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1. Introduction 

 

Foreign exchange markets as well as other financial markets are characterized by a number of 

striking ubiquitous time series features. Most prominently, (log) exchange rates seem to be non-

stationary while their first differences are stationary. More precisely, unit-root tests are typically 

unable to reject the  null hypothesis of a first-order autoregressive process with a coefficient equal to 

unity. This finding squares with the well-known result of Meese and Rogoff (1983) that random walk 

forecasts produce a lower mean-squared error in out-of-sample prediction than reduced-form 

structural models of macroeconomic fundamentals. It has been argued that these findings can be 

explained by speculative efficiency of foreign exchange markets, which simply means one interprets 

the foreign exchange market as an informationally efficient market in the sense of the Efficient Market 

Hypothesis. 

 

While from this perspective the unit-root property may not be viewed as a conundrum, other well-

known features have defied straightforward explanations until recently. The most pervasive ones are 

the fat-tail property of relative price changes and the clustering of volatility in these time series. 

Traces of these features are easily recognizable in all records of high-frequency data (probably up to 

weekly frequency) of foreign exchange markets (to our knowledge, without any known exception). 

The fat-tail property implies that the unconditional distribution of daily returns (as well as those of 

higher and somewhat lower frequency) has more probability mass in the tails and the center than the 

standard Normal distribution. This also means that extreme changes occur more often than would be 

expected under the assumption of Normality of relative daily price changes. Volatility clustering 

means that periods of quiescence and turbulence tend to cluster together. Hence, the volatility 

(conditional variance) of exchange rate changes is not homogeneous over time, but is itself subject to 

temporal variation. 

 

Explanations of these stylized facts have been elusive until very recently. Perhaps, the silence of 

economic theory on this issue is not too surprising given that the above regularities are features of 

time series as a whole and, hence, could only be explained by dynamic models of the evolution of 

the trading process in the pertinent market. From the viewpoint of informational efficiency, the 

characteristics of returns would, of course, have to be explained by similar characteristics of the 

news arrival process, but due to the unobservability of the later, this hypothesis can hardly be 

subjected to econometric scrutiny. As an alternative, some authors have recently argued that fat tails 

and clustered volatility can be obtained as a result of interactions of heterogeneous economic agents. 

Examples of this emergent literature include Lux and Marchesi (1999, 2000), Chen, Lux and 

Marchesi (2001), Kirman and Teyssiere (2001), Gaunersdorfer and Hommes (2000), Chiarella and 

He (2001), Iori (2002) and Bornholdt (2001). Lux and Marchesi, Gaunersdorfer and Hommes, and 

Chiarella and He have models of fundamentalist - chartist interaction in financial markets which give 
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rise to realistic behavior of the resulting time series (in terms of the above stylized facts). In Lux and 

Marchesi and Gaunersdorfer and Hommes, the authors try to provide some hints of general 

mechanisms that could generate these time series properties irrespective of the details of their 

exemplary models. In the former case, it is a critical behavior of the dynamics in the vicinity of a 

continuum of equilibria with an indeterminate composition of the population in terms of strategies 

pursued by individuals. Gaunersdorfer and Hommes get similar dynamics from a model with co-

existing attractors in which noise leads to switches between different states. Still different mechanisms 

prevail in Iori (2002) and Bornholdt (2001) who use lattice-based structures for modeling the 

interactions among traders. Interestingly, a recent paper by Arifovic and Gencay (2000) on an 

artificial currency market with genetic learning of strategies also suggests emergence of realistic 

features of the resulting exchange rate dynamics (cf. Fig. 1).  However, they do not provide a 

detailed analysis concerning the above properties. One of the aims of this paper is to fill this gap. In 

particular, we will try to quantitatively assess the degree of fat tailedness and volatility clustering this 

model generates. We are also interested in the sensitivity of these quantitative measures with respect 

to key parameters of the model. To get an impression of the sensitivity with respect to parameter 

variations, we will try to figure out how the time series properties depend on the genetic algorithm 

parameter and the number of agents populating the market (as will probably become clear in the 

presentation of the model, the values of the few economic variables of the model are of lesser 

importance in this respect). We then relate our findings to those obtained for other models of artificial 

financial markets and try to provide an explanation for the crucial importance of the number of 

individuals for the qualitative outcome of the model.  
 
Our analysis proceeds in the following steps: sec. 2 will introduce the underlying model of the 

foreign exchange market, the well-known Kareken-Wallace two-country overlapping generations 

model. Sec. 3 gives details on the genetic algorithms which we apply to model the learning of our 

agents. In sec. 4, we review the statistics used for assessing how realistic the model’s output is. Sec. 

5 presents the results of extensive Monte Carlo work, and sec. 6 tries to provide an explanation for 

the surprising behavior we find in the case of a very large population. Sec. 7 concludes. 

 

Fig. 1 about here 

 

2. The Kareken and Wallace OLG Economy 

  

As a version of the Kareken and Wallace (1981) two country model, the underlying economic 

structure is extremely simple: at each date t, one-half of the entire population is replaced by a new 

generation (the young), while the remaining members are in the second and final period of their lives 

(the old) and will be replaced in the next period by another young generation. Each agent is endowed 

with w1 units of a homogeneous good in its first period and with w2 units in the second period of its 
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live. There is neither production nor inheritance of goods. Intertemporal consumption smoothing can 

be achieved via money holdings of currency of the home and foreign country.  

 

With identical preferences of all agents, U(ci(t), ci(t+1)), their consumption plans and money 

demand are derived from 

 

(1)   max   U(ci(t), ci(t+1))  
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With ci(t), mi,1(t) and mi,2(t): consumption and money holdings of agent i (i=1,..., N) at time t, w1 

and w2 the homogeneous endowment levels, and p1(t) and p2(t) the price levels in both countries at 

time t. Note that with this setup, it even does not matter, how many of the agents are citizens of 

countries 1 or 2 as their economic decisions are not affected by their geographic location. 

 

Assuming that nominal money supply H1 and H2, is constant, and denoting by si(t) overall ‘savings’ 

of individual i, the price levels at time t are determined by: 
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The exchange rate, e(t), between both countries is, then, obtained as e(t) = .
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It is straightforward to spell out some results on possible equilibria (steady states) of this model. 

Using ci(t) and fi(t) as choice variables of our agents, it is immediately obvious that a stationary 

solution requires the rates of returns on both currencies to be equal, i.e. .
)1t(p

)t(p
)1t(p

)t(p

2

2

1

1
+

=
+

 

 

Simple inspection shows that such a steady state has the following properties: 

 

(1) the exchange rate is constant over time: e(t+1) = e(t) = e*. However, the level of the 

exchange rate in equilibrium, e*, is indeterminate and may be any value in the half-line, e* ∈ (0,∞). 
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(2) Given the equality of returns form both currencies, the equilibrium composition of each 

agent’s portfolio is indeterminate as well and fi*, therefore, might assume any admissible value fi* 

∈ [0,1]. Note that we do not have to assume identical portfolio choices of the agents in 

equilibrium. Any constant distribution of the fi*’s over generations would be consistent with 

constant rates of returns and a constant exchange rate. We could even allow for certain changes of 

the distribution of the fi*s: equilibrium would still prevail as long as the mean value of their 

distributions remains the same over time. 

(3) Since the rates of returns from both assets are identical in equilibrium, optimal consumption 

plans are independent from the portfolio composition. With a well-behaved utility function, utility 

maximizing choice ci* will typically be unique and identical for all individuals with the same utility 

function and endowment structure. For example, with utility functions Ui =  ci(t) ci(t+1) and 

constant money supply in both countries, rates of return would be equal to one and ci* would be 

0.5(w1 + w2) for all individuals.  

 

The non-uniqueness of the equilibrium exchange rate in this type of model derives from the absence 

of typical macroeconomic fundamentals of monetary models. In view of the evidence on unit-roots in 

empirical data, this feature has been emphasized as an advantage of their model by Kareken and 

Wallace One could indeed imagine that added random fluctuations could easily produce a unit-root 

dynamics, since random disturbances could lead to a random motion of the exchange rate along the 

continuum of possible equilibria (every time, the equilibrium is distorted by random shocks, the 

exchange rate would settle at a new equilibrium). However, non-uniqueness of equilibria also raises 

the questions of selection of equilibria and coordination of agents. These questions have been taken 

up first by Sargent (1993) who modeled learning via stochastic approximation algorithms. Later on 

Arifovic (1996) considered GA learning in the Kareken–Wallace framework. Looking at the 

evolution of returns instead of the level of the exchange rate Arifovic and Gencay (2000)  recovered 

realistic features in the continuing fluctuations of the resulting dynamics. 

 

 

3. Genetic Algorithm Learning 

 

Genetic algorithms have been introduced by Holland (1975) as a stochastic search algorithm for 

numerical optimization. This approach uses operations similar to genetic processes of biological 

organisms to develop better solutions of an optimization problem from an existing ‘population’ of 

randomly initiated candidate solutions. Typically, the proposed solutions have been encoded in 

strings (chromosomes) using a binary alphabet (see Dawid, 1999 for a general introduction). This is 

also the structure of the GAs applied in Arifovic and Gencay (2000). Each individual’s decisions are 

encoded in a binary string of length l=30, whose first twenty elements encode first-period 

consumption and whose remaining ten entries encode the fraction of currency one in his portfolio.1 

                                                                 
1 Choosing l = 30 with substrings of twenty and ten bits, respectively, we closely  followed Arifovic (1996) and 
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With ai,t
k denoting the value at the k-th position of the string (0 or 1), the binary string is translated 

into a real-valued number in the following way: 
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where K1 and K2 are normalizing constants to restrict the possible real values to a predetermined 

admissible interval.  

 

In order to have fi(t) ∈ [0,1], K2 is set equal to K2 = 210 – 1, while ci(t) should be within the 

interval [0,w1] to guarantee viable consumption plans. With w1 = 10 in Arifovic and Gencay’s 

simulations, this amounts to K1 = 
10

1220 −
. 

 

The overlapping generations structure of the model implies an overlapping genetic algorithms 

structure of the evolutionary process. After each period, half of the population members have 

completed their life cycle. With the resulting consumption in their old age their achieved fitness 

(utility) can be determined and used for the genetic creation of a new pool of agents entering the 

economy as the young generation of the following period. 

 

The genetic operations applied in this step are the following: 

 

(1) Reproduction: from the pool of old individuals, copies are selected (with replacement) with 

probabilities depending on their relative fitness, i.e. on 
∑
i

i

i
U

U
. 

Other algorithms for reproduction could be chosen as well: proposals in the GA literature include 

rank-based reproduction in which only the rank (not the absolute fitness) determines the probability 

of reproduction, and tournament selection, in which one repeatedly draws n1 (say 5) individuals from 

the pool and accepts the n2 < n1 (say 2) with highest utility among them for the new generation. 

Below we report only results for fitness-based reproduction. Experiments with rank-based and 

tournament selection have also been carried out yielding almost identical results. 

(2) Crossover: when the pool of potential new members of a generation is complete, genetic 

material is exchanged between them. The simplest way is randomly selecting a pair of parent strings 

and swapping genetic material (bits) between both chromosomes. Here, we again follow the 

algorithm used by Arifivic and Gencay in selecting randomly an integer in the range of [1,29] and 

constructing offspring by combining the genetic material from the left of this position from parent one 

                                                                                                                                                                                                           
Arifovic and Gencay (2000). However, like with most other details of the genetic algorithm implementation, 
variation of these numbers did not change the qualitative characteristics of the dynamics. 
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with that from the right-hand part of parent two and vice versa. Note that the cross-over operation 

is carried out with a certain probability pcross only, while with probability 1-pcross the offspring are 

unchanged copies of their parents. Alternative implementations of the crossover operator include 

two-point crossover (exchange of material in an interval between two randomly chosen bits) and 

uniform cross-over (the two offsprings are random recombinations of their parents’ bits). Again, the 

whole chain of our findings reported below seems to be robust with respect to the choice of the 

particular cross-over operator. 

(3) Mutation simply means that each position within a string is altered with a certain probability 

pmut to the other value of the binary alphabet. 

(4) Finally, the election operator tests newly generated offspring before letting them enter the 

population. In order to avoid a decrease of the fitness of the overall population due to the genetic 

alteration of strategies, only those among the offspring are accepted which are at least as fit as one of 

their parents. If after crossover and mutation offspring have lower fitness, exact copies of their 

parents are placed into the new generation. 

 

Beside these traditional binary coded GAs, we also experimented with real coded GAs in the 

present framework. A real coded GA simply uses a real representation of the choice variables. In 

our case, a real-coded chromosome would, therefore, consist of a pair {ci(t), fi(t)}. 

 

Mutatis mutandis, similar genetic operations can be defined for this variant (cf. Herrera et al., 

1998, for an overview on real-coded GAs). First, reproduction occurs in the same way as with 

binary GAs. As for cross-over, a number of alternative mechanisms have been proposed in the 

literature. Here, we follow Eshelman and Shaffer (1993) in picking new choice variables which are 

uniformly and independently drawn from an interval covering the pertinent values of the parents’ 
chromosome. To illustrate let )}t(c),t(cmax{c BA= , )}t(c),t(cmin{c BA= , and ccd c −=  

with cA(t) and cB(t) consumption choices of parents i = A, B. Then, the first-period consumption of 

offsprings is determined by uniform random draws from [c - γ dc, c  + γdc] . A similar operation 

yields the new portfolio fractions of the offsprings. Note that γ is a predetermined value that allows 

for some ‘experimentation’ within regions not covered by the genetic material of the parents. Its role 

is also to compensate for the drift towards the mean of the admissible strategy space from a 

crossover operator with γ = 0. Herrera et al. (1998) show that this algorithm has better performance 

on some test problems than many alternatives. Mutation with real variables is done by using Normal 

random variables with mean zero and small variance to slightly change the prevailing choice variables. 

Election, finally, occurs in the same way as with binary coding.2 
                                                                 
2 On a first view, the real coded GAs seem to be a much more natural way to deal with any real-valued problem 
than binary GAs. However, good reasons are given in the literature to actually prefer binary coding in many 
applications. In particular, although at first view GAs seem to process only the particular chromosomes within the 
population, they actually allow for a parallel processing of many different parts of alternative solutions. This 
might be sensed by considering the following example: the binary coded values for 0 and 4, i.e. 000 and 100, have 
two – thirds of their genetic material in common, so that it is ‘easy’ for the genetic operations to switch from one 
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4. Empirical Benchmarks 

 

To see whether our foreign exchange market populated by genetically learning overlapping 

generations has realistic time series properties we use a battery of statistical tests. 

 

(i) Unit root tests: a realistic market should yield a exchange rate dynamics which appears to be 

close to a random walk. We, therefore, perform typical tests for the presence of a unit root in our 

synthetic time series using the standard Dickey Fuller (DF) and Augmented Dickey Fuller (ADF) 

tests. The underlying data are logs of the exchange rate since from the symmetric construction of the 

Kareken-Wallace model we would also expect symmetry of relative changes. For the ADF test, we 

also included the first three differences as independent variables.  

(ii) Fat-tail property: the recent econometric literature has provided a very sharp characterization 

of this feature. In particular, it could be shown that the decline of the probability mass in the tails 

follows a power-law with a coefficient that is astonishingly uniform across markets. This amounts to 

large returns (rt) following a relationship: α−> x~)xr.(obPr t  with the so-called ‘tail index’ α 

hovering within the interval between 2 and 5. Estimation of α using conditional maximum likelihood is 

straightforward, and a wealth of supporting evidence can be found in De Vries (1994) and 

Dacorogna et al. (2001). As a typical example, estimation of the tail index for the DM/U.S.$ 

exchange rate with daily data ranging from 1974 to 1998 yields an estimate α = 3.69 (95% 

confidence interval: 3.38 to 4.10) when using the five percent largest absolute returns. The review by 

De Vries and the monograph by Dacorogna et al. give similar statistics for other currencies. 

(iii) Volatility clustering: this feature can be characterized by autoregressive dependence in 

various measures of volatility. Here we also have a very precise and uniform picture from almost all 

available data sets. In particular, it has been found that the dependence in volatility measures like 

squared or absolute returns extends over very long time horizons and exhibits a hyperbolic decay of 

the autocovariance function: κ−
∆− ∆t~]xx[E ttt  with xt: squared or absolute returns. This slow 

decay is in contrast to fast (exponential) decline and is also denoted as long-term dependence. Like 

with the fat-tail property, quantitative measurements of the decay parameter κ give very uniform 

results across markets. As a benchmark for our later analysis of simulated data, we give estimates 

from the frequently used periodogram regression technique due to Geweke and Porter-Hudak 

(1983). These authors device a method for estimation the parameter of fractional differentiation, 

denoted d in the following, which is related to κ by: κ = 1 - 2d. An estimate of d significantly larger 

than 0 would show evidence for the long-memory property. Inability of rejection of d = 0 would 

indicate absence of long-term dependence. For the sake of illustration, daily DM/$ data yield (95% 

                                                                                                                                                                                                           
to the other. With real-coded GAs, 0 and 4 have nothing in common and a large succession of crossovers and 
mutations is needed to move from one to the other. 
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confidence intervals in brackets): raw returns: d = 0.07 (-0.09, 0.23); squared returns: d = 0.24 

(0.08, 0.40), absolute returns: 0.29 (0.13, 0.45). Again, a glance at, for example, Dacorogna et al. 

shows that these figures are quite representative for foreign exchange data (as well as for financial 

data in general). The inability of rejection of d = 0 for raw returns, of course, squares well with the 

unit-root property of log exchange rates. The finding of a higher level of persistence in absolute 

returns rather than squared returns is also quite universal and has by itself motivated a large body of 

recent econometric literature. 

 

 

5. Pseudo-Empirical Results 

 

Tables 1 to 6 present the results of a large number of experiments with various versions of our 

artificial economy. Tables 1 to 3 show results for binary coded GAs, while tables 4 to 6 are 

concerned with simulations using real coded GAs.  

 

Our starting point was the scenario underlying the simulations by Arifovic and Gencay (2000). The 

particular Kareken-Wallace economy in this paper had the following properties: all individuals share 

a common utility function Ui = ci(t) ci(t+1), endowments are w1 = 10, w2 = 4, and nominal money 

supplies are H1 = 3000, H2 = 3600. It can immediately be seen that this leads to a steady state 

consumption level of c* = c(t) = c(t+1) = 7 and steady-state savings s* = s(t) = s(t+1) = 3. Prima 

facie, it appears unlikely that changes in these economic variables should yield greatly different 

results (as long as endowments would lead to positive savings). Experimentation with different 

parameters and alternative utility functions (e.g., logarithmic utility) confirmed this conjecture. 

 

In fact, our interest here is more (i) in the sensitivity with respect to the details of the learning 

dynamics, and (ii) the influence of the number of agents. Our interest in the effects of the size of the 

market derives from some puzzling earlier findings. Namely, a number of studies have revealed that 

existing multi-agent models of financial markets loose their realistic time series properties when 

increasing the number of agents (Egenter et al., 1999; Yeh, 2001, Challet and Marsili, 2002). Since 

published work on artificial markets with GA learning has used only a very limited number of agents, 

typically below 100, it seems worthwhile to explore the behavior of larger economies. 

 

Let us start with the effects of varying the GA’s parameter settings. From the two parameters of 

the binary genetic operations, pmut and pcross, we found the first to be the more interesting one in that 

variation of pcross only led to slight variations of the statistical properties. In a first set of experiments 

we, therefore, fixed pcross at 0.6 and also fixed the population size at the level used in Arifovic and 

Gencay, N = 60 (i.e., 30 individuals in each generation). In order to see the effects of variation of 

pmut, we varied this parameter from 0.005 to 0.05 (with increments of 0.005) and applied the 

statistical analyses outlined above to 100 samples each containing 2,000 data points (a length of the 
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data series comparable to many empirical records). The 100 samples are taken as non-overlapping 

windows from a simulation continuing over 205,000 periods where the first 5,000 data points have 

been discarded to account for transient behavior. Minimum, median and maximum of the tail index 

estimates (for tail sizes of 2,5%, 5% and 10% of the data) are shown in Table 1, while the minimum, 

median and maximum of the estimates of d are given in the Table 2. Table 3, finally gives the median 

and range of estimates of the autoregressive parameter from the Dickey-Fuller and Augmented 

Dickey-Fuller test together with the frequencies of one-sided (in brackets: two-sided) rejection of 

the unit-root null under a 95% confidence level. Results are quite homogeneous with respect to our 

three stylized facts in so far as the behavior is most realistic for small values of pmut around 0.05 to 

0.01. In this region we have a high percentage of non-rejection of a unit root in log exchange rates 

(at least for the ADF test which corrects for short-run dynamics) together with median values of d 

close to their empirical counterparts. The median tail index estimates might appear somewhat too 

small, but are still within the range observed with empirical data. Fig. 1 illustrates that returns 

obtained with this setting of the GA parameters indeed do look very realistic and may be hard to 

distinguish from real-life records with the naked eye (at least, after, proper adjustment of the scale of 

the fluctuations). However, when increasing pmut beyond 0.02, rejection of a unit root in favour of a 

root smaller than unity occurs in all cases, the fractional differencing parameter for raw returns 

becomes negative (which is also a signature of mean reversion), and the temporal dependence in 

squared and absolute returns declines. Finally, the tail index becomes somewhat too high. 

 

Tables 1 to 3 about here 

 

In our second set of experiments, we then varied N keeping the mutation probability at the value 

0.01. Since the simulations become more time-consuming with increasing N, we restricted our 

investigation to 25 samples (i.e. a time series of overall length of 55,000 time steps for each 

parameter set). Here the changes are even more dramatic. When moving from small (N = 20) to 

very large markets (N = 10,000), we get an even larger drop of the autoregressive coefficient in the 

unit-root tests, highly negative d’s for raw returns and a total fading out of volatility clustering (the d’s 

of squared and absolute returns approaching zero). The tail index decreases and has median values 

below 2 for the maximum size of the market (N = 10,000). 

 

Before turning to explanations, let us look at the pertinent results for real-coded GA’s for which we 

also varied both the set-up of the mutation operator and the number of agents (Tables 4 to 6). Again, 

the parameters of the crossover operator are kept constant (uniform crossover as described in s. 3 

with a parameter γ = 0.2 was used). The mutation operator now has two parameters, the probability 

of its activation pmut and the variance of the Normal mutations, σmut. 

 

The upper and middle part of Tables 4 to 6 exhibit the effects of systematic variation of pmut and 

σmut. Again, 100 samples of 2,000 data points each have been used. Since markets with real-coded 
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GA’s need less computation time, we were able to use 100 subsamples when assessing the effects of 

market size and could also use a somewhat larger maximum size of N = 20,000. 

 

In broad harmony with the binary-coded case, realistic properties are obtained with small mutation 

probability and small variance of mutation. Nevertheless, certain differences are observed between 

the binary and real-coded cases: in particular, the DF and ADF tests are still unable to reject the unit 

root hypothesis in the majority of cases even with a relatively large mutation rate and a large number 

of traders. On the other hand, mean reverting tendencies are clearly observable in the estimates of 

the fractional differencing parameter for raw returns in these cases. It might be that the evolution of 

the system is simply very slow so that in many periods the slight variations in the exchange rate go 

through as a unit root process. In contrast to the binary case, in the real-coded one the two-sided 

test often yields more rejections than the one-sided test. The additional right-hand rejections may be 

related to the sudden bursts of activity visible in the upper part of Fig. 3. Overall, the much higher 

rate of rejection of the unit root hypothesis in the binary case might be due to the higher degree of 

stochasticity inherited from thirty instances of mutation (for every bit) instead of two instances only in 

the real-coded case. Some reflection, in fact, reveals that the values of the mutation probabilities can 

not be directly compared between the binary coded and real coded GAs. For example, a pmut = 

0.033 (per bit) for binary coded GAs implies that with chromosomes of thirty bits, almost every 

individual will undergo some mutation of its genetic material. This amounts to a much higher mutation 

rate within the population with pmut = 0.01 in the binary case than with 0.05 for real coded bits. 

Except for non-rejection of the unit root hypothesis,  the pattern of results is, in fact, almost the same 

as with binary GAs when increasing N. looking at the resulting time series, we find in both the real-

coded and binary coded case a tendency towards persistent and very regular cycles when increasing 

the number of agents (cf. Figs. 3 and 4). 

 

Tables 4 to 6 about here 

 

 

Besides this similarity in the results from both GA variants (and a number of alternative 

implementations of various operators) our experiments also show that we do not need all of the 

typical elements of the GA to arrive at these results. Essentially, the structure of the artificial economy 

remains unchanged if we dispense with both the selection and crossover operators. Mutation and 

election alone are capable of producing these patterns, but they are also crucial for their emergence 

(although selection and crossover tend to speed up convergence to regular oscillations). 

 

 

6.  Interpretation of Results 

 

What is the reason for this fading out of realistic time series properties with increasing mutation 
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probability and increasing number of agents? It is probably not too difficult to answer the first part of 

the question: A high mutation probability introduces a certain tendency of mean-revision of the choice 

parameters which is reflected in similar mean reversion of the exchange rate. For the sake of 

illustration, imagine a model with a mutation probability equal to 1 in the case of binary coded GAs 

(corresponding to a pmut = 1 together with a high variance of mutation in the real coded case). This 

would lead to a stationary random distribution of agent’s strategies. All deviations from the average 

would be corrected by the new random choice of the population in the next period and, hence, one 

gets a tendency of return to the mean values of the distribution of ci(t) and fi(t). Since these choice 

variables determine prices and the exchange rate, mean-reversion would also carry over to these 

variables as well. The higher the mutation rate, the higher the influence of this tendency. Higher pmut, 

therefore, leads to less persistence in exchange rates so that the exchange rate dynamics becomes 

stationary and unit roots can be rejected. This suspected change in the appearance of the time series 

is already well recognizable when comparing binary coded GAs with pmut = 0.01 and 0.05, 

respectively (cf. Fig. 2). While the former series (or parts of it) might be accepted as a random walk 

by the DF and ADF tests, the second surely will not. As a conclusion, we infer from these 

considerations that random experimentation with strategies has to be limited in order to get realistic 

appearance of the time series. 

 

Fig. 2 about here 

 

As to the number of agents, a glance at the time series resulting with different sizes of the market 

reveals some perplexing patterns (Figs. 3 and 4). What looks extremely unsystematic with a small 

market (N = 200), becomes much more regular when the market becomes lager and eventually 

evolves into an almost perfectly regular oscillatory motion of some ‘macroscopic’ variables (in 

particular, the exchange rate and the average fraction of domestic currency in the portfolio).3 On a 

close inspection, the short spikes in the exchange rate fluctuations in Fig. 3 are very similar to one 

half-cycle in Fig. 4. Such a regular pattern is puzzling at first view as it is the result of the evolving 

decisions of a very large ensemble of autonomous artificial agents. Keeping in mind that the quantity 

displayed in the middle part of Figs. 3 and 4 is a population average what these oscillations show is 

a systematic shift of the whole distribution of this variable within an heterogeneous ensemble of 

agents. To our knowledge nothing of a similar type of self-organizing patterns is known in multi-agent 

systems with GA learning in economics or other fields. A certain clue to the underlying mechanisms 

can be obtained through analysis of what happens in the case of a large economy (i.e., with the 

number of agents going to infinity). Noting that GAs are an adaptive adjustment scheme that drives 

the actual average behavior of the population towards the momentary optimum of the choice 

variables, the large economy case might be described via the resulting deterministic mean value 

                                                                 
3 We have chosen a higher mutation probability compared to our benchmark case in Fig. 4 since it both leads to a 
decrease of the amplitude of the oscillations and provides faster convergence to almost perfectly regular patterns. 
However, the trend to  emerging regular oscillations is also clearly visible in other simulations with either real-
coded or binary GAs. 
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dynamics of the choice variables. Unfortunately, the present dynamics is too complicated to derive 

explicit dynamics laws for the large economy limit.4 However, some heuristic considerations will 

reveal most of the important elements of our dynamics.  

 

Fig. 3 about here 

 

As an adaptive adjustment scheme, the genetic algorithm has at its intrinsic benchmark those values 

ci*(t) and fi*(t) which would have been optimal choices for the population at time t which inherits its 

genetic material to the generation born at time t+2.  

 

It is easy to see that for our utility function Ui = ci(t) ci(t+1) optimal behavior of individual i at time t 

would have been: 
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Via prices at period t+1, the optimal behavior of generation t also depends on the decisions of the 

next generation. The election operator, in fact, guarantees that the resulting new individuals accepted 

after selection, crossover and mutation are at least as good as their parents. For the portfolio 

component, this clearly implies )]t(f),t(f[)2t(f *
iii ∈+  while consumption might also overshoot its 

target, ci*(t) as long as the resulting new parameter set provides at least the utility level enjoyed by 

the parent individuals. Since in any out-of-equilibrium situation, the goal value for the fraction of 

domestic assets will be the same, 0 or 1, for all members of the population, in the large economy 
limit, the motion of the mean value )t(f  will follow a deterministic path towards these values as long 

as the pay-off differential from holding domestic or foreign currency does not change. 

 

Fig. 4 about here 

 

To see the source of the regular fluctuations, consider a stationary situation with homogenous 

choice variables ci(t) = ci(t-1) = c* and fi(t) = fi(t-1) = f0, where f0 might be any admissible value 

between 0 and 1. Arifovic (1996) has already emphasized that any such equilibrium of this GA 

economy is evolutionary unstable since any local disturbance (mutation) will be magnified by the 

                                                                 
4 Available analytical approaches to genetic algorithm dynamics consider simpler examples and are not applicable 
to the present model (e.g., Prügel-Benett, 1994, or Srinivar and Patnaik, 1996). 
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ensuing adjustments of the remaining members of the population. For the sake of the argument, 

assume that only one individual undergoes a mutation when the generation t+1 emerges from the 

genetic operations on generation t-1. Assume furthermore that this mutation amounts to an increase 

of the fraction of domestic money in the portfolio of this agent, while its consumption remains 

unchanged at the initial equilibrium level. Since this new strategy will have the same utility as its 

parents (because returns from holding either currency are initially identical), the election operator will 

allow this offspring to replace one of its parents. However, the presence of this mutant suffices to 

change the structure of returns for agents of generation t: instead of equal returns, they experience a 

higher pay-off from holding domestic money: 
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Although the differential might be very small, it suffices to make f* = 1 the dominant strategy. 

Hence, the random change from generation t-1 to generation t+1 induces a systematic shift into the 

same direction when generation t inherits its genetic material to generation t+2. Does it also lead to 

changes in the consumption behavior of generation t+2? Changes in the momentary optimal 

consumption level occur if the denominator in eq. (4.a) deviates from one. With consumption still 

equal to its steady state level at generations t and t+1, this denominator  amounts to 

)t(f1

)1t(f1
))t(f1(

)t(f

)1t(f
)t(f ii −

+−
−+

+
. Given our assumption, )t(f)1t(f >+ , it is easy to see that the 

denominator is > (<) 1 for individuals with fi(t) > (<) )t(f . It would, therefore, be optimal for the 

former to reduce first-period consumption, while the later would find it advantageous to increase it. 

However, since we have also assumed that all individuals share the same choice variable fi(t) = f0 = 
)t(f  at time t, the former consumption level c* would still be optimal for all generation t members as 

long as their portfolio choice remains unaffected by the genetic operations, so that isolated changes 

of ci(t) would not survive the election operator test. Note that these considerations apply only in the 

case of isolated genetic changes of either fi(t) or ci(t). Often both variables will be affected by the 

genetic processes. To see more generally, what kind of arbitrary combined genetic changes would 

survive in our scenario, we can take stock of the traditional concept of indifference curves. 

Accepting only offspring who are at least as fit as their parents, the election operator only allows 

those to enter the population whose choice variables positions them on the same indifference curve 

like their parents or a higher indifference curve. Consider the utility obtained by parent individual i: 
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The slope of an indifference curve is given by: 
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For R1(t) > R2(t) this gives: 
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This yields the parabolic shape of the indifference curves exhibited in Fig. 5. In the case of R1(t) < 

R2(t), the inequalities in eq. (8) are reversed and the indifference curve parabolas have the opposite 

orientation. In the present case, R1(t) > R2(t), it can be inferred from eq. (7), that higher utility can 

only be achieved if a higher fraction of domestic assets is chosen. If, however, this necessary 

condition for an improvement is met, a certain range of higher or lower consumption levels would be 

accepted by the election operator. As can be seen from Fig. 5, in the above situation in which 
)1t(f +  slightly exceeds )t(f , the spectrum of utility improving changes is slightly asymmetric with 

respect to consumption. Assuming that all initial consumption levels are close to c*, the pay-offs can 

be reduced to: 
)t(f1

)1t(f1
)t(R,

)t(f

)1t(f
)t(R 21 −

+−
=

+
= . According to the arguments given above, 

individuals with a below (above) average fraction of domestic money would, then,  
have )ww(5.0*c)())t(f(*c 21i +=<> . The expected direction of combined changes of ci and fi 

would, therefore, depend on the individual’s position within the distribution of the fi’s. For roughly 

half of the population on average somewhat higher consumption levels would pass the election 

operator, while for the other half of its members, the genetic operations would slightly favor a 

reduction in consumption. With a symmetric distribution of the fi’s, the expected macroscopic effect 

of induced changes of ci would be close to zero. With an asymmetric distribution, skewness would 

somewhat favor one or the other direction of changes, but since this is a third-order effect, one might 

expect it to be negligible. This conjecture is supported by our simulations which show no clear trend 

in the development of ci(t) over time. What can be observed, however, is that an increase of the 

number of agents leads to a reduction of the size of fluctuations of ci(t), cf. Figs. 3 and 4. 

 

With only small and rather unsystematic changes of ci(t), the systematic changes of the portfolio 

composition will dominate the dynamics. The attraction towards the extreme solutions will, then, be 

self-reinforcing leading to an ever increasing fraction of domestic assets in the upward part of the 

cycle. Since every new round of genetic breeding of a new cohort starts at a higher average level of fi 

compared to the previous period, the deterministic limit of the stochastic dynamics will also lead to a 

higher new average value two periods later compared to the period before. In the infinite population 

limit, this trend will continue until the entire population will have converged to fi(t) = 1. Although in 

this situation, all inherent tendencies of genetic changes come to a halt, the first mutation of an 

individual leading to an fi < 1 will destabilize this stationary state again and generate a systematic 
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downward trend which over time leads to a convergence of the whole population to fi(t) = 0. Here 

again, any mutation will exert a destabilizing tendency commencing the upward part of the cycle… 

and so on ad infinitum. Note that this endlessly repeating cycle should also somehow exist as a 

tendency in the finite population case (since what we observe in the large population case should 

correspond to the pure mean value dynamics). Of course, the cyclical development shown in Fig. 4 

would not be consistent with a unit root in log exchange rates (it is a clearly mean reverting process) 

and volatility clustering. In an sense, with a large population, the inherent randomness of the artificial 

economy gets lost and the measurable macroeconomic observables (pi(t), e(t)) become deterministic 

quantities. 

 

However, at least for very small populations, this inherent structure of the combined genetic and 

economic process seems to be entirely concealed by the random elements in the genetic processes 

on the level of the individual. In fact, the systematic tendencies worked out above will be subject to 

more random distortions with a small population size. An upward or downward tendency will be 

inverted as soon as the portfolio fraction of a new generation is not higher (lower) than that of the 

preceding one. It is the more likely that this random event happens the smaller the size of the 

population is. The apparently realistic time series characteristics result from situations where this 

happens with a very high probability within a few time steps. This explains why these more irregular 

dynamics with recurrent bursts of activity are only observed within a certain range of small numbers 

of agents. 

 

We end our attempts at providing intuitive explanations of the evolutionary dynamics of our model 

with some remarks on the dynamics of second moments. As can be seen from Fig. 4, even the 

standard deviations of our choice variables exhibit predictable systematic patterns over the cycle. In 

particular, both the standard deviation of first-period consumption and  the standard deviation of the 

fraction of domestic assets increase when one of the corner equilibria becomes unstable, remains 

relatively high during most of the motion to the opposite end of the parameter space and converges 

to zero when this new stationary solution is eventually approached. Note that this also implies that 

despite the near constancy of the mean value of ci(t), the dynamics is often characterized by a 

relatively wide range of individual choices. What happens is that after destabilization of an 

equilibrium, a broad range of choices of ci(t) and fi(t) gives higher utility (as can be inferred from the 

indifference curves in Fig. 5). Hence, many different types of mutations will be allowed to enter the 

population. The distribution of the choice variables spreads out and in the following, the whole 

population moves like a swarm from the left-hand side of the space of choice variables to its upper 

right-hand end (cf. Fig. 6). When the portfolio choices converge to a homogeneous situation fi(t) =1 

again, higher indifference curves can only be reached with consumption levels close to the steady 

state level c*. This leads to a decrease of the bandwidth of first-period consumption levels in the 

population. Eventually, the variability with respect to both choice variables shrinks to zero. Once all 

individuals are close to the utility-maximizing steady state levels (fi(t) = 1,  ci(t) = c*), a small 
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destabilizing mutation will lead to a sudden spread of the distribution of strategies and will set into 

motion a left-ward dynamics of the whole swarm of individuals. 

 

Figs. 5 and 6 about here 

 

 

7.  Conclusions  

 

Elaborating on the GA version of the Kareken-Wallace model introduced by Arifovic (1996) and 

Arifovic/Gencay (2000), we have analyzed both the potential and the limitations for this type of 

artificial open economy to generate realistic time series properties. As it turns out, the model can 

generate time series which very closely mimic the statistical characteristics of empirical data. The 

mechanism responsible for the emergence of these interesting dynamics seems to be similar to the 

one analyzed within a different context by Lux and Marchesi (1999): the model has a continuum of 

equilibria with an indeterminate distribution of strategies among agents (as has been argued above, 

any distribution of the fi would be admissible in equilibrium). With the stochasticity of the genetic 

process, there will always be distortions preventing the system from settling at any particular 

equilibrium. Because of the evolutionary instability of any distribution of strategies these random 

distortions will evoke self-amplifying tendencies which produce large price changes (fat tails) and 

volatility clustering. However, we also find that a small probability of mutation and a small number of 

agents are needed to get this realistic output for the exchange rate. With a large population, the 

destabilizing tendencies are so strong that the crucial choice variable, fi, bounces back and forth 

between the corners of the admissible parameter space.  This applies to both binary and real coded 

GAs. While the requirement of small mutation rates might be considered to be plausible and not too 

restrictive, having to restrict the population size to numbers below, say, N = 1000 is much more 

cumbersome. Real markets (in particular, the world-wide market for foreign exchange), surely have 

more participants so that N < 1000 seems an unrealistic requirement. However, this disappointing 

finding is shared by other multi-agent models (cf. Egenter et al., 1999, Yeh, 2001, Challet and 

Marsili, 2002). Essentially, with high N, a law of large numbers becomes effective even in models 

with a large number of available strategies and the randomness from the interaction between the 

microscopic choice of strategies vanishes. While in certain models, prices converge to fundamental 

values in the large economy limit (Egenter et al., 1999), the absence of fundamentals in the Kareken-

Wallace model appears to be responsible for the oscillations between extreme choices.  

 

How could one overcome these uncomfortable findings and save the ‘nice’ results obtained with 

smaller populations? One possibility would be to allow for more coherence among individuals via 

social sharing of information. Allowing for groups of agents to form, we would get a smaller effective 

number of agents. As an alternative, endogenous development of wealth could lead to some agents 

exerting more influence on the market outcome than others (of course, this feature would be 
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particularly difficult to incorporate into the present simple model). This would presumable also 

change the outcome in a way that differs from the atomistic case analyzed above. Exploring these 

avenues is left for future research. 
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Table 1: Variation of Tail Index Estimate from Binary Coded GAs 
       

Varying mutation probability, constant population size N= 60 
 

tail size 2.5 % tail size 5% tail size 10 % 
pmut min median max min median max min  median max 
0.005 1.37 2.82 5.07 1.20 2.16 4.81 1.15 1.92 5.37 
0.010 1.93 3.36 5.06 1.35 2.81 3.81 1.34 2.21 3.06 
0.015 2.16 3.90 5.87 1.76 3.25 4.38 1.60 2.55 3.36 
0.020 1.88 4.14 6.30 2.15 3.51 4.80 2.13 2.83 3.75 
0.025 2.60 4.45 6.87 2.60 3.81 5.47 2.31 3.04 3.72 
0.030 3.25 4.75 7.00 3.24 4.11 5.27 2.79 3.34 3.90 
0.035 2.30 5.15 7.64 2.52 4.25 5.34 2.80 3.46 4.01 
0.040 3.50 5.13 8.38 3.23 4.42 6.64 2.85 3.61 4.40 
0.045 3.50 5.09 7.37 3.48 4.46 6.36 3.04 3.71 4.52 
0.050 3.88 5.20 7.62 3.56 4.53 5.70 3.10 3.76 5.01 

                    
          

Constant mutation probability pmut = 0.01, varying population size 
 

tail size 2.5 % tail size 5% tail size 10 % 
N min median max  min median max min median max 
20 1.73 3.29 5.43 1.38 2.64 4.67 1.30 2.26 9.17 
100 2.76 3.77 4.56 2.12 3.17 3.85 2.02 2.49 2.79 
200 2.29 4.19 5.67 2.26 3.54 4.64 2.16 2.68 3.16 
1000 1.87 3.22 5.54 1.86 3.15 4.58 1.85 2.80 3.81 
2000 1.46 2.64 4.70 1.60 2.74 4.17 1.78 2.67 3.74 
4000 1.19 1.94 3.78 1.52 1.92 3.53 1.56 2.20 3.21 
10000 1.44 1.92 3.27 1.28 1.82 3.22 1.35 1.93 2.84 

Note: Table 1 shows estimates of the parameter á from the asymptotic power-law behavior of large returns: 
α−> x~)xr.(obPr t . We follow the literature in applying a conditional maximum likelihood estimator 

with a prespecified size of the tail region. To explore the sensitivity of the tail index estimates with respect 
to the choice of the cut-off, we tried tail regions of 2.5%, 5% and 10%. Empirical estimates usually show 
a certain tendency of increasing tail indices when the tail size is reduced. For variation of the mutation 
probability, the minimum, median and maximum over 100 samples with 2,000 data points each are 
shown. For variation of the number of agents, only 25 samples were used due to the increase in 
computation time with increasing number of GA chromosomes. 
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Table 2: Variation of Index of Fractional Differentiation from Binary Coded GAs 
 

Varying mutation probability, constant population size N= 60 
raw squared absolute returns 

pmut min median max min median max min  median max 
0.005 -1.05 -0.03 0.21 -0.23 0.25 0.76 -0.09 0.36 0.81 
0.010 -0.95 -0.05 0.24 -0.04 0.31 0.77 0.15 0.42 0.78 
0.015 -0.61 -0.12 0.29 0.02 0.34 0.81 0.11 0.43 0.88 
0.020 -0.46 -0.17 0.07 -0.11 0.30 0.72 0.04 0.38 0.76 
0.025 -0.57 -0.25 0.03 -0.08 0.25 0.82 -0.09 0.35 0.73 
0.030 -0.58 -0.30 0.07 -0.11 0.23 0.51 -0.07 0.29 0.60 
0.035 -0.66 -0.37 -0.07 -0.10 0.22 0.50 -0.09 0.28 0.47 
0.040 -0.73 -0.43 -0.15 -0.06 0.19 0.44 -0.13 0.22 0.48 
0.045 -0.76 -0.46 -0.14 -0.12 0.19 0.49 -0.07 0.22 0.50 
0.050 -0.84 -0.51 -0.18 -0.13 0.15 0.47 -0.10 0.18 0.52 

                    
          

Constant mutation probability pmut = 0.01, varying population size 
raw squared absolute returns 

N min median max  min median max min median max 
20 -0.95 -0.02 0.32 -0.01 0.21 0.80 0.04 0.33 0.90 
100 -0.31 -0.06 0.27 -0.03 0.30 0.79 0.10 0.40 0.73 
200 -0.51 -0.18 0.04 0.09 0.30 0.79 0.20 0.35 0.66 
1000 -0.76 -0.56 -0.32 -0.12 0.13 0.34 0.01 0.16 0.34 
2000 -0.92 -0.61 -0.11 -0.15 0.05 0.27 -0.06 0.07 0.27 
4000 -0.98 -0.48 -0.20 -0.24 0.04 0.33 -0.20 0.07 0.36 
10000 -0.85 -0.40 -0.11 -0.23 0.01 0.13 -0.12 0.04 0.22 

Note: Table 2 shows estimates of the parameter d from the hyperbolic decay of auto-covariances for 

variables with long-term dependence: 1d2
ttt t~]xx[E −

∆− ∆ . We estimate d via the log periodogram 

regression technique proposed by Geweke and Porter-Hudak (1983). The underlying data are the same 
as in Table 1. For variation of the mutation probability, the minimum, median and maximum over 100 
samples with 2,000 data points each are shown. For variation of the number of agents, only 25 samples 
were used due to the increase in computation time with increasing number of GA chromosomes. 
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Table 3: Results of Unit-Root Tests for Binary Coded GAs 

           
Varying mutation probability, constant population size N= 60, 100 runs 

 
DF test Rejections ADF test Rejections  

pmut min median max  min  median max   
0.005 0.15 0.97 1.00 89 (85) 0.30 0.99 1.00 54 (47) 
0.010 0.47 0.97 1.00 97 (95) 0.51 0.98 1.03 64 (59) 
0.015 0.23 0.96 0.98 100 (100) 0.55 0.97 0.99 95 (91) 
0.020 0.11 0.95 0.98 100 (100) 0.42 0.96 0.99 99 (99) 
0.025 0.61 0.93 0.97 100 (100) 0.79 0.95 0.98 100 (100) 
0.030 0.68 0.92 0.96 100 (100) 0.70 0.94 0.98 100 (100) 
0.035 0.20 0.91 0.96 100 (100) 0.44 0.93 0.96 100 (100) 
0.040 0.49 0.91 0.95 100 (100) 0.64 0.93 0.96 100 (100) 
0.045 0.27 0.90 0.95 100 (100) 0.37 0.92 0.95 100 (100) 
0.050 0.15 0.90 0.97 100 (100) 0.33 0.91 1.01 99 (100) 

                  
         

Constant mutation probability, pmut = 0.01, varying population size, 25 runs 
 

DF test Rej.  ADF test Rej.  
pmut min median max  min  median max   
20 0.14 0.95 0.99 25 (25) 0.21 0.98 1.00 14 (12) 
100 0.91 0.98 0.99 21 (21) 0.94 0.99 1.00 18 (18) 
200 0.86 0.98 0.99 25 (24) 0.88 0.98 0.99 24 (23) 
1000 0.32 0.92 0.98 25 (25) 0.41 0.91 0.97 25 (25) 
2000 0.16 0.78 0.98 25 (25) 0.17 0.86 0.97 25 (25) 
4000 0.13 0.77 0.96 25 (25) 0.15 0.81 0.97 25 (25) 
10000 0.21 0.63 0.91 25 (25) 0.26 0.56 0.93 25 (25) 

Note: Table 3 shows estimates of the parameter ñ from a regression of the log exchange rate on its lagged 
value. The columns labeled ‘rejection’ give the number of cases  in which we can reject the unit root null 
hypothesis ñ = 1 from the one-sided (two-sided) DF and ADF tests. Again, the underlying data are the 
ones already analysed in Tables 1 and 2. Hence, for variation of the mutation probability, the minimum, 
median and maximum over 100 samples with 2,000 data points each are shown. For variation of the 
number of agents, only 25 samples were used due to the increase in computation time with increasing 
number of GA chromosomes. 
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Table 4: Variation of Tail Index Estimate from Real Coded GAs 

          
Varying mutation probability pmut, constant mutation variance ómut = 0.1 and  population size N = 100 

Tail size 2.5 % Tail size 5% Tail size 10 % 
pmut min median max min median max min median max 
0.01 1.33 2.53 4.75 1.46 2.51 3.85 1.49    2.26    2.94 
0.02 1.75        2.57 3.93 1.62    2.33    3.47 1.54    2.08    3.18 
0.03 0.81 3.01 6.89 0.85 2.57 3.33 0.67 2.24 2.70 
0.04 0.70 2.94 4.70 0.74 2.45 3.62 0.89 2.08 3.07 
0.05 0.96 3.23 5.02 0.73 2.68 3.62 0.85 2.33 3.09 
0.06 0.85 2.33 3.09 0.80 2.67 4.24 1.00 2.22 3.44 
0.07 0.91 2.98 5.98 1.11 2.60 4.60 0.71 2.24 3.29 
0.08 1.03 2.93 6.18 1.04 2.62 4.65 0.86 2.14 3.51 
0.09 0.99 2.72 6.44 1.03 2.35 4.63 0.93 2.02 3.67 
0.10 1.07 2.47 6.08 0.95 2.13 3.99 0.97 1.84 3.60 

          
Constant mutation probability pmut =0.05, constant population size N = 100, varying mutation variance 

Tail size 2.5 % Tail size 5% Tail size 10 % 
ómut min median max min median max min median max 
0.025 1.40 3.61 5.52 1.04 3.12 4.07 1.04 2.60 3.10 
0.050 1.37 3.46 5.56 0.92 3.00 4.32 0.77 2.54 3.38 
0.075 0.67 3.37 6.34 0.65 2.95 3.97 0.59 2.47 3.32 
0.100 0.78 3.28 5.03 0.79 2.77 4.08 1.00 2.27 3.07 
0.125 0.67 3.05 4.67 0.74 2.61 3.81 0.75 2.25 3.08 
0.150 0.70 2.91 5.15 0.89 2.57 4.41 0.71 2.14 2.99 
0.175 0.90 2.86 5.27 0.95 2.53 3.96 0.95 2.12 3.08 
0.200 0.95 2.85 4.78 0.95 2.40 3.88 0.97 1.98 3.04 

          
Constant mutation probability pmut =0.05 and variance ómut = 0.025, varying population size 

Hill 2.5 % Hill 5% Hill 10 % 
N min median max min median max min median max 
20 1.32 3.29 7.57 0.61 2.75 5.22 0.51 2.30 3.49 
100 1.46 3.85 6.08 1.49 3.16 4.22 1.41 2.68 3.23 
200 1.35 4.23 5.73 1.06 3.50 4.43 0.93 2.85 3.85 
1000 0.77 4.22 8.13 0.71 3.40 6.11 0.74 3.00 4.43 
2000 0.85 2.65 8.16 0.68 2.39 5.97 0.62 2.08 4.52 
4000 0.70 1.56 10.04 0.66 1.37 7.20 0.59 1.18 5.06 
10000 0.62 1.44 8.82 0.55 1.13 6.34 0.61 0.96 5.09 
20000 0.52 1.49 7.99 0.62 1.14 7.24 0.58 0.86 5.04 

  

Note: Table 4 shows estimates of the parameter á, now for real-coded GAs. Unlike in Figs. 1 to 3,  we 
always give the minimum, median and maximum over 100 replications with 2,000 data points each even 
in the case of varying number of agents (real GAs are less demanding in terms of computation time than 
binary ones). 
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Table 5: Variation of Index of Fractional Differentiation from Real Coded GAs 

          
Varying mutation probability pmut, constant mutation variance ómut = 0.1 and  population size N = 100 

raw squared absolute returns 
pmut min median max min median max min median max 
0.01 -1.06 -0.39 0.24 -0.28 0.09 0.41 -0.22 0.17 0.52 
0.02 -0.79 -0.05 0.25 -0.16 0.14 0.43 -0.22 0.24 0.55 
0.03 -0.44 -0.04 0.32 -0.14 0.13 0.90 -0.08 0.22 1.11 
0.04 -0.52 -0.06 0.22 -0.08 0.28 1.04 -0.10 0.40 1.07 
0.05 -0.44 -0.03 0.25 -0.11 0.25 1.17 -0.01 0.35 1.16 
0.06 -0.48 -0.08 0.29 -0.02 0.28 1.09 -0.03 0.40 1.23 
0.07 -0.52 -0.08 0.21 -0.11 0.30 0.87 -0.06 0.47 1.03 
0.08 -0.43 -0.07 0.22 -0.03 0.34 0.93 -0.04 0.48 0.99 
0.09 -0.52 -0.11 0.26 -0.01 0.34 0.89 -0.05 0.50 1.32 
0.10 -0.48 -0.13 0.17 0.05 0.35 1.00 0.06 0.53 0.92 

          
Constant mutation probability pmut =0.05, constant population size N = 100, varying mutation variance 

raw squared absolute returns 
ómut min median max min median max min median max 
0.025 -0.30 -0.01 0.34 -0.22 0.16 0.98 -0.10 0.24 0.98 
0.050 -0.48 -0.07 0.21 -0.40 0.19 1.03 -0.06 0.26 1.01 
0.075 -0.52 -0.04 0.30 -0.03 0.22 0.90 -0.04 0.29 1.14 
0.100 -0.39 -0.05 0.27 -0.09 0.30 1.14 -0.07 0.45 1.08 
0.125 -0.56 -0.06 0.31 -0.08 0.31 0.94 -0.18 0.46 1.03 
0.150 -0.42 -0.06 0.17 -0.10 0.31 1.05 0.01 0.43 1.10 
0.175 -0.50 -0.07 0.25 0.02 0.34 1.13 -0.06 0.49 1.07 
0.200 -0.46 -0.09 0.19 -0.21 0.35 1.00 -0.02 0.50 1.00 

          
Constant mutation probability pmut =0.05 and variance ómut = 0.025, varying population size 

N raw squared absolute returns 
 min median max min median max min median max 

20 -0.48 -0.02 0.46 -0.10 0.21 0.74 -0.07 0.29 0.89 
100 -0.37 0.00 0.21 -0.16 0.13 0.65 -0.16 0.20 0.71 
200 -0.60 0.01 0.30 -0.16 0.12 0.73 -0.18 0.15 0.81 
1000 -0.76 -0.02 0.40 -0.27 0.13 0.71 -0.26 0.22 1.05 
2000 -0.66 0.03 0.39 -0.31 0.11 0.85 -0.33 0.28 1.02 
4000 -0.79 -0.15 0.39 -0.31 0.10 0.39 -0.34 0.29 0.98 
10000 -0.72 -0.28 0.45 -0.30 0.13 0.86 -0.28 0.37 0.96 
20000 -0.75 -0.36 0.47 -0.13 0.10 0.86 -0.03 0.34 1.19 

Note: Table 5 shows estimates of the parameter d , now for real-coded GAs. The data are the same as in 
Table 4. 
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Table 6: Results of Unit-Root Tests for Real Coded GAs 

 
Varying mutation probability pmut, constant mutation variance ómut = 0.1 and  population size N = 100, 100 runs 

DF test Rej. ADF test Rej.  
pmut min median max  min median max   

0.01 0.29 0.90 1.00 74 (70)  0.42 0.94 1.00 59 (61)   

0.02 0.83 0.99 1.00 54 (49)  0.87 0.99 1.00 54 (49)  

0.03 -0.00 0.99 1.00 50 (47) 0.01 0.99 1.00 35 (34)  

0.04 -0.00 0.99 1.00 49 (42) 0.06 0.99 1.00 34 (30)  

0.05 0.01 0.99 1.01 46 (45) 0.26 0.99 1.00 39 (37)  

0.06 -0.00 0.99 1.00 55 (45) -0.00 0.99 1.00 40 (34)  

0.07 0.00 0.99 1.00 56 (47) 0.00 0.99 1.01 40 (36)  

0.08 0.00 0.99 1.00 58 (51) 0.01 0.99 1.00 46 (40)  

0.09 -0.00 0.99 1.00 53 (48) -0.00 0.99 1.00 48 (41)  

0.10 -0.00 0.98 1.01 68 (66) -0.00 0.98 1.01 68 (63)  

          

Constant mutation probability pmut =0.05, constant population size N = 100, varying mutation variance, 100 runs  

DF test Rej. ADF test Rej.  
ómut min median max  min median max   

0.025 -0.00 1.00 1.00 36 (30)  -0.00 1.00 1.00 25 (24)   

0.050 0.03 0.99 1.00 43 (32)  0.19 1.00 1.00 26 (21)   

0.075 0.01 0.99 1.00 51 (40) 0.01 0.99 1.00 34 (33)   

0.100 -0.00 0.99 1.00 69 (60)  0.31 0.99 1.00 54 (48)  

0.125 -0.00 0.99 1.00 68 (65)  -0.00 0.99 1.03 55 (53)   

0.150 -0.00 0.99 1.00 64 (58)  -0.00 0.99 1.00 46 (39)   

0.175 -0.00 0.99 1.00 76 (66)  0.12 0.99 1.10 50 (48)   

0.200 -0.00 0.98 1.00 72 (69)  0.02 0.99 7.71 60 (57)   

          

Constant mutation probability pmut =0.05 and variance ómut = 0.025, varying population size, 100 runs 
DF test Rej. ADF test Rej.  

N min median max  min median max   

20 0.77 0.98 1.00 85 (79) 0.88 0.99 1.00 21 (17)  

100 -0.00 1.00 1.00 29 (24) 0.00 1.00 1.00 19 (15)  

200 0.99 1.00 1.00 2 (4) 0.99 1.00 1.00 4 (4)  

1000 -0.00 1.00 1.76 30 (38) -0.00 1.00 24.74 31 (33)  

2000 -0.00 1.00 1.66 24 (33) -0.00 1.00 6.11 27 (29)  

4000 -0.00 1.00 1.06 37 (50) -0.00 1.00 1.02 35 (43)  

10000 0.01 1.00 1.52 45 (63) 0.01 1.00 12.52 44 (52)  

20000 0.12 1.00 1.03 43 (54) 0.12 1.00 1.01 42 (49)  

 

Note: Table 6 shows results from unit-root tests, now for real-coded GAs. The underlying data are the same 
as in Tables 4 and 5. 
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Fig. 1.: A typical ‘realistic’ series of returns from a simulated economy with a binary-coded GA 
population of 100 agents. For economic parameters, see main text. GA parameters are: pmut = 
0.01 and pcross = 0.6. 
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Fig. 2.: Log exchange rates from simulated economies with pmut = 0.01 (upper panel) and pmut = 
0.05 (lower panel). The population consists of 100 binary-coded GAs in both cases. Although 
not fully realistic, for parts of the upper time series the DF and ADF tests are unable to reject the 
unit root null. The simulation in the lower panel has more easily recognizable mean-reverting 
features. 
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Fig. 3.: Log exchange rate (top), average portfolio fraction of home currency (middle), and average 

first-period consumption (bottom) for a real-coded GA population of 200 agents. For economic 
parameters, see main text. GA parameters are: pmut = 0.05, σmut = 0.025 and γ = 0.2. The 
dynamics seems to be characterized by unsystematic changes of the portfolio composition which 
lead to exchange rate fluctuations, but leave average consumption choices almost unaffected. 
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Fig. 4.: Log exchange rate (top), average portfolio fraction of home currency (middle), and average 

first-period consumption (bottom) for a real-coded GA population of 20,000 agents. For 
economic parameters, see main text. GA parameters are: pmut = 0.3, σmut = 0.025 and γ = 0.2. 
The middle and bottom panels show both the mean (solid lines) and standard deviations (broken 
lines) of the distribution of the choice variables within the population. In order to lodge the mean 
and standard deviation in the bottom panel, we have subtracted the steady state value c* = 7, 
reduced the standard deviation of ci(t) by one-half and magnified the standard deviation of fi(t) by 
a factor 10. The higher pmut compared to Fig. 3 mainly serves to decrease the amplitude of the 
cycle and enhance convergence to regular cycles, 
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Fig. 5.: Indifference curves. The underlying utility function is U = c (t) c(t+1), endowments are w1 = 

10, w2 = 4. For this illustration it has been assumed that all agents have chosen their first-period 
consumption level equal to its steady state value, c* = 7 and that the fraction of domestic money 
in the portfolios of generations t and t+1 has mean values )1t(f +  = 0.55 and )t(f  = 0.5. 
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Fig. 6.: A snapshot of the evolution of the population corresponding to one upward half-cycle in Fig. 
4. The graph shows on its left-most part the distribution of choice parameters within a generation 
shortly after the lower turning point (triangles). The pluses and diamonds show the distribution of 
choice parameters within the same dynasty after 40 and 80 periods, respectively. 

 


