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1 Introduction

Regression discontinuity (RD) designs for evaluating causal effects of interventions, where as-

signment is determined at least partly by the value of an observed covariate lying on either

side of a threshold, were introduced by Thistlewaite and Campbell (1960). See Cook (2008)

for a historical perspective. A recent surge of applications in economics includes studies of the

impact of financial aid offers on college acceptance (Van Der Klaauw, 2002), school quality on

housing values (Black, 1999), class size on student achievement (Angrist and Lavy, 1999), air

quality on health outcomes (Chay and Greenstone, 2005), and incumbency on reelection (Lee,

2008). Recent important theoretical work has dealt with identification issues (Hahn, Todd, and

Van Der Klaauw, 2001, HTV from hereon), optimal estimation (Porter, 2003), tests for validity

of the design (McCrary, 2008), quantile effects (Frandsen, 2008; Frölich and Melly, 2008), and

the inclusion of covariates (Frölich, 2007). General surveys include Lee and Lemieux (2009),

Van Der Klaauw (2008), and Imbens and Lemieux (2008).

In RD settings analyses typically focus on the average effect of the treatment for units

with values of the forcing variable close to the threshold, using kernel, local linear, or global

polynomial series estimators. Fan and Gijbels (1992) and Porter (2003) show that local linear

estimators are rate optimal and have attractive bias properties. A key decision in implementing

these methods is the choice of bandwidth. Since the focus is solely on the change in the

value of the regression function at the threshold, standard plug-in methods and cross-validation

methods, which choose a bandwidth that is optimal for estimating the regression function over

the entire support, do not yield an optimal bandwidth here. The two contributions of this paper

are (i), the derivation of the optimal bandwidth for this setting, and (ii), a data-dependent

method for choosing the bandwidth that is asymptotically optimal.1 Simulations indicate that

the proposed algorithm works well in realistic settings.

2 Basic model

In the basic RD setting, researchers are interested in the causal effect of a binary treatment. In

the setting we consider we have a sample of N units, drawn randomly from a large population.

For unit i, i = 1, . . . , N , the variable Yi(1) denotes the potential outcome for unit i given

treatment, and Yi(0) the potential outcome without treatment. For unit i we observe the

1Software for implementing this bandwidth rule is available on the website
http://www.economics.harvard.edu/faculty/imbens/imbens.html. This is at the moment limited to Mat-
lab. In the near future a STATA version will also be available.

2



treatment received, Wi, equal to one if unit i was exposed to the treatment and 0 otherwise,

and the outcome corresponding to the treatment received:

Yi =

{

Yi(0) if Wi = 0,
Yi(1) if Wi = 1.

We also observe for each unit a scalar covariate, called the forcing variable, denoted by Xi.

Define

m(x) = E[Yi|Xi = x],

to be the conditional expectation of the outcome given the forcing variable. The idea behind

the Sharp Regression Discontinuity (SRD) design is that the treatment Wi is determined solely

by the value of the forcing variable Xi being on either side of a fixed, known threshold c, or:

Wi = 1Xi≥c.

In Section 5 we extend the SRD setup to the case with additional covariates and to the Fuzzy

Regression Discontinuity (FRD) design, where the probability of receiving the treatment jumps

discontinuously at the threshold for the forcing variable, but not necessarily from zero to one.

In the SRD design the focus is on average effect of the treatment for units with covariate

values equal to the threshold:

τRD = E[Yi(1)− Yi(0)|Xi = c].

Now suppose that the conditional distribution functions FY (0)|X(y|x) and FY (1)|X(y|x) are con-

tinuous in x for all y, and that the conditional first moments E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x]

exist, and are continuous at x = c. Then

τRD = µ+ − µ−, where µ+ = lim
x↓c

m(x), and µ− = lim
x↑c

m(x).

Thus, the estimand is the difference of two regression functions evaluated at boundary points.

We focus on estimating τRD by local linear regressions on either side of the threshold. Local

nonparametric methods are attractive in this setting because of the need to estimate regression

functions consistently at a point. Furthermore, in the RD setting local linear regression esti-

mators are preferred to the standard Nadaraya-Watson kernel estimator, because local linear

methods have been shown to have attractive bias properties in estimating regression functions

at the boundary (Fan and Gijbels, 1992), and enjoy rate optimality (Porter, 2003). To be

explicit, we estimate the regression function m(·) at x as

m̂h(x) =

{

α̂−(x) if x < c,
α̂+(x) if x ≥ c.

(2.1)
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where,

(α̂−(x), β̂−(x)) = argmin
α,β

N
∑

i=1

1Xi<x · (Yi − α − β(Xi − x))2 · K

(

Xi − x

h

)

,

and

(α̂+(x), β̂+(x)) = argmin
α,β

N
∑

i=1

1Xi>x · (Yi − α − β(Xi − x))2 · K

(

Xi − x

h

)

,

Then

τ̂RD = µ̂+ − µ̂−,

where

µ̂− = lim
x↑c

m̂h(x) = α̂−(c) and µ̂+ = lim
x↓c

m̂h(x) = α̂+(c).

3 Error Criterion and Infeasible Optimal Bandwidth Choice

The primary question studied in this paper concerns the optimal choice of the bandwidth h. In

the current empirical literature researchers often choose the bandwidth by either crossvalidation

or ad hoc methods. See Härdle (1992) for a textbook discussion of cross-validation and related

methods, and see Lee and Lemieux (2009) for a comprehensive discussion of current practice in

RD settings. Conventional crossvalidation yields a bandwidth that is optimal for fitting a curve

over the entire support of the data.2 In other words, it attempts to choose the bandwidth to

minimize an approximation to the mean integrated squared error criterion (MISE),

MISE(h) = E

[∫

x
(m̂h(x) − m(x))2 f(x)dx

]

.

This criterion is not directly relevant for the problem at hand: we wish to choose a bandwidth

that is optimal for estimating τRD. This estimand has a number two special features. First, it

depends on m(x) only through two values, and specifically their difference. Second, both these

values are boundary values.

Our proposed criterion is

MSE(h) = E

[

(

τ̂RD − τRD

)2
]

= E

[

(

(µ̂+ − µ+) − (µ̂− − µ−)
)2
]

. (3.2)

2See Ludwig and Miller (2005) and Lee and Lemieux (2009) for a discussion of crossvalidation methods
designed more specifically for the RD setting. These methods are discussed in more detail in Section 4.4.
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Let h∗ be the optimal bandwidth that minimizes this criterion:

h∗ = argminMSE(h). (3.3)

This bandwidth is obviously not feasible, and so we will use an approximations to this oracle

bandwidth. The first part of the approximation is that we focus on values of h close to zero,

at least asymptotically. In principle, for a specific regression function in combination with a

specific distribution for the forcing variable it may well be that the optimal bandwidth does not

converge to zero with the sample size. In such cases the optimal bandwidth is very sensitive to

the actual distribution and regression function, and it is difficult to see how one could exploit

such knife-edge cases.

The next step is to derive an asymptotic expansion of (4.16). First we state the key as-

sumptions. Not all of these will be used immediately, but for convenience we state them all

here.

Assumption 3.1: (Yi, Xi), for i = 1, . . . , N , are independent and identically distributed.

Assumption 3.2: The marginal distribution of the forcing variable Xi, denoted f(·), is right

and left continuous at the discontinuity, c, with limits limx↓c f(x) = f+(c) > 0 and limx↑c f(x) =

f−(c) > 0 respectively.

Assumption 3.3: The conditional mean m(x) = E[Yi|Xi = x] has p ≥ continuous derivatives

almost everywhere. The right and left limits of the kth derivative of m(x) at the threshold c are

denoted m
(k)
+ (c) and m

(k)
− (c).

Assumption 3.4: The kernel K(·) is smooth and has compact support.

Assumption 3.5: The conditional variance function σ2(x) = Var(Yi|Xi = x) is bounded ev-

erywhere, and right and left continuous at c. The right and left limit are denoted by σ2
+(c) and

σ2
−(c) respectively.

Assumption 3.6: The second derivatives at the right and left, m
(2)
+ (x) and m

(2)
− (x), differ at

the threshold: m
(2)
+ (c) 6= m

(2)
− (c).

Now define the Asymptotic Mean Squared Error (AMSE) as a function of the bandwidth:

AMSE(h) = C1 · h
4 ·
(

m
(2)
+ (c)− m

(2)
− (c)

)2
+

C2

N · h
·

(

σ2
+(c)

f+(c)
+

σ2
−(c)

f−(c)

)

. (3.4)
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The constants C1 and C2 in this approximation are functions of the kernel:

C1 =
1

4

(

ν2
2 − ν1ν3

ν2ν0 − ν2
1

)2

, and C2 =
ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν2ν0 − ν2
1 )2

,

where

νj =

∫ ∞

0
ujK(u)du, and πj =

∫ ∞

0
ujK2(u)du.

The first term in (3.4) corresponds to the square of the bias, and the second term corresponds

to the variance. This expression clarifies the role that Assumption 3.6 will play. If the left and

right limits of the second derivative are equal, then the leading term in the expansion of the

square of the bias is not of the order h4. Instead the leading bias term would be of lower order.

It is difficult to exploit the improved convergence rate that would result from this in practice,

because it would be difficult to establish sufficiently fast that this difference is indeed zero, and

so we focus on optimality results given Assumption 3.6. Note however, that we will not rely on

Assumption 3.6 for consistency of the estimator for the average treatment effect.

Lemma 3.1: (Mean Squared Error Approximation and Optimal Bandwidth)

(i) Suppose Assumptions 3.1-3.5 hold. Then

MSE(h) = AMSE(h) + o

(

h4 +
1

N · h

)

.

(ii) Suppose Assumptions 3.1-3.6 hold. Then

hopt = argmin
h

AMSE(h) = CK ·







σ2
+(c)

f+(c) +
σ2
−(c)

f−(c)
(

m
(2)
+ (c)− m

(2)
− (c)

)2







1/5

·N−1/5, (3.5)

where CK = (C2/(4 · C1))
1/5, indexed by the kernel K(·).

For the edge kernel, with K(u) = 1|u|≤1(1 − |u|), shown by Cheng, Fan and Marron (1997)

to have AMSE-minimizing properties for boundary estimation problems, the constant is CK ≈

3.4375.

4 Feasible Optimal Bandwidth Choice

In this section we discuss the proposed bandwidth, provide a full data-dependent estimator for

the bandwidth, and discuss its properties.
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4.1 Proposed bandwidth

A natural choice for the estimator for the optimal bandwidth estimator is to replace the six

unknown quantities in the expression for the optimal bandwidth hopt, given in (4.13) by non-

parametric estimators. We make three modifications to this approach, motivated partly by the

desire to reduce the variance of the estimated bandwidth ĥopt, and partly by considerations

regarding the structure of the problem.

The first two modification involve estimating a single density f(c) and a single conditional

variance σ2(c), rather than allowing the density and conditional variance functions to have

discontinuities at the threshold. For the density the motivation is largely the concern that if

the density is discontinuous at the threshold, the validity of the design is typically questioned.

(In fact, this is the basis for the test proposed by McCrary, 2008.) For the use of a single

conditional variance the motivation is largely that in practice the degree of heteroskedasticity

tends to be modest, and so any estimated differences will tend to be largely due to uncertainty

in the estimates rather than actual differences. These two modifications suggest using

h̃opt = CK ·







2 · σ̂2(c)/f̂(c)
(

m̂
(2)
+ (c) − m̂

(2)
− (c)

)2







1/5

· N−1/5. (4.6)

We introduce one more modification. The motivation for the third modification is the concern

that the precision with which we estimate the second derivatives m
(2)
+ (c) and m

(2)
− (c) may be

so low, that the estimated optimal bandwidth h̃opt will occasionally be very large, even when

the data are consistent with a substantial degree of curvature. To address this problem we add

a regularization term to the denominator in (4.6). This regularization term will be choosen

carefully to decrease with the sample size, therefore not compromising asymptotic optimality.

Including this regularization term guards against unrealistically large bandwidth choices when

the curvature of the regression function is imprecisely estimated.

We use as the regularization term the approximate variance of the estimated curvature.

This allows the regularization term to be invariant to the scale of the data. To be explicit,

we estimate the second derivative m
(2)
+ (c) by fitting to the observations with Xi ∈ [c, c + h] a

quadratic function. The bandwidth h here may be different from the bandwidth ĥopt used in

the estimation of τRD, and its choice will be discussed in Section 4.2. Let Nh,+ be the number

of units with covariate values in this interval. We assume homoskedasticity with error variance

7



σ2(c) in this interval. Let

µ̂j,h,+ =
1

Nh,+

∑

c≤Xi≤c+h

(Xi − X)j, where X =
1

Nh,+

∑

c≤Xi≤c+h

Xi,

be the j-th (centered) moment of the Xi in this interval to the right of the threshold. We can

derive the following explicit formula for the conditional variance of the curvature (viz. twice

the coefficient on the quadratic term), denoted by r+, in terms of these moments:

r+ =
4

Nh,+

(

σ2(c)

µ̂4,h,+ − (µ̂2,h,+)2 − (µ̂3,h,+)2/µ̂2,h,+

)

However, to avoid estimating fourth moments, we approximate this expression exploiting

the fact that for small h, the distribution of the forcing variable can be approximated by a

uniform distribution on [c, c+ h], so that µ̂2,h,+ ≈ h2/12, µ̂3,h,+ ≈ 0, and µ̂4,h,+ ≈ h4/60. After

substituting σ̂2(c) for σ2(c) this leads to

r̂+ =
720 · σ̂2(c)

Nh,+ · h4
, and similarly r̂− =

720 · σ̂2(c)

Nh,− · h4
.

The proposed bandwidth is now obtained by adding the regularization terms to the curva-

tures in the bias term of MSE expansion:

ĥopt = CK ·







2 · σ̂2(c)/f̂(c)
(

m̂
(2)
+ (c) − m̂

(2)
− (c)

)2
+ (r̂+ + r̂−)







1/5

· N−1/5, (4.7)

To operationalize this proposed bandwidth, we need specific estimators f̂ (c), σ̂2(c), m̂
(2)
− (c),

and m̂
(2)
+ (c). We provide a specific proposal for this in the next section.

4.2 Algorithm for bandwidth selection

The reference bandwidth ĥopt is a function of the outcome variable Y = (Y, , . . . , YN), the

forcing variable X = (X1, . . . , XN) and the chosen kernel; i.e. ĥopt = h(Y, X). We give below

a general algorithm for a specific implementation. In practice we recommend using the edge

optimal kernels, where K(u) = 1|u|≤1 · (1 − |u|), although the algoritm is easily modified for

other kernels by changing the kernel-specific constant CK .

To calculate the bandwidth we need estimators for the density at the threshold, f(c), the

conditional variance at the threshold, σ2(c), and the limits of the second derivatives at the

threshold from the right and the left, m
(2)
+ (c), m

(2)
− (c). (The other components of (4.7), r̂− and

r̂+ are functions of these four components.) The first two functionals are calculated in step 1,
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the second two in step 2. Step 3 puts these together with the appropriate kernel constant CK

to produce the reference bandwidth.

Step 1: Estimation of density f(c) and conditional variance σ2(c)

First calculate the sample variance of the forcing variable, S2
X =

∑
(

Xi − X
)2

/(N − 1). We

now use the Silverman rule to get a pilot bandwidth for calculating the density and variance

at c. The standard Silverman rule of h = 1.06 · SX · N−1/5 is based on a normal kernel and a

normal reference density. We modify this for the uniform kernel on [−1, 1] and calculate the

pilot bandwidth h1 as:

h1 = 1.84 · SX · N−1/5.

Calculate the number of units on either side of the threshold, and the average outcomes on

either side as

Nh1,− =

N
∑

i=1

1c−h1≤Xi<c, Nh1,+ =

N
∑

i=1

1c≤Xi≤c+h1 ,

Y h1,− =
1

Nh1,−

∑

i:c−h1≤Xi<c

Yi, and Y h1,+ =
1

Nh1,+

∑

i:c≤Xi≤c+h1

Yi.

Now estimate the density of Xi at c as

f̂X(c) =
Nh1,− + Nh1,+

N · h1
, (4.8)

and estimate the conditional variance of Yi given Xi = x, at x = c, as

σ̂2(c) =
1

Nh1,− + Nh1,+





∑

i:c−h1≤Xi<c

(

Yi − Y h1,−

)2
+

∑

i:c≤Xi<c+h1

(

Yi − Y h1,+

)2



 . (4.9)

The main property we will need for these estimators is that they are consistent for the density

and the conditional variance respectively. They need not be efficient.

Step 2: Estimation of second derivatives m̂
(2)
+ (c) and m̂

(2)
− (c)

First we need a pilot bandwidth h2,+. We base this on a simple, not necessarily consistent,

estimator of the third derivative of m(·) at c. First, calculate the median of Xi among the

observations with Xi ≥ c, call this median(X+), and the same for the median of Xi among the

observations with Xi < c, call this median(X−). To be precise, if the number of observations

with Xi ≥ 0 is even, we define the median to be the average of the middle two observations.

Temporarily discard the observations with Xi < median(X−), and the observations with Xi >

9



median(X+). Now fit a third order polynomial to the remaining data, including an indicator

for Xi ≥ 0. Thus, estimate the regression function

Yi = γ0 + γ1 · 1Xi≥c + γ2 · (Xi − c) + γ3 · (Xi − c)2 + γ4 · (Xi − c)3 + εi, (4.10)

and estimate m(3)(c) as m̂(3)(c) = 6 · γ̂4. This will be our estimate of the third derivative of

the regression function. Note that m̂(3)(c) is in general not a consistent estimate of m(3)(c) but

will converge to a constant at a parametric rate. Let m3 = 6 · plim(γ̂4) denote this constant.

However we do not need a consistent estimate here to achieve what we ultimately need: a

consistent estimate of the constant in the reference bandwidth. Calculate h2,+, using the σ̂2(c)

and f̂(c) from Step 1, as

h2,+ = 3.56





σ̂2(c)

f̂(c) max
(

(

m̂(3)(c)
)2

, 0.01
)





1/7

N
−1/7
+ , (4.11)

and

h2,− = 3.56





σ̂2(c)

f̂(c) max
(

(

m̂(3)(c)
)2

, 0.01
)





1/7

N
−1/7
− .

The motivation for taking the maximum of (m̂(3)(c))2 and 0.01 is to avoid problems if m3 =

6 · plim(γ̂4) is in fact equal to zero. In practice this is unlikely to be a problem, and for the

formal arguments the constant 0.01 can be replaced by any positive number. Without this

constant, h2,+ is in fact an estimate of the optimal bandwidth for calculation of the second

derivative at the boundary using a local quadratic. See the Appendix for details.

Given this pilot bandwidth h2,+, we estimate the curvature m(2)(c) by a local quadratic

fit. I.e. temporarily discard the observations other than the N2,+ observations with c ≤ Xi ≤

c + h2,+. Label the new data Ŷ+ = (Y1, . . . , YN2,+) and X̂+ = (X1, . . . , XN2,+) each of length

N2,+. Fit a quadratic to the new data. I.e. let T = [ι T1 T2] where ι is a column vector

of ones, and T′
j =

(

(X1 − c)j, . . . , (XN2,+ − c)j
)

, for j = 1, 2. Estimate the three dimensional

regression coefficient vector, λ̂ = (T′T)−1T′Ŷ. Calculate the curvature as m̂
(2)
+ (c) = 2 · λ̂3.

This is a consistent estimate of m
(2)
+ (c). For m̂

(2)
− (c) follow the same procedure using the data

with c − h2,− ≤ Xi < c.

Step 3: Calculation of Regularization Terms r̂− and r̂+, and Calculation of ĥopt

Given the previous steps, the regularization terms are calculated as

r̂+ =
720 · σ̂2(c)

N2,+ · h4
2,+

, and r̂− =
720 · σ̂2(c)

N2,− · h4
2,−

. (4.12)
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We now have all the pieces to calculate the proposed bandwidth:

ĥopt = CK ·









2σ̂2(c)

f̂(c) ·

(

(

m̂
(2)
+ (c)− m̂

(2)
− (c)

)2
+ (r̂+ + r̂−)

)









1/5

· N−1/5. (4.13)

where CK is, as in Lemma 3.1, a constant that depends on the kernel used. For the edge kernel,

with K(u) = (1− |u|) · 1|u|≤1, the constant is CK ≈ 3.4375.

G8iven ĥopt, we estimate τRD as

τ̂RD = lim
x↓c

m̂ĥopt
(x)− lim

x↑c
m̂ĥopt

(x),

where m̂h(x) is as defined in (2.1).

4.3 Properties of algorithm

For this algorithm we establish certain optimality properties. First, the resulting RD estimator

is consistent at the best rate for nonparametric regression functions at a point (Stone, 1982).

Second, as the sample size increases, the estimated constant term in the reference bandwidth

converges to the best constant. Third, we also have an “asymptotic no-regret” or Li (1987)

type consistency result for the mean squared error and consistency at the optimal rate for the

RD estimate.

Theorem 4.1: (Properties of ĥopt)

Suppose Assumptions 3.1-3.5 hold. Then:

(i)

τ̂RD − τRD = Op

(

N−12/35
)

, (4.14)

(ii) Suppose also Assumption 3.6 holds. Then:

τ̂RD − τRD = Op

(

N−4/5
)

, (4.15)

(iii)

ĥopt − hopt

hopt
= op(1), (4.16)

and (iv):

MSE(ĥopt) − MSE(hopt)

MSE(hopt)
= op(1). (4.17)
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Note that if Assumption 3.6 fails, the convergence rate for τ̂RD is slower. This is somewhat

counterintuitive. The conventional intuition goes as follows. If Assumption 3.6 fails, the leading

term in the bias vanishes, and the square of the bias becomes of order O(h6). Because the

variance remains of order O((Nh)−1), the optimal rate for the bandwidth becomes N−1/7,

and the optimal rate for the MSE becomes N−6/7 and thus the optimal rate for τ̂RD − τRD

becomes N−3/7, better than the N−2/3 we have when Assumption 3.6 holds. The reason

this does not show up in the theorem is that the optimal bandwidth does not adapt to the

vanishing of the difference in second derivatives. If Assumption 3.6 fails, the bandwidth goes

to zero as N−4/35 (instead of the optimal N−1/7), and so the MSE becomes N−24/35, leading

to τ̂RD − τRD = Op(N
−12/35), slower than the optimal rate of N−3/7, and even slower than the

rate we achieve when Assumption 3.6 holds (N−2/5). One could modify the regularization term

to take account of this, but in practice it is unlikely to make a difference.

4.4 Ludwig-Miller Cross-validation

In this section we briefly describe the cross-validation method proposed by Ludwig and Miller

(2005, LM from hereon), which we will compare to our proposed bandwidth in the application

and simulations. See also Lee and Lemieux (2009). The LM bandwidth is the only proposed

bandwidth selection procedure in the literature that is specifically aimed at providing a band-

width in a regression discontinuity setting. Let N− and N+ be the number of observations with

Xi < c and Xi ≥ c respectively. For δ ∈ (0, 1), let θ−(δ) and θ+(δ) be the δ-th quantile of the

Xi among the subsample of observations with Xi < c and Xi ≥ c respectively, so that

θ−(δ) = argmin
a

{

a

∣

∣

∣

∣

∣

(

N
∑

i=1

1Xi≤a

)

≥ δ · N−

}

,

and

θ+(δ) = argmin
a

{

a

∣

∣

∣

∣

∣

(

N
∑

i=1

1c≤Xi≤a

)

≥ δ · N+

}

.

Now the LM cross-validation criterion we use is of the form:

CVδ(h) =

N
∑

i=1

1θ−(δ)≤Xi≤θ+(1−δ) · (Yi − m̂h(Xi))
2 .

(In fact, LM use a slightly different criterion function, where they sum up over all observations

within a distance h0 from the threshold.) The estimator for the regression function here is m̂h(x)

defined in equation (2.1). A key feature of this estimator is that for values of x < c, it only uses
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observations with Xi < x to estimate m(x), and for values of x ≥ c, it only uses observations

with Xi > x to estimate m(x), so that m̂h(Xi) does not depend on Yi, as is necessary for cross-

validation. By using a value for δ close to zero, we only use observations close to the threshold

to evaluate the cross-valdiation criterion. The only concern is that by using too small value of

δ, we may not get a precisely estimated cross-validation bandwidth. In a minor modification of

the LM proposal we use the edge kernel instead of the Epanechnikov kernel they suggest. In our

calculations we use δ = 0.5. Any fixed value for δ is unlikely to lead to an optimal bandwidth

in general. Moreover, the criterion focuses implicitly on minimizing a criterion more akin to

E
[

(µ̂+ − µ+)2 − (µ̂− − µ−)2
]

, (with the errors in estimating µ− and µ+ squared before adding

them up, rather than rather than MSE(h) = E[((µ̂+ − µ+)− (µ̂− − µ−))2] in (4.16), where the

error in the difference µ+ − µ− is squared. As a result t even letting δ → 0 with the sample

size in the cross-validation procecure is unlikely to result in an optimal bandwidth.

5 Extensions

5.1 The Fuzzy Regression design

In the Fuzzy Regression Discontinuity Design (FRD) the treatment Wi is not a deterministic

function of the forcing variable. Instead the probability Pr(Wi = 1|Xi = x) changes discontin-

uously at the threshold c. In an important theoretical paper HTV discussion identification in

this setting. The focus is on the ratio

τFRD =
limx↓c E [Yi|Xi = x] − limx↑c E [Yi|Xi = x]

limx↓c E [Yi|Wi = x] − limx↑c E [Wi|Xi = x]
.

In principle we need to estimate two regression functions, each at two boundary points: the

expected outcome given the forcing variable E[Yi|Xi = x] to the right and left of the threshold

c and the expected value of the treatment variable given the forcing variable E[Wi|Xi = x],

again both to the right and left of c. Thus, in principle there are four bandwidth choices to be

made. However just as we argued for a single bandwidth in the SRD setting one might make

the same argument here though with less force. We follow the suggestion however of Imbens

and Lemieux (2008): i.e. use the algorithm above and estimate two optimal bandwidths, one

for the outcome regression, say ĥY
opt, and one for the treatment regression, ĥW

opt. It might be

appealing conceptually to use the same bandwidth for both ĥFRD,opt, and one could simply take

the optimal bandwidth for the outcome variable: ĥFRD,opt = ĥY
opt, given that the discontinuity

in the treatment regression is typically precisely estimated.
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5.2 Additional covariates

Typically the presence of additional covariates does not affect the regression discontinuity anal-

yses very much. In most cases the distribution of the additional covariates does not exhibit

any discontinuity around the threshold for the forcing variable, and as a result those covariates

are approximately independent of the treatment indicator for samples constructed to be close

to the threshold. In that case the covariates only affect the precision of the estimator, and one

can modify the previous analysis using the conditional variance of Yi given all covariates at the

threshold. In practice this does not affect the optimal bandwidth much unless the additional

covariates have great explanatory power (recall that the variance enters to the power 1/5), and

the basic algorithm is likely to perform adequately even in the presence of covariates.

6 An Illustration and Some Simulations

6.1 Data

To illustrate the implementation of these methods we use data previously analyzed by Lee (2008)

in one of the most convincing applications of regression discontinuity designs. Lee studies the

incumbency advantage in elections. His identification strategy is based on the discontinuity

generated by the rule that the party with a majority vote share wins. The forcing variable Xi

is the difference in vote share between the Democratic and Republican parties in one election,

with the threshold c = 0. The outcome variable Yi is vote share at the second election. There

are 6558 observations (districts) in this data set, 3818 with Xi > 0, and 2740 with Xi < 0. The

difference in voting percentages at the last election for the Democrats was 0.13, with a standard

deviation of 0.46. Figure 1 plots the density of the forcing variable, in bins with width 0.05.

Figure 2 plots the average value of the outcome variable, in 40 bins with width 0.05, against

the forcing variable. The discontinuity is clearly visible in the raw data, lending credibility to

any positive estimate of the treatment effect.

6.2 IK algorithm on data

In this section we implement our proposed bandwidth on the Lee dataset. For expositional

reasons we gave all the intermediate steps.

Step 1: Estimation of density f(0) and conditional variance σ2(0)

We start with the modified Silverman bandwidth,

h1 = 1.84 · SX · N−1/5 = 1.84 · 0.4553 · 6558−1/5 = 0.1445.
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There are Nh1,− = 836 units with values for Xi in the interval [−h1, 0), with an average outcome

of Y h1,− = 0.4219 and a sample variance of S2
Y,h1,− = 0.10472, and Nh1,+ = 862 units with

values for Xi in the interval [0, h1], with an average outcome of Y h1,+ = 0.5643 and a sample

variance of S2
Y,h1,+ = 0.12022. This leads to

f̂(0) =
Nh1,− + Nh1,+

2 · N · h1
=

836 + 862

2 · 6558 · 0.1445
= 0.8962,

and

σ̂2(0) =
(Nh1,− − 1) · S2

Y,h1,− + (Nh1,+ − 1) · S2
Y,h1,+

Nh1,− + Nh1,+
= 0.11282.

Step 2: Estimation of second derivatives m̂
(2)
+ (0) and m̂

(2)
− (0)

To estimate the curvature at the threshold, we first need to choose bandwidths h2,+ and h2,−.

We choose these bandwidths based on an estimate of m̂(3)(0), obtained by fitting a global cubic

with a jump at the threshold. We estimate this global cubic regression function by dropping

observations with covariate values below the median of the covariate for observations with

covariate values below the threshold, and dropping observations with covariate values above

the median of the covariate for observations with covariate values above the threshold. For

the 2740 (3818) observations with Xi < 0 (Xi > 0), the median of the forcing variable is -

0.2485 (0.3523). Next, we estimate, using the data with Xi ∈ [−0.2485, 0.3523], the polynomial

regression function of order three, with a jump at the threshold:

Yi = γ0 + γ1 · Xi + γ2 ·X
2
i + γ3 · X

3
i + γ4 · 1Xi≥0 + εi.

The least squares estimate for γ3 is γ̂3 = −0.9102, and thus the third derivative at zero is

estimated as m̂(3)(0) = 6 · γ̂3 = −5.4611. This leads to the two bandwidths

h2,+ = 3.56 ·





σ̂2(0)

f̂(0) ·max
(

(

m̂(3)(0)
)2

, 0.01
)





1/7

·N
−1/7
+ = 0.3674, and h2,− = 0.3852.

The two pilot bandwidths are used to fit two quadratics. The quadratic to the right of 0 is fitted

on [0, 0.3674], yielding m̂
(2)
+ (0) = −0.5233 and the quadratic to the left is fitted on [-0.3852, 0]

yielding m̂
(2)
− (0) = 0.4904.

Step 3: Calculation of Regularization Terms r̂− and r̂+, and Calculation of ĥopt

Next, the regularization terms are calculated. We obtain

r̂+ =
720 · σ̂2(0)

N2,+h4
2,+

=
720 · 0.11282

1983 · 0.36744
= 0.2634 and r̂− =

720 · σ̂2(0)

N2,−h4
2,−

= 0.3036.
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Now we have all the ingredients to calculate the optimal bandwidth under different kernels and

the corresponding RD estimates. Using the edge kernel with CK = 3.4375, we obtain

ĥopt = CK









2 · σ̂2(0)

f̂(0) ·

[

(

m̂
(2)
+ (0)− m̂

(2)
− (0)

)2
+ (r̂+ + r̂−)

]









1/5

N−1/5 = 0.2649.

Without the regularization the bandwidth would be h̃opt = 0.2892.

6.3 Six Estimates of the Effect of Incumbency for the Lee Data

Here we calculate six estimates of the ultimate object of interest, the size of the discontinuity in

m(x) at zero. The first four are based on local linear estimation with the edge kernel, and the

bandwidth choosen optimally (ĥopt), optimally without regularization (h̃opt), or cross-validation

(ĥcv, with δ = 0.5). For comparison we report estimates on global least squares regression

of polynomial regression functions on either side of the threshold, using a first, second and

third order polynomial. The point estimates and standard errors are presented in Table 1.

To investigate the sensitivity to the bandwidth choice, Figure 3 plots the RD estimates, and

the associated 95% confidence intervals, as a function of the bandwidth, for h between 0 and

0.5. The solid vertical line indicates the optimal bandwidth (ĥopt = 0.2649), and the dashed

vertical line the LM cross-validation bandwidth hcv = 0.2231, based on δ = 0.5. For the LM

cross-validation, Figure 4 shows the criterion function for δ = 0.5.

6.4 A Small Simulation Study

Next we conduct a small Monte Carlo study assess the properties of the proposed bandwidth

selection rule in practice. We consider two designs, Designs I, and II, and two sample sizes,

N = 100, and N = 500. In all cases we use normal disturbances, with standard deviation

equal to the standard deviation of the outcome in the Lee data set, SY = 0.2411. The density

of the forcing variable is that of 2 · Zi − 1, were Zi has a Beta distribution with parameters

α = 2 and β = 4. The two designs differ in the population regression function. The first design

is motivated by the configuration of the Lee data. The regression function is a 5-th order

polynomial, with separate coefficients for Xi < 0 and Xi > 0, with the coefficients estimated

on the Lee data, leading to

mI(x) =

{

0.52 + 0.76x− 2.29x2 + 5.66x3 − 5.87x4 + 2.09x5 if x < 0,

0.48 + 1.43x + 8.69x2 + 25.50x3 + 29.16x4 + 11.13x5 if x ≥ 0.
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In the second design the regression function is quadratic:

mII(x) =

{

3x2 ifx < 0,
4x2 ifx ≥ 0,

implying the data generating process is close to the point where the bandwidth hopt is infinite

(because the left and right limit of the second derivative are 6 and 8 respectively), and one may

expect substantial effect from the regularization.

We report results for five bandwidth choices in Table 2. The first two are infeasible: the

optimal bandwith h∗, which minimizes the expected squared error, and hopt, which minimizes

the asymptotic approximation to the expected squared error In addition we report the results

based on the proposed bandwidth ĥopt, the non-regularized bandwidth h̃opt, and the Ludwig-

Miller cross-validation bandwidth ĥcv. In Table 2 we present for the two designs, for the two

sample sizes and the five bandwidth choices the mean (MEAN) and standard deviation (STD)

of the bandwidth choices, and the bias (BIAS) and the root-mean-squared-error (RMSE) of the

estimator for τ . In the design inspired by the Lee data the optimal bandwidth h∗ is quite high.

This bandwidth choice outperforms the feasible ones in terms of RMSE quite substantially.

Among the feasible bandwidth choices the unregularized bandwidth choice performs slightly

better in terms of RMSE than the regularized one: both are substantially better than cross-

validation. The slight improvement of the unregularized bandwidth comes at the expense of

substantially more variation in the bandwidth choice across simulations: the standard deviation

of the bandwidth choice is higher by a factor four. This remains true even in the larger sample.

In the second design the regularized bandwidth choice substantially outperforms the other

feasible bandwidth choices. It has lower RMSE and substantially less variation.

7 Conclusion

In this paper we propose a fully data-driven, asymptotically optimal bandwidth choice for

regression discontinuity settings. This bandwidth choice can provide an objective starting

point for assessing sensitivity to bandwidth choice in such settings. The proposed procedure is

the first available procedure with optimality properties. The bandwidth selection procedures

commonly used in this literature are typically based on global measures, not tailored to the

specific features of the regression discontinuity setting. We compare our proposed bandwidth

selection procedure to the cross-validation procedure developed by Ludwig and Miller (2005),

which is tailored to the regression discontinuity setting, but which requires the researcher to

specify an additional tuning parameter. We find that our proposed method works well in
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realistic settings motivated by data previously analyzed by Lee (2008).

Appendix

To obtain the MSE expansions for the RD estimand, we first obtain the bias and variance estimates from
estimating a regression function at a boundary point. Fan and Gijbels (1992) derive the same claim but under
weaker assumptions (such as thin tailed kernels rather than compact kernels) and hence their proof is less
transparent and not easily generalizable to multiple dimensions and derivatives. The proof we outline is based
on Ruppert and Wand (1994) but since they only cursorily indicate the approach for a boundary point in multiple
dimensions, we provide a simple proof for our case.

Lemma A.1: (MSE for Estimation of a Regression Function at the Boundary)
Suppose (i) we have N pairs (Yi, Xi), independent and identically distributed, with Xi ≥ 0, (ii), m(x) = E[Yi|Xi =
x] is three times continuously differentiable, (iii), the density of Xi, f(x), is continuously differentiable at x = 0,
with f(0) > 0, (iv), the conditional variance σ2(x) = Var(Yi|Xi = x) is bounded, and continuous at x = 0, (v),

we have a kernel K : R
+ 7→ R, with K(u) = 0 for u ≥ u, and

R u

0
K(u)du = 1, and define Kh(u) = K(u/h)/h.

Define µ = m(0), and

(µ̂h, β̂h) = arg min
µ,β

N
X

i=1

(Yi − µ − β · Xi)
2 · Kh (Xi) .

Then:

E [ µ̂|X1, . . . , XN ] − µ = C
1/2
1 m(2)(0)h2 + op

`

h2
´

, (A.1)

V( µ̂|X1, . . . , XN) = C2
σ2(0)

f(c)Nh
+ op

„

1

Nh

«

, (A.2)

and

E
ˆ

(µ̂ − µ)2
˛

˛X1, . . . , XN

˜

= C1

“

m(2)(0)
”2

h4 + C2
σ2(0)

f(0)Nh
+ op

„

h4 +
1

Nh

«

, (A.3)

where the kernel-specific constants C1 and C2 are those given in Lemma 3.1.

Before proving Lemma A.1, we state and prove two preliminary results.

Lemma A.2: Define Fj = 1
N

PN
i=1 Kh(Xi)X

j
i . Under the assumptions in Lemma A.1, (i), for nonnegative

integer j,

Fj = hjf(0)νj + op(h
j) ≡ hj(F ∗

j + op(1)),

with νj =
R∞

0
tjK(t)dt and F ∗

j ≡ f(0)νj, and (ii), If j ≥ 1, Fj = op(h
j−1).

Proof: Fj is the average of independent and identically distributed random variables, so

Fj = E [Fj ] + Op

“

Var(Fj)
1/2
”

.

The mean of Fj is, using a change of variables from z to x = z/h,

E [Fj ] =

Z ∞

0

1

h
K
“ z

h

”

zjf(z)dz = hj

Z ∞

0

K (x)xjf(hx)dx

= hj

Z ∞

0

K (x)xjf(0)dx + hj+1

Z ∞

0

K (x)xj+1 f(hx) − f(0)

hx
dx = hjf(0)νj + O

“

hj+1
”

.

The variance of Fj can be bounded by

1

N
E

h

(Kh(Xi))
2 X2j

i

i

=
1

Nh2
E

"

„

K

„

Xi

h

««2

· X2j
i

#

=
1

Nh2

Z ∞

0

“

K
“ z

h

””2

· z2jf(z)dz.
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By a change of variables from z to x = z/h, this is equal to

h2j−1

N

Z ∞

0

(K (x))2 · x2jf(hx)dx = O

„

h2j−1

N

«

= o

 

„

hj

hN1/2

«2
!

= o

„

“

hj
”2
«

.

Hence

Fj = E [Fj ] + op

“

hj
”

= hjf(0)νj + op

“

hj
”

= hj ·
“

f(0)νj + op (1)
”

.

�

Lemma A.3: Let Gj = 1
N

PN
i=1 K2

h(Xi)X
j
i σ2(Xi). Under the assumptions from Lemma A.1,

Gj = hj−1σ2(0)f(0)πj (1 + op (1)) , with πj =

Z ∞

0

tjK2(t)dt.

Proof: This claim is proved in a manner exactly like Lemma A.1, here using in addition the differentiability of
the conditional variance function. �

Proof of Lemma A.1: Define R = [ι X ], where ι is a N -dimensional column of ones, define the diagonal
weight matrix W with (i, i)th element equal to Kh(Xi), and define e1 = (1 0)′. Then

m̂(0) = µ̂ = e′1(R
′WR)−1R′WY.

The conditional bias is B = E[m̂(0)|X1, . . . , XN ] − m(0). Note that E(m̂(0)|X) = e′1(R
′WR)−1R′WM where

M = (m(X1), . . . , m(XN))′. Let m(k)(x) denote the kth derivative of m(x) with respect to x. Using Assumption
(ii) in Lemma A.1, a Taylor expansion of m(Xi) yields:

m(Xi) = m(0) + m(1)(0)Xi +
1

2
m(2)(0)X2

i + Ti,

where

|Ti| ≤ sup
x

m(3)(x) · X3
i .

Thus we can write the vector M as

M = R

„

m(0)

m(1)(0)

«

+ S + T.

where the vector S has ith element equal to Si = m(2)(0)X2
i /2, and the vector T has typical element Ti. Therefore

the bias can be written as

B = e′1(R
′WR)−1R′WM − m(0) = e′1(R

′WR)−1R′W (S + T ).

Using Lemma A.2 we have

„

1

N
R′WR

«−1

=

„

F0 F1

F1 F2

«−1

=
1

F0F2 − F 2
1

„

F2 −F1

−F1 F0

«

=

0

@

F∗

2

F∗

0
F∗

2
−(F∗

1
)2

+ op (1) − 1
h

“

F∗

1

F∗

0
F∗

2
−(F∗

1
)2

+ op (1)
”

− 1
h

“

F∗

1

F∗

0
F∗

2
−(F∗

1
)2

+ op ((1)
”

1
h2

“

F∗

0

F∗

0
F∗

2
−(F∗

1
)2

+ op (1)
”

1

A

=

 

ν2

(ν0ν2−ν2
1
)f(c)

+ op (1) − ν1

(ν0ν2−ν2
1
)f(c)h

+ op

`

1
h

´

− ν1

(ν0ν2−ν2
1
)f(c)h

+ op

`

1
h

´

Op

`

1
h2

´

!

=

„

Op (1) Op

`

1
h

´

Op

`

( 1
h

´

Op

`

1
h2

´

«

.

Next
˛

˛

˛

˛

1

N
R′WT

˛

˛

˛

˛

= sup
x

m(3)(x) ·

„

F3

F4

«

=

„

op

`

h2
´

op

`

h3
´

«

.
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Thus

e′1(R
′WR)−1R′WT = Op(1) · op(h

2) + Op

„

1

h

«

· op(h
3) = op

`

h2
´

,

implying

B = e′1(R
′WR)−1R′WS + op(h

2).

Similarly:

1

N
(R′WS) =

1

2
m(2)(0)

„

1
N

PN
i=1 Kh(Xi)X

2
i

1
N

PN
i=1 Kh(Xi)X

3
i

«

=
1

2
m(2)(0)f(0)

„

ν2h
2 + op(h

2)
ν3h

3 + op(h
3)

«

.

Therefore:

B = e′1(R
′WR)−1R′WS + op(h

2) =
1

2
m(2)(c)

„

ν2
2 − ν3ν1

ν0ν2 − ν2
1

«

h2 + op(h
2).

This finishes the proof for the first part of the result in Lemma A.1, equation (A.1).
Next, we consider the expression for the conditional variance in (A.2).

V = V(m̂(0)|X1, . . . , XN ) = e′1(R
′WR)−1R′WΣWR(R′WR)−1e1,

where Σ is the diagonal matrix with (i, i)th element equal to σ2(Xi).
Consider the middle term

1

N
R′WΣWR =

„

1
N

P

i K2
h(Xi)σ

2(Xi)
1
N

P

i K2
h(Xi)Xiσ

2(Xi)
1
N

P

i K2
h(Xi)Xiσ

2(Xi)
1
n

P

i K2
h(Xi)X

2
i σ2(Xi)

«

=

„

G0 G1

G1 G2

«

.

Thus we have:

NV =
1

(F0F2 − F 2
1 )2

e′1

„

F2 −F1

−F1 F0

«„

G0 G1

G1 G2

«„

F2 −F1

−F1 F0

«

e1

=
F 2

2 G0 − 2F1F2G1 + F 2
1 G2

(F0F2 − F 2
1 )2

Applying lemmas A.1 and A.2 this leads to

V =
σ2(0)

f(0)Nh
·

„

ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1 )2

«

+ op

„

1

Nh

«

.

This finishes the proof for the statement in (A.2). The final result in (A.3) follows directly from the first two
results. �

Proof of Lemma 3.1: Applying Lemma A.1 to the N+ units with Xi ≥ c, implies that

E [ µ̂+ − µ+|X1, . . . , XN ] = C
1/2
1 m

(2)
+ (c)h2 + op

`

h2´ ,

and

V ( µ̂+ − µ+|X1, . . . , XN) = C2
σ2

+(c)

fX|X≥c(c)N+h
+ op

„

1

N+h

«

.

Because N+/N = pr(Xi ≥ c)+O(1/N), and fX|X≥c(x) = f(x)/Pr(Xi ≥ c) (and thus fX|X≥c(c) = f+(c)/Pr(Xi ≥
c)), it follows that

V ( µ̂+ − µ+|X1, . . . , XN) = C2
σ2

+(c)

f+(c)Nh
+ op

„

1

Nh

«

.

Conditional on X1, . . . , XN the covariance between µ̂+ and µ̂− is zero, and thus, combining the results from
applying Lemma A.1 also to the units with Xi < c, we find

E
ˆ

(τ̂RD − τRD)2
˛

˛X1, . . . , XN

˜

= E
ˆ

(µ̂+ − µ̂− − (µ̂+ − µ̂−))2
˛

˛X1, . . . , XN

˜

= E
ˆ

(µ̂+ − µ+)2
˛

˛X1, . . . , XN

˜

+ E
ˆ

(µ̂− − µ−)2
˛

˛X1, . . . , XN

˜
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−2 · E [ µ̂+ − µ+|X1, . . . , XN ] · E [ µ̂− − µ−|X1, . . . , XN ]

= C1 · h4 ·
“

m
(2)
+ (c) − m

(2)
− (c)

”2

+
C2

N · h
·

„

σ2
+(c)

f+(c)
+

σ2
−(c)

f−(c)

«

. + op

„

h4 +
1

N · h

«

,

proving the first result in Lemma 3.1.
For the second part of Lemma 3.1, solve

hopt = arg min
h

„

C1h
4
“

m
(2)
+ (c) − m

(2)
− (c)

”2

+ C2

„

σ2
+(c)

f+(c)Nh
+

σ2
−(c)

f−(c)Nh

««

,

which leads to

hopt =

„

C2

4C1

«1/5

0

B

@

σ2
+(c)

f+(c)
+

σ2
−

(c)

f
−

(c)
“

m
(2)
+ (c) − m

(2)
− (c)

”2

1

C

A

1/5

N−1/5.

�

Motivation for the Bandwidth Choice in Equation (4.11) in Step 2 of bandwidth algorithm
Fan and Gijbels (1996 Theorem 3.2) give an asymptotic approximation to the MSE for an estimator of the
ν-th derivative of a regression function at a boundary point, using a p-th order local polynomial (using the
notation in Fan and Gijbels). Specializing this to our case, with the boundary point c, a uniform one-sided
kernel K(t) = 10≤t≤1, and interest in the 2-nd derivative using a local quadratic approximation (ν = p = 2, their
MSE formula simplifies to

MSE =

„

1

9
K2

1

“

m
(3)
+ (c)

”2

h2 + 4K2
1

Nh5

σ2
+(c)

f+(c)

«

(1 + op(1))

Here

K1 =

Z

t3K∗(t)dt K2 =

Z

(K∗(t))2dt,

where

K∗(t) =

0

@

0
0
1

1

A

′0

@

µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

1

A

−10

@

1
t
t2

1

A · K(t), with µk =

Z

qkK(q)dq =
1

(k + 1)
,

so that

K∗(t) =

0

@

0
0
1

1

A

′0

@

1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

1

A

−10

@

1
t
t2

1

A · K(t) = (30− 180t + 180t2) · 1[0,1],

and therefore, K1 = 1.5 and K2 = 180. Thus

MSE =

„

1

4

“

m
(3)
+ (c)

”2

h2 + 720
1

Nh5

σ2
+(c)

f+(c)

«

(1 + op(1)).

Minimizing this over h leads to

h2,+ = 72001/7 ·

0

B

@

σ2
+(c)

f+(c)
“

m
(3)
+ (c)

”2

1

C

A

1/7

N
−1/7
+ ≈ 3.56 ·

0

B

@

σ2
+(c)

f+(c)
“

m
(3)
+ (c)

”2

1

C

A

1/7

N
−1/7
+ .

This is the expression in the text for h2,+ except for the addition of the 0.01 term that ensures the necessary
properties if the estimate of m(3)(c) converges to zero. �

Proof of Theorem 4.1: Before directly proving the three claims in the theorem, we make some preliminary
observations. Write

hopt = Copt · N
−1/5, with Copt = CK ·

0

B

B

@

2σ2(c)

f(c) ·

„

“

m
(2)
+ (c) − m

(2)
− (c)

”2
«

1

C

C

A

1/5

,
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and

ĥopt = Ĉopt · N
−1/5, with Ĉopt = CK ·

0

B

B

@

2σ̂2(c)

f̂(c) ·

„

“

m̂
(2)
+ (c) − m̂

(2)
− (c) + r̂+ + r̂−

”2
«

1

C

C

A

1/5

.

First we show that the various estimates of the functionals in Ĉopt, σ̂2(c), f̂(c), m̂
(2)
+ (c) and m̂

(2)
− (c) converge

to their counterparts in Copt, σ2(c), f(c), m
(2)
+ (c) and m

(2)
− (c) Consider f̂(c). This is a histogram estimate of

density at c, with bandwidth h = CN−1/5. Hence f̂(c) is consistent for f(c) if f−(c) = f+(c) = f(c), if the left
and righthand limit are equal, and for (f−(c) + f+(c))/2 if they are different.
Next, consider σ̂2(c). Because it is based on a bandwidth h = C · N−1/5 that converges to zero, it is consistent
for σ2(c) if σ2

−(c) = σ2
+(c) = σ2(c). If the two limiting variances are different, σ̂2(c) is consistent for (σ2

−(c) ·
f−(c) + σ2

+(c) · f+(c))/(f+(c) + f−(c)).

Third, consider m̂
(2)
+ (c). This is a local quadratic estimate using a one sided uniform kernel. From Fan and

Gijbels (1996), Theorem 3.2, it follows that to guarantee consistency of m̂
(2)
+ (c) for m

(2)
+ (c) we need both

h2,+ = op(1) and
`

Nh5
2,+

´−1
= op(1). (A.4)

Let m3 be the probability limit of m̂(3)(c). This probability limit need not be equal to m(3)(c), but it will exist
under the assumptions in Theorem 4.1. As long as this probability limit differs from zero, then h2,+ = Op(N

−1/7),

so that the two conditions in (A.4) are satisfied and m̂
(2)
+ (c) is consistent for m

(2)
+ (c).

Fourth, consider r̂+ = 720σ̂2(c)/(N2,+h4
2,+). The numerator converges to 720σ̂2(c). The denominator is approx-

imately N2,+ ·h4
2,+ = (C ·N ·h2,+) ·C ·N−4/7 = C ·N2/7, so that the ratio is C ·N−2/7 = op(1). A similar result

holds for r̂−.
Now we turn to the statements in Theorem 4.1. We will prove (iii), then (iv), and then (i) and (ii). First consider

(iii). If m
(2)
+ (c)−m

(2)
− (c) differs from zero, then Copt is finite. Moreover, in that case (m̂

(2)
+ (c)−m̂

(2)
− (c))2+r̂++r̂−

converges to (m̂
(2)
+ (c) − m̂

(2)
− (c))2, and Ĉopt converges to Copt. These two implications in turn lead to the result

that (ĥopt − hopt)/hopt = (Ĉopt − Copt)/Copt = op(1), finishing the proof for (iii).
Next, we prove (iv). Because hopt = Copt · N

−1/5, it follows that

MSE (hopt) = AMSE (hopt) + o

„

h4
opt +

1

N · hopt

«

= AMSE (hopt) + o
“

N−4/5
”

.

Because ĥopt = (Ĉopt/Copt) · CoptN
−1/5, and Ĉopt/Copt → 1 it follows that

MSE
“

ĥopt

”

= AMSE
“

ĥopt

”

+ o
“

N−4/5
”

.

Therefore

N4/5 ·
“

MSE
“

ĥopt

”

− MSE (hopt)
”

= N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

+ op(1),

and

MSE
“

ĥopt

”

− MSE (hopt)

MSE (hopt)
=

N4/5 ·
“

MSE
“

ĥopt

”

− MSE (hopt)
”

N4/5 · MSE (hopt)

=
N4/5 ·

“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

+ op(1)

N4/5 · AMSE (hopt) + op(1)
.

=
N4/5 ·

“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

N4/5 · AMSE (hopt)
+ op(1).

Because N4/5 ·AMSE(hopt) converges to a nonzero constant, all that is left to prove in order to establish (iii) is
that

N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

= op(1). (A.5)
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Substituting in, we have

N4/5 ·
“

AMSE
“

ĥopt

”

− AMSE (hopt)
”

= C1·
“

m
(2)
+ (c) − m

(2)
− (c)

”2

·
“

(N1/5hopt)
4 − N1/5ĥopt)

4
”

+

 

C2

N1/5 · hopt
−

C2

N1/5 · ĥopt

!

·

„

σ2
+(c)

f+(c)
+

σ2
−(c)

f−(c)

«

= op(1),

because N1/5hopt − N1/5ĥopt = Copt − Ĉopt = op(1), so that A.5 holds, and therefore (iv) is proven.
Now we turn to (ii). Under the conditions for (ii), ĥopt = ĈoptN

−1/5, with Ĉopt → Copt, a nonzero constant.
Then Lemma 3.1 implies that MSE(ĥopt) is Op(ĥ4

opt + N−1ĥ−1
opt) = Op(N−4/5 so that τ̂RD − τRD = Op(N−2/5.

Finally, consider (i). If Assumption 3.6 holds, then τ̂RD − τRD = Op(N
−2/5), and the result holds. Now

suppose Assumption 3.6 does not hold and m
(2)
+ (c) − m

(2)
+ (c) = 0. Because h2,+ = CN−1/7, it follows that

r+ = CN−1h−4 = CN−3/7 (with each time different constants C), it follows that ĥopt = C(N3/7)1/5N−1/5 =
CN−4/35, so that the MSE(h) = CN−24/35 + C̃N−31/35 = CN−16/35 (note that the leading bias term is now
O(h3) so that the square of the bias is O(h6) = O(N−24/25)) and thus τ̂RD − τRD = Op(N

−12/35). �
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Table 1: Lee Data: RD estimates and bandwidths

Procedure h τ̂RD (s.e.)

ĥopt 0.2649 0.0782 0.0083

h̃opt (no regularization) 0.2892 0.0798 0.0079

ĥcv 0.2231 0.0754 0.0090

Linear global 0.1182 0.0065
Quadratic global 0.0519 0.0088
Cubic global 0.1115 0.0136

Table 2: Simulation results

N=100 N=500

ĥ τ̂RD ĥ τ̂RD

MEAN STD BIAS RMSE MEAN STD BIAS RMSE

Design I
h∗ 1.16 – 0.03 0.12 0.89 – 0.02 0.06

hopt 0.28 – 0.03 0.20 0.21 – 0.03 0.10

ĥopt 0.43 0.12 0.04 0.18 0.44 0.12 0.04 0.08

h̃opt 0.65 0.48 0.04 0.17 0.69 0.63 0.04 0.08

ĥcv 0.90 0.81 0.03 0.22 0.41 0.45 0.03 0.10

Design II
h∗ 0.57 – 0.04 0.15 0.49 – 0.01 0.07

hopt 0.74 – 0.11 0.18 0.54 – 0.03 0.07

ĥopt 0.43 0.12 -0.00 0.18 0.42 0.10 -0.01 0.08

ĥnoreg 0.65 0.55 0.06 0.21 0.62 0.45 0.05 0.14

ĥcv 0.23 0.09 -0.03 0.25 0.20 0.03 -0.04 0.11
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Fig 1: Density for Forcing Variable
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Fig 2: Regression Function for Margin
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