 1.0013 0.8446 0.9117

Virginia 5.3704 0.8194 1.0451 0.9694 4.4583 1.0000 0.9979 1.0013 0.9694 0.9686

Washington 5.3704 0.8500 1.0451 0.9081 4.3322 1.0000 1.0352 1.0013 0.9081 0.9412

Wisconsin 5.3704 0.8325 1.0451 0.9423 4.4031 1.0000 1.0139 1.0013 0.9423 0.9566

Importer: Out of Gravity sample

Alaska 5.3704 0.8327 1.0451 0.9420 4.4025 1.0000 1.0141 1.0013 0.9420 0.9565

Arkansas 5.3704 0.8220 1.0451 0.9640 4.4473 1.0000 1.0010 1.0013 0.9640 0.9662

Colorado 5.3704 0.8166 1.0451 0.9753 4.4702 1.0000 0.9945 1.0013 0.9753 0.9712

Connecticut 5.3704 0.8250 1.0451 0.9577 4.4347 1.0000 1.0047 1.0013 0.9577 0.9635

Delaware 5.3704 0.8262 1.0451 0.9551 4.4293 1.0000 1.0062 1.0013 0.9551 0.9623

Dist. of Columbia 5.3704 0.8198 1.0451 0.9684 4.4563 1.0000 0.9985 1.0013 0.9684 0.9682

Hawaii 5.3704 0.8487 1.0451 0.9105 4.3372 1.0000 1.0336 1.0013 0.9105 0.9423

Iowa 5.3704 0.8260 1.0451 0.9556 4.4303 1.0000 1.0060 1.0013 0.9556 0.9625

Kansas 5.3704 0.8207 1.0451 0.9667 4.4528 1.0000 0.9995 1.0013 0.9667 0.9674

Mississippi 5.3704 0.8174 1.0451 0.9736 4.4666 1.0000 0.9955 1.0013 0.9736 0.9704

Nebraska 5.3704 0.8256 1.0451 0.9564 4.4319 1.0000 1.0055 1.0013 0.9564 0.9629

Nevada 5.3704 0.8187 1.0451 0.9708 4.4612 1.0000 0.9971 1.0013 0.9708 0.9692

New Mexico 5.3704 0.8282 1.0451 0.9512 4.4213 1.0000 1.0086 1.0013 0.9512 0.9606

Oklahoma 5.3704 0.8231 1.0451 0.9617 4.4427 1.0000 1.0024 1.0013 0.9617 0.9652

Oregon 5.3704 0.8372 1.0451 0.9330 4.3840 1.0000 1.0196 1.0013 0.9330 0.9525

Rhode Island 5.3704 0.8284 1.0451 0.9506 4.4202 1.0000 1.0089 1.0013 0.9506 0.9603

South Carolina 5.3704 0.8228 1.0451 0.9622 4.4438 1.0000 1.0021 1.0013 0.9622 0.9655

South Dakota 5.3704 0.8481 1.0451 0.9117 4.3397 1.0000 1.0329 1.0013 0.9117 0.9429

Utah 5.3704 0.8388 1.0451 0.9297 4.3772 1.0000 1.0216 1.0013 0.9297 0.9510

West Virginia 5.3704 0.8322 1.0451 0.9429 4.4044 1.0000 1.0135 1.0013 0.9429 0.9569

Wyoming 5.3704 0.8280 1.0451 0.9516 4.4221 1.0000 1.0083 1.0013 0.9516 0.9608

Notes: Border effects are decomposed as indicated by (35).
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Table 4: Impacts of fully removing the border, holding all other parameters fixed

Benchmark (1)

Wage Cutoff Markup Initial % of Final % of Consumed Produced Welfare

∆(wr)% ∆(md
r)% ∆(αEr/Nc

r )% exporters exporters ∆(Nc
r )% ∆(Np

r )% ∆U∗

r %

State/province In Gravity sample

Alberta 7.5642 -12.6501 -6.0428 2.3633 14.9207 14.4821 -38.5468 14.4821

British Columbia 4.5131 -8.0525 -3.9028 3.0069 17.8384 8.7577 -26.0831 8.7577

Manitoba 12.2724 -19.0725 -9.1407 2.5842 18.4735 23.5673 -53.3183 23.5673

New Brunswick 9.8759 -15.8991 -7.5934 1.9725 13.0564 18.9048 -46.3855 18.9048

Newfoundland 11.8673 -18.5492 -8.8832 0.6401 4.4570 22.7735 -52.2225 22.7735

Nova Scotia 6.2608 -10.7310 -5.1420 0.6954 4.1891 12.0209 -33.5457 12.0209

Ontario 9.3696 -15.2038 -7.2588 3.0667 20.1687 17.9299 -44.7726 17.9299

Prince Edward Isl. 10.1873 -16.3224 -7.7978 0.3870 2.5819 19.5063 -47.3506 19.5063

Quebec 5.8181 -10.0642 -4.8316 4.2744 25.4465 11.1904 -31.7413 11.1904

Saskatchewan 10.9235 -17.3097 -8.2771 2.2684 15.6725 20.9332 -49.5529 20.9332

Alabama 0.0000 -0.5251 -0.5251 0.5974 2.4410 0.5278 -1.8773 0.5278

Arizona 0.2474 -0.9623 -0.7172 1.3872 5.6017 0.9716 -3.4210 0.9716

California -0.1973 -0.1742 -0.3712 0.7466 3.2289 0.1745 -0.6257 0.1745

Florida -0.0789 -0.3849 -0.4636 0.8554 3.4874 0.3864 -1.3788 0.3864

Georgia -0.0156 -0.4974 -0.5129 0.6965 2.8449 0.4998 -1.7789 0.4998

Idaho 0.9951 -2.2655 -1.2929 1.6960 7.4970 2.3180 -7.9185 2.3180

Illinois 0.0168 -0.5548 -0.5381 1.3945 5.4074 0.5579 -1.9830 0.5579

Indiana 0.1571 -0.8031 -0.6472 1.0195 4.2731 0.8096 -2.8609 0.8096

Kentucky 0.1607 -0.8093 -0.6500 0.8182 3.4295 0.8160 -2.8831 0.8160

Louisiana -0.0518 -0.4332 -0.4847 0.4159 1.6522 0.4350 -1.5506 0.4350

Maine 2.0177 -4.0051 -2.0681 2.8319 12.3393 4.1722 -13.6835 4.1722

Maryland -0.0957 -0.3551 -0.4505 0.2358 0.9813 0.3564 -1.2726 0.3564

Massachusetts 0.0506 -0.6147 -0.5644 0.6961 2.8713 0.6185 -2.1954 0.6185

Michigan 0.6404 -1.6507 -1.0208 3.0560 12.9833 1.6784 -5.8161 1.6784

Minnesota 0.5095 -1.4222 -0.9199 3.5620 14.0049 1.4427 -5.0259 1.4427

Missouri 0.0725 -0.6535 -0.5815 1.1937 4.6360 0.6578 -2.3328 0.6578

Montana 1.6802 -3.4363 -1.8138 2.8597 12.0188 3.5586 -11.8282 3.5586

New Hampshire 0.7991 -1.9265 -1.1428 0.9073 3.8217 1.9644 -6.7635 1.9644

New Jersey 0.1158 -0.7300 -0.6151 0.8510 3.4884 0.7354 -2.6033 0.7354

New York 0.1295 -0.7542 -0.6257 1.4457 5.9290 0.7599 -2.6886 0.7599

North Carolina 0.0975 -0.6977 -0.6009 0.9245 3.7881 0.7026 -2.4889 0.7026

North Dakota 1.4348 -3.0194 -1.6279 2.4809 10.2899 3.1134 -10.4499 3.1134

Ohio 0.2331 -0.9371 -0.7062 1.7841 7.4937 0.9460 -3.3327 0.9460

Pennsylvania 0.1944 -0.8688 -0.6761 1.4866 6.2371 0.8764 -3.0924 0.8764

Tennessee 0.1056 -0.7120 -0.6072 0.9501 3.6932 0.7171 -2.5395 0.7171

Texas -0.0387 -0.4564 -0.4949 1.6317 6.5363 0.4584 -1.6332 0.4584

Vermont 1.7802 -3.6052 -1.8893 1.0820 5.2072 3.7401 -12.3822 3.7401

Virginia 0.0838 -0.6735 -0.5902 0.7297 2.9887 0.6780 -2.4033 0.6780

Washington 0.8846 -2.0746 -1.2083 3.8231 18.5861 2.1186 -7.2694 2.1186

Wisconsin 0.4306 -1.2841 -0.8590 2.5627 10.0535 1.3009 -4.5463 1.3009

State/province Out of Gravity sample

Alaska 0.4346 -1.2910 -0.8621 0.2520 1.1155 1.3079 -4.5702 1.3079

Arkansas 0.1521 -0.7942 -0.6433 0.9901 3.8538 0.8005 -2.8296 0.8005

Colorado 0.0097 -0.5422 -0.5326 0.6254 2.5086 0.5452 -1.9384 0.5452

Connecticut 0.2314 -0.9341 -0.7049 0.7055 2.9016 0.9430 -3.3223 0.9430

Delaware 0.2651 -0.9934 -0.7310 0.2843 1.1704 1.0034 -3.5304 1.0034

Hawaii 0.8519 -2.0180 -1.1833 1.1719 5.2488 2.0595 -7.0762 2.0595

Iowa 0.2589 -0.9825 -0.7262 1.5910 6.2115 0.9923 -3.4922 0.9923

Kansas 0.1181 -0.7342 -0.6169 0.8324 3.2369 0.7396 -2.6179 0.7396

Mississippi 0.0316 -0.5810 -0.5496 0.5127 1.9889 0.5844 -2.0759 0.5844

Nebraska 0.2485 -0.9642 -0.7181 0.9387 3.6637 0.9736 -3.4279 0.9736

Nevada 0.0657 -0.6414 -0.5762 0.3591 1.5296 0.6456 -2.2900 0.6456

New Mexico 0.3157 -1.0824 -0.7701 1.0928 4.4214 1.0942 -3.8421 1.0942

Oklahoma 0.1810 -0.8453 -0.6658 1.3490 5.4372 0.8525 -3.0098 0.8525

Oregon 0.5519 -1.4962 -0.9526 1.6925 8.1520 1.5190 -5.2825 1.5190

Rhode Island 0.3225 -1.0944 -0.7754 0.4307 1.7760 1.1065 -3.8842 1.1065

South Carolina 0.1742 -0.8332 -0.6605 0.9215 3.7837 0.8402 -2.9672 0.8402

South Dakota 0.8358 -1.9901 -1.1709 1.4998 6.0644 2.0305 -6.9809 2.0305

Utah 0.5953 -1.5721 -0.9861 1.8548 7.5632 1.5972 -5.5447 1.5972

West Virginia 0.4225 -1.2699 -0.8527 1.0094 4.2621 1.2862 -4.4965 1.2862

Wyoming 0.3106 -1.0735 -0.7662 0.3791 1.5335 1.0851 -3.8109 1.0851

Washington DC 0.0961 -0.6952 -0.5998 0.1239 0.5184 0.7001 -2.4802 0.7001

Notes: See Section 5 for details on computations.
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Table 5: Impacts of population changes (1993–2007), holding the trade frictions fixed

Benchmark (1)

% Pop. change Wage Cutoff Markup Initial % of Final % of Consumed Produced Welfare

1993-2007 ∆(wr)% ∆(md
r)% ∆(αEr/Nc

r )% exporters exporters ∆(Nc
r )% ∆(Np

r )% ∆U∗

r %

State/province In Gravity sample

Alberta 30.2362 0.9476 -4.9646 -4.0641 2.3633 2.4055 5.2240 -16.7494 5.2240

British Columbia 22.7855 0.5764 -4.3385 -3.7871 3.0069 3.0025 4.5352 -14.7579 4.5352

Manitoba 6.1790 -0.8462 -1.8781 -2.7085 2.5842 2.5604 1.9141 -6.5978 1.9141

New Brunswick 0.1295 -1.3864 -0.9179 -2.2916 1.9725 1.9398 0.9265 -3.2654 0.9265

Newfoundland -12.7020 -2.1698 0.5009 -1.6798 0.6401 0.6155 -0.4984 1.8150 -0.4984

Nova Scotia 1.0950 -1.5391 -0.6438 -2.1731 0.6954 0.6809 0.6480 -2.2985 0.6480

Ontario 19.7922 0.1099 -3.5424 -3.4364 3.0667 3.1410 3.6725 -12.1765 3.6725

Prince Edward Island 4.9076 -1.2261 -1.2045 -2.4158 0.3870 0.3823 1.2192 -4.2688 1.2192

Quebec 7.6242 -0.9423 -1.7084 -2.6346 4.2744 4.2570 1.7381 -6.0149 1.7381

Saskatchewan -0.9917 -1.1135 -1.4049 -2.5028 2.2684 2.2304 1.4249 -4.9659 1.4249

Alabama 10.3679 0.0000 -3.3534 -3.3534 0.5974 0.6185 3.4698 -11.5554 3.4698

Arizona 58.7312 2.2688 -7.1422 -5.0355 1.3872 1.5251 7.6916 -23.4147 7.6916

California 17.3563 0.1896 -3.6792 -3.4966 0.7466 0.7746 3.8198 -12.6241 3.8198

Florida 33.0887 1.1578 -5.3165 -4.2202 0.8554 0.9148 5.6150 -17.8538 5.6150

Georgia 38.4483 1.1994 -5.3858 -4.2510 0.6965 0.7458 5.6924 -18.0700 5.6924

Idaho 36.1602 1.0392 -5.1182 -4.1322 1.6960 1.8021 5.3943 -17.2327 5.3943

Illinois 9.6074 -0.5992 -2.3124 -2.8977 1.3945 1.4043 2.3671 -8.0774 2.3671

Indiana 11.2825 -0.5301 -2.4333 -2.9505 1.0195 1.0013 2.4940 -8.4863 2.4940

Kentucky 11.8447 -0.4146 -2.6350 -3.0386 0.8182 0.8062 2.7063 -9.1655 2.7063

Louisiana 0.1973 -0.9823 -1.6377 -2.6039 0.4159 0.4143 1.6650 -5.7713 1.6650

Maine 6.3760 -0.7992 -1.9610 -2.7446 2.8319 2.8797 2.0002 -6.8816 2.0002

Maryland 13.6740 -0.4057 -2.6505 -3.0454 0.2358 0.2351 2.7226 -9.2175 2.7226

Massachusetts 7.3013 -0.9696 -1.6601 -2.6136 0.6961 0.7045 1.6881 -5.8486 1.6881

Michigan 5.6939 -0.8509 -1.8700 -2.7049 3.0560 2.9741 1.9056 -6.5698 1.9056

Minnesota 14.9482 -0.2619 -2.9006 -3.1549 3.5620 3.6215 2.9873 -10.0546 2.9873

Missouri 12.2315 -0.3756 -2.7028 -3.0683 1.1937 1.2097 2.7779 -9.3932 2.7779

Montana 14.0479 0.3160 -3.8954 -3.5917 2.8597 2.9777 4.0533 -13.3280 4.0533

New Hampshire 17.2553 -0.5041 -2.4787 -2.9704 0.9073 0.9304 2.5417 -8.6397 2.5417

New Jersey 10.2989 -0.6804 -2.1699 -2.8356 0.8510 0.8643 2.2181 -7.5939 2.2181

New York 6.3769 -1.0438 -1.5286 -2.5565 1.4457 1.4533 1.5524 -5.3947 1.5524

North Carolina 30.4231 0.7169 -4.5763 -3.8922 0.9245 0.9767 4.7957 -15.5182 4.7957

North Dakota 0.3901 -0.5193 -2.4523 -2.9588 2.4809 2.5070 2.5140 -8.5505 2.5140

Ohio 3.5819 -1.0365 -1.5415 -2.5621 1.7841 1.7272 1.5657 -5.4392 1.5657

Pennsylvania 3.4159 -1.1316 -1.3727 -2.4888 1.4866 1.4352 1.3918 -4.8543 1.3918

Tennessee 21.0602 0.1374 -3.5897 -3.4572 0.9501 0.9769 3.7234 -12.3313 3.7234

Texas 32.8260 1.1298 -5.2697 -4.1994 1.6317 1.7382 5.5628 -17.7075 5.5628

Vermont 8.2316 -0.7367 -2.0710 -2.7925 1.0820 1.0883 2.1148 -7.2572 2.1148

Virginia 19.2937 0.0637 -3.4630 -3.4016 0.7297 0.7569 3.5873 -11.9160 3.5873

Washington 23.2620 0.6285 -4.4268 -3.8261 3.8231 3.8287 4.6318 -15.0407 4.6318

Wisconsin 10.8069 -0.4996 -2.4866 -2.9738 2.5627 2.5880 2.5500 -8.6662 2.5500

State/province Out of Gravity sample

Alaska 14.4868 -0.1346 -3.1210 -3.2515 0.2520 0.2445 3.2216 -10.7874 3.2216

Arkansas 16.9595 -0.0079 -3.3397 -3.3474 0.9901 1.0138 3.4551 -11.5103 3.4551

Colorado 36.5255 1.4534 -5.8077 -4.4387 0.6254 0.6722 6.1658 -19.3777 6.1658

Connecticut 7.0282 -0.9408 -1.7111 -2.6358 0.7055 0.7113 1.7409 -6.0243 1.7409

Delaware 23.6304 -0.1773 -3.0471 -3.2191 0.2843 0.2929 3.1429 -10.5421 3.1429

Hawaii 10.4933 -0.0340 -3.2948 -3.3277 1.1719 1.1883 3.4071 -11.3621 3.4071

Iowa 5.9394 -0.5973 -2.3157 -2.8992 1.5910 1.6023 2.3706 -8.0885 2.3706

Kansas 8.9650 -0.4607 -2.5546 -3.0035 0.8324 0.8415 2.6216 -8.8953 2.6216

Mississippi 10.7457 -0.2911 -2.8499 -3.1327 0.5127 0.5208 2.9335 -9.8852 2.9335

Nebraska 10.0749 -0.3964 -2.6667 -3.0525 0.9387 0.9507 2.7398 -9.2720 2.7398

Nevada 85.8707 2.8851 -8.1314 -5.4809 0.3591 0.4016 8.8511 -26.3111 8.8511

New Mexico 21.9809 0.6845 -4.5215 -3.8680 1.0928 1.1497 4.7357 -15.3437 4.7357

Oklahoma 12.0318 -0.0060 -3.3430 -3.3488 1.3490 1.3920 3.4586 -11.5210 3.4586

Oregon 23.4954 0.6569 -4.4749 -3.8474 1.6925 1.6964 4.6846 -15.1948 4.6846

Rhode Island 6.0109 -0.9553 -1.6855 -2.6246 0.4307 0.4341 1.7143 -5.9359 1.7143

South Carolina 21.2739 0.3432 -3.9419 -3.6122 0.9215 0.9633 4.1037 -13.4789 4.1037

South Dakota 11.1630 -0.2008 -3.0065 -3.2013 1.4998 1.5275 3.0997 -10.4071 3.0997

Utah 41.0096 1.2921 -5.5402 -4.3196 1.8548 1.9847 5.8651 -18.5502 5.8651

West Virginia -0.2282 -0.7210 -2.0987 -2.8046 1.0094 0.9859 2.1437 -7.3515 2.1437

Wyoming 11.4698 0.2163 -3.7250 -3.5167 0.3791 0.3936 3.8691 -12.7734 3.8691

Washington DC 2.0706 -0.9009 -1.7816 -2.6665 0.1239 0.1204 1.8140 -6.2668 1.8140

Notes: See Section 5 for details on computations. Populations in 1993 and in 2007 are taken from Statistics Canada and the U.S. Bureau of Census.
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