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1. Introduction

Foreign exchange markets as well as other financid markets are characterized by a number of
griking ubiquitous time series features. Mogt prominently, (log) exchange rates seem to be non-
dationary while thar firgt differences are gationary. More precisaly, unit-root tests are typicaly
unable to rgect the null hypothess of a fird-order autoregressive process with a coefficient equa to
unity. This finding squares with the wdl-known result of Meese and Rogoff (1983) that random walk
forecasts produce a lower meansguared error in out-of-sample prediction than reduced-form
gructural modds of macroeconomic fundamentas. It has been argued that these findings can be
explained by speculative efficiency of foreign exchange markets, which smply means one interprets
the foreign exchange market as an informationdly efficient market in the sense of the Efficient Market
Hypothes's.

While from this pergpective the unit-root property may not be viewed as a conundrum, other well-
known features have defied straightforward explanations until recently. The most pervasive ones are
the fat-tall property of redive price changes and the clustering of voldility in these time series.
Traces of these features are eadily recognizable in dl records of high-frequency data (probably up to
weekly frequency) of foreign exchange markets (to our knowledge, without any known exception).
The fat-tail property implies that the unconditiona digtribution of daily returns (as well as those of
higher and somewhat lower frequency) has more probability mass in the tails and the center than the
gtandard Normd digtribution. This dso means that extreme changes occur more often than would be
expected under the assumption of Normdity of reative daly price changes. Volaility clusering
means that periods of quiescence and turbulence tend to cluster together. Hence, the volatility
(conditiond variance) of exchange rate changes is not homogeneous over time, but isitsdf subject to
tempord variation.

Explanations of these stylized facts have been usve until very recently. Perhaps, the sllence of
economic theory on this issue is not too surprisng given that the above regulaities are features of
time series as a whole and, hence, could only be explained by dynamic models of the evolution of
the trading process in the pertinent market. From the viewpoint of informationd efficiency, the
characterigtics of returns would, of course, have to be explained by smilar characteristics of the
news arrival process, but due to the unobservability of the later, this hypothesis can hardly be
subjected to econometric scrutiny. As an dternative, some authors have recently argued thet fat tails
and clustered volatility can be obtained as aresult of interactions of heterogeneous economic agents.
Examples of this emergent literature include Lux and Marches (1999, 2000), Chen, Lux and
Marches (2001), Kirman and Teyssiere (2001), Gaunersdorfer and Hommes (2000), Chiardlaand
He (2001), lori (2002) and Bornholdt (2001). Lux and Marches, Gaunersdorfer and Hommes, and
Chiardla and He have modes of fundamentaigt - chartist interaction in financid markets which give



rise to redigtic behavior of the resulting time series (in terms of the above stylized facts). In Lux and
Marches and Gaunersdorfer and Hommes, the authors try to provide some hints of generd
mechanisms that could generate these time series properties irrespective of the details of their
exemplary models. In the former casg, it is a criticd behavior of the dynamics in the vicinity of a
continuum of equilibria with an indeterminate composition of the population in terms of drategies
pursued by individuds Gaunersdorfer and Hommes get Smilar dynamics from a mode with co-
exiging attractors in which noise leads to switches between different states. Still different mechanisms
prevail in lori (2002) and Bornholdt (2001) who use lattice-based Structures for modeling the
interactions among traders. Interestingly, a recent paper by Arifovic and Gencay (2000) on an
atificid currency market with genetic learning of Srategies dso suggests emergence of redidtic
features of the resulting exchange rate dynamics (cf. Fig. 1). However, they do not provide a
detailed analys's concerning the above properties. One of the ams of this paper is to fill this gap. In
paticular, we will try to quantitatively assess the degree of fat talledness and volatility clustering this
model generates. We are o interested in the sengtivity of these quantitative measures with respect
to key parameters of the modd. To get an impression of the sengitivity with respect to parameter
variations, we will try to figure out how the time series properties depend on the genetic agorithm
parameter and the number of agents populating the market (as will probably become clear in the
presentation of the model, the vaues of the few economic variables of the mode are of lesser
importance in this respect). We then rdate our findings to those obtained for other modds of artificia
financid markets and try to provide an explanation for the crucid importance of the number of
individuas for the qualitetive outcome of the modd.

Our andyss proceeds in the following steps. sec. 2 will introduce the underlying mode of the
foreign exchange market, the well-known Kareken-Wallace two-country overlapping generations
model. Sec. 3 gives details on the genetic dgorithms which we gpply to mode the learning of our
agents. In sec. 4, we review the gatistics used for assessng how redlistic the mode’ s output is. Sec.
5 presents the results of extensive Monte Carlo work, and sec. 6 tries to provide an explanation for
the surprising behavior we find in the case of avery large population. Sec. 7 concludes.

Fig. 1 about here

2. TheKareken and Wallace OL G Economy

As a verson of the Kareken and Wallace (1981) two country model, the underlying economic
dructure is extremely smple: a each date t, one-hdf of the entire population is replaced by a rew
generaion (the young), while the remaining members are in the second and find period of ther lives
(the old) and will be replaced in the next period by another young generation. Each agent is endowed
with w; units of a homogeneous good in its firgt period and with w, unitsin the second period of its



live. There is neither production nor inheritance of goods. Intertempora consumption smoothing can
be achieved via money holdings of currency of the home and foreign country.

With identical preferences of dl agents, U(G(t), G(t+1)), their consumption plans and money
demand are derived from

D max U(G(b), G(t+1))
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With G(t), m 1(t) and m x(t): consumption and money holdings of agent i (i=1,..., N) a timet, wy
and w, the homogeneous endowment levels, and py(t) and py(t) the price levels in both countries at
time t. Note that with this setup, it even does not matter, how many of the agents are citizens of
countries 1 or 2 as their economic decisons are not affected by their geographic location.

Assuming that nomina money supply H; and H,, is congtant, and denoting by s(t) overdl ‘savings
of individud i, the price levels a time t are determined by:

H
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fi(t) = W the fraction of currency 1 inagent i’ s portfolio at timet.
The exchange rate, g(t), between both countriesis, then, obtained as g(t) = gl—((tt))
2

It is draightforward to spell out some results on possible equilibria (Steady states) of this model.
Using 6(t) and f(t) as choice variables of our agents, it is immediately obvious that a Sationary
pa(t) _ pa(t)

solution requires the rates of returns on both currenciesto be equdl, i.e. = :
pu(t+D)  po(t+D)

Simple ingpection shows that such a steady state has the following properties.

(1) the exchange rate is congtant over time: g(t+1) = gt) = e*. However, the level of the
exchange rate in equilibrium, €*, isindeterminate and may be any vauein the hdf-ling, e T (0,¥).



(2) Given the equdity of returns form both currencies, the equilibrium compostion of each
agent’s portfolio is indeterminate as well and f*, therefore, might assume any admissible vaue f*
T [01]. Note that we do not have to assume identical portfolio choices of the agents in
equilibrium. Any condant didribution of the f*’s over generations would be consgtent with
constant rates of returns and a congtant exchange rate. We could even dlow for certain changes of
the didribution of the fi*s equilibrium would Hill prevail as long as the meaen vdue of ther
digributions remains the same over time.

(3) Since the rates of returns from both assets are identical in equilibrium, optima consumption
plans are independent from the portfolio composition. With a well-behaved utility function, utility
maximizing choice ¢* will typicdly be unique and identicd for al individuds with the same utility
function and endowment dructure. For example, with utility functions U; = ¢(t) c¢(t+1) and
constant money supply in both countries, rates of return would be equa to one and g* would be
0.5(w + wy) for dl individuds.

The nontuniqueness of the equilibrium exchange rate in this type of mode derives from the absence
of typica macroeconomic fundamentas of monetary models. In view of the evidence on unit-rootsin
empirical data, this feature has been emphasized as an advantage of their modd by Kareken and
Wallace One could indeed imagine that added random fluctuations could easly produce a unit-root
dynamics, since random disturbances could lead to a random motion of the exchange rate along the
continuum of possible equilibria (every time, the equilibrium is distorted by random shocks, the
exchange rate would settle a a new equilibrium). However, non-uniqueness of equilibria dso raises
the questions of selection of equilibria and coordination of agents. These questions have been taken
up firsgt by Sargent (1993) who modeled learning via stochastic approximation algorithms. Later on
Arifovic (1996) consdered GA learning in the Kareken-Wallace framework. Looking & the
evolution of returns instead of the leve of the exchange rate Arifovic and Gencay (2000) recovered
redigtic festuresin the continuing fluctuations of the resulting dynamics.

3. Genetic Algorithm Learning

Genetic algorithms have been introduced by Holland (1975) as a stochastic search agorithm for
numericad optimization. This gpproach uses operations smilar to genetic processes of biologica
organisms to develop better solutions of an optimization problem from an exigting ‘population’ of
randomly initiated candidate solutions. Typicaly, the proposed solutions have been encoded in
srings (chromosomes) using a binary aphabet (see Dawid, 1999 for a genera introduction). Thisis
aso the dructure of the GAs applied in Arifovic and Gencay (2000). Each individud’s decisons are
encoded in a binary gring of length 1=30, whose firsd twenty elements encode firg-period
consumption and whose remaining ten entries encode the fraction of currency one in his portfolio.*

! Choosing | = 30 with substrings of twenty and ten bits, respectively, we closely followed Arifovic (1996) and



With g denoting the value at the k-th position of the string (0 or 1), the binary string is trandated
into a rea-vaued number in the following way:

20 ‘ 2k-l 30 ‘ 2k-21
3) M =aa—,fi{t)= aa>——
k=1 Ky k=21 Ko

where K; and K, are normaizing congtants to restrict the possble red vaues to a predetermined
admissble intervd.

In order to have fi(t) T [0,1], K; is set equal to K, = 2'° — 1, while g(t) should be within the
interval [Owy] to guarantee viable consumption plans. With w = 10 in Arifovic and Gencay's

o . 20 1
smulations, thisamountsto K; = T.

The overlgoping generations dructure of the modd implies an overlapping genetic dgorithms
gructure of the evolutionary process. After each period, haf of the population members have
completed ther life cyde. With the resulting consumption in ther old age ther achieved fitness
(utility) can be determined and used for the genetic creation of a new pool of agents entering the
economy as the young generation of the following period.

The genetic operations gpplied in this step are the following:

(1) Reproduction: from the pool of old individuals, copies are sdlected (with replacement) with
i

av;
i

Other dgorithms for reproduction could be chosen as well: proposds in the GA literature include
rank-based reproduction in which only the rank (not the absolute fithess) determines the probability
of reproduction, and tournament saection, in which one repeatedly draws n, (say 5) individuas from
the pool and accepts the n < ny (say 2) with highest dility among them for the new generation.
Beow we report only results for fitness-based reproduction. Experiments with rank-based and
tournament saection have dso been carried out yidding dmost identical results.

probabilities depending on their rdative fitness, i.e. on

(2) Crossover: when the pool of potentid new members of a generation is complete, genetic
materid is exchanged between them. The smplest way is randomly sdecting a pair of parent strings
and swapping genetic materid (bits) between both chromosomes. Here, we again follow the
agorithm used by Arifivic and Gencay in sdecting randomly an integer in the range of [1,29] and
congtructing offspring by combining the genetic materid from the left of this pogition from parent one

Arifovic and Gencay (2000). However, like with most other details of the genetic algorithm implementation,
variation of these numbers did not change the qualitative characteristics of the dynamics.



with thet from the right-hand part of parent two and vice versa. Note that the cross-over operation
is carried out with a certain probability pyess Only, while with probability I-peess the offspring are
unchanged copies of thelr parents. Alternative implementations of the crossover operator include
two-point crossover (exchange of materid in an interva between two randomly chosen hits) and
uniform cross-over (the two offsprings are random recombinations of their parents  bits). Again, the
whole chain of our findings reported below seems to be robust with respect to the choice of the
particular cross-over operator.

(3) Mutation smply means that each position within a dring is dtered with a certain probability
Pmut t0 the other value of the binary aphabet.

(4) Fndly, the election operator tests newly generated offspring before ktting them enter the
population. In order to avoid a decrease of the fitness of the overdl population due to the genetic
dteration of Strategies, only those among the offpring are accepted which are at least asfit as one of
their parents. If after crossover and mutation offgpring have lower fitness, exact copies of their
parents are placed into the new generation.

Besde these traditiond binary coded GAs, we dso experimented with real coded GAs in the
present framework. A real coded GA smply uses ared representation of the choice variables. In
our case, areal-coded chromosome would, therefore, consst of apair {ci(t), fi(t)} .

Mutatis mutandis, smilar genetic operaions can be defined for this variant (cf. Herrera et al.,
1998, for an overview on real-coded GAS). First, reproduction occurs in the same way as with
binary GAs. As for cross-over, a number of aternaive mechanisms have been proposed in the
literature. Here, we follow Esheman and Shaffer (1993) in picking new choice variables which are
uniformly and independently drawn from an interva covering the pertinent values of the parents
chromosome. To illustrate let ¢ = max{ cx (t),cg (1)}, c=min{ ca (t),cg(t)}, and d =c- C
with ca(t) and cs(t) consumption choices of parentsi = A, B. Then, the first-period consumption of
offsprings is determined by uniform random draws from [c - g di, ¢ + gdJ . A smilar operation
yields the new portfolio fractions of the offsprings. Note that g is a predetermined vaue that dlows
for some ‘experimentation’ within regions not covered by the genetic materid of the parents. Itsrole
is ds0 to compensate for the drift towards the mean of the admissble drategy space from a
crossover operator with g = 0. Herrera et al. (1998) show that this agorithm has better performance
on some test problems than many aternatives. Mutation with red variables is done by usng Normd
random variables with mean zero and smdl variance to dightly change the prevailing choice varidbles.
Election, finaly, occursin the same way as with binary coding.?

20n afirst view, the real coded GAs seem to be a much more natural way to deal with any real-valued problem
than binary GAs. However, good reasons are given in the literature to actually prefer binary coding in many
applications. In particular, although at first view GAs seem to process only the particular chromosomes within the
population, they actually allow for a parallel processing of many different parts of alternative solutions. This
might be sensed by considering the following example: the binary coded valuesfor 0 and 4, i.e. 000 and 100, have
two — thirds of their genetic material in common, so that it is ‘easy’ for the genetic operations to switch from one



4. Empirical Benchmarks

To see whether our foreign exchange market populated by geneticdly learning overlapping
generations has redidtic time series properties we use a battery of Satisticd tests.

(i) Unit root tests aredigic market should yield a exchange rate dynamics which gppears to be
close to a random wak. We, therefore, perform typica tests for the presence of a unit root in our
gynthetic time series using the standard Dickey Fuller (DF) and Augmented Dickey Fuller (ADF)
tests. The underlying data are logs of the exchange rate since from the symmetric construction of the
Kareken-Wallace modd we would aso expect symmetry of relative changes. For the ADF test, we
aso included the firg three differences as independent variables.

(i) Fat-tail property: the recent econometric literature has provided a very sharp characterization
of this feature. In particular, it could be shown that the decline of the probability massin the tails
follows a power-law with a coefficient that is astonishingly uniform across markets. This amounts to
large returns (r;) following a rdaionship: Prob.(|rt| >x)~x"2 with the so-called ‘tail index’ a
hovering within the interval between 2 and 5. EStimation of a usng conditional maximum likdihood is
sraightforward, and a wedth of supporting evidence can be found in De Vries (1994) and
Dacorogna et al. (2001). As a typicd example, estimation of the tail index for the DM/U.S$
exchange rate with daily data ranging from 1974 to 1998 yields an esimate a = 3.69 (95%
confidence interva: 3.38 to 4.10) when using the five percent largest absolute returns. The review by
De Vries and the monograph by Dacorogna et al. give smilar satigtics for other currencies.

(i) Volatility clustering: this festure can be characterized by autoregressve dependence in
various measures of voldility. Here we also have a very precise and uniform picture from dmogt al
avallable data sats. In particular, it has been found that the dependence in volatility measures like
squared or absolute returns extends over very long time horizons and exhibits a hyperbolic decay of
the autocovariance function: E[XX;. pt] ~ Dt K with x; squared or absolute returns. This dow

decay isin contrast to fast (exponentia) decline and is aso denoted as long-term dependence. Like
with the fa-tail property, quantitative measurements of the decay parameter k give very uniform
results across markets. As a benchmark for our later analyss of Smulated data, we give estimates
from the frequently used periodogram regresson technique due to Geweke and Porter-Hudak
(1983). These authors device a method for estimation the parameter of fractional differentiation,
denoted d in the following, which isrelated to k by: k = 1 - 2d. An estimate of d Sgnificantly larger
than O would show evidence for the long-memory property. Inability of rgection of d = 0 would
indicate absence of long-term dependence. For the sake of illugtration, daily DM/$ data yield (95%

to the other. With real-coded GAs, 0 and 4 have nothing in conmon and a large succession of crossovers and
mutationsis needed to move from oneto the other.



confidence intervals in brackets): raw returns. d = 0.07 (-0.09, 0.23); squared returns. d = 0.24
(0.08, 0.40), absolute returns: 0.29 (0.13, 0.45). Again, aglance at, for example, Dacorogna et al.
shows that these figures are quite representative for foreign exchange data (as wdl as for financid
data in generd). The inability of rgection of d = O for raw returns, of course, squares well with the
unit-root property of log exchange rates. The finding of a higher level of persstence in absolute
returns rather than squared returns is dso quite universa and has by itsdf motivated a large body of
recent econometric literature.

5. Pseudo-Empirical Results

Tables 1 to 6 present the results of a large number of experiments with various versons of our
artificia economy. Tables 1 to 3 show results for binary coded GAs, while tables 4 to 6 are
concerned with smulations using real coded GAs.

Our starting point was the scenario underlying the smulations by Arifovic and Gencay (2000). The
particular Kareken-Wallace economy in this paper had the following properties: dl individuds share
a common utility function U = ¢(t) ¢(t+1), endowments are wy = 10, W, = 4, and nomind money
supplies are H = 3000, H, = 3600. It can immediately be seen that this leads to a steady State
consumption level of ¢* = c(t) = ¢(t+1) = 7 and steady-state savings s* = §(t) = S(t+1) = 3. Prima
facie, it appears unlikey that changes in these economic variables should yidd gregtly different
results (as long as endowments would lead to postive savings). Experimentation with different
parameters and adternative utility functions (e.g., logarithmic utility) confirmed this conjecture.

In fact, our interest here is more (i) in the sengtivity with respect to the details of the learning
dynamics, and (i) the influence of the number of agents. Our interest in the effects of the Sze of the
market derives from some puzzling earlier findings. Namely, a number of studies have reveded that
exiging multi-agent models of financid markets loose ther redigic time series properties when
increasing the number of agents (Egenter et al., 1999; Y eh, 2001, Challet and Marsili, 2002). Since
published work on artificid markets with GA learning has used only a very limited number of agents,
typicaly below 100, it seems worthwhile to explore the behavior of larger economies.

Let us gart with the effects of varying the GA’s parameter settings. From the two parameters of
the binary genetic operations, pru and Pooss, We found the firgt to be the more interesting one in that
vaiation of pyess ONly led to dight variaions of the Satistica properties. In afirst set of experiments
we, therefore, fixed pross @ 0.6 and aso fixed the population sze a the level used in Arifovic and
Gencay, N = 60 (i.e,, 30 individuas in each generation). In order to see the effects of variation of
Pmut, We varied this parameter from 0.005 to 0.05 (with increments of 0.005) and gpplied the
datistical analyses outlined above to 100 samples each containing 2,000 data points (a length of the
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data series comparable to many empirica records). The 100 samples are taken as non-overlgpping
windows from a smulaion continuing over 205,000 periods where the first 5,000 data points have
been discarded to account for trandent behavior. Minimum, median and maximum of the tail index
estimates (for tail sizes of 2,5%, 5% and 10% of the data) are shown in Table 1, while the minimum,
median and maximum of the estimates of d are giveninthe Table 2. Table 3, findly gives the median
and range of edtimates of the autoregressve parameter from the Dickey-Fuller and Augmented
Dickey-Fuller test together with the frequencies of one-sded (in brackets. two-sided) reection of
the unit-root null under a 95% confidence level. Reaults are quite homogeneous with respect to our
three stylized facts in o far as the behavior is mogt redlistic for smal vaues of py.: around 0.05 to
0.01. In this region we have a high percentage of non-rejection of a unit root in log exchange rates
(at least for the ADF test which corrects for short-run dynamics) together with median vaues of d
close to their empirica counterparts. The median tail index estimates might appear somewhat too
smdl, but are ill within the range observed with empirical data. Fig. 1 illugtrates that returns
obtained with this setting of the GA parameters indeed do look very redistic and may be hard to
diginguish from redl-life records with the naked eye (at least, after, proper adjustment of the scale of
the fluctuations). However, when increasing prnu: beyond 0.02, rejection of a unit root in favour of a
root smaler than unity occurs in dl cases, the fractiond differencing parameter for raw returns
becomes negative (which is dso a sgnature of mean reversion), and the tempora dependence in
sguared and absolute returns declines. Findly, the tail index becomes somewhat too high.

Tables 1 to 3 about here

In our second set of experiments, we then varied N keeping the mutation probability at the value
0.01. Since the smulations become more time-consuming with increesng N, we restricted our
investigation to 25 samples (i.e. a time series of overdl length of 55,000 time steps for each
parameter set). Here the changes are even more dramatic. When moving from smal (N = 20) to
very large markets (N = 10,000), we get an even larger drop of the autoregressive coefficient in the
unit-root tests, highly negative d’s for raw returns and atotal fading out of volatility dugtering (thed’s
of squared and absolute returns gpproaching zero). The tall index decreases and has median values
below 2 for the maximum size of the market (N = 10,000).

Before turning to explanations, let uslook at the pertinent results for rea-coded GA’s for which we
aso varied both the set-up of the mutation operator and the number of agents (Tables 4 to 6). Again,
the parameters of the crossover operator are kept constant (uniform crossover as described ins. 3
with a parameter g = 0.2 was used). The mutation operator now has two parameters, the probability
of its activation py,: and the variance of the Norma mutations, S .

The upper and middle part of Tables 4 to 6 exhibit the effects of systematic variation of pn,: and
S mut- Again, 100 samples of 2,000 data points each have been used. Since markets with real-coded
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GA'’ s need less computation time, we were able to use 100 subsamples when assessing the effects of
market size and could aso use a somewhat larger maximum size of N = 20,000.

In broad harmony with the binary-coded case, redlistic properties are obtained with small mutation
probability and small variance of mutation. Nevertheless, certain differences are observed between
the binary and real-coded cases. in particular, the DF and ADF tests are ill unable to rgect the unit
root hypothesisin the mgority of cases even with ardatively large mutation rate and a large number
of traders. On the other hand, mean reverting tendencies are clearly observable in the estimates of
the fractiond differencing parameter for raw returns in these cases. It might be that the evolution of
the system is amply very dow 0 that in many periods the dight variaions in the exchange rate go
through as a unit root process. In contrast to the binary case, in the redl-coded one the two-sided
test often yields more rgections than the one-sded test. The additiond right-hand rejections may be
related to the sudden burgts of activity visble in the upper part of Fig. 3. Overdl, the much higher
rate of rgection of the unit root hypothesis in the binary case might be due to the higher degree of
sochadticity inherited from thirty instances of mutation (for every bit) instead of two ingtances only in
the real-coded case. Some reflection, in fact, reveds that the values of the mutation probabilities can
not be directly compared between the binary coded and rea coded GAs. For example, a pnu =
0.033 (per bit) for binary coded GAs implies that with chromosomes of thirty bits, dmost every
individua will undergo some mutation of its genetic materid. This amounts to a much higher mutation
rate within the population with gy = 0.01 in the binary case than with 0.05 for red coded hits.
Except for non-rgection of the unit root hypothesis, the pattern of resultsis, in fact, dmost the same
as with binary GAs when increasing N. looking at the resulting time series, we find in both the red-
coded and binary coded case a tendency towards persistent and very regular cycleswhen increasng
the number of agents (cf. Figs. 3 and 4).

Tables 4 to 6 about here

Besdes this smilaity in the results from both GA vaiants (and a number of dternative
implementations of various operators) our experiments aso show tha we do not need dl of the
typical eements of the GA to arrive a these results. Essentidly, the structure of the artificia economy
remains unchanged if we dispense with both the sdlection and crossover operators. Mutation and
election adone are capable of producing these patterns, but they are dso crucid for their emergence
(although sdlection and crossover tend to speed up convergence to regular oscillations).

6. Interpretation of Results

What is the reason for this fading out of redigtic time series properties with increesng mutation



probability and increasing number of agents? It is probably not too difficult to answer the first part of
the question: A high mutation probability introduces a certain tendency of mean-revison of the choice
parameters which is reflected in smilar mean reversion of the exchange rate. For the sake of
illugtration, imagine a modd with a mutation probability equa to 1 in the case of binary coded GAs
(corresponding to a pnue = 1 together with a high variance of mutation in the real coded case). This
would lead to a stationary random distribution of agent’s drategies. All deviations from the average
would be corrected by the new random choice of the population in the next period and, hence, one
gets a tendency of return to the mean vaues of the digtribution of G(t) and f(t). Since these choice
variables determine prices and the exchange rate, mean-reversion would aso carry over to these
varigbles as well. The higher the mutation rate, the higher the influence of this tendency. Higher pout,
therefore, leads to less persstence in exchange rates so that the exchange rate dynamics becomes
sationary and unit roots can be regjected. This suspected change in the appearance of the time series
is dready wdl recognizable when comparing binary coded GAs with pm: = 0.01 and 0.05,

respectively (cf. Fig. 2). While the former series (or parts of it) might be accepted as a random walk
by the DF and ADF teds, the second surely will not. As a concluson, we infer from these

considerations thet random experimentation with strategies has to be limited in order to get redigtic
gppearance of the time series.

Fig. 2 about here

As to the number of agents, a glance at the time series resulting with different sizes of the market
reveals some perplexing patterns (Figs. 3 and 4). What looks extremey unsystematic with a small
market (N = 200), becomes much more regular when the market becomes lager and eventualy
evolves into an amog perfectly regular oscillatory motion of some ‘macroscopic’ variables (in
particular, the exchange rate and the average fraction of domestic currency in the portfolio).> On a
close ingpection, the short spikes in the exchange rate fluctuations in Fig. 3 are very smilar to one
hdf-cycle in Fig. 4. Such a regular pattern is puzzling at firg view asit is the result of the evolving
decisons of a very large ensemble of autonomous artificid agents. Kegping in mind that the quantity
displayed in the middle part of Figs. 3 and 4 is a population average what these oscillaions show is
a sysdematic shift of the whole digtribution of this variable within an heterogeneous ensemble of
agents. To our knowledge nothing of asmilar type of sef-organizing patterns is known in multi- agent
systems with GA learning in economics or other fidds. A certain clue to the underlying mechanisms
can be obtained through anadlysis of what happens in the case of a large economy (i.e., with the
number of agents going to infinity). Noting that GAS are an adaptive adjusment scheme that drives
the actuad average behavior of the populaion towards the momentary optimum of the choice
vaiables, the large economy case might be described via the resulting deterministic mean vaue

% We have chosen a higher mutation probability compared to our benchmark casein Fig. 4 since it both leadsto a
decrease of the amplitude of the oscillations and provides faster convergence to almost perfectly regular patterns.
However, the trend to emerging regular oscillations is also clearly visible in other simulations with either real-
coded or binary GAs.
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dynamics of the choice variables. Unfortunately, the present dynamics is too complicated to derive
explicit dynamics laws for the large economy limit.* However, some heuristic consderations will
reveal mogt of the important elements of our dynamics.

Fig. 3 about here
As an adaptive adjustment scheme, the genetic agorithm has a itsintrinsc benchmark those values
¢* (t) and f*(t) which would have been optima choices for the population at time t which inherits its

genetic materid to the generation born at time t+2.

It is easy to see that for our utility function U; = ¢i(t) ¢i(t+1) optima behavior of individud i at timet
would have been:

* 1 Wo
(4.9 Ci () =Z(wqg + )
27 020 g gy )220
py(t+1) pa(t+1)
L1 >
(4.0) )= lindetermnae i Pl - P2
S, Put+D) _ py(t+]

Viaprices at period t+1, the optimal behavior of generation t dso depends on the decisions of the
next generation. The election operator, in fact, guarantees that the resulting new individuas accepted
after sdection, crossover and mutation are at least as good as their parents. For the portfolio
component, this dearly implies f; (t +2)1 [f; (t),fi* (t)] while consumption might also overshoot its
target, G*(t) as long as the resulting new parameter set provides at least the utility level enjoyed by
the parent individuds. Since in any out-of-equilibrium gStugtion, the god vaue for the fraction of
domestic assets will be the same, 0 or 1, for al members of the population, in the large economy
limit, the motion of the meen vaue f (t) will follow a deterministic path towards these values as long

as the pay-off differentia from holding domestic or foreign currency does not change.
Fig. 4 about here

To see the source of the regular fluctuaions, consder a saionary Stuation with homogenous
choice variables g(t) = g(t-1) = c¢* and fi(t) = fi(t-1) = f,, where f, might be any admissble vaue
between 0 and 1. Arifovic (1996) has dready emphasized that any such equilibrium of this GA
economy is evolutionary unstable since any locd disturbance (mutation) will be magnified by the

“ Available analytical approaches to genetic algorithm dynamics consider simpler examples and are not applicable
to the present model (e.g., Prigel-Benett, 1994, or Srinivar and Patnaik, 1996).
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ensuing adjustments of the remaining members of the population. For the sake of the argumernt,

assume that only one individua undergoes a mutation when the generation t+1 emerges from the
genetic operations on generation t-1. Assume furthermore that this mutation amounts to an increase
of the fraction of domestic money in the portfolio of this agent, while its consumption remains
unchanged a the initia equilibrium level. Since this new drategy will have the same tility as its
parents (because returns from holding ether currency are initidly identicd), the eection operator will

dlow this offspring to replace one of its parents. However, the presence of this mutant suffices to
change the structure of returns for agents of generation t: instead of equa returns, they experience a
higher pay-off from holding domestic money:

af(t+(wq - c) é(l- fi (t+1)(wq - C)

© U] B Y RO (PR

Although the differentid might be very smdl, it suffices to make f* = 1 the dominant Srategy.
Hence, the random change from generation t-1 to generation t+1 induces a systematic shift into the
same direction when generation t inherits its genetic materia to generation t+2. Does it dso lead to
changes in the consumption behavior of generation t+2? Changes in the momentary optima
consumption level occur if the denominator in eg. (4.8) deviates from one. With consumption il
equa to its deady date levd a generations t and t+1, this denominator amounts to
fi ) L
f(t)
denominator is > (<) 1 for individuas with f(t) > (<)f(t). It would, therefore, be optima for the

+(1- f; (t))%%)l). Given our assumption, f(t+1)>f(t), it is easy to see that the

former to reduce first-period consumption, while the later would find it advantageous to incresse it.
However, snce we have dso assumed that dl individuds share the same choice varidble fi(t) = fo =
f(t) at timet, the former consumption level ¢* would gill be optima for al generation t members as
long as ther portfolio choice remeains unaffected by the genetic operations, so that isolated changes
of G(t) would not survive the eection operator test. Note that these considerations apply only in the
case of isolated genetic changes of ether f(t) or G(t). Often both variables will be affected by the
genetic processes. To see more generdly, what kind of arbitrary combined genetic changes would
survive in our scenario, we can take stock of the traditiond concept of indifference curves.
Accepting only offspring who are &t least as it as their parents, the election operator only alows
those to enter the population whose choice variables positions them on the same indifference curve
like their parents or a higher indifference curve. Condder the utility obtained by parent individud i:

6) Uit =cia(t) wo + (wq - ¢ 1(1) @i (1), with r(t) =f; (t) Ry (t) + (1~ (1)) R (1) .

The dope of an indifference curveis given by:
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dey; (1)
df; (t)

_ - Cia(®(wy - Cig (1) Ry () - Rz(t))_

Wo +(Wq - 26 1(1)) > (1)

(1)

U=const
For Ry(t) > Ry(t) thisgives:

de; 1(t)

© & (0

g 0 if ¢j1(t) g c* (f; (t)) =0.5(wq +wo /1i(t)).
U=const <

This yidds the parabolic shape of the indifference curves exhibited in Fig. 5. In the case of Ry(t) <
Ro(t), the inequalities in eg. (8) are reversed and the indifference curve parabolas have the opposite
orientation. In the present case, Ri(t) > Ry(t), it can be inferred from eq. (7), that higher utility can
only be achieved if a higher fraction of domedtic assats is chosen. If, however, this necessary
condition for an improvement is met, a certain range of higher or lower consumption levels would be
accepted by the dection operator. As can be seen from Fig. 5, in the above Stuation in which
f(t+1 dightly exceeds f(t), the spectrum of utility improving changes is dightly asymmetric with

respect to consumption. Assuming that al initia consumption levels are close to ¢*, the pay-offscan
be reduced to: Ry(t) =f%l) R (1) =1_1Lft(_:)l). According to the arguments given above,
individuals with a bedow (above) average fraction of domestic money would, then,
havec* (fj(t)) >(<) c*=05(w; +w>,). The expected direction of combined changes of ¢ and f
would, therefore, depend on the individua’s position within the digtribution of the f’s. For roughly
haf of the population on average somewhat higher consumption bvels would pass the eection
operator, while for the other hdf of its members, the genetic operations would dightly favor a
reduction in consumption. With a symmetric distribution of the f’s, the expected macroscopic effect
of induced changes of G would be close to zero. With an asymmetric distribution, skewness would
somewhat favor one or the other direction of changes, but since this is athird-order effect, one might
expect it to be negligible. This conjecture is supported by our smulations which show no clear trend
in the development of g(t) over time. What can be observed, however, is that an increase of the
number of agents leads to a reduction of the size of fluctuations of ¢(t), cf. Figs. 3 and 4.

With only smdl and rather unsystematic changes of G(t), the systematic changes of the portfolio
composition will dominate the dynamics. The atraction towards the extreme solutions will, then, be
sdf-reinforcing leading to an ever increasing fraction of domestic assets in the upward part of the
cycle. Since every new round of genetic breeding of anew cohort starts a a higher average leve of f;
compared to the previous period, the deterministic limit of the stochastic dynamics will dso lead to a
higher new average vaue two periods later compared to the period before. In the infinite population
limit, this trend will continue until the entire population will have converged to f(t) = 1. Although in
this dtuation, dl inherent tendencies of genetic changes come to a hdt, the firg mutation of an
individua leading to an f < 1 will destabilize this Sationary state again and generate a systematic
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downward trend which over time leads to a convergence of the whole population to f(t) = 0. Here
again, any mutation will exert a destabilizing tendency commencing the upward part of the cycle...
and so on ad infinitum. Note that this endlessly repeating cycle should aso somehow exist as a
tendency in the finite population case (sSnce what we observe in the large population case should
correspond to the pure mean vaue dynamics). Of course, the cydlica development shown in Fig. 4
would not be consstent with a unit root in log exchange rates (it i s a clearly mean reverting process)
and volatility clustering. In an sense, with a large population, the inherent randomness of the artificia
economy gets lost and the measurable macroeconomic observables (pi(t), &t)) become deterministic
quantities.

However, at least for very smdl populations, this inherent structure of the combined genetic and
economic process seems to be entirely concedled by the random eements in the genetic processes
on the leve of the individua. In fact, the systematic tendencies worked out above will be subject to
more random distortions with a smal population sze. An upward or downward tendency will be
inverted as soon as the portfolio fraction of a new generation is not higher (lower) than that of the
preceding one. It is the more likely that this random event happens the smdler the sze of the
population is. The gpparently redlistic time series characteristics result from Stuations where this
happens with a very high probability within afew time steps. This explains why these more irregular
dynamics with recurrent bursts of activity are only observed within a certain range of small numbers
of agents.

We end our attempts at providing intuitive explanations of the evolutionary dynamics of our mode
with some remarks on the dynamics of second moments. As can be seen from Fig. 4, even the
standard deviations of our choice variables exhibit predictable systematic patterns over the cycle. In
particular, both the standard deviation of first-period consumption and the standard deviation of the
fraction of domestic assets increase when one of the corner equilibria becomes ungtable, remains
relatively high during most of the motion to the opposite end of the parameter space and converges
to zero when this new dationary solution is eventualy gpproached. Note that this dso implies that
despite the near constancy of the mean vaue of ¢(t), the dynamics is often characterized by a
relatively wide range of individua choices. What happens is that after destabilization of an
equilibrium, a broad range of choices of G(t) and f(t) gives higher utility (as can beinferred from the
indifference curves in Fig. 5). Hence, many different types of mutations will be alowed to enter the
population. The digtribution of the choice variables spreads out and in the following, the whole
populaion moves like a svarm from the left-hand side of the space of choice variables to its upper
right-hand end (cf. Fig. 6). When the portfolio choices converge to a homogeneous situation fi(t) =1
again, higher indifference curves can only be reached with consumption levels close to the steady
date level c*. This leads to a decrease of the bandwidth of first-period consumption levelsin the
population. Eventualy, the variability with respect to both choice variables shrinks to zero. Once all
individuds are close to the utility-maximizing seedy dae leves (fi(t) = 1 g(t) = ¢*), a smal



17

destabilizing mutation will lead to a sudden spread of the digtribution of drategies and will set into
motion aleft-ward dynamics of the whole swarm of individuas.

Figs. 5 and 6 about here

7. Conclusons

Elaborating on the GA version of the Kareken-Wallace mode introduced by Arifovic (1996) and
Arifovic/Gencay (2000), we have andyzed both the potential and the limitations for this type of
atificid open economy to generate redidtic time series properties. As it turns out, the model can
generate time series which very dosdy mimic the datistica characterigtics of empiricad data. The
mechanism responsible for the emergence of these interesting dynamics seems to be smilar to the
one andyzed within a different context by Lux and Marches (1999): the modd has a continuum of
equilibria with an indeterminate digtribution of Strategies among agents (as has been argued above,
any digtribution of the f would be admissible in equilibrium). With the stochadticity of the genetic
process, there will aways be digortions preventing the sysem from settling & any particular
equilibrium. Because of the evolutionary ingability of any digtribution of dtrategies these random
digortions will evoke sdf-amplifying tendencies which produce brge price changes (fat tails) and
volatility custering. However, we dso find that a smdl probability of mutation and a smal number of
agents are needed to get this redigtic output for the exchange rate. With a large population, the
destabilizing tendencies are so strong that the crucid choice variable, f, bounces back and forth
between the corners of the admissible parameter space. This gpplies to both binary and real coded
GAs. While the requirement of small mutation rates might be consdered to be plausible and not too
redirictive, having to redrict the population size to numbers below, say, N = 1000 is much more
cumbersome. Redl markets (in particular, the world-wide market for foreign exchange), surely have
more participants so that N < 1000 seems an unredigtic requirement. However, this disgppointing
finding is shared by other multi-agent models (cf. Egenter et al., 1999, Yeh, 2001, Chalet and
Marsli, 2002). Essentidly, with high N, a law of large numbers becomes effective even in models
with a large number of available strategies and the randomness from the interaction between the
microscopic choice of drategies vanishes. While in certain moddls, prices converge to fundamentdl
vauesin the large economy limit (Egenter et al., 1999), the absence of fundamentas in the Kareken
Wallace modd appears to be responsible for the oscillations between extreme choices.

How could one overcome these uncomfortable findings and save the ‘nice results obtained with
smaler populations? One possibility would be to alow for more coherence among individuds via
socid sharing of information. Allowing for groups of agents to form, we would get a smdler effective
number of agents. As an dternative, endogenous development of wealth could lead to some agerts
exerting more influence on the market outcome than others (of course, this festure would be
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paticularly difficult to incorporate into the present smple modd). This would presumable aso
change the outcome in a way that differs from the alomistic case analyzed above. Exploring these
avenuesis|eft for future ressarch.
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Table 1: Variation of Tail Index Estimate from Binary Coded GAs

Varying mutation probability, constant population sze N= 60

tal 92625 % tal 9ze 5% tal 9ze 10 %

Pmut min median max mn median max min median max
0.005 1.37 2.82 5.07 1.20 2.16 481 1.15 1.92 5.37
0.010 1.93 3.36 5.06 1.35 2.81 381 1.34 2.21 3.06
0.015 2.16 3.90 5.87 1.76 3.25 4.38 1.60 2.55 3.36
0.020 1.88 414 6.30 2.15 351 4.80 2.13 2.83 3.75
0.025 2.60 4.45 6.87 2.60 381 547 2.31 3.04 3.72
0.030 3.25 4.75 7.00 324 411 5.27 2.79 334 3.90
0.035 2.30 515 7.64 2.52 4.25 534 2.80 3.46 4,01
0.040 3.50 513 8.38 3.23 4.42 6.64 2.85 3.61 440
0.045 3.50 5.09 7.37 348 4.46 6.36 3.04 371 452
0.050 3.88 520 7.62 3.56 453 570 3.10 3.76 5.01

Congtant mutation probability pmyt = 0.01, varying population Sze

tal 9z 25 % tal 9ze 5% tal 9ze 10 %
N min median max min median max min median max
20 1.73 3.29 543 1.38 2.64 4.67 1.30 2.26 9.17

100 2.76 3.77 4.56 212 3.17 3.85 2.02 249 2.79

200 2.29 4.19 5.67 2.26 354 464 2.16 2.68 3.16
1000 1.87 3.22 5.54 1.86 3.15 4,58 1.85 2.80 3.81
2000 1.46 2.64 470 1.60 2.74 417 1.78 2.67 3.74
4000 1.19 1.94 3.78 152 1.92 3.53 1.56 2.20 3.21
10000 144 1.92 3.27 1.28 1.82 3.22 1.35 1.93 2.84

Note: Table 1 shows estimates of the parameter & from the asymptotic power-law behavior of large returns:
Pr ob.(|rt| >x) ~x" 2. We follow the literature in applying a condittiona maximum likelihood estimator

with a prespecified Sze of the tail region. To explore the sengtivity of the tal index estimates with respect
to the choice of the cut-off, wetried tail regions of 2.5%, 5% and 10%. Empirica estimates usualy show
a catan tendency of increasing tall indices when the tal sze is reduced. For variation of the mutation
probability, the minimum, median and maximum over 100 samples with 2,000 data points each are
shown. For variation of the number of agents, only 25 samples were used due to the increase in
computation time with increasing number of GA chromosomes.
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Table 2: Variation of Index of Fractional Differentiation from Binary Coded GAs

Varying mutation probability, constant population Sze N= 60

raw squared absolute returns
Pmut min median max min median max min median max
0.005 -1.05 -0.03 0.21 -0.23 0.25 0.76 -0.09 0.36 0.81
0.010 -0.95 -0.05 0.24 -004 0.31 0.77 0.15 042 0.78
0.015 -0.61 -0.12 0.29 0.02 0.34 0.81 0.11 0.43 0.88
0.020 -0.46 -0.17 0.07 -011 0.30 0.72 0.4 0.38 0.76
0.025 -0.57 -0.25 0.03 -0.08 0.25 0.82 -0.09 0.35 0.73
0.030 -0.58 -0.30 0.07 -011 0.23 051 -0.07 0.29 0.60
0.035 -0.66 -0.37 -0.07 -0.10 0.22 0.50 -0.09 0.28 0.47
0.040 -0.73 -043 -0.15 -0.06 0.19 0.44 -0.13 0.22 048
0.045 -0.76 -0.46 -0.14 -0.12 0.19 0.49 -0.07 0.22 0.50
0.050 -0.34 -051 -0.18 -0.13 0.15 047 -0.10 0.18 0.52

Congtant mutation probability pmyt = 0.01, varying populaion Sze

raw squared absolute returns
N min median max min median max min median max
20 -0.95 -0.02 0.32 -0.01 0.21 0.80 0.4 0.33 0.90
100 -0.31 -0.06 0.27 -0.03 0.30 0.79 0.10 0.40 0.73
200 -0.51 -0.18 0.04 0.09 0.30 0.79 0.20 0.35 0.66
1000 -0.76 -0.56 -0.32 -0.12 0.13 0.34 0.01 0.16 0.34
2000 -0.92 -0.61 -0.11 -0.15 0.05 0.27 -0.06 0.07 0.27
4000 -0.98 -0.48 -0.20 -0.24 0.04 0.33 -0.20 0.07 0.36
10000 -0.85 -0.40 -0.11 -0.23 0.01 0.13 -0.12 0.04 0.22

Note: Table 2 shows estimates of the parameter d from the hyperbolic decay of auto-covariances for
variables with long-term dependence:  E[XXt. pt] ~ Dt?9-1. We egimae d viathe log periodogram
regression technique proposed by Geweke and Porter-Hudak (1983). The underlying data are the same
as in Table 1. For variation of the mutation probability, the minimum, median and maximum over 100

samples with 2,000 data points each are shown. For variation of the number of agents, only 25 samples
were used due to the increase in computation time with increasing number of GA chromosomes.




Table 3: Results of Unit-Root Testsfor Binary Coded GAs

Varying mutation probability, constant population size N= 60, 100 runs

DF test Rejections ADF test Regections
Pmut min median max min median max
0.005 0.15 0.97 1.00 89 (85) 0.30 0.99 1.00 54 (47)
0.010 0.47 0.97 1.00 97 (95) 051 0.98 1.03 64 (59)
0.015 0.23 0.96 0.98 100 (100) 0.55 0.97 0.99 95 (91)
0.020 0.11 0.95 0.98 100 (100) 042 0.96 0.99 99 (99)
0.025 0.61 0.93 0.97 100 (100) 0.79 0.95 0.98 100 (100)
0.030 0.68 0.92 0.96 100 (100) 0.70 0.94 0.98 100 (100)
0.035 0.20 091 0.96 100 (100) 044 0.93 0.96 100 (100)
0.040 0.49 0.91 0.95 100 (100) 0.64 0.93 0.96 100 (100)
0.045 0.27 0.90 0.95 100 (100) 0.37 0.92 0.95 100 (100)
0.050 0.15 0.90 0.97 100 (100) 0.33 0.91 1.01 99 (100)
Congtant mutation probability, pmyt = 0.01, varying population size, 25 runs
DF test Rg. ADF test Rg.
Pmut min median max min median max
20 0.14 0.95 0.99 25 (25) 0.21 0.98 1.00 14 (12)
100 091 0.98 0.99 21 (21) 0.94 0.99 1.00 18 (18)
200 0.86 0.98 0.99 25 (24) 0.88 0.98 0.99 24 (23)
1000 0.32 0.92 0.98 25 (25) 0.41 091 0.97 25 (25)
2000 0.16 0.78 0.98 25 (25) 0.17 0.86 0.97 25 (25)
4000 0.13 0.77 0.96 25 (25) 0.15 0.81 0.97 25 (25)
10000 0.21 0.63 091 25 (25) 0.26 0.56 0.93 25 (25)

Note: Table 3 shows estimates of the parameter fi from aregression of the log exchange rate on its lagged

vaue. The columns labeled ‘rgection’ give the number of cases in which we can rgect the unit root null
hypothesis fi = 1 from the one-sided (two-sided) DF and ADF tests. Again, the underlying data are the
ones dready analysed in Tables 1 and 2. Hence, for variation of the mutation probability, the minimum,
median and maximum over 100 samples with 2,000 data points each are shown. For variation of the
number of agents, only 25 samples were used due to the increase in computation time with incressing
number of GA chromosomes.




23

Table4: Variation of Tail Index Estimate from Real Coded GAS

Varying mutation probability pyt, constant mutation variance 6, = 0.1 and population size N = 100

Tal 92e25% Tal 9ze 5% Tal 9210 %
Pmut min median max min median max min median max
0.01 1.33 2.53 475 146 251 3.85 1.49 2.26 2.94
0.02 1.75 257 3.93 1.62 2.33 347 154 2.08 3.18
0.03 0.81 3.01 6.89 0.85 2.57 3.33 0.67 2.24 2.70
0.04 0.70 2.94 4,70 0.74 245 3.62 0.89 2.08 3.07
0.05 0.96 3.23 5.02 0.73 2.68 3.62 0.85 2.33 3.09
0.06 0.85 2.33 3.09 0.80 2.67 4.24 1.00 2.22 344
0.07 0.91 2.98 5.98 111 2.60 4.60 0.71 2.24 3.29
0.08 1.03 2.93 6.18 1.04 2.62 4.65 0.86 2.14 351
0.09 0.99 2.72 6.44 1.03 2.35 4.63 0.93 2.02 3.67
0.10 1.07 247 6.08 0.95 2.13 3.99 0.97 1.84 3.60

Constant mutation probability pmyt =0.05, congtant population size N = 100, varying mutation variance

Tal 52625 % Tal 926 5% Tal 926 10 %

Omut min median max min median max min median max
0.025 140 361 552 104 312 4.07 104 2.60 3.10
0.050 137 3.46 5.56 0.92 3.00 4.32 0.77 254 3.38
0.075 0.67 3.37 6.34 0.65 2.95 3.97 0.59 247 3.32
0.100 0.78 3.28 5.03 0.79 2.77 4.08 1.00 2.27 3.07
0.125 0.67 3.05 4.67 0.74 261 381 0.75 2.25 3.08
0.150 0.70 291 515 0.89 257 441 0.71 214 2.99
0.175 0.90 2.86 5.27 0.95 253 3.96 0.95 212 3.08
0.200 0.95 2.85 478 0.95 240 3.88 0.97 198 304

Congtant mutation probability pm,,t =0.05 and variance O, = 0.025, varying population size

Hill 25% Hill 5% Hill 10 %
N min median max min median max min median max
20 1.32 3.29 7.57 0.61 2.75 5.22 0.51 2.30 3.49
100 1.46 3.85 6.08 1.49 3.16 4.22 1.41 2.68 3.23
200 1.35 4.23 5.73 1.06 3.50 4.43 0.93 2.85 3.85
1000 0.77 4.22 8.13 0.71 3.40 6.11 0.74 3.00 4.43
2000 0.85 2.65 8.16 0.68 2.39 5.97 0.62 2.08 452
4000 0.70 1.56 10.04 0.66 1.37 7.20 0.59 1.18 5.06
10000 0.62 1.44 8.82 0.55 1.13 6.34 0.61 0.96 5.09
20000 0.52 1.49 7.99 0.62 1.14 7.24 0.58 0.86 5.04

Note: Table 4 shows edtimates of the parameter 4 now for rea-coded GAs. Unlike in Figs. 1to 3, we
aways give the minimum, median and maximum over 100 replications with 2,000 deta points each even
in the case of varying number of agents (red GAs are less demanding in terms of computation time than
binary ones).
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Table5: Variation of Index of Fractional Differentiation from Real Coded GAs

Varying mutation probability prnut, constant mutation variance 6y = 0.1 and population sze N = 100

raw squared absolute returns
Pmut min median max min median max min median max
0.01 -1.06 -0.39 0.24 -0.28 0.09 041 -0.22 0.17 0.52
0.02 -0.79 -0.05 0.25 -0.16 0.14 0.43 -0.22 0.24 0.55
0.03 -0.44 -0.04 0.32 -0.14 0.13 0.90 -0.08 0.22 111
0.04 -0.52 -0.06 0.22 -0.08 0.28 1.04 -0.10 0.40 1.07
0.05 -0.44 -0.03 0.25 -0.11 0.25 117 -0.01 0.35 116
0.06 -0.48 -0.08 0.29 -0.02 0.28 1.09 -0.03 0.40 1.23
0.07 -0.52 -0.08 0.21 -0.11 0.30 0.87 -0.06 0.47 1.03
0.08 -043 -0.07 0.22 -0.03 0.34 0.93 -0.04 0.48 0.99
0.09 -0.52 -0.11 0.26 -0.01 0.34 0.89 -0.05 0.50 132
0.10 -0.48 -0.13 0.17 0.05 0.35 1.00 0.06 0.53 0.92

Congtant mutation probability pm,t =0.05, constant population sze N = 100, varying mutation variance

raw squared absolute returns
Omut min median max min median max min median max
0.025 -0.30 -0.01 0.34 -0.22 0.16 0.98 -0.10 0.24 0.98
0.050 -0.48 -0.07 0.21 -0.40 0.19 1.03 -0.06 0.26 1.01
0.075 -0.52 -0.04 0.30 -0.03 0.22 0.90 -0.04 0.29 114
0.100 -0.39 -0.05 0.27 -0.09 0.30 114 -0.07 0.45 1.08
0.125 -0.56 -0.06 0.31 -0.08 0.31 0.4 -0.18 0.46 1.03
0.150 -0.42 -0.06 0.17 -0.10 0.31 1.05 0.01 043 1.10
0.175 -0.50 -0.07 0.25 0.02 0.34 113 -0.06 0.49 1.07
0.200 -0.46 -0.09 0.19 -0.21 0.35 1.00 -0.02 0.50 1.00

Congtant mutation probability pr,,+ =0.05 and variance O, = 0.025, varying population size

N raw squared absolute returns
min median max min median max min median max
20 -0.48 -0.02 0.46 -0.10 0.21 0.74 -0.07 0.29 0.89
100 -0.37 0.00 0.21 -0.16 0.13 0.65 -0.16 0.20 0.71
200 -0.60 0.01 0.30 -0.16 0.12 0.73 -0.18 0.15 0.81
1000 -0.76 -0.02 0.40 -0.27 0.13 0.71 -0.26 0.22 1.05
2000 -0.66 0.03 0.39 -0.31 0.11 0.85 -0.33 0.28 1.02
4000 -0.79 -0.15 0.39 -0.31 0.10 0.39 -0.34 0.29 0.98
10000 -0.72 -0.28 0.45 -0.30 0.13 0.86 -0.28 0.37 0.96
20000 -0.75 -0.36 0.47 -0.13 0.10 0.86 -0.03 0.34 119

Note: Table 5 shows estimates of the parameter d , now for red-coded GAs. The data are the same asin
Table 4.




Table 6: Results of Unit-Root Testsfor Real Coded GASs
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Varying mutetion probability pmyt, constant mutation variance 6, = 0.1 and population size N = 100, 100 runs

Pmut
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

min
0.29
0.83
-0.00
-0.00
0.01
-0.00
0.00
0.00
-0.00
-0.00

DF test
median
0.90
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98

max
1.00
1.00
1.00
1.00
1.01
1.00
1.00
1.00
1.00
1.01

Reg.

74 (70)
54 (49)
50 (47)
49 (42)
46 (45)
55 (45)
56 (47)
58 (51)
53 (48)
68 (66)

min
0.42
0.87
0.01
0.06
0.26
-0.00
0.00
0.01
-0.00
-0.00

ADF test
median
0.94
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.98

max
1.00
1.00
1.00
1.00
1.00
1.00
1.01
1.00
1.00
1.01

Reg.

59 (61)
54 (49)
35(34)
34(30)
39(37)
40 (34)
40 (36)
46 (40)
48 (41)
68 (63)

Congtant mutation probability py,t =0.05,

constant population size N = 100, varying mutation

variance, 100 runs

DF test Rg. ADF test Rg.
Omut min median max mn  median  max
0.025 | -0.00 1.00 1.00 36 (30) -0.00 1.00 1.00 25 (24)
0.050 0.03 0.99 1.00 43 (32) 0.19 1.00 1.00 26 (21)
0.075 0.01 0.99 1.00 51 (40) 0.01 0.99 1.00 34 (33)
0.100 | -0.00 0.99 1.00 69 (60) 031 0.99 1.00 54 (48)
0.125 | -0.00 0.99 1.00 68 (65) -0.00 0.99 1.03 55 (53)
0.150 | -0.00 0.99 1.00 64 (58) -0.00 0.99 1.00 46 (39)
0.175 | -0.00 0.99 1.00 76 (66) 0.12 0.99 1.10 50 (48)
0.200 | -0.00 0.98 1.00 72 (69) 0.02 0.99 7.71 60 (57)
Congtant mutation probability pmy,t =0.05 and variance 6, = 0.025, varying population size, 100 runs
DF test Rg. ADF test Rg.
N min median max min median max

20 0.77 0.98 1.00 85 (79) 0.88 0.99 1.00 21 (17)
100 -0.00 1.00 1.00 29 (24) 0.00 1.00 1.00 19 (15)

200 0.99 1.00 1.00 2(4) 0.99 1.00 1.00 4(4)
1000 -0.00 1.00 1.76 30(39) -0.00 1.00 24.74 31(33)
2000 -0.00 1.00 1.66 24 () -0.00 1.00 6.11 27 (29)
4000 -0.00 1.00 1.06 37 (50) -0.00 1.00 1.02 35 (43)
10000 0.01 1.00 152 45 (63) 0.01 1.00 1252 44 (52)
20000 | 0.12 1.00 1.03 43 (54) 0.12 1.00 1.01 42 (49)

Note: Table 6 shows results from unit-root tests, now for real-coded GAs. The underlying data are the same

asin Tables4 and 5.
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Fg. 1.: A typicd ‘redidic’ series of returns from a smulated economy with a binary-coded GA
population of 100 agents. For economic parameters, see main text. GA parameters are: pou =

0.01 and peross = 0.6.
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Fig. 2.: Log exchange rates from smulated economies with pn: = 0.01 (upper panel) and poy =
0.05 (lower pand). The population conssts of 100 binary-coded GAs in both cases. Although
not fully redidtic, for parts of the upper time series the DF and ADF tests are unable to reject the
unit root null. The smulation in the lower pand has more easly recognizable mean-reverting
features.



28

log of exchange rate

10 20 30

|0?§e)

—10

-3a

x 10t

fraction of domestic asset

a
c o—— i
o
&
Q
~d '
Y
<
d
N
Q
a . UL
9q 1 ] 3 4
x 10t
consumption
o
X
N
<
N
o)
a~
2]
a
a
P X
6 d 1 ) 3 4
time x 10*

Fig. 3.: Log exchange rate (top), average portfolio fraction of home currency (middle), and average
firg-period consumption (bottom) for a red-coded GA population of 200 agents. For economic
parameters, see main text. GA parameters ae oy = 0.05, sy = 0.025 and g=0.2. The
dynamics seems to be characterized by unsystematic changes of the portfolio composition which
lead to exchange rate fluctuations, but leave average consumption choices dmost unaffected.
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Fig. 4.: Log exchange rate (top), average portfolio fraction of home currency (middle), and average
fird-period consumption (bottom) for a red-coded GA population of 20,000 agents. For
€economic parameters, see main text. GA parameters ae: poy = 0.3, Smye = 0.025 and g=0.2.
The middle and bottom panels show both the mean (solid lines) and standard deviations (broken
lines) of the digtribution of the choice variables within the population. In order to lodge the mean
and standard deviation in the bottom pandl, we have subtracted the steady State vaue ¢ = 7,
reduced the standard deviation of ¢ (t) by one-haf and magnified the sandard deviation of fi(t) by
a factor 10. The higher pn, compared to Fig. 3 mainly serves to decrease the amplitude of the
cycle and enhance convergence to regular cycles,
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Fig. 5.: Indifference curves. The underlying utility function is U = c (t) c(t+1), endowments are wy =
10, w, = 4. For thisillugtration it has been assumed that dl agents have chosen therr firgt-period
consumption level equd to its steady date value, ¢ = 7 and that the fraction of domestic money
in the portfolios of generationst and t+1 has mean values f (t +1) = 0.55 and f(t) = 0.5.
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Fig. 6.: A sngpshot of the evolution of the population corresponding to one upward haf-cydein Fg.
4. The graph shows on its left-mogt part the distribution of choice parameters within ageneration
shortly after the lower turning point (triangles). The pluses and diamonds show the distribution of

choice parameters within the same dynasty after 40 and 80 periods, respectively.



