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ABSTRACT 
 

The Measurement of Educational Inequality: 
Achievement and Opportunity* 

 
This paper proposes two related measures of educational inequality: one for educational 
achievement and another for educational opportunity. The former is the simple variance (or 
standard deviation) of test scores. Its selection is informed by consideration of two 
measurement issues that have typically been overlooked in the literature: the implications of 
the standardization of test scores for inequality indices, and the possible sample selection 
biases arising from the Program of International Student Assessment (PISA) sampling frame. 
The measure of inequality of educational opportunity is given by the share of the variance in 
test scores that is explained by pre-determined circumstances. Both measures are computed 
for the 57 countries in which PISA surveys were conducted in 2006. Inequality of opportunity 
accounts for up to 35 percent of all disparities in educational achievement. It is greater in 
(most of) continental Europe and Latin America than in Asia, Scandinavia, and North 
America. It is uncorrelated with average educational achievement and only weakly negatively 
correlated with per capita gross domestic product. It correlates negatively with the share of 
spending in primary schooling, and positively with tracking in secondary schools. 
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1. Introduction 

Educational inequalities have long been a matter of significant policy concern, in both developed 
and developing countries. Some view educational achievement as a dimension of well-being in 
its own right, or at least as a fundamental input into a person’s functionings and capacity to 
flourish (Sen, 1985). Education is also a powerful predictor of earnings, as we have known since 
the early days of work on human capital. More recent research has also found that inequality in 
educational achievement and earnings inequality are correlated, both over time within the 
United States and across countries (see, e.g., Blau and Kahn, 2005; and Bedard and Ferrall, 
2003). Education is also correlated with health status, and in some cases with political 
participation in the democratic process, so that inequalities in the former may translate into 
undesirable gaps and gradients in other dimensions as well. 

For all of these reasons, people care about the distribution of education. Those concerned about 
fairness and social justice care also about the distribution of opportunities for acquiring a good 
education and, in particular, about the degree to which family background and other pre-
determined personal characteristics determine a person’s educational outcomes. Nevertheless, 
there is much less agreement on how those concepts – inequality in educational outcomes, and 
inequality of opportunity to a good education – should be measured. Constrained by data 
availability, early work comparing inequality in education across countries focused on 
educational attainment: the number of years of schooling a person had completed or, in some 
cases, broader ‘levels’ of education, such as primary, secondary, or higher. Thomas, Wang and 
Fan (2001) compiled a set of Gini coefficients for years of schooling for 85 countries, over the 
period from 1960 to 1990. Castelló and Doménech (2002) and Morrisson and Murtin (2007) also 
examine inequality in years of schooling across a large number of countries.  

Interesting though those comparisons were, there is widespread agreement that a year of 
schooling is a problematic unit with which to measure “education”. Does a student learn the 
same amount in 6th grade in Zambia as in Finland? Is the value of one year of schooling the same 
even across different schools in a single country or city? The growing availability of data on 
student performance in comparable tests has confirmed what one already suspected: that the 
answer to these questions is generally ‘no’. The quality – and hence the ultimate value – of 
education varies considerably, both within and across countries.  

Over the last decade, different projects have compiled school-based surveys that administer 
identical cognitive achievement tests to samples of students across a number of countries, as 
well as collecting (reasonably) comparable information about the students’ families and the 
schools they attend. The OECD’s Program of International Student Assessment (PISA) and the 
International Association for the Evaluation of Educational Achievement’s Trends in 
International Mathematics and Science Study (TIMSS) are perhaps the best known, but the 
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Progress in International Reading Literacy Study (PIRLS), which is applied to younger students, 
shares a number of common features.1

The proposed measure of inequality of educational opportunity draws on the recent literature 
on inequality of opportunity in the income space, but is also adapted to the specificities of 

 

As anyone who has been to school may recall, performance in a test, while probably preferable 
to a simple indicator of enrollment or attendance, is not a perfect measure of learning either. 
For one thing, tests and test items (i.e. questions) vary in difficulty. The final result is known to 
measure scholastic ability or learning achievement only imperfectly. For this reason, all of the 
aforementioned surveys present scores constructed from the raw results by means of Item 
Response Theory (IRT) models, which attempt to account for “test parameters”, so as to better 
infer true learning. This process generates an arbitrary metric for test scores, which are then 
typically standardized to some arbitrary mean and standard deviation.  

Using these standardized test scores, a number of studies have attempted to provide 
international comparisons of educational inequality on the basis of achievement, rather than 
attainment. Micklewright and Schnepf (2007) and Brown et al. (2007) examine the robustness of 
measures of central tendency and dispersion in the distribution of student achievement 
obtained using different surveys, by comparing the measures and country rankings across them. 
They find broad agreement across surveys, but also some evidence that the specific statistical 
models used to estimate IRT adjustments do affect results, in particular for less developed 
countries. Marks (2005), Schultz, Ursprung and Wossmann (2008), and Macdonald et al. (2010) 
examine the question of intergenerational persistence in educational achievement, which is 
closely related to that of inequality of opportunity, and present cross-country comparisons of 
measures of the association between student achievement and certain family characteristics.  

This paper seeks to contribute to that literature by proposing two simple and closely-related 
measures of inequality - one for educational achievement and another for opportunity to 
education – and reporting them for all countries that participated in the 2006 wave of PISA 
surveys. To measure inequality in achievement, we propose simply using the variance or the 
standard deviation of test scores. But we arrive at this simple proposal by considering the 
implications of two issues specific to the distribution of test scores for the measurement of 
inequality. These two issues are: (i) the fact that many common inequality indices are not 
ordinally invariant in the standardization to which IRT-adjusted test scores are generally 
subjected; and (ii) the fact that PISA student samples are likely to suffer from non-trivial 
selection biases in a number of countries. The choice of the variance (or the standard deviation) 
addresses the first issue. We also propose two alternative two-sample non-parametric 
procedures to assess the robustness of the inequality measure to the sample selection biases, 
and implement them in the four countries for which PISA sample coverage (as a share of the 
total population of 15 year-olds) is smallest.  

                                                            
1 There is also an International Adult Literacy Survey (IALS), which is applied to adults long after they have left school. 
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educational data and the resulting choice of measure for inequality in achievement. It also 
utilizes information on student background more comprehensively than all previous studies we 
are aware of, and is additively decomposable both across circumstances and population 
subgroups. The measure is also isomorphic to (inverse) measures of educational mobility. 

We report our measures of inequality in educational achievement and opportunity for the 57 
countries that took part in the PISA 2006 exercise. Each measure was computed separately for 
each of the three tests applied by PISA: mathematics, reading and science. But there was a good 
measure of agreement between their rankings, and we often refer only to the math results in 
the text.2 We find considerable variation in the standard deviation of test scores, from lows of 
around 80 (for Indonesia, Estonia and Finland) to highs near 110 (in Belgium and Israel).3

Two broad kinds of data are used for the analysis in this paper. The first is the complete set of 
PISA surveys, for all 57 countries that participated in the 2006 round. The second is a group of 
four household surveys, for Brazil, Indonesia, Mexico and Turkey, which are used as ancillary 
surveys in the two-sample non-parametric sample selection correction procedures described in 
Section 3. We briefly describe each of these in turn. 

 

 

 
Similarly stark variation exists in our measure of inequality of opportunity, from 0.10 – 0.15 for 
Macau (China), Australia, and Hong Kong SAR, China, up to 0.33 – 0.35 in Bulgaria, France and 
Germany. Inequality of opportunity is uncorrelated with mean achievement and only weakly 
(negatively) correlated with GDP per capita. Broadly speaking, it is higher in continental Europe 
(except for Italy) and Latin America than in Asia and Scandinavia, with the US and the UK in 
intermediate positions. It is negatively correlated with the share of public educational spending 
that accrues to primary schools, and positively correlated with the proportion of technical and 
vocational enrollment at the secondary level (a measure of “educational tracking”). 

The paper is organized as follows. Section 2 describes the data sets we use. Section 3 considers 
the implications of test score standardization and of the PISA sampling frame for the 
measurement of inequality in educational achievement, and reports the standard deviation in 
test scores for our sample of countries. Section 4 proposes our measure of inequality of 
educational opportunity (IOp), discusses some of its properties, and presents results. Section 5 
applies the proposed measures by examining how they correlate with two educational policy 
indicators across countries. Section 6 concludes. 

2. Data 

                                                            
2 See Micklewright and Schnepf (2007) for a careful comparison of rankings from each of the PISA tests, as well as 
from TIMSS and PIRLS. 
3 But the low variance for Indonesia is a good example of the sensitivity of these measures to assumptions made 
about the nature of selection into the test-taking sample. Under our scenario of “extreme” selection on 
unobservables, the variance of math scores for Indonesia triples. See below. 
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The PISA 2006 data sets 

The third round of the Program of International Student Assessment surveys was conducted in 
57 countries between March and November, 2006. Two earlier rounds were collected in 
2000/2002 (in 43 countries), and in 2003 (in 41 countries). A fourth round has since been 
collected in 2009. Most OECD countries were surveyed, as were a number of developing 
countries in Asia, Latin America, North Africa and the Middle East. Sample sizes range from 339 
in Liechtenstein to 30,971 in Mexico. Table 1 lists all participating countries in the 2006 round, 
as well as their sample sizes.  

In each country, fifteen year-olds enrolled in any educational institution, and attending grade 7 
or higher, were sampled. All children surveyed took three tests: in reading, mathematics, and 
science.4

Equation (1) gives the probability of scoring s in a given test, conditional on individual latent 
cognitive ability  and test item parameters  (such as their difficulty). Given an additional 
assumption about the distribution of latent ability in the population (usually a normal law such 

as ) and an observed distribution of raw scores, F(s), the IRT model can be used to 

back up a distribution of the latent variable .

 Their performance in these tests forms the basis for the assessment of their learning or 
cognitive achievement. Yet, educationalists seem agreed that raw, unadjusted test scores are of 
little value. Test questions (or ‘items’) vary in their degree of difficulty, and simply adding up 
correct answers, or weighing them arbitrarily, does not correctly measure the latent variable of 
interest – cognitive achievement. Instead, the educational community in charge of international 
tests such as PISA, TIMSS, PIRLS and IALS processes raw scores through statistical techniques 
known as Item Response Theory (IRT). See Baker (2001) for a general introduction, and OECD 
(2006) for a description of how the method is applied to PISA surveys. In essence, an item 
response model consists of an equation of the form: 

             (1) 

5

In equation (2), xij denotes the (post-IRT, pre-standardized) test score for individual i in country j. 
μ and σ denote their original mean and standard deviation across all countries in the sample 

  

This process involves a number of functional form assumptions which are not innocuous. Brown 
et al. (2007) have shown, for instance, that the final distribution of test scores can be sensitive 
to differences in the specification of the model used to estimate equation (1). Here, however, 
we are concerned with the standardization that happens after the IRT adjustment. Once that 
procedure is complete, and a new distribution of ‘adjusted’ test scores (which we denote by x) 
has been generated, this latter variable is standardized, according to a simple formula such as: 

          (2) 

                                                            
4 The data for achievements in Reading for the United States were not issued after a problem occurred during the 
field operations in that country. 
5 See Mislevy (1991) and Mislevy et al. (1992) for a more detailed discussion. 
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(the world, or the OECD, for example).  ( ) is the new arbitrary mean (standard deviation) for 
the standardized distribution. In the PISA procedure, it has a value of 500 (100). It is the 
distributions of yij that are used in computing means and inequality indicators for each country j 
in the PISA data set. As we will see in the next section, the operation described by equation (2), 
even if the IRT procedure that precedes it is taken as given, poses serious issues for inequality 
measurement. 

In addition to standardized test scores, the PISA data set contains information on a number of 
individual, family and school characteristics for each test-taker. The presence of these covariates 
accounts for a large part of the interest of the research community on the PISA data. For the 
analysis of inequality of opportunity in education, we focus on a subset of these covariates that 
are informative of the family background and other inherited circumstances of the child. Ten 
such variables are used: gender, father’s and mother’s education, father’s occupation, language 
spoken at home, migration status, access to books at home, durables owned by the households, 
cultural items owned, and the location of the school attended (used as an indicator or a rural or 
urban upbringing).6

The number of books at home variable, an indicator of parental human capital, is a categorical 
variable coded into four categories: a) 0 to 10 books; b) 11 to 25 books; c) 26 to 100 books; and 
d) more than 100 books. Ownership of durables, an indicator of family wealth, is captured by six 
dummy variables indicating the ownership of a) a dishwasher; b) a DVD or a VCR player; c) a cell 
phone; d) a television; e) a computer; f) a car. Ownership of cultural possessions is captured by 
three dummy variables indicating the ownership of a) books of literature; b) books of poetry; 
and c) works of arts (paintings are mentioned as an example of such works in the formulation of 
the question). School location is a proxy for the person’s inherited spatial endowment and we 
recode it using three categories: a) villages or small towns (less than 15,000 inhabitants); b) 
towns (between 15,000 and 100,000 inhabitants); and c) cities (larger than 100,000 inhabitants). 

 

Parental education is measured by the highest level completed and is coded using ISCED codes 
into four categories: a) no education or unknown level; b) primary education (ISCED level 1); c) 
lower secondary education (ISCED level 2), upper secondary (ISCED level 3), or post-secondary 
non-tertiary education (ISCED level 4); and d) college education (ISCED level 5)). Father’s 
occupation is classified using ISCO codes. We aggregate occupations into three broad categories: 
a) legislators, senior officials and professionals, technicians and clerks; b) service workers, craft 
and related trades workers, plant or machine operators and assemblers, and unoccupied 
individuals; and c) skilled agricultural and fishery workers, elementary occupations or unknown 
occupation. The variable for language spoken at home is a dummy identifying a language other 
than the language of the test. The migration status variable is a dummy identifying a first or 
second generation migrant as an individual who was, or whose parents were, born in a foreign 
country.  

                                                            
6 School-level variables are not used in this analysis deliberately, for reasons which should become clear in Section 4. 
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School location information was not collected in France; Hong Kong SAR, China; and 
Liechtenstein. 

A final data issue worth highlighting is that of sample coverage and representativeness. PISA 
samples were designed to be representative of the population of 15 year-olds who are enrolled 
in grade 7 or higher in any educational institution. The samples are not, therefore, 
representative of the total population of 15 year-olds in each country: children who dropped out 
of school before they turned fifteen, as well as those who are so delayed that they are in grade 6 
or lower at age fifteen, are purposively excluded. In addition, sampling flaws induce an 
additional under-coverage of enrolled 15 year olds. PISA documentation suggests that this arises 
from the fact that their sampling frame (a listing of schools and sampling weights) is established 
in the year preceding the surveys, on the basis of current school enrollment on that year. But 
some schools close down between the two years, and new ones are not included in the sample. 
Changes in the enrollment of 15 year-olds arising from this process are not taken into account.  

The PISA sample coverage rate, defined as the ratio of the covered student population (using 
PISA expansion factors) to the total population of 15 year-olds, varies considerably across 
countries, and is reported in column 2 of Table 1. Although coverage is typically high in OECD 
countries, it is low in many developing ones: coverage rates are as low as 47% for Turkey, 53% 
for Indonesia, 54% for Mexico, and 55% for Brazil. Overall, coverage is less than 80% of the total 
population of 15 years-olds in fifteen countries. Table 2 provides a sense of the sources of 
exclusion for the four countries in our dataset with the lowest coverage rates, by decomposing 
those selected out of the sample into children no longer in school, children with excessive 
delays, and those missed due to PISA sampling issues. It should be obvious from these 
magnitudes that any international comparison of countries with vastly different coverage rates 
must seek to address the problem in some way, and we suggest two alternatives in Section 3. 

Ancillary household survey data sets 

Our proposed procedure to examine the sensitivity of inequality measures to sample selection, 
which is described below, relies on using information on fifteen year-olds from general-purpose 
household surveys. While these surveys may have their own sampling issues, these are not 
dictated by school enrollment or delay status, or by school closures, openings and reforms. We 
obtained such household surveys for the four countries with the lowest coverage rates in the 
2006 PISA sample: those reported in Table 2. For Brazil, we used the Pesquisa Nacional por 
Amostra de Domicílios (PNAD) 2006. For Indonesia, we used the SUSENAS 2005. For Mexico, the 
Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH) for 2006 was used. For Turkey, 
the Household Budget Survey (HBS) 2006 was used.  

All four are large-sample household surveys with national coverage and representative down to 
the regional level, which are fielded on an annual basis by each country’s national statistical 
authority. The PNAD 2006 collected information from a sample of about 119,000 households 
and 410,000 individuals; SUSENAS 2005 from 257,900 households and 1,052,100 individuals; the 



 8 

ENIGH 2006 from 20,900 households and 83,600 individuals; and the HBS 2006 from 8,600 
households and 34,900 individuals. We restrict the samples to children aged 15, for which we 
have 7,626 observations in the PNAD 2006; 22,600 in the SUSENAS 2005; 1,921 in the ENIGH 
2006; and 683 in the HBS 2006. Although some children in boarding schools and other 
institutions are likely to be out of the sample frame, those samples should otherwise be 
representative for the total population of 15 year-olds.  

In these four countries, these are the staple surveys for assessing the distribution of household 
income and, in some cases, consumption expenditures. But they also collect information on 
other topics, including labor supply, education and migration. We use information on parents' 
characteristics for estimating the total population of 15 year-olds in groups defined by similar 
gender, mother's education and father's occupation. The classification of the family background 
variable can be made comparable with the ones in the PISA by appropriate aggregation of 
coding categories. Parental characteristics are missing for orphans, children who do not live with 
their parents, or whose parents did not report their education. For instance, the information on 
mother's education is missing for about 15.0% of 15 year-olds in the PNAD 2006, 8.7% in the 
SUSENAS 2005, 11.9% in the ENIGH 2006, and 3.8% in the HBS 2006. When comparing the two 
surveyed populations, children with missing parental background information in the household 
surveys are not dropped, but associated with those with the same information missing in the 
PISA survey. 

3. Measuring Inequality in Educational Achievement 

Measures of inequality in educational achievement are based on distributions of standardized 
test scores (yij), constructed from the IRT-adjusted scores (xij) by means of a transformation such 
as equation (2). In the case of PISA, the transformation is given by (2) exactly, with , and 

. That operation involves both a translation of the original distribution (by the 
difference between the new arbitrary mean and the original mean, re-scaled) and a rescaling (by 
the ratio of the new to the original standard deviations). 

In the field of inequality measurement it is usual to impose axioms, or desirable properties, that 
individual indices should respect. Three common such axioms are:  

 (i) symmetry: which requires that the measure be insensitive to any permutation of the 
y vector; 

 (ii) continuity in any individual income; 

 (iii) and the transfer principle: which requires that the measure should rise (strong 
axiom) or at least not fall (weak axiom) as a result of any sequence of mean-preserving spreads. 

In addition, inequality indices often satisfy either one of two invariance axioms: 

 (iv-a): scale invariance: which requires that the index be insensitive to any re-scaling of 
the y vector: , where y is the vector of interest, and λ is a positive scalar.   
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 (iv-b): translation invariance: which requires that the index be insensitive to a 
translation of the y vector: , where a is a non-zero constant vector of the 
same dimension as y. 

An important result, due to Zheng (1994), is that no inequality index that satisfies axioms (i)-(iii) 
– known as “meaningful” inequality measures - satisfies both (iv-a) and (iv-b). This impossibility 
result, in other words, states that no meaningful inequality index can be both scale- and 
translation invariant. A direct implication of Zheng’s result for the measurement of inequality of 
educational achievement using standardized data is stated below as our Remark 1: 

Remark 1: No meaningful inequality index yields a cardinally identical measure for the pre- and 
post-standardization distributions of the same test scores. 

Note that the remark derives from the standardization procedure (equation 2), rather than from 
the much more complex item response theory adjustments. It refers, therefore, to the 
measurement of inequality in IRT-adjusted test scores, and not to a comparison between 
adjusted and unadjusted scores. For the same reason, it is additional to and unconnected with 
any concerns about the sensitivity of summary statistics to changes in the IRT model 
specification, such as those discussed by Brown et al. (2007) with respect to the number of 
parameters used to estimate equation (1). 

How important is Remark 1? Clearly this depends on whether or not inequality indices applied 
to pre- and post-standardization distributions are ordinally equivalent – that is to say, whether 
they rank distributions in precisely the same way, regardless of cardinal differences in value. 
After all, standardization is just a change in metric. The (post-standardization) mean score in 
each country j, for example is simply: 

          (3) 

Where  is the pre-standardization mean in country j, and other notation is as in equation (2). 

Since every other term in (3) is a constant,  and  are ordinally equivalent. One is a 

monotonic (and in this case, affine) transformation of the other. Country ranks based on either 
would be identical. The only effect of standardization on country mean scores is a change in 
metric. Since this was the point of the process in the first place, there seems to be no cause for 
concern.  

The same is true for percentile-based measures of dispersion, such as the inter-quartile ratio, or 
the absolute difference P95-P5 used by Micklewright and Schnepf (2007) to compare dispersion 
across 21 countries and three different surveys. Equation (2) is itself a monotonic, and therefore 
rank-preserving, transformation. Since each score yi occupies precisely the same rank in its 
distribution as the original score xi did in its distribution, rank- or percentile-based measures – 
be they ratios or differences, will be cardinally different, but ordinally equivalent. 
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Yet this is not true of inequality measures in general. The post-standardization Gini coefficient in 

country j ( ) for example, can be straight-forwardly shown to relate to the pre-standardization 

Gini ( ) as follows: 

            (4) 

Unlike in equation (3), the terms multiplying are not all constants. In particular, the post-

standardization Gini is a function of the ratio of pre- to post- standardization means, which is an 
increasing function of  (see equation 3). The existence of a second argument in (4) implies 

that the post-standardization Gini coefficient is not ordinally equivalent to its pre-
standardization analogue. 

Most other common meaningful inequality measures do not share the linearity of the Gini, so 
their post- and pre-standardization formulae cannot be related as straightforwardly. 
Nevertheless, substitution of equations (2) and (3) into the formulae for the Generalized 
Entropy or the Kolm-Atkinson classes of inequality measures yield expressions that are functions 
of both the central distance indicators of the measure in question, and of the ratio of pre- to 

post-standardization means ( ). For the Generalized Entropy (GE) class, for example: 

             (5) 

These results give rise to our second remark: 

Remark 2: A number of well-known inequality indices are not even ordinally equivalent when 
applied to pre- and post-standardization distributions. 

Ordinal equivalence with respect to standardization is clearly a desirable property for an index 
used for measuring inequality in educational achievement. The standardization operation given 
by (2) is meant merely to adjust an arbitrary metric. It is not intended to fundamentally alter our 
judgment of how countries compare with one another in substantive terms. Yet, when indices 
such as the Gini or Theil index are applied to these standardized distributions, we cannot be 
confident that the original rank in post-IRT adjusted inequality is preserved.7

What then are the options for those interested in the distribution of educational achievement? 
One could, of course, rely on rank-based measures such as the inter-quartile range or percentile 
differences which, as noted above, are ordinally equivalent. However, these measures do not 
satisfy the transfer principle: a progressive transfer (from above) to the income recipient on the 
95th percentile will, for example, cause the p95-p05 measure to indicate an increase in 
inequality. And of course, because such indices are insensitive by construction to any chances in 
incomes that do not affect those on the percentiles of reference, they also violate continuity. 

  

                                                            
7 Gamboa and Waltenberg (2011), for example, report Theil-L indices of post-standardized PISA test scores. 
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A possible alternative would be to use an absolute measure of inequality – such as the variance, 
or the absolute Gini coefficient8

For these reasons, we adopt the variance and the standard deviation as our basic measures of 
inequality of educational achievement. Because users of this kind of data are generally more 
comfortable with the standard deviation than its square, this is the variable we report. Columns 
3-11 in Table 1 present the mean and standard deviation (S.D.) of the standardized test scores in 
reading, math and science, in that order, for all 57 countries in the 2006 PISA surveys. The 
column immediately to the right of each S.D. column reports its bootstrapped standard error. 
Among the countries with higher inequality in math scores are Western European countries 
such as Austria, Belgium, France, Germany, and Italy; East European ones such as Czech Republic 
and Bulgaria, Latin American countries such as Argentina and Uruguay, but also Israel and 
Taiwan, China. Among the ones with lower inequality in achievements are other European 
countries such as Croatia, Denmark, Estonia, Finland, Ireland, and Latvia, but also Asian 
countries such as Indonesia, Thailand and Jordan. Countries such as the UK, Japan, and the 
United States take intermediate rankings.

 - which are ordinally invariant in the standardization.  The 

variance of a post-standardized distribution ( ), for example, is a monotonic (linear) function 

of the pre-standardization variance ( ), and does not depend on any other moment of the pre-

standardization distribution: 

          (6) 

The variance is seldom used as an inequality measure because it is scale-dependent: it increases 
with the mean. It also fails the transfer sensitivity axiom, by placing greater weight on transfers 
higher up the distribution than to those lower down. While these are not trivial concerns, it 
appears to us that in the context of distributions of educational achievement, they are less 
severe than violating either the transfer principle itself (like the percentile based measures) or 
ordinal invariance in the standardization, which allows an apparently innocuous operation to 
fundamentally alter distributional rankings.  The variance (and the standard deviation, of course) 
is a meaningful measure of inequality in the precise sense that it satisfies axioms (i)-(iii) above. 
The variance is also additively decomposable, and shares of the variance obtained from some 
such decompositions can be shown to be cardinally invariant to standardization, as discussed in 
the next section. These properties will prove instrumental in adapting an intuitive measure of 
inequality of opportunity to the context of education.  

9

 

 Figure 1 portrays the S.D. (and its confidence 
interval) in the mathematics test scores for all countries in the sample. 

 

                                                            
8 The absolute Gini coefficient, of course, is the standard (relative) Gini index scaled up by the mean. 
9 The inequality measures obtained for Azerbaijan seem particularly small and place the country as an outlier in all the 
analyses. It is unclear how much of this is due to the data collection procedures in this country, but such a different 
pattern is not likely due to real differences only.  
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Sample selection issues 

Although we have established that the country ranking that can be derived from Table 1 is 
ordinally equivalent to the pre-standardization ranking, the issue of PISA sample selection 
remains a potential problem. As noted in Section 2, coverage rates range from a low of 0.47 in 
Turkey, to 1.02 in Switzerland.10

                                                            
10 One presumes that coverage rates in excess of 1.00 must be due either to statistical discrepancies in the estimates 
of 15 year-olds in the total population, or to errors of inclusion in the sample of test-takers. 

 Selection would not be a problem if one were interested 
exclusively in the performance of 15 year-olds that are in school, and within a reasonable range 
of their expected grade of attendance. But this is likely to be an excessively narrow prism 
through which to assess a country’s educational system and – even more so – to make 
international comparisons. Consider the example of two hypothetical “educational strategies”, 
illustrated by countries A and B, which have identical distributions of school and family 
characteristics, as well as of underlying ability in the population of 15 year-olds. Country A seeks 
to be inclusive, and allocates resources towards retaining as many students as possible in 
school, and towards promoting learning by those with the lowest demonstrated achievement. 
Country B, on the other hand, actively discourages enrollment by those with lower ability, and 
seeks to retain only the top half of performers in school by age 15. Looking only at the test 
scores for the samples of enrolled fifteen year-olds will naturally suggest that Country B has 
both a higher mean and a lower variance than country A, and thus a superior educational 
system altogether. 

This is not to suggest, of course, that Brazil, Indonesia, Mexico, Turkey, or any of the other 
countries with low coverage rates in Table 1 actively pursue an exclusionary strategy like that of 
hypothetical country B. But dropping out and lagging behind are, nevertheless, extremely likely 
to be selective processes, in the sense that they are correlated with family and student 
characteristics that also affect test scores. If one is interested in comparing the educational 
achievement of the population of fifteen year-olds across countries, therefore, the PISA samples 
suffer from selection bias. 

Correcting for such biases is never simple, and even less so when non-participants are not 
observed at all in the sample (unlike, say, when seeking to correct for labor force participation 
on the basis of surveys that contain information on both earners and non-participants). While 
we do not offer a sample selection bias correction procedure for all countries in the PISA sample 
in this paper, we propose a simple two-sample non-parametric mechanism for assessing the 
sensitivity of our inequality measures to alternative assumptions about the sample selection 
process.  

Denote the (density of the) distribution of test scores y in a particular country j by . 

Consider a vector of covariates X that is observed both in the PISA sample and in an ancillary 
household survey, which is representative of the full population of 15 year-olds. Note that the 
density of test scores in the PISA sample can be written as: 
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      (7) 

In (7),  denotes the joint distribution of y and X, g denotes the conditional distribution of y on 
X, and  denotes the joint density of the covariates in the vector X.11

Equation (9) is simply the ratio of the density of fifteen year-olds whose observed characteristics 
X take certain values, in the ancillary household survey (HH), to the density of fifteen year-olds 
with the exact same observed characteristics in the PISA survey.  is a re-weighting 

function exactly analogous to that used by DiNardo, Fortin and Lemieux (1996) to construct 
counterfactual income densities in their study of inequality in the US. Whereas DiNardo et al. 
use the ratio of densities across different years (of the same survey), we use the ratio of 
densities across different surveys (for the same year). To the extent that test-taking (i.e. being in 
the PISA sample) is correlated with observed covariates in X, the counterfactual distribution in 
(8) should correct for the corresponding selection bias.

  If the joint density of the 

observable covariates X in a particular survey for country j is written , then 

our first proposed estimate for a test-score distribution (density) corrected for sample selection 
on observables is given by: 

       (8) 

Where          (9) 

12 In practice, this procedure was 
implemented by partitioning both the PISA and the ancillary household survey into cells with 
identical values for three observed covariates: gender, mother’s education, and father’s 
occupation, with the latter two variables classified as in Section 2.13

This procedure assumes that selection into the PISA sample is fully explained by observable 
variables, such as gender and family background. While such variables are likely to play a role in 
selection, it is also likely that other, unobserved variables do too. Within the set of girls, with 
mothers with no formal education and fathers who work in agriculture, for example, it is 
possible that a higher proportion of high-ability students than low-ability students stay in school 
long enough to enter the PISA sample. This kind of selection would imply that equation (8) may 
overstate the achievement of those students who are counterfactually “brought back into” the 
sample: simple re-weighting effectively assigns all those out-of-sample students the same scores 

 The ratios of densities in 
each cell in these partitions were used to construct the reweighting function (Equation 9), and 
both the S.D. and the IOp measures were computed over the counterfactual density of scores 
given by (8). 

                                                            
11 The triple integral notation is short-hand for integrating out every element of X, so that there are as many integrals 
as there are elements in the vector of covariates common to both surveys. As it happens, in our application that 
dimension is three. 
12 The superscript SO stands for selection on observables. 
13 Surveys were thus partitioned into 24 cells. Given the sample sizes reported earlier, particularly for Turkey’s HBS 
and, to a lesser extent, Mexico’s ENIGH, it was not possible to further refine the partition by using additional 
covariates. 
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obtained by students similar to them (in terms of the variables in X). If they are, in fact, likely to 
perform somewhat less well because of unobserved differences, the procedure overstates their 
true performance. 

By its very nature, of course, selection on unobservables is harder to account for. The ancillary 
household surveys used to construct the reweighting function do not contain information on 
test scores. To provide another sensitivity test for the possible magnitude of sample selection 
bias driven by unobservables, we consider the (rather extreme) assumption that all those 
students who are counterfactually “re-introduced” into the PISA sample by the above procedure 
– a proportion given by , for each X – do no better than those who are actually in the 

sample. In practice, we ascribe to them the lowest observed score for their cell in the partition. 
As an illustration of the effects of these two re-weighting procedures on the distribution, Figure 
3 shows the histograms and kernel density estimates of the distribution of mathematics test 
scores in Turkey, under each alternative sample selection correction scenario: no correction, 
correction for selection on observables, and correction for selection on observables and 
unobservables, under the assumption of no common support. 

In order to provide a sense of how sensitive our estimates of educational inequality (reported in 
Table 1) might be to sample selection, Table 3 reports the results of both of the above scenarios 
for the four countries with the lowest PISA coverage ratios in Table 1.14

It is possible to interpret these results as comforting, if one chooses to focus on the relative 
robustness of the measures to selection on observables, even in countries where PISA coverage 
is lowest. It seems most likely that, if these observed variables account for most of the sample 
selection process, the estimates of educational inequality in Table 1 are robust for all countries. 
The fact that those estimates are sensitive to selection on unobservables can be minimized by 

 To economize on space, 
Table 3 reports the effects of these ‘selection correction’ procedures both on the standard 
deviation of test scores and on our measure of inequality of educational opportunity, which is 
introduced in the next section. The first three columns report these measures (and standard 
errors) for the uncorrected, original PISA sample, for reading, math and science respectively. 
The next three report estimates for the correction that assumes selection on observables only 
(equation 8), and the final three for the correction that assumes selection on unobservables 
(with no common support). 

The results in Table 3 provide a mixed message. Somewhat surprisingly, both inequality of 
achievement (measured by the standard deviation) and inequality of opportunity seem to be 
quite robust to selection on observables, despite very low coverage rates (of approximately 50% 
in these four countries). While this is encouraging, the same cannot be said for the estimates for 
selection on unobservables. Under these (admittedly extreme) assumptions, inequality in 
achievement increases by between 44% in Turkey and 92% in Mexico. Inequality of educational 
opportunity also rises in all countries, except Mexico. 

                                                            
14 Coverage in these four countries – Brazil, Indonesia, Mexico and Turkey – was described in some detail in Section 2 
and Table 2 above. 
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the strength of the “no common support” assumption that assigns the very lowest grade in each 
cell to all those students counterfactually added to the sample.  

Yet, it would probably be wiser to interpret the results from Table 3 as providing grounds for 
caution. We simply do not know how much selection into the PISA sample takes place on the 
basis of variables other than gender, mother’s education and father’s occupation. Until more is 
known about the composition of the group of fifteen year-olds that is excluded from the PISA 
sample, the possibility remains that inequality in countries with low coverage is underestimated. 
Investigation of that group of teenagers would seem like an important – but so far neglected – 
area of study for those interested in the distribution of educational achievement, particularly in 
developing countries. 

4. A Measure of Inequality of Educational Opportunity 

At least as important as the total level of inequality in educational achievement is the question 
of how much of that inequality is explained by pre-determined circumstances, which individuals 
simply inherit, rather than controlling. While many may find some inequality in achievement – 
that might reflect differences in effort, or perhaps even differences in innate ability – quite 
acceptable, it is common to come across arguments against unequal opportunities among 
students. These are differences in achievement that do not reflect the choices or actions of 
today’s students, but only inherited circumstances beyond their control. That such inequalities 
are morally objectionable is today a dominant view among social justice theorists. See, for 
example, Cohen (1989), Dworkin (1981), Roemer (1998) and Fleurbaey (2008) for some of the 
classic references. There is also a positive argument against the inheritance of educational 
inequality, namely that if scarce opportunities for educational investment are allocated on some 
basis other than talent – such as inherited wealth, for example – this will lead to an inefficient 
allocation of resources.15

The applied literature on the measurement of inequality of opportunity has focused primarily on 
opportunities for the acquisition of income, but there is no reason it cannot be adapted to the 
space of educational achievement.

  

16

{ }KTTT ,...,, 21=Π

 Two main approaches characterize that empirical 
literature. Both approaches begin by seeking agreement on a set of individual characteristics 
which are beyond the individual’s control, and for which he or she cannot be held responsible. 
These variables are known as ‘circumstances’. Once a vector C of circumstances has been agreed 
upon, society can be partitioned into groups with identical circumstances. Formally, such a 
partition is given by a set of types: , such that { }NTTT K ,...,1...21 =∪∪∪ , 

klTT kl ,,∀∅=∩ , and the vectors .,,,, kTjTijiCC kkji ∀∈∈∀=
  

Given such a partition, the two approaches differ in how they define the benchmark of equality 
of opportunity. In the ex-ante approach, associated with van de Gaer (1993), the opportunity set 

                                                            
15 See, e.g. Fernández and Galí (1999). 
16 Indeed Checchi and Peragine (2005), the working paper version of their 2010 paper, do apply the concept to 
educational achievement measures. See also Gamboa and Waltenberg (2011) for a more recent treatment. 
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faced by each type is evaluated, and equality of opportunity is attained when there is perfect 
equality in those values across all types. In practice, researchers have often used the mean 
income (or achievement) of the type as an estimate of the value of the opportunity set they 
face. Since equality of opportunity would imply equality in means across types, inequality of 
opportunity is then naturally seen as some measure of between-type inequality. 

In the ex-post approach, associated with Roemer (1998), equality of opportunity obtains only 
when individuals exerting the same degree of effort, regardless of their circumstances, receive 
the same reward. Under certain assumptions, this amounts to requiring equality in the full 
conditional outcome distributions across all types. Inequality of opportunity would, in this case, 
best be captured by the (appropriately weighted) sum of inequality within groups characterized 
by the same degree of effort.17

In what follows, we adapt the ex-ante approach employed by Ferreira and Gignoux 
(forthcoming) to the distributions of test scores described earlier.

 The two approaches are closely related but, for any society with 
a given joint distribution of achievement and circumstance variables, they yield different 
answers to the question “How much inequality of opportunity is there?” See Fleurbaey and 
Peragine (forthcoming) for a formal discussion of the relationship between the two approaches. 

18

where  is the smoothed distribution corresponding to the distribution y and the partition 

Π.

 These authors propose to 
measure inequality of opportunity (IOp) by between-type inequality. Specifically:  

      (10) 

19

                                                            
17 Under the standard Roemerian assumptions, these groups are Checchi and Peragine’s (2010) ‘tranches’. 
18 Ferreira and Gignoux (forthcoming), in turn, build on Bourguignon et al. (2007) and Checchi and Peragine (2010). 
19 A smoothed distribution is obtained from a vector y and a partition Π by replacing each element of y in a given cell 
Tk with the mean value of y in its cell, μk. See Foster and Shneyerov (2000). 

  

Naturally,  can be computed non-parametrically by means of a standard between-group 

inequality decomposition (provided the chosen inequality index I() is properly decomposable). 
However, this procedure is data-intensive when the vector C is large. As the partition becomes 
finer, cells become small and sparsely populated, and the precision of the estimates of cell 
means declines, giving rise to an upwards bias in the estimation of . Following Bourguignon 

et al. (2007), Ferreira and Gignoux (forthcoming) then propose a parametric alternative for , 

based on an OLS regression of y on C:  

          (11) 

 in (11) is the OLS estimate of the regression coefficients in a simple regression of y on C: 

            (12) 
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In (11),  denotes the vector of predicted incomes from regression (12). Under the 
maintained assumption of a linear relationship between achievement and circumstances, this 
vector is equivalent to the smoothed distribution, since all individuals with identical 
circumstances are assigned their conditional mean incomes. 

Because of its unique path-independent decomposability properties, Checchi and Peragine 
(2010) and Ferreira and Gignoux (forthcoming) both use the mean logarithmic deviation as the 
inequality index I(). However, as shown above, the mean log deviation is not ordinally invariant 
in the standardization to which test scores are submitted, and it is therefore unsuitable for use 
in the present context. Following the discussion in Section 3, we use the simple variance as our 
inequality index I(). This choice yields our proposed measure of inequality of educational 
opportunity, as a special case of (11):  

          (13) 

This index has a number of attractive features. First, it is extremely simple to calculate: It is 
simply the R2 of an OLS regression of the child’s test score on a vector C of individual 
circumstances. In our application to the PISA data sets, C includes the following ten variables: 
gender, father’s and mother’s education, father’s occupation, language spoken at home, 
migration status, access to books at home, durables owned by the households, cultural items 
owned, and the location of the school attended. 

Second, despite its simplicity, it is a very meaningful summary statistic. It is a parametric 
approximation to the lower bound on the share of overall inequality in educational achievement 
that is causally explained by pre-determined circumstances. A formal proof is provided by 
Ferreira and Gignoux (forthcoming). But the basic intuition is to note that (12) can be seen as 
the reduced form of a (linearized version of a) model such as: 

           (14) 

          (15) 

In (14) and (15), y denotes achievement, and C denotes the vector of circumstances, as before. E 
denotes a vector of efforts: all variables that affect achievement and over which individuals do 
have some measure of control. u and v denote random shocks. Because 15 year-olds may 
conceivably affect the choice of school they attend, the class they are assigned to, and thus the 
teachers they interact with, all school characteristic variables, for example, are included in E. So 
are any direct measures of the student’s own efforts in preparing for exams, for instance. Of 
course, efforts E can be influenced by circumstances C, but the reverse cannot happen. Variables 
can only be treated as circumstances if they are pre-determined and entirely exogenous to the 
individual. 

Now return to (12) as a linearized reduced form of (14)-(15). We know that circumstances C are 
economically exogenous to y. We also know that all effort (E) variables (whether or not one 
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could observe them in the data) are omitted deliberately: β is intended to capture the reduced-
form effect of circumstances – both directly and through efforts. Since all relevant factors are 
classified into either circumstances or efforts, the only sources of bias to the estimates of β are 
omitted, unobserved circumstance variables. Although the observed vector C is economically 
exogenous, it may not be exogenous in the (econometric) sense that its components may be 
correlated with other (unobserved and thus omitted) circumstance variables. Individual 

elements of the vector  suffer from these omitted variable biases, and cannot be interpreted 
as causal estimates of the individual impact of a particular circumstance on test scores.  

If one is interested, however, on the total joint effect of all circumstances on achievement and, 
more specifically, on the share of variation in y that is causally explained by the overall effect of 

circumstances (operating both directly and through efforts), then the R2 of (12) - our - yields  

a valid lower bound for the object of interest. By construction, the only missing variables in (12) 

are other circumstances. If any were added,  might rise, but it cannot fall. While individual 

coefficients in  may be biased,  is a lower bound estimate of the joint causal effect of all 

circumstances on achievement, and thus an appropriate measure of inequality of opportunity. A 
formal proof is provided by Ferreira and Gignoux (forthcoming), for the perfectly analogous case 
of incomes. 

A third attractive feature of (13) is that it allows for the use of more information on 
circumstances than previous studies, which typically rely on a smaller set of background 
variables, and thus capture a more limited share of heterogeneity in family resources. Schultz, 
Ursprung and Wossmann (2008), for example, focus on the number of books at home. 
Macdonald et al. (2010) look at the effect of gender and an index of household wealth but 
ignore, for example, information on parental education and occupation. Gamboa and 
Waltenberg (2011) see inequality of opportunity as determined by gender, parental education, 
and school type (public or private), which they treat as a circumstance. We consider the joint 
effect of all of these circumstances, and more. 

A fourth attractive feature of  as a measure of inequality of educational opportunity is that, 

unlike any measure of the level of inequality (see Remark 1 above), it is a parametric estimator 
of a ratio (equation 10) that is cardinally invariant in the standardization of test scores. To see 
this, note that any sub-group mean is affected by standardization in a manner analogous to 
equation (3), so that: 

       (16) 

Given (16) and equation (6), it follows that . 

A fifth attractive feature of this IOp measure is that it is neatly decomposable into components 
for each individual variable in the vector C. Equation (13) can be rewritten as: 
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This in turn can be written as the sum over all elements (denoted by j) of the C vector: 
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This decomposition is an example of a Shapley-Shorrocks decomposition: it corresponds to the 
average between two alternative paths for estimating the contribution of a particular 
circumstance CJ to the overall variance. In the first (direct) path, all Cj, j ≠ J are held constant. In 
the second (residual) path, CJ is itself held constant, and its contribution is taken as the 
difference between the total variance and the ensuing variance.  Either path is conceptually 
valid, and the Shapley-Shorrocks averaging procedure yields (18) as the path-independent 
additive decomposition.20

Finally,  can be seen as isomorphic to a measure of intergenerational persistence of 

inequality, itself the converse of a measure of educational mobility. 

 

21

                                                            
20 See Shorrocks (1999) for the original application of the Shapley value to distributional decompositions. Ferreira et 
al. (2011) provide a formal proof that (18) is the Shapley-Shorrocks decomposition of the variance into the effects of 
individual circumstances. 
21 Mobility is a multifaceted concept, and there are many distinct measures of it, often attempting to capture 
different aspects of “movement” across distributions. See Fields and Ok (1996) for a discussion. In the present 
context, we adopt a view of mobility as time- or origin-independence. See also Shorrocks (1978). Persistence would 
therefore correspond to the concept of origin-dependence, which is closely related to the notions of inequality of 
opportunity in both van de Gaer (1993) and Roemer (1998). 

 In the canonical Galton 
regression of a child’s outcome (yit) on the parent’s outcome (yi,t-1): 

         (19) 

the coefficient β is sometimes used as measure of persistence, and 1-β as a measure of mobility. 
An alternative that gives equal weight to the variance in both father’s and son’s distributions is 
the R2 of (19) which is, of course, also the square of the correlation coefficient between the two 
outcomes in the population. If one were to replace the parent’s outcome yi,t-1 with a vector of 
parental or family background variables, (19) would transform into something very close to (12), 

and the R2 measure of immobility into our measure of inequality of opportunity, . Indeed, 

the only pre-determined circumstance among the ten variables previously listed which is not a 
family background variable is the child’s own gender. Apart from the child’s own gender, one 

could see  as a measure of intergenerational persistence, or immobility, in which the 

missing value for the parent’s own test scores, yi,t-1, is replaced with a proxy vector of family 
background circumstances, Ci. 

 



 20 

Having separately regressed test scores for each subject (in each country) on the vector C 

(equation 12), and computed the R2 of each regression to obtain , we report them on Table 

4. These are our estimates of the inequality of educational opportunity (IOp) given by equation 
(13). They range between 0 and 1, and can be interpreted straight-forwardly as a lower-bound 
on the share of the total variance in educational achievement that is accounted for by pre-
determined circumstances (gender and family background) in each country. Bootstrapped 
standard errors are reported next to each IOp measure. The IOp estimates range between 
12.7% and 38.8% of the total variance of test scores in reading; between 4.4% (10.2% excluding 
the outlier Azerbaijan) and 35.1% of the variance of test scores in math; and between 11.1% and 
37.9% in Science.22

The absence of a clear geographical pattern in the cross-country distribution of inequality of 
educational opportunity is mirrored in the absence of a correlation between IOp and either the 
level of educational achievement, as measured by mean test scores, or the level of economic 

 

Figure 2 provides the same results graphically for achievements in mathematics, after ranking 
the countries by the IOp measure. 95% confidence intervals are presented using the 
bootstrapped standard errors and assuming normal distributions of the estimates. No clear 
regional pattern emerges from the estimates presented in Table 4 and Figure 2. Among the 
countries with the highest levels of inequality of opportunity, with shares above 30%, are 
Western European countries (such as Belgium, France, and Germany) but also Eastern European 
countries (such as Bulgaria and Hungary), and Latin American countries (such as Argentina, 
Brazil and Chile). Among the countries with the lowest IOp, with shares below 20%, are Asian 
countries (such as Azerbaijan, Macao (China), and Hong Kong SAR, China), Nordic countries 
(such as Finland, Iceland, and Norway), Russia, Australia and Italy. The United States, the UK, 
and Spain lie in an intermediate range, with shares close to 25%.  

One can use these results to make specific comparisons. For example, the degree of inequality 
of educational opportunity seems to be significantly higher in a few large European countries, 
such as France and Germany, than in the United States. However these inequalities are 
significantly lower in Nordic countries, such as Finland and Norway, or in Japan and Korea. 
Regarding developing economies, countries in Latin America tend to rank in the upper half of 
the distribution, while Asian countries, such as Indonesia and Thailand, rank in the lower half. 
Although the estimates are very imprecise for Indonesia, Thailand exhibits significantly lower 
inequalities than Latin American countries such as Brazil. The results for reading and science are 
not discussed in detail here, but IOp measures for the three subjects are highly correlated: the 
Spearman rank correlation coefficients for shares in Reading, Math and Science range from 0.75 
to 0.92. 

                                                            
22 If one were interpreting these shares as proxies for the persistence measure given by the R2 of (19), one 
should note that the numbers correspond to squares of the correlation coefficient. The square root of IOp 
for mathematics scores, for example, ranges from 0.21 to 0.59.  
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development, as measured by GDP per capita.23

                                                            
23 GDP per capita is measured at purchasing power parity exchange rates, in 2006 US prices; the data are 
from the World Development Indicators (WDI) database. 
 

 Figure 4 plots the relationship between IOp and 
mean achievement in mathematics. The regression line and a 95% confidence interval are 
shown on the graphs. The regression coefficient is statistically insignificantly different from zero 
at the 10% level. Figure 5 plots IOp in mathematics against GDP per capita, again showing the 
regression line and a 95% confidence interval. No statistically significant relationship is found. In 
order to test whether outliers such as Azerbaijan or Macao-China drive the statistical 
relationship, the procedure proposed by Besley, Kuh and Welsch (1980) is implemented to 
identify outliers and the test of a linear relationship is performed again after the exclusion of the 
corresponding observations. In this case, the negative regression coefficient is significant at 10% 
for mathematics, but remains insignificant for reading and science (not shown in figure). 

The exact decomposition of inequality of opportunity into partial shares by individual 
circumstance, described in equation (18), is presented in Table 5 for mathematics scores. The 
shares of the ten circumstances add up to the total IOp given in the first column. As may be seen 
from inspection of equation (18), these partial shares are functions of individual regression 
coefficients from (12). As noted earlier, these individual coefficient estimates are likely to be 
biased, have not been presented here, and are not the focus of the paper. These partial shares 
reflect them, and should not be interpreted causally in any way. They are useful only as a 
description of the variables underpinning the overall (lower-bound) measure of inequality of 
opportunity. 

With that caveat in mind, Table 5 suggests that family educational and cultural resources seem 
to be associated with the largest share of inequality of learning achievement. Mother’s and 
father’s education combined account for a mean of 3.7 and a maximum of 9.2 (in Hungary) 
percentage points of the overall shares of explained inequality in the set of 57 countries, which 
take the mean of 24.7. The number of books at home accounts for a mean of 7.2 and a 
maximum of 14.4 percentage points (in Austria). Add parental education, language at home, 
numbers of books, and cultural possessions, and this set of “educational and cultural variables” 
add up to a mean of 15.0 points. Family economic resources also appear as an important source 
of learning inequalities. Father’s occupation and the “durable assets” indicator account for 
means of 3.6 and 3.8, respectively. With immigration status, the set of “economic variables” 
explains a mean of 7.8 points. Finally, the type of area where schools are located accounts for a 
mean of 1.6 and a maximum of 10.7 (in Kyrgyzstan) points of the overall shares, whereas the 
student’s gender accounts for a rather limited mean of 0.6 and a maximum of 2.1 (in Chile) 
points of the overall shares. There are also interesting regional variations in these partial shares 
of learning inequality. For instance, the partial share associated with educational and cultural 
resources has a higher mean in Western and Eastern European countries than in other regions, 
whereas the share associated with economic resources has a higher mean in Latin America.  
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5. A Descriptive Application: Correlations between IOp and Education Policies 

As an illustration of potential applications, we now briefly investigate the cross-country 
correlation between the measure of inequality of educational opportunity presented in the 
previous section and two specific educational policy variables: the distribution of public 
spending across different levels of the education system, and the extent of early tracking of 
pupils between general and vocational schools or classes. 

The incidence of public spending in education and the allocation of financial resources among 
the different segments of the education system have been examined by various studies (e.g. 
Birdsall, 1996; Castro-Leal et al., 1999; and Van de Walle and Nead, 1995). Given that children 
with disadvantaged backgrounds tend to drop out from school earlier than others, the allocation 
of resources to the primary level of schooling is generally thought more likely to be progressive.  

The impacts of tracking policies on the efficiency and equity of educational systems are another 
example of education policies that have received considerable attention in recent studies (Ariga 
et al., 2006; Brunello and Checchi, 2007; Brunello et al., 2006; Hanushek and Woessman, 2006; 
Manning and Pisckhe, 2006). Theory does not provide clear-cut predictions for the effect of 
early tracking on educational achievements. On the one hand homogenous classrooms, and the 
associated specialization of teaching and curricula to the needs and abilities of specific students, 
could lead to efficiency gains. But on the other hand, disadvantaged groups might be harmed by 
unfavorable allocations of resources, including less well endowed schools, teacher sorting, peer 
effects, or differences in curricula 24

We briefly examine the correlation between our measure of IOp and these two policies, using 
data on the policy indicators from the UNESCO Institute for Statistics (UIS).

. Moreover, since much of the early inequality in 
achievement – and thus the track placements themselves – are driven by differences in parental 
resources, a frequent concern has been that tracking might reinforce the effects of family 
background on educational achievements. I.e. that it might reduce intergenerational mobility, 
and exacerbate inequality of educational opportunity. 

25

                                                            
24 Early tracking may also be costly in terms of the misallocation of students to tracks, and in terms of forgone 
versatility in the production of skills (Brunello and Checchi, 2007). 
25 The data for 2006 correspond to the school year 2005-06 for countries where the school year laps over two 
calendar years. 
 

 Our indicator of the 
distribution of educational expenditures is the share of spending in primary schools - defined as 
the first ISCED level, corresponding to grades 1 to 6 - in total public educational expenditure. 
The indicator of tracking is the share of technical or vocational enrollment at the secondary level 
(including lower and upper secondary or the second and third ISCED levels, usually 
corresponding to grades 7 to 12) in total enrollment at that level. The information on the 
distribution of education expenditure across levels is missing for six countries (Canada, 
Montenegro, Qatar, Russia, Serbia and Taiwan, China) and the information on the share of 
technical and vocational enrollment at the secondary level is missing in five countries (Latvia; 
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Montenegro; Serbia; Taiwan, China; and the United States). Two other countries are excluded 
from the analysis: Liechtenstein and Luxembourg. The number of observations for Liechtenstein 
(339 examinees) makes the estimates of learning inequalities unreliable and Luxemburg is too 
much of an outlier in terms of GDP per capita in 2006 (at about 69.000 US dollars, with the US in 
second place at 44.000 US dollars).    

There is considerable variation in the share of expenditures allocated to the primary level of 
education in the remaining country sample. While the mean share is 27.0%, the lowest share is 
observed in Romania at 13.8% and the highest in Jordan at 41.7% (the first quartile is at 20.2% 
and the third quartile at 34.0%). Figure 6 provides an illustration of the relationship between the 
primary share of expenditures and IOp. Once again the regression line and a 95% confidence 
interval for the mean are shown. Table 6 gives the tests of significance of this relationship both 
without any controls (first panel) and controlling for per capita GDP and public education 
expenditure per pupil (second panel). Once outliers are excluded, significant negative 
correlations exist both for reading and science, with or without controls. For math, the negative 
correlation is only significant with controls. The coefficients lie between -0.001 and -0.003, 
indicating that an increase of 10 points in the share of resources allocated to primary schooling 
is associated with decreases of 1 to 3 points in inequality of educational opportunity.  

There is also considerable heterogeneity in tracking in our country sample. The mean share is 
20.8 percent and values range from 0.9% in Qatar to 51.4% percent in the Netherlands (the first 
quartile is at 12.9 and the third at 31.2). As before, Figure 7 provides a scatter plot of the 
relationship between tracking and IOp in this sample, while Table 7 lists coefficients and 
standard errors, both without any controls (upper panel) and controlling for per capita GDP and 
public education expenditure per pupil (bottom panel). There is a clear pattern of significant 
positive relationships across all three subjects and both regression specifications, with the 
statistical significance being stronger in the specification with controls. Higher inequality of 
opportunity tends to be associated with higher shares of technical and vocational enrollment. 
The regression coefficients lie between 0.001 and 0.002, indicating that an increase of 10 points 
of the share of technical or vocational enrollments is associated with an increase of 1 to 2 points 
in inequality of opportunity. 

These correlations suggest that our measure of inequality of opportunity is negatively 
associated with the share of public spending on primary education, and positively associated 
with tracking into general or technical/vocational schooling at the secondary level. These 
associations allow for absolutely no inference of causality, of course, but the results seem in line 
with and extend those of studies devoted to these relationships. For instance, while Hanushek 
and Woessman (2006) find tracking to be associated with higher levels of overall inequality in 
test scores, our results suggest it also tends to come with higher levels of inequality of learning 
opportunities.26

                                                            
26 However, the long term effects of early tracking remain a matter of debate. For instance, Brunello and Checchi 
(2007) find that although it tends to increase the link between family background and educational attainments by 

 This analysis remains descriptive in nature, and does not control for the 
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heterogeneity in education systems or pupil populations. They are only meant to illustrate the 
potential use of indicators of inequality of opportunity for future studies of the distributive 
impacts of education policies. Future extensions – notably involving the use of panel data - 
might allow for causal analysis of these relationships. 

6. Conclusions 

Internationally comparable information on learning outcomes, such as the standardized test 
scores collected by PISA surveys, represents a revolution in the quality of data available for 
research on education. It allows for potentially much greater insight into the determinants of 
educational achievement, and might therefore contribute to the design of policies that raise 
average learning levels, or that reduce educational disparities.  

The measurement of educational disparities using this kind of data is not, however, a trivial 
extension of inequality measurement in years of schooling, or in other variables like income. 
This paper has highlighted two issues that require special attention in the measurement of 
inequality in educational achievement, and which appear to have been overlooked so far. The 
first is the standardization of test scores, to which all meaningful measures of inequality are 
cardinally sensitive. More importantly, many common measures of inequality, including the Gini 
coefficient and the Theil indices, are not event ordinally invariant to standardization, invalidating 
country rankings that are based on them. 

We show that the simple variance (or the standard deviation) of test scores is ordinally invariant 
to standardization, and present estimates for all 57 countries that took part in the 2006 round of 
PISA surveys, in all three subjects for which tests are carried out: reading, mathematics and 
science. There is considerable international variation in educational inequality thus measured. 
The standard deviation in Math scores ranges from around 80 in Indonesia, Estonia and Finland, 
to nearly 110 in Belgium and Israel. 

The second measurement issue that may compromise international inequality comparisons 
based on PISA test scores is the possibility of sample selection. The surveys are designed to be 
representative of the population of 15 year-olds enrolled in school, and attending grades 7 or 
above. While this stipulation covers most of the population of that age group in OECD countries, 
it purposively excludes substantial numbers in poorer countries. Selection into the sample is 
clearly correlated with determinants of test scores, leading to a classic problem of sample 
selection bias. Using information on characteristics of fifteen year-olds included in other, 
ancillary household surveys, we use sample re-weighting methods to assess the implications of 
the selection bias for our measures of educational inequality in achievement and opportunity. 
Results for Brazil, Indonesia, Mexico and Turkey suggest that the inequality measures are 
relatively robust to selection on the basis of three observed variables (gender, mother’s 

                                                                                                                                                                                 
diverting some individuals from progress to tertiary education, it seems to reduce the impact of family background on 
adult literacy and promote further on-the-job training by offering more effective curricula to less well performing 
students. 
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education and father’s occupation). Under a more stringent scenario of strong selection on 
unobservables with no common support, however, the current measures of educational 
inequality in these countries would appear to be substantially underestimated. 

Finally, we also propose and compute a measure of inequality in educational opportunity. The 
measure is simply the share of the total variance in achievement that can be accounted for by 
pre-determined circumstance variables in a linear regression. The index is simple and intuitive, 
and provides a lower-bound estimate of the joint causal effect of all pre-determined 
circumstances on educational inequality. It is cardinally invariant to the standardization of test 
scores, and exactly additively decomposable into the partial shares accounted for by individual 
circumstance variables. It is also closely related to the origin-independence concept of inter-
generational educational mobility. 

Thus measured, inequality of opportunity in our sample of countries ranges from approximately 
0.10 – 0.16 in Macao (China), Australia, and Hong Kong SAR, China, to 0.33 – 0.35 in Bulgaria, 
France and Germany. Although the measure is uncorrelated with average educational 
achievement and with GDP per capita, it appears to be higher in Latin America and parts of 
continental Europe (including France, Germany and Belgium). It is lower in Asia, the Nordic 
countries, and Australia. It is negatively correlated with the share of public educational spending 
allocated to primary schooling, and positively correlated with the extent of educational tracking, 
defined as the share of technical and/or vocational enrollment in secondary schools. 

This paper has not reported on any causal analysis of specific policy determinants of educational 
inequality. Its aim was to place the measurement of these concepts on a sounder footing, given 
the specific characteristics of data on educational achievement. We hope that the measures 
proposed here, and the methods for assessing their sensitivity to sample selection, may be of 
use to other researchers interested in the determinants of educational achievement, and its 
distribution. 
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Table 1: Sample statistics, mean scores and the standard deviation in PISA test scores 

  # Obs. Coverage 
rate 

Reading 
Mean 

Reading  
         SD    (SE of SD) 

Math 
Mean 

Math 
         SD  (SE of SD) 

Science 
Mean 

Science 
         SD    (SE of SD) 

            
Asia & North Africa           
Azerbaijan  5184 0.88 355.0 70.26 2.12 476.8 47.96 1.64 385.3 55.68 1.92 
Hong Kong 
SAR, China  

4645 0.97 538.9 81.79 1.92 551.4 93.39 2.31 546.1 91.71 1.92 

Indonesia  10647 0.53 383.9 74.79 2.39 380.7 80.01 3.18 384.8 70.06 3.26 
Israel  4584 0.76 441.3 119.34 2.79 443.3 107.33 3.20 455.6 111.45 1.92 
Japan  5952 0.89 409.5 102.38 2.34 389.2 91.01 2.06 427.1 100.12 2.01 
Jordan  6509 0.65 500.2 94.09 2.24 525.6 83.71 1.95 533.7 89.86 1.89 
Korea  5176 0.87 290.5 88.29 2.68 315.9 92.59 3.12 326.3 90.06 2.35 
Kyrgyzstan  5904 0.63 556.1 102.10 2.51 547.2 86.98 2.03 521.9 83.86 2.03 
Macao-China  4760 0.73 490.6 76.36 2.26 524.4 83.90 1.51 509.5 77.83 1.58 
Qatar  6265 0.90 312.5 108.12 1.15 317.7 90.24 1.39 349.1 83.29 1.37 
Russian 
Federation  

5799 0.81 442.4 93.23 1.87 478.7 89.53 1.58 481.5 89.57 1.33 

Chinese Taipei  8812 0.88 506.7 84.38 1.73 562.7 103.11 2.16 543.7 94.45 1.63 
Thailand  6192 0.72 425.2 81.85 1.73 425.5 81.43 1.57 429.7 77.17 1.45 
Tunisia  4640 0.90 379.0 97.30 2.49 363.9 91.95 2.34 384.2 82.38 2.05 
Turkey  4942 0.47 452.9 92.90 2.75 428.2 93.24 4.32 427.6 83.20 3.14 
            

Latin America           
Argentina  4339 0.79 383.9 124.22 3.63 388.1 101.14 3.48 398.3 101.24 2.62 
Brazil  9295 0.55 389.2 102.46 3.34 365.6 92.02 2.65 385.3 89.28 1.93 
Chile  5233 0.78 447.9 103.24 2.44 417.1 87.44 2.17 443.1 91.68 1.72 
Colombia  4478 0.60 390.3 107.83 2.38 373.8 88.04 2.42 391.9 84.81 1.81 
Mexico  30971 0.54 427.4 95.68 2.27 420.7 85.27 2.16 422.6 80.70 1.47 
Uruguay  4839 0.69 424.7 121.22 2.03 435.5 99.30 1.77 437.7 94.44 1.73 
            
North America & 

 
          

Australia  22646 0.87 508.7 96.25 1.43 516.3 85.79 1.03 523.1 94.19 1.14 
Canada  14170 0.87 512.3 93.79 1.00 517.4 88.03 1.09 522.5 100.23 1.02 
New Zealand  4823 0.84 522.7 105.21 1.58 523.8 93.27 1.20 532.7 107.30 1.36 
United States  5610 0.85    474.7 89.75 1.90 488.3 106.07 1.68 
            

Eastern Europe           
Bulgaria  4498 0.83 406.8 117.51 4.00 417.4 101.10 3.65 439.1 106.72 3.20 
Czech 
Republic  

5932 1.01 509.6 111.21 2.90 536.0 103.14 2.08 537.6 98.41 2.00 

Estonia  4865 0.94 502.4 85.19 1.87 516.8 80.68 1.54 533.7 83.75 1.09 
Croatia  5213 0.85 477.6 88.83 2.12 467.3 83.31 1.50 493.7 85.72 1.44 
Hungary  4490 0.85 488.1 94.39 2.37 496.2 91.04 1.94 508.7 88.20 1.53 

Lithuania  4744 0.93 469.3 95.54 1.51 485.6 89.80 1.73 486.5 89.99 1.52 
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Latvia  4719 0.85 484.9 90.70 1.69 491.2 82.81 1.51 493.8 84.38 1.30 
Montenegro  4455 0.84 388.2 89.41 1.64 395.8 84.45 1.80 408.8 79.69 1.19 
Poland  5547 0.94 512.6 100.22 1.48 500.9 86.52 1.13 503.3 89.87 1.11 
Romania  5118 0.66 392.0 91.86 2.93 415.0 83.97 2.85 416.6 81.16 2.37 
Serbia  4798 0.83 402.9 91.84 1.69 436.6 91.76 1.77 436.9 85.15 1.56 
Slovak 
Republic  

4731 0.95 470.6 105.08 2.51 495.1 94.53 2.47 491.2 93.15 1.79 

Slovenia  6595 0.88 468.6 87.97 2.47 482.2 89.25 1.36 494.2 98.11 1.35 
            
Western Europe           
Austria  4927 0.92 494.0 108.16 3.16 509.5 98.06 2.29 513.9 97.83 2.41 
Belgium  8857 0.99 507.1 110.02 2.81 526.9 106.13 3.31 516.3 99.70 2.00 
Switzerland  12192 1.02 496.6 94.07 1.71 528.3 97.44 1.60 508.0 99.31 1.61 
Germany  4891 0.95 496.5 111.95 2.67 504.3 99.08 2.53 516.2 99.98 1.99 
Denmark  4532 0.85 493.8 89.30 1.63 512.2 84.85 1.53 494.7 93.13 1.42 
Spain  19604 0.87 479.5 88.84 1.14 501.7 88.92 1.09 504.5 90.54 0.97 
Finland  4714 0.93 547.1 81.23 1.08 549.0 80.87 1.01 563.4 85.62 1.00 
France  4716 0.91 488.7 103.95 2.75 496.4 95.58 1.96 496.1 101.57 2.09 
United 
Kingdom  

13152 0.94 495.6 101.92 1.69 497.3 88.92 1.31 514.3 106.79 1.50 

Greece  4873 0.90 461.9 102.61 2.92 462.0 92.30 2.37 476.6 92.12 2.03 
Ireland  4585 0.94 518.6 92.39 1.86 502.3 81.99 1.50 509.5 94.35 1.50 
Iceland  3789 0.96 485.0 97.09 1.23 505.6 88.08 0.89 491.0 96.87 0.95 
Italy  21773 0.90 477.0 108.76 1.74 473.6 95.82 1.66 487.2 95.56 1.31 
Liechtenstein  339 0.84 510.7 95.14 2.93 524.9 93.05 2.17 522.3 96.96 2.10 
Luxembourg  4567 1.03 480.1 99.85 0.72 490.5 93.15 0.73 486.8 96.53 0.67 
Netherlands  4871 0.96 513.9 96.62 2.47 537.4 88.60 2.18 530.8 95.63 1.64 
Norway  4692 0.97 484.4 105.15 1.92 489.8 91.58 1.38 486.9 96.12 1.98 
Portugal  5109 0.78 476.8 98.82 2.28 470.9 90.65 1.97 479.0 88.56 1.71 
Sweden  4443 0.97 509.0 98.21 1.77 503.2 89.66 1.37 504.2 94.21 1.40 
                       

 

Note: The standard deviation (S.D.) of test scores is used as an ordinal measure of inequality in 
achievement, as discussed in the text. Standard errors reported in the columns next to the S.D. are 
bootstrapped. 
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Table 2:  PISA Sample Coverage: Analysis for four developing countries 

  Brazil Indonesia Mexico Turkey 

     
 

Expanded 15 year-old populations, using PISA data and weights 
   Total population of 15-year-olds 3 390 471 4 238 600 2 200 916 1 423 514 

Total enrolled population of 15-year-olds at grade 7 or above 2 374 044 3 119 393 1 383 364 800 968 
Weighted number of students participating to the assessment 1 875 461 2 248 313 1 190 420 665 477 

     Coverage rate of the population of 15-year-olds, from PISA 55,3 53,0 54,1 46,7 
Total missed children 44,7 47,0 45,9 53,3 

     
 

Composition of those not covered by PISA samples  
   Out-of-school children  10,2 25,5 24,1 21,6 

Delays of more than two years  19,8 0,9 13,1 22,2 
PISA sampling issues 14,7 20,6 8,8 9,5 

          
Source: PISA 2006 surveys; PNAD 2006 for Brazil, Susenas 2005 for Indonesia; ENIGH 2006 for Mexico, and HBS 2006 
for Turkey. The share of fifteen year-olds who are not enrolled in school comes from the ancillary household surveys. 
Those delayed by more than two years come from household surveys, and are checked with PISA administrative 
records. The last row is derived as a residual. 
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Table 3:  Inequality of Achievement and Opportunity in Low-Coverage Countries: sensitivity to different assumptions on selection into the PISA sample 
  

  
PISA population without any correction Correction assuming selection on observables  

Correction assuming strong selection on 
unobservables  

  Reading Math Science Reading Math Science Reading Math Science 
          
TURKEY          

Inequality (SD) 92.90 93.24 83.20 98.38 91.43 82.58 155.67 134.04 121.61 
 2.75 4.32 3.14       

IOp 0.251 0.241 0.249 0.250 0.236 0.250 0.327 0.320 0.326 
 0.026 0.033 0.032       
          
BRAZIL          

Inequality (SD) 102.46 92.02 89.28 102.86 90.44 86.75 179.82 146.68 146.17 

 3.34 2.65 1.93       

IOp 0.268 0.318 0.286 0.265 0.309 0.262 0.404 0.404 0.385 
 0.020 0.005 0.021       
          
MEXICO          

Inequality (SD) 95.68 85.27 80.70 95.63 85.02 79.18 196.85 162.79 136.99 

 2.27 2.16 1.47       

IOp 0.278 0.261 0.271 0.267 0.242 0.255 0.256 0.250 0.228 
 0.024 0.002 0.024       
          
INDONESIA          

Inequality (SD) 74.79 80.01 70.06 71.03 76.27 65.74 130.56 135.89 112.79 
 2.39 3.18 3.26       

IOp 0.250 0.237 0.220 0.218 0.200 0.181 0.274 0.261 0.261 
 0.038 0.042 0.045       
          
 
 Note: IOp denotes the measure of inequality of educational opportunity, defined in equation (13). It is the share of the total variance in test scores which is 
accounted for by the student’s pre-determined circumstance variables. 



Table 4: Inequality of Educational Opportunity for three PISA subjects 
 

  
IOp 

Reading 
Standard Error 
(Reading IOp) 

IOp 
Mathematics 

Standard Error 
(Math IOp) 

IOp 
Science 

Standard Error 
(Science IOp) 

             
Asia & North Africa             
Azerbaijan   0.173  0.028  0.044  0.012  0.112  0.024 
Hong Kong SAR, 
China   

0.177 
 

0.016  0.154  0.016  0.166  0.018 

Indonesia   0.250  0.038  0.237  0.042  0.220  0.045 
Israel   0.197  0.018  0.206  0.019  0.195  0.016 
Japan   0.206  0.017  0.203  0.020  0.189  0.016 
Jordan   0.346  0.024  0.272  0.024  0.271  0.019 
Korea   0.214  0.022  0.209  0.021  0.173  0.019 
Kyrgyzstan   0.314  0.023  0.306  0.027  0.269  0.023 
Macao-China   0.127  0.012  0.102  0.009  0.111  0.008 
Qatar   0.309  0.010  0.254  0.009  0.264  0.009 
Russian Federation   0.238  0.021  0.165  0.020  0.183  0.020 
Chinese Taipei   0.300  0.017  0.275  0.022  0.281  0.019 
Thailand   0.325  0.023  0.230  0.021  0.265  0.022 
Tunisia   0.215  0.024  0.273  0.031  0.191  0.026 
Turkey   0.251  0.026  0.241  0.033  0.249  0.032 
             
Latin America             
Argentina   0.289  0.024  0.315  0.007  0.312  0.026 
Brazil   0.268  0.020  0.318  0.005  0.286  0.021 
Chile   0.248  0.022  0.330  0.001  0.299  0.021 
Colombia   0.181  0.018  0.216  0.007  0.193  0.018 
Mexico   0.278  0.024  0.261  0.002  0.271  0.024 
Uruguay   0.221  0.015  0.245  0.004  0.248  0.012 
             
            
Australia   0.199  0.010  0.153  0.009  0.164  0.009 
Canada   0.242  0.011  0.211  0.011  0.207  0.010 
New Zealand   0.276  0.013  0.241  0.012  0.269  0.013 
United States      0.279  0.020  0.282  0.019 
             
Eastern Europe             
Bulgaria   0.377  0.028  0.331  0.030  0.364  0.030 
Czech Republic   0.296  0.021  0.268  0.019  0.279  0.020 
Estonia   0.271  0.013  0.206  0.013  0.208  0.012 
Croatia   0.297  0.017  0.222  0.015  0.239  0.014 
Hungary   0.345  0.023  0.326  0.022  0.326  0.019 
Lithuania   0.318  0.017  0.279  0.017  0.262  0.016 
Latvia   0.254  0.017  0.201  0.020  0.187  0.016 
Montenegro   0.252  0.013  0.223  0.012  0.197  0.011 
Poland   0.275  0.014  0.241  0.013  0.241  0.014 
Romania   0.301  0.026  0.313  0.028  0.310  0.027 
Serbia   0.311  0.018  0.276  0.017  0.255  0.016 
Slovak Republic   0.292  0.026  0.317  0.030  0.297  0.024 
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Slovenia   0.336  0.018  0.263  0.016  0.268  0.014 
             
Western Europe             
Austria   0.296  0.019  0.300  0.020  0.324  0.022 
Belgium   0.335  0.015  0.329  0.018  0.338  0.015 
Switzerland   0.313  0.013  0.282  0.013  0.322  0.012 
Germany   0.368  0.021  0.351  0.018  0.352  0.019 
Denmark   0.229  0.015  0.219  0.014  0.249  0.017 
Spain   0.243  0.013  0.239  0.012  0.258  0.013 
Finland   0.247  0.014  0.179  0.010  0.167  0.011 
France   0.305  0.019  0.335  0.019  0.345  0.018 
United Kingdom   0.274  0.014  0.258  0.012  0.275  0.012 
Greece   0.261  0.023  0.228  0.022  0.245  0.019 
Ireland   0.259  0.018  0.235  0.017  0.240  0.016 
Iceland   0.234  0.009  0.167  0.009  0.184  0.009 
Italy   0.207  0.015  0.178  0.014  0.206  0.014 
Liechtenstein   0.388  0.031  0.323  0.034  0.379  0.030 
Luxembourg   0.344  0.008  0.291  0.008  0.328  0.009 
Netherlands   0.247  0.022  0.271  0.023  0.283  0.023 
Norway   0.271  0.016  0.195  0.014  0.220  0.018 
Portugal   0.303  0.021  0.274  0.019  0.267  0.020 
Sweden   0.265  0.014  0.233  0.012  0.250  0.013 
             

Note: IOp denotes the measure of inequality of educational opportunity, defined in equation (13). It is the 
share of the total variance in test scores which is accounted for by the student’s pre-determined 
circumstance variables. 
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Table 5: A Decomposition of IOp (Mathematics) into Individual Circumstance Shares  

  

Total Gender Father's 
education 

Mother's 
education 

Father's 
occupa-
tion 

Area 
type 

Language 
at home 

Immi-
gration 
status 

Number 
of books 

Durables Cultural 
posses-
sions 

            
Asia & North Africa           
Azerbaijan  0.044 0.000 0.000 0.000 0.001 0.003 0.000 0.006 0.017 0.008 0.010 
Hong Kong SAR, 
China  

0.154 0.009 0.012 0.007 0.026 0.000 0.000 0.013 0.062 0.009 0.018 

Indonesia  0.237 0.009 0.009 0.005 0.018 0.072 0.002 0.000 0.025 0.096 0.009 
Israel  0.206 0.004 0.002 0.039 0.057 0.006 0.001 0.000 0.065 0.003 0.030 
Japan  0.203 0.012 0.042 0.027 0.025 0.005 0.000 0.004 0.032 0.013 0.044 
Jordan  0.272 0.001 0.030 0.029 0.043 0.022 0.007 0.000 0.021 0.103 0.016 
Korea  0.209 0.004 0.017 0.011 0.000 0.019 0.000 0.001 0.086 0.014 0.061 
Kyrgyzstan  0.306 0.000 0.002 0.012 0.014 0.107 0.008 0.007 0.066 0.053 0.037 
Macao-China  0.102 0.006 0.008 0.001 0.007 0.003 0.005 0.003 0.010 0.021 0.039 
Qatar  0.254 0.010 0.011 0.005 0.052 0.035 0.079 0.016 0.018 0.012 0.017 
Russian Federation  0.165 0.001 0.001 0.009 0.030 0.009 0.004 0.003 0.046 0.037 0.024 
Chinese Taipei  0.275 0.005 0.029 0.015 0.031 0.026 0.000 0.008 0.088 0.018 0.054 
Thailand  0.230 0.001 0.023 0.026 0.048 0.028 0.001 0.000 0.024 0.079 0.000 
Tunisia  0.273 0.009 0.001 0.000 0.072 0.032 0.005 0.000 0.046 0.077 0.034 
Turkey  0.241 0.003 0.042 0.041 0.007 0.018 0.000 0.001 0.051 0.045 0.034 
            
Latin America            
Argentina  0.315 0.004 0.014 0.026 0.024 0.022 0.000 0.003 0.079 0.114 0.029 
Brazil  0.318 0.009 0.019 0.024 0.027 0.014 0.005 0.001 0.025 0.184 0.011 
Chile  0.330 0.021 0.016 0.055 0.050 0.026 0.001 0.000 0.068 0.060 0.033 
Colombia  0.216 0.017 0.009 0.015 0.014 0.014 0.003 0.000 0.049 0.085 0.010 
Mexico  0.261 0.003 0.001 0.025 0.018 0.074 0.014 0.002 0.033 0.077 0.014 
Uruguay  0.245 0.005 0.013 0.047 0.029 0.006 0.000 0.000 0.056 0.059 0.030 
            
North America & Oceania         
Australia  0.153 0.008 0.007 0.009 0.044 0.002 0.000 0.000 0.055 0.011 0.016 
Canada  0.211 0.008 0.029 0.011 0.035 0.017 0.003 0.000 0.078 0.013 0.018 
New Zealand  0.241 0.005 0.036 0.016 0.036 0.003 0.000 0.000 0.074 0.034 0.037 
United States  0.279 0.004 0.014 0.018 0.062 0.013 0.000 0.003 0.122 0.036 0.010 
            
Eastern Europe            
Bulgaria  0.331 0.000 0.005 0.020 0.052 0.032 0.001 0.012 0.102 0.048 0.060 
Czech Republic  0.268 0.004 0.010 0.035 0.045 0.007 0.001 0.001 0.089 0.052 0.024 
Estonia  0.206 0.000 0.000 0.019 0.061 0.003 0.007 0.000 0.080 0.012 0.028 
Croatia  0.222 0.011 0.006 0.000 0.041 0.007 0.000 0.004 0.060 0.046 0.048 
Hungary  0.326 0.005 0.038 0.054 0.038 0.016 0.000 0.002 0.099 0.034 0.042 
Lithuania  0.279 0.001 0.007 0.023 0.030 0.024 0.001 0.002 0.080 0.061 0.051 
Latvia  0.201 0.002 0.000 0.025 0.028 0.007 0.000 0.000 0.069 0.048 0.024 
Montenegro  0.223 0.006 0.000 0.014 0.025 0.002 0.001 0.007 0.071 0.021 0.081 
Poland  0.241 0.004 0.014 0.035 0.019 0.008 0.000 0.000 0.078 0.030 0.051 
Romania  0.313 0.004 0.000 0.006 0.057 0.022 0.000 0.001 0.084 0.062 0.078 
Serbia  0.276 0.003 0.006 0.011 0.034 0.020 0.003 0.000 0.086 0.063 0.050 
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Slovak Republic  0.317 0.008 0.030 0.027 0.033 0.004 0.001 0.014 0.137 0.054 0.009 
Slovenia  0.263 0.002 0.022 0.043 0.044 0.003 0.000 0.006 0.105 0.003 0.038 
            
Western Europe            
Austria  0.300 0.017 0.003 0.017 0.026 0.006 0.018 0.008 0.144 0.017 0.044 
Belgium  0.329 0.002 0.029 0.049 0.056 0.009 0.053 0.000 0.065 0.030 0.040 
Switzerland  0.282 0.006 0.024 0.019 0.028 0.012 0.050 0.006 0.104 0.012 0.021 
Germany  0.351 0.012 0.019 0.050 0.047 0.007 0.014 0.012 0.131 0.010 0.049 
Denmark  0.219 0.005 0.018 0.020 0.028 0.002 0.015 0.013 0.064 0.008 0.047 
Spain  0.239 0.004 0.014 0.026 0.028 0.002 0.010 0.001 0.103 0.032 0.020 
Finland  0.179 0.008 0.011 0.018 0.019 0.000 0.009 0.004 0.073 0.006 0.033 
France  0.335 0.002 0.034 0.025 0.059 0.000 0.007 0.008 0.104 0.028 0.069 
United Kingdom  0.258 0.010 0.027 0.021 0.051 0.002 0.000 0.004 0.113 0.010 0.019 
Greece  0.228 0.001 0.040 0.024 0.036 0.008 0.003 0.003 0.059 0.037 0.017 
Ireland  0.235 0.006 0.011 0.024 0.025 0.001 0.001 0.006 0.103 0.017 0.040 
Iceland  0.167 0.001 0.014 0.049 0.027 0.001 0.004 0.003 0.061 0.000 0.012 
Italy  0.178 0.008 0.006 0.011 0.016 0.024 0.003 0.000 0.061 0.028 0.023 
Liechtenstein  0.323 0.001 0.058 0.008 0.033 0.000 0.020 0.029 0.050 0.049 0.076 
Luxembourg  0.291 0.010 0.007 0.011 0.072 0.009 0.018 0.007 0.102 0.013 0.041 
Netherlands  0.271 0.006 0.009 0.020 0.065 0.010 0.018 0.004 0.111 0.004 0.024 
Norway  0.195 0.002 0.010 0.013 0.050 0.000 0.006 0.003 0.063 0.006 0.041 
Portugal  0.274 0.007 0.000 0.029 0.056 0.009 0.013 0.000 0.072 0.051 0.042 
Sweden  0.233 0.001 0.002 0.020 0.052 0.004 0.011 0.004 0.095 0.009 0.034 
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Table 6:  Coefficients on the primary share of public education expenditure in regressions of IOp on that 
variable; with and without controls. 

 
 

 Reading  Math  Science  

 No controls      

All countries -0.00217*** (0.00092) -0.00077 (0.00112) -0.00152 (0.00105) 

Excluding outliers -0.00300*** (0.00078) -0.00113 (0.00101) -0.00172* (0.00101) 
 

All countries 
Controlling for GDP and public expenditure in education per pupil 

-0.00197** (0.00087) -0.00013 (0.00120) -0.00103 (0.00113) 

Excluding outliers -0.00184*** (0.00072) -0.00181* (0.00102) -0.00185* (0.00108) 

 
Notes: Regression coefficients of the share of public expenditure in education allocated to the primary 
level. Dependent variable: IOp in the subject at column header. Standard errors in parentheses. Where 
indicated, outliers are identified using the method proposed by Besley, Kuh and Welsch (1980). Data 
source: UNESCO Institute for Statistics database; ***/**/*: significant at 1/5/10%. 
 
 
 
 
 

Table 7: Coefficients on tracking in regressions of IOp on that variable; with and without controls. 
 
 

 Reading  Math  Science  

 No controls      

All countries 0.00106* (0.00059) 0.00130* (0.00070) 0.00179*** (0.00063) 

Excluding outliers 0.00158** (0.00060) 0.00109* (0.00062) 0.00160*** (0.00059) 
 

All countries 
Controlling for GDP and public expenditure in education per pupil 

0.00148*** (0.00057) 0.00173*** (0.00074) 0.00214*** (0.00068) 

Excluding outliers 0.00090* (0.00047) 0.00175*** (0.00065) 0.00205*** (0.00067) 

 
Notes: Regression coefficients of tracking (measured as the share of technical and vocational enrollment 
at the secondary level). Dependent variable: IOp in the subject at column header. Standard errors in 
parentheses. Where indicated, outliers are identified using the method proposed by Besley, Kuh and 
Welsch (1980). Data source: UNESCO Institute for Statistics database; ***/**/*: significant at 1/5/10%. 
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Figure 1: Inequality in Educational Achievement: countries ranked by standard deviation in Mathematics test scores. 

 

Figure 2: Inequality of Educational Opportunity (IOp): countries ranked by share of variance explained by circumstances. 
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Figure 3: Distribution of standardized Turkish Mathematics test scores under three alternative 
assumptions about sample selection. 
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Figure 4: Inequality of educational opportunity and mean achievement 

 

 

Figure 5: Inequality of educational opportunity and GDP per capita. 
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Figure 6: Inequality of educational opportunity and public expenditure at the primary level  

 

Figure 7: Inequality of educational opportunity and tracking. 

 

Note: Tracking is measured as the share of enrollment in technical or vocational curricula at the secondary level. 




