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cycles. The calibrated model shows that multiple equilibria can explain a considerable 
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1 Introduction

This paper shows that the demographic transition in the otherwise stan-

dard Ramsey model can generate multiple equilibria, poverty traps, and

demography-driven transitional cycles. While the idea that demography in-

duces multiplicity is not new, we do not know the demographic conditions

under which this multiplicity is realized or the extent to which the cur-

rent global income gap can be explained by demographic poverty traps and

demography-driven cycles. Neither can we tell whether a slow-growing coun-

try is trapped or just suffering from a long-lasting recession associated with

these cycles.

In this paper, the demographic transition is introduced into the Ramsey

model by assuming that the population growth rate is a function of income

per head such that it initially rises and then slows down. This closed-form

assumption in supported by several foundations in the literature. The child

demand theory, for example, maintains that the assumed pattern follows from

a switch of dominance from the income to the substitution effect (Becker,

1960). In particular, a rise in women’s wages tends to generate this switch

(Galor and Weil, 1996; Lagerlöf 2003) and it may also be due to a power

shift in favor of women who usually want to have less children than men

(Bergstrom, 2007). Galor and Weil (2000) claim that the substitution effect

is further amplified by technical progress. Caldwell (1982), in turn, highlights

the role of intergenerational wealth flows: if these flows run from children to

parents, they have every reason to raise large families. Therefore, policies to

limit child labor can generate a change in fertility trends (Hazan and Berdugo,
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2002; Doepke, 2004). The differential fertility hypothesis from de la Croix

and Doepke (2003) maintains that the income distribution matters much as

the poorer are more fertile than the richer. Since fertility and education

are joint decisions, public schooling should generate a shift from high to low

fertility (de la Croix and Doepke, 2004) and the effect should be the most

visible in developing countries, where the fertility differentials are the most

widespread (Kremer and Chen, 2002).
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Figure 1: Population growth. Sources : US Census Bureau (2010); Heston et
al. (2009)

This paper, which is on the economic consequences of the demographic

transition, collects and summarizes these theories on the simple assumption

that the population growth rate is a hump-shaped function of income.1 Un-

deniably, the empirical association between income and population growth

1Hansen and Prescott (2002) adopt a closely related solution by taking fertility as a
piece-wise linear function of per capita consumption.
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is the subject of an ongoing debate as historical statistics are far from satis-

factory (Bonneuil, 2010). But it is possible to find reliable data from devel-

oping countries currently in the midst of the demographic transition. Figure

1 plots the annual population growth rates from 1950 to 2007 against per

capita incomes in four countries, showing a hump-like association in each

case.2 However, because it is not known how current observations generalize

to historical data, this paper concentrates on the recent consequences of the

demographic transition.

The demographic transition in the otherwise standard Ramsey model can

generate multiple equilibria, poverty traps, and demography-driven transi-

tional cycles.3 The solution of the model depends on three demographic

parameters – the income elasticity of the population growth rate, the income

level at which population growth peaks, and the height of this peak. The

calibrated version shows that three types of transition can arise.4 In the

first type, the values of all demographic parameters are low, implying that

the equilibrium (steady state) is unique, while multiple equilibria arise for

excessively high values, leading the economy toward a low-income poverty

2Similar figures are seen in many other developing countries, but civil wars, missing
data, etc. make this sort of exercise difficult in some cases.

3Some other modifications of the neoclassical Ramsey model introduce productive
externalities, variable demand elasticities, and market imperfections to generate multi-
equilibrium models (Azariadis and Drazen, 1990; Matsuyama, 1991; Benhabib and Farmer,
1994; Benhabib and Gali, 1995; Gali, 1996). For earlier demographic multiplicity, see Ga-
lor and Weil (1996); (2000); Kremer and Chen (2002); Cervellati and Sunde (2005), for
example.

4Earlier calibrated versions of demo-economic models are Hansen and Prescott (2002),
de la Croix and Doepke (2003; 2004), Doepke (2004), Lagerlöf (2006), Bar and Leukhina
(2010), and Jones and Schoonbrodt (2010). These papers concentrate on historical data
from Europe and U.S.. Applied techniques are also different, since this paper provides a
model in continuous time, thus indicating annual population growth rates, whereas the
other papers are based on discrete models in which the time unit is one generation.

3



trap. In the intermediate case, the low-income steady state is present but

the economy is still able to proceed toward the high-income steady state ex-

periencing, however, a sizeable variation in its economic growth. These cases

are denoted Weak, Strong, and Intermediate respectively. The calibrations

show that the high-income steady state can provide twice as much income

as the low-income steady state and the demography-driven variation in eco-

nomic growth can explain the long-lasting recessions recently observed in

many developing countries. Nevertheless, permanent poverty-traps are not

typical.

The paper has the following organization: Section 2 introduces the mod-

ified Ramsey model and its solution, discussing some mathematical details

in the Appendix. Section 3 provides a calibrated version and a parametric

bifurcation analysis, and quantifies the importance of the multiple equilibria.

Section 4 closes the paper.

2 The Demographic Transition in the Ram-

sey Model

2.1 Income, Utility, and the Demographic Transition

Consider an economy with capital K, population L, per head capital k(t) =

K/L, and per head production function y = f (k), which satisfies the Inada

conditions limk→0 f ′(k) = ∞, limk→∞ f ′(k) = 0, limk→0 f(k) = 0, and is

strictly concave (f ′ > 0, f ′′ < 0).

The standard Ramsey model assumes that the population growth rate

L̇/L = n is constant but, to introduce the demographic transition, we assume

that population growth is a function of income per head y such that it initially

4



accelerates and then slows down. Because per head income is monotonic in

terms of capital (f ′ > 0), we write population growth as a function of the

latter.5 Hence, the population function n = n (k) assumes

n′ (k) > 0 ⇔ k < µ,
n′ (k) = 0 ⇔ k = µ,
n′ (k) < 0 ⇔ k > µ,

(1)

where the capital stock k = µ > 0 is the stock from which population growth

keeps decreasing. Figure 2 illustrates. Given that the demographic transition

typically occurs at low income levels, the capital stock k = µ must be lower

than what is seen in the industrial countries currently.






 k




n(k)

Population growth n = n(k)




m

Population function

Figure 2: Population growth as a function of income.

Furthermore, because population growth initially accelerates slowly and

ultimately levels off, we assume the limit conditions

limk→0 {n′ (k)} < ∞,
limk→∞ {n′ (k)} = 0.

(2)

5This formulation has already been suggested by Solow in the extensions of his famous
1956 model (Solow, 1956). It was also applied by Lane (1975), who considered the case in
which population growth accelerates.

5



Defined in this way, n = n (k) is in line with the data and the micro founda-

tions above. Normalizing the initial population to unity, the population size

at time t becomes

L (t) = exp

{∫ t

0

{n [k (τ)]} dτ
}
. (3)

Consider now a central planner who maximizes the Benthamian function

U =
∫∞
0

u [c (t)]·L(t)·e−ρtdt, where utility is derived from per head consump-

tion c and from the number of people L, the temporary utility u [c (t)] · L(t)

being discounted by the subjective time preference rate ρ > 0. With con-

stant population growth n, L(t) = ent holds and the integrand above becomes

u [c (t)] · e−(ρ−n)t. But if n = n(k), it holds that

U =

∫ ∞

0

u [c (t)] · exp
{
−
∫ t

0

{ρ− n [k (τ)]} dτ
}
dt. (4)

Since the Benthamian formula refers to the discounted total utility, U in-

creases forever for n sufficiently high. To keep Eq. (4) bounded, one has to

assume ρ− n(k) > 0 keeping the effective discount rate positive for all k. In

a closed economy, the per head capital accumulates according to

k̇ = f (k)− c− [δ + n(k)] k, (5)

where δ > 0 stands for depreciation. The only modification in Eq. (4) - (5) is

that the population growth rate is not constant but responds endogenously

to the capital stock chosen by the planner.

2.2 The Solution of the Modified Model

Eq. (4) - (5) give an infinite horizon problem with variable discount rate. To

solve this problem, we follow the procedure suggested by Uzawa (1968) and
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move from the natural time t to the virtual time ∆(t) as defined by

∆ (t) =

∫ t

0

{ρ− n [k (τ)]} dτ. (6)

This implies d∆(t)
dt

= ρ − n [k (t)] > 0 and ∆ (0) =
∫ 0

0
{ρ− n [k (τ)]} dτ = 0,

so that ∆ (t) satisfies the regularity conditions suggested by Uzawa (1968).

By utilizing the fact that dt = d∆/(ρ− n), the problem in Eq. (4) - (5) can

now be written in terms of ∆:

U =

∫ ∞

0

u [c (t)]

ρ− n [k (t)]
e−∆(t)d∆(t), (7)

dk(t)

d∆(t)
=

f [k (t)]− c (t)− (δ + n [k (t)]) k (t)

ρ− n [k (t)]
. (8)

Since the discount factor in Eq. (7) - (8) is constant, it can be solved by stan-

dard methods (Uzawa, 1968; Lane, 1975). The current value Hamiltonian

and the necessary conditions become:

H (k, c, λ) =
1

ρ− n
{u+ λ (∆) [f − c− (δ + n) k]} , (9)

∂H/∂c = 0 ⇔ u′ = λ, (10)

dλ(∆)

d∆
= −∂H (k, c, λ)

∂k
+ λ(∆), (11)

where n = n[k(t)] and u = u[c(t)] etc. Noting Eq. (6), Eq. (11) reverts back

to natural time by writing λ̇
.
= dλ

d∆
d∆
dt

= (ρ − n)
{
−∂H(k,c,λ)

∂k
+ λ

}
. Noting

Eq. (10), one can eliminate λ in the usual way and, after some algebra, the

differential equation for consumption becomes

ċ

c
=

−u′

u′′ · c

{
f ′ − (δ + ρ)− n′ · k +

n′

u′H(k, c)

}
,

7



where H(k, c) = 1
ρ−n

{u+ u′ [f − c− (δ + n) k]} is the optimized Hamilto-

nian and n′ refers to the response of the population growth rate to the change

of the capital stock.

The equation for consumption is easier to handle if one adopts the CIES

formula u (c) = c1−θ

1−θ
, which has the convenient property −u′(c)

u′′(c)c
= 1

θ
under

the assumptions θ > 0 and θ ̸= 1.6 In this case, the optized Hamiltonian is

H(k, c) = 1
(ρ−n)

{
c1−θ

(1−θ)
+ c−θ [f − c− (δ + n) k]

}
and the differential equation

for consumption becomes

ċ

c
=

1

θ

{
f ′ − (δ + ρ)− n′ · k +

n′

(ρ− n)

[
θc

(1− θ)
+ [f − (δ + n) k]

]}
. (12)

The isoclines ċ = 0 and k̇ = 0 in the k − c space are given by

ċ = 0 ⇒ c =
θ − 1

θ
{[f ′ − (δ + ρ)] (

ρ− n

n′ ) + [f − (δ + ρ) k]}, (13)

k̇ = 0 ⇒ c = f − (δ + n) k. (14)

Given the Inada conditions, the isocline k̇ = 0 runs from the origin intersect-

ing the k−axis at k̃ defined by

f(k̃)/k̃ = δ + n(k̃). (15)

Even though the production functionf(k) is concave, k̇ = 0 can have non-

concave areas since population growth varies together with capital. Figure 5

illustrates. This can be rephrased as follows:

6For the formula u(c) = c1−θ−1
1−θ lim

θ→1
u(c) = ln c holds, but this is not valid for the shorter

expression above. Hence the assumption θ ̸= 1.
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Figure 3: The phase diagrams of the model.

Proposition 1 With k̃ such that f(k̃)/k̃ = δ + n(k̃), the k̇ = 0 isocline of

the modified Ramsey model

(i) starts from the origin and

(ii) runs above the horizontal axis for 0 < k < k̃.

The isocline ċ = 0 in Eq. (13) can have several shapes, depending upon

the values of the parameters; we concentrate on the empirically relevant cases.

First, note that the shape of ċ = 0 depends on θ. Since Hall (1988) suggests

that high values are empirically plausible, we assume θ > 1 implying that

the fraction θ−1
θ

is positive.7

Next, consider the limit behavior of the expression [f ′ − (δ + ρ)] (ρ−n
n′ ).

Given Eq. (1) - (2), the fraction ρ−n
n′ goes to a finite positive number

as k approaches zero, +∞ (−∞) as k approaches µ from the left (right),

and −∞ as k approaches +∞. Given the Inada conditions, the expression

7Although the isocline inverts, the results are unchanged for θ < 1.
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[f ′ − (δ + ρ)] goes from +∞ to − (δ + ρ) < 0 and changes its sign at k̂ with

f ′(k̂) = (δ + ρ) where k̂ < k̃.8 The limit behavior of [f ′ − (δ + ρ)] (ρ−n
n′ )

thus depends on the relation between µ and k̂. We assume µ < k̂, implying

that population growth peaks at a relatively low level of per head capi-

tal, as has been typical. Therefore, limk→0

{
[f ′ − (δ + ρ)] (ρ−n

n′ )
}

= +∞ ,

limk↑µ {·} = +∞ , limk↓µ {·} = −∞, and limk→∞ {·} = +∞ . Since the finite

element f − (δ + ρ) k affects ċ = 0 in the vicinity of the k-axis but has no

effect on its limit behavior, the isocline ċ = 0 produces a U−shaped graph

for k < µ, but swings from −∞ to +∞ for k > µ, as Figure 3 illustrates.

This discussion can be rephrased as follows:

Proposition 2 For θ > 1 and µ < k̂ < k̃ with f ′(k̂) = (δ + ρ), the isocline

ċ = 0 of the modified Ramsey model

(i) is U−shaped graph for k < µ and

(ii) swings from −∞ to +∞ for k > µ.

To state the existence of interior steady states, note that Eq. (15) implies

that since ċ = 0 becomes c = θ−1
θ
{
[
f ′(k̃)− (δ + ρ)

]
( ρ−n

n′(k̃)
)} for k = k̃ > k̂ >

µ, n′(k̃) < 0 and
[
f ′(k̃)− (δ + ρ)

]
< 0, and c > 0. Hence, ċ = 0 runs

above the horizontal axis for k = k̃ but k̇ = 0 hits this axis. Given the

limit behavior of ċ = 0 as above, this implies that the model has at least one

interior steady state. Figure 3 illustrates.

Consider the position of the U part of ċ = 0 in the phase space [Fig.

8The strict concavity of f(k) implies that f ′(k) < f(k)/k for all k. Hence f(k̃)/k̃ =

δ + n(k̃) < δ + ρ = f ′(k̂) holds only if k̂ < k̃.
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3]. For U high enough, the number of steady states is one. Local stability

analysis in Appendix A indicates that this steady state is a saddle. For U

tangent to k̇ = 0, a saddle-node bifurcation takes place.9 For U low enough,

the number of the steady states is three. The low and high-income steady

states are saddles with stable paths running from the south-west and north-

east. The middle steady state is an unstable focus or node [Appendix A].

The former is assumed but the analysis of the latter is not much different.




100300500700900204060
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k=0
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Intermediate case


Figure 4: Path B runs from the origin; k∗
1 and k∗

3 are the low and high-
income steady states, capital stock kh is the highest initial stock from which
the low-income steady state can be reached.

In the case of three steady states, the saddle path B can adopt at least two

alternative shapes, i.e., it may run from the origin [Fig. 4] or emanate from

the middle steady state [Fig. 5].10 In the former case, the high-income steady

9This non-generic is not analyzed below. Non-concavities of the isoclines imply that
further steady states cannot be excluded a priori. I concentrate on the cases depicted in
Figure 3.

10Since the case, in which the north-eastern branch ofA runs non-spiralling (Matsuyama,
1991; Gali, 1996) does not appear in the parametric model below, I bypass it here.
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state is reachable from all initial states, but in the latter, the capital stock

must be at least km ∈ (kl, kh) initially. Hence, there exists a poverty trap,

implying that a country with the initial capital stock lower km never reaches

the high-income steady state. For the complete solution of the problem, see

Appendix B. The discussion above can be summarized as follows:

Proposition 3 Given Propositions (1) and (2), the modified Ramsey model

(i) has at least one saddle stable steady state 0 < k∗ < k̃ ,

(ii) may have three steady states k∗
1, k

∗
2, k

∗
3 (saddle, unstable focus, saddle)

in which case either

a limt−>∞k(t) = k∗
3 ∀k(0) > 0 or

b limt−>∞k(t) = k∗
1 k(0) < km and limt−>∞k(t) = k∗

3 k(0) > km.

c
c=0.

k=0
.

kl kh
k

c=0.

B

A

A

B

k*1
 k*3


Strong case


Figure 5: Path B spirals from the middle-income steady state. Capital stock
kl is the lowest initial stock from which the high-income steady state can be
reached.
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3 The Calibrated Model

Since the modified Ramsey model above exhibits potential for multiple steady

states, one wants to know the demographic conditions under which this mul-

tiplicity holds true. Therefore, we now calibrate the model for global data.

Consider first the parametrization of the population function. Several

expressions satisfy the basic assumptions in Eq. (1), but only a few meet the

requirement limk→0 {n′ [k (t)]} < ∞, limk→∞ {n′ [k (t)]} = 0 given in Eq. (2).

A formula satisfying both is the three-parametric expression

n(k) = η · exp

{
−1

2

(
k − µ

σ

)2
}
, (16)

in which η, 1/σ, and µ are the peak population growth rate, the income elas-

ticity of population growth, and the peak-time per head capital respectively

[Fig. 2].

To calibrate Eq. (16), note that the observed peak population growth

rates range from 0.01 to 0.045 (Livi-Bacci, 1997, US Census Bureau, 2010).

Hence, let 0.01 ≤ η ≤ 0.045. To find the limits for µ, one can utilize Prescott

(1998), who argues that economic miracles occur when countries reach the per

head GDP level which is approximately 25% of that in the U.S. To calculate

kUSA, the investment time series for the period 1950-2005 from the U.S. was

collected (data from Heston et al., 2009) and the perpetual inventory method

(Caselli, 2004) was applied to show that the per head capital stock in the

U.S. in 2005 was $132 599, 25% of which is thus a candidate for µ. However,

to keep the numbers simple we let µ = $30 000. This µ is denoted as 1/4 kUSA

in the text and graphs. In the sensitivity analysis, we allow µ to vary from

1/4 kUSA − $3 000 to 1/4 kUSA + $3 000. Given this µ, the limits 20 000 ≤

13



σ ≤ 10 000 have been chosen for the (inverse of the) income elasticity of

population growth. These limits allow the demographic transition to get

started and mature in a realistic way. Table 1 summarizes.

Parameter Explanation
α = 1/3 Share of capital

A = 300 Total factor productivity

ρ = 0.045 Preference factor

θ = 3 Negative of the elasticity of marginal utility

δ = 0.05 Depreciation rate

0.01 ≤ η ≤ 0.045 Peak population growth rate

20 000 ≤ σ ≤ 10 000 The (inverse of) income elasticity

µ = 30 000 = 1/4 kUSA Peak-time per head capital, in 2005 U.S. dollars

Table 1: The values of the parameters.

For the production technology, the Cobb-Douglas formula y = Akα is

applied with α = 1/3. The parameter A varies between countries and in

time, but Hall and Jones (1999) find that the total factor productivity in

developing countries typically ranges from 30% to 60% of that in the U.S.

Given α = 1/3 and kUSA as above, and noting the per head U.S. income

of $41 870 in 2005, one can derive AUSA = 826. Thus, A = 300 should

be an appropriate value for a developing country. A combination of these

parameters shows that the peak-time per head income is approximately 25%

of that in the U.S., which is in line with Prescott (1998). Further, we choose

θ = 3 δ = 0.05, and ρ = 0.045; these values are close to those suggested by

Barro and Sala-i-Martin (1995) [Table 1]. All parameter combinations meet

the parameter constraints mentioned in the theoretical text.

It is now possible to calculate the type of solution for each feasible com-

bination of η, σ, and µ. The middle panel in Figure 6, drawn for µ = 30 000,

14
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Figure 6: Effect of the parameters in the calibrated model. Range I: single
steady state. Range II: three steady states; path B runs from the origin.
Range III: three steady states; path B emanates from the middle-income
steady state. Sources: US Census Bureau (2010); Heston et al. (2009).

shows the two curves which divide the (σ, η) space into three ranges indicat-

ing a single steady state (I), three steady states with path B from the origin

(II), and three steady states with path B from the middle-income steady

state alone (III).

In range I, the values for η and 1/σ are low, whereas the opposite is true

in range III. In the former, population growth keeps low and is insensitive to

income, so that the demographic transition proceeds without causing much

harm to the economy for which reason it is denoted as Weak. In range

III, high peak population growth makes capital deepening hard and each

unit of investment induces an aggressive increase in population growth, thus

taking the economy into a low-income poverty trap. Therefore, this type of

the demographic transition is denoted as Strong. In the Intermediate case

(range II), the low-income steady state arises but the economy is still able

to proceed toward its high-income steady state. Comparison of the panels in

Figure 6 shows the role of µ: the probability of the poverty trap increases as µ

increases because lower marginal productivity endangers capital deepening.
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To give an example of each type, one can choose a set of preferred param-

eters such that they lie approximately in the middle of each parameter range.

Figure 7 shows the population functions n(k) for such a set of parameters.11

n(k)

k 

0.04

0.02

1/4      1/2 3/4 USA

Population function and preferred parameters, three cases

h = 0.01    

= 20 000

Weak

h = 0.025 

=16000

Intermediate

h = 0.04 

=13000

Strong

 

s s s

Weak

Intermediate

Strong

m = 30 000 m = 30 000m = 30 000

Figure 7: The preferred parameters and associated population functions.

Consider now the steady state implications of the calibrated model. An

often-heard suggestion is that international aid should be applied to elevate

the poorest countries out of poverty. To evaluate the effects of such a policy,

consider a Strong country with preferred parameters as in Figure 7. In the

low and high income steady states, k∗
1 = 9329 and y∗1 = Akα

1 = 6315 versus

k∗
3 = 65 475 and y∗3 = Akα

3 = 12 092 holds, implying that the high-to-low

income ratio is y∗3/y
∗
1 = 1.91. Thus, if this country could switch from its low

11The Mathematica program for drawing figures 1− 9 and to calculate the parametric
results is available from the author on request.
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to its high-income steady state, its income would approximately double.12 To

evaluate the sensitivity of the high-to-low income ratio to the demographic

parameters, let one of them vary within the Strong range and keep the two

others as preferred.13 Figure 8 shows that the y∗3/y
∗
1 ratio increases together

with σ and η and decreases with µ but this sensitivity is very limited in all

cases, Table 2 indicates that the lowest and highest ratios are 1.64 and 2.04.

One can now compare these findings with the observed global income gap

showing that, in 2005, the richest decile earned forty times as much as the

poorest (184 countries from Heston et al., 2009). Therefore, even though

an individual poor country would greatly benefit from a switch to its high-

income steady state, the effects of such switches on the global income gap

would be rather limited.

1
2
3
4

1
2
3
4

1
2
3
4

y */y *3 1y */y *3 1 y */y *3 1

0.018 0.045 10 000 16 200 27 350 33 000
η σ µ

The high-to-low income ratio, the Strong case

σ = 13 000, µ = 30 000 η = 0.04, µ = 30 000 η = 0.04,  σ = 13 000




Figure 8: The high-to-low income ratio y∗3/y
∗
1 as a function of demographic

parameters η, σ, and µ within the Strong range; range limits shown for each
parameter. Sources : as for Figure 5.

12This finding is in line with that of Graham and Temple (2006), who calculate that a
switch from a low- to high-income steady state would increase a country’s income by a
factor two or three on average.

13Each parameter increases in five steps of equal step length within the appropriate
parameter range, the limits of which are shown in Figure 8.

17



Consider then the off-steady state implications of the model. The stan-

dard Ramsey model predicts that the economic growth rate always decreases.

Figure 9, which shows the time paths for economic growth rates, indicates

that this rule is true only for the Weak and Strong countries, whereas the

Intermediate country meets a sizeable transitional cycle in its way to its

high-income steady state. With the preferred parameters, it takes 16 years

to proceed from the bottom to the peak to reach a 0.65 percentage points

higher economic growth rate than previously [Table 2].

Economic growth

0.01

0.02

0.03

Time (years)
50		 100		 150		 200

Intemediate

WeakStrong

Time paths of economic growth rates, preferred parameters 


Figure 9: The transitional growth rates of the per head income for the pre-
ferred parameters. Sources : as for Figure 5.

A sensitivity analysis shows that an increase in the peak population

growth rate η increases both the amplitude and duration of the transitional

cycle [Fig. 10, leftmost panel]. The cycle escalates when η approaches the

upper limit of the Intermediate parameter range and it ultimately takes al-

most 20 years to proceed from the bottom to the peak, with more than 2
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percentage points higher economic growth rate. In particular, the period of

deep depression gets longer since the low-income steady state (the poverty

trap) keeps the economy tightly in its freezing grasp, but the economy recov-

ers rapidly thereafter. Analogous results are provided for parameters σ and

µ [Fig. 10]. Table 2 collects these results, showing that there is a consider-

able variation both in the duration and amplitude of the demography-driven

transitional cycle.14 To compare these findings again with the data, note

that the average annual economic growth rates from 1995 to 2005 in the

fastest and slowest growing deciles were 8.38% and −1.82% (188 countries

from Heston et al., 2009), implying that the maximum demographic growth

impact of 2.22% is able to explain 20% of the observed growth differentials

worldwide.15

Preferred Lowest Highest
High-to-low income ratio (y∗3/y

∗
1) 1.91 1.64 2.04

Duration of the cycle from bottom to peak (years) 16 0 20
Growth rate differential from bottom to peak (%) 0.65 0 2.22

Table 2: Summary of the calibrated model.

Given the potentially long time-span of the recession, it is hard to say

whether a badly performing country is trapped or just recessed. Fortunately,

the present model provides a simple test because the low-income equilibrium

k∗
1 is always located left of µ [Fig. 5], indicating that an economy which has

reached its demographic peak has already avoided the trap. Consider, for

example, the 36 countries which, based on their low economic growth rate

14The lowest limits of 0 indicate that the transitional cycle may be just a plateau in the
otherwise decreasing growth trend.

15Bloom andWilliamson (1998) suggest that population dynamics can explain 1.37−1.87
percentage-units of the East Asian economic miracles.
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Sensitivity of the transitional cycles to demographic parameters

Figure 10: The transitional growth rates of the per head income as a function
of demographic parameters η, σ, and µ within the Intermediate range; range
limits shown for each parameter. Sources : as for Figure 5.

thus far, have been classified as trapped by Graham and Temple (2006). Of

these, at least 16 have experienced a clear-cut demographic peak recently.

These countries, the peak years, and the peak population growth rates are

given in Table 3.16 In terms of these countries, the predictions of the current

model are much more optimistic than those given by Graham and Temple

(2006).

Country Peak year Pop. growth Country Peak year Pop. growth
Angola 1995 2.21 Niger 1981 2.83
Burkina Faso 1988 3.16 Papua N. G. 1994 2.56
Central Africa 1988 2.83 Senegal 1980 3.12
Chad 1995 3.08 Sierra Leone 1992 2.54
Congo (Zaire) 1988 3.10 Tanzania 1989 3.02
Gambia 1990 3.06 Togo 1988 3.56
Guinea-Bissau 1990 2.40 Zambia 1980 3.35
Mozambique 1989 2.96 Zimbabwe 1984 3.91

Table 3: Countries which have reached their demographic peaks, peak year
and peak population growth rate (rate of natural increase). Sources: US
Census Bureau (2010).

The analysis above comes with some caveats. The theoretical model as-

16In the remaining countries, population growth still increases, there seem to be several
peaks, data is insufficient, etc.
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sumes that population is equal to the labor force, but actually the population-

labor ratio varies during the demographic transition as the cohort of children,

workers, and retirees swells in successive order, amplifying the economic ef-

fects of the transition (Bloom and Williamson, 1998). The assumption of

identical technologies and taste also limits the analysis since Weak, Interme-

diate and Strong countries may differ in their technology and taste. Elabo-

rations in these terms would increase the functionality of the present model

and make its predictions more accurate.

4 Conclusion

This paper introduces the demographic transition into the Ramsey model, re-

vealing its potential for multiple steady states, poverty traps, and demography-

driven transitional cycles, and analyzes the demographic conditions under

which these are realized. Since the population growth rate is assumed to

be a hump-shaped function of income, three types of the demographic tran-

sition arise depending on the peak population growth rate, on the income

elasticity of population growth, and on the income level at which this tran-

sition takes place. These are all low in the Weak type, where the steady

state is unique and the demographic transition proceeds without causing

any marked economic effects. In the Strong type, all are high, thus taking

the economy into a low-income poverty trap. The poverty trap arises in the

Intermediate type, but the economy is able to avoid it and proceeds toward

its high-income steady state, experiencing, however, a sizeable variation in

its economic growth.

An often-heard suggestion is that international aid should be applied to

21



elevate the poorest countries out of poverty. This paper shows that a shift of

a trapped county (of Strong type) from its low to its high-income steady state

would increase its income by a factor of two. Nevertheless, the demography-

driven transitional cycle (in the Intermediate countries) is another reason for

poverty, as this cycle may last several decades and imply growth differentials

above two per cent. Given the long time-span of the cycle, it is hard to

say whether a badly performing country is trapped or just suffering from a

long-lasting recession but this paper provides a test to discriminate between

these two. This test suggests that most poor countries are already on the

way toward greater prosperity as they have reached their demographic peaks

recently, implying that they should recover in the closest future. This once-

for-all demographic growth impact, even though important, may alone be

insufficient to close the global income gap. Instead, it is a good reason for

a simultaneous fight against other growth obstacles, to generate favorable

conditions for a take-off. A good understanding of the economic consequences

of the demographic transition is thus essential, not only to predict but also

to act.
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A Appendix: Local Stability of the Steady

States

Consider the system in Eq. (5) and Eq. (12) [Fig. 3]. In a steady state,

k̇ = ċ = 0 and Eq. (13)-(14) imply

f ′ − (δ + ρ)− n′k =
n′

(θ − 1)(ρ− n)
{f − (δ + n)k} . (17)

To simplify notations, write k̇ = φ(k, c) and ċ = ϕ(k, c). The Jacobian of the

system is

J =

[
∂φ/∂k ∂φ/∂c
∂ϕ/∂k ∂ϕ/∂c

]
.

The elements of the Jacobian are

∂φ/∂k = f ′ − (δ + n)− n′k,

∂φ/∂c = −1,

∂ϕ/∂k =
c

θ

{
f ′′ − (n′′k + n′) + n′′(ρ−n)+(n′′)2

(ρ−n)2

[
θc
1−θ

+ f − (δ + n)k
]

+ n′

ρ−n
[f ′ − (δ + n)− n′k]

}
,

∂ϕ/∂c =
1

θ

{
f ′ − (δ + ρ)− n′k +

n′

ρ− n
[f − (δ + n)k]

}
+

2n′c

(1− θ)(ρ− n)

=
−n′

(θ − 1)(ρ− n)
[f − (δ + n)k] ,

where ∂ϕ/∂c is derived from Eq. (17) and Eq. (14). As ∂ϕ/∂k contains the

unknown second derivative n′′, immediate calculation of the determinant is

not possible. Instead, we utilize the fact that the slope of the k̇ = 0 line is

dc
dk

= −∂φ/∂k
∂φ/∂c

and that of ċ = 0 is dc
dk

= −∂ϕ/∂k
∂ϕ/∂c

. Hence, one can write

DET = (∂φ/∂k) · (∂ϕ/∂c)− (∂ϕ/∂k) · (∂φ/∂c)

=

[(
−∂φ/∂k

∂φ/∂c

)
−
(
−∂ϕ/∂k

∂ϕ/∂c

)]
(−∂φ/∂c) · (∂ϕ/∂c),
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where the formula in the square brackets is the difference in the slopes of

k̇ = 0 and ċ = 0 and (−∂φ/∂c) = 1. Given Eq. (15) and the assumption

ρ > n, the expression f (k) − [δ + n(k)]k is positive for k < k̃, and the sign

of ∂ϕ/∂c is that of −n′ (k). Consider the low-income steady state k∗
1 where

k̇ = 0 hits ċ = 0 from below making the expression in the square brackets

positive. As −n′ (k∗
1) < 0, we have DET < 0 and this steady state is a

saddle. In the high-income steady state k∗
3, k̇ = 0 hits ċ = 0 from above and

the square brackets are negative. As −n′ (k∗
3) > 0, we have DET < 0 and

the steady state is a saddle.

In the middle-income steady state, k̇ = 0 hits ċ = 0 from above but

−n′ (k∗
2) < 0. Hence, DET > 0. Consider the trace TR = ∂φ/∂k + ∂ϕ/∂c.

Given Eq. (17) and ρ > n, it holds

TR = f ′ − (δ + n)− n′k − n′

(θ − 1)(ρ− n)
[f − (δ + n)k]

> f ′ − (δ + ρ)− n′k − n′

(θ − 1)(ρ− n)
[f − (δ + n)k]

=
n′

(θ − 1)(ρ− n)
[f − (δ + n)k]− n′

(θ − 1)(ρ− n)
[f − (δ + n)k] = 0.

Because the sign of (TR)2 − 4DET is unknown, the middle-income steady

state is an unstable focus or node.

Consider now the dynamics outside the steady states. Because ∂φ/∂c =

−1, the capital stock increases (decreases) below (above) the k̇ = 0 line. The

behavior of consumption is given by ∂ϕ/∂c =

−n′(k)
(θ−1)[ρ−n(k)]

{f(k)− [δ + n(k)]k} . Consumption thus decreases (increases) above

(below) the ċ = 0 line for positive n′(k), but increases (decreases) above (be-

low) it for negative n′(k) [Fig. 3]. Hence, the stable saddle paths approach

low and high-income steady states (the unique steady state) from the south-
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west and north-east.

B Appendix: Full Solution of the Problem

The central planner chooses c(t) to maximize the value of the program in

Eq. (4) - (5). This appendix discusses the planner’s choice between the

alternative saddle pathsA andB [Figs. 4, 5].17 The following lemma confirms

that Skiba’s theorem (Skiba, 1978) applies for non-constant discount rate

problems:

Lemma 1 The value of the program in Eq. (4) - (5) is H[k (0) , c(0)] where

c(0) lies on a stable saddle path.

Proof. Consider the current value Hamiltonian H (k, c, λ) = H = 1
ρ−n

(
u+ λk̇

)
.

The conditions ∂H
∂c

= 0, λ̇ = (ρ− n)
(−∂H

∂k
+ λ

)
, and k̇ = (ρ− n) ∂H

∂λ
imply

dH
dt

= ∂H
∂c
ċ+ ∂H

∂k
k̇ + ∂H

∂λ
λ̇ = ∂H

∂λ
(ρ− n)λ = λk̇. Hence

−
d
(
e−∆(t)H

)
dt

= −e−∆(t)

[
dH

dt
− (ρ− n)H

]
= −e−∆(t)

[
λk̇ − (ρ− n)H

]
= u · e−∆(t).

Recall that e−∆(t) = e−
∫ t
0 {ρ−n[k(τ)]}dτ , and e−∆(0) = 1, and ρ > n. Hence, the

value of the program becomes∫ ∞

0

u · e−∆(t)dt = −
∫ ∞

0

[
e−∆(t)dH

dt

]
dt

= H[k (0) , c(0), λ (0)]− lim
t→∞

e−∆(t)H[k (t) , c(t), λ (t)].

Along a stable saddle path H[k (t) , c(t), λ (t)] tends to a constant so that

lim
t→∞

e−∆(t)H[k (t) , c(t), λ (t)] = 0. On a saddle path λ (0) = u′ [c (0)]. Hence,

17For a discussion of some other details, see Lehmijoki (2004).
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the value of the program in Eq. (4) - (5) is
∫∞
0

u·e−∆(t)dt = H[k (0) , c(0), λ (0)] =

H[k (0) , c(0)]].

Consider the case of spiraling saddle path B [Fig. 5]. The value of the

program along A and B should be compared for k(0) ∈ [kl, kh].
18 Consider

H (k, c) = 1
ρ−n

(
u+ u′ · k̇

)
. Then

∂H(k, c)

∂c
=

[
u′ + u′′k̇ − u′

] 1

ρ− n
=

u′′

ρ− n
k̇. (18)

Denote by cAl (cBl ) the initial consumption chosen on path A (B). Then

the value of the program is H(kl, c
A
l ) (H(kl, c

B
l )), respectively. Consider the

case k(0) = kl [Fig. 5]. Because the point (kl, c
B
l ) lies on the k̇ = 0−line but

(kl, c
A
l ) above it (with k̇ < 0), Eq. (18) implies H(kl, c

A
l ) > H(kl, c

B
l ). Hence,

for k(0) = kl, path A is optimal. By an analogous argument, for k(0) = kh,

path B is optimal.

To consider k(0) ∈ (kl, kh), note that an optimal path satisfies

dc

dk
=

ċ

k̇
=

− u′

u′′

{
−n′H(k,c)

u′ − [f ′ − (δ + ρ)− n′ · k]
}

k̇
,

and along an optimal path, c = c(k). Then it holds

dH[k, c(k)]

dk
=

∂H[k, c(k)]

∂k
+

∂H[k, c(k)]

∂c

ċ

k̇
Eq. (19)

=
n′

(ρ− n)2

(
u+ u′ k̇

)
+

u′

ρ− n
[f ′ − (δ + n)− n′ · k]− u′′k̇

ρ− n

ċ

k̇

=
n′

ρ− n
H(k, c) +

u′

ρ− n
[f ′ − (δ + n)− n′ · k]− u′′ċ

ρ− n

= u′ > 0.
18The following discussion utilizes the properties of optimized Hamiltonian, as has been

suggested by Tahvonen and Salo (1996).
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Consider some k(0) ∈ (kl, kh) such that A is optimal. Path A can be

reached by choosing one of several initial consumptions [Fig. 5] and assume

that the lowest possible initial consumption is chosen. To reach k∗
1, it is first

necessary to move along A from k (0) to kh and then from kh to k (0) [Fig.

5]. According to Eq. (19), the former (latter) increases (decreases) the value

of the program. Furthermore, because u′′ < 0, the increase of H[k, c(k)] as

a function of k is faster for lower values of c(k), and the (net) value of the

program increases in moving from k (0) through kh back to k (0). Hence, if A

is optimal, then the highest possible initial consumption is to be chosen. By

an analogous argument, if B is optimal, then the lowest possible consumption

should be chosen. Hence, it never optimal to move along the spiral.

Consider an increase in k(0); Eq. (19) implies that H[k, c(k)] increases.

Further, for all k(0) ∈ (kl, kh) the optimal c(0) is lower on B than on A [Fig.

5]. Hence, Eq. (19) implies that H[k, c(k)] increases faster along B than

along A. Because H[k, c(k)] is continuous in k, and because H(kl, c
A
l ) >

H(kl, c
B
l ) but H(kh, c

A
h ) < H(kh, c

B
h ), there exists km ∈ (kl, kh) such that

H(km, c
A
m) = H(km, c

B
m), and this km is unique. Hence, for k (0) = km the

planner is indifferent in terms of A and B, but for k (0) < km, it is optimal

to choose A, whereas for k (0) > km, path B is optimal.

Consider the case depicted in Figure 4. For k (0) ≤ k∗
1, path B lies below

A and both paths lie below k̇ = 0 where k̇ > 0. Hence, Eq. (18) implies

H(k, cB) > H(k, cA). For k∗
1 < k (0) < kh, path B lies below A. Hence, Eq.

(19) implies that the value of the program increases faster along B as k (0)

increases. Therefore, path B is globally optimal.
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