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This paper explores how firms that lack expertise in machine learning (ML) can leverage the so-called AI

Flywheel effect. This effect designates a virtuous cycle by which, as an ML product is adopted and new user

data are fed back to the algorithm, the product improves, enabling further adoptions. However, managing

this feedback loop is difficult, especially when the algorithm is contracted out. Indeed, the additional data

that the AI Flywheel effect generates may change the provider’s incentives to improve the algorithm over

time. We formalize this problem in a simple two-period moral hazard framework that captures the main

dynamics between machine learning, data acquisition, pricing, and contracting. We find that the firm’s

decisions crucially depend on how the amount of data on which the machine is trained interacts with the

provider’s effort. If this effort has a more (resp. less) significant impact on accuracy for larger volumes of

data, the firm underprices (resp. overprices) the product. Interestingly, these distortions sometimes improve

social welfare, which accounts for the customer surplus and profits of both the firm and provider. Further, the

interaction between incentive issues and the positive externalities of the AI Flywheel effect have important

implications for the firm’s data collection strategy. In particular, the firm can boost its profit by increasing

the product’s capacity to acquire usage data only up to a certain level. If the product collects too much data

per user, the firm’s profit may actually decrease. As a result, the firm should consider reducing its product’s

data acquisition capacity when its initial dataset to train the algorithm is large enough.
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1 Introduction

To train ML algorithms, companies often deploy their artificial intelligence (AI)-based products

early and collect usage data from their first customers. As new data are fed back to the algorithm,
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the technology improves, enabling further adoptions and thus the acquisition of additional data.

This virtuous feedback loop, sometimes referred to as the AI Flywheel effect in the popular press

(Trautman 2018), compounds the economic effect by which quality increases demand, according

to the statistics principle whereby data improves accuracy.

The AI Flywheel effect has many applications, from voice recognition systems (Sarikaya 2019)

to self-driving vehicles (Miller 2016), and even explains how certain web search engines ended up

dominating the market. Nonetheless, this virtuous cycle is perhaps most useful for smaller teams

or novel and specialized applications for which data is scarce. The founders of the startup Blue

River Technology famously established their first dataset manually to train an AI system that

would distinguish weeds from crops, a crucial step to optimize pesticide sprays in farming (Ng

2018, Trautman 2018). This yielded an algorithm with low performance, but with its adoption by

early users, the company could leverage the effects and significantly improve the algorithm. The

company was sold in 2017 for more than $300 million (Golden 2017).

However, despite its apparent simplicity, the AI Flywheel effect is difficult to implement, espe-

cially among the small organizations that would most benefit from it. First, a firm makes choices,

and pricing decisions in particular, that affect demand alongside accuracy and hence interfere

with the virtuous cycle. More specifically, the AI Flywheel effect introduces an additional tradeoff

between improving the accuracy of algorithms and maximizing revenue, which the firm needs to

consider when setting its pricing strategy.

Second, and perhaps more importantly, many firms lack the expertise to develop ML algorithms.

Indeed, the economy has experienced a significant shortage of skilled data scientists, which par-

ticularly affects startups and small organizations (Nicolaus Henke et al. 2016). This shortage has

given rise to a striving outsourcing industry (Research Nester Pvt. Ltd 2019), and many startups

have achieved success by outsourcing their technology (examples include Skype, Opera, and Slack,

to name a few; see Cengiz 2015).

However, relying on outsourcing gives rise to incentive issues, which may impair accuracy and

thus again interfere with the AI Flywheel effect. For example, a provider may shirk by applying
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standard third-party software that may be suboptimal for the task or may expose the firm to

threats (Kendra et al. 2019, Bursztein 2018). If these algorithms are not developed with care, they

only learn surface statistical regularities, which affects their ability to generalize and thus their

accuracy (Jo and Bengio 2017). More generally, the provider may have an incentive to wait for

more usage data before exerting any effort to improve the algorithm. In fact, incentive issues such

as these may not disappear if the firm does not outsource the algorithm but instead employs an

expert. Indeed, the details of ML algorithms and their outputs notoriously suffer from a lack of

explainability (Lipton 2016, Ribeiro et al. 2016), rendering the expert’s efforts to improve accuracy

difficult to observe and contract on.

Third, the amount of data to which the provider has access for training the algorithm may

exacerbate the incentive issues. For instance, research in AI has suggested that accuracy depends

less on the specifics of the algorithm and more on the data on which it is trained as data volume

increases (Banko and Brill 2001, Halevy et al. 2009). In this case, the provider’s effort to develop the

machine matters more when data are scarce, that is, in the early stages of the AI Flywheel effect.

Hence, the intensity of the incentive issues may change over time as the feedback loop between

accuracy and usage data unfolds.

The goal of this paper is to shed light on how firms that lack expertise in ML can leverage and

optimize the AI Flywheel effect. In this context, we seek to understand how the need to mitigate the

incentive issues created by outsourcing the algorithm affect the firm’s pricing and data collection

strategies. To that end, we formalize the problem in a simple two-period moral hazard framework,

which captures the previous three features: the accuracy vs. the revenue tradeoff, the incentive

issues, and the impact of data on the intensity of these issues.

Our analysis reveals that the firm’s decisions crucially depend on how the amount of data on

which the machine is trained interacts with the provider’s effort. Specifically, if the provider’s

effort has a more significant impact on accuracy for larger volumes of data, the firm underprices

the product in order to acquire more data from the market, retrain the algorithm, and generate
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more revenues in the future. In contrast, the firm overprices and collects less data if the provider’s

effort is most impactful when data are scarce. These effects also affect social welfare and customer

surplus, which improve (resp. deteriorate) when the impact of the provider’s effort on accuracy

increases (resp. decreases) with more data.

More importantly, the interaction between the positive externalities of the AI Flywheel effect

and the incentive issues can alter the firm’s data collection strategy. In particular, a key and specific

design choice for data products is the amount of data that the product can collect on its user,

which we refer to as the data acquisition capacity in the following (Spencer 1990, Kos et al. 2012).

The firm can increase this amount by relying on third-party services in the case of mobile and

web applications (Deshpande 2019) or increasing the capacity of embedded sensors in the case of

physical products (McGrath and Scanaill 2013). This, in turn, should provide the firm with more

data overall to improve its algorithm and ultimately increase profits.

We find, however, that increasing the product’s data acquisition capacity sometimes reduces

the total amount of data collected by the firm. This happens when the provider’s effort has a

less significant impact on accuracy for larger volumes of data. In this case, increasing the data

acquisition capacity does boost profit, but up to a certain point. If the product collects too much

data per user, the profit may actually decrease. In other word, the data acquisition capacity has a

unimodal effect on the firm’s profit. This further implies that the firm should consider reducing the

product’s data acquisition capacity once its initial dataset to train an algorithm is large enough.

Taken together, these results characterize how the interaction between the incentive issues and

the positive adoption externalities of the AI Flywheel effect significantly affects the firm’s pricing

and data collection strategies. One key driver for this lies in the type of impact that data has on

the provider’s effort when training the algorithm.

More specifically, we consider a firm (the principal) that outsources the development of an ML

algorithm to a provider (the agent. See Section 2). The expected accuracy of the algorithm increases

in both the amount of data on which it is trained and the effort of the provider. At the beginning
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of the time horizon, the firm starts with a small initial dataset which allows the provider to develop

a first version of the algorithm. The firm chooses a pricing strategy and begins to market this

product. Demand for the product decreases with price and increases with accuracy. At the end

of this first period, the realized demand generates revenues for the firm and additional data for

the provider. This additional amount of data corresponds to the realized demand multiplied by

the acquisition rate, which is the expected amount of data per user that the product collects. The

provider retrains the algorithm based on the augmented dataset and the firm markets this second

version at a new price. However, exerting effort to improve the algorithm is costly. Because effort

is non-contractable, the firm faces a moral hazard problem in each period when the provider trains

the algorithm. The firm then seeks to design a contract and a pricing strategy that maximize its

total profit over the time horizon.

A crucial feature of our setup is how effort and data interact with one another to determine

the algorithm’s accuracy. We introduce the notion of data impact (in Section 2.2), which maps

the size of the available dataset to the normalized effect of shirking on the probability of high

accuracy. The data impact characterizes how data interact with effort to determine the algorithm’s

accuracy. When the data impact is constant in the data size, effort and data independently affect

accuracy. However, when the data impact increases (resp. decreases), exerting effort increases

accuracy relatively more (resp. less) with more data.

Overall, this setup captures the elementary dynamics of the AI Flywheel effect. Indeed, demand

in the first period generates additional data that improve the algorithm’s accuracy in the second

period, which in turn generates more demand. The model also captures how the firm’s decisions

affect the Flywheel effect in a simple manner. Specifically, the firm faces a price/data tradeoff in

which decreasing the price generates more data but lower revenues. Further, the initial data size

and the acquisition capacity together characterize the potential strength of the AI Flywheel effect.

The initial data size specifies the firm’s starting point in the virtuous cycle, while the acquisition

capacity influences the speed at which this cycle unfolds. Finally, the data impact captures how
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the intensity of the moral hazard problem changes with data and thus as the AI Flywheel effect

unfolds.

In this setup, we first characterize the optimal contract and equilibrium payments to the provider

in the presence of incentive issues (see Section 3). We then briefly study the optimal decisions of the

firm at first best, that is, in the presence of the AI Flywheel effect but in the absence of incentive

issues (see Section 4.1). Under the optimal contract, the firm always prices at the first-best price

when the data impact is constant in the size of the dataset, but always prices below (resp. above)

the first-best price to collect more (resp. less) data when the data impact increases (resp. decreases.

See Section 4.2). The impact on the social welfare and customer surplus exhibits similar distortions.

In particular, social welfare and customer surplus actually improve in the presence of incentive

issues when the data impact is increasing (see Section 4.3).

Finally, we show that improving the product’s data acquisition capacity increases both the total

amount of collected data and the firm’s profit. In contrast, improving the acquisition capacity has

a unimodal effect on the collected data and profit when the data impact decreases (see Section 5).

In this case, a threshold exists such that increasing the product’s data acquisition capacity boosts

the firm’s profit if and only if the initial size of the dataset is below this threshold. We discuss

the managerial implications of these results and future research directions in the conclusion (see

Section 6).

1.1 Literature Review

The advent of the digital economy has recently generated new research on data privacy and markets

in both management science and economics. This new stream of research explores the impact of

data leakage in platform business models (Acemoglu et al. 2019), the issue of selling data (Bimpikis

et al. 2019, Mehta et al. 2019), and the effect of collecting data on privacy and price discrimination

(Loertscher and Marx 2019). In contrast, our work focuses on the outsourcing of ML algorithms

that make use of this data, which creates incentive issues that dynamically interact with the amount

of available data. More generally, ours is the first study in this stream of research to explore the

problem of managing the AI Flywheel effect.
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Our work is also related to the large literature on dynamic pricing with learning. Of particular

interest is the recent stream of research on new experience goods and quality learning. Yu et al.

(2015), for instance, study the dynamic pricing of new experience goods in the presence of two-sided

learning (learning about quality via consumer reviews). In their setting, the pricing decision affects

both revenue and the flow of information. They show that consumer-generated quality information

may decrease the firm’s profit and even consumer surplus. Feldman et al. (2018) also analyze the

pricing and quality design of new experience goods for consumers who are social learners. They

characterize the deviation of the firm’s optimal policy from a setting without social learning. In

these setups, quality is a decision variable that is set ex ante, and learning concerns either the firm

learning about the consumers or the consumers learning about quality. By contrast, accuracy is

dynamically improved in our setting and learning concerns the training of the algorithm, that is,

the enhancement of quality. In addition, we consider moral hazard issues, which is not the focus of

this stream of research.

Another related stream of literature studies the positive network effects (or positive adoption

externalities) that customers derive from the consumption of the same product by others (see Katz

and Shapiro 1994 and Shy 2011 for a general review). In particular, this literature considers the

dynamic monopoly pricing of durable goods with network effects that are close to our first-best

benchmark (see for instance Cabral et al. 1999, Bensaid and Lesne 1996, Gabszewicz and Garcia

2008). In these studies, customers are strategic and long-lived, and thus have incentives to postpone

their purchases in order to benefit from the network effects generated by others’ consumptions.

This induces the firm to decrease the price in the first period.

Our work differs from this stream of research for two reasons. First, we explore whether a firm

should strengthen the network effects, which corresponds to improving the data acquisition capacity

in our setup. Although the acquisition capacity is a natural design choice in our setting, firms

cannot easily affect the intensity of the network effects in the aforementioned literature. Second,

these studies are not concerned with incentive issues on the provider side. In our setup, however,
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the amount of collected data interacts with both the positive adoption externalities of the AI

Flywheel effect and the incentive issues that developing the product brings about.

From a more technical point of view, our model is a dynamic moral hazard problem with binary

effort choices and binary outcomes. Different versions of this problem have been studied, especially

in the sales force management literature. Schöttner (2016) analyzes a multi-period setting with

different sales probabilities in each period when the firm can obtain only aggregate information on

sales. Despite being different across periods, the sales probabilities are taken as constant. Kräkel and

Schöttner (2016) consider a two-period model with binary effort choices and analyze the optimal

contracts. They also study a case where the second-period sales opportunity randomly depends on

the outcome of the first period with exogenous probabilities. Schmitz (2005, 2013) explores similar

settings, where the probabilities of success are assumed to change across periods.

Although these papers explore various configurations of the uncertainty structure, the probability

of observing a favorable outcome in their models is fixed (Schöttner 2016) or exogenously depends

on the outcome in the first period (Kräkel and Schöttner 2016, Schmitz 2005, 2013). By contrast,

these probabilities are fully endogenous in our setup.

In this stream of research, Dai and Jerath (2013, 2019) study a slightly more general dynamic

moral hazard problem with binary effort choices and three possible outcomes. A key aspect of this

model, also discussed in de Véricourt and Gromb (2018, 2019) for more general distributions of

outcomes, is that the firm’s capacity decision interacts with the moral hazard problem. Indeed, in

Dai and Jerath (2013), de Véricourt and Gromb (2018), Dai and Jerath (2019), and de Véricourt

and Gromb (2019), a low capacity level may censor high demand realizations, which exacerbates the

incentive issue. More generally, deviations from the first-best setting are observed in other contexts

as well, (see, e.g., Alles et al. 1995 for over/understocking decisions in just-in-time production

systems). A common theme of the moral hazard literature is that it is attractive for the principal

to take actions that mitigate incentive issues, and the unobservability of the agent’s effort in

particular.
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Our work considers a different type of interaction between the firm’s decision (pricing in our case)

and the moral hazard problem through a monotonic property of the data impact ratio. Moreover,

ours is the first to articulate this theme in the context of data analytic. Specifically, the AI Flywheel

effect endogenously interacts with incentive issues and both are affected by data. Thus, the firm’s

ability to leverage the AI Flywheel effect is constrained by the incentive misalignment between the

firm and the provider.

Finally, our work also contributes to the rich operations management literature in entrepreneur-

ship, as our setup is particularly relevant for cash-constrained firms with a lack of technical skills.

The points of focus in this literature widely range from investment timing (Swinney et al. 2011)

and financial capabilities (Tanrısever et al. 2012) to complementary technologies (Anderson Jr and

Parker 2013). By contrast, we provide insight on how cash-constrained firms can leverage a business

model based on the AI Flywheel effect.

2 Model Description

We model the problem of managing the AI Flywheel effect in an elementary two-period moral

hazard framework. In our setup, the firm (the principal) outsources the development and training

of the algorithm to a provider (the agent) at the beginning of each period. The resulting accuracy

of the algorithm depends on both the provider’s effort and the size of the available dataset. Given

this accuracy level, the firm markets the product to users with heterogeneous accuracy and price

sensitivities. At the end of each period, demand is realized, which determines the profit and the

additional generated data for that period.

2.1 Data, Accuracy, and Revenue

At the beginning of period t= 1,2, the size of the available dataset to train the algorithm is equal

to dt−1. In particular, d0 denotes the size of the firm’s initial dataset. In each period t, the provider

can either exert effort e=w at cost κ> 0 or shirk e= s at no cost. We denote by αt, the resulting

algorithm’s accuracy, which can be either high or low with αt ∈ {αh, α`}, where αh > α`.
1 Given

1 Accuracy in our setup designates the overall accuracy, which includes both sensitivity and specificity, and this

metrics is typically used to measure the performance of ML algorithms (see, e.g., Igual and Segúı 2017).
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the data size dt−1 and effort e, the probability of high accuracy (αt = αh) is equal to πe(dt−1) with

πw(dt−1) > πs(dt−1). Probabilities πe : [dmin, dmax]→ [0,1), e ∈ {s,w}, are twice-differentiable and

increasing functions with a continuous second-order derivative. Moreover, πw is concave. In other

words, the accuracy of ML models increases with data, but the marginal effect of additional data

is decreasing (see Banko and Brill 2001, for instance). The further lower bound dmin > 0 is the

minimum size required for the development of a functioning ML model, and dmax <∞ is the largest

possible total data size on which the algorithm can be trained.

Given accuracy αt, the firm then prices and markets the product. The market in period t cor-

responds to a continuum of buyers of total mass normalized to one, a common framework in the

pricing literature (e.g., Aflaki et al. 2019, Feldman et al. 2018, Yu et al. 2015). Each buyer has a

private accuracy sensitivity v that is drawn from the standard uniform distribution with c.d.f. F ,

p.d.f. f , support [0,1], and a virtual value function φ(v) = v− F̄ (v)/f(v), where F̄ (·) = 1− F (·).

Hereafter, we use the notation x̄ to denote 1−x for an arbitrary term x. A buyer with sensitivity

v purchases the product with accuracy α and price p if αv− p≥ 0. Given the accuracy-price pair

(p,α), demand is equal to F̄ (p/α), which yields revenue pF̄ (p/α). Equivalently, the firm may choose

demand quantity q instead of price p, with p= αF−1 (q̄) and, hence, pF̄ (p/α) = qαF−1 (q̄), where

F−1 is the inverse of the c.d.f. F .

A key attribute of data-enhanced products is the amount of data that the product can collect

on its user. The firm may increase this amount by relying on third-party services in the case of

mobile and web applications (Deshpande 2019) or increasing the capacity of embedded sensors in

the case of physical products (McGrath and Scanaill 2013). We refer to this quantity as the data

acquisition capacity ν > 0 in the following, which corresponds to the expected amount of data the

firm collects per user.

Given demand q, therefore, the total amount of collected data δ in the period is equal to δ= νq.

Thus, at the end of period t = 1,2 the size of the available dataset is equal to dt = δt + dt−1.

Further, the firm’s revenue can be expressed in terms of acquisition capacity ν, collected data δ, and

accuracy α. Specifically, we define this revenue as Rν(δ,α) with Rν(δ,α), αδ/νF−1 ((1− δ/ν)).
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Thus, decreasing price increases demand and hence the amount of collected data but may also

decrease revenue Rν . In this sense, our model captures the tradeoff associated with the AI Flywheel

effect between maximizing revenue and collecting additional data. In addition, parameters (d0, ν)

characterize the potential strength of the AI Flywheel effect in our setup. Indeed, we have d1 =

νq+d0; hence, data size d0 specifies the firm’s starting point in the virtuous cycle, while acquisition

capacity ν influences the speed at which the firm can leverage this cycle.

Figure 1 depicts the timing of the events corresponding to our setup.

Period 1a – Initial Algorithm Development. The firm starts with an initial dataset of size d0.

Based on this dataset, the provider chooses effort e ∈ {s,w} to develop a first version of an ML

algorithm. The algorithm’s accuracy α1 is then realized according to probability πe(d0).

Period 1b – Pricing and Data Collection. Given accuracy α1, the firm prices and markets the

product. The firm collects δ1 such that the total size of the dataset becomes d1 = d0 + δ1 and

generates revenue Rν(δ1, α1).

Period 2a – Algorithm retraining and improvement. If α1 = α`, the provider retrains the algo-

rithm with an augmented dataset of size d1. (Otherwise, the maximum possible accuracy level αh is

achieved and the firm does not need the provider to improve accuracy further.)2 The provider again

chooses effort e to retrain the algorithm, which yields accuracy α2 according to probability πe(d1).

The probability of achieving high accuracy αh increases in this period, that is, πe(d1) > πe(d0),

because of the dataset increase d1 ≥ d0, and since more data improves accuracy, πe(·) for e∈ {s,w}

are increasing functions.

Period 2b – Pricing. Finally, given accuracy α2, the firm prices and markets the product, which

determines δ2 and generates revenue Rν(δ2, α2).

At the end of the time horizon, the firm has no further incentive to retrain the algorithm using

additional data δ2, which also means that d1 corresponds to the size of the largest dataset on which

2 Our model and results easily extend to the case where accuracy is cumulative, that is, in situations where accuracy

can be further improved when α1 = αh.
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Figure 1 Sequence of events
Data: d0

Algorithm Development

(Contract)

Accuracy: α1

Pricing and
Data Collection

Data: d1 = d0 + δ1

Algorithm Retraining

(Contract)

Accuracy: α2

Pricing

Period 1a Period 1b Period 2a Period 2b

the algorithm is ultimately trained. The maximum possible size of this dataset is then equal to

dmax = ν + d0 (recall that the market size is normalized to one). In the following, we thus take

dmin ≤ d0 ≤ dmax and 0< ν ≤ dmax− d0.

2.2 The Data Impact

Thus far, we have ignored the incentive issues that outsourcing the development of the algorithm

creates. In particular, the accuracy level depends on the available data and the provider’s effort.

Thus, the availability of data may interact with the intensity of the moral hazard problem that the

firm faces in each period. To characterize this interaction between effort and data, we introduce

the notion of the data impact, which we denote by ρ(d). The data impact maps dataset size d to

the normalized effect of shirking on the probability of high accuracy, that is,

ρ(d),
πw(d)−πs(d)

πw(d)
. (1)

We further assume that 1/ρ(d) is convex in d, which essentially requires data impact ρ(·) not to

be too convex. This technical restriction is milder than log-concavity, and hence concavity.

Overall, when data impact ρ(d) is constant in d, the effect of shirking on accuracy is independent

of the data size on which the algorithm is trained. However, when the data impact increases (resp.

decreases) in d, exerting effort increases the probability of high accuracy more (resp. less) with

more data.

Many corroborative evidences support the assumption that the data impact is decreasing in a

variety of practical settings. Specifically, empirical evidence demonstrates that the difference in

accuracy between sophisticated ML algorithms (which require more effort to develop and train),

and more crude ones decrease with the amount of data on which they are trained (Banko and Brill
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Figure 2 The different regimes of the data impact
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Note. In all cases, the probability of high accuracy is πw(d) = 1− exp(−3d/4). We set πs(d) = πw(d) exp(−cd− y),

and ρ(d) = 1− exp(−cd− y), where the pair (c, y) is taken as (0, log 4/3) in Case 1 (constant ρ), (1/6,0) in Case 2

(increasing ρ), and (−1/4, log 2) in Case 3 (decreasing ρ).

2001; Halevy et al. 2009). Practitioners have also recognized this phenomena, see, for example,

Gutierrez (2016).3

Yet, certain circumstances may justify assuming and increasing data impact. This is the case, for

instance, when biases in the training data sets are of particular concern. The impact of these biases

are typically more pronounced for larger datasets.4 In this case, the effort to improve the algorithm

has a bigger impact with more data. In addition, the performance of deep learning algorithms seem

to outperform very basic statistical models (such as logistic regressions) more when datasets are

larger (see Hackathorn 2018, for instance). Thus, the data impact should increase when the firm

does not have the skills to run nor check these more basic methods, and hence cannot detect this

form of shirking.

3 For instance, the following quote is from a data scientist at The Trade Desk “The bigger the training set, the better

the model. But less obviously, and more importantly, the difference between a fancy algorithm and a simple one

decreases with more data.” Gutierrez (2016).

4 A well-known example is Microsoft’s AI-based chatbot in Twitter that caused unintended tweets as the size of the

dataset feeding the algorithm increased, see Vincent (2016).
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Figure 2 depicts different examples corresponding to these different regimes. In all examples,

probability πw(·) (the black dotted curve in Figure 2a) is the same, while probability πs(·) takes

different forms, inducing different properties for data impact ρ. In the first regime (Case 1 in

Figure 2), the effect of shirking πw(d)− πs(d) (when πs(d) is the blue dashed curve in Figure 2a)

is directly proportional to the probability of high accuracy πw(d), which yields a constant data

impact (the straight dashed line in Figure 2b). By contrast, the data impact increases in the second

regime (the red dashed-dotted curve in Figure 2b) but decreases in the third one (the yellow plain

curve in Figure 2b).

Finally, the monotonicity of the data impact is related to the monotone likelihood ratio property

(MLRP), which is commonly assumed in the moral hazard literature. In our setup, the MLRP

property corresponds to πw(d)/πs(d) ≥ π̄w(d)/π̄s(d) for a given d and holds for all d since effort

always improves accuracy πw(d)>πs(d) (see Dai and Jerath 2019, for instance). Loosely speaking,

the property guarantees that high accuracy is more indicative of high effort ex post. The mono-

tonicity of the data impact determines the magnitude of this effect ex ante for the amount of

available data to train the algorithm.

2.3 Contracts

The firm faces a moral hazard problem in each period and has commitment power across periods.

Thus, the firm needs to offer a single contract which determines the provider’s payments in the first

period along with the expected payoff in the second period through the total amount of collected

data δ1 and the second period payments (we present the noncommitment case in Appendix D).

Accuracy realizations αt, t= 1,2, are contractable but effort is not. In particular, the product

may track (ex-post) accuracy once it is distributed, or the firm can always hold some data to test

the accuracy. Alternatively, the firm may contract on revenues, which is equivalent to contracting

on accuracy in our setup.

In contrast, ML algorithms are notoriously difficult to explain to non-experts (Lipton 2016,

Ribeiro et al. 2016), rendering the expert’s efforts to improve accuracy difficult to observe and
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contract on (Gromb and Martimort 2007). Thus, the contract’s payments in each period depend

on the public history and are contingent upon the accuracy realizations.5 Specifically, the history

in Period 1a decreases to d0 and the first contract consists of payments x1`(d0) and x1h(d0) that are

made if α1 = α` and α1 = αh, respectively. Given realization α1, the firm collects additional data,

which yields size d1 at the end of the period. The history in Period 2a is then (d1, α1), and the

second contract consists of payments x2`(d1, α1) and x2h(d1, α1), which again correspond to high

and low accuracy levels, respectively.6 The provider is further protected by its limited liability;

thus, x1`, x1h, x2` and x2h are all non-negative.

2.4 The Firm’s Problem

The firm’s problem is to maximize the total expected profit, which is the expected revenue net

of payments over both periods, subject to incentive compatibility constraints. We assume that

the firm prefers the provider to exert effort in both periods and that the optimal price neither

covers nor excludes the entire market. (These assumptions are made for the sake of simplicity;

see, for instance, Laffont and Martimort 2009, and Feldman et al. 2018, Choudhary et al. 2005,

respectively. We provide formal conditions for these assumptions in Appendix B).

We formulate this problem via backward induction starting from the second period (see Figure 1).

We then denote then by J2b(α2, d1) the firm’s optimal expected profit in Period 2b given accuracy

α2 and data size d1, such that

J2b(α2, d1) = max
δ2∈[0,ν]

Rν(δ2, α2) (2)

The firm chooses the amount of collected data (or equivalently the price) so as to maximize the

expected revenue in the current period. As there is no continuation, we refer to this problem as the

5 In our setup, the accuracy realization affects the demand per Section 2. Thus, the contract’s payments can equiva-

lently be contingent upon the demand.

6 Recall that these last payments are only meaningful when α1 = α`, as no contract is required in the second period

when α1 = αh.



Gurkan and de Véricourt: AI Flywheel Effect
16

myopic problem. In particular, size d1 does not play any role in this problem, which corresponds to

situations where both the AI Flywheel effect and the moral hazard problem are absent. We denote

by δM the value of δ2 that solves Problem (2).

Similarly, we denote by J2a(α1, d1) the firm’s expected continuation profit in Period 2a, given

payments x2h, x2`, and accuracy α1 and data size d1, such that

J2a(α`, d1) = πw(d1)[J2b(αh, d1)−x2h] + π̄w(d1)[J2b(α`, d1)−x2`] (3)

J2a(αh, d1) = J2b(αh, d1). (4)

When α1 = α`, the firm needs to set payments such that the provider has enough incentives to

exert effort, as will be formalized by incentive constraint (9). These payments are then deduced

from the firm’s expected revenues in Period 2a. Here, data size d1 affects the chance of improving

accuracy in the next period via probabilities πe(·), e ∈ {w,s}. When α1 = αh, recall that the firm

does not need nor pay the provider.

Moving to the first period, we denote by J1b(α1, d0, δ1) the firm’s expected continuation profit in

Period 1b given accuracy α1, data size d0, and collected data δ1, such that

J1b(α1, d0, δ1) =Rν(δ1, α1) +J2a

(
α1, d0 + δ1

)
for α1 ∈ {αh, α`}. (5)

When α1 = α`, the choice of data δ1 (or equivalently the price) affects current revenues directly

and future ones indirectly by increasing the dataset size to d0 + δ1.

We are now ready to define the overall firm’s problem. Given initial data size d0, we denote by

J1a(d0) the optimal total expected profit in Period 1a, such that

J1a(d0) = max
x1h,x1`≥0
x2h,x2`≥0
δ1h,δ1`∈[0,ν]

πw(d0)[J1b(αh, d0, δ1h)−x1h] + π̄w(d0)[J1b(α`, d0, δ1`)−x1`] (6)

s.t.

πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (7)

Jp(d0) = πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2`−κ. (8)

πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2`−κ≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` (9)
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The firm needs to provide incentive to the provider for both periods. Therefore, the expected

payments that the contract of the second period brings about affect the provider’s incentives in

the first period. Specifically, Jp(·) in (7) corresponds to the provider’s expected continuation profit,

which is equal to the expected optimal payments in the second period net of the effort cost; see (8).

A key aspect of our setup is that the distribution of these future payments, πw(d1), depends on

the choice of δ1` since d1 = d0 + δ1`. Thus, the choice of δ1` (or equivalently price) not only makes

the tradeoff between present and future revenues as in (5) but also determines the intensity of

the incentive issue. When α1 = αh, no retraining is required and the optimal price is equal to the

myopic price, as we make clear in Section 3.

3 Optimal Decisions of the Firm

We now characterize the optimal decisions of the firm when it needs to outsource the development

of the algorithm. These decisions correspond to the amount of collected data δ1`, δ1h (and the

corresponding price p1`, p1h) as well as all payments x1`, x1h, x2`, and x2h in J1a.

The optimization problem of J1a in (6) corresponds to maximizing the expected profit, that is,

the total revenue net of the payments motivating the provider to exert effort. This problem can be

solved in three steps. Starting from Period 2b, we initially consider the myopic problem J2b whose

solution is characterized in Lemma 1. Next, fixing the amount of collected data δ1` and δ1h, we

characterize the corresponding payments. The following lemma (Lemma 2) provides the optimal

payments which motivate to exert effort for given δ1`, δ1h. Finally, we characterize the optimal

amount of collected data which maximizes the total expected profit of the firm.

Specifically, the firm’s problem in Period 2b corresponds to the myopic problem in (2). Straight-

forward calculations then lead to the following result.

Lemma 1. Given accuracy α2 and dataset size d1, the optimal collected data size δM and expected

profit J2b(α2, d1) are equal to δM = νF̄ (φ−1(0)) and J2b(α2, d1) = α2τ , respectively, where τ ,

φ−1(0)F̄ (φ−1(0)) and φ−1(·) is the inverse of virtual value function φ(·).
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The proof of Lemma 1 are provided alongside all other proofs in Appendix A. The corresponding

myopic price that yields data size δM is then equal to, per Section 2,

pM = α2φ
−1(0),

and quantity τ is equal to pM(δM/ν)/α2, which is the marginal revenue per unit of accuracy under

optimal myopic pricing. Note that data size δM does not depend on accuracy, but optimal price pM

and profit J2b do.

Lemma 2. Fix δ1` and δ1h in (6), then the corresponding optimal payments are x1`(δ1`) =

x2`(δ1`) = 0, and

x1h(δ1`) =
κ

πw(d0)−πs(d0)
+

(
κ

ρ(d0 + δ1`)
−κ
)

and x2h(δ1`) =
κ

πw(d0 + δ1`)−πs(d0 + δ1`)
.

The firm’s total expected payment to the provider is then given by

κ

ρ(d0)
+

κ

ρ(d0 + δ1`)
.

In the first period, the firm needs to account for the provider’s future expected profits contrary to

the payments in Period 2. Specifically, optimal payment x1h(δ1`) corresponds to i) bonus payment

taken at d0 but augmented by ii) the provider’s rent of the second period net of effort cost because,

in our setup, the firm cannot easily replace the provider across periods. In this sense, the second

term of x1h(δ1`) captures the cost due to the scarcity of AI service providers in the market. In both

periods, the ex-post payments to the provider depend on the amount of data δ1`. Because there

is no need for further improvement after a high accuracy αh in the first period, payments depend

only on δ1`.

MLRP ensures that under the optimal contract, realizations of higher value (αh in our setup)

are more rewarded (x2h > x2l). Thus, MLRP concerns the ex-post payments to the provider. In

contrast, Lemma 2 shows that data impact ρ(·) determines the ex-ante provider’s rent κ[1/ρ(d0) +

1/ρ(d0 + δ1`)].

Using Lemma 1 and 2, Problem (6) can be reduced to choosing data sizes δ1` and δ1h. We

next show that the optimal data sizes solving Problem (6) and hence the corresponding optimal

payments are unique.
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Proposition 1. The optimal solution to Problem (6) is unique such that δ1h = δM and δ1` = δ∗

where δ∗ is the unique optimal solution of

max
δ∈[0,ν]

π̄w(d0) [Rν(δ,α`) +πw(d0 + δ)(αh−α`)τ ]− κ

ρ(d0 + δ)
.

If the first version of the algorithm is already highly accurate (α1 = αh), no further improvement

is necessary and the firm does not need to deviate from the myopic price. We refer to δ∗ as the

optimal solution δ1` of Problem (6), and to p∗ as the price that yields data size δ∗ (see Section 2).

This proposition further reavels how the main effects captured by our model endogenously deter-

mine data collection size δ∗. Indeed, deviating δ away from δM decreases the firm’s current period

revenue Rν(δ,α`). But, increasing δ always boosts the positive externalities of the AI Flywheel

effect (πw(d0 + δ)(αh−α`)τ). Moreover, additional data may exacerbate or mitigate the incentive

issues and associated agency cost κ/ρ(d0 + δ) depending on the monotonicity of the data impact.

The choices of δ∗ essentially balances these different tradeoffs simultaneously.

4 Impact of Incentive Issues

We first analyze the impact of incentive issues on the optimal decisions of the firm along with

the social welfare and consumer surplus for a fixed pair of d0 and ν. To do so, we introduce a

comparison benchmark, the first-best setting, where the firm does not face any incentive issues.

4.1 First-Best Benchmark

In the first-best setting, the firm has the capability to develop the algorithm and does not face

any incentive issues. The first-best problem then corresponds to Problem (6) without incentive

constraints (7) and (9), but where the firm directly incurs cost κ. Specifically, the problem without

incentive issues, denoted by JFB
1a(d0), is obtained by setting payments to κ (i.e., x1h = x1` = x2h =

x2` = κ) and removing incentive constraints (7) and (9) in Problem (6). The following proposition

characterizes the firm’s optimal decision at first-best.

Proposition 2. The optimal solution to JFB
1a(d0) is unique such that δ1h = δM and δ1` = δFB where

δFB is the unique solution maxδ∈[0,ν]Rν(δ,α`) +πw(d0 + δ)(αh−α`)τ , and δFB > δM.
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We denote by δFB the optimal value of δ1` maximizing JFB
1a(d0). We also refer to pFB as the

corresponding price that yields data size δFB. If the firm succeeds in developing the initial algorithm

with high accuracy (α1 = αh), no further improvement is necessary and the firm charges the optimal

myopic price pM, inducing δM over the remaining time horizon. If this accuracy is low (α1 = α`),

however, the firm faces a tradeoff between maximizing revenues in the current period or acquiring

additional data to leverage the AI Flywheel effect. In this case, the firm underprices with pFB < pM

and forfeits the optimal myopic revenue to collect more data, that is, δFB > δM, increasing the

probability of high accuracy and hence expected profit in the next period.

To the extent that we consider a dynamic model, these distortions away from the myopic decision

(δFB > δM) are to be expected. They occur in may different settings, such as in inventory problems

(see Heese and Swaminathan 2010, for example), but are especially present in problems of pricing

under positive adoption externalities (see Section 1.1).

Finally, the firm’s pricing and data collection decisions pFB and δFB determine the social welfare

and customer surplus at first best, which we denote by W FB and CFB, respectively. Customer surplus

CFB is the total valuations net of the product price of all customers who make a purchase. Social

welfare W FB is then the sum of customer surplus CFB and the firm’s profit net of effort cost κ.

4.2 Overpricing, Underpricing, and Optimal Data Collection

To alleviate the moral hazard issue, the firm may need to incur costly deviations away from first-

best decisions. The next result shows that the monotonicity of data impact ρ(·) is sufficient to

determine when the firm overprices and when it underprices.

Theorem 1. We have

1. if ρ(·) is constant, then δ∗ = δFB,

2. if ρ(·) is increasing, then δ∗ ≥ δFB,

3. if ρ(·) is decreasing, then δ∗ ≤ δFB.

In essence, the monotonicity of the data impact defines three distinct regimes. If the relative impact

of shirking is independent of the dataset size (ρ is constant), then no deviation from first-best is
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Figure 3 Optimal data and pricing decisions of the firm
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Note. The data impacts for Case 1, 2, and 3 are given by the corresponding cases in Figure 2b. For Case 1, δFB = δ∗

and pFB = p∗ are in Figure 3a and Figure 3b, respectively.

required. By contrast, if this impact intensifies with more data (ρ is increasing), the firm needs

to underprice p∗ ≤ pFB in order to collect more data δ∗ ≥ δFB. Finally, the firm needs to overprice

p∗ ≥ pFB when the relative impact of shirking diminishes with more data (ρ is decreasing).

Figure 3 depicts examples of these three regimes for different initial dataset sizes (d0). The data

impacts corresponding to these examples are depicted in Figure 2b. The resulting data sizes δ∗ and

optimal prices p∗ are depicted in Figures 3a and 3b, respectively.

In the first regime, the data impact is constant and the net effect of shirking πw(d)− πs(d) is

proportional to the probability of high accuracy πw(d) (see Figure 2, Case 1). In this case, the

dataset size does not affect the intensity of the incentive issues. The firm only faces the tradeoffs

that the AI Flywheel effect brings about and thus charges the first-best price (but still incurs the

payments to the provider). This corresponds to the blue dashed curve in Figure 3, which depicts

the firm’s decisions in both the first regime and first-best.

In the second regime, the data impact is increasing and the net effect of shirking increases faster

than the probability of high accuracy (see Figure 2, Case 2). This regime is depicted by the red

dashed-dotted curve in Figure 3. In this case, high accuracy is more indicative of efforts at higher
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data volumes, and the rent is decreasing in data size δ. Thus, the firm underprices with p∗ < pFB

(the red dashed-dotted curve is below the blue dashed one in Figure 3b) in order to collect more

data with δ∗ > δFB (the red dashed-dotted curve is above the blue dashed one in Figure 3a). In

this sense, the incentive issues induce the firm to leverage the AI Flywheel effect even more. In

particular, the expected revenue in the first period is lower than first-best due to incentive issues,

but the expected revenues in the second period are higher since, with more data, the probability

of high accuracy is higher.

Finally, the data impact is decreasing (see Figure 2, Case 3) in the third regime, which is

depicted by the yellow plain curve in Figure 3. In this case, high accuracy is less indicative of

efforts at higher data levels and the rent is increasing in data size δ. Thus, the firm overprices with

p∗ > pFB so as to collect less data with δ∗ < δFB. The firm’s expected revenues in the last period

decrease compared to first-best since the probability of high accuracy is lower. The revenues in the

first period, however, might actually increase compared to first-best. This situation happens, for

instance, when pM > p∗ > pFB. Overall, the incentive issues prevent the firm from fully leveraging

the AI Flywheel effect in this regime.

4.3 Social Welfare and Customer Surplus

Theorem 1 uncovers effects that have further implications for social welfare and customer surplus

in the presence of incentive issues, which we denote by W ∗ and C∗, respectively. In this case, the

social surplus corresponds to the sum of the firm’s profit, customer surplus C∗, and the provider’s

profit.

The next result shows that the social benefits are monotone in the firm’s data collection decision

at equilibrium.

Proposition 3. Social welfare W ∗ and consumer surplus C∗ are nondecreasing in δ∗. Further-

more, W ∗ =W FB and C∗ =CFB for any δ∗ = δFB.

That a higher δ∗ should improve the social benefits at the equilibrium is not obvious a priori. In

particular, a larger data collection corresponds to a higher expected accuracy in the next period.
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This, however, also increases the expected equilibrium price in Period 2b (see Lemma 1). Our result

shows that the latter effect is dominated by the former and thus both the social welfare and the

customer surplus increase with data collection δ∗.

Thus, collecting more data at the equilibrium boosts the social benefits. Based on Theorem 1,

we can then characterize how the incentive issues affect the social welfare and customer surplus.

In fact, the following result indicates that incentive issues may increase these benefits.

Proposition 4. We have

1. if ρ(·) is constant, then W ∗ =W FB and C∗ =CFB,

2. if ρ(·) is increasing, then W ∗ ≥W FB, and C∗ ≥CFB

3. if ρ(·) is decreasing, then W ∗ ≤W FB, and C∗ ≤CFB.

In other words, the firm’s distortion from the first-best benchmark to mitigate the effects of incen-

tive issues improves the social welfare and the customer surplus when the data impact is increasing.

In contrast, this distortion hurts the social welfare when the data impact is decreasing.

The effect of incentive issues have further implications for these societal benefits. Specifically,

our setup considers a unique provider, with which the firm contracts in both period. It is not

clear, however, how the previous societal benefits change when the firm can contract with different

providers in different periods. (Our results also hold overall for the competitive provider market

setting, see Appendix C.) The next result shows that a more competitive market of providers may

actually hurt the social benefits.

Proposition 5. Let W̃ ∗ and C̃∗ be the social welfare and, respectively the customer surplus in

a setting where the firm changes providers in each period.

1. If ρ is increasing, W ∗ ≥ W̃ ∗ and C∗ ≥ C̃∗.

2. If ρ is decreasing, W ∗ ≤ W̃ ∗ and C∗ ≤ C̃∗.

Thus, a more competitive provider market hurts societal benefits more if the data impact increases.

This is because the firm suffers more from the moral hazard of the provider in the absence of

competition. Therefore, the firm collects more data when the data impact is increasing to mitigate

incentive issues compared to the competitive provider market.
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5 Impact of the Data Acquisition Capacity

One key product attribute that firms commonly seek to improve is the amount of data that the

product collects on its user. In our setup, this corresponds to increasing data acquisition capacity

ν. In the following, we explore how this improvement affects the firm’s data collection strategy and

expected profit. The main finding of this analysis is that data acquisition capacity ν can have a

non-monotonic impact on the firm’s profit.

5.1 Optimal Data Collection

Without incentive issues, a higher data acquisition capacity induces the firm to collect even more

data under the AI Flywheel effect, as seen in the next result.

Proposition 6. The first-best data size δFB is nondecreasing in data acquisition capacity ν.

If the firm considers designing a product that acquires more data per user, the firm collects in

aggregate even more data (δFB is nondecreasing in ν). Recall that δ = νq and thus increasing ν

provides an opportunity to increase data size δ to improve the algorithm in the next period while

maintaining quantity q and hence revenues in the current period.

The need to mitigate incentive issues, however, sometimes reverses this effect and pushes the

firm to collect less data when the product’s data acquisition capacity is higher. The next theorem,

one of our main results, formalizes this finding.

Theorem 2. We have the following:

1. If ρ(·) is increasing, δ∗ is nondecreasing in ν.

2. If ρ(·) is decreasing, a unique threshold ν̂ exists such that δ∗ is nondecreasing in ν if ν ≤ ν̂

and is nonincreasing otherwise.

Thus, increasing the data acquisition capacity induces the firm to collect more data overall (δ∗ is

increasing), when the data impact is also increasing. This effect, however, may continue to hold

even when the data impact is decreasing, that is, when more data actually exacerbates the incentive

issues. This is the case as long as the data acquisition capacity is not too large (ν < ν̂). When the
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Figure 4 Effect of the product’s data acquisition capacity on the firm’s data collection decision when more

data exacerbate the incentive issues
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Note. Probabilities generating this example are πw(d) = 1−1/
√
d, πs(d) = πw(d)(1−1/(d+ 1)) and the data impact

is ρ(d) = 1/(1 + d). The size of the initial dataset is d0 = 10.

data acquisition capacity becomes large (ν ≥ ν̂), acquiring more data per user actually induces the

firm to collect less data overall (δ∗ is decreasing).

Figure 4 illustrates this point and depicts the effect of ν on δ∗ when the data impact is decreasing.

The figure shows nonmonotonic behavior in the acquisition capacity ν. In particular, this contrasts

with the first-best benchmark δFB, which always increases in ν according to Proposition 6. Threshold

ν̂ corresponds to the straight black line in Figure 4), with ν̂ u 13.7.

More specifically, when the acquisition capacity increases, the firm has an incentive to collect

more data to benefit more from the AI Flywheel effect, as discussed in the first-best benchmark

(see Proposition 6). When the data impact is increasing, collecting more data also reduces the

intensity of the moral hazard problem and hence the agency costs in the next period. Both effects

are aligned in this case, and the firm increases δ∗ as a result. By contrast, collecting more data

intensifies the moral hazard problem in the next period when the data impact is decreasing. The

firm then faces a tradeoff between leveraging the AI Flywheel effect or reducing future agency

costs. When the acquisition capacity is small, the amount of collected data δ= νq remains small for

any quantity q, which yields low agency costs. As the acquisition capacity increases, boosting the

AI Flywheel effect dominates the increases in agency costs, and data size δ∗ increases as a result.
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When the acquisition capacity becomes large enough (i.e., when ν > ν̂), however, the agency costs

dominates the revenues due to the AI Flywheel effect. The firm then focuses on reducing these

agency costs by decreasing δ∗.

5.2 The Firm’s Profit

To the extent that acquisition capacity ν determines the firm’s data collection strategy per Theo-

rem 2, improving this capability ultimately affects the firm’s profit. The next result – one of the

main findings of the paper – characterizes this effect.

Theorem 3. We have:

1. If ρ(·) is increasing, the expected profit of the firm is nondecreasing in ν.

2. If ρ(·) is decreasing, a unique threshold ν̃ exists such that the expected profit is nondecreasing

in ν if ν ≥ ν̃, and is nonincreasing otherwise.

Thus, when the data impact is increasing, the firm’s profit is higher when the product can acquire

more data on its user. In fact, this effect continues to hold even when more data exacerbates the

incentive issues, as long as the data acquisition capacity is not too large (ν < ν̃). However, if the

data acquisition capacity is large enough (ν ≥ ν̃), boosting the product’s capacity to collect data

actually hurts the firm’s profit.

Three main components of our model jointly shape the impact of the data acquisition capacity

on the firm’s profit: the AI Flywheel effect, pricing for revenue, and incentive issues. To leverage the

AI Flywheel effect more, the firm needs to collect more data. Therefore, optimal data collection δ∗

deviates from myopic data collection δM, and optimal price p∗ from myopic price pM (see Section 4.2),

which hurts revenues in the first period. Improving the data acquisition capacity ν makes it possible

for the firm to push the price toward the myopic one, thus boosting revenues in the current period

without affecting the amount of data collected to retrain the algorithm in the next period. This

positive effect continues to hold for larger values of the acquisition capacity when the data impact

is increasing (per the first item of Theorem 3).
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When the data impact is decreasing, however, the previous positive effect holds until the acqui-

sition capacity hits threshold ν̃, which is exactly the value at which the firm charges the myopic

price (p∗ = pM). In this case, the firm has maximized the revenue it can collect from pricing in the

first period. Increasing the data acquisition capacity further exacerbates the incentive issues in the

second one. In addition, the marginal contribution to the accuracy of the additional collected data

is decreasing (recall that πw is increasing but concave). Thus, exceeding ν̃ generates no additional

revenue in the current period, while the improvements in accuracy and hence revenues in the sec-

ond one are offset by the increase in agency costs. The firm’s profit decreases as a result. Figure 5

Figure 5 Effect of the product’s data acquisition capacity on the firm’s profit when more data exacerbate the

incentive issues
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is ρ(d) = 1/(1 + d), which is decreasing. The size of the initial dataset is d0 = 5.

illustrates this last point and depicts the effect of ν on the firm’s expected profit J1a when the data

impact is decreasing. The figure shows that the data acquisition capacity ν has a unimodal effect

on profit. Threshold ν̂ corresponds to the straight black line in Figure 5, with ν̃ u 15.

This unimodal relationship between the data acquisition capacity and the firm’s profit has further

implications for the role of initial data size d0, as presented in the following result.

Proposition 7. If ρ(·) is decreasing, there exists a threshold d̃0 such that the expected profit of

the firm is decreasing in ν when d0 ≥ d̃0, and is unimodal otherwise.



Gurkan and de Véricourt: AI Flywheel Effect
28

Thus, when the initial dataset of the firm is large enough (d0 ≥ d̃0), increasing the product’s

acquisition capacity always hurts profits when the data impact is decreasing. Because the intitial

dataset is large, the firm needs to rely less on the AI Flywheel effect to collect data for the second

period. The firm nonetheless charges a price above the myopic one to mitigate the incentive issues.

If the data acquisition capacity improves, the incentive issues intensify and the firm increases the

price away from the myopic one, which decreases revenues.

In contrast, when the initial size of the dataset is not too large (d0 < d̃0), the relationship between

the acquisition capacity and profit is unimodal. This is because when initial size d0 and acquisition

capacity ν are small, the firm needs to leverage the AI Flywheel effect to collect more data and

thus prices the product below the myopic price. As acquisition capacity ν increases, the firm can

then increase the optimal price closer to the myopic revenues while collecting the same amount of

data for the next period. The total expected profit increases as a result, until the optimal price

reaches the myopic one. In this case, we retrieve the previous effects and profits start to decrease

in the acquisition rate.

6 Concluding Remarks

This paper proposes a simple dynamic framework to study how firms that outsource the devel-

opment of their ML algorithm can leverage the AI Flywheel effect. Our setup accounts for the

three main features of this problem: i) the tradeoff between improving the algorithms’ accuracy

and maximizing revenues due to the AI Flywheel effect, ii) the need to manage the incentive issues

that outsourcing the algorithm brings about, and iii) the interaction between the amount of data

on which the algorithm is trained and the efficacy of the provider’s effort. We further introduce

the notion of data impact as a framework to represent the interaction between data and effort.

Taken together, our results identify three different regimes which depend on the nature of the

data impact. These regimes determine whether the firm overprices or underprices, and regulate the

impact of the data acquisition capacity on the firm’s profit and decisions. In particular, when the

data impact decreases, we find that improving the capacity to acquire user data may hurt profits
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and induce the firm to actually collect less data overall. These regimes have further implications

for society. Notably, incentive issues improve social welfare when the data impact is increasing.

Improving a product’s capacity of acquiring usage data is a key but costly and at times challeng-

ing design choice in practice (e.g., Boonstra et al. 2018). As such, our insights on when a firm should

seek to improve the acquisition capacity address an important managerial problem. In essence,

the acquisition capacity determines the strength of the positive adoption externalities of the AI

Flywheel effect in our setup. In the context of classical products, this corresponds to the intensity

of the customer social network or how fast information circulates in the market (Shy 2011), which

the firm cannot easily influence. Nonetheless, the stronger the network effect in classical adoption

settings, the better off the firm typically is (Gabszewicz and Garcia 2008). To some extent, this

remains true for data products. In our setup, entrepreneurs who seek to leverage the AI Flywheel

effect should indeed consider enhancing the data collection capability of their products, but only up

to a certain level. Allowing a data product to collect too much usage data may sometimes damage

the firm’s profits.

Our results further provide predictions that future work can empirically test. In particular, given

that the existing literature points to the importance of collecting a large amount of data over

improving algorithms (Banko and Brill 2001, Halevy et al. 2009), we expect the data impact to

decrease in many practical contexts. Our work thus provides theoretical support for the hypothesis

that firms set higher prices for a new AI product when the product’s algorithm is outsourced (per

Theorem 1). In addition, we predict that a significant increase in the product’s capacity to generate

usage data induces firms to collect less data to improve the algorithm, which hurts their profits

(per Theorem 2 and Theorem 3, respectively).

From a technical perspective, our model can be extended in a variety of ways. For instance,

exploring how information asymmetry regarding the provider’s skill interacts with the AI Flywheel

effect constitutes a fruitful future research direction. Similarly, future research could explore our

setup with a longer time horizon.
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More generally, we believe that our work opens up more fundamental research directions and

questions for the management of data-driven business models. Specifically, our paper considers a

problem in which the provision of data interacts with incentive issues. Indeed, the key aspect of

our setup is that the principal can regulate the intensity of the moral hazard problem she faces by

controlling (through pricing in our setting) the data to which the agent has access. We believe that

this interaction between data and incentives is present in many other contexts than the outsourcing

of the AI Flywheel effect.

Overall, our results provide the first insights on how firms can leverage the AI Flywheel effect, to

the best of our knowledge. In addition, ours is the first paper to consider the problem of contracting

ML algorithms. Given the shortage of data scientists and the growing outsourcing industry in this

domain, we expect the issue to gain importance in the coming years.

References

Acemoglu D, Makhdoumi A, Malekian A, Ozdaglar A (2019) Too much data: Prices and inefficiencies in data markets.

Technical report, National Bureau of Economic Research.

Aflaki A, Feldman P, Swinney R (2019) Becoming strategic: Endogenous consumer time preferences and multiperiod

pricing. Forthcoming, Operations Research .

Alles M, Datar SM, Lambert RA (1995) Moral hazard and management control in just-in-time settings. Journal of

Accounting Research 33:177–204.

Anderson Jr EG, Parker GG (2013) Integration and cospecialization of emerging complementary technologies by

startups. Production and Operations Management 22(6):1356–1373.

Banko M, Brill E (2001) Scaling to very very large corpora for natural language disambiguation. Proceedings of

the 39th annual meeting on association for computational linguistics, 26–33 (Association for Computational

Linguistics).

Bensaid B, Lesne JP (1996) Dynamic monopoly pricing with network externalities. International Journal of Industrial

Organization 14(6):837–855.

Bimpikis K, Crapis D, Tahbaz-Salehi A (2019) Information sale and competition. Management Science 65(6):2646–

2664.

Boonstra TW, Nicholas J, Wong QJ, Shaw F, Townsend S, Christensen H (2018) Using mobile phone sensor technology

for mental health research: integrated analysis to identify hidden challenges and potential solutions. Journal of

medical Internet research 20(7):e10131.



Gurkan and de Véricourt: AI Flywheel Effect
31

Bursztein E (2018) Attacks against machine learning ? an overview. elie.net/blog/ai/

attacks-against-machine-learning-an-overview/ [Online; accessed 27-January-2020].

Cabral LM, Salant DJ, Woroch GA (1999) Monopoly pricing with network externalities. International Journal of

Industrial Organization 17(2):199–214.

Cengiz K (2015) 10 startups that have become a success with outsourced development. https://perfectial.com/

blog/?s=10+Startups+That+Have+Become+A+Success+With+Outsourced+Development&search-type=normal

[Online; accessed 17-January-2020].

Choudhary V, Ghose A, Mukhopadhyay T, Rajan U (2005) Personalized pricing and quality differentiation. Manage-

ment Science 51(7):1120–1130.

Dai T, Jerath K (2013) Salesforce compensation with inventory considerations. Management Science 59(11):2490–

2501.

Dai T, Jerath K (2019) Salesforce contracting under uncertain demand and supply: Double moral hazard and opti-

mality of smooth contracts. Marketing Science, Forthcoming .

de Véricourt F, Gromb D (2018) Financing capacity investment under demand uncertainty: An optimal contracting

approach. Manufacturing & Service Operations Management 20(1):85–96.

de Véricourt F, Gromb D (2019) Financing capacity with stealing and shirking. Management Science 65(11):5128–

5141.

Deshpande I (2019) What is customer data? definition, types, collection, valida-

tion and analysis. https://www.martechadvisor.com/articles/data-management/

customer-data-definition-types-collection-validation-analysis-martech101/ [Online; accessed

10-March-2020].

Feldman P, Papanastasiou Y, Segev E (2018) Social learning and the design of new experience goods. Management

Science 65(4):1502–1519.

Gabszewicz JJ, Garcia F (2008) A note on expanding networks and monopoly pricing. Economics Letters 98(1):9–15.

Golden K (2017) Deere to advance machine learning capabilities in acquisition of blue river technol-

ogy. www.deere.com/en/our-company/news-and-announcements/news-releases/2017/corporate/

2017sep06-blue-river-technology/ [Online; accessed 27-January-2020].

Gromb D, Martimort D (2007) Collusion and the organization of delegated expertise. Journal of economic theory

137(1):271–299.

Gutierrez D (2016) Data-first machine learning. http://www.inetservicescloud.com/

data-first-machine-learning/ [Online; accessed 11-September-2020].



Gurkan and de Véricourt: AI Flywheel Effect
32

Hackathorn R (2018) How managers should prepare for deep learning: New paradigms. https://

towardsdatascience.com/how-managers-should-prepare-for-deep-learning-new-paradigms-28de63054ea6

[Online; accessed 15-09-2020].

Halevy A, Norvig P, Pereira F (2009) The Unreasonable Effectiveness of Data. IEEE Intelligent Systems 24(2):8–12,

ISSN 1541-1672, URL http://dx.doi.org/10.1109/MIS.2009.36.

Heese HS, Swaminathan JM (2010) Inventory and sales effort management under unobservable lost sales. European

Journal of Operational Research 207(3):1263–1268.
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Appendix

A. Proof of Results

Proof of Lemma 1. Recall the definition Rν(δ,α) = αδ/νF−1 ((1− δ/ν)) in Section 2, and F is

the c.d.f. of the standard uniform distribution. Therefore, it can be verified that Rν(δ,α) is concave

in δ, and the following first-order condition is sufficient for optimality.

1

ν
F−1

(
1− δ

ν

)
− δ

ν2

1

f
(
F−1

(
1− δ

ν

)) = 0 . (10)

Let ξ = F−1
(
1− δ

ν

)
, hence δ/ν = F̄ (ξ). We first multiply both sides of the equality with ν and then

use this new notation ξ. Using the definition of the virtual value function φ, we have

φ(ξ) = 0 . (11)

Because the virtual value function of the uniform distribution is increasing, and crosses 0 at 1/2,

we conclude that the unique optimal solution δM to Problem (2) is equal to νF̄ (φ−1(0)). Evaluating

the objective function at the optimal solution and using the fact that τ = φ−1(0)F̄ (φ−1(0)), we

conclude that

J2b(α2, d1) = α2τ .

Proof of Lemma 2. Using Lemma 1, and fixing δ1` and δ1h, we obtain the following problem

where we only optimize over the payments xi` and xih for i= 1,2.

min
x1h,x1`≥0
x2h,x2`≥0

πw(d0)x1h + π̄w(d0)
[
πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2` +x1`

]
(12)

s.t. πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (13)

πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2`−κ≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` (14)

Jp(d0) = πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2`−κ. (15)

To solve this problem, we first consider a subproblem where we optimize over only x1h and x1` for

a fixed pair of x2h and x2` which satisfy (14). Since δ1` is also fixed, we get a constant for Jp(d0).

Thus, the subproblem corresponds to minimizing the expected payments in the first period while

satisfying the incentive constraint (13), and given by

min
x1h,x1`≥0

πw(d0)x1h + π̄w(d0)x1` (16)

s.t. πw(d0)x1h + π̄w(d0) [x1` +Jp(d0)]−κ≥ πs(d0)x1h + π̄s(d0) [x1` +Jp(d0)] (17)

Following Proposition 4.2 in Laffont and Martimort (2009, p. 157), we get the optimal solution to

the subproblem as x̃∗1` = 0 and

x̃∗1h =
κ

πw(d0)−πs(d0)
+Jp(d0) .
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Note that this optimal solution x̃∗1h and x̃∗1` is for a fixed value of x2` and x2h. Thus, we know

optimize over x2` and x2h by incorporating the values of x̃∗1` and x̃∗1h to Problem (12). Arranging

terms, we obtain

min
x2h,x2`≥0

πw (d0 + δ1`)x2h + π̄w (d0 + δ1`)x2` +
κ

ρ(d0)
−πw(d0)κ (18)

s.t. πw(d0 + δ1`)x2h + π̄w(d0 + δ1`)x2`−κ≥ πs(d0 + δ1`)x2h + π̄s(d0 + δ1`)x2` .

Invoking the same proposition from Laffont and Martimort (2009) one more time, we get the

optimal solution as x2`(δ1`) = 0 and

x2h(δ1`) =
κ

πw(d0 + δ1`)−πs(d0 + δ1`)
.

Evaluating x̃∗1h using x2h(δ1`) and x2`(δ1`), we find

x1h(δ1`) =
κ

πw(d0)−πs(d0)
+

κ

ρ(d0 + δ1`)
−κ and x1`(δ1`) = 0 .

The total expected payment follows from using the values of the optimal solution xih and xi` for

i= 1,2, and we conclude the proof. Q.E.D.

Proof of Proposition 1. Using Lemma 1 and the optimal payments derived in Lemma 2, we

reformulate Problem (6) to a problem where we only maximize over δ1` and δ1h.

J1a(d0) = max
δ1h,δ1`∈[0,ν]

πw(d0)

[
Rν(δ1h, αh) +Rν(δ

M, αh)− κ

ρ(d0 + δ1`)
+κ

]
− κ

ρ(d0)
(19)

+π̄w(d0)

[
Rν(δ1`, α`) +πw(d0 + δ1`)Rν(δ

M, αh) + π̄w(d0 + δ1`)Rν(δ
M, α`)−

κ

ρ(d0 + δ1`)

]
.

Note that we can separate the optimization problem above into maximizing over δ1h and δ1`. For

the part, we maximize over δ1h, we get the myopic problem so the unique optimal solution is given

by Lemma 1 as δ1h = δM. Thus, we finally get

J1a(d0) = πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
(20)

+ max
δ1`∈[0,ν]

π̄w(d0) [Rν(δ1`, α`) +πw(d0 + δ1`)Rν(δ
M, αh) + π̄w(d0 + δ1`)Rν(δ

M, α`)]−
κ

ρ(d0 + δ1`)
.

= πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ max
δ1`∈[0,ν]

π̄w(d0) [Rν(δ1`, α`) +πw(d0 + δ1`)τ(αh−α`)]−
κ

ρ(d0 + δ1`)
.

The second equality follows from the fact that Rν(δ
M, αi) = ταi for i ∈ {h, `} (see

Lemma 1). Here, the uniqueness of δ1` = δ∗ follows because the objective function

π̄w(d0) [Rν(δ1`, α`) +πw(d0 + δ1`)τ(αh−α`)]− κ
ρ(d0+δ1`)

is concave and continuous in δ1` and [0, ν] is

a compact interval. Q.E.D.
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Proof of Proposition 2. After removing incentive compatibility constraints and setting all pay-

ments to κ in Problem (6), we use Lemma 1 and obtain the following optimization problem

JFB
1a(d0) = max

δ1h,δ1`∈[0,ν]
πw(d0)[Rν(δ1h, αh) +Rν(δ

M, αh)−κ] + π̄w(d0)
[
Rν(δ1`, α`) (21)

+πw(d0 + δ1`)Rν(δ
M, αh) + π̄w(d0 + δ1`)Rν(δ

M, α`)− 2κ
]
.

Isolating δ1h and using Lemma 1 again, we get δ1h = δM. The remaining optimization problem is

given by

JFB
1a(d0) = πw(d0)[2Rν(δ

M, αh)−κ] + π̄w(d0)(τα`− 2κ) (22)

+π̄w(d0)

{
max

δ1`∈[0,ν]
Rν(δ1`, α`) +πw(d0 + δ1`)τ(αh−α`)

}
.

Because πw, Rν are concave and d0 + δ1` is a linear function of δ1`, the objective function inside

curly brackets is concave in δ1`. This implies that the optimal solution δ1` = δFB is unique.

We next prove δFB > δM. Recall that δM is the unique optimal solution to maxδ∈[0,ν]Rν(δ,α`) and

Rν(δ,α`) is concave (see Lemma 1), and πw(d0 +δ) is increasing in δ. Marginal revenue for Rν(δ,α`)

at δ= δM is 0 while π′w(d0 + δM) is positive. Therefore, it follows that[∂Rν(δ,α`)
∂δ

+
∂πw(d0 + δ)(αh−α`)τ

∂δ

]
|δ=δM > 0 .

Note that the objective function in (22) is concave in δ1`, and increasing when evaluated at δ1` = δM.

Therefore, it follows that δFB > δM. Q.E.D.

Proof of Theorem 1. Note that if ρ(d) is constant, then the objective function in Proposition 1

and the one in Proposition 2 are different from each other by a constant. Therefore, their optimal

solutions are the same, i.e., δFB = δ∗.

Next, assume that ρ(d) is decreasing in d. We prove this item by contradiction. Assume that

δ∗ < δFB. Fix d0 and ν. The following condition is satisfied by δFB because δFB is the unique optimal

solution of maxδ∈[0,ν]Rν(δ,α`) +πw(d0 + δ)τ(αh−α`) (see Proposition 2).

Rν(δ
FB, α`) +πw(d0 + δFB)τ(αh−α`)≥Rν(δ,α`) +πw(d0 + δ)τ(αh−α`) ,∀δ ∈ [0, ν] (23)

Because the data impact ρ(·) is decreasing, the term − κ

ρ(d0 + δ)
is an increasing function of δ.

Using the assumption of contradiction, we obtain

− κ

ρ(d0 + δFB)
>− κ

ρ(d0 + δ∗)
(24)

Inequalities (23) and (24) imply that the objective function π̄w(d0)[Rν(δ,α`) + πw(d0 + δ)τ(αh −
α`)]−

κ

ρ(d0 + δ)
evaluated at δ = δFB is strictly larger than the value obtained by evaluating the

same at δ = δ∗. Therefore, the condition δ∗ < δFB contradicts with the fact that δ∗ is the optimal

solution (see Proposition 1). The last item of the theorem can be proved by following the same

steps with δ∗ > δFB. Q.E.D.
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Proof of Proposition 3. In a pricing period (e.g., Period 1b), the total consumer surplus for a

given price p and accuracy α is given by∫ 1

0

1{αv≥p}(αv− p)f(v)dv=
α

2
− p+

p2

2α
,

where 1{·} is the indicator function. Similarly, the total social welfare for a given price p and

accuracy α is ∫ 1

0

1{αv≥p}αvf(v)dv=
α

2
− p2

2α
.

In order to find the total expected social welfare and the customer surplus at equilibrium, we use

the equilibrium prices and take expectation with respect to the induced probabilities of the amounts

of collected data at equilibrium. The total expected social welfare and the customer surplus are in

order.

W ∗ =πw(d0)αh

(
1− (1− 2τ)

2
)

+ π̄w(d0)
α`
2

(
1−

(
1− δ

∗

ν

)2
)

+ π̄w(d0)
[
πw(d0 + δ∗)

αh
2

(
1− (1− 2τ)

2
)

+ π̄w(d0 + δ∗)
α`
2

(
1− (1− 2τ)

2
)]

C∗ =πw(d0)2τ 2(2αh−α`) + 2τ 2α` + π̄w(d0)
α`(δ

∗)2

2ν2
+ π̄w(d0)πw(d0 + δ∗)2τ 2(αh−α`)

The first-best benchmarks W FB and CFB are found by evaluating the terms above using δFB instead

of δ∗. Since πw is increasing and δ∗, δFB ∈ [0, ν], the monotonicity result of the proposition follows.

Q.E.D.

Proof of Proposition 4. From Theorem 1, we know δ∗ = δFB (δ∗ ≥ δFB and δ∗ ≤ δFB) when ρ is

constant (increasing and, respectively decreasing). Furthermore, Proposition 3 implies that W ∗ =

W FB and C∗ =CFB (W ∗ ≥W FB and C∗ ≥CFB; and W ∗ ≤W FB and C∗ ≤CFB) when δ∗ = δFB (δ∗ ≥ δFB

and, respectively δ∗ ≤ δFB).
Proof of Proposition 6. We use the first-order condition for the maximization problem provided

in Proposition 2 and the implicit function theorem to prove this result. The first-order condition is[
∂Rν(δ,α`)

∂δ
+
∂πw(d0 + δ)τ(αh−α`)

∂δ

] ∣∣∣
δ=δFB

= 0 .

Note here that the left-hand side of the equality above is a continuously differentiable function of δFB

because Rν(δ,α`) and πw(d0 + δ) are twice-differentiable with a continuous second-order derivative

w.r.t. δ, thus we can use the implicit function theorem. From the implicit function theorem, we

know that ∂δFB

∂ν
has the same sign with

∂2Rν(δ,α`)

∂ν∂δ

∣∣∣
δ=δFB

=
α`
ν2

(
−1 +

4δFB

ν

)
because we consider monotonicity with respect to ν. Recall that we know δFB ≥ δM from Proposition 2

and δM = νF̄ (φ−1(0)) = ν/2 from Lemma 1. Therefore, δFB is nondecreasing in ν.
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Proof of Theorem 2. We use the first-order condition for the maximization problem provided

in Proposition 1 and the implicit function theorem to prove this result. The first-order condition is

π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+π′w(d0 + δ∗)(αh−α`)τ

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2
= 0 . (25)

Note that 1/ρ is twice-differentiable and with a continuous second-order derivative because πw and

πs are so and πw(d)− πs(d)> 0 for all d ∈ [dmin, dmax]. Because the left-hand side of this equation

is decreasing in δ∗ (due to concavity), the implicit function theorem implies that the sign of
∂δ∗

∂ν

is equal to
α`
ν2

(
−1 +

4δ∗

ν

)
.

We know that if ρ is increasing δ∗ ≥ δFB (see Theorem 1), and δFB ≥ δM (see Proposition 2) and

δM = ν/2 for the standard uniform distribution (see Lemma 1). Therefore, it follows that
∂δ∗

∂ν
≥ 0.

If ρ is decreasing, it is possible that δ∗ can take values smaller than ν/4. If δ∗ is smaller than

ν/4 for all ν ∈ (0, dmax/2], it follows that δ∗ is decreasing in ν therefore ν̂ takes the lowest possible

ν value. If δ∗ is larger than ν/4 for all ν ∈ (0, dmax/2], it follows that δ∗ is increasing in ν therefore

ν̂ = dmax/2. These two cases are degenerate in the sense that the monotonicity of δ∗ does not change

at an interior ν.

On the other hand, if δ∗ crosses ν/4 at some point υ ∈ (0, dmax/2], then δ∗ has to be increasing

first, i.e., δ∗ ≥ ν/4 for all ν ∈ (0, υ], and then has to be decreasing, i.e., δ∗ ≤ ν/4 for all ν ∈ [υ,dmax/2].

This implies ν̂ = υ. Note that δ∗ can cross ν/4 at most once because δ∗ is decreasing in ν after

crossing but ν/4 is increasing. Q.E.D.

Proof of Theorem 3. The firm’s expected profit derived in Proposition 1 is

J1a(d0) =πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ π̄w(d0) [Rν(δ
∗, α`) +πw(d0 + δ∗)τ(αh−α`)]−

κ

ρ(d0 + δ∗)
.

We take derivative of J1a(d0) with respect to ν. For simplicity, we denote by δ∗ν the derivative of δ∗

with respect to ν. Note that we consider interior optimal solutions δ∗ which satisfy the first-order

condition so δ∗ν exists.

∂J1a(d0)

∂ν
=π̄w(d0)

[
α`
ν

(
δ∗ν −

δ∗

ν

)(
1− 2δ∗

ν

)
+πw(d0 + δ∗)τ(αh−α`)δ∗ν

]
+
κρ′(d0 + δ∗)δ∗ν
[ρ(d0 + δ∗)]2

=δ∗ν

{
π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+πw(d0 + δ∗)τ(αh−α`)

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2

}
+
α`
ν

(
δ∗

ν

)(
2δ∗

ν
− 1

)
From the first-order condition for the maximization problem in Proposition 1, and the implicit

function theorem, we know that

π̄w(d0)

[
α`
ν

(
1− 2δ∗

ν

)
+π′w(d0 + δ∗)(αh−α`)τ

]
+
κρ′(d0 + δ∗)

[ρ(d0 + δ∗)]2
= 0 . (26)



Gurkan and de Véricourt: AI Flywheel Effect
39

Thus, it follows that

∂J1a(d0)

∂ν
=
α`
ν

(
δ∗

ν

)(
2δ∗

ν
− 1

)
=
α`
ν

(
δ∗

ν

)
2

ν

(
δ∗− ν

2

)
.

The sign of ∂J1a(d0)/∂ν is determined by δ∗ − ν/2. When ρ is increasing δ∗ ≥ δM = ν/2, thus

∂J1a(d0)/∂ν is positive.

Recall that δ = qν by definition. Thus, we denote by q∗ the quantity corresponding to δ∗, and

focus on it to prove the second item of the theorem. We next provide a lemma whose proof is

delegated to the end of the proof of this theorem.

Lemma 3. When ρ is decreasing, q∗ is decreasing in ν if q∗ ≤ 1/2.

Note also that the sign of ∂J1a(d0)/∂ν is determined by the sign of (q∗−1/2). When ρ is decreasing

δ∗ can be larger or smaller than δM = ν/2, i.e., q∗ can be larger than smaller or 1/2. We know

that ∂J1a(d0)/∂ν is positive as long as q∗ > 1/2. If q∗ crosses 1/2 at some ν̃, then it follows that

∂J1a(d0)/∂ν is negative for all ν ≥ ν̃ because q∗ is decreasing if q∗ ≤ 1/2 when ρ decreasing (see

Lemma 3). This concludes the proof. Q.E.D.

Proof of Lemma 3. By the change of variables δ = νq, we get the first-order condition for the

maximization problem in Proposition 1 in terms of q∗. Recall that we define q∗ = δ∗/ν.

1

2α`
π′w(d0 + q∗ν)(αh−α`)τν+

1

2π̄w(d0)α`

κρ′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
= q∗− 1

2
. (27)

Using the implicit function theorem, we know that the sign of the derivative of q∗ with respect to

ν is the same as[
π̄w(d0)π′w(d0 + q∗ν)τ(αh−α`) +

κρ′(d0 + q∗ν)

[ρ(d0 + q∗ν)]2

]
︸ ︷︷ ︸

(i)

(28)

+

[
π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`) +

κρ′′(d0 + q∗ν)

[ρ(d0 + q∗ν)]2
− 2κ(ρ′(d0 + q∗ν))2

[ρ(d0 + q∗ν)]3

]
νq∗︸ ︷︷ ︸

(ii)

. (29)

First note that q∗ can take values smaller than 1/2 when ρ is decreasing. If q∗ ≤ 1/2, the first-order

condition (27) implies that (i) is negative. We also know that (ii) is always negative because πw is

concave and 1/ρ is convex. Thus, q∗ starts to decrease after crossing 1/2. Q.E.D.

Proof of Proposition 7. Note that the expected profit is decreasing in ν when ρ is decreasing

and q∗ is smaller than 1/2. Thus, in this proof we show that q∗ is decreasing in d0 when ρ is

decreasing. To do so, we use (27) and the implicit function theorem. The derivative of q∗ with

respect to d0 has the same sign with the following term:

−π′w(d0)[α`(1− 2q∗) +π′w(d0 + q∗ν)τ(αh−α`)ν] + π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`)ν

+
κρ′′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
− 2κ[ρ′(d0 + q∗ν)]ν

[ρ(d0 + q∗ν)]3
.
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Using (27), we obtain

π′w(d0)κρ′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2π̄w(d0)
+ π̄w(d0)π′′w(d0 + q∗ν)τ(αh−α`)ν+

κρ′′(d0 + q∗ν)ν

[ρ(d0 + q∗ν)]2
− 2κ[ρ′(d0 + q∗ν)]ν

[ρ(d0 + q∗ν)]3
.

Here, the expression above is negative because ρ is decreasing, 1/ρ is convex; and πw is an increasing

concave function. Q.E.D.

B. Optimal Effort and Price Decisions of the Firm

In this section of the appendix, we first show that if κ is lower than a threshold, then the firm

always finds it optimal to retrain the algorithm after observing a low accuracy in the first period.

This also implies that retraining the algorithm is profitable in the first-best setting, too. Let ∆π,

min
d∈[dmin,dmax]

[πw(d)−πs(d)].

Proposition 8. The firm finds it optimal to retrain the algorithm if ∆πτ(αh − α`) >

κ/π̄w(dmax).

Proof of Proposition 8. Since the firm commits to the contract before the accuracy realizations,

we compare the expected profit J1a(d0) with the expected profit (denoted by J̃1a(d0)) collected

when the firm hires the provider only for the product development. In Proposition 1, we derive

J1a(d0). The expected profit J̃1a(d0) for the no-retraining case is given by

J̃1a(d0) = πw(d0)2αhτ + π̄w(d0)2α`τ −
κ

ρ(d0)
.

Because there is no retraining, in both periods the product is sold with the initial accuracy that

can be αh with probability πw(d0) and α` with the remaining probability. In each case, it is

optimal for the firm to use the myopic price, therefore the expected revenue of the firm is given by

πw(d0)2αhτ + π̄w(d0)2α`. The provider is hired only for the first period. In this case, the optimal

contract for the provider is such that there is a payment of κ/[πw(d0)− πs(d0)] in case of a high

accuracy, and no payment otherwise. This causes an expected cost of κ/ρ(d0).

The difference between this expected profits is

J1a(d0)− J̃1a(d0) = πw(d0)κ+ π̄w(d0)

[
Rν(δ

∗, α`) +πw(d0 + δ∗)τ(αh−α`)−
κ

π̄(d0)ρ(d0 + δ∗)
− τα`

]
.

In order to find a sufficient condition for J1a(d0)− J̃1a(d0) to be positive, one can focus on the term

inside the square brackets above because the remaining terms are all positive. Thus, we next show

that the second term in the square brackets is larger than α`τ when ∆πτ(αh −α`)> κ/π̄w(dmax)

by finding a uniform positive lower bound for πw(d)τ(αh−α`)− κ
π̄w(d)ρ(d)

for all d∈ [dmin, dmax]. Let

ε,∆πτ(αh−α`)−κ/π̄w(dmax), thus ε > 0.

πw(d)τ(αh−α`)−
κ

π̄w(d)ρ(d)
=πw(d)

(
τ(αh−α`)−

κ

π̄w(d)[πw(d)−πs(d)]

)
≥πw(dmin)

(
τ(αh−α`)−

κ

π̄w(dmax)∆π

)
=
πw(dmin)ε

∆π
> 0
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Here, the first equality is obtained using the definition of ρ, the following inequality holds because

πw is increasing and ∆π≤ πw(d)−πs(d) for any d∈ [dmin, dmax]. Using the term πw(dmin)ε

∆π
, we show

that

max
δ1∈[0,ν]

Rν(δ1, α`) +πw(d0 + δ1)τ(αh−α`)−
κ

π̄w(d0)ρ(d0 + δ1)
≥ max

δ1∈[0,ν]
Rν(δ1, α`) +

πw(dmin)ε

∆π
≥ α`τ

The first inequality follows from the fact that πw(dmin)ε

∆π
is a uniform lower bound and the second

inequality holds because πw(dmin)ε

∆π
> 0 and maxδ∈[0,ν]Rν(δ,α`) = α`τ (see Lemma 1). Q.E.D.

We next show that if the probability of high accuracy πw and the data impact ρ do not increase

or decrease too fast, the firm’s optimal price and hence the data size decisions take interior values.

Let Π′max ,maxd∈[dmin,dmax] π
′
w(d) and Π′min ,mind∈[dmin,dmax] π

′
w(d) and D′max ,maxd∈[dmin,dmax] ρ

′(d)

and D′min , mind∈[dmin,dmax] ρ
′(d). Because πw is concave, in fact Π′max = π′w(dmin) and Π′min =

π′w(dmax).

Proposition 9. We have that

• If τ(αh−α`)Π′max < 2α`/dmax, then δFB ∈ (0, ν) for ν ∈ (0, dmax/2].

• If τ(αh − α`)Π′maxπ̄w(dmin) + κD′max/∆π
2 < π̄w(dmax)2α`/dmax and π̄w(dmax)τ(αh − α`)Π′min +

κD′min + π̄w(dmax)α`/ν > 0, then δ∗ ∈ (0, ν) for ν ∈ (0, dmax/2].

Proof of Proposition 9. This result follows from the fact that the derivatives of the objective

functions in the maximization problems in Proposition 2 and respectively Proposition 1 are positive

at δ1 = 0 and negative at δ1 = ν when the conditions in the statement of the proposition are

satisfied. (Recall that the objective functions in both problems are concave in δ1, see the proofs of

Propositions 2 and 1.)

Note that Proposition 2 implies that δFB ≥ δM (and recall that δM > 0 from Lemma 1). Thus,

we need to check the derivative for the first-best data size only at δ1 = ν. Using the definition of

Rν(δ1, α`), we obtain the derivative of the objective function in Proposition 2 as follows:

α`

(
1

ν
− 2δ1

ν2

)
+ τ(αh−α`)πw(d0 + δ1) . (30)

The condition in the first bullet point of the result implies that the term in (30) is negative when

evaluated at δ1 = ν. Hence, it follows that δFB ∈ (0, ν).

Next, we consider δ∗. Similarly, the derivative of the objective function in Proposition 1 with

respect to δ1 is given as follows:

π̄w(d0)

[
α`

(
1

ν
− 2δ1

ν2

)
+ τ(αh−α`)π′w(d0 + δ1)

]
+
κρ′(d0 + δ1)

[ρ(d0 + δ1)]2
. (31)

The first condition in the second bullet point guarantees that the term in (31) evaluated at δ1 = ν

is negative for any ν ∈ (0, dmax/2] because π′w(d0 + ν) ≤ Π′max and ρ(d0 + δ) ≥ ∆π. The second

condition in the same bullet point guarantees that the term in (31) is positive when evaluated at

δ1 = 0. Therefore, it follows that δ∗ ∈ (0, ν). Q.E.D.
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Although the conditions in Proposition 9 are sufficient to guarantee that the optimal solutions

δ∗ and δFB are interior, they are in fact loose because we do not assume any parametric form of

functions πw and ρ. For given parametric forms of functions πw and ρ, these conditions can be

improved. Alternatively, it is straightforward to check if the optimal solutions δ∗ and δFB are interior

for any given set of parameters as in the numerical examples provided in the main body of our

paper.

In case of the corner solution such that the δ∗ takes the value of its upper bound ν, the corre-

sponding price of the product p∗ becomes 0 per Section 2. In this case, the firm distributes the

product for free to collect the largest available data. We conclude this section of the appendix by

providing a necessary and sufficient condition for δ∗ = ν.

Lemma 4. The optimal data collection size δ∗ equals to ν if and only if the following condition

holds.

π̄w(d0)τ(αh−α`)π′w(d0 + ν) +
κρ′(d0 + ν)

[ρ(d0 + ν)]2
≥ π̄w(d0)α`

ν
(32)

Proof of Lemma 4. The firm’s optimal data collection size is found by maximizing the objective

function in Proposition 1. When the inequality in (32) holds, the objective function is nondecreasing

for any δ ∈ [0, ν] because it is concave. Thus, the firm selects the largest data collection size in this

case.

C. Contract Termination after Low Accuracy

In this section of the appendix, we consider the setting where the firm can terminate the relation

with the provider after observing a low accuracy in the first period, and contract with another

provider in the second period. Recall that the firm does not need to retrain the algorithm after a

high accuracy in the first period. Thus, firing after a low accuracy terminates the contract with

the provider in the first period in any case. The firm then solves two separate contracting problems

between which it collects data. To distinguish from the setting with a single provider, in this

appendix we denote by θ data collection. The next proposition based on Laffont and Martimort

(2009) characterizes the optimal payments of the firm.

Proposition 10. In case of contracting with two providers in different periods, the optimal

payments of the firm are such that x∗1` = 0, x∗2` = 0; and

x∗1h =
κ

πw(d0)−πs(d0)
and x∗2h =

κ

πw(d0 + θ∗)−πs(d0 + θ∗)
, (33)

where θ∗ is the unique optimal solution of maxθ∈[0,ν]Rν(θ,α`)−πw(d0 +θ)τ(αh−α`)−κ/ρ(d0 +θ).
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Proof of Proposition 10. The optimal payments of the contracting problem with the first

provider is characterized in Proposition 4.2 in Laffont and Martimort (2009). For any data collec-

tion θ after a low accuracy in the first period, the firm faces the same contracting problem In the

second period but this time with a different accuracy probabilities: πw(d0 +θ) and πs(d0 +θ). There-

fore, the same proposition in Laffont and Martimort (2009) characterizes the optimal payments in

the second period for any given θ.

At the end of the first period, the firm maximizes the next periods profit by choosing the optimal

data collection size by anticipating the optimal payments when contracting with a new provider in

case of obtaining low accuracy in the first period. Otherwise, goes with the myopic price for high

accuracy. The firm’s optimization problem after the low accuracy is as follows.

max
θ∈[0,ν]

Rν(θ,α`)︸ ︷︷ ︸
Current Revenue

+πw(d0 + θ)τ(αh−α`)︸ ︷︷ ︸
Continuation Revenue

− κ/ρ(d0 + θ)︸ ︷︷ ︸
Expected Agency Cost

. (34)

Because all terms in the above optimization problem are concave functions of θ and [0, ν] is a

compact set, there exists a unique θ∗. Q.E.D.

As in the case of the single provider we restrict attention to θ∗ ∈ (0, ν) for the following results.

Note that the objective function in the optimization problem in (34) differs from the one in Propo-

sition 1 by a scaling term π̄w(d0) for the first two terms: current period revenue and continuation

revenue. Therefore, Theorems 1 and 2 can be repeated verbatim using (34). Thus, Proposition 4

is extended to this setting as well. The firm’s expected profit in this setting is differently from

Theorem 3 given by

πw(d0) [2Rν(δ
M, αh) +κ]− κ

ρ(d0)
+ π̄w(d0)τα`

+ π̄w(d0)

[
Rν(θ

∗, α`) +πw(d0 + θ∗)τ(αh−α`)−
κ

ρ(d0 + θ∗)

]
.

(35)

Here, the difference is that the firm incurs the expected agency cost in the second period only if the

first period yields low accuracy. Nevertheless the same steps in the proof of Theorem 3 (including

Lemma 3) can be followed verbatim because θ∗ is the interior optimal solution to (34) as δ∗ is the

interior optimal solution to the maximization problem in Proposition 1. To show Proposition 7 is

also extended to this setting, we need to prove that q∗ is decreasing in d0 when ρ is decreasing in

this setting, too.

Proposition 11. When ρ is decreasing, q∗ is decreasing in d0.

Proof of Proposition 11. As in the proof of Proposition 7, we use the first-order condition for

(34) and the implicit function theorem. The derivative of q∗ with respect to d0 has the same sign

with the following term:

π′′w(d0 + θ∗)ν(αh−α`)τ +
κρ′′(d0 + θ∗)ν

[ρ(d0 + θ∗)]2
− 2κ[ρ′(d0 + θ∗)]2ν

[ρ(d0 + θ∗)]3
(36)
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Because πw is concave and 1/ρ is convex it follows that the term above is negative. Q.E.D.

We conclude this appendix by providing the proof of Proposition 5.

Proof of Proposition 5. This proposition stems from the fact that θ∗ is larger than δ∗ when ρ is

decreasing and vice versa. Specifically, we show in Proposition 3 that collecting more data increases

both the social welfare and the customer surplus. Thus, to compare those societal benefits we can

directly compare the optimal data collection sizes in two settings. The optimal data collection δ∗

and θ∗ satisfy the following first-order conditions.

α`

(
1

ν
− 2δ∗

ν2

)
+ τ(αh−α`)π′w(d0 + δ∗) +

κρ′(d0 + δ∗)

π̄w(d0)[ρ(d0 + δ∗)]2
= 0

α`

(
1

ν
− 2θ∗

ν2

)
+ τ(αh−α`)π′w(d0 + θ∗) +

κρ′(d0 + θ∗)

[ρ(d0 + θ∗)]2
= 0

If ρ is increasing, then α`

(
1
ν
− 2θ∗

ν2

)
+τ(αh−α`)π′w(d0 +θ∗)+ κρ′(d0+θ∗)

π̄w(d0)[ρ(d0+θ∗)]2 > 0 because π̄w(d0)< 1.

Hence, θ∗ < δ∗ because both objective functions are concave, hence their derivatives are decreasing.

This implies the firm collects more data if the provider cannot be fired after a low accuracy in the

first period and the data impact is increasing. In the case of decreasing ρ, α`

(
1
ν
− 2θ∗

ν2

)
+ τ(αh −

α`)π
′
w(d0 + θ∗) + κρ′(d0+θ∗)

π̄w(d0)[ρ(d0+θ∗)]2 < 0 so θ∗ > δ∗. Q.E.D.

D. No Commitment across Periods

In this section of the appendix, we consider a setting where the firm has no commitment power

across periods when contracting with the provider. In order to differentiate the data collection sizes

in this section from δ in our paper, we denote by γ data collection sizes. Furthermore, we use the

hat symbol ·̂ over the value functions for this setting.

Since the firm has no commitment power, we formulate the firm’s problem using backward

induction starting from the last period. Denote then by Ĵ2b(α2, d1) the firm’s optimal expected

profit in Period 2b given accuracy α2 and data size d1, such that

Ĵ2b(α2, d1) = max
δ2∈[0,ν]

Rν(δ2, α2) (37)

The firm chooses the amount of collected data (or equivalently the price) so as to maximize the

expected revenue in the current period as in (2).

We denote by Ĵ2a(α1, d1) the firm’s optimal expected profit in Period 2a, given accuracy α1 and

data size d1, such that

Ĵ2a(α`, d1) = max
x2h,x2`≥0

πw(d1)[Ĵ2b(αh, d1)−x2h] + π̄w(d1)[Ĵ2b(α`, d1)−x2`] (38)

s.t.

πw(d1)x2h + π̄w(d1)x2`−κ≥ πs(d1)x2h + π̄s(d1)x2` (39)

Ĵ2a(αh, d1) = Ĵ2b(αh, d1). (40)
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When α1 = α`, the firm needs to set payments such that the provider has enough incentives to exert

effort, as formalized by incentive constraint (39). These payments are then deduced from the firm’s

expected revenues in Period 2a. Here, data size d1 affects the chance of improving accuracy in the

next period via probabilities πe(·), e ∈ {w,s}. When α1 = αh, recall that the firm does not need

nor pay the provider. We thus refer to x∗2h and x∗2` as the optimal payments solving Problem (38).

Moving to the first period, we denote by Ĵ1b(α1, d0) the firm’s optimal expected profit in Period 1b

given accuracy α1 and data size d0, such that

Ĵ1b(α1, d0) = max
γ1∈[0,ν]

Rν(γ1, α1) + Ĵ2a

(
α1, d0 + γ1

)
for α1 ∈ {αh, α`}. (41)

In contrast to Problem (37), the firm needs to balance the revenues in the current period with the

expected profit in the next one when the algorithm is of low accuracy. When α1 = α`, the choice

of data γ1 (or equivalently price) affects current revenues directly and future ones indirectly by

increasing the dataset size to d0 + γ1. We refer to γ∗ as the optimal solution of Problem (41) for

α1 = α`. When α1 = αh, no retraining is required and the optimal price is equal to the myopic

price.

Given initial data size d0, we denote by Ĵ1a(d0) the optimal total expected profit in Period 1a,

such that

Ĵ1a(d0) = max
x1h,x1`≥0

πw(d0)[Ĵ1b(αh, d0)−x1h] + π̄w(d0)[Ĵ1b(α`, d0)−x1`] (42)

s.t.

πw(d0)x1h + π̄w(d0)
[
x1` + Ĵp(d0)

]
−κ≥ πs(d0)x1h + π̄s(d0)

[
x1` + Ĵp(d0)

]
(43)

Ĵp(d0) = πw (d0 + δ∗)x∗2h + π̄w (d0 + δ∗)x∗2`−κ. (44)

The optimization problem of Ĵ2a in (38) corresponds to minimizing the expected payment while

motivating the provider to exert effort. The following proposition (based on Laffont and Martimort

2009, Proposition 4.2) provides the corresponding optimal payments.

Proposition 12. Given dataset size d1, the unique optimal payments for Problem (38) are

x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. The firm’s optimal expected profit is then

Ĵ2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
and Ĵ2a(αh, d1) = ταh . (45)

where κ/ρ(d1) is the expected payment to the provider.

Proof of Proposition 12. Following Proposition 4.2 in Laffont and Martimort (2009, p. 157),

we obtain the optimal payments for Problem (38) x∗2` = 0 and x∗2h = κ/[πw(d1)−πs(d1)]. Following

Lemma 1, we have J2b(α2, d1) = α2τ . Combining these, we get

Ĵ2a(α`, d1) = πw(d1)ταh + π̄w(d1)τα`−
κ

ρ(d1)
.

If α1 = αh, there are no payments so Ĵ2a(αh, d1) = Ĵ2b(αh, d1) = ταh. Q.E.D.
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The optimal expected continuation profit Ĵ1b(α1, d0) in Problem (41) is then obtained by using

expected profit Ĵ2a(α1, d0 + γ) from (45) in Proposition 12. We show next that the optimal data

size solving Problem (41) and hence the corresponding optimal price are unique

Proposition 13. The optimal solution to Problem (41) is unique and equal to δM if α1 = αh.

Proof of Proposition 13. Using the expected profit Ĵ2a derived in (45), we write Problem (41)

as follows.

max
γ1∈[0,ν]

Rν(γ1, α1) + 1{α1 = α`}
[
πw(d0 + γ1)αhτ + π̄w(d0 + γ1)α`τ −

κ

ρ(d0 + γ1)

]
(46)

If α1 = αh, it is straightforward to see from (46) that the unique optimal solution to Problem (41)

is δM. Otherwise, the optimal solution γ∗ solves the following problem

max
γ1∈[0,ν]

Rν(γ1, α`) +πw(d0 + γ1)(αh−α`)τ −
κ

ρ(d0 + γ1)
+α`τ (47)

Because πw, Rν and −1/ρ are concave, and d0 +γ1 is a linear function of γ1, the objective function

in (47) is concave in γ1. This implies that the optimal solution γ∗ is unique. Q.E.D.

Finally, the next result characterizes the optimal payments in Period 1a.

Proposition 14. Given initial data size d0, the unique optimal payments for Problem (6) are

x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

(
κ

ρ(d0 + γ∗)
−κ
)
.

Proof of Proposition 14. In Period 1a, the optimization problem of the firm is

Ĵ1a(d0) = πw(d0)Ĵ1b(αh, d0) + π̄w(d0)Ĵ1b(α`, d0)− min
x1h,x1`≥0

πw(d0)x1h + π̄w(d0)x1`

st. (43), (44)

Using the optimal payments x∗2h and x∗2` derived in Proposition 12, we evaluate the expected

continuation profit Ĵp(d0) of the provider, and Ĵp(d0) = κ
ρ(d0+γ∗) − κ. Characterizing Ĵp(d0), we

reduce this problem to a standard principal-agent model where the cost of effort is κ+
[
πw(d0)−

πs(d0)
]
Ĵp(d0). Therefore, Proposition 4.2 in Laffont and Martimort (2009, p. 157) implies that the

optimal solution of the optimization problem in Ĵ1b(d0) is x∗1` = 0 and x∗1h =
κ

πw(d0)−πs(d0)
+

κ

ρ(d0 + γ∗)
−κ. Q.E.D.

When focusing on γ∗ ∈ (0, ν), we have that the objective function in the optimization problem in

(47) differs from the one in Proposition 1 by a scaling term π̄w(d0) for the first two terms: current

period revenue and continuation revenue. Therefore, Theorems 1 and 2 can be repeated verbatim

using (47). Thus, Proposition 4 is extended to this setting as well.
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