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Problem definition. Product proliferation occurs in supply chains to produce diverse product portfolios

from a limited variety of raw materials. In such a setting, upstream operational decisions are often plagued

with high demand uncertainty, whereas downstream decisions are exposed to high product variety. We

compare two operational strategies (i.e., lead-time reduction and process redesign), both of which improve the

flexibility of supply chains by delaying product proliferation. Academic/Practical Relevance. The well-

known examples of Zara and Benetton illustrate the usefulness of these two operational strategies in managing

product proliferation. We develop an integrated framework to evaluate the impact of changes in supply chain

structure, cost and lead time of each echelon on profits. Utilizing this framework, we compare the relative

value of the two strategies that have only been investigated in isolation in the literature. Methodology.

We use the multiplicative martingale model of forecast evolution (m-MMFE) to characterize the demand-

updating process, and develop a dynamic optimization model to determine the optimal order quantities at

different echelons. We compare alternative operational strategies analytically as well as numerically using

Markovian sampling. Results. We show that reducing the lead time of a downstream operation is more

beneficial to manufacturers than reducing the lead time of an upstream operation by the same amount,

whereas reducing the costs of upstream operations is more favorable than reducing the costs of downstream

operations. We also indicate that a complementary strategy of deferring high cost operations to later stages

and then focusing on reducing lead times of those scheduled after the proliferation substantially increases

profits. Managerial Implications. We develop a decision typology that points out effective operational

strategies depending on product/market characteristics and process flexibility.

Key words : Product proliferation; lead-time reduction; process redesign; delayed differentiation.
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1. Introduction

Digital transformation in the retail industry (e.g., omni-channel retailing, recommendation systems

and user-oriented product development using social media) has led to an increase in demand for

niche items in almost all product categories (Brynjolfsson et al. 2011). Retailers now carry more

diverse product portfolios than in past decades in both online and physical stores. Managing a diverse

product portfolio has a significant effect on increasing demand-supply mismatch costs (Rajagopalan

2013). Arguably, the challenges associated with diverse product portfolios are not only limited to

downstream sales channels (retailers, online channels), but start with upstream production (Atalı

and Özer 2012, Kouvelis and Tian 2014, Dong et al. 2018), processing (Boyabatlı et al. 2011, Boya-

batlı 2015), and logistics (Gao et al. 2014) operations. In fact, it is not uncommon that manufacturers

attempt to fulfill customer demand for broad product lines by using the same upstream resources

and differentiating products over time as they get close to markets. This strategy helps them to

benefit from economies of scale for upstream resources and to postpone product differentiation until

acquisition of more accurate market demand forecasts.

Fashion apparel is perhaps the most celebrated industry where product proliferation is prominent

and has profound impact on profitability. Figure 1 depicts the supply chain structure for a typical

fashion-apparel manufacturer serving multiple markets. Global manufacturers like Zara, H&M, and

Uniqlo sell a variety of clothes in each selling season, which are produced by the same textile but

sewn and colored differently. After a design team responsible for a product line develops new designs

to be sold in the next season, yarns selected by the design team are ordered. Production occurs

sequentially involving the weaving, sewing, and dyeing processes. First, yarns are transformed into

textile by the weaving process. Then, the textile is sewn into different models and sizes. Finally,

the items are dyed into different colors to complete the production. Product proliferation occurs

sequentially, in three stages. The first occurs after the sewing process, the second occurs after the

dyeing process, and the third occurs when the products are labeled and shipped.

The examples of product proliferation are not limited to the fashion-apparel industry. In the

consumer packaged-goods industry, a limited variety of ingredients (e.g., milk, fruits, and yogurt
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Figure 1 Product proliferation in the fashion-apparel industry

bacteria) are used to make a wide variety of products in bulk (e.g., raw milk, raw yogurt, yogurt

drink, flavoured milk and yogurt). The products are filled in different-sized containers and then sold

in the market. Therefore, product proliferation first occurs during production, and again during

the filling process. It is also common in the process industry, where manufacturers differentiate

products along the supply chain to fulfill the customer demand for alternative “recipes” (each recipe

corresponds to a certain product specification that determines product performance along different

dimensions such as thermal resistance, elasticity, etc.). As a matter of fact, the primary motivation

for this paper stems from authors’ involvement with a leading global manufacturer of composites

used mainly by tyre producers in the automotive industry.1 Demand for the manufacturer is both

volatile and seasonal due to the seasonality of the tyre sales. The manufacturer first processes

some chemicals with polypropylene to produce polymer materials. These materials are first shaped

through a twisting operation and then go through a second-level fabrication process of weaving.

Finally, the weaved products enter a chemical blending process in which they are dipped to chemical

liquids to bring the products to the right level of thermal resistance and elasticity. Although the

1 A letter from this manufacturer with more than $700 million annual revenue is attached to the cover letter.
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variety of polymer materials are limited, there exists a high variety of end products due to product

proliferation in the last three stages, as illustrated in Figure 2.
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Figure 2 Product proliferation in our process industry example

Manufacturers operating in such settings are often exposed to high demand uncertainty for

upstream production orders. As the production moves forward, demand uncertainty is partially

resolved due to additional valuable demand information collected from the market. For downstream

production orders, however, manufacturers are exposed to high product variety. Manufacturers

can deploy inventory pooling for upstream orders to mitigate uncertainty, but this is not possible

for downstream orders, post-proliferation. Due to high demand uncertainty at upstream echelons

and high product variety at downstream echelons, mismatches between supply and demand are

inevitable, which in turn have negative impact on long-term profits.

Delaying differentiation is an effective strategy for improving responsiveness in supply chains with

proliferation (the terms “differentiation” and “proliferation” are used interchangeably). It enables

manufacturers to take advantage of inventory pooling at upstream echelons, while ensuring that

the proliferation at downstream occurs with more accurate demand information. There are two
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practical approaches to operationalizing delayed differentiation, both of which have been widely

popularized by their implementation in the fashion apparel industry. The first approach is to redesign

the processes so that the operations that cause proliferation are deferred to a later stage in the supply

chain. Benetton, the Italian clothing company, is the first firm which successfully implemented this

approach and reversed the order of dyeing and knitting operations (Heskett and Signorelli 1989,

Lee and Tang 1997). Traditionally Benetton spun and dyed the yarns first and then knitted the

colored yarns. In 1972, the company began dyeing clothes rather than yarns to postpone the costly

dyeing operation. This allowed Benetton to postpone product differentiation until it could observe

accurate market demand information, leading to higher profits due to the decrease in supply-demand

mismatches. Given the success of this “postponement” strategy, many other companies followed

Benetton’s lead (Parsons and Graves 2005, Viswanathan and Allampalli 2012, Kouvelis and Tian

2014). We remark that process redesign does not necessarily require swapping of operations; it

may also be achieved by changing the way operations are performed (and associated costs). In

the case of our leading process industry example, it is possible to meet the technical specifications

requested by a customer by changing either technical grades used during the fabrication process or

the chemical recipes used during the blending process. The latter enables the postponement of the

point of proliferation, but increases production costs.

The second approach is to reduce lead times for each operation in the supply chain. Zara, the

Spanish fashion apparel company, followed this strategy and became the market leader in 2008

(Ghemawat and Nueno 2006). Demand forecasts are often plagued with high uncertainty when

lead times tend to be long. Reducing lead times allows manufacturers to postpone the point of

proliferation and actual ordering decisions closer to market demand, making it possible to place

production orders based on more accurate demand forecasts. This in turn leads to a decrease in

supply-demand mismatches (Caro and Gallien 2010, Caro and Martínez-de Albéniz 2015).

Although both approaches aim to improve the responsiveness of supply chains, they have been

investigated in isolation in the literature. In the absence of an integrated framework that models



Biçer, Lücker, and Boyacı: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
6

supply chain structures with proliferation under an evolutionary demand environment, it is difficult

to compare lead-time reduction with process redesign. For a holistic understanding, such a compar-

ison needs to cover both the case where the firm has the process flexibility to adjust the sequence

of operations and the case where it does not. We aim to address this gap in this paper. To this

end, we first develop a framework which enables systematic evaluation of the impact of changes in

the supply chain with respect to point(s) of proliferation, costs and lead times. We then utilize this

framework to delineate the conditions that render process redesign and/or lead time reduction most

valuable. We derive practical insights and recommendations to improve supply chain responsiveness

in different settings.

Our paper makes three important contributions to the extant literature. First, from a modeling

perspective, we develop an analytical framework for dynamically optimizing inventory/ordering

quantities in (multi-product) supply chains with product proliferation. This framework extends

existing inventory models in the literature that incorporates forecast evolution (Wang et al. 2012, Oh

and Özer 2013, Biçer and Seifert 2017) to multi-product and multi-echelon settings. Our framework

takes the supply chain structure along with lead times and cost values for each echelon as inputs,

incorporates the evolution of demand forecasts using the multiplicative martingale model of forecast

evolution (m-MMFE), and optimizes the ordering decisions at each echelon. We characterize the

optimal strategy and investigate the effects of salient parameters—costs, lead times, proliferation

points.

Second, utilizing this framework, we analytically demonstrate the critical impact of cost changes,

lead time reduction, and postponement points on optimal inventory levels and consequent profits.

For example, we establish that reducing the lead time of a downstream operation is more beneficial

to manufacturers than reducing the lead time of an upstream operation by the same amount,

whereas reducing the costs of upstream operations is more favorable than reducing the costs for

downstream operations. As a result, the value of postponing the point of proliferation increases when

the downstream operations (post-proliferation) are more costly. We substantiate our descriptive

insights with a comprehensive numerical study based on Markovian sampling.
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Third, we translate the descriptive results into prescriptive insights for practicing managers, in

particular with respect to the implementation of delayed differentiation. On one hand, we provide

normative support for redesigning the process when the operation that is causing proliferation is

also more costly. In Benetton’s case, dyeing operation is costlier than knitting, and it also causes

a high degree of product differentiation. Hence, postponing dyeing to after knitting (by swapping

the order of operations) clearly improves the profits. On the other hand, if the operation causing

product proliferation is less costly than the other operations, it is not clear how to redesign the

process (delaying differentiation by swapping with a downstream operation may not be profitable

for example). Our results indicate that a complementary strategy of deferring high-cost operations

to later stages and then focusing on reducing lead times of those scheduled after the proliferation

would effectively endow manufacturers with the desired benefits. We also consider the scenario

where process sequence cannot be altered, and delineate conditions under which it makes sense to

prioritize lead time reduction over cost reduction, and vice versa. Going a step further, we synthesize

our prescriptions and map them into a typology that points out to the most appropriate strategy

based on product/market characteristics and process flexibility.

2. Literature review

Our paper is mainly related to the OM literature focusing on the value of supply chain responsive-

ness. Prominent papers in the literature have explored how the value of responsiveness is shaped by

information asymmetry (Lutze and Özer 2008), strategic customer behaviour (Cachon and Swinney

2011), competition among buyers (Caro and Martínez-de Albéniz 2010), demand-forecast evolution

(Wang et al. 2012, Oh and Özer 2013, Biçer and Seifert 2017, Biçer et al. 2018), multiple orders

(Martínez-de Albéniz 2011, Song and Zipkin 2012, Calvo and Martínez-de Albéniz 2015, Cao and So

2016). A substantial amount of the work in the literature focuses on the fast fashion industry. We

refer the reader to Caro and Martínez-de Albéniz (2015) for an overview of the fast-fashion business

model, its industry outlook, and untapped problems.

Within this broad literature, from a modeling perspective, the closest works are Wang et al.

(2012) and Biçer and Seifert (2017) because they also develop integrated dynamic inventory models
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with the martingale model of forecast evolution. Wang et al. (2012) model a newsvendor with

multiple ordering opportunities and increasing costs over time, and characterize optimal base-stock

levels. Biçer and Seifert (2017) extend Wang et al. by including capacity limitations and allowing

for multiple products. In both papers, the ordering decisions are made only for the end products,

not for the components or the raw materials at the upstream echelons. Our model is more general

because we optimize ordering decisions in a multi-echelon setting such that the order quantity of a

given operation determines the capacity for the immediate downstream echelon. We also consider

the possibility of product proliferation to occur at any echelon in the supply chain. For the same

reasons, our model differs from single-item inventory models with evolving demands and multiple

ordering opportunities. Song and Zipkin (2012) study such a setting where order quantities can be

updated downwards (after paying the cost) as new demand information arrives. Cao and So (2016)

consider an assembler ordering from two suppliers (effectively two ordering decisions) with demand

forecasts updated over time.

Our research has natural connections with the works that study postponement strategies for delay-

ing product differentiation. One stream within this literature focuses on the design of supply chain

structures (Lee and Tang 1997, 1998), capacity investments (Kouvelis and Tian 2014), and inventory

levels at the decoupling points (i.e., vanilla boxes) (Swaminathan and Tayur 1998, Paul et al. 2015).

Common to these papers is that demand is assumed to be random without an evolutionary form,

so the benefits of postponement are only attributed to inventory pooling—benefits due to improved

forecast accuracy are not incorporated. Another stream focuses precisely on demand evolution. In

particular, Aviv and Federgruen (2001a,b) analyze the value of order postponement in a multi-period

inventory setting where sales occur in each period and demand forecasts are updated in a Bayesian

manner. In a similar vein, Atalı and Özer (2012) develop a two-stage production model with product

differentiation occurring at the beginning of the second stage under a Markov-modulated demand

model. They show that the value of postponement increases with higher operational flexibility (as

measured by difference in minimum and maximum production limits). Our framework incorporates
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both the inventory pooling and improved forecast accuracy motivations for delaying differentiation

in an integrative manner. The resulting model lends itself for systematic comparison of alternative

operational strategies that have only been explored in isolation in the literature.

3. Model preliminaries

Consider a supply chain with (n+ 1) echelons, where the most downstream echelon n is closest to

the customer and echelon 0 is the farthest from the customer. Echelon i+ 1 is considered to be the

downstream and echelon i− 1 the upstream of echelon i. Supply chain activities occur sequentially

such that the operation at echelon i uses the output of echelon i−1 as input and transforms it into

output. The output of echelon i is then used as input for echelon i+ 1. Without loss of generality,

we assume that one unit of input is transferred into one unit of output. The manufacturer has to

make n ordering decisions at ti for i∈ {0,1, · · · , n− 1}. Hence, there is a positive lead time at each

echelon; ti+1− ti > 0 for i ∈ {0,1, · · · , n− 1} and expediting is not allowed. For ease of exposition,

suppose for now that there is a single final product, and let Qi denote the order quantity at echelon

i. The order quantity Qi for i ∈ {1, · · · , n− 1} is constrained by the order quantity at the previous

echelon (i.e., Qi ≤Qi−1), while the first order quantity Q0 is unrestricted. We use Di to denote the

demand forecast at time ti for i ∈ {0, · · · , n}, with the end demand forecast Dn representing the

actual market demand. The timeline of ordering decisions for this single-product model without any

product proliferation is depicted in Figure 3.

Time t0 t1 t2 tn-2 tn-1 tn

Q0 Q1≤Q0 Q2≤Q1 Qn-2≤Qn-3 Qn-1≤Qn-2 Sales = min(Qn-1, Dn)
Order 
quantity

Figure 3 Timeline of ordering decisions for a single-product model without product proliferation

We model the evolution of demand forecasts Di from t0 to to tn according to the multiplicative

martingale model (m-MMFE), which is known to fit very well to empirical data of demand-forecast

updates (Heath and Jackson 1994, Oh and Özer 2013, Biçer et al. 2018). Let (Ω,F ,P) to denote a
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filtered probability space on which demand forecasts follow the m-MMFE process. Demand process

on (Ω,F ,P) is adapted by filtration (Ft)t≥t0 ⊆F such that:

• The actual demand value conditional on the demand forecast (i.e., Dn|Di for i∈ {0, · · · , n−1})

is square integrable so that Dn|Di has a finite variance.

• Fti ⊆Fti+1
for i∈ {0, · · · , n− 1} such that forecasters do not lose information over time.

• F ⊆Ftn , implying that demand realized at time tn is immediately known by the forecasters.

These properties are considered to be the features of a good forecast-updating practice, which are

also satisfied by the m-MMFE (Oh and Özer 2013). We remark that our aim here is not to develop

a new forecasting model but rather to model the evolution of demand forecasts for a manufacturer

with a good forecasting practice.

According to the m-MMFE, the demand forecasts at t= ti for i ∈ {1, · · · , n} are given by Di =

D0 exp(ε1 + ε2 + · · ·+ εi), where εt follows a normal distribution:

εi ∼N (−σ2(ti− ti−1)/2, σ
√
ti− ti−1), ∀i∈ {1, · · · , n}. (1)

Therefore, the end demand conditional on the demand forecast at ti follows a lognormal distribution:

ln(Dn)|Di ∼N (ln(Di)−σ2(tn− ti)/2, σ
√
tn− ti), ∀i∈ {0, · · · , n− 1}. (2)

In Figure 4 we present an example of the evolution of demand forecasts according to the m-

MMFE. We simulate a random path assuming that the initial demand forecast is scaled to one and

the σ value is set to one. The forecast evolves from t0 = 0 until tn = 1. The solid curve represents the

mean forecast, and the shaded area shows the 95% confidence interval. As the time approaches to

the realization of market demand (t→ 1), the forecast accuracy increases significantly as indicated

by a reduction of the distance between the upper and the lower bounds of the confidence interval.

The following sequence of events occur at each decision epoch ti for i ∈ {0, · · · , n− 1}: i) man-

ufacturer observes the demand forecast Di; ii) the order quantity of the previous operation Qi−1

is reviewed; iii) the order quantity Qi is determined, and the manufacturer incurs an operational

cost ciQi. In what follows, we formulate the manufacturer’s optimization problem and derive its

solution. We do this first for the single-product case and then move on to the most general scenario

with product proliferation.



Biçer, Lücker, and Boyacı: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
11

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
Time

D
em

an
d 

fo
re

ca
st

 (
95

%
 C

I)

Figure 4 A sample path of the demand forecast according to the m-MMFE with 95% two-sided confidence intervals.

4. Single product model

Consider the single-product model shown in Figure 3, where the final product is sold in a single

market. The product is processed from raw materials through a sequence of operations, and sold in

the market at a price of p per unit. We assume that there is no salvage value for the excess inventory.

Thus, a revenue of pmin(Dn,Qn−1) is collected at time tn. Let ci denote the cost of processing the

ith operation per unit input. This includes all the cost elements such as labor, utility, material, and

other operational costs that the manufacturer incurs only from ti until ti+1. We use κi to denote

the accumulated unit cost from t0 until ti+1 such that:

κi =
i∑

j=0

cj, ∀i∈ {1, · · · , n− 1}. (3)

Thus, κn−1 is the total cost to produce one unit of the end product.

We formulate the manufacturer’s optimization problem as a dynamic program (DP). At each

decision epoch ti, the manufacturer observes the state, which consists of the available supply Qi−1 at

the upstream echelon and demand forecast Di, and then determines the ordering quantity Qi that

maximizes expected profits. For the last decision epoch tn−1, the ordering decision is a constrained

newsvendor problem:

Vn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
EDn|Dn−1

[
pmin(Dn,Qn−1)

]
−κn−1Qn−1

}
. (4)
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The ordering decisions at the previous decision epochs (i.e., ∀i∈ {0, · · · , n− 2}) can be determined

dynamically according to the following Bellman equation:

Vi(Qi−1,Di) = max
Qi≤Qi−1

{
EDi+1|Di

[
Vi+1(Qi,Di+1)− ciEQi+1|Qi [Qi−Qi+1]

]}
. (5)

The order quantity at t0 is not constrained, so we set Q−1 = +∞. Let the functions to be maximized

in Equations (4) and (5) be denoted respectively as:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

[
pmin(Dn,Qn−1)

]
−κn−1Qn−1, (6)

Gi(Qi,Di) = EDi+1|Di

[
Vi+1(Qi,Di+1)− ciEQi+1|Qi [Qi−Qi+1]

]
, (7)

with gi(Qi,Di) = ∂Gi(Qi,Di)/∂Qi.

Observe that the optimal value of Qi in Equation (5) depends on the demand forecasts in all

future decision epochs. We define a new parameter Dj for j ∈ {i+ 1, · · · , n− 1} to represent the

critical demand forecast values at time tj. If Dj ≥ Dj for all j ∈ {i + 1, · · · , n − 1}, the optimal

order quantities in all the remaining decision epochs become equal to Qi. If Dj <Dj for j > i, the

optimal value of Qj becomes less than Qi. Therefore, Dj values for j ∈ {i+ 1, · · · , n− 1} determine

the lower bounds for demand forecasts that make optimal order quantity at time tj equal to Qi.

Solving the DP model by backward induction, we characterize the optimal ordering policy at each

decision epoch, which is presented in the next theorem.2

Theorem 1. The optimal order quantity, denoted by qi for i∈ {0, · · · , n− 1}, satisfies:

qi = min(Qi−1,Q
∗
i ), (8)

where Q∗i is the optimal order quantity for the unconstrained problem (without “Qi ≤Qi−1”), which

is found by the following expressions:

Q∗i = {Qi | gi(Qi,Di) = 0}, (9)

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)−κi = 0 (10)

2 The proofs of all results are presented in our on-line appendix.
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with D{i+1,n−1} denoting the vector of demand forecasts from i + 1 to n − 1 and D{i+1,n−1} =

(Di+1, · · · ,Dn−1) denoting the vector of critical demand forecasts from i+ 1 to n− 1.

It can be easily verified that equation (10) reduces to the newsvendor solution for i= n− 1 such

that:

gn−1(Qn−1,Dn−1) = pPr(Dn >Qi)−κn−1 = 0. (11)

For i < n−1, the solution is still in spirit the newsvendor solution. The first term of the right-hand

side of Equation (10) gives the expected value of the marginal revenue generated by ordering one

additional unit when (Qi − 1) units are already ordered. The marginal revenue not only depends

on the final demand realization Dn but also on the updated demand forecasts at the remaining

decision epochs. Even when Dn >Qi, the marginal revenue may be zero if the manufacturer decides

to reduce the order quantity in any of the subsequent production stages. The remaining terms

of the right-hand side of Equation (10) give the expected value of the marginal cost of ordering

one additional unit when (Qi − 1) units are already ordered. When the Qi
th unit is ordered, the

manufacturer incurs the costs from t0 until ti+1, which amounts to κi. If the demand forecast at the

next decision epoch exceeds the critical value (i.e., Di+1 ≥Di+1), the manufacturer orders Qi units

at ti+1 and incurs an additional cost of ci+1 per unit and so forth.

Proposition 1. Optimal order quantity in an upstream echelon is always higher than the expected

(optimal) order quantity in a downstream echelon such that q0 >E[q1|D0]> · · ·>E[qn−1|D0].

Proposition 1 states that the interdependency between order quantities (due to supply constraints)

and the accumulating cost structure induce the manufacturer to order in large quantities for the

upstream operations even though the manufacturer expects the final order quantity to be lower.

Next, we present the impact of cost parameters on optimal order quantities and the expected profit.

Proposition 2. A- Let q = {q0, q1, · · · , qn−1} be the vector of optimal order quantities at each

decision epoch. If cj for j ∈ {0, · · · , n− 1} increases, the optimal order quantities are updated

such that q′ = {q′0, q′1, · · · , q′n−1}, where q′i is statistically smaller than qi (i.e., q′i ≺ qi) ∀i ∈

{0, · · · , n− 1}.
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B- Let c0 = c1 = · · ·= ci−1 = ci+1 = · · ·= cn−1 = cfixed and ci > cfixed. Then, swapping the operation

i with any operation from the set {i+ 1, · · · , n− 1} increases the total expected profit.

Part A of Proposition 2 describes how the order quantities are affected by an increase in the

cost of any operation. If the cost of an operation increases, order quantities at all decision epochs

decrease. Part B shows how the sequence of the operations should be redesigned depending on the

operational costs. By postponing an operation with a higher cost later than the other operations, the

manufacturer increases its profits. Swapping the high cost operation with a downstream lower cost

operation increases the upstream order quantity and hence the available supply (upper bounds) for

the downstream operation. An increase in the upper bounds for the downstream quantities provides

the manufacturer with additional flexibility to adjust order quantities according to updated demand

forecasts, leading to higher profits. This result is in line with Lee and Tang (1997) and Cao and

So (2016). Lee and Tang (1997) state that redesigning the production processes such that high

value-added and short operations take place later than low value-added and long operations leads

to higher profits. Cao and So (2016) find that a manufacturer can generate high profits if a supplier

with a long lead time supplies a low-value component, whereas another supplier with the short lead

time supplies a high-value component. Part B of Proposition 2 establishes effectively the same result

for a more general setting. We now turn our attention to the impact of lead times.

Proposition 3. Reducing the lead time of operation i for i ∈ {0, · · · , n− 1} by an amount of

∆t≤ ti+1− ti increases expected profit more than what can be achieved by reducing the lead time of

operation j < i by the same amount of ∆t.

This proposition states that reducing the lead time of a downstream operation is more beneficial to

the manufacturer than reducing the lead time of an upstream operation by the same amount.

The analytical results given by Propositions 1–3 provide useful insights and clear guidance on

how a manufacturer should implement process-redesign and lead-time-reduction practices. Even in

the absence of product proliferation at any echelon, manufacturers can still increase the profits by

redesigning their processes to postpone high-cost operations. When a manufacturer aims to reduce
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its operational costs, it should first focus on the upstream operations and then move sequentially

downstream. However, the manufacturer should start from the downstream operations and then

move upstream if the objective is to reduce the lead time.

5. Product proliferation model

We now extend the single-product model to the multi-product case where the raw materials or semi-

finished products can be transformed into a variety of products. Product proliferation is allowed

at any decision epoch. Given the resulting supply chain structure with the proliferation points, we

determine the optimal order quantities at each decision epoch.

To facilitate model development, in Figure 5 we present an example where product proliferation

occurs at two epochs: t1 and tn−2. We use Qj
i to denote the order quantity placed for component j

at time ti. We use a unique code to label the component j at ti. The code is a sequence of single

digits, and the length of the code gives how often product proliferation occurs from t0 until ti. In

our example in Figure 5, at t1 three different products are ordered, each taking a different digit

number. The second proliferation occurs at tn−2, where the inventory of each product is allocated to

produce three differentiated products, amounting to nine SKUs available in the market. Thus, a new

digit is added to the product code at tn−2. Suppose, for example, a fashion-apparel manufacturer

selling a product line to different markets uses a three-digit product code (e.g., 361). The first digit

represents the size (e.g., small, medium, or large). The second digit represents the color. The third

digit denotes the market. The three-digit code means that product proliferation occurs three times

along the supply chain (one for size, one for color, and the last for different markets).

The primary challenge in solving the product proliferation problem lies with the need to link

the demand dynamics to the ordering constraints. For each ordering decision, it is necessary to

consolidate the demand updates of different end products and then allocate the limited supply

available from the previous operation to process different semi-finished or end products. We define

two different sets and their subsets to formalize the problem. To capture the resource constraints, we

use Θi to denote the set of all components produced at echelon i∈ {1, · · · , n} at time ti. We further
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Figure 5 Ordering decisions in a supply chain with the product proliferation at the decision epochs t1 and tn−2

partition the set Θi into k pairwise disjoint subsets such as Θj
i for j ∈ {1, · · · , k} and k = |Θi−1|.

We define Θj
i as the set that contains all components that use the same upstream resource as their

input. We then have by definition:

Θi =
⋃

j∈Θi−1

Θj
i and ∅=

⋂
j∈Θi−1

Θj
i . (12)

Recalling our example in Figure 5, Θn−1 = {11,12,13,21,22,23,31,32,33}. There are nine order-

ing decisions in the previous period (i.e., t= tn−2), and therefore the set Θn−1 is partitioned into
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nine subsets such that:

Θn−1 = Θ11
n−1 ∪Θ12

n−1 ∪Θ13
n−1 ∪Θ21

n−1 ∪Θ22
n−1 ∪Θ23

n−1 ∪Θ31
n−1 ∪Θ32

n−1 ∪Θ33
n−1,

where Θ11
n−1 = {11}, Θ12

n−1 = {12}, Θ13
n−1 = {13}, Θ21

n−1 = {21}, Θ22
n−1 = {22}, Θ23

n−1 = {23}, Θ31
n−1 =

{31}, Θ32
n−1 = {32}, and Θ33

n−1 = {33}. Likewise, at t= tn−2, Θn−2 = {11,12,13,21,22,23,31,32,33}.

There are three ordering decisions in the previous period (i.e., t= tn−3) so Θn−2 is partitioned into

three subsets: Θ1
n−2 = {11,12,13}, Θ2

n−2 = {21,22,23}, and Θ3
n−2 = {31,32,33}.

With these sets defined, we can write down the ordering constraints between echelons. That is,

the sum of the order quantities for the products that use the same input cannot be larger than the

order quantity of the input at the immediate upstream echelon. In mathematical terms:

∑
j∈Θki

Qj
i ≤Qk

i−1. (13)

Returning back to the Figure 5 example, the order quantity constraints at tn−1 are Qj
n−1 ≤Q

j
n−2

for each j ∈Θn−1. At tn−2, we have three ordering constraints:

Q11
n−2 +Q12

n−2 +Q13
n−2 ≤Q1

n−3,

Q21
n−2 +Q22

n−2 +Q23
n−2 ≤Q2

n−3,

Q31
n−2 +Q32

n−2 +Q33
n−2 ≤Q3

n−3.

We can then formalize the other order quantity constraints at ti as Qj
i ≤Q

j
i−1 for i∈ {2, · · · , n− 3}

and j ∈Θi. Finally, at t= t1—that is, when the first proliferation occurs—we have Q1
1 +Q2

1 +Q3
1 ≤

Q0.

We also define another set Υk
i which represents the set of end products produced by using compo-

nent k at echelon i. Therefore, Υk
i includes the end products (sold in the markets), whose availability

depends on the order quantity decision of Qk
i . In Figure 5, for example, the quantity Q1

1 has a

direct influence on the ordering decisions of the end products: Q11
n−1, Q12

n−1, and Q13
n−1. Therefore,

Υ1
1 = {11,12,13}. The set Υ0 = Θn−1 since the quantity Q0 has direct influence on the final inventory

of all end products. Let pj for j ∈Θn denote the price of the products sold in the market.
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To determine the maximum expected profit at tn−1, we write the following stochastic programming

(SP) model (Shapiro et al. 2009, Ch. 1):

Maximize
Q
j
n−1,∀j∈Θn−1

z =
∑

j∈Θn−1

pjE
(
Wj(Q

j
n−1,D

j
n)
)
−κj

n−1Q
j
n−1 (14)

subject to: ∑
j∈Θkn−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (15)

Qj
n−1 ≥ 0, ∀j ∈Θn−1, (16)

where Wj(Q
j
n−1,D

j
n) = min{Qj

n−1,D
j
n} denotes the sales and Dj

n is a random variable. Constraint

(15) guarantees that the sum of order quantities of the items in a set Θk
n−1 is less than the amount

of their parent item k. In the appendix, we provide the solution for the mathematical problem (14)–

(16). Specifically, we transform the SP model into a linear programming (LP) model as demonstrated

by Shapiro et al. (2009, Ch. 1–3). By analyzing the LP model and its dual, we partition the demand

space and determine the shadow prices (see Van Mieghem (1998) for a similar method to solve an

SP problem). We then proceed backwards in a similar fashion, using induction, and determine the

optimal ordering policy for upstream echelons. The optimal policy is satisfied when all products

in a set Θk
i (for all k and i values) have the same marginal value of ordering one additional unit.

If the quantity Qk
i−1 is highly restrictive, the marginal value for all products in the set Θk

i would

have a positive value. If the quantity Qk
i−1 is excessive, the marginal value would become zero. This

analysis reveals the structure of the optimal policy as well.

Theorem 2. The optimal ordering policy for all the items in each decision epoch is a resource-

constrained, state-dependent base-stock policy, which depends on the evolution of demand forecasts

and processing costs.

With the characterization of the optimal policy at hand, we can use our framework to analyze the

impact of point of proliferation, costs, and lead times. Clearly, everything else remaining the same,

delaying differentiation (moving any point ti with proliferation forward) is beneficial to the firm.

The next proposition sheds light on how this benefit is shaped by operational costs.
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Proposition 4. The value of postponing the point of product proliferation increases as the costs

of downstream operations taking place after the point of proliferation increase.

Proposition 4 has important implications. It first underpins delaying differentiation by swapping

costly operations that cause proliferation with downstream less costly operations. As documented

by the Benetton’s case, postponing the point of proliferation and the costly dyeing operation were

both achieved by only swapping two operations. If such an improvement achieved by a single change

is not possible, redesigning processes such that costly operations scheduled before the proliferation

are swapped with less costly post-proliferation operations should precede any attempt to reduce

lead times and postpone the proliferation point. Next, we investigate the impact of lead times.

Proposition 5. Suppose product proliferation occurs once along the supply chain at time ti.

Reducing the lead time of operation j for j ∈ {i, · · · , n−1} by an amount of ∆tj ≤ tj+1− tj increases

the expected profit more than what can be achieved by reducing the lead time of operation j for

j ∈ {0, · · · , i− 1}.

This proposition extends the results of Proposition 3 to the multi-product setting. It demonstrates

that giving priority to downstream operations in lead-time reduction is more effective than upstream

operations for manufacturers also when there is product proliferation in the supply chain.

6. Numerical analysis

The analytical results derived in the previous two sections provide valuable guidelines in terms of

implementing delayed differentiation. However, the model is not tractable enough to make direct

analytical comparisons between alternative supply chain configurations with different points of pro-

liferation, lead times and costs. For this objective, we resort to numerical experiments. In order

to conduct these comparisons comprehensively and to limit any bias that may come from specific

parameter settings, we set up a large scale numerical study based on Markovian sampling.

We consider a setting with five echelons (i.e., n= 4; the first ordering decision is made at t0 and

market demand is observed at t4) and two end products. We allow the demands of the two products
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to be correlated, and sample the correlation parameter ρ from a uniform distribution, ρ∼U(−1,1).

We assume that both products have the same value of the coefficient of variation (CV), and sample

the CV value at each iteration from a uniform distribution, CV ∼ U(0,1). Then, we calculate the

volatility parameter for the m-MMFE using the formula: σ =
√

ln(CV 2 + 1). We normalize the

forecasting horizon to one, t4 = 1.We randomly sample the total time length (t4− t0) from a uniform

distribution: t4 − t0 ∼ U(0,1). Then, we allocate the total time length to different operations so

that the lead times t1 − t0, t2 − t1, t3 − t2, and t4 − t3 are randomly determined at each iteration.

The product proliferation occurs at only one of those echelons, which is randomly selected. Figure

6 shows a small sample of three different supply chain structures that can be generated based on

our random sampling procedure.
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Figure 6 Some potential supply chain structures

We fix the selling price to one and salvage value to zero. Then, we sample the total production cost

per unit from a uniform distribution: κ4 ∼U(0,1). We randomly allocate the total production cost

to the operations. After determining the input parameters, we implement a Markovian Sampling

method to generate demand paths and realized profits. We set the demand forecast at time t= 0 to

one. Given that the m-MMFE gives unbiased estimates, the expected revenue (i.e., p×Dt=0) is equal
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to one. Therefore, the results of our statistical analysis can be interpreted in terms of percentages

of the expected revenue.

For a given set of input parameters, we iteratively sample the demand forecast and optimize

the order quantity at each decision epoch. Demand updating occurs according to the m-MMFE

process, for which we use the conditional distribution given by Equation (2). Once the demand

forecast for a decision epoch is generated, the optimal order quantity is determined using Theorem

2. Then, the “reward" values at each stage are calculated, yielding the total profit. We sample the

input parameters 10000 times. Then, we generate ten random demand paths for each set of input

parameters, obtaining 100000 data points for our analysis.

To analyze the results, we setup a linear regression model as follows:

Profit = β0 +β1c1 +β2c2 +β3c3 +β4c4 +β5ρ+β6CV +β7TimeofDiff +β8StepofDiff

+β9(t1− t0) +β10(t2− t1) +β11(t3− t2) +β12(t4− t3). (17)

The dependent variable is the total profit generated. We select the cost parameters, demand param-

eters (correlation between demand for the products, coefficient of variation), the time and point of

proliferation, and the lead time for each operation as independent variables.

6.1. Analysis of the results

The descriptive statistics of the dependent and independent variables are given in Table 1. The

estimates for the coefficients and the variance inflation factors (VIFs) are given in Table 2. The

estimates are found to be robust after separately testing the underlying assumptions of the linear

model (17).

The intuitive effects of demand uncertainty and correlation are readily observed in our numerical

study. Specifically, the coefficient of the correlation parameter (i.e., β5 =−0.0209655) is negative,

meaning that total profit increases as the demand for products becomes more negatively correlated.

This result is due to the benefits of inventory pooling in the stages before the point of product

proliferation, in a way that the value of pooling inventory increases as demand for the products
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Pearson’s Correlation
Mean SD Min Max 1 2 3 4 5 6 7 8 9 10 11

Profit (DV) 0.78 0.65 -1.75 11.23
1. c1 0.13 0.17 0.00 0.99
2. c2 0.13 0.17 0.00 0.98 -0.08
3. c3 0.12 0.16 0.00 0.98 -0.09 -0.07
4. c4 0.12 0.17 0.00 0.97 -0.09 -0.08 -0.07
5. ρ 0.00 0.57 -1.00 1.00 0.00 0.00 0.00 -0.01
6. CV 0.49 0.29 0.00 1.00 0.01 0.01 0.00 0.01 -0.02
7. TimeofDiff 0.45 0.35 0.00 1.00 0.00 0.00 -0.01 0.01 0.00 0.00
8. StepofDiff 2.48 1.12 1 4 -0.01 0.01 -0.01 0.00 0.00 -0.01 0.71
9. t1 − t0 0.22 0.24 0.00 1.00 0.00 -0.01 -0.02 0.01 0.00 0.00 0.28 0.00
10. t2 − t1 0.21 0.24 0.00 1.00 0.00 0.01 0.00 0.01 0.00 0.02 0.06 0.00 -0.29
11. t3 − t2 0.22 0.24 0.00 1.00 0.00 0.00 -0.01 0.01 0.00 0.00 -0.17 0.00 -0.30 -0.29
12. t4 − t3 0.22 0.24 0.00 1.00 -0.01 0.01 0.02 -0.02 0.00 -0.02 -0.38 0.00 -0.30 -0.29 -0.29

Table 1 Means, Standard Deviations, Minima, Maxima, and Correlations

Estimate VIF
β0 (Intercept) 2.0534208∗∗∗

β1 (c1) −2.0029586∗∗∗ 1.027807

β2 (c2) −1.9264279∗∗∗ 1.022989

β3 (c3) −1.8938598∗∗∗ 1.023589

β4 (c4) −1.8259906∗∗∗ 1.025135

β5 (ρ) −0.0209655∗∗∗ 1.000668

β6 (CV ) −0.3968276∗∗∗ 1.001141

β7 (TimeofDiff) 0.0295013∗∗∗ 4.597373

β8 (StepofDiff) −0.0097502∗∗∗ 3.289500

β9 (t1− t0) −0.0737628∗∗∗ 2.884366

β10 (t2− t1) −0.1125864∗∗∗ 3.287310

β11 (t3− t2) −0.1356525∗∗∗ 4.024351

β12 (t4− t3) −0.1559704∗∗∗ 4.988999

Table 2 Summary statistics. Residual standard error: 0.3194 on 99986 degrees of freedom. R-squared: 0.7579.

gets more negatively correlated. The coefficient of the CV is also negative (i.e., β6 =−0.3968276),

which is aligned with our expectations since an increase in demand uncertainty leads to higher

supply-demand mismatches and lower profits.

The numerical results substantiate our analytical results on costs and lead times. The coefficients

of the cost parameters are such that |β1|> |β2|> |β3|> |β4|, indicating that the impact of increasing

the cost of an operation is more pronounced for the operations scheduled earlier. This result is in

line with Part B of Proposition 2 and Proposition 4. In a similar vein, the values of β9, β10, β11,

and β12 are all negative, indicating that reducing the time to complete any operation has a positive

impact on the profit. Furthermore, consistent with Proposition 3, the value of reducing lead times

is higher for operations scheduled later—that is, |β12|> |β11|> |β10|> |β9|.
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Regarding the point of product proliferation, total profit increases as the timing of differentiation

(TimeofDiff) is delayed, given that β7 has a positive value. We also include another variable (i.e.,

StepofDiff) to indicate the rank of the echelon in which the proliferation occurs (i.e., equal to

i+ 1, where i is the subscript of ti). The higher the value of its coefficient, the later the product

proliferation. This variable is expected to be positively correlated with TimeofDiff , and indeed β8

also has a positive value.3 Interestingly, however, the value of delaying the point of the proliferation

is relatively low compared to process redesign after excluding the positive impact of reducing lead

times. For example, postponing the point of the proliferation fully from the beginning of the forecast

horizon t= 0 to the end t= 1 leads to only a 2.9% increase in profit. This is considerably lower than

the benefits of swapping an upstream high-cost operation with a downstream low-cost operation

for example. This emphasizes the fact that critical benefits of delayed differentiation is generated

not so much from simply pushing the proliferation point closer to the market, but rather from the

associated process redesign that accrue cost benefits and/or the lead-time reduction that comes

along with it. To substantiate this, we note that in Table 2, β4−β1 >>β7, implying that postponing

high-cost operations creates more value than postponing the point of proliferation.

Next, we compare the effects of lead-time reduction with process redesign. We find that reducing

the lead time of the last operation leads to an increase in the profits by 15.60% of absolute change

in the lead time. If, for example, the lead time is reduced by 0.2, it helps to increase profits by

0.2 ∗ 15.6% = 3.12%. Consistent with our analytical results (Propositions 3 and 5), this percentage

reduces to 13.56%, 11.26%, and 7.38% for the third, second, and first operations, respectively.

Although reducing lead times improves profits, its impact may be less than the value generated by

swapping a high-cost operation with a low-cost downstream operation. For example, swapping the

first operation with the last one changes the profit on average by 2.003− 1.826 = 17.7% of the cost

difference.

3 We remark that there is no serious multicollinearity problem in our problem. This can be verified by examining

the VIF values. It is generally accepted that VIF values above 5 or 10 indicates a multicollinearity problem, see for

example James et al. (2013, pp.101–102). In our model all independent variables have VIF values less than 5.
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Figure 7 Value of lead-time reduction versus process redesign

In Figure 7 we demonstrate the profit increase that can be achieved by lead-time reduction on

the left panel and that by swapping the first operation with the forth operation on the right panel

(utilizing coefficients β1, β4, β9, β10, β11, and β12). To generate the left panel, we reduce the lead

time from 100% to a new value given by the x-axis. Initially, we take the lead-time values for each

operation the same; t4− t3 = t3− t2 = t2− t1 = t1− t0 = 0.25. We then reduce the lead time starting

from the most downstream operation going upstream. We find that the maximum marginal profit

achieved through lead-time reduction is around 0.12. To generate the right panel, we varied the

cost difference c1− c4 from zero to one and computed the marginal profit achieved by swapping the

first and fourth operations. We find that maximum marginal profit achieved by this swapping of

operations is 0.18.

In our numerical setting, we normalize total cost to one such that c1 + c2 + c3 + c4 = 1. Thus,

having c1 − c4 > 0.8 is not practically possible for most manufacturers. When c1 − c4 is relatively

high (e.g., c1− c4 > 0.40), swapping the first and last operations helps increase the profit by more

than 0.075. To achieve the same profit increase, the lead time has to be reduced by 0.55 (from one

to 0.45). Evidently, redesigning the supply chain by swapping the operations has more potential

to improve profits than lead-time reduction when c1 − c4 is relatively high. If c1 − c4 is relatively

low (e.g., c1 − c4 < 0.05), swapping the operations does not have a significant positive impact on

the profit. In this case, lead-time reduction is more beneficial to manufacturers than swapping the

operations.



Biçer, Lücker, and Boyacı: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
25

6.2. Practical Implications and Insights

Our analytical results, combined with the evidence obtained from the preceding numerical study,

offer significant insights regarding operational strategies that can be employed to implement delayed

differentiation and improve bottom-line performance of supply chains with product proliferation.

We now synthesize these strategies and translate them into managerial prescriptions that describe

the most suitable conditions for implementing them.

Propositions 2 and 4 together with the estimated coefficients |β1|> |β2|> |β3|> |β4| in our numer-

ical study confirm that unit cost reductions at an upstream echelon is more beneficial than a unit

cost reduction at a downstream echelon. Therefore, if changing the sequence of operations is not

possible, manufacturers can still improve profits by systematically reducing costs, starting from

upstream operations and then moving downstream. We call this strategy systematic cost reduc-

tion. Since upstream operations are often related to procurement of raw materials or subassemblies,

systematic cost reduction calls for prioritizing the improvement of the procurement efficiency via

consolidating purchasing orders, creating purchase bundles, using low-cost substitutes, or other

policies (Paranikas et al. 2015). Clearly, in the absence of any flexibility to alter the process, cost

reductions do not delay differentiation. The only option that makes it possible to benefit from

postponing the point of proliferation is lead-time reduction. Propositions 3 and 5 along with the

numerical findings |β12|> |β11|> |β10|> |β9| corroborate that manufacturers should try to reduce

first the lead time of downstream operations and then move upstream in the supply chain. We call

this strategy systematic lead-time reduction.

When there is some flexibility in adjusting the process, Propositions 2 and 4 and Figure 7 affirm

that manufactures can improve profits through a cost-based process redesign strategy, which effec-

tively postpones high-cost operations to later stages, ideally post-proliferation. Under cost-based

process redesign manufacturers can strategically increase profits without necessarily squeezing sup-

pliers. If a costly operation also causes a high degree of proliferation, profit increase due to cost-based

process redesign is magnified. As exemplified before, this can be achieved by swapping such a costly
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operation with a less costly downstream operation. If this is not possible, our results underscore the

value of conducting cost-based process design before lead-time reduction efforts. To augment a cost-

based redesign strategy with lead-time reduction, which we refer to as mixed strategy, manufacturers

first conduct cost-based process design, and then reduce lead times, starting from downstream,

post-proliferation operations and moving upwards in the supply chain.

The strategic value that can be harvested by manufacturers from adopting these four strategies

depend naturally on characteristics of both the industry they operate in as well as the markets their

products serve. Manufacturers not having the process flexibility to conduct re-sequencing or major

process changes is indicative of relatively mature industries where manufacturing processes are

standardized and widely adopted within the industry. Manufacturers in such industries have to rely

on established templates for producing their products. Manufacturers using propriety processes to

produce their products, however, may have the flexibility to change the sequence of their operations

and redesign their processes based on cost and lead time parameters. Such cost-based process

redesign efforts will be most effective when manufacturing costs constitute a significant portion of

revenues. As our results highlight, cost-based process redesign is particularly efficient when there is

a large difference in production costs between adjacent echelons. These conditions are more likely

to hold for manufacturers selling standard, more commoditized products. Such products have low

gross margins, and total production cost constitutes a significant percentage of the total revenue.

Consistent with the Pareto principle, it is common in practice that around 80% of total cost can

be attributed to 20% of all the activities. Thus, it is more likely to expect a sizeable cost difference

between the operations. Manufacturers selling innovative products on the other hand often have

high gross margins because they can command higher prices for their products. When the gross

margin is relatively high, total cost constitutes a small amount of the revenues, and it becomes more

critical to complement cost-driven efforts with lead-time reduction. Amalgamating these insights,

we derive the typology depicted in Figure 8.

In developing the decision typology in Figure 8, we make use of the classification in Ferdows et al.

(2016) that categorizes manufacturers based on two dimensions, namely their product characteristics
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Figure 8 Decision typology based on product characteristics and process flexibility

and process flexibility. We then align the resulting four quadrants with the most effective strategy

for delaying differentiation and improving profits, as identified by our preceding analysis.

1-Bottom-left quadrant (Systematic cost reduction): These manufacturers produce commodity-like

products using industry-standard production methods. Some business units of chemical companies

(e.g., DuPont, BASF, etc) producing commodity-like products fall into this category. Given that

the products are sold at a low profit margin, costs represent a significant portion of revenues. Cost-

based process redesign is not possible for these manufacturers since the processes they employ are

highly standardized. Accordingly, delaying differentiation is not a real option to cope with product

proliferation. Systematic cost reduction is the only viable strategy for improving the bottom line.

Since the cost of raw materials may constitute up to 80% of total revenue in such industries, it is

not so uncommon that manufacturers try to reduce upstream costs by pressurizing their suppliers.4

2-Bottom-right quadrant (Cost-based process redesign): Some manufacturers excel in process flex-

ibility while producing standard products. Ferdows et al. (2016) give an example of a US-based steel

manufacturer producing steel rolls that built this flexibility through some advanced processes. Man-

ufacturers in this category can adopt cost-based process design to cope with product proliferation.

This was certainly the case for Benetton at the time when it resequenced its operations to postpone

4 https://www.mckinsey.com/industries/chemicals/our-insights/pursuing-purchasing-excellence-in-chemicals
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the costly dyeing operations for its highly standardized sweaters. Our leading process industry man-

ufacturer also falls into this category. Even though the end products are customized to customer

needs, the product is a standard input for tyres and costs take up a large fraction of revenues. In

sharp contrast to the Benetton case, for the process industry manufacturer, the primary point of

proliferation occurs at a low cost operation, namely weaving. Furthermore, swapping this weaving

with downstream blending is not technically possible. Nevertheless, it is possible to limit variety

introduced at the weaving but achieve target specifications through more sophisticated blending.

This decreases weaving costs, makes blending more costly, but effectively delays proliferation. Our

results advocate the adoption of this cost-based process redesign, which enables the manufacturer

to take more advantage of upstream inventory pooling and improved forecast accuracy downstream.

3-Top-left quadrant (Systematic lead-time reduction): Manufacturers with strong brands, such as

some fashion-apparel manufacturers and pharmaceutical companies fall into this group (Ferdows

et al. 2016). Although standard processes are used in production, innovative/fashionable nature

of the product and the brand value allow premium pricing and generate higher margins. As stan-

dardized processes leave little room for restructuring, lead time is the only lever for managing

proliferation. Like Zara, manufacturers in this category should systematically reduce lead times to

delay differentiation and thereby improve responsiveness and profits.

4-Top-right quadrant (Mixed strategy): Manufacturers with proprietary products and processes,

such as Intel, can differentiate themselves through both product design and process technology (Fer-

dows et al. 2016). Their products are sold in the market at a high margin which makes lead-time

reduction appealing. With process flexibility, redesigning the processes to postpone high-cost activi-

ties may also be possible, which amplifies the value generated by reducing lead times. Manufacturers

in this category are ideally suited for following the mixed strategy of coupling cost-based process

redesign with lead-time reduction. ASML, a Dutch company producing modular lithography sys-

tems for semiconductor manufacturers, has implemented this strategy as part of its value-sourcing

initiative (van Rooy 2010). The company postponed the operations that required expensive compo-

nents to a later stage in production, and reduced their sourcing lead times by paying the suppliers
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premiums.5 This mixed strategy enables ASML to delay both the point of proliferation and high

cost operations.

7. Concluding Remarks

The last decade’s competitive business environment is marked by increasingly more discerning and

demanding customers. Customers expect products to be more refined and customized to their needs,

and they request them to be delivered faster and at lower prices. Building a responsive supply chain

is a viable option to meet these expectations. Faced with enhanced proliferation in their supply

chains, companies have been trying to improve responsiveness by delaying differentiation, either by

redesigning processes (and hence supply chain structure) or by leadtime reduction. In this paper,

we focus on the juxtaposition of the two approaches. To this end, we develop a framework that

integrates the evolutionary dynamics of demand forecasts with ordering decisions in a supply chain

such that product proliferation may occur at different stages. Utilizing this framework, we price

the value of process redesign and lead-time reduction and compare their values depending on such

factors as demand characteristics, cost and lead-time parameters. Distilling these results, we develop

a typology that maps the most effective operational strategy for delaying differentiation depending

on product/market characteristics and process flexibility.

Our model inherently assumes a make-to-stock supply chain with positive lead times for produc-

tion stages but zero promised lead time for customers (i.e., maximum length of time in which a

customer order is guaranteed to be delivered). When a customer is willing to wait, the manufac-

turer can quote a positive promised lead time at a discounted price and follow a combination of

make-to-order and make-to-stock policies—that is, creating a decoupling point in the supply chain.

Reducing lead time in this context would possibly help companies delay differentiation after the

decoupling point, so product proliferation takes place after getting firm customer orders, completely

eliminating inventory risk at downstream echelons. We believe that the trade-off between completely

eliminating the downstream inventory risk and profit losses due to offering price discounts for longer

5 See also https://staticwww.asml.com/doclib/investor/07_analyst_day_internet_031113.pdf
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promised lead times would be an interesting avenue of future research that requires incorporation

of lead-time quotation and product proliferation models.
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Online Appendix

Proof of Theorem 1

At t= tn−1, the expected profit can be formalized as a newsvendor problem:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

(
pmin(Dn,Qn−1)

)
−κn−1Qn−1, (18)

= (p−κn−1)Qn−1− p
Qn−1∫
0

(Qn−1−Dn)f(Dn|Dn−1)dDn, (19)

where f(·|·) and F (·|·) denote conditional demand density and distribution functions, respectively. The

optimal order quantity is obtained by:

∂Gn−1

∂Qn−1

= p(1−F (Qn−1|Dn−1))−κn−1 = 0. (20)

With p > κn−1, Gn−1(·,Dn−1) is a concave function for any given Dn−1. We then define an auxiliary function

such that:

Jn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
Gn−1(Qn−1,Dn−1) +κn−2Qn−1

}
. (21)

For Q∗n−1 = {Qn−1|∂Gn−1/∂Qn−1 = 0},

Jn−1(Qn−2,Dn−1) =


Gn−1(Qn−2,Dn−1) +κn−2Qn−2 if Q∗n−1 >Qn−2,

Gn−1(Q∗n−1,Dn−1) +κn−2Q
∗
n−1 if Q∗n−1 ≤Qn−2.

(22)

Jn−1(·,Dn−1) is a non-decreasing concave function due to the concavity of Gn−1(·,Dn−1). Then,

Gn−2(Qn−2,Dn−2) = EDn−1|Dn−2

(
Jn−1(Qn−2,Dn−1)

)
−κn−2Qn−2, (23)

which is also concave because Jn−1(·,Dn−1) is concave. Then, Gi(·,Di) is a concave function (by induction)

for i∈ {0,1, · · · , n− 2}, and the optimal policy is:

Q∗i = arg max
Qi

{Gi(Qi,Di}}, ∀i∈ {0,1, · · · , n}. (24)

Suppose in period i+ 1 for i∈ {0,1, · · · , n− 2},

Ji+1(Qi,Di+1) =


Gi+1(Qi,Di+1) +κiQi if Q∗i+1 >Qi,

G∗i+1(Di+1) +κiQ
∗
i+1 if Q∗i+1 ≤Qi,

(25)

where G∗i+1(Di+1) =Gi+1(Q∗i+1,Di+1). Then,

Gi(Qi,Di) = EDi+1|Di
[Ji+1(Qi,Di+1)]−κiQi, (26)

=

+∞∫
Di+1

(Gi+1(Qi,Di+1) +κiQi)f(Di+1|Di)dDi+1

+

Di+1∫
0

(G∗i+1(Di+1) +κiQ
∗
i+1)f(Di+1|Di)dDi+1−κiQi, (27)
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where Di+1 is the value of demand forecast at time i+ 1 that makes the optimal order quantity equal to

that of the previous period (i.e., Q∗i+1 =Qi). Taking the first derivative, we obtain the following result:

∂Gi

∂Qi

= gi(Qi,Di) =

+∞∫
Di+1

(gi+1(Qi,Di+1) +κi)f(Di+1|Di)dDi+1−κi = 0. (28)

Using Equation (28), the optimal value of Qi for i∈ {1, · · · , n− 2} can be found by backward induction.

The optimal value of Qn−1 is given by Equation (20). Combining Equations (20) and (28), the optimal

value of Qn−2 can be calculated by:

gn−2(Qn−2,Dn−2) =

+∞∫
Dn−1

(pPr(Dn >Qn−2|Dn−1)− cn−1)fn−1(Dn−1|Dn−2)dDn−1−κn−2,

= pPr(Dn >Qn−2,Dn−1 >Dn−1)− cn−1Pr(Dn−1 >Dn−1)

−κn−2. (29)

By induction, we obtain for i∈ {0,1, · · · , n− 1} the following result:

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)−κi, (30)

where D{i+1,n−1} is a vector denoting demand forecasts from period i+ 1 to n− 1. Then, the optimal order

quantity in each period can be found by qi = min(Qi−1,Q
∗
i ) such that Q∗i = {Qi|gi(Qi,Di) = 0}.

Proof of Proposition 1

The Q∗i value for i∈ {0, · · · , n− 1} is found by Equation (10):

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)−κi (31)

= 0.

Suppose Qi+1 =Q∗i+1 =Qi =Q∗i . Then,

gi+1(Qi+1,Di)− gi(Qi,Di) = ci+1Pr(Di+1 >Di+1) +κi−κi+1, (32)

= −ci+1(1−Pr(Di+1 >Di+1))< 0. (33)

For Qi+1 =Qi, therefore, gi+1(Qi+1,Di)− gi(Qi,Di) takes a negative value, failing to be equal to zero. So,

the expression “gi+1(Qi+1,Di)−gi(Qi,Di) = 0” is satisfied when Qi+1 <Qi. Applying the same procedure to

Qi+j+1 for a givenDi+j for j ∈ {1, · · · , n−i−2} (by induction), we obtain Q∗0 >E[Q∗1|D0]> · · ·>E[Q∗n−1|D0].

Combining this result with qi = min(Qi−1,Q
∗
i ), we get q0 >E[q1|D0]> · · ·>E[qn−1|D0].
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Proof of Proposition 2

Part A: For j ∈ {i, · · · , n − 1}, suppose cj is increased by ∆cj , making the cost of processing the jth

operation equal to cj + ∆cj . Suppose Q′i =Qi and gi(Qi,Di) = 0. Then,

gi(Q
′
i,Di)− gi(Qi,Di) = gi(Q

′
i,Di) =−∆cjPr(D{i+1,j} >D{i+1,j}). (34)

Therefore, “gi(Q′i,Di) = 0” is satisfied for Q′i <Qi.

For j ∈ {0, · · · , i− 1}, suppose again Q′i =Qi and gi(Qi,Di) = 0. And,

gi(Q
′
i,Di)− gi(Qi,Di) = gi(Q

′
i,Di) =−∆cj . (35)

Likewise, “gi(Q′i,Di) = 0” is satisfied for Q′i <Qi. Thus, q′i ≺ qi for i∈ {0, · · · , n− 1}.

Part B: Given c0 = · · ·= ci−1 = ci+1 = · · ·= cn−1 = cfixed < ci, the expected profit at t= t0 is written as

follows:

G0(Q∗0,D0|i= j) =

Q∗
0∫

0

g0(Q0,D0)dQ0, (36)

where Q∗0 is the optimal order quantity at t0 when i= j for j ∈ {0, · · · , n− 2}. Thus, G0(Q∗0,D0|i= j + 1)

gives a lower bound for the expected profit for i= j+1. Combining this expression with Equation (10) yields

the following result:

G0(Q∗0,D0|i= j+ 1)−G0(Q∗0,D0|i= j) = −
Q∗

0∫
0

(ci− cfixed)Pr(D{1,i+1} >D{1,i+1})dQ0

+

Q∗
0∫

0

(ci− cfixed)Pr(D{1,i} >D{1,i})dQ0. (37)

Equation (37) has always a non-negative value because Pr(D{1,i} >D{1,i})≥ Pr(D{1,i+1} >D{1,i+1}). Thus,

swapping a high-cost operation with the downstream adjacent one leads to higher profits. It is straightforward

by induction that swapping the operation i with any operation from the set {i+ 1, · · · , n− 1} increases the

profit.

Proof of Proposition 3

If the lead time of operation i is reduced by ∆t, the starting times for the first i+ 1 operations are updated

as follows:

t0 + ∆t= t1 + ∆t= · · ·= tj + ∆t= · · ·= ti + ∆t. (38)



Biçer, Lücker, and Boyacı: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
4

Then, ordering decisions for the first i+ 1 operations are made after a delay of ∆t. Delaying the ordering

decisions leads to improved demand accuracy for the first i+ 1 decisions as given by Equation (2), therefore

increasing the expected profit.

If the lead time of operation j is reduced by ∆t, the starting times for the first j+1 operations are likewise

delayed for ∆t. Reducing the lead-time of i, compared to that of j for i > j, makes it possible to delay

additionally the decision epochs for j+ 1, j+ 2, · · · , i, resulting in a profit increase that is higher than what

can be achieved by reducing the lead time of j.

Proof of Theorem 2

Let Dj
n,r ≥ 0 denote a realization of Dj

n such that r ∈ S, where S = {1,2, · · · } is defined as a large finite set

of positive integers. The values of Dj
n,r ∀r ∈ S constitute the set of all possible demand realizations. We use

Wr
j to denote the sales value for a demand realization of Dj

n,r such that Wr
j =Wj(Q

j
n−1,D

j
n,r). Then, the

SP model (14)–(16) can be written as a large-scale LP model:

Maximize
Q

j
n−1

,∀j∈Θn−1

z =
∑

j∈Θn−1

(
pj
∑
r∈S

Pr(Wr
j )Wr

j −κ
j
n−1Q

j
n−1

)
(39)

subject to:

Wr
j −Q

j
n−1 ≤ 0, ∀j ∈Θn−1, ∀r ∈ S, (40)

Wr
j ≤Dj

n,r, ∀j ∈Θn−1, ∀r ∈ S, (41)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (42)

Qj
n−1 ≥ 0, Wr

j ≥ 0, ∀j ∈Θn−1, ∀r ∈ S. (43)

We remark that we add Constraints (40) and (41) to satisfy the condition Wj = min{Qj
n−1,D

j
n} for the

optimal solution. Then, the dual problem is:

Minimize
λj,r,βj,r,γ

w=
∑

j∈Θn−1

∑
r∈S

βj,rD
j
n,r +

∑
k∈Θn−2

γkQ
k
n−2 (44)

subject to:

λj,r +βj,r ≥ Pr(Wr
j )pj , ∀j ∈Θn−1, r ∈ S, (45)∑

r∈S

λj,r − γk ≤ κjn−1, ∀j ∈Θk
n−1, k ∈Θn−2, r ∈ S, (46)

λj,r ≥ 0, βj,r ≥ 0, γk ≥ 0, ∀j ∈Θk
n−1, k ∈Θn−2, , r ∈ S. (47)

The values of λj,r and βj,r for each j ∈Θn−1 are found by the parametric analysis:
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1. λj,r = 0 and βj,r = Pr(Wr
j )pj for j ∈Θn−1 when Dj

n,r ≤Q
j
n−1.

2. Likewise, λj,r = Pr(Wr
j )pj and βj,r = 0 for j ∈Θn−1 when Dj

n,r >Q
j
n−1.

Then, the constraint (46) is written as follows:

pjPr(D
j
n >Q

j
n−1)− γk ≤ κjn−1, ∀j ∈Θn−1. (48)

We set a value for the dual variable γk for k ∈Θn−2 such that:

γk = (pj −κjn−1)− pjPr(Dj
n ≤Q

j
n−1) = gjn−1(Qj

n−1,D
j
n−1), ∀j ∈Θk

n−1. (49)

Then, the objective function value for the dual problem becomes:

w =
∑

j∈Θn−1

[
(pj −κjn−1)Qj

n−1− pj

Q
j
n−1∫

0

(Qj
n−1−Dj

n)f j(Dj
n)dDj

n

]
. (50)

Equation (50) is equivalent to the solution of the primal problem for the feasible Qj
n−1 values. It follows

from the strong theorem of duality that the optimal solution satisfies Equation (49). Therefore, we have the

following conditions of optimality:

γk = gjn−1(Qj
n−1,D

j
n−1)≥ 0, ∀j ∈Θk

n−1, k ∈Θn−2 (51)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2. (52)

If the constraint (42) is not binding for a given k ∈Θn−2, the dual variable γk becomes zero. In this case, the

optimal solution reduces to the solution of |Θk
n−1| independent newsvendor problems in the last period—that

is, the order quantity for each product in the set Θk
n−1 can be found solving an unconstrained newsvendor

problem. Otherwise, the optimal solution exists at the point where the marginal value of producing one unit

is the same for all products in the set Θk
n−1.

In period i∈ {1,2, · · · , n− 2}, the optimization problem is written as follows:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

G
Υj

i
i (Qj

i ,D
Υj

i
i ) (53)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, 0≤Qj
i , ∀k ∈Θi−1, ∀j ∈Θk

i . (54)

The term G
Υj

i
i (Qj

i ,D
Υj

i
i ) is the total expected profit generated from all the products in the set Υj

i , and D
Υj

i
i is

the vector of demand forecasts of the products in Υj
i at time ti. We recall that Υj

i is the set of end products
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sold in the market whose availability depends on the order quantity decision of Qj
i . We will discuss the

derivation of GΥj
i

i (Qj
i ,D

Υj
i

i ) in detail below.

The dual problem (53)–(54) is formulated as:

Minimize
λj ,βj ,γk

w=
∑

k∈Θi−1

γkQ
k
i−1 (55)

subject to:

g
Υj

i
i (Qj

i ,D
Υj

i
i )≤ γk, ∀j ∈Θk

i , ∀k ∈Θi−1, (56)

with ∂GΥj
i

i (Qj
i ,D

Υj
i

i )/∂Qj
i = g

Υj
i

i (Qj
i ,D

Υj
i

i ). Then, the optimal solution in each period i ∈ {1, · · · , n− 2} sat-

isfies the following equations:

γk = g
Υj

i
i (Qj

i ,D
Υj

i
i )≥ 0, ∀j ∈Θk

i , k ∈Θi−1 (57)∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (58)

Following the steps similar to Appendix 7, we obtain the following expression for t= tn−2:

G
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

(G
Υj

n−2

n−1 (Qj
n−2,D

Υj
n−2

n−1 ) +κn−2Q
j
n−2)f(D

Υj
n−2

n−1 |D
Υj

n−2

n−2 )dD
Υj

n−2

n−1

+

D
Υ

j
n−2

n−1∫
0

(G∗
Υ

j
n−2

n−1 (Q∗
j

n−2) +κjn−2Q
∗j
n−2)f(D

Υj
n−2

n−1 |D
Υj

n−2

n−2 )dD
Υj

n−2

n−1

−κjn−2Q
j
n−2, (59)

where D
Υj

n−2

n−1 is a random variable denoting the sum of demand forecasts of the items in the set Υj
n−2 at

t= tn−1 (i.e.,
∑

k∈Υj
n−2

Dk
n−1). D

Υj
n−2

n−1 is the value of demand forecast at t= tn−1 that makes the optimal order

quantity at tn−1 equal to that of the previous period (i.e., Qj
n−2). Then,

g
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

(g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 ) +κjn−2)f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )dD
Υj

n−2

n−1

−κjn−2, (60)

where g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 ) = gkn−1(Qk
n−1,D

k
n−1) for any k ∈Υj

n−2 as given by Equation (51). Using the last

expression, we obtain the following result by induction:

g
Υj

i
i (Qj

i ,D
Υj

i
i ) =

+∞∫
D

Υ
j
i

i+1

(g
Υj

i
i+1(Qj

i+1,D
Υj

i
i+1) +κji )f(D

Υj
i

i+1|D
Υj

i
i )dD

Υj
i

i+1−κ
j
i = γk,∀j ∈Θk

i . (61)
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If the constraint (54) for a given k is not binding, the dual variable γk becomes zero. In this case, the optimal

solution reduces to the solution of |Θk
i | unconstrained problems using Equation (10). Let Qj∗

i denote the

order quantity for j ∈Θk
i and k ∈Θi−1 satisfying Equation (10) and Q̂j

i denote the order quantity satisfying

Equation (61). Then, the optimal order quantity is found by a state-dependent base-stock policy:

qji =


Qj∗

i if
∑
j∈Θk

i

Qj∗

i <Qk
i−1,

Q̂j
i if

∑
j∈Θk

i

Qj∗

i ≥Qk
i−1.

(62)

Proof of Proposition 4

We assume without loss of generality that product proliferation occurs once at time ti along the supply

chain. The mathematical model given by (53)–(54) is then rewritten as follows with an objective function of

maximizing the expected profit at time ti:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

Gj
i (Q

j
i ,D

Θi
i ) (63)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (64)

Then, the value of postponing the point of the proliferation is calculated by ∂z/∂ti.

We first consider the case in which the constraint (64) is not binding. Then, the objective function (63)

takes the following form:

z =
∑
j∈Θi

Gj
i (Q

j
i ,D

Θi
i ) =

∑
j∈Θi

Gj
i (Q

j
i ,D

j
i ) (65)

Suppose cji = cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi. For any j ∈Θi,

Gj
i (Q

j∗

i ,D
j
i ) = Gj

i (Q
j
i−1,D

j
i ), (66)

such that optimal order quantity Qj∗

i is equal to what has been ordered in the previous period (i.e., Qj
i−1).

Since cji = cji+1 = · · ·= cjn−1 = 0, manufacturer orders the maximum amount in all the remaining periods (i.e.,

{i, i+ 1, · · · , n− 1}) such that:

Qj
i−1 =Qj

i = · · ·=Qj
n−1. (67)

Thus, the expected profit is not affected by the ordering decision at ti. Then,

Gj
i (Q

j
i ,D

j
i )/∂ti = 0 → ∂z/∂ti = 0. (68)
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Now, suppose that cji > 0 while cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi. Then,

Gj
i (Q

j∗

i ,D
j
i ) = (pj −κji )Qj∗

i − pj

Q
j∗
i∫

0

(Qj∗

i −Dj
n)f(Dj

n|D
j
i )dD

j
n, (69)

= pj

Q
j∗
i∫

0

Dj
nf(Dj

n|D
j
i )dD

j
n = pjD

j
iΦ
( ln(Qj∗

i /D
j
i )

σ
√
tn− ti

−σ
√
tn− ti/2

)
. (70)

The optimal order quantity Qj∗

i is found by:

Qj∗

i = Dj
i e
−σ2(tn−ti)/2+Φ−1((pj−κ

j
i
)/pj)σ

√
tn−ti . (71)

Plugging this derivation into Equation (70), we obtain:

Gj
i (Q

j∗

i ,D
j
i ) = pjD

j
iΦ
(

Φ−1((pj −κji )/pj)−σ
√
tn− ti

)
, (72)

and

∂Gj
i (Q

j
i ,D

j
i )/∂ti > 0 → ∂z/∂ti > 0. (73)

Comparing Equations (68) and (73), we can state that the value of postponing the point of proliferation

(i.e., ∂z/∂ti) increases as the costs of the operations after the proliferation point increase.

We now focus on the case in which the constraint (64) is binding. Suppose cji = cji+1 = · · · = cjn−1 = 0

∀j ∈Θi. Then, the statements given by Equation (68) still hold true. When cji > 0 and cji+1 = · · ·= cjn−1 = 0

∀j ∈Θi, we obtain:

Gj
i (Q

j
i ,D

j
i ) = (pj −κji )Qj

i − pj

Q
j
i∫

0

(Qj
i −Dj

n)f(Dj
n|D

j
i )dD

j
n, (74)

= (pj −κji )Qj − pjQjΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

+σ
√
tn− ti/2

)
+pjD

j
iΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

−σ
√
tn− ti/2

)
. (75)

Order quantity in Equation (75) is not the same as Equation (71). The fact that the constraint (64) is

binding for the former equation makes the order quantity in (75) less than what can be found by Equation

(71). Using Equation (75), we obtain:

∂Gj
i (Q

j
i ,D

j
i )/∂ti > 0 → ∂z/∂ti > 0. (76)

Therefore, ∂z/∂ti increases as ci increases, which completes the proof of Proposition 4.

Proof of Proposition 5

The proof follows directly from Proposition 3.
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