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1 Introduction

1.1 Motivation and Summary

The frequency with which firms with vacancies and and workers searching for a job meet each other

differs vastly across occupations. An extremely low frequency is found in e.g. the market for academic

economists, in which hiring decisions are typically made only once a year. In most other occupations,

meetings take place much more often: a hairstylist who has been unsuccessful in his/her applications

does not need to wait a full year to have another chance of finding a job. In fact, it is perfectly possible

that he/she sends a new application the next day and is employed by the next week. Of course, the

jobs of economists and hairstylists differ in many ways and it is not hard to think of explanations

why their labor markets have such different characteristics. Differences in the screening process,

institutional factors, the monthly variation in the need for their services, the size of the market, and the

amount of coordination are all likely to play a role. Much less clear however is what - everything else

being equal - the consequences of the differences in interaction frequency are: if hairstylists started

organizing annual job markets or economists started hiring during the academic year, how would that

change the equilibrium in their respective labor markets?

The literature on this topic is limited. Some authors have specified continuous time models in

which one meeting can take place today and the next meeting tomorrow. Other authors have used

discrete time models in which a worker meeting a firm today has to wait a certain amount of time (e.g.

a week or a month) before he can meet another firm. However, there exist no models which nest these

approaches by introducing a parameter for the period length.1

In this paper, I present such a model and I argue that even in the simplest setting, abstracting from

exacerbating issues like screening, the period length has profound implications for the characteristics

of the decentralized market equilibrium. For example, it determines the labor share (as measured by

the average wage), the amount of frictional wage dispersion, and whether the allocation of workers

over firms is efficient. An economist making the wrong assumption about the nature of time may

obtain incorrect estimates of productivity distributions or draw wrong conclusions on the optimal

level of unemployment benefits or the minimum wage.

The main intuition for these findings is that discrete time creates a possibility of simultaneity and

recall of job offers which is typically ruled out by assumption in continuous time models. When time

is discrete, workers may receive multiple job offers in a given period which allows them to compare

these offers to each other. In the standard models of continuous time, workers make at most one

comparison, i.e. between their (single) offer and their outside option. This difference changes the

structure of the equilibrium.2

1See the next subsection for an overview of the literature.
2Of course, other assumptions can be made. For example, one can construct continuous time models in which job offers

arrive in bunches. The equilibrium in such a model would be similar to the one in the discrete time version of my model,
implying a possible indeterminacy about the best way of modeling the simultaneity that arises. In this paper, I focus on the
most standard interpretation.
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Consequently, it is crucial to specify the period length correctly. Given the lack of empirical

evidence for most labor markets, I present a simple model that allows for time periods of arbitrary

length. Workers receive wage offers according to a continuous time Poisson process but they cannot

immediately accept these positions. Transitions are only possible at certain equidistant points in time,

which effectively create time periods. If the period length is strictly positive, the model behaves like

discrete time model in which workers may collect multiple job offers before deciding which one to

accept. On the other hand, the model converges to a continuous time model if the length of a period

goes to zero.3

I characterize the equilibrium and I show how its properties depend on the period length. First, I

consider how the surplus created by a match is divided between the worker and the firm. I find that the

wage distribution is degenerate if periods are infinitesimally short or infinitely long. With intermediate

period lengths however, there is wage dispersion. The wage density is non-monotonic and the wage

distribution resembles a wage ladder in the sense that not all wages can be reached directly after

unemployment. The results on wage dispersion are important since in empirical applications the

distribution of worker and/or firm productivities is often estimated from wage data after controlling

for the frictional wage dispersion implied by a structural model (see e.g. Bontemps et al., 1999, 2000;

Postel-Vinay and Robin, 2002). The assumed length of a time period will affect the estimates that are

obtained in such a way.

Second, I study the allocative efficiency of the model. In particular, I analyze whether job-to-job

transitions are efficient in the sense that workers always flow from less productive to more productive

firms. I find that the answer depends on the values of the parameters and that the period length again

plays a crucial role. For some parameter values, the job-to-job transitions are efficient for short period

lengths, but not for long period lengths. For other parameter values, the exact opposite result applies.

These results imply that the effectiveness of unemployment benefits or a minimum wage, which can

be instrumental in restoring efficiency in my model, depends on the nature of time as well.

1.2 Related Literature

This paper adds to the existing literature in multiple ways. First, as described in the introduction, the

strong focus on the role of time is new. Several authors have discussed how simultaneity or recall of

job offers can change equilibrium outcomes Burdett and Judd (1983); Burdett and Mortensen (1998);

Galenianos and Kircher (2009); Carrillo-Tudela et al. (2011), but to the best of my knowledge, the

model presented here is the first to nest continuous and discrete time in a labor market setting. A

second novelty of the model is that it allows workers to receive job offers simultaneously (i.e. multiple

in one period) as well as sequentially (i.e. in subsequent periods in the form of on-the-job search).

Past literature has considered at most one of both types along both dimensions: typically either time is

3It is important to emphasize that the job offer arrival rate per real unit of time does not depend on the length of a period.
Some papers in the literature make a comparison between e.g. one job offer per week and one job offer per two weeks. That
is not what I do in this paper. Instead, I compare one job offer per week to two job offers per two weeks.
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discrete and multiple job offers may arrive simultaneously (see e.g. Kircher, 2009; Wolthoff, 2010), or

time is continuous and job offers arrive according to a Poisson process and workers search on-the-job

(e.g. Burdett and Mortensen, 1998; Postel-Vinay and Robin, 2002). Table 1 presents a classification

for a large number of search models.

The random search model that I present in the next section can be described as a combination of

the simultaneous search aspects of Burdett and Judd (1983) and the on-the-job search component of

Burdett and Mortensen (1998). A difference with Burdett and Mortensen (1998) is that - under my

assumption about what constitutes a period - an employer is always fully informed about the current

employment contract of a worker that he meets. In that sense, my model is related to the work by

Carrillo-Tudela (2009a,b), who allows firms to observe the employment status and/or experience of

workers (but not the contract). The observability of the employment contracts also implies that the

equilibrium in my model shares some features with the directed search literature, as I will discuss

in more detail towards the end of this paper. Finally, this paper is related to Eeckhout and Kircher

(2010) who study how a seller’s optimal strategy depends on whether he can meet multiple buyers

simultaneously or not. Since continuous time naturally leads to bilateral meetings and discrete time to

multilateral meetings, there is a potential role for time in their model.

2 Model

2.1 Overview

Starting point for my analysis is a standard continuous time model. The main novelty is that I allow

for discretization of time by introducing information frictions. Suppose that workers and firms are not

immediately informed about relevant events that take place in the decentralized market, in particular

about job offers and job destruction shocks. Instead they only learn about them at the earliest of a

number of predefined points in time. This yields a meaningful definition of a period. At any moment,

workers and firms are perfectly informed about the job offers and job destruction shocks that took

place before the current period, but they are still unaware of the ones that arose during the current

period.

Discretization can also be motivated in various other ways without changing the fundamental

structure of the model. For example, screening of applicants typically takes time; decisions in the

hiring process may be delayed by legal or corporate requirements regarding the recruitment procedure;

workers may not be able to immediately quit their current job upon receiving a better offer because

they are required to give an advance notice to their employer; or institutional factors may cause a

profession to have an annual job market. The relevant element in each of these motivations is the

simultaneity which is ruled out by assumption in continuous time models: at some moment in time,

workers may learn that they have received multiple job offers and that they can choose which one they

want to accept.
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Time Job offers

Cont. Disc. Simult. Seq.

Burdett and Judd (1983) • •
Albrecht and Axell (1984) •
Mortensen and Pissarides (1994) •
Pissarides (1994) • •
Moen (1997) •
Burdett and Mortensen (1998) • •
Acemoglu and Shimer (1999) •
Julien et al. (2000, 2006) • •
Burdett et al. (2001) •
Postel-Vinay and Robin (2002) • •
Gautier and Moraga-Gonzalez (2005) • •
Albrecht et al. (2006) • •
Delacroix and Shi (2006) • •
Carrillo-Tudela (2009a,b) • •
Galenianos and Kircher (2009) • •
Gautier et al. (2009) • •
Gautier and Wolthoff (2009) • •
Kircher (2009) • •
Shi (2009) • •
Menzio and Shi (2010a,b,c) • •
Kaas (2010) • •
Wolthoff (2010) • •
Carrillo-Tudela et al. (2011) • •
This paper • • • •

Relationship between this paper and the existing literature. Cont. = continuous time model; Disc.
= discrete time model / static model; Simult. = model allows for simultaneous arrival of job offers;
Seq. = model allows for on-the-job search. Burdett and Judd (1983) deals with consumer markets
but can be rewritten in labor market terms.

Table 1: Related literature
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In the model that I present here, I abstract from various issues that might be important in reality.

For example, the period length can have implications for the quality of the screening of applicants or

for how well firms are able to deal with fluctuations in the demand for output. However, these aspects

only exacerbate the difference between continuous time and discrete time. I therefore focus on the

question how the nature of time affects the market equilibrium in the absence of these factors.

2.2 Setting

Consider the steady state in a labor market with a measure 1 of identical workers and a measure

v of firms. Initially I will assume that all firms are identical. I analyze the implications of firm

heterogeneity in section 5. All agents are infinitely-lived and risk-neutral. Firms employ workers in

order to produce output according to a production technology that exhibits constant returns to scale.

Each worker can supply one indivisible unit of labor and is therefore at a given moment in time either

employed at one of the firms or unemployed. I denote the measures of employed and unemployed

workers by 1−u and u respectively.

Time is denoted by t and is continuous. Both firms and workers discount future payoffs at rate

ρ̂ . A worker who is employed by a firm produces a flow output ŷ. From this output, the firms pays

the worker a wage ŵ at each instant for as long as the match lasts. Unemployed workers have a flow

payoff equal to ĥ, consisting of unemployment benefits, home production, and the value of leisure. In

order to guarantee the existence of a market, assume that ĥ is strictly smaller than ŷ.

Workers and firms meet each other according to a Poisson process. When a meeting takes place,

the firm makes a take-it-or-leave-it job offer.4 As common in the literature, I allow the job offer

arrival rate to differ across employment state. Unemployed workers receive job offers at rate λU ,

while employed workers meet new firms at rate λE . To keep notation as simple as possible, assume

λE ≤ λU . Each job offer consists of a wage that the firm promises to pay to the worker for as long as

the match lasts.5 Jobs are subject to job destruction shocks which arrive at rate δ .

As discussed above, the main difference between my model and Burdett and Mortensen (1998)

is that due to either informational frictions or institutional factors, transitions between employment

states are only possible at certain predetermined time points. I assume that these moments occur every

τ ≥ 0 units of time, i.e. at t ∈ {τ, 2τ, 3τ, ...}. This essentially creates discrete time periods of length

τ . If τ goes to zero, we get convergence to a continuous time model and if τ becomes really large we

get a static (one-shot) model.

In the remainder of this paper, I will simplify notation by using the discrete-time equivalents of

the model’s parameters when possible. I denote the periodical discount factor by ρ (τ) = e−ρ̂τ . The

4To keep the exposition as simple as possible, I maintain the assumption that each meeting results in a job offer. This
assumption can be motivated with a CRS production technology. Direct competition between workers through e.g. an
urn-ball matching technology would merely exacerbate the frictions.

5Burdett and Coles (2003) study a model in which the firm can condition the worker’s wage on tenure within the firm.
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discounted value of periodical output equals y(τ) = β (τ) ŷ, where

β (τ) =

ˆ
τ

0
e−ρ̂tdt =

1
ρ̂

(
1− e−ρ̂τ

)
.

Likewise, I define w(τ) = β (τ) ŵ and h(τ) = β (τ) ĥ. Time aggregation also needs to be taken into

account for the transition rates. Workers may receive multiple job offers per period. To be precise, the

number of firms that a worker with employment state s ∈ {U,E} (U = unemployment, E = employ-

ment) meets in any given period follows a Poisson distribution with mean λsτ . I denote the probability

that the worker obtains j job offers by ps ( j|τ) = e−λsτ (λsτ)
j

j! . Likewise, the number of job destruction

shocks in a period follows a Poisson distribution with mean δτ .

The assumed information structure implies that a firm making a job offer does not know what

other job offers the worker gets in the current period. However, the firm is always fully informed

about the worker’s current employment status and wage, since all information becomes public at the

end of each period. So, a wage offer x can be conditioned on the worker’s current wage w (or on

the fact that he is unemployed), but not on the number of other firms that the worker meets in the

current period. Let F (x|w) be the equilibrium distribution of wage offers x to workers earning w and

F (x|h) the distribution of wage offers to the unemployed.6 The corresponding supports are F (w)

and F (h) respectively. In equilibrium these distribution will imply a steady state earnings distribution

G(w), representing the fraction of employed workers earning a wage lower than w.7 Denote the

corresponding density by g(w) and its support by G. Sometimes I will use expressions that apply to

both employed and unemployed workers. For this purpose, define G′ = G ∪h.

Towards the end of the period, each worker learns about the wage offers that he has received and

accepts the best one, as long as it gives him a higher value than staying in his current job (or staying

unemployed). Let r (w) be the reservation wage of a worker currently earning w. I denote the workers’

matching probability by µs (τ). An expression for µs (τ) will be derived in the next section. In the

very last phase of the period, job destruction takes places. A job is destroyed if it was hit by at least

one job destruction shock, which happens with probability φ (τ) = 1− e−δτ . Workers hit by the job

destruction shock flow back into unemployment, after which a new period starts.8

6Although unemployed workers technically do not earn a salary, I will in the remainder of this paper often simplify
notation by treating them as workers earning h.

7I characterize the earnings distribution in section 4.
8The timing that I impose here implies that workers may lose their job immediately after accepting it. This assumption

does not affect any of the conclusions in this paper and can easily be adjusted. The main advantage of this specification is
that it simplifies some of the expressions by maintaining symmetry between unemployed and employed workers.

Note further that periodical output does not depend on the exact moment at which the job destruction shocks arrive
within a period, implying that the shocks cannot easily be interpreted as shocks to the workers’ productivity. A preferred
interpretation is therefore that they represent shocks to (the price of) the firm’s capital which destroy the surplus of the
match, but only at the next transition moment because contracts regarding capital are only renewed then.
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2.3 Value Functions

To facilitate the equilibrium derivation, I specify the workers’ and firms’ Bellman equations. Consider

the workers first. Note that since no transitions are possible within a period, attention can be restricted

to the time points τ , 2τ , 3τ , etc. Hence, let VU denote a the value of unemployment and VE (w) the

value of being employed at a wage w ∈ G at the beginning of a period. During the period, each worker

receives a flow payoff, either from his job or from household production. The discounted values

of these payoffs are w and h respectively. An unemployed worker gets j ∈ N0 job offers from the

distribution F (·|h) with probability pU ( j). He accepts the best wage offer as long as the associated

payoff is higher than the payoff of remaining unemployed. After matching, job destruction may occur

in which case the worker flows back to unemployment. So, the expected value of an offer x equals9

ṼE (x) = (1−φ)VE (x)+φVU .

The value of unemployment is then equal to

VU = h+ρ

∞

∑
j=1

pU ( j)
ˆ

x∈F(h)
max

{
ṼE (x) ,VU

}
dF j (x|h)+ρ pU (0)VU . (1)

A similar expression holds for the value of employment. The worker gets j ∈ N0 job offers with

probability pE ( j). Again, the worker accepts the best offer, but only if it gives a higher payoff than

rejecting it. Hence, VE (w) equals

VE (w) = w+ρ

∞

∑
j=1

pE ( j)
ˆ

x∈F(w)
max

{
ṼE (x) ,ṼE (w)

}
dF j (x|w)+ρ pE (0)ṼE (w) . (2)

Formally, the strategy of workers can be described by acceptance sets, consisting of the wage

offers that they are willing to accept given their current wage. A worker rejects all wage offers that are

not part of his acceptance set. Given monotonicity of the value functions, each acceptance set can be

characterized by a reservation wage. A worker currently earning w ∈ G′ accepts his best wage offer x

if it is higher than his reservation wage r (w) and rejects it otherwise.10

Next, consider the firms’ Bellman equations. Firms may employ multiple workers, but the payoff

of hiring a specific worker is independent of the number or employment conditions of other workers in

the firm, since the production function exhibits constant returns to scale. I therefore specify the value

functions per individual job. Specifically, denote the firm’s value of giving employment to a worker at

wage w by VF (w). The firm gets an instantaneous payoff of y−w. The match continues in the next

9To simplify notation, I will suppress the dependence of parameters on the period length τ when no confusion is
possible.

10Workers that get an offer equal to their reservation wage are indifferent between accepting and rejecting the offer. As
a tie-breaking rule I assume that workers always reject in this event of measure zero. This assumption does not affect any
conclusions, but simplifies notation because under the opposite assumption both unemployed and employed workers could
have a periodical income equal to h.
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period if the worker does not make a job-to-job transition and no job destruction shock takes place.

In equilibrium, any new wage offer will always be higher than the current wage of a worker, since

firms can condition their wage offers on the current wage. Hence, the worker only does not make a

job-to-job transition if he does not meet any new firm. The worker’s value function VF (w) therefore

equals

VF (w) = y−w+ρ pE (0)(1−φ)VF (w) . (3)

A firm that meets a worker currently earning w ∈ G′ and makes a job offer x obtains a positive

payoff if it manages to hire the worker. Let m(x|w) denote the firm’s hiring probability. The firm

faces a trade-off. Offering a higher wage increases the matching probability m(w|x), since workers

can compare offers. However, simultaneously it lowers the value VF (w) of the future match. Firms

will offer wages such that they maximize

VV (x|w) = ρm(x|w)(1−φ)VF (x) (4)

This determines the wage offer distribution Fw.

I now define an equilibrium as follows.

Definition 1. A steady state market equilibrium (‘equilibrium’) is a tuple
{

u,{F (·|w) ,r (w)}w∈[h,y]

}
such that

1. Profit maximization: VV (x|w) = maxx′VV (x′|w) for all x ∈ F (w), and for all w ∈ G′.

2. Optimal reservation wage:

VE (x) =VU iff x = r (h)

VE (x) =VE (w) iff x = r (w) , for all w ∈ G.

3. Steady state: u consistent with labor market flows.

3 Equilibrium

3.1 Firms’ Wage Setting

Consider a firm which meets a worker currently earning w and which has to decide what wage to

offer. The worker will reject wage offers below r (w), so m(x|w) = 0 for x ≤ r (w). However, wage

offers in the interval (r (w) ,y] may be acceptable to the worker. The firm faces a trade-off in this

interval. A higher wage offer lowers the future per-period profit, but is more likely to be accepted by

the candidate. To be precise, the worker will accept the wage offer if it is higher than all j− 1 other

wage offers. If a firm offers the job to a worker, the conditional probability that he has j−1 other job

offers equals jps( j)
∑

∞
j=1 jps( j) =

jps( j)
λsτ

= e−λsτ (λsτ)
n−1

(n−1)! . For x > r (w), m(x|w) therefore equals

9



m(x|w) =
∞

∑
j=1

e−λsτ
(λsτ)

j−1

( j−1)!
F j−1 (x|w)

= e−λsτ(1−F(x|w)). (5)

Hence, the number of other, better offers follows a Poisson distribution with mean equal to λsτ (1−F (x|w)).
Substituting (5) and the solution to (3) into (4), gives the following expression for the expected dis-

counted payoff for a firm offering x > r (w) to a worker earning w:

VV (x|w) = e−λsτ(1−F(x|w)) ρe−δ (y− x)
1−ρ pE (0)e−δ

.

The firm maximizes this expression with respect to x, which determines the wage offer distribution

F (x|w). First I show that there is wage dispersion and that F (x|w) is continuous and has connected

support.

Lemma 1. Given r (h) < y, in any market equilibrium, F (w) is not a singleton but a convex set of

positive measure. Further, F (x|w) is continuous.

Proof. The proof is similar to the one of lemma 1 in Burdett and Judd (1983).11 The intuition is as

follows. The matching technology implies that a worker gets at least two job offers with probability

1− ps (0)− ps (1)> 0. In this case, the worker will compare the offers and accept the best one. This

feature implies that if all firms offer the same wage r (w)< x < y, a deviant can do better by offering

a marginally higher wage, which allows it to attract workers that compare multiple job offers with

probability 1. Offering x = y however, leading to a match payoff of zero, is dominated by posting

x = r (w) since there is a strictly positive probability ps (1) that the candidate does not compare wages.

Hence, firms post wages according to a mixed strategy. Similar arguments rule out mass points and

gaps in the support.

Using this lemma, one can derive the equilibrium wage offer distribution.

Lemma 2. Given v > 0 and r (h)< y, in any market equilibrium, firms post prices according to

F (x|w) =


0 if x≤ r (w)

1
λsτ

log
(

y−r(w)
y−x

)
if x ∈ F (w) = (r (w) ,x(w)] , for all w ∈ [h,y]

1 if x > x(w) ,

(6)

where x(w) equals

x(w) = e−λsτr (w)+
(

1− e−λsτ
)

y. (7)

11See also lemma 1 in Gautier and Moraga-Gonzalez (2005).
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Proof. First, note that the infimum of the support of F (x|w) must equal r (w). Offers below r (w)

are rejected and give a payoff of zero. On the other hand, if the infimum of the support would be

strictly larger than r (w), the firm posting the lowest wage in the market could decrease its offer and

make a higher profit. Second, let x(w) denote the upper bound of the support of F (x|w), hence

F (w) = (r (w) ,x(w)]. The equilibrium definition now implies that the payoff for the firm must be the

same for each x ∈ F (w). Hence, an expression for the wage offer distribution F (x|w) for x ∈ F (w)

follows from the equal profit conditionVV (r (w) |w) =VV (x|w), which is equivalent to

e−λsτρ (1−φ)(y− r (w))
1−ρ pE (0)(1−φ)

=
e−λsτ(1−F(x|w))ρ (1−φ)(y− x)

1−ρ pE (0)(1−φ)
.

Solving for F (x|w) yields

F (x|w) = 1
λsτ

log
(

y− r (w)
y− x

)
.

The presented upper bound x(w) of the support of F (x|w) follows from solving F (x(w) |w) = 1.

3.2 Workers’ Reservation Wage

The strategy of workers consists of the decision whether or not to accept the best wage offer x given

their current wage or value of home production. It is straightforward that the workers’ value function

of employment VE (w) is strictly increasing in w. This implies that workers follow a reservation wage

strategy. The reservation wage r (w) is defined by the reservation wage propertyVU =VE (r (h))

VE (w) =VE (r (w)) for all w ∈ G.
(8)

It is immediate that r (w) = w for all w ∈ G, meaning that employed workers accept all wage offers

higher than their current wage. Unemployed workers on the other hand take into account that if

they accept a job, their job offer arrival rate might change. The following lemma shows that their

reservation wage is a weighted average of h and y.

Lemma 3. In any market equilibrium, for all w ∈ G′, the workers’ reservation wage function is given

by

r (w) =


h+ργ(1−φ)(ΦU−ΦE )y
1+ργ(1−φ)(ΦU−ΦE )

for w = h

w for all w ∈ G,
(9)

where

γ =
1

1−ρ (1−φ)(1−ΦE)
. (10)

and

Φs = 1− e−λsτ −λsτe−λsτ .
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Proof. See appendix A.1.

It is straightforward to check that r (h)> h if λU > λE . In other words, workers are choosy because

they realize that their job offer arrival rate will fall after accepting a job. If λU = λE , this motivation

disappears and r (h) = h . This result is analogous to Burdett and Mortensen (1998).

3.3 Existence of an Equilibrium

After characterizing the firms’ wage offer distribution and the workers’ reservation wage function, one

can now assess the existence of the steady state equilibrium. This is done in the following proposition.

Proposition 1. A unique steady state equilibrium exists.

Proof. Lemmas 2 and 3 describe the unique equilibrium candidates for the wage offer distribution

and the reservation wage function. In order to establish existence, we still need to consider the unem-

ployment rate u. In steady state, it can be calculated by equating inflow and outflow. Workers who

are unemployed at the beginning of a period are no longer unemployed one period later if they get

at least one job offer and are not immediately hit by a job destruction shock. Hence, their matching

probability is µU (τ) =
(
1− e−λU τ

)
(1−φ (τ)), implying that outflow is equal to µU u. On the other

hand, a fraction φ of the employed workers loses its job such that inflow equals φ (1−u). Solving for

u yields

u =
φ

φ +µU
. (11)

Hence, an equilibrium exists and it is unique.

4 Division of Surplus

In this section, I consider how the surplus generated by a match is divided between the worker and the

firm, and how this depends on the period length. I derive the earnings distribution G(w), i.e. the cross-

sectional wage distribution that arises in equilibrium. Before deriving this distribution it is helpful to

consider two important differences between my model and standard search models.

4.1 Full Support

The support of the earnings distribution G(w) ranges from the reservation wage of an unemployed

worker up to the productivity level, i.e. G = (r (h) ,y]. This contrasts most other search models with

homogeneous agents and wage posting. In those models, the upper bound of the support of the wage

distribution is typically strictly smaller than the productivity level.12 This result is the immediate
12A notable exception is Delacroix and Shi (2006) when the application cost in their model goes to zero. In models that

allow for some type of Bertrand competition, like Julien et al. (2000) and Postel-Vinay and Robin (2002), the wage can also
equal the productivity level. However, the support of the earnings distribution typically consists of two mass points only in
that case, one at r (h) and one at y.
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consequence of an equal profit condition. All equilibrium wage offers must give the same expected

payoff to the firms, otherwise some firms would have a profitable deviation. Since wages sufficiently

close to the productivity level y give a payoff of zero with probability 1, they cannot be part of the

support of the wage distribution.

However, the assumption that firms are indifferent between all equilibrium wage offers may be

unrealistically strong. After all, in a model with frictional wage dispersion agents who are identical ex

ante can be different ex post, just because agents are luckier in the matching process than others. The

different wage offers may therefore reflect the differences in outside options across workers and do

not necessarily need to yield the same expected payoff. In other words, if a firm meets a worker with

a high current wage (a good outside option), then it is irrelevant that matching with this worker may

lead to a lower payoff than what some other firms are getting. The only relevant criterion is whether

there is a positive surplus from matching and this is the case as long as the worker’s current wage is

below y.

4.2 Wage Ladder

A second difference between my model and models like Burdett and Mortensen (1998) is that not

all wage levels can be reached directly from unemployment. In the first job after unemployment,

a worker can never earn more than x(h), which is strictly lower than y. A worker who earns that

upper bound and receives a job offer in the next period, can never earn more than x(x(h)) in that new

job. By induction, one can show that the maximum wage ŵU,n a worker can earn in his nth job after

unemployment is equal to

ŵU,n = xn (h) = y− e−λU τ−λE τ(n−1) (y− r (h)) for n ∈ N1.

Hence, the wage distribution can be seen as a wage ladder. Workers who earn a wage w have to climb

one rung (i.e. find a job in (w,x(w)]) before they can climb the next (a job in (x(w) ,x(x(w))]).13

It is well established in the literature that workers coming out of unemployment earn lower wages

than the population of workers as a whole. For example, Jolivet et al. (2006) documents that the wage

distribution of all workers first-order stochastically dominates the distribution of entry wages in eleven

different countries.14 This fact in itself is consistent with the model of Burdett and Mortensen (1998)

as well as my model. Buchinsky and Hunt (1999) however provide evidence for the existence of a

wage ladder by estimating the transition probabilities between the quintiles of the wage distribution.

They find that most wage mobility takes place either within a quintile or from one quintile to an

adjacent quintile.

13Note that my definition of a wage ladder differs from the one used by authors who call the Burdett and Mortensen
(1998) equilibrium a wage ladder.

14Arulampalam (2001), Farber (1999), Gregory and Jukes (2001) and Kletzer (1998) also report lower wages after
unemployment.
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Nevertheless, equilibrium search models featuring a wage ladder are rare in the search literature.

In (a homogeneous-agent version of) the sequential auction model of Postel-Vinay and Robin (2002)

the ladder has two rungs: workers start an employment spell at r (h), but jump to y if they get an

outside offer. In Carrillo-Tudela (2009a), firms observe the employment status (but not the wage) of

each worker they meet and offer a low wage to unemployed workers and higher wages to employed

workers. Only directed search models with on-the-job search yield a larger number of rungs. For

example, Delacroix and Shi (2006) find an equilibrium wage distribution with a support consisting of

a potentially large but finite number of mass points. Workers start an employment spell at a low wage,

but choose to only apply to firms that offer a wage that is one rung higher than their current wage level

when searching on-the-job. Consequently, the speed with which workers climb the ladder is fixed (i.e.

the distribution of the current wage conditional on the previous wage is degenerate). My model allows

for variation in this speed. Some workers can experience larger wage increases between two jobs than

others, which is in line with empirical evidence.15

4.3 Earnings Distribution

I now derive the earnings distribution by considering the set Z (w) of employed workers earning a

wage lower than w. By definition, the probability that a worker is included in this set is given by

G(w). I exploit the fact that in steady state inflow into and outflow from Z (w) should be equal.

Note that workers never move to jobs paying a lower wage, implying that inflow only occurs from

unemployment. Further, note that unemployed workers flow into Z (w) if the best wage offer they get

is lower than w and if they are not immediately hit by the job destruction shock. Hence, inflow into

the set of workers earning less than w, denoted by I (w), equals

I (w) = u(1−φ)
∞

∑
j=1

pU ( j)F j (w|h) . (12)

On the other hand, outflow from Z (w) can occur for two reasons. First, all employed workers, ir-

respective of whether they make a job-to-job transition, are subject to a job destruction shock with

probability φ in which case they flow back to unemployment. Second, workers may move to a better

paying job if they get job offer paying more than w and are not hit by the shock. So, outflow O(w)

equals

O(w) = (1−u)
ˆ w

r(h)

(
φ +(1−φ)

∞

∑
j=1

pE ( j)
(
1−F j (w|z)

))
g(z)dz. (13)

15See Shi (2009) for a model in which wage-tenure contracts create a similar mechanism.

14



Equating inflow and outflow and rewriting the result gives the following integral equation:

u
1−u

(1−φ)
∞

∑
j=1

pU ( j)F j (w|h) = φG(w)+(1−φ)

ˆ w

r(h)

∞

∑
j=1

pE ( j)
(
1−F j (w|z)

)
g(z)dz. (14)

Solving this equation gives the expression for the earnings distribution G(w) and taking the first

derivative of this expression yields the density g(w). Note that the support of each F (w|z) does not

correspond to G. Therefore, the functional form of G(w) varies across subintervals on its support.

In order to derive these subintervals, I define two sets of cutoff points. The first set consists of the

maximum wages ŵU,n, n ∈ N1 a worker can earn in his nth job after unemployment , as derived in

section 4.2. The second set follows from considering a worker that is employed at the lowest wage in

the economy, i.e. w = r+ ≡ limε↓0 r (h)+ ε . He can never earn more than x(r+) in his next job and

never more than x(x(r+)) in the job after that. Let ŵE,n denote the maximum wage this worker can

earn in his nth job. Hence,

ŵE,n ≡ xn (r+)= y− e−λE τn (y− r+
)

for n ∈ N1.

Next, combine both sets of cutoff points and let ŵn be the nth order statistic of the new set, i.e.

the nth smallest value. Note that ŵU,1 > ŵE,1, implying that ŵ1 = ŵE,1. Let ŵE,n̂ be the largest ŵE,n

smaller than ŵU,1. Then it is straightforward to show that the cutoff points ŵU,n and ŵE,n alternate

from ŵU,1 onwards. Hence

{ŵ0, ŵ1, ŵ2, . . . , ŵn̂, ŵn̂+1, ŵn̂+2, ŵn̂+3, . . .}

= {r (h) , ŵE,1, ŵE,2, . . . , ŵE,n̂, ŵU,1, ŵE,n̂+1, ŵU,2, . . .} .

Figure 1 illustrates this by showing the cutoff points for arbitrary parameter choices.

In appendix A.2, I show that the functional form of G(w) is different on each interval (ŵn−1, ŵn].

Since limn→∞ ŵn = y, there exist infinitely many of such intervals. Hence, I partition the earnings

distribution as follows

G(w) = Gn (w) for w ∈ (ŵn−1, ŵn] , n ∈ N1.

First, I obtain a closed-form expression for G1 (w). Then, I show that the elements of the wage

distribution satisfy a recursive structure: knowledge of Gn−1 (w) or Gn−2 (w) is sufficient to derive

Gn (w). Taking derivatives yields expressions for g1 (w), g2 (w), g3 (w), et cetera. Hence, the entire

earnings density can be characterized by the initial element G1 (w) and a recursive equation. This is

summarized in the following lemma.

Lemma 4. In market equilibrium, the earnings distribution is characterized by the following recursive
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Cutoff points {ŵ0, ŵ1, ŵ2, . . . , ŵn̂, ŵn̂+1, ŵn̂+2, ŵn̂+3, . . .} = {r (h) , ŵE,1, ŵE,2, . . . , ŵE,n̂, ŵU,1, ŵE,n̂+1, ŵU,2, . . .}
of the earnings distribution. Note that ŵE,n < ŵU,1 for n≤ n̂ (here n̂ = 3). After ŵE,n̂, the cutoff points formed
by ŵU,i and ŵE,n̂+i alternate.

Figure 1: Illustration of cutoff points.

system

G1 (w) = φ

µU
(1−φ −µU)

((
y−r(h)

y−w

)∆E
−1
)

Gn (w) = Cn− φ

µU
(1−φ −µU)+(1−φ)

(
Gn−1 (w(w))− (y−w)−∆E

´
(y−w)∆E dGn−1 (w(w))

)
if n ∈ {2, . . . , n̂+1}

Gn (w) = Cn +φ +(1−φ)
(

Gn−2 (w(w))− (y−w)−∆E
´
(y−w)∆E dGn−2 (w(w))

)
if n ∈ {n̂+2, . . .} ,

where ∆E = 1
φ+µE

denotes the expected duration of a match, w(w) = y−eλE τ (y−w), and Cn is deter-

mined by Gn (ŵn−1) = Gn−1 (ŵn−1).

Proof. See appendix A.2.

G(w) is continuous and differentiable except at ŵU,1. The complexity of Gn (w) increases rapidly

in n, which impedes derivation of analytical expressions. However, one can easily show that together

they create a non-monotonic wage density g(w), as formalized in the following lemma.

Lemma 5. For all 0 < τ < ∞, the wage density g(w) is 1) increasing for w sufficiently close to r (h),

and 2) decreasing for w sufficiently close to y.
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Proof. Note that the second derivative of G1 (w) equals

g′1 (w) =
φ

µU
(1−φ −µU)∆E (∆E +1)(y− r (h))∆E (y−w)−∆E−2 .

This is positive for all w ∈ (r (h) , ŵ1] , implying that the first statement holds.

Further, earning a wage w > ŵU,n requires at least n consecutive job-to-job transitions without

experiencing a job destruction shock. The conditional probability that a match ends with a job-to-job

transition is µE
φ+µE

. Hence, the probability of experiencing n job-to-job transitions in a row is
(

µE
φ+µE

)n

which tends to 0 if n→ ∞. Hence, g(w) ↓ 0 if w→ y.

Even though non-monotonic wage densities are in line with empirical evidence, very few equi-

librium search models generate them without allowing for ex-ante heterogeneity. Most models with

wage posting give wage densities that are strictly increasing (e.g. Burdett and Judd, 1983; Burdett and

Mortensen, 1998; Kircher, 2009) or strictly decreasing (e.g. Delacroix and Shi, 2006; Galenianos and

Kircher, 2009). Mortensen (2000) shows that adding match-specific capital to a Burdett-Mortensen

type of framework may help. The intuition for the non-monotonicity in my model is as follows. In

order to be employed at a low wage, a worker must have gotten a low wage offer after an unemploy-

ment spell and have remained there since that moment. On the other hand, in order to earn a really

high salary, the worker must have experienced many consecutive job-to-job transitions without a job

destruction shock in between. The probability of both events is relatively small and therefore the equi-

librium fractions of workers earning these wages are small. Intermediate wage levels are much more

common, also because there are several ways in which one can obtain such a salary. Some workers

get this wage directly after unemployment, while others experience a couple of job-to-job transitions

before finding a job paying this wage.

4.4 Effect of the Period Length

I now consider the effect of the period length τ on the wage distribution. It is important to note that

the intuition for the non-monotonic shape of the wage density given above only holds for positive but

finite values of τ . I therefore start by considering the limit cases τ → 0 and τ → ∞.

If τ → 0, the model basically converges to a standard continuous-time model without recall. In

each infinitesimally short period, a worker receives either zero or one job offer, so there are never

multiple firms competing to hire the same worker. Moreover, firms know the workers’ outside options

at each moment in time. These facts together imply that each wage offer is equal to the reservation

wage of the worker in question. Hence, we are back in the Diamond equilibrium and get an earnings

distribution that is degenerate at the level of household production h. Workers flow from unemploy-

ment to employment at rate λU and flow back at rate δ . Hence, the unemployment rate becomes δ

δ+λU
.

These results are summarized in the following claim.
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Claim 1. If τ → 0, the reservation wage function, the offer distribution and the earnings distribution

converge to

r (w) = w, for all w ∈ G′.

F (x|w) =

0 if x < w

1 if x≥ w, for all w ∈ G′.

G(w) =

0 if w < h

1 if w≥ h

At the beginning of each period, the equilibrium unemployment rate equals

u =
δ

δ +λU
.

Next consider what happens if the period length becomes infinitely long. In that case, workers

match with probability 1 (λU τ,λEτ → ∞). Nevertheless, unmatched agents assign zero weight to the

payoffs of a potential match for two reasons. First, the payoffs of a match are only realized in the

next period and the discount factor ρ = e−ρ̂τ tends to zero. Second, the probability to be hit by a job

destruction shock tends to one, which given the assumptions about the timing (with production taking

place after job destruction) means that no output will ever be produced in the first place. As a result,

all possible strategies give zero payoff to the firms and h to the workers. However, as long as the

agents assign some weight to what happens in the next period, the equilibrium is unique. Unemployed

workers are willing to accept any wage higher than h, since they no longer face a lower job offer

arrival rate than employed workers, hence r (h) = h. The severe competition between firms however

guarantees that all workers are offered the competitive wage, which equals the productivity level y

since there are more potential job openings than workers.

Claim 2. If τ → ∞, the reservation wage function, the offer distribution and the earnings distribution

converge to

r (w) = w, for all w ∈ G′.

F (x|w) =

0 if x < y

1 if x = y, for all w ∈ G′.

G(w) =

0 if w < y

1 if w = y
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At the beginning of each period, the equilibrium unemployment rate equals

u = 1.

Hence, the amount of frictional wage dispersion crucially depends on the length of a period.

When periods are infinitesimally short or infinitely long, the wage distribution is degenerate. For

intermediate period lengths, wage dispersion is a fundamental characteristic of the equilibrium.

I illustrate the effect of time by calibrating the model. For the baseline calibration, let the period

length equal one month, τ = 1. This corresponds with the frequency of the employment data pro-

vided by the US Bureau of Labor Statistics, such that there are no complications arising from time

aggregation. Following a similar approach as Shimer (2005, 2007), I then find an average monthly job

finding probability µU (τ) of 0.443 and a monthly job destruction probability φ (τ) of 0.024 between

January 1994 and December 2004.16 These values imply λU = 0.605 and δ = 0.024. In line with

the estimates by Moscarini and Vella (2008), I set the monthly job-to-job transition probability µE (τ)

equal to 0.032, which corresponds to λE = 0.033. I further set ĥ = 0.04, ŷ = 1 and ρ̂ = 0.05/12.

Taking the transition rates as given, one can then calculate the equilibrium outcomes for other

values of τ . The results of this exercise are presented in table 2 for τ between 0 (continuous time) and

12 (annual periods). The table confirms that the workers’ reservation wage, the average wage and the

amount of wage dispersion all vary with τ . The last column reports the mean-min ratio, a measure

of wage dispersion introduced by Hornstein et al. (2011). In the class of models that they consider,

this statistic is independent of the period length. This no longer holds in the model presented here: an

increase in the period length increases the distance between the average and the lowest wage in the

market.17

5 Efficiency of Job-to-Job Transitions

I now extend the basic model to allow for heterogeneity in firm productivity. This makes it possible

to study the allocative efficiency of the market equilibrium. In particular, I assess whether job-to-job

transitions always take place from less productive to more productive firms, or also in the opposite

direction.

5.1 Model with Heterogeneity

In order to keep the analysis as simple as possible, I introduce firm heterogeneity with a two-point

distribution: a fraction αi of the firms creates a periodical output equal to yi, where y2 > y1 > h and

16Note that Shimer (2005, 2007) needed to control for time aggregation since he assumed a continuous time model, i.e.
τ = 0. Obviously if 0 < τ < 1, a different correction for time aggregation is required.

17Note that like the models considered by Hornstein et al. (2011), my model generates a rather small value for the
Mm-ratio.
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τ µ0 (τ) µ1 (τ) φ (τ) Min Mean Std. dev. Mm-ratio

0.00 0.000 0.000 0.000 0.400 0.401 0.000 1.001

0.25 0.140 0.008 0.006 0.754 0.773 0.010 1.025

0.50 0.258 0.016 0.012 0.832 0.858 0.013 1.030

1.00 0.443 0.032 0.024 0.884 0.918 0.015 1.038

2.00 0.668 0.061 0.047 0.909 0.955 0.016 1.051

4.00 0.827 0.113 0.093 0.905 0.979 0.016 1.082

6.00 0.841 0.157 0.136 0.885 0.990 0.014 1.118

12.00 0.747 0.246 0.253 0.799 0.999 0.005 1.250

Equilibrium outcomes for various values of the period length τ . Reported are the periodical
transition probabilities (µ0 (τ), µ1 (τ), and φ (τ)) as well as some statistics regarding the earnings
distribution (all relative to y to ease the comparison). The Mm-ratio refers to the mean-min ratio
introduced by Hornstein et al. (2011).

Table 2: Calibration results

α1 +α2 = 1. However it is important to stress that all intuition behind the results that I derive below

holds for more general heterogeneity distributions as well. I further simplify notation by assuming that

the job offer arrival rate is the same for all workers, i.e. λ = λU = λE , which implies that r (h) = h.

Workers meet low type firms at a rate λ1 =α1λ and high type firms at a rate λ2 =α2λ . The equilibrium

distribution of wage offers by firms of type i ∈ {1,2} meeting a worker earning w is denoted by

Fi (x|w) with support Fi (w). I further define xi (w) = inf{x ∈ Fi (w)} and xi (w) = sup{x ∈ Fi (w)},
respectively representing the infimum and the supremum of the support.

Many equilibrium characteristics carry over from the homogeneous model, but a few things change.

For example, consider a worker currently earning w < y1 < y2. Compared to the homogeneous case,

high type firms may now have an additional reason to post a high wage: an offer x≥ y1 eliminates the

competition from the low types firms, not only in this period but also in all future periods. In other

words, the high type firms’ Bellman equation of giving employment to a worker at a wage x contains

a positive discrete jump at x = y1 since the arrival rate of better job offers drops at that wage:

VF,2 (x) =


y2−x

1−ρ(1−φ)e−λτ
if x < y1

y2−x
1−ρ(1−φ)e−λ2τ

if x≥ y1

.

Whether x ≥ y1 is optimal behavior for the high type firms depends on y1 and y2 as well as the

other parameters of the model and needs to be verified. As a first result, I show that any wage offered

by a high type firm is weakly larger than any wage offered by a low type firm. Hence, x2 ≥ x1 for all

x2 ∈ F2 (w) and x1 ∈ F1 (w), or equivalently x2 (w)≥ x1 (w).

Lemma 6. In any equilibrium, x2 ≥ x1 for all x1 ∈ F1 (w) and x2 ∈ F2 (w).
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Proof. Note that x1 ∈ F1 (w) implies x1 ≤ y1, so the result is immediate if x2 ≥ y1. The proof for

x2 < y1 resembles equation (34) of Burdett and Mortensen (1998). The Bellman equation of a firm of

type i employing a worker at a wage x < y1 equals

VF,i (x) =
yi− x

1−ρ (1−φ)e−λτ
.

If xi is in the support of wage offers by firm of type i, it must maximize VV,i (xi|w)= ρm(xi|w)(1−φ)VF,i (xi)

which is proportional to m(xi|w)(yi− xi). Hence,

m(x2|w)(y2− x2)≥ m(x1|w)(y2− x1)

> m(x1|w)(y1− x1)

≥ m(x2|w)(y1− x2) .

Comparing the difference between the first and the last term of this equation with the difference be-

tween the middle two yields

m(x2|w)(y2− y1)≥ m(x1|w)(y2− y1) .

Since m(x|w) is strictly increasing in x, this implies x2 ≥ x1.

Hence, the highest wage offer that a worker receives always comes from the most productive firm

that he meets in a given period. A worker’s new job is therefore always welfare maximizing condi-

tional on the worker making a transition. However, it is not obvious that the job-to-job transition itself

will be efficient. Suppose for example that a worker is employed at a high type firm earning a wage

w < y1. With positive probability, the worker will only meet low type firms in the next period. They

will offer wages w < x < y1, which makes a job-to-job transition beneficial from the worker’s point

of view, but inefficient from a welfare perspective. Efficiency of all job-to-job transitions therefore

requires a stronger condition than the one derived in lemma 6. It requires that in equilibrium high

type firms eliminate the competition from low type firms by offering above y1 for any worker that they

meet, i.e. x2 (w)≥ y1 for all w ∈ G′.
To analyze under what conditions this holds, first consider the optimal strategy for a low type firm

meeting a worker earning a wage w < y1. By lemma 6, low type firms will not be able to hire the

worker if that worker also meets high type firms in the same period. Hence, a low type firm offering x

matches with probability

m(x|w) = e−λ2τ−λ1τ(1−F1(x|w)).

Lemma 1 continues to hold, so solving for the distribution of wage offers in an analogous way to

lemma 2 yields

F1 (x|w) =
1

λ1τ
log
(

y−w
y− x

)
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with upper bound

x1 (w) = e−λ1τw+
(

1− e−λ1τ

)
y1.

Next consider a high type firm meeting a worker earning a wage w < y1. The expected payoff of

offering x equals

VV,2 (x|w) =

ρ (1−φ)e−λ2(1−F2(x|w))τ y2−x
1−ρe−λτ (1−φ)

if x < y1

ρ (1−φ)e−λ2(1−F2(x|w))τ y2−x
1−ρe−λ2τ (1−φ)

if x≥ y1.

Because of the discontinuity in VV,2 (x|w) at y1, wage offers just below y1 can never be part of

the equilibrium strategy of a high type firm. Let x̃(w) denote the highest possible wage below y1

that high type firms are willing to offer. Hence, x̃(w) follows from VV,2 (x̃(w) |w) = VV,2 (y1|w) and

F2 (x̃(w) |w) = F2 (y1|w), which yields

x̃(w) = y2−
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ
(y2− y1)< y1.

Depending on the values of x1 (w) and x̃(w), one can distinguish between three different scenarios.

The following lemma present the support F2 (w) of the equilibrium wage offer distribution for each

of the three cases.

Lemma 7. In equilibrium, the support F2 (w) of the wage offer distribution of the high type firms

equals

F2 (w) =


(
x1 (w) ,e−λ2τx1 (w)+

(
1− e−λ2τ

)
y2
]

for w ∈ [h, w̃1]

(x1 (w) , x̃(w)]∪
(
y1,e−λ2τ(1−F2(y1|w))y1 +

(
1− e−λ2τ(1−F2(y1|w))

)
y2
]

for w ∈ (w̃1, w̃2](
y1,e−λ2τy1 +

(
1− e−λ2τ

)
y2
]

for w ∈ (w̃2,y2]

where

w̃1 = y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ

1
e−λ2τ

−1

)
y2− y1

e−λ1τ
< y1

and

w̃2 = y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ
−1

)
y2− y1

e−λ1τ
< y1.

Proof. See appendix A.3.

So, when the current wage w of the worker is sufficiently low, the high type firm is not affected by

the discontinuity in the value function. The advantage of eliminating competition from low type firms

is dominated by the large flow payoff that can be obtained by offering lower wages. Hence, the entire

support will be below the low productivity level. When the current wage of the worker increases, the
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discontinuity starts to be become relevant. The discontinuity will split the support into two disjoint

intervals, one below y1 and one above y1. If the current wage is sufficiently close to y1, eliminating

future interaction with low type firms becomes the most profitable strategy and the entire support will

be above y1.

This lemma now allows us to assess the efficiency of the job-to-job transitions. As argued above,

efficiency of all transitions requires that x2 (w)≥ y1 for all w∈ G′. The lemma implies that x2 (w)≥ y1

for all w > w̃2. In order to have efficient job-to-job transitions, we therefore need that the payoff of an

unemployed worker is sufficiently high, i.e.

Corollary 1. Efficiency of the market equilibrium requires

h≥ w̃2

= y1−

(
1− e−ρ̂τe−δτe−λτ

1− e−ρ̂τe−δτe−λ2τ
−1

)
y2− y1

e−λ1τ
. (15)

Condition (15) only contains exogenous variables and can therefore easily be verified. Suppose

for example that a firm’s productivity equals ŷ2 = 1 (normalization) or ŷ1 = 0.8. Set the unit of

observation and the length of a period both equal to one month, i.e. τ = 1. Assume a discount rate

of ρ̂ = 0.0042 (i.e. 0.05 annually), a job destruction rate of δ = 0.025, and job offer arrival rates

λ1 = λ2 = 0.25, such that an unemployed worker’s monthly matching probability equals 0.384 and

the steady state unemployment rate is equal to 0.060. Then the threshold value for ĥ above which

job-to-job transitions are efficient equals 0.624. This value is decreasing in ŷ2 and λ1, since larger

values for those parameters make it more attractive for high type firms to extend match durations by

eliminating offers from low type firms. On the other hand, high values of ŷ1, λ2, δ and ρ̂ make it less

attractive to do so and increase therefore the cutoff value. The effect of τ on the threshold value is the

focus of the next subsection.

5.2 Effect of the Period Length

I now consider the influence of the period length on the efficiency of job-to-job transitions by analyzing

how the cutoff value w̃2 varies with τ . The following lemma gives a complete description of the results.

Lemma 8. w̃2 equals y1− λ1
ρ̂+δ+λ2

(y2− y1) for τ sufficiently close to 0. Further,

1. if λ1 = λ2 + ρ̂ +δ , then ∂ w̃2
∂τ

= 0 for all τ , and w̃2 = 2y1− y2 for all τ;

2. if λ1 > λ2 + ρ̂ +δ , then ∂ w̃2
∂τ

< 0 for all τ , and limτ→∞ w̃2 =−∞;

3. if λ1 < λ2 + ρ̂ +δ , then ∂ w̃2
∂τ

> 0 for all τ , and limτ→∞ w̃2 = y1.

Proof. See appendix A.4
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Hence, the effect of a change in the period length depends on the frequency with which a worker

meets a low type firm relative to (the sum of) the arrival rate of job offers from high type firms, the

discount rate and the job destruction rate. If meetings with a low type firm are relatively common,

an increase in the period length increases the set of values of h for which efficiency is obtained. The

opposite is true if the worker meets low type firms relatively infrequently.

The intuition for the this result is as follows. A high type firm making a job offer cares about i) the

flow payoff from the match as well as ii) the expected duration of the match. It realizes that offering

a wage above y1 lowers the flow payoff but increases the expected duration compared to a wage offer

below y1 since it eliminates the competition from low type firms in the future. The loss in flow payoff

is smaller when λ1 is larger, since in that case x1 (w) is closer to y1. At the same time, the firm assigns

less weight to the future when there is more discounting (ρ is high), more job destruction (δ is high) or

more workers quiting to other high type firms (λ2 is high) . An increase in the period length intensifies

both effects.

Now consider a situation in which λ1 < λ2 + ρ̂ + δ and τ is large. High type firms assign little

weight to future time periods, so the best strategy consists of maximizing the payoff in the current time

period, which is achieved by offering wages below y1 for most values of h. On the other hand, when

each period is short, it is relatively more attractive to eliminate competition from low types firm in

order to extend the expected duration of a match. The opposite argument applies when λ1 > λ2+ ρ̂+δ .

Figure 2 displays the relationship between the period length τ and the efficiency of the equilibrium

for two sets of parameter values. In both panels, I keep the productivity levels, the discount rate and

the job destruction rate at the same level as in the previous subsection, i.e. ŷ2 = 1, ŷ1 = 0.8, ρ̂ = 0.0042

and δ = 0.025. In the left panel, λ1 = 0.2 and λ2 = 0.25, such that λ1 < λ2 + ρ̂ + δ and the cutoff

value is increasing in τ . In the right panel, I assume λ1 = 0.25 and λ2 = 0.2, implying λ1 > λ2+ ρ̂ +δ

and therefore a negative relationship between the period length and the cutoff value.

6 Discussion

After deriving the decentralized equilibrium and analyzing the effect of a change in the period length,

I now briefly discuss the relevance and the scope of the results. I argue that misspecifying the period

length or the possibility of recall may affect estimates of structural parameters and may influence

conclusions on optimal policy.

6.1 Estimation of Structural Parameters

The finding in section 4 that the wage distribution varies with the length of a period has potentially

important implications for the estimation of structural parameters regarding the labor market. A promi-

nent example is the estimation of productivity distributions. A popular way to estimate such distribu-

tions is from wage data, a technique explored by e.g. Bontemps et al. (1999, 2000) and Postel-Vinay
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Figure 2: Efficiency

and Robin (2002). The authors specify an equilibrium search model that allows for heterogeneity

in productivity and estimate the parameters of the frictional wage distribution from transition rates.

Subsequently, the productivity distribution can be identified from the observed wage distribution, con-

trolling for the frictional wage dispersion. It follows from table 2 that if the data is generated by the

model that I present here, misspecification of the period length will yield inconsistent estimates of the

productivity distribution when they are obtained in this way.

A similar argument applies to the reservation wage and/or the flow payoff of an unemployed

worker. These values play an important role in several papers analyzing the empirical content of job

search models (see e.g. Shimer, 2005; Hornstein et al., 2011). However, table 2 again reveals that

the link between the two strongly depends on the period length. Estimating or calibrating them is

therefore not trivial.

6.2 Welfare Effects of Policy

The results derived in section 5 suggest a new potential role for policy instruments such as unemploy-

ment benefits or a binding minimum wage. Condition (15) shows that inefficiency may arise in the

market equilibrium if the payoff of an unemployed worker h is too low. Higher unemployment bene-

fits will increase h and will therefore cause low type firms to offer higher wages. This in turn makes

it more attractive for high type firms to offer wages above y1, which reduces the number of socially

wasteful job-to-job transitions. A similar argument applies to a binding minimum wage.

Since the current model does not capture the negative effects of these policy instruments, such as
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a decrease in firm entry, I leave the determination of the optimal level for future research.18 Lemma 8

however implies that such a study must take the nature of time into account , since the set of parameter

values for which an increase in the equilibrium wage offers by low types firms is welfare enhancing

crucially depends on the length of a period.

6.3 Scope of the Results

In section 5, I consider a particular distribution of firm productivity with only two points of support.

However, it is easy to see that the mechanisms driving the results are valid more generally. Adding

extra points of support does not change anything in the analysis. In fact, having smaller productivity

differences between firms makes it harder to achieve efficiency, as can been seen from limy1→y2 w̃2 =

y2. In the limit, with a continuous distribution between h and the highest level of productivity y present

in the market, efficiency is never obtained except when τ → ∞ and each firm offers the entire output

of the match to the worker, i.e. x = y for all w ∈ G′. Nevertheless, policy will still be beneficial in

reducing the level of the inefficiencies and the extent to which it can do this depends on τ .

The random search assumption is also less restrictive than it may seem at first sight. In fact,

the model shares some important features with the equilibrium in directed search models because of

the perfect observability of the employment contracts. In directed search models, this feature arises

endogenously through the sorting of workers: in equilibrium, a firm always knows what the outside

option of an applicant is. Consequently, wage offers are always acceptable and different for each

worker type.19

7 Conclusion

This paper studies the role of the period length on the decentralized market equilibrium in a job search

model. Unlike past literature, I do not impose ex ante that the interaction between workers and firms

has to take place in either continuous or discrete time. Instead, I present a model in which job offers

and job destruction shocks arrive according to a Poisson process, but in which information frictions

may delay the workers’ transition into or out of a job. This effectively results in discrete periods of

arbitrary length. When the period length goes to zero, the information frictions disappear and the

18See also Galenianos et al. (2011) for an analysis of the effect of unemployment benefits and a minimum wage on the
allocative efficiency in a directed search model.

19A directed search model allowing for both simultaneous and on the job search would be a combination of Delacroix
and Shi (2006) and Kircher (2009). If all workers send one application in each period, the equilibrium wage distribution
consists of a number of mass points, as shown by Delacroix and Shi (2006). When some or all workers send multiple
applications, the number of mass points increases rapidly. An unemployed worker will apply to e.g. three different wage
levels, say w1 < w2 < w3. A worker who currently earns w1 will apply to three higher wages, w1,1 < w1,2 < w1,3. It follows
from the analysis in Kircher (2009) however that w1,1 does not coincide with w2. Instead it must be the case that w1,1 > w2
since the outside option of the employed worker while sending his lowest application is his current wage w1, which is better
than the outside option of an unemployed worker while sending his middle application (i.e. having a chance of getting w1).
Likewise w1,2 does not coincide with w3. Hence, a longer time period changes - and complicates - the structure of the
equilibrium wage distribution significantly.
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model converges to a standard continuous time model in which workers cannot recall past job offers.

On the other hand, if the period length is strictly positive, a standard discrete time model with (recall

of) simultaneous offers is obtained.

This setup makes it possible to analyze how the equilibrium properties vary with the length of

a period. I find that the effects are profound. The length of a period determines the average wage,

the amount of frictional wage dispersion and whether the allocation of workers over jobs with differ-

ent productivities is efficient. As a consequence, I argue that misspecifying the period length while

analyzing a labor market may lead to inconsistent estimates of productivity distributions or the flow

payoff of unemployed workers. Further, wrong conclusions may be drawn on the optimal level of

unemployment benefits or a minimum wage.

An empirical analysis of the period length is therefore an important avenue for further research. As

discussed in the introduction, it seems that various factors may cause the period length - and therefore

the importance of simultaneous search - to vary significantly across occupations. Empirical evidence

supporting or contradicting this intuition is however extremely scarce. The collection of high quality

data on the search and recruitment decisions of workers and firms is imperative for progress on this

topic.
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A Proofs

A.1 Proof of Lemma 3

In order to derive the reservation wage, consider the Bellman equations (1) and (2). Both satisfy

Blackwell’s (1965) sufficient conditions for a contraction mapping, implying that a unique solution

for VU and VE (w) exists. The reservation wage property implies that VE (r (h)) =VU . Conjecture that

the solution for VE (w) is a linear function of w, i.e. VE (w) = VU + γ (w− r (h)) for some unknown

constant γ . Substituting this into (2) yields

VE (w) = (1+ργ (1−φ) pE (0))w+ρVU −ργ (1−φ)r (h)+ργ (1−φ)
∞

∑
j=1

pE ( j)
ˆ x(w)

w
xdF j (x|w)

(16)

Note that for all r (w)< x≤ x(w)

∞

∑
j=1

ps ( j)F j (x|w) = e−λsτ(1−F(x|w))− e−λsτ ,

= e−λsτ
y− r (w)

y− x
− e−λsτ . (17)

where the first equality follows from the fact that ps ( j) is Poisson and the second from the equilibrium

expression for F (x|w) as given in (6). Consequently,

∞

∑
j=1

pE ( j)
ˆ x(w)

r(w)
xdF j (x|w) =

ˆ x(w)

r(w)
xd

∞

∑
j=1

pE ( j)F j (x|w)

= e−λE τ

ˆ x(w)

r(w)
xd

y− r (w)
y− x

.

Partial integration gives

ˆ x(w)

r(w)
xd

y− r (w)
y− x

=

[
x

y− r (w)
y− x

]x(w)

r(w)
−
ˆ x(w)

r(w)

y− r (w)
y− x

dx

= x(w)
y− r (w)
y− x(w)

− r (w)+(y− r (w)) [log(y− x)]x(w)r(w)

=
(

eλE τ −1
)

y−λEτ (y− r (w)) .

Hence
∞

∑
j=1

pE ( j)
ˆ x(w)

r(w)
xdF j (x|w) = λEτe−λE τr (w)+

(
1− e−λE τ −λEτe−λE τ

)
y. (18)
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This result can be used to rewrite (16) as follows

VE (w) = w+ρVU +ργ (1−φ) [(1−ΦE)(w− r (h))+ΦE (y− r (h))] (19)

= [r (h)+ρVU +ργ (1−φ)ΦE (y− r (h))]+ [1+ργ (1−φ)(1−ΦE)] (w− r (h)) .

where

Φs = 1− e−λsτ −λsτe−λsτ .

This confirms the linear structure of VE (w). In a similar way, one can obtain the following expression

for VU

VU = h+ρVU −ργ (1−φ)(1− pU (0))r (h)+ργ (1−φ)
∞

∑
j=1

pU ( j)
ˆ x(h)

r(h)
xdF j (x|h)

= h+ρVU +ργ (1−φ)ΦU (y− r (h)) .

The expressions for γ and the reservation wage r (h) can be found by solving the system

(1−ρ)VU = r (h)+ργ (1−φ)ΦE (y− r (h))

γ = 1+ργ (1−φ)(1−ΦE)

(1−ρ)VU = h+ργ (1−φ)ΦU (y− r (h)) .

This yields

γ =
1

1−ρ (1−φ)(1−ΦE)

and

r (h) =
h+ργ (1−φ)(ΦU −ΦE)y
1+ργ (1−φ)(ΦU −ΦE)

.

A.2 Proof of Lemma 4

Recall that I define the following cutoff points:

{ŵ0, ŵ1, ŵ2, . . . , ŵn̂, ŵn̂+1, ŵn̂+2, ŵn̂+3, . . .}

= {r (h) , ŵE,1, ŵE,2, . . . , ŵE,n̂, ŵU,1, ŵE,n̂+1, ŵU,2, . . .} .

The functional form of G(w) and g(w) is different on each interval (ŵn−1, ŵn] and therefore I partition

the earnings distribution and density as follows

G(w) = Gn (w) for w ∈ (ŵn−1, ŵn] , n ∈ N\{0}
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and

g(w) = gn (w) for w ∈ (ŵn−1, ŵn] , n ∈ N\{0}

I derive the earnings distribution in a recursive way. First, I obtain a closed-form expression for G1 (w).

After that, I derive a recursive relationship between Gn (w) and Gn−1 (w) and/or Gn−2 (w). Throughout

the proof I simplify notation by letting ∆E denote the average duration of a match, i.e. ∆E = 1
φ+µE

.

A.2.1 Derivation of G1 (w)

I derive an expression for G1 (w) by considering Z (w), the set of workers earning less than w, for

values of w in the interval (r (h) , ŵ1]. First, recall from equation (17) that

∞

∑
j=1

ps ( j)F j (w|z) =


0 w≤ r (z)

e−λsτ
(

y−r(z)
y−w −1

)
w ∈ (r (z) ,x(z)]

1− e−λsτ w > x(z) .

(20)

Substituting this into the steady state equation (14) and multiplying both the left and the right hand

side with y−w gives

u
1−u

(1−φ −µU)(w− r (h)) = (φ +µE)(y−w)G1 (w)− (1−φ −µE)

ˆ w

r(h)
(w− z)g1 (z)dz.

Taking the first derivative with respect to w turns this expression into a differential equation. Simpli-

fying the result by substituting u
1−u = φ

µU
yields

g1 (w)−
∆E

y−w
G1 (w) =

φ

µU
(1−φ −µU)

∆E

y−w
.

This is a first-order non-homogeneous linear differential equation. Hence, the solution for G1 (w) is

given by

G1 (w) = exp
(

∆E

ˆ
1

y−w
dw
)(ˆ

exp
(
−∆E

ˆ
1

y−w
dw
)

φ

µU
(1−φ −µU)

∆E

y−w
dw+C1

)
,

where C1 is a constant. Solving the integrals and simplifying the resulting expression gives

G1 (w) = C1 (y−w)−∆E − φ

µU
(1−φ −µU) ,

The value of the constant C1 follows from the condition G1 (r (h)) = 0. This implies

C1 =
φ

µU
(1−φ −µU)(y− r (h))∆E .

30



Hence,

G1 (w) =
φ

µU
(1−φ −µU)

((
y− r (h)

y−w

)∆E

−1

)
. (21)

A.2.2 Derivation of G2 (w) , . . . ,Gn̂+1 (w)

Next, considerZ (w) for w∈ (ŵn−1, ŵn], n∈ {2,3, . . . n̂+1} . In these intervals the inflow still depends

on w, as in the derivation of g1 (w). However not all workers can leave Z (w) anymore by a job-to-

job transition. The workers earning low wages will stay in Z (w) even if they experience the largest

possible wage increase when moving to a new job. Let w(w) denote the minimum wage that a worker

must earn in order to be able to earn w > ŵ1 in his next job. By inverting equation (7), I obtain

w(w) = eλE τw+
(

1− eλE τ

)
y. (22)

Note that w(w) is strictly increasing in w and that w(ŵn−1) = ŵn−2, which confirms that workers

earning less than ŵn−2 cannot leave Z (w) via a job-to-job transition. By using equation (22), I can

let the integral in the right hand side of (14) start at w(w). Substituting the relevant cases of equation

(20) then gives

u
1−u

(1−φ −µU)

(
w− r (h)

y−w

)
= G(w)− (1−φ)G(w(w))− (1−φ −µE)

ˆ w

w(w)

y− z
y−w

g(z)dz.

(23)

Note that G(w) = Gn (w), G(w(w)) = Gn−1 (w(w)), and that
´ w

w(w)
y−z
y−w g(z)dz can be rewritten as

ˆ w

w(w)

y− z
y−w

g(z)dz =
ˆ ŵn−1

w(w)

y− z
y−w

gn−1 (z)dz+
ˆ w

ŵn−1

y− z
y−w

gn (z)dz.

Again, a differential equation can be created by multiplying both the left hand side and the right hand

side with y−w and taking the first derivative with respect to w. For the left hand side of (23) this

results in φ

µU
(1−φ −µU). For the right hand side we get

d
dw

Gn (w)(y−w) = gn (w)(y−w)−Gn (w) ,

d
dw

Gn−1 (w(w))(y−w) = gn−1 (w(w))eλE τ (y−w)−Gn−1 (w(w)) ,

and

d
dw

ˆ w

w(w)
(y− z)g(z)dz = (y−w)gn (w)− eλE τ (y−w(w))gn−1 (w(w)) .

= (y−w)gn (w)− e2λE τ (y−w)gn−1 (w(w)) .
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Hence, we get the following first-order non-homogeneous linear differential equation

gn (w)−
∆E

y−w
Gn (w) =

∆E

y−w

(
φ

µU
(1−φ −µU)− (1−φ)Gn−1 (w(w))

)
.

The solution is equal to

Gn (w) =Cn−
φ

µU
(1−φ −µU)− (1−φ)∆E (y−w)−∆E

ˆ
(y−w)∆E−1 Gn−1 (w(w))dw.

where the constant Cn follows from the condition Gn (ŵn−1) = Gn−1 (ŵn−1). Finally, integration by

parts gives

Gn (w) =Cn−
φ

µU
(1−φ −µU)+(1−φ)

(
Gn−1 (w(w))− (y−w)−∆E

ˆ
(y−w)∆E dGn−1 (w(w))

)
.

A.2.3 Derivation of Gn̂+2, . . .

Next, consider Z (w) for w ∈ (ŵn−1, ŵn], n ∈ {n̂+2, n̂+3, . . .}. In these intervals the inflow no longer

depends on w, since unemployed workers finding a job are always hired at a wage below ŵn. Hence,

inflow equals

I (w) = uµU .

Outflow still depends on w, but again the integral in the right hand side of (14) starts at w(w). Hence,

the earnings distribution is implied by

u
1−u

µU = G(w)− (1−φ)G(w(w))− (1−φ −µE)

ˆ w

w(w)

y− z
y−w

g(z)dz. (24)

Note that now both ŵU,n and ŵE,n contribute to the cutoff points, implying that there are twice

as many intervals as for w < ŵU,1. More specifically, there are two cutoff points between any w and

w(w). Hence, G(w) = Gn (w), G(w(w)) = Gn−2 (w(w)), and
´ w

w(w)
y−z
y−w g(z)dz can be rewritten as

ˆ w

w(w)

y− z
y−w

g(z)dz =

ˆ ŵn−2

w(w)

y− z
y−w

gn−2 (z)dz+
ˆ ŵn−1

ŵn−2

y− z
y−w

gn−1 (z)dz+
ˆ w

ŵn−1

y− z
y−w

gn (z)dz.

Create again a differential equation by multiplying both the left hand side and the right hand side of

(24) with y−w and taking the first derivative with respect to w. For the left hand side, this yields

− u
1−u e−δ

(
1− e−λU

)
=−φ . On the right hand side we get

d
dw

Gn (w)(y−w) = gn (w)(y−w)−Gn (w) ,
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d
dw

Gn−2 (w(w))(y−w) = gn−2 (w(w))eλE τ (y−w)−Gn−2 (w(w)) ,

and

d
dw

ˆ w

w(w)
(y− z)g(z)dz = (y−w)gn (w)− eλE τ (y−w(w))gn−2 (w(w)) .

= (y−w)gn (w)− e2λE τ (y−w)gn−2 (w(w)) .

Hence, we obtain the following first-order non-homogeneous linear differential equation.

gn (w)−
∆E

y−w
Gn (w) =−

∆E

y−w
(φ +(1−φ)Gn−2 (w(w)))

The solution is equal to

Gn (w) =Cn +φ − (1−φ)∆E (y−w)−∆E

ˆ
(y−w)∆E−1 Gn−2 (w(w))dw,

where the constant Cn follows from the condition Gn (ŵn−1) = Gn−1 (ŵn−1). Finally, integration by

parts gives

Gn (w) =Cn +φ − (1−φ)

(
Gn−2 (w(w))− (y−w)−∆E

ˆ
(y−w)∆E−1 dGn−2 (w(w))

)
. (25)

A.3 Proof of Lemma 7

It is intuitively clear that there are three candidates for the equilibrium strategy of a high type firm.

1. Low Wages: If x1 (w) is sufficiently low compared to x̃(w), the high type firms are not affected

by the discontinuity in the value function and the entire support will be below x̃(w)< y1;

2. Intermediate Wages: If x1 (w) takes an intermediate value relative to x̃(w), the support of F2 (w)

will be split into two parts, i.e. F2 (w) = (x1 (w) , x̃(w)]∪ (y1,x2 (w)] with x2 (w)> y1;

3. High Wages: If x1 (w)> x̃(w), any wage offer must be larger than y1, henceF2 (w)= (y1,x2 (w)].

I analyze each of the cases in more detail.

Low Wages. Suppose that high type firms offer wages onF2 (w)= (x1 (w) ,x2 (w)] with x2 (w)< x̃(w).

Then, by lemma 2 we have

x2 (w) = e−λ2τx1 (w)+
(

1− e−λ2τ

)
y2

= e−λ1τe−λ2τw+ e−λ2τ

(
1− e−λ1τ

)
y1 +

(
1− e−λ2τ

)
y2.

Consistency requires x2 (w)< x̃(w) which is equivalent to
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w < y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ

1
e−λ2τ

−1

)
y2− y1

e−λ1τ
.

Intermediate Wages. For high type firms to offer intermediate wages with split support, we must

have that x1 (w)< x̃(w) but e−λ2τx1 (w)+
(
1− e−λ2τ

)
y2 > x̃(w). This implies

w > y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ

1
e−λ2τ

−1

)
y2− y1

e−λ1τ

but

w < y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ
−1

)
y2− y1

e−λ1τ
.

Equal profit implies

F2 (x|w) =


1

λ2τ
log
(

y2−x1(w)
y2−x

)
for x < y1

F2 (y1|w)+ 1
λ2τ

log
(

y2−y1
y2−x

)
for x > y1.

Therefore, x2 (w) equals

x2 (w) = e−λ2τ(1−F2(y1|w))y1 +
(

1− e−λ2τ(1−F2(y1|w))
)

y2.

High Wages. For high type firms to offer high wages, we need x1 (w)> x̃(w), which is equivalent to

w > y1−

(
1−ρ (1−φ)e−λτ

1−ρ (1−φ)e−λ2τ
−1

)
y2− y1

e−λ1τ
.

A.4 Proof of Lemma 8

To simplify notation, let ξ = ρ̂ +δ +λ2. Then

w̃2 = y1−
e−ξ τ

1− e−ξ τ

1− e−λ1τ

e−λ1τ
(y2− y1) .

Letting τ go to 0 and applying l’Hospital yields

w̃2 = y1−
λ1

ξ
(y2− y1) .
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The derivative of w̃2 with respect to τ equals

∂ w̃2

∂τ
=−

λ1

(
1− e−ξ τ

)
−ξ

(
1− e−λ1τ

)
(
1− e−ξ τ

)2
e−ξ τ

e−λ1τ
(y2− y1) ,

which equals 0 if λ1 = ξ and if λ1 = 0.

Next, consider the cross-derivative to τ and λ1:

∂

∂λ1

∂ w̃2

∂τ
=

(
e−ξ τ

1− e−ξ τ

)2
1

e−λ1τ

(
1+λ1τ +

1
e−ξ τ

(−1+ξ τ−λ1τ)

)
.

Note that ∂

∂λ1

∂ w̃2
∂τ

is continuous in λ1 and that ∂

∂λ1

∂ w̃2
∂τ

= 0 has only one solution, i.e.

λ1 =
e−ξ τ −1+ξ τ

τ
(
1− e−ξ τ

) .

Further,

lim
λ1→0

∂

∂λ1

∂ w̃2

∂τ
=

(
1

1− e−µτ

)2

e−ξ τ

(
e−ξ τ −1+ξ τ

)
> 0

and

lim
λ1→∞

∂

∂λ1

∂ w̃2

∂τ
=−∞.

Consequently, ∂ w̃2
∂τ

> 0 for all λ1 < ξ and ∂ w̃2
∂τ

< 0 for all λ1 > ξ .

Finally, note that w̃2 can be written as

w̃2 = y1−
1− e−λ1τ

eµτe−λ1τ − e−λ1τ
(y2− y1) ,

after which it is straightforward to show that

lim
τ→∞

w̃2 =


y1 if λ1 < ξ

2y1− y2 if λ1 = ξ

−∞ if λ1 > ξ .
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