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ABSTRACT 
 

Manipulation of Choice Behavior* 
 
We introduce and study the problem of manipulation of choice behavior. In a class of two-
stage models of decision making, with the agent’s choices determined by three 
“psychological variables,” we imagine that a subset of these variables can be selected by a 
“manipulator.” To what extent does this confer control of the agent's behavior? Within the 
specified framework, which overlaps with two existing models of choice under cognitive 
constraints, we provide a complete answer to this question. 
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In many social and policy circumstances an outside manipulator has at least partial control on 
the psychological variables that affect an agent’s choice. For example, a shopkeeper may 
rearrange the shop display to influence the buyer's choice; a newspaper editor may choose 
the prominence of news reports; a moral or intellectual authority (such as a parent, teacher, 
or religious leader) can shape aspects of an agent’s world-view; and a financial advisor can 
suggest to a client what would be an acceptable level of risk or return. In terms of policy 
implications, Thaler and Sunstein’s recent notion of nudging has had an enormous impact on 
the policy circus (e.g. the UK Government has accommodated the idea by setting up the 
Behavioural Insight Team, colloquially called ‘Nudge unit’, as a unit of the Cabinet Office). 
Our paper provides a formal framework to clarify the scope and limits of nudging in practice. 
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1 Introduction

Recent work in the theory of individual decision making has relaxed the classical preference
maximization hypothesis to allow non-preference factors to impact behavior.1 In the same
spirit, we consider an abstract model in which the agent’s choices result from the interaction
of three functions, termed “psychological variables.” These functions could be preference-
related, measuring utility or aspiration levels; they could be cognitive, measuring salience
levels or attention thresholds; or they could have some other interpretation. The question
we address – which in the context of axiomatic choice theory appears to be novel – is the
following: If one or more of the psychological variables is subject to outside influence, to
what degree can the agent’s choices be manipulated?
For instance, imagine that the decision maker is a utility maximizer over the alternatives

that he or she notices, but is aware only of those options with a suffi ciently high level of
salience (with regard to the visual or another sensory system). In this case the psychological
variables are the utility, salience, and salience-threshold functions that interact to determine
behavior. Now suppose that a second agent, the “manipulator,”can control the salience of
the alternatives but not their utilities or the salience thresholds. In this case we would like
to know what varieties of choice behavior can be induced by varying the salience function
while holding the other two psychological variables fixed.
The preceding example might relate to a decision maker scanning items in a shop display

or on a web page, with their arrangement determined by the manipulator. Other instances of
manipulation include a newspaper editor choosing the prominence of news reports, a moral
or intellectual authority (such as a parent, teacher, or religious leader) shaping aspects of an
agent’s world-view, and a financial advisor suggesting to a client what would be an acceptable
level of risk or return.
For the purposes of this paper we deemphasize the manipulator’s motives and do not

describe the precise mechanism used to influence behavior. One manipulator might wish to
induce the purchase of high-margin or slow-selling items from a product line; another might
hope to ensure that her son marries a particular type of person; and another might aim to
elicit cyclical choices so as to transform the decision maker into a money pump. Rather than
these objectives, our focus is on determining which choice patterns can be generated given
different assumptions about the manipulator’s capabilities.
To give some structure to our enterprise we need a general model of how choices are de-

termined by the interaction of different factors. We employ an abstract two-stage framework
involving three psychological variables: Given a menu A of alternatives, the decision maker’s
potential choices are contained in the set

C(A) = argmax
x∈A

g(x) subject to f(x) ≥ θ(A), (1)

where f and g are defined on the space of alternatives and θ on the space of menus (with all
three functions being real-valued).

1In addition to the contributions cited below, this literature includes, e.g., Ambrus and Rozen [2], Baigent
and Gaertner [3], Bossert and Sprumont [4], Caplin and Dean [5], Cherepanov et al. [6], Eliaz et al. [7]. Kalai
et al. [9], Mandler et al. [11], Manzini and Mariotti [13], Masatlioglu and Nakajima [14], Masatlioglu and
Ok [16], Rubinstein and Salant [18], Salant and Rubinstein [19], and Spears [21].
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This framework has no fixed interpretation, and overlaps with two existing theories of
choice based on very different hypotheses about the decision maker’s mental processes. On
the one hand, f could be interpreted as an attention function, θ as an attention-threshold
map, and g as a utility function, as in Masatlioglu et al. [15] (and also Lleras et al. [10]).
On the other hand, f could be interpreted as the utility function, θ as a utility-threshold
map, and g as a measure of salience, as in Tyson [24, 25]. The first of these interpretations
captures the concept of a “consideration set” familiar from the marketing literature, while
the second operationalizes Simon’s [20] notion of “satisficing.”2 And the model of course
also allows for a standard agent with utility function g and an inactive constraint 〈f, θ〉 that
lies dormant (e.g., with both f(x) ≡ 0 and θ(A) ≡ 0) until activated by a manipulator.
The two-stage model described by Equation 1 can accommodate a wide range of possible

behaviors. Indeed, if each choice set C(A) is single-valued, then we will see that any choice
data can result from the postulated structure. More generally, the only restriction imposed
by the framework itself has to do with the alternatives contained in certain “behavioral
indifference classes.” (See Section 2.2 for further discussion of these points.) And it follows
that a manipulator with access to all three psychological variables has nearly complete control
over the decision maker’s choices.
It is clear that for a given interpretation of the model some psychological variables will

be more naturally assumed to be manipulable than others. Not wishing to commit to any
particular viewpoint, we provide a complete and hence interpretation-free analysis of the
extent of manipulability in the present framework: For any subset of the variables f , θ, and
g, we give necessary and suffi cient conditions for choice behavior to be attainable with the
specified subset of variables fixed and the remaining variables free (from the perspective of
the manipulator).
Broadly speaking, our method of characterization is to determine the information about

the free variables that would be revealed by the choices the manipulator wishes to induce,
and to state conditions that rule out the possibility of a contradiction. For example, suppose
that both f and θ are fixed and known, while g can be manipulated.3 If alternatives x and
y are both on menu A and if furthermore f(x), f(y) ≥ θ(A), then inducing x ∈ C(A) and
y /∈ C(A) requires the manipulator to set g(x) > g(y) in view of Equation 1. If in addition
x and y are on a menu B such that θ(B) ≤ θ(A), then plainly the manipulator cannot
induce y ∈ C(B). This is the sense in which the psychological variables that are assumed
to be fixed, together with the structure of the model, constrain the choice data that can be
generated by manipulation. And conditions that capture all such constraints characterize
the manipulator’s capabilities in each of the cases we consider.

2Consideration-set models are also studied by Eliaz and Spiegler [8]. Moreover, Manzini and Mariotti’s
“rational shortlist method”[12] can support this interpretation.

3Note that this case is covered by Theorem 5 below.
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2 Model

2.1 Preliminaries

We take as given a nonempty, finite set X, together with a set D ⊆ 2X \ {∅} =: A such that
each {x} ∈ D. Each x ∈ X is an alternative, and each A ∈ D is a menu. A choice function
is any ξ : D → A such that ∀A ∈ D we have ξ(A) ⊆ A. Here ξ(A) is the choice set assigned
to A, with the interpretation that those and only those alternatives in ξ(A) could be chosen
from this menu.
In the context of our characterization results we fix a “target”choice function, denoted

by C, with the interpretation that the manipulator would like to induce the decision maker
to behave according to this rule. Hence the alternatives that the manipulator wishes to be
choosable from menu A are contained in the set C(A).
Functions f, g : X → < are criteria, while θ : D → < is a threshold map. Collectively

these objects are referred to as psychological variables. Any triplet 〈f, θ, g〉 is a psychological
profile, with f and g referred to, respectively, as the primary and secondary criterion.

Definition 1. A. Given 〈f, θ〉, the threshold set of each A ∈ D is defined by

Γ(A|f, θ) := {x ∈ A : f(x) ≥ θ(A)} ⊆ A. (2)

B. Given θ, the critical threshold of each x ∈ X is defined by

M(x|θ) := max{θ(A) : A ∈ D ∧ x ∈ C(A)} ∈ <. (3)

The threshold set Γ(A|f, θ) contains the alternatives on menu A that pass the relevant
threshold according to the primary criterion, while the critical thresholdM(x|θ) is the highest
of the thresholds of those menus to whose choice sets alternative x belongs. Note that since
for each x ∈ X we have both {x} ∈ D and x ∈ C({x}), the critical threshold is always well
defined. And observe also that for each A ∈ D we have x ∈ C(A) only if M(x|θ) ≥ θ(A).
Given any (binary) relation R on X, we write R′ for its converse, R for its complement,

and R∗ for its transitive closure.4 Such a relation is said to be a strict partial order if it is
irreflexive (xRx) and transitive (xRyRz only if xRz), a weak order if it is also negatively
transitive (xRyRz only if xRz), and a linear order if in addition it is weakly complete
(xRyRx only if x = y). An equivalence is a relation that is transitive, reflexive (xRx), and
symmetric (xRy only if yRx).

2.2 Two-stage threshold representations

As discussed in Section 1, we study the following model of behavior.

Definition 2. A two-stage threshold (or TST) representation of C is a psychological profile
〈f, θ, g〉 such that ∀A ∈ D we have

C(A) = argmax
x∈Γ(A|f,θ)

g(x). (4)

4That is to say, ∀x, y ∈ X we have xR′y iff yRx; xRy iff ¬[xRy]; and xR∗y iff ∃n ≥ 2 and x1, . . . , xn ∈ X
such that x = x1Rx2R · · ·Rxn = y.
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When this relationship holds we say that C is induced by the profile 〈f, θ, g〉.
Our first aim is to identify which choice functions are induced by psychological profiles,

independently of whether the psychological variables are controlled by the decision maker or
the manipulator. We shall then proceed to study manipulation per se, determining which of
these inducible functions remain achievable when one or more of the variables is fixed.
To answer the question of which choice functions are consistent with our basic model, we

introduce several binary relations that are “behavioral” in the sense of being derived from
the target function C.

Definition 3. The separation relation S is defined by xSy if and only if ∃A ∈ D such that
both x ∈ C(A) and y ∈ A \ C(A).

Thus xSy if there exists some menu from which x is choosable and y is not. Under classical
assumptions this relation would be a weak order and would reveal strict preference on the
part of the decision maker, but in general we can be sure only that it is irreflexive.

Definition 4. A. The togetherness relation T is defined by xTy if and only if ∃A ∈ D such
that x, y ∈ C(A). B. The extended togetherness relation E is defined by E = T ∗.

Thus xTy whenever x and y are simultaneously choosable, and xEy whenever there exists a
chain of alternatives linking x to y and related sequentially by T . Clearly T is both reflexive
(since x ∈ C({x}) for all x) and symmetric, and it follows that E is an equivalence. In the
classical case E-equivalence classes of course amount to revealed indifference curves.
In general the separation and extended togetherness relations are not mutually exclusive.

A choice function with x[S ∩E]y (i.e., both xSy and xEy) is given in the following example,
which shows that not all target functions can be induced by psychological profiles.

Example 1. Let C(xyz) = xyz, C(xy) = x, C(yz) = y, and C(xz) = z.5 If C were induced
by 〈f, θ, g〉, then C(xyz) = xyz would imply g(x) = g(y) = g(z). But then the remaining
choice data would imply f(x) > f(y) > f(z) > f(x), a contradiction.

On the other hand, S ∩ E 6= ∅ does not guarantee inconsistency with the model, as a small
modification to the above example confirms.

Example 2. Let C(xyz) = xy, C(xy) = x, C(yz) = y, and C(xz) = z. Then C is induced
by 〈f, θ, g〉 with f(x) = 2, f(y) = 1, f(z) = 0, θ(xyz) = θ(yz) = 1, θ(xy) = 2, θ(xz) = 0,
g(x) = g(y) = 0, and g(z) = 1.

Both examples above exhibit the separation cycle xSySzSx. Example 2 shows that this,
as well as S ∩E 6= ∅, can be reconciled with the model, so what is the feature of Example 1
that generates the inconsistency? The key difference between these examples is that the first
combines the two non-classical phenomena just noted, while the second keeps them apart.
More precisely, Example 1 contains a cycle in the relation S ∩E; or, equivalently, an S-cycle
within an E-equivalence class. And the absence of such cycles is just what is needed for our
baseline characterization.

5Note the multiplicative notation for enumerated sets, used here and in other examples for conciseness.
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Theorem 1. The target function C is induced by a psychological profile if and only if S ∩E
is acyclic.6

To reiterate, a necessary and suffi cient condition for the target function to be inducible is
the absence of S-cycles within E-equivalence classes. Any other type of S-cycle is permitted,
and no monotonicity (e.g., contraction or expansion consistency) conditions are imposed on
C. In particular, no constraint links pairwise choices to those from larger menus; so that, e.g.,
the data C(xyz) = x, C(xy) = y, and C(xz) = z are allowed despite “pairwise dominated”
x being choosable from xyz. (Indeed, pairwise choice data may not even be available.) Note
also that whenever the target function is single-valued (i.e., |C(A)| = 1 for each A ∈ D) we
have ∅ = T = E = S ∩ E and so S ∩ E is trivially acyclic. Hence:

Corollary 1. Any single-valued target function is induced by a psychological profile.

Theorem 1 and Corollary 1 tell us that the general model restricts behavior very little, and
a decision maker or manipulator who controls all three psychological variables can generate
a large class of choice functions. Previous work relating to TST representations reduces this
freedom by imposing additional restrictions thought to be appropriate under a particular
interpretation of the model: Masatlioglu et al. [15] require that the first stage – which we
express via the operator Γ(·|f, θ) – be an “attention filter,”while Tyson [24, 25] requires that
the structure 〈f, θ〉 be “expansive.”7 Both of these assumptions have significant behavioral
consequences beyond acyclicity of S ∩ E, even in the single-valued case.
In the present paper we take a different approach to narrowing the class of choice functions

covered by Theorem 1. Instead of constraining the allowable profiles with assumptions that
seem natural under a preferred interpretation of the TST framework, we simply take one or
more psychological variables as given. The remaining variables are those that can be freely
chosen by the manipulator, and we seek to characterize the resulting behavior.8

Theorem 1 is proved in Appendix A, as are the results to follow. To appreciate how the
argument works, consider the following direct proof of Corollary 1. Given any single-valued
target C, for each A ∈ D write C(A) = {xA}. Let f be any one-to-one function, define θ by
θ(A) = f(xA), and let g(x) ≡ −f(x). Now by construction each x ∈ A with f(x) > f(xA)
has g(x) < g(xA), and it follows that C is induced by 〈f, θ, g〉.
To extend this construction to choice functions that are not single-valued, we must allow

the primary criterion to distinguish between alternatives that are both separated and either
chosen together or linked by a chain of alternatives that are chosen together sequentially.
We thus require that f order X in accordance with S ∩ E, with the acyclicity condition
ensuring that no contradiction arises at this stage. The threshold map θ can then be defined

6Recall that acyclicity of R is the property that xR∗y only if x 6= y.
7A function ξ : D → A is an attention filter if ∀A,B ∈ D such that ξ(B) ⊆ A ⊆ B we have ξ(A) = ξ(B).

A criterion-threshold pair 〈f, θ〉 is expansive if ∀A,B ∈ D such that A ⊆ B and max f [A] ≥ θ(B) we have
θ(A) ≥ θ(B).

8These two approaches to specializing Theorem 1 could also be combined. For example, we could study
manipulation of TST choice behavior (designating fixed and free psychological variables) under the attention
filter assumption. Although much of our technique is likely to be transferrable to such settings, for the time
being we investigate manipulation in the general case to avoid committing to a particular interpretation of
psychological profiles.
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by θ(A) ≡ min f [C(A)]. And for a secondary criterion g that is constant on E-equivalence
classes and otherwise defined in opposition to f , the profile 〈f, θ, g〉 will induce the target C.
A notable feature of this argument is that in both cases the psychological profile we

construct is highly non-unique: In proving Corollary 1 we can take f to be any one-to-one
function, and in the general case substantial arbitrariness remains. This freedom is important
for the results to follow.

3 Manipulation results

3.1 Stage-one manipulation

We consider first a situation in which the secondary criterion g is fixed and known, while
the primary criterion f and the threshold map θ are under the manipulator’s control. As
noted above, Γ(·|f, θ) can in this case be interpreted as a manipulable “consideration set”
operator, with g playing the role of the decision maker’s utility function.
With g fixed, we can define the weak order that this real-valued function represents.

Definition 5. Given g, the relation G is defined by xGy if and only if g(x) > g(y).

Under any TST representation two alternatives can be choosable together only if the
secondary criterion does not distinguish between them. More generally, consistency of the
target C with the observed criterion g requires that xEy only if g(x) = g(y), which is to
say that E ⊆ G. In addition, since xSy implies either f(x) > f(y) or g(x) > g(y), the joint
observation xSy and g(x) = g(y) implies f(x) > f(y). From the latter implication we can
conclude that the relation S ∩ G must be acyclic. And the pair of conditions we have just
identified turns out to characterize the class of choice functions that can be induced given a
pre-specified secondary criterion g.

Theorem 2. Given g, there exist 〈f, θ〉 such that the target function C is induced by 〈f, θ, g〉
if and only if both E ⊆ G and S ∩G is acyclic.

To understand the content of this result, assume first that the secondary criterion g is
one-to-one, which can be interpreted as the decision maker’s preferences linearly ordering the
set of alternatives. Whatever psychological variables 〈f, θ〉 are selected by the manipulator,
the resulting choice function will of course be single-valued. Indeed, it is apparent from our
discussion of Corollary 1 that any single-valued target is achievable in this case. For such a
C we have E = ∅ ⊆ G, and so need only confirm that S ∩ G is acyclic. But a cycle in this
relation would amount to an S-cycle within a g-indifference class – an impossibility since g
is one-to-one and S is irreflexive.
When g is not one-to-one, the constraint faced by the manipulator is essentially that the

target function C cannot have behavioral indifference (i.e., E-equivalence) classes coarser
than those of the unmanipulated choice function that simply maximizes g. The manipulator
can use the first-stage variables to separate alternatives that are g-indifferent, provided the
new separations create no cycles in the relation S ∩ G. But he or she can do nothing to
manufacture a new behavioral indifference xEy in the event that g(x) 6= g(y).
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In summary, a manipulator who controls both stage-one variables can exert tremendous
influence over the decision maker’s behavior, to the extent that the choices resulting from
linear order preferences can be distorted to yield any single-valued target function. Several
examples of such manipulation follow: In the first, the agent’s preferences are behaviorally
reversed; in the second, the manipulator induces a binary choice cycle; and in the third, a
globally-indifferent agent ends up exhibiting a somewhat incoherent pattern of choices.

Example 3. Let g(x) = 2, g(y) = 1, and g(z) = 0. For f(x) = 0, f(y) = 1, and f(z) = 2;
and for θ(xyz) = θ(xz) = θ(yz) = 2 and θ(xy) = 1; the profile 〈f, θ, g〉 induces the target
function C given by C(xyz) = C(xz) = C(yz) = z and C(xy) = y.

Example 4. Let g(x) = g(y) = 1 and g(z) = 0. For f(x) = 1, f(y) = 0, and f(z) = 2;
and for θ(xyz) = θ(yz) = 0, θ(xy) = 1, and θ(xz) = 2; the profile 〈f, θ, g〉 induces the target
function C given by C(xyz) = xy, C(xy) = x, C(xz) = z, and C(yz) = y.

Example 5. Let g(x) = g(y) = g(z) = 0. For f(x) = 1, f(y) = 0, and f(z) = 2; and
for θ(xyz) = 1, θ(xy) = θ(yz) = 0, and θ(xz) = 2; the profile 〈f, θ, g〉 induces the target
function C given by C(xyz) = xz, C(xy) = xy, C(xz) = z, and C(yz) = yz.

Note that in Example 4 the target function would no longer be achievable if C(yz) = yz,
since we would then have y[E∩G]z. Similarly, in Example 5 the target function would cease
to be achievable if C(xyz) = x, since we would then have x[S ∩G]z[S ∩G]x.
We consider next the case of both θ and g fixed, with the manipulator controlling only f .

This could apply, for instance, if the thresholds returned by θ were cognitive characteristics
of the decision maker, and if the primary criterion f measured a property of the alternatives
to which some sensory system responds. How does the manipulator’s loss of control over the
threshold map affect his or her ability to influence the agent’s behavior?
The following example shows that manipulability is more limited in this case.

Example 6. Let θ(xy) ≥ θ(xyz), g(y) ≥ g(x), C(xyz) = x, and y ∈ C(xy). If for some f
the profile 〈f, θ, g〉 were to induce C, then y ∈ C(xy) would imply that f(y) ≥ θ(xy) ≥ θ(xyz).
But then g(y) ≥ g(x) and x ∈ C(xyz) would imply that y ∈ C(xyz), a contradiction.

To capture the constraint illustrated in Example 6, we define a new relation in terms of both
the target function C and the observable variable θ.

Definition 6. Given θ, the relation Hθ is defined by xHθy if and only if ∃A ∈ D such that
x ∈ C(A), y ∈ A \ C(A), and M(y|θ) ≥ θ(A).

Since here we have f(y) ≥M(y|θ) ≥ θ(A) and hence g(x) > g(y) if C is induced by 〈f, θ, g〉,
the relation Hθ reveals strict dominance according to the secondary criterion and must be
consistent with the observed G. Indeed, this consistency can replace the acyclicity condition
in Theorem 2 to yield the desired characterization result.

Theorem 3. Given 〈θ, g〉, there exists an f such that the target function C is induced by
〈f, θ, g〉 if and only if both E ⊆ G and Hθ ⊆ G.
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Observe once again that if C is single-valued then E ⊆ G holds vacuously. A significant
difference from Theorem 2, however, is that in this case not every single-valued target can
be achieved even with g one-to-one. The condition Hθ ⊆ G prohibits contradictions between
revealed and observed secondary-criterion dominance, and Example 6 demonstrates that this
requirement is germane whether or not C is single-valued. The scope for manipulation using
f is thus substantially narrower than that using the entire first stage 〈f, θ〉. In particular,
when θ is constant the manipulator can only partially reverse the agent’s preferences:

Example 7. Let θ(xyz) = θ(xy) = θ(xz) = θ(yz) = 1; and let g(x) = 2, g(y) = 1, and
g(z) = 0. For f(x) = 0 and f(y) = f(z) = 1, the profile 〈f, θ, g〉 induces the target function
C given by C(xyz) = C(xy) = C(yz) = y and C(xz) = z.

And similarly some variation in θ is needed to induce a binary cycle:

Example 8. Let θ(xyz) = θ(xy) = θ(yz) = 0 and θ(xz) = 1; and let g(x) = 2, g(y) = 1,
and g(z) = 0. For f(x) = f(y) = 0 and f(z) = 1, the profile 〈f, θ, g〉 induces the target
function C given by C(xyz) = C(xy) = x, C(yz) = y, and C(xz) = z.

To complete our analysis of stage-one manipulation, we now consider the possibility that
θ rather than f is externally controlled. This would correspond to scenarios where a shortlist
is formed based on the primary criterion and where the stringency of the membership rule
can be controlled, though the f -values themselves must be taken as given. For instance, we
could have a search engine returning results based on some objective measure of relevance,
but with the manipulator free to choose the number of results displayed.
In the same way that G is represented by g, we can define the weak order represented by

f when the latter is observable.

Definition 7. Given f , the relation F is defined by xFy if and only if f(x) > f(y).

And just as C and θ together have implications for the secondary criterion (recorded in Hθ)
in the context of Theorem 3, C and f together have such implications in the present case.

Definition 8. Given f , the relation Hf is defined by Hf = S ∩ F .

The condition Hf ⊆ G replaces Hθ ⊆ G in the earlier result, counterbalancing the change in
logical quantification of the psychological variables.9

Theorem 4. Given 〈f, g〉, there exists a θ such that the target function C is induced by
〈f, θ, g〉 if and only if both E ⊆ G and Hf ⊆ G.

Manipulation of θ alone is illustrated in the following example.

Example 9. Let f(x) = f(z) = 1 and f(y) = 0; and let g(x) = g(y) = 1 and g(z) = 0. For
θ(xyz) = 0 and θ(xy) = θ(xz) = θ(yz) = 1, the profile 〈f, θ, g〉 induces the target function
C given by C(xyz) = xy, C(xy) = C(xz) = x, and C(yz) = z.

Here yExHfz, and as required yGxGz. Note that the target function would no longer be
achievable if C(xyz) = y, since we would then have both yHfx and yGx.

9Note that Hf ⊆ G is equivalent to S ⊆ F ∪ G, which clearly holds when C is induced by 〈f, θ, g〉 and
can be checked directly if both f and g are observable.
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3.2 Stage-two and cross-stage manipulation

Imagine now that the secondary criterion can be manipulated, while both first-stage variables
are fixed. As noted above, this corresponds to an interpretation of TST representations as
modeling satisficing behavior with salience effects (see Tyson [25]), with salience controlled
by the manipulator.
When the full first-stage structure 〈f, θ〉 is observable, one obvious necessary condition for

C to be inducible is that any alternative choosable from a menu pass the relevant threshold;
that is, for all x ∈ A ∈ D we can have x ∈ C(A) only if f(x) ≥ θ(A). Indeed, any violation
of this condition would directly contradict the definition of a TST representation. As in the
two previous cases we can also search for information about the secondary criterion revealed
by C in conjunction with the fixed variables.

Example 10. Let C(xy) = x, C(xz) = z, C(yz) = yz, f(y) ≥ θ(xy), and f(x) ≥ θ(xz). If
for some g the target C were induced by 〈f, θ, g〉, then f(y) ≥ θ(xy) and C(xy) = x would
imply g(x) > g(y), and similarly f(x) ≥ θ(xz) and C(xz) = z would imply g(z) > g(x). But
also C(yz) = yz would imply g(y) = g(z), a contradiction.

Capturing the constraint on C seen in Example 10 leads us to define a third and final
relation of revealed secondary-criterion dominance.

Definition 9. Given 〈f, θ〉, the relation Hfθ is defined by xHfθy if and only if ∃A ∈ D such
that x ∈ C(A), y ∈ A \ C(A), and f(y) ≥ θ(A).

In the present case g is a free variable, so we cannot impose Hfθ ⊆ G as a behavioral
axiom. Instead we employ a “congruence”condition of the sort introduced by Richter [17],
which serves to rule out the type of contradiction in Example 10. Since in the context of a
TST representation xHfθy implies g(x) > g(y) and xEy implies g(x) = g(y), we have that
x[Hfθ ∪E]y implies g(x) ≥ g(y). It follows that x[Hfθ ∪E]∗y has the same implication. But
g(x) ≥ g(y) is the same as ¬[g(y) > g(x)], which implies yHfθx. Together with stage-one
consistency, this form of congruence characterizes manipulation of the secondary criterion.

Theorem 5. Given 〈f, θ〉, there exists a g such that the target function C is induced by
〈f, θ, g〉 if and only if both C(·) ⊆ Γ(·|f, θ) and [Hfθ ∪ E]∗ ⊆ [Hfθ]

′.

The following example illustrates manipulation of the secondary criterion.

Example 11. Let f(x) = 2, f(y) = 1, and f(z) = 0; and let θ(xyz) = 1, θ(xy) = 2, and
θ(xz) = θ(yz) = 0. For g(x) = 0, g(y) = 2, and g(z) = 1, the profile 〈f, θ, g〉 induces the
target function C given by C(xyz) = C(yz) = y, C(xy) = x, and C(xz) = z.

Here yHfθzHfθx, and as required ¬[xHfθy]. Setting C(xyz) = xy would render the target
function unachievable, since we would then have both zHfθxEy and yHfθz.
We complete our study of manipulation in the TST environment by considering the cases

in which the free variables are the secondary criterion and either the primary criterion or
the threshold map (but not both). For example, manipulation of 〈f, g〉 might be plausible
in the consideration-set framework if the manipulator were able to display alternatives more
or less prominently (thereby determining f) and at the same time make them more or less
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variables
Theorem fixed free conditions on C and fixed variables

1 – f, θ, g S ∩ E acyclic
2 g f, θ E ⊆ G and S ∩G acyclic
3 θ, g f E ⊆ G and Hθ ⊆ G
4 f, g θ E ⊆ G and Hf ⊆ G
5 f, θ g C(·) ⊆ Γ(·|f, θ) and [Hfθ ∪ E]∗ ⊆ [Hfθ]

′

6A θ f, g [Hθ ∪ E]∗ ⊆ [Hθ]
′

6B f θ, g [Hf ∪ E]∗ ⊆ [Hf ]
′

Table 1: A summary of our characterization results.

intrinsically desirable (thereby determining g). Needless to say, this case is also compatible
with two independent manipulators, such as a manufacturer influencing g and a retailer
influencing f .
Each of the two cases in question is characterized by a congruence axiom analogous to

that in Theorem 5, with the appropriate revealed secondary-dominance relation substituted
for Hfθ.

Theorem 6. A. Given θ, there exist 〈f, g〉 such that the target function C is induced by
〈f, θ, g〉 if and only if [Hθ ∪ E]∗ ⊆ [Hθ]

′. B. Given f , there exist 〈θ, g〉 such that the target
function C is induced by 〈f, θ, g〉 if and only if [Hf ∪ E]∗ ⊆ [Hf ]

′.

Our final example illustrates manipulation of f and g together.

Example 12. Let θ(xyz) = 0 and θ(xy) = θ(xz) = θ(yz) = 1. For f(y) = f(z) = 1 and
f(x) = 0; and for g(x) = g(y) = 1 and g(z) = 0; the profile 〈f, θ, g〉 induces the target
function C given by C(xyz) = xy, C(xy) = C(yz) = y, and C(xz) = z.

Here xEyHθz, and as required ¬[zHθx]. Note that if C(yz) = yz then we would have both
zEyEx and xHθz, so the target function would no longer be achievable.
Our various characterizations of manipulability are summarized in Table 1.

4 Discussion

To the best of our knowledge two-stage threshold representations have not previously been
studied in the general form of Definition 2. As has already been mentioned, Masatlioglu et
al. [15] and Tyson [25] formulate models that overlap with this definition, employing specific
interpretations and associated restrictions on the psychological variables. The literature also
deals with one-stage threshold representations of the following sort.

Definition 10. A threshold representation of C is a pair 〈f, θ〉 such that C(·) = Γ(·|f, θ).

These are trivially a special case of TST representations, and correspondingly Theorem 1
generalizes the following result attributed to Aleskerov and Monjardet [1].

11



Proposition 1. The target function C admits a threshold representation if and only if S is
acyclic.

Indeed, when g(x) ≡ 0 and thus the second stage is inconsequential, our Theorem 2 amounts
to a restatement of Proposition 1 (since in this case G = ∅ and S ∩G = S).
As is apparent from Table 1, our results provide a complete answer to the manipulability

question as it is posed in this paper. The analysis is, however, limited to TST representations,
and naturally similar questions can be asked in the context of the many models of choice that
do not fit into the present framework (or that impose additional assumptions; see Footnote 8).
To the extent that these models have features in common – such as a multi-stage structure
– with the class we consider, our techniques may be transferrable. But even so we consider
our present findings only a first pass at the manipulability problem, and view the framing
of this problem for axiomatic choice theory as potentially an equally-important contribution
of the paper.
In conclusion, a word about the nature of the manipulator. While both the name we have

given this agent and illustrations relating to marketing may suggest interference by entities
with dubious motives, manipulation could also be benevolent. Under this interpretation our
analysis could be seen as a step in the direction of formalizing Thaler and Sunstein’s [23]
notion of “nudging”: A well-informed and paternalistic manipulator could steer an imperfect
choice procedure towards improved outcomes. Results such as ours would then show how
the possibilities for improvement depend on the instruments available to the nudger.

A Proofs

Theorems are proved in order of their appearance, although some earlier proofs exploit later
results. Write K(x) for the E-equivalence class of x, and let K = {K(x) : x ∈ X} ⊆ A.

Proof of Theorem 1. If C is induced by 〈f, θ, g〉, then G ⊆ E. Moreover, by Theorem 4 we
have S ∩ F = Hf ⊆ G ⊆ E, so S ∩ E ⊆ F . But then since F is acyclic, S ∩ E must also be
acyclic.
Conversely, suppose that S ∩ E is acyclic. Let � be any linear order on K. Define a

relation R by xRy iff either K(x) � K(y) or x[S ∩ E]y, and define a second relation G by
xGy iffK(y)� K(x). Since� is a linear order (on K), G is a weak order (on X) and has a
representation g. Note that E ⊆ G by construction. Furthermore, since � is a linear order
and S ∩ E ⊆ E, we have that xR∗y only if K(y)�K(x).
Suppose that ∃x1, . . . , xn ∈ X such that x1Rx2R · · ·Rxn = x1. Since S ∩ E is acyclic,

there must then exist some k < n such that K(xk)� K(xk+1). But since also xk+1R
∗xk, we

have K(xk)�K(xk+1), a contradiction. It follows that R is acyclic.
For x, y ∈ X we have x[S ∩ R]y only if both K(x)�K(y) and xEy, which implies that

K(y) � K(x) and xGy. This shows that S ∩ R ⊆ G, or S ∩ G ⊆ R. But then since R is
acyclic, S ∩G must also be acyclic, and the existence of 〈f, θ〉 such that 〈f, θ, g〉 induces C
follows by Theorem 2.

Proof of Theorem 2. If C is induced by 〈f, θ, g〉, then E ⊆ G. Moreover, by Theorem 4 we
have S ∩ F = Hf ⊆ G, so S ∩ G ⊆ F . But then since F is acyclic, S ∩ G must also be
acyclic.
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Conversely, suppose that both E ⊆ G and S ∩G is acyclic. Define a relation R by xRy
iff either yGx or x[S ∩ G]y, and observe that then R∗ ⊆ [G′ ∪ G]∗ = [G]∗ ⊆ G since G is a
weak order.
Suppose that ∃x1, . . . , xn ∈ X such that x1Rx2R · · ·Rxn = x1. Since S ∩ G is acyclic,

there must then exist some k < n such that xk+1Gxk. But since also xk+1R
∗xk, we have

xk+1Gxk, a contradiction. It follows that R is acyclic and R∗ is a strict partial order, and
thus by Szpilrajn’s [22] Embedding Theorem there exists a weak order F ⊇ R∗ ⊇ R with
representation f .
We now have E ⊆ G by assumption and Hf = S ∩ F ⊆ S ∩ R ⊆ G by the definition of

R, so the existence of a θ such that 〈f, θ, g〉 induces C follows by Theorem 4.

Proof of Theorem 3. If C is induced by 〈f, θ, g〉, then E ⊆ G. Moreover, xHθy means that
∃A ∈ D such that x ∈ C(A), y ∈ A \ C(A), and M(y|θ) ≥ θ(A), and since f(y) ≥ M(y|θ)
we then have y ∈ Γ(A|f, θ) and g(x) > g(y). Hence Hθ ⊆ G.
Conversely, suppose that E ⊆ G and Hθ ⊆ G. For each x ∈ X, let f(x) = M(x|θ).

Given A ∈ D and x ∈ C(A), we then have x ∈ Γ(A|f, θ) by construction. For y ∈ C(A) we
have xEyEx and hence xGyGx, so that g(y) = g(x). Moreover, for z ∈ Γ(A|f, θ) \C(A) we
have M(z|θ) = f(z) ≥ θ(A), so that xHθz, xGz, and g(z) < g(x). Therefore C is induced
by 〈f, θ, g〉.

Proof of Theorem 4. If C is induced by 〈f, θ, g〉, then E ⊆ G. Moreover, xHfy means that
f(y) ≥ f(x) and ∃A ∈ D such that x ∈ C(A) and y ∈ A \ C(A), and since f(x) ≥ θ(A) we
then have y ∈ Γ(A|f, θ) and g(x) > g(y). Hence Hf ⊆ G.
Conversely, suppose that E ⊆ G and Hf ⊆ G. For each A ∈ D, let θ(A) = min f [C(A)].

Given A ∈ D and x ∈ C(A), we then have x ∈ Γ(A|f, θ) by construction. For y ∈ C(A) we
have xEyEx and hence xGyGx, so that g(y) = g(x). Now select any w ∈ C(A) such that
f(w) = θ(A). For z ∈ Γ(A|f, θ) \ C(A) we have f(z) ≥ θ(A) = f(w), so that wHfz, wGz,
and g(z) < g(w). Therefore C is induced by 〈f, θ, g〉.

Proof of Theorem 5. If C is induced by 〈f, θ, g〉, then C(·) ⊆ Γ(·|f, θ). Moreover, we have
both Hfθ ⊆ G ⊆ [G]′ and E ⊆ [G]′, and so [Hfθ ∪ E]∗ ⊆ [G]′∗ ⊆ [G]′ ⊆ [Hfθ]

′ since G is a
weak order.
Conversely, suppose that C(·) ⊆ Γ(·|f, θ) and [Hfθ ∪ E]∗ ⊆ [Hfθ]

′. Define a relation �
on K by K1 � K2 iff there exist x1 ∈ K1 and x2 ∈ K2 such that x1Hfθx2.
Suppose that ∃K1, . . . , Kn ∈ K such that K1 � K2 � · · · � Kn � K1. There must

then exist xk, yk ∈ Kk for each k such that x1Hfθy2Ex2Hfθy3E · · ·HfθynExnHfθy1Ex1. But
then both y2[Hfθ ∪E]∗x1 and x1Hfθy2, contradicting [Hfθ ∪E]∗ ⊆ [Hfθ]

′. It follows that �
is acyclic, that �∗ is a strict partial order, and by Szpilrajn’s Theorem that there exists a
linear order≫⊇�∗⊇� on K.
Define a relation G by xGy iffK(x) ≫ K(y), so that E ⊆ G. Since≫ is a linear order

(on K), G is a weak order (on X) and has a representation g. Moreover, we have xHfθy only
if K(x)� K(y), K(x) ≫ K(y), and xGy. Hence Hfθ ⊆ G.
Given A ∈ D and x ∈ C(A), we have x ∈ Γ(A|f, θ) by assumption. For y ∈ C(A) we have

xEyEx and hence xGyGx, so that g(y) = g(x). Finally, for z ∈ Γ(A|f, θ) \ C(A) we have
f(z) ≥ θ(A), so that xHfθz, xGz, and g(z) < g(x). Therefore C is induced by 〈f, θ, g〉.
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Proof of Theorem 6. A. If C is induced by 〈f, θ, g〉, then C(·) ⊆ Γ(·|f, θ) and so ∀x ∈ X we
have f(x) ≥ M(x|θ). It follows that Hθ ⊆ Hfθ, and moreover we have [Hfθ ∪ E]∗ ⊆ [Hfθ]

′

by Theorem 5. Hence we can conclude that [Hθ ∪ E]∗ ⊆ [Hfθ ∪ E]∗ ⊆ [Hfθ]
′ ⊆ [Hθ]

′.
Conversely, suppose that [Hθ ∪ E]∗ ⊆ [Hθ]

′. For each x ∈ X, let f(x) = M(x|θ). Given
A ∈ D and x ∈ C(A), we then have x ∈ Γ(A|f, θ) by construction. In this case we have also
Hθ = Hfθ and thus [Hfθ ∪E]∗ ⊆ [Hfθ]

′, so the existence of a g such that 〈f, θ, g〉 induces C
follows by Theorem 5.
B. If C is induced by 〈f, θ, g〉, then E ⊆ [G]′. We have also Hf ⊆ G ⊆ [G]′ by Theorem 4,

and so [Hf ∪ E]∗ ⊆ [[G]′∗ ⊆ [G]′ ⊆ [Hf ]
′ since G is a weak order.

Conversely, suppose that [Hf ∪ E]∗ ⊆ [Hf ]
′. Define a relation � on K by K1 � K2 iff

there exist x1 ∈ K1 and x2 ∈ K2 such that x1Hfx2.
Suppose that ∃K1, . . . , Kn ∈ K such that K1 � K2 � · · · � Kn � K1. There must

then exist xk, yk ∈ Kk for each k such that x1Hfy2Ex2Hfy3E · · ·HfynExnHfy1Ex1. But
then both y2[Hf ∪ E]∗x1 and x1Hfy2, contradicting [Hf ∪ E]∗ ⊆ [Hf ]

′. It follows that �
is acyclic, that �∗ is a strict partial order, and by Szpilrajn’s Theorem that there exists a
linear order≫⊇�∗⊇� on K.
Define a relation G by xGy iffK(x) ≫ K(y), so that E ⊆ G. Since≫ is a linear order

(on K), G is a weak order (on X) and has a representation g. Moreover, we have xHfy only
if K(x)� K(y), K(x) ≫ K(y), and xGy. Hence Hf ⊆ G, and so the existence of a θ such
that 〈f, θ, g〉 induces C follows by Theorem 4.
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