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Using a newly collected dataset of robot use at the plant level from 2014 to 2018, 
we provide the first microscopic portrait of robotisation in Germany and study the 
potential determinants of robot adoption. Our descriptive analysis uncovers five 
stylised facts concerning both extensive and, perhaps more importantly, intensive 
margin of plant-level robot use: (1) Robot use is relatively rare with only 1.55% 
German plants using robots in 2018. (2) The distribution of robots is highly skewed. 
(3) New robot adopters contribute substantially to the recent robotisation. (4) Ro-
bot users are exceptional along several dimensions of plant-level characteristics.  
(5) Heterogeneity in robot types matters. Our regression results further suggest 
plant size, low-skilled labour share, and exporter status to have strong and positive 
effect on future probability of robot adoption. Manufacturing plants impacted by 
the introduction of minimum wage in 2015 are also more likely to adopt robots.  
However, controlling for plant size, we find that plant-level productivity has no, if 
not negative, impact on robot adoption.
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1 Introduction

The robots are coming. The recent advances of automation technology, robotics and artificial
intelligence in particular, have sparked a heated debate over the future of labor and human society
at large. To better understand the recent wave of automation, a nascent literature examines the
drivers and consequences of (industrial) robots using firm- or plant-level data from mainly a few
European countries.1 Perhaps surprisingly, there is little systematic microeconomic data on the use
of robots in Germany, a country especially known for robot production and adoption, and thus, the
existing work on the rise of robots in Germany, Dauth et al. (2019) most notably, relies solely on the
industry-level dataset from the International Federation of Robotics (IFR).2 Using a newly collected
plant-level data in Germany, this paper attempts to fill this void.

In this paper, we leverage the plant-level information on the use and adoption of robots in the 2019
IAB Establishment Survey to portray the state, the recent development, correlates, and potential
determinants of robot use and adoption in Germany. Five stylized facts emerge. First, robot use is
relatively rare, as only 1.55% of German plants used robots in 2018. Even in the manufacturing
sector, only 8.22% of the plants were robot users. The finding is striking because Germany is the
largest robot market in Europe and among the countries with the highest robot intensity in the
world.3 Second, the distribution of robots is highly skewed. Top 5% of the robot-using plants owned
more than half of the total robot stock in 2018. Third, the new robot adopters (the extensive margin)
contributed substantially to growth in the share of robot users and the aggregate stock of robots from
2014 to 2018. Fourth, robot users are exceptional. Robot users in 2018 are found to be larger, have
higher labor productivity, invest more, are more likely to export, and adopt up-to-date technology
than non-robot-using plants. We term those conditional gains from robot installation as robotization
premia. Last, plants use different types of robots and heterogeneity in robot types matters for an
array of plant-level characteristics.

We further examine the potential determinants of robot adoption at the plant level. Our regression
results demonstrate plant size to be the most robust predictor of future robot adoption. According to
our preferred estimate, a one-standard-deviation increase in the total employment in 2014 leads to a
1.6-percentage-point increase in the probability of robot adoption from 2015 to 2018, compared with
the unconditional probability of robot adoption which is 2.48% over the same period. Conditional
on plant size, both low-skilled labor intensity and export status have strong and positive effects on
robot adoption, while sub-sample regressions suggest that the effect of low-skilled labor intensity is
only found significant within the manufacturing sample. Manufacturing plants that raised wages
due to the introduction of minimum wage in 2015 are also found to be more likely to adopt robots.
Interestingly, we document that, when controlling for plant size, productivity has little, if not negative,
effect on robot adoption. This result questions the overwhelmingly positive effect of productivity on
robotization predicted by the existing theoretical work (Koch et al., 2019; Humlum, 2019).

To our knowledge, this paper is the first to collect and use the plant-level robot data to investigate
robotization in Germany. Following the seminal paper by Graetz and Michaels (2018), the cross-

1See Acemoglu et al. (2020) and Bonfiglioli et al. (2019) for France, Humlum (2019) for Denmark, Koch et al. (2019)
for Spain, and Barth et al. (2020) for Norway. See also Cheng et al. (2019) for robotization in China.

2The only exception is Zator (2019) which exploits the broader measures of automation (including robots and CNC
machines) and digitalization in the 2016 and 2017 waves of the IAB Establishment Panel.

3See IFR’s Annual Report, World Robotics: Industrial Robots 2018.
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country industry-level IFR dataset has been widely used in empirical studies (Acemoglu and Restrepo,
2019; Dauth et al., 2019; de Vries et al., 2020; Faber, 2020; among many others). Given the significant
heterogeneity of robot use in both extensive and intensive margins across plants, industry-level robot
information becomes increasingly insufficient for a deeper understanding of the roots and outcomes
of robotization. Based on the newly-collected dataset, the stylized facts documented in this paper
add to the growing body of microeconomic evidence of robotization.4

This paper contributes to the literature on the determinants of robot adoption. The positive
effects of plant size, low-skilled labor intensity, and exporter status echo empirical findings using
the Spanish firm-level data in Koch et al. (2019). The impact of minimum wage on robot adoption
is consistent with the earlier firm-level evidence from China (Fan et al., 2020). The fact that,
conditional on firm size being controlled, robot adopters are ex ante not more productive while
ex post robot using plants enjoy higher productivity suggests that laggard plants may attempt to
achieve productivity catchup by replacing their workers with robots, a channel largely overlooked in
the existing theoretical framework. By focusing on the effects of plant characteristics, our results
complement Acemoglu and Restrepo (2018a) and Zator (2019) which examine the labor market
factors, population aging and labor scarcity in particular, of automation.

Last but not least, the rich robot information in our dataset enables us to explore two aspects
that are largely neglected in the literature, namely, robotization in the manufacturing versus non-
manufacturing sector and heterogeneity in robot types. Similar to the industry-level pattern in the
IFR data, we find the non-manufacturing sector is at a much earlier stage of robotization. More
importantly, we note that skill composition and the introduction of minimum wage do not play a
significant role in robot adoption decision for non-manufacturing plants. Regression results further
reveal that robotization premia vary significantly across plants using different types of robots.

The rest of the paper is organized as follows. In the next section, we introduce the dataset
and present the five stylized facts. In Section 3, we present the empirical results on the potential
determinants of robot adoption. We provide concluding remarks in Section 4.

2 The Data and Stylized Facts

2.1 The Plant-level Data

The basis of our empirical analysis is drawn from the IAB Establishment Panel, an annual survey of
nearly 16,000 plants, sampled from around 2 million German employers with a particular focus on
employment5. The IAB Establishment Panel is a high-quality, long-standing panel data set that
is nationally representative as a whole but also at the sector level, for firm-size classes, and across
German federal states. In the most recent 2019 wave, we included a dedicated section on robot use.
Our definition of robots follows the ISO definition: A robot is any automated machine with multiple
axis or directions of movement, programmed to perform specific tasks (partially) without human
intervention. The difference between robots and traditional CNC machines is explicitly stated in
the survey. The survey questions include (1) whether a plant used robots from 2014 to 2018; if so,

4Another strand of the literature exploits alternative measures of the broader phenomenon of automation at the
microeconomic level (Bessen et al., 2019; Aghion et al., 2020; Domini et al., 2020).

5We use the IAB Establishment Panel, Waves 2013 -2019. DOI: 10.5164/IAB.IABBP9318.de.en.v1. For more
information on the IAB Establishment Panel, see Bechmann et al. (2019).
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(2a) the number of robots used in each year from 2014 to 2018 and (2b) the number of robots newly
purchased in 2018; (3) heterogeneity regarding the types of robots in use.6 An additional survey
round was conducted for a subset of plants which we suspect may have given inaccurate answers to
robot questions to ensure the quality and consistency of the dataset.

Our dataset is the first longitudinal dataset that reports direct measure of robot use and intensity
at the plant level. Due to the scarcity of microeconomic information on robotization, most of the
existing papers infer the firm- or plant-level robot information indirectly from the import data
(Acemoglu et al., 2020; Bonfiglioli et al., 2019; Humlum, 2019; Barth et al., 2020).7 This approach
not only suffers from the measurement error in trade classifications and domestic resales of robots
as noted in the literature but also is much less feasible in the German context given the country’s
prominent role in robot production. Coming closest to our direct survey-based robot measures is
the Spanish data used in Koch et al. (2019), while we also obtain direct robot information in the
intensive margin.

The plant-level data, aggregated to the industry-level, is broadly consistent and highly correlated
with the industry-level IFR data for Germany.8 Given the panel structure, we incorporate a wide
array of plant-level variables from the earlier waves of the IAB Establishment Panel. The resulting
dataset is an unbalanced panel of 15,307 plants spanning from 2014 to 2018. Table 1 reports the
summary statistics for the main non-robot variables with the definition of each variable explained in
the notes. We now turn to the set of stylized facts on robot use and adoption.

2.2 Stylized Facts

Based on the newly collected plant-level information on robots, we present five stylized facts
concerning the use and adoption of robots in Germany. As the IAB Establishment Panel is based on
a stratified sample design, survey weights are applied in order to obtain representative results for
Germany. We mainly focus on the results with survey weights in the main text and relegate some of
the unweighted results to the Appendix.

In what follows, we define a plant to be a robot user in a given year if that plant is identified to
have a positive number of robots in that year and a plant to be a robot adopter over a given period if
that plant is identified to have no robots at the beginning of that period and become a robot user by
the end of the period.

Fact I: Robot use is relatively rare.
In 2018, only 1.55% of the plants are robot users in Germany. Table 2 reports the share of robot

users in 2018 by industry. Column “Weighted” reports the share of robot users with survey weights
and thus provides a representative picture of plant-level robotization for the whole country. The
manufacturing sector, which has undergone a continued process of robotization for more than five
decades,9 has 8.22% of the plants being robot users in 2018. Even for the most robot-intensive

6An English translation of the survey questions can be found in the Appendix.
7Acemoglu et al. (2020) supplements the French customs data with three additional data sources to help them

identify the actual users of robots. Humlum (2019) also leverages a binary question on robot use in a 2018 Danish
firm-level survey.

8For details on cross validation, consistency checks, and imputation, see Plümpe and Stegmaier (Mimeo). Figure A1
in the Appendix provides a general industry-level comparison between the two datasets.

9For a brief history of industrial robots, see the IFR 2012 report, History of Industrial Robots: From the First
Installation until Today.
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manufacturing industries such as plastics and motor vehicles, around three quarters of the plants did
not install a single robot. In the non-manufacturing sector, where robotic technology was brought
into applications not long ago, 0.94% of the plants were robot users in 2018. Column “Unweighted”
reports the unweighted share of robot users in each industry based on the survey sample. Since larger
plants are over-sampled and, as will be discussed later, larger plants are more likely to be robot users,
the unweighted share is generally larger than the unweighted share, but the main pattern persists:
robot use is relatively rare. It should be nevertheless noted that these robot using plants employed
3.2 million workers in 2018, which accounted for about 8% of the total labor force in Germany.

Fact II: The robot distribution is highly skewed.
Among the robot users, robots are highly concentrated in a handful of heavy users and high

concentration is mainly driven by the skewed distribution of robots in the manufacturing sector.
In 2018, 52% of the total robot stock is owned by top 5% of robot using plants in Germany, while
within the survey sample 85% of the total robot stock is owned by top 5% of robot using plants.

According to the first panel of Figure 1, manufacturing plants in the top decile ranked by the
robot count on average had 40 robots in 2018, 20 times as many as the median number of robots
among robot users. Within the top decile, the distribution of robots is also highly skewed: the
highest two percentiles had on average 141 robots.10 Based on the same sorting of plants, the second
panel of Figure 1 further demonstrates that high concentration of robots is not merely reminiscent of
the skewed distribution of plant size. The average robot density, measured by the number of robots
per 1,000 employees, is substantially higher for the top decile, which implies that the distribution of
robots is much more skewed than the employment distribution across plants.

It is worth noting that high concentration of robots in the manufacturing sector is not entirely
due to the large automobile plants. Indeed, the plants with highest number of robots are mainly in
the motor vehicle industry but the robot distribution with the automobile plants excluded remains
very skewed. In fact, an inspection of the robot distribution by industry suggests that robots are
highly concentrated in almost all manufacturing industries.

In contrast, the distribution of robots is significantly less skewed in the non-manufacturing sector.
The median user installed one robot in 2018 while the users in the top decile had 7 robots on average.
The lack of skewedness may reflect the different nature of robotic technology (for example, service
robots) and the early stage of robotization in the non-manufacturing sector.

Fact III: The extensive margin contributes substantially to robotization.
Robot adopters, the plants that newly adopted robots from 2014 to 2018, make a substantial

contribution to growth in both the share of robot users and the total robot stock. Figure 2 compares
the share of robot users in aggregated industries in 2014 with that in 2018.11 The share of robot
users in the manufacturing sector increased by more than 50% from 5.16% to 8.22%. The user share
in the non-manufacturing sector almost doubled from 0.51% to 0.94%. In the motor vehicle industry,
one of the most robot-intensive industries, the user share increased from 16.90% to 24.26%.

10For the robot distribution without being adjusted for survey weights, which turns out to be more skewed, see
Figure A2 in the Appendix.

11The user shares in Figure 2 are calculated using survey weights in 2018. Ideally, we should use the 2014 survey
sample and the respective weights to calculate the user share in 2014. As the robot data was only collected in 2019
through retrospective questions, we do not have fully representative data for earlier years. We report the same
comparison without survey weights in Figure A3 and the pattern remains the same.
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It should be noted that out of the 616 plants that used robots from 2014 to 2018 in our survey
sample, 104 (≈ 17%) plants reported missing values for their robot stock in 2014. Due to the missing
values for the robot stock in 2014, the share of robot users in 2014 is estimated using the rate of
robot adoption over 2014–2018 based on the plants that reported their robot stocks throughout
the sample period. Figure A4 in the Appendix, a companion to Figure 2, presents both the lower
and upper bounds for the estimated share of robot users in 2014. The lower bound is calculated by
assuming that all the plants with missing robot stock in 2014 were not robot users and the upper
bound is calculated by assuming that those plants were all robot users in 2014. However, even the
most conservative estimate based on the upper bound of the user share in 2014 suggests that the
user share rose considerably by more than a third from 2014 to 2018 in the manufacturing sector.

Figure 3 plots the growth of robot stock by industry from 2014 to 2018.12 The industry-level
growth is decomposed into the extensive and intensive margins. The extensive margin, illustrated by
the light blue bars, is the contribution of robot adopters from 2014 to 2018 to the overall growth
of robots, while the intensive margin, illustrated by the dark blue bars, is the contribution of the
plants that already used robots in 2014. Two notable features arise. First, the aggregate numbers
for the manufacturing sector mask substantial heterogeneity across industries. For example, in
the electrical equipment industry, the adopters play a dominant role in robot growth by raising
the industry-level robot stock by 260% from 2014 to 2018, which stands in sharp contrast to the
motor vehicle industry where robots have been traditionally heavily used. Since the motor vehicle
industry has reached a mature phase of robotization with an exceptionally high stock, it significantly
downsizes the overall growth in robot stock and the contribution of the extensive margin in the
manufacturing sector. Second, the contribution of the extensive margin to growth is much greater
in the non-manufacturing sector. The majority of the new robot purchases were made by robot
adopters in that sector, consistent with the pattern suggested by the previous figure.13

Fact IV: Robot users are exceptional.
Robot users are not only rare but also different from non-users in a number of plant-level

characteristics. To capture robotization premia, which draw a direct parallelism with the exporter
premia as in Bernard et al. (2007, 2018), we use the 2018 cross-sectional sample to perform a battery
of bivariate regressions of the following form

Xijk = α+ βRobotUseijk + φj + ψk + γ log(Empijk) + εijk, (1)

where Xijk is a given characteristic of interest for plant i in industry j and state k; RobotUseijk is
a dummy variable which equals one if plant i used robots in 2018 and zero otherwise; φj and ψk

are the industry and state fixed effects; Employmentijk is the plant-level employment count. Our
specification takes into account important features that approximate the sample design of the IAB
Establishment Panel (plant size, region, and industry), so we do not weight our regressions and
present regression results without survey weights throughout this paper for conciseness.14 We have

12Again, survey weights in 2018 are applied to the calculation. For the decomposition without survey weights, see
Figure A5 in the Appendix.

13Hidden in Figure 3 is the number of robots being replaced. According to the survey answers, a significant share
of the new robot installations in 2018 can be attributed to replacement of the existing robots, echoing a channel
considered in the extension of the baseline model in Humlum (2019).

14For a detailed comparison between weighted regressions and unweighted regressions with the elements of the survey
design being controlled for, see Bossler et al. (2018).
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also run the same regression specification with survey weights, but the implications based on these
results are qualitatively the same. Thus, our regression results can be viewed as representative for
Germany.

According to the estimates of β in Table 3, robot users are larger, have higher labor productivity,
make more investments, and are more likely to export and adopt the most updated technology. As
Column (2) suggests, the average plant size of the robot users, measured by the employment count,
is more than 4 times (e1.422 ≈ 4.145) as large as that of the non-users. Controlling for plant size,
Column (3) suggests that the share of low-skilled labor in total employment is 2.7 percentage points
higher in robot-using plants. Interestingly, the last two rows of estimates imply that robot users
are consistently associated with a lower level of product and process improvement and refinement.
Columns (4) and (5) report coefficient estimates of the robot use dummy for the manufacturing and
non-manufacturing samples separately. The robotization premia are remarkably similar for most
of the plant-level characteristics. The only notable difference lies in the share of low-skilled labor:
robot users in the manufacturing sector hire disproportionately more low-skilled labor while robot
users in the non-manufacturing sector have a smaller share of low-skilled labor than non-users do.

Within the sample of robot users, we examine robotization premia on the intensive margin:

Xijk = α+ β log(Robotijk) + φj + ψk + γ log(Empijk) + εijk, (2)

where log(Robot) is the log number of robots in a given plant in 2018. According to Table 4, plants
that use more robots are larger. A 10% increase in robot stock is associated with 3.93% increase in
plant size measured by employment. Due to the small sample size, the point estimates are much less
precise for other variables, but the signs of those estimates are largely consistent with our findings
on the extensive margin. Plants with more robots have higher labor productivity and employ a
larger share of low-skilled labor. The only exception is exporter status. Heavy robot users are not
necessarily more likely to export.

Fact V: Heterogeneity of robots matters.
The composition of robots changes over time. Technological progress in the last decade has been

shaking the stereotype of (industrial) robots; robots which can be used in collaboration with human
workers, usually smaller in size and cheaper in price, are on the rise.15 To estimate the overall
effect of robotization and its evolution, it is important to understand whether collaborative and
less expensive robots differ from the prevalent and more expensive non-collaborative robots in their
impact on plant-level outcomes.

According to our survey, 49% of the German robot using plants reported using robots that are
separated from employees during the regular operations with the help of a protection device (labeled
as “cage robots” henceforth), which are distinguished from the new collaborative robots, and 54% of
the robot using plants reported using robots that cost more than 50,000 Euros (labeled as “expensive
robots” henceforth) in 2018. Among those cage robot users, more than 85% of them had all of their
robots operated in separation from employees, accounting for 72% of the total robot stock. Among
those expensive robot users, 78% of them had all of their robots purchased at a price above 50,000
Euros, accounting for 45% of the total robot stock.16

15For a more detailed discussion on “cobots”, collaborative robots, see World Robotics: Industrial Robots 2018.
16These shares are calculated with survey weights. Within the survey sample, close to 70% of the robot users used
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Leveraging the information on robot types, we reexamine robotization premia on both the
extensive and intensive margin. In Equation (1), we replace the dummy RobotUse with three
dummies corresponding to three types of robot users: plants with all robots being cage robots, plants
with all robots being purchased at a price of above 50,000 Euros, and robot users that do not belong
to the first two categories. Note that the first two categories are not mutually exclusive. The control
group for these extensive margin regressions are the non robot using plants. In Equation (2), we
further include the share of cage robots and that of expensive robots to explore the intensive margin
among robot users.

According to the first panel in Table 5, robot users are all significantly larger than non-users, but
this size premium is largest for plants that solely used cage robots. Conditional on plant size being
controlled, cage robot users tend to have higher labor productivity and are much more likely to
export. The purchase price of robots does not yield any significant difference in plant characteristics
in the extensive-margin regression. In the second panel, we study the role of the composition of
robots. Both the share of cage robots and that of expensive robots are significantly positively
correlated with plant size. Controlling for the number of robots, a plant that solely uses cage robots
is 55% larger than a plant that does not use cage robots; the size premium for the expensive robots
is 44%. Consistent with the extensive margin result, a larger share of cage robots is associated with
higher probability of export. Those results taken together point to the importance of accounting for
heterogeneity of robots.

3 Plant-level Correlates of Robot Adoption

In this section, we explore the potential determinants of robot adoption. In Germany, robot users
differed from non-users in several plant characteristics in 2018, as shown in the previous section in
Stylized Fact IV. To examine whether these differences existed prior to adoption of robots, we focus
on the sample of robot adopters. Using the sample of plants that reported no robot use in 2014,
we investigate which plant-level characteristics in the base year correlate with robot adoption in
subsequent years. Our baseline cross-sectional regression setting is given by

RobotAdp2015−2018
ijk = α+X2014

ijk β + φj + ψk + εijk, (3)

where Xijk is a set of plant-level characteristics in 2014 for plant i in industry j and state k;
RobotAdpijk is a dummy variable which equals one if a plant that did not use robots in 2014 newly
adopted robots from 2015 to 2018; φj and ψk are the industry and state fixed effects. Based on our
definition of robot adoption, 189 plants in total are identified as robot adopters from 2015 to 2018,
among which 33 adopted robots for the first time in 2015, 44 in 2016, 34 in 2017, and 78 in 2018.

In light of a task-based framework of robot adoption with firm heterogeneity as in Koch et al.
(2019), we focus on five categories of plant-level characteristics as potential determinants of robot
adoption: (1) plant size measured by total employment or business volume; (2) productivity measures
such as labor productivity or TFP; (3) skill composition proxied by the share of low-skilled labor or
the average wage; (4) change in labor cost due to the introduction of minimum wage in 2015;17 (5)

cage robots and 65% of them used expensive robots.
17The uniform minimum wage was introduced country-wide on January 1, 2015 and the hourly minimum wage was

initially set at 8.50 Euros.
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exporter status.
Table 6 presents the baseline regression results. Columns (1) – (9) report the results for the

full sample. The total employment has a consistently positive effect on future robot adoption. The
effect is statistically significant across all specifications. The robust finding of plant size premium
in adoption is consistent with the framework as in Humlum (2019) which postulates that robotic
technology enter multiplicatively the production function and adoption of robots involves a one-time
fixed cost. Columns (2) – (7) present regression results for each of the productivity, skill, labor cost,
and trade measures with the total employment being controlled. Interestingly, once plant size is
controlled for, productivity does not seem to have any additional effect on robot adoption. The share
of low-skilled labor positively impacts robotization. It is consistent with the prediction of the task-
based theoretical framework (Acemoglu and Restrepo, 2018b): other things equal, low-skilled labor
which has comparative advantage in performing simple and easily automatable tasks is more likely to
be replaced by robots. The average wage, arguably a cruder measure of plant-level skill composition,
however shows no significant effect on robot adoption. In Column (6), the minimum-wage dummy is
defined as whether a plant raised its wages due to the introduction of minimum wage in 2015. For the
full sample, the estimate is positive but not significant. Similar to Koch et al. (2019), the exporter
status in Column (7) is found to have a positive effect on robot adoption. In Column (8), we include
measures of all the five categories of plant-level characteristics simultaneously, the effects of the share
of low-skilled labor and exporter status remain positive and statistically significant with increased
magnitude. In Column (9), we further control for a wide array of plant-level characteristics which
may potentially impact robot adoption. In particular, as documented by Zator (2019) that labor
scarcity has a strong effect on adoption of automation technology, we control for plant-level labor
scarcity by including a dummy variable that equals one if a plant experiences any of the following
staffing problems: skilled workers hard to find; staff shortage; innovation prevented due to lack of
qualified staff. Our main results are found to be robust to additional controls.

Our point estimates are not only statistically significant but also economically sizable. According
to our preferred estimate in Column (9), a one-standard-deviation increase in log(Employment) in
2014, which is 1.6, leads to a 1.6 percentage point increase in the probability of robot adoption.
A one-standard-deviation increase in the share of low-skilled labor in 2014, which is 0.27, yields a
0.57 percentage point increase in adoption probability, while being an exporter increases adoption
probability by 3.0 percentage points. Compared with the unconditional probability of robot adoption
being 2.48%, the effects of plant size, skill composition, and exporter status on robot adoption are
quite substantial in their magnitude.

Columns (10) and (11) in Table 6 further report the regression results for the manufacturing
and non-manufacturing samples. The coefficient of employment remains statistically significant
and positive in both samples while the magnitude of the estimated effect is much larger in the
manufacturing sector. It is worth highlighting that our point estimate of employment for the
manufacturing sample is remarkably similar to the results in the panel specification of Koch et al.
(2019) using the Spanish manufacturing firm-level data. The estimated coefficient of the share of
low-skilled labor doubles in the manufacturing sector while its positive effect largely disappears in
the non-manufacturing sector. More interestingly, plants impacted by the minimum wage legislation
in 2015 see a significant increase in adoption probability in the manufacturing sector, consistent with
the findings in Fan et al. (2020) using the Chinese firm-level data, whereas in the non-manufacturing
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sector, change in labor cost due to minimum wage seems to have no effect. These comparisons
taken together suggest that the determinants of robot adoption may be quite different between the
manufacturing and non-manufacturing plants. As collaborative robots are used more intensively
in the non-manufacturing sector, the elasticity of substitution between robots and human workers
may depend on the type of robots and thus be different there. The effect of exporter status on
robotization is also stronger in the manufacturing sector, though the effect remains highly significant
and economically meaningful in the non-manufacturing sector. The robust results on exporter status
underscore the role of international trade in robotization: Since both plant size and productivity are
controlled for, the effect of trade on robot adoption perhaps operates through a channel that goes
beyond market size and productivity selection.

To make it more comparable with the findings in Koch et al. (2019), Table 7 presents the cross-
sectional regression results with an output-based measure of plant size, the total business volume.
The main difference from Table 6 is that higher labor productivity now implies lower adoption
probability and this negative effect is statistically significant for both full and non-manufacturing
sample. Competing arguments can be made for how productivity impacts robot adoption decision.
On the one hand, more productive firms have higher incentives to adopt robots due to the standard
productivity selection channel as in Koch et al. (2019). On the other hand, it is conceivable that
laggard plants may attempt to catch up by replacing employees with lower labor productivity
with robots. Since the total business volume, as an output measure, is less reliable than the total
employment, an input-based measure, in Establishment Panel, we view the negative coefficient of
productivity in Table 7 as tentative evidence of calling for an incorporation of the catch-up motive
into the model of robot adoption.

More than 40% of the robot adopters in our sample adopted robots in 2018, while the cross-
sectional specification has the base year as of 2014. To address this issue and better exploit the
timing information of robot adoption, we construct a panel dataset by dividing the sample period
equally into two two-year windows. The regression specification is given by

RobotAdpt+1,t+2
ijk = α+Xijktβ + φjt + ψkt + εijkt, (4)

where the base year t is 2014 for the first period and 2016 for the second period and RobotAdpt+1,t+2
ijk

is a dummy variable which equals one if a plant that did not use robots in base year t newly adopted
robots in the two subsequent years; φjt and ψkt are the industry-period and state-period fixed effects.
We drop all the plant-period pairs if a plant used robots in or prior to the base year of a given period.
Therefore, if a plant adopted robots in the first period, its second-period observation is excluded
from our sample.

Table 8 reports the regression results using the panel data. The results confirm the findings in the
cross-sectional regressions with the only exception that the positive effect of exporter status on robot
adoption is no longer significant for the non-manufacturing plants in Column (4). Compared with
Table 6, the point estimates for the total employment, the share of low-skilled labor, and exporter
status are about half of the cross-sectional estimates with the statistical significance preserved. This
is reassuring because we study the effect of plant-level characteristics on robot adoption decision in
the subsequent two years in the panel specification as opposed to four years in the cross-sectional
setting.
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To summarize, we document the effects or lack thereof of five plant-level characteristics on robot
adoption decision which have all been theoretically formulated in the existing literature. First,
larger plants are more likely to adopt robots and the positive effect of plant size is substantially
stronger in the manufacturing sector. Second, conditional on plant size being controlled, robot
adopters are ex ante not more productive than non adopters. Moreover, plants with a higher share
of low-skilled labor and plants impacted by the minimum wage introduction are more likely to adopt
robots and the effects are entirely driven by the manufacturing plants. Last, participation in export
seems to introduce additional incentives for adoption and the exporter effect is also stronger for the
manufacturing plants.

4 Concluding Remarks

Using a newly collected dataset, we provide the first portrait of the use and adoption of robots at
the plant level in Germany. Five stylized facts emerge from our descriptive analysis: (1) Robot use is
relatively rare; (2) The distribution of robots is highly skewed; (3) The extensive margin contributes
substantially to the recent robotization; (4) Robot users are larger, more productive, and more likely
to export and use low-skilled labor more intensively; (5) Heterogeneity of robots matters. Examining
the potential determinants of robot adoption, we find plant size, the share of low-skilled labor, and
exporter status to have a strong positive impact on future robot adoption, while once plant size is
controlled, productivity has no, if not negative, impact on robotization. Introduction of minimum
wage also incentivizes plants in the manufacturing sector to adopt robots.

Our empirical results point to several interesting open questions. First, the fact that robot users
have higher labor productivity but are ex ante not more productive than non-adopters suggests
that robot adoption may have a positive effect on labor productivity as documented by Koch et al.
(2019), Bonfiglioli et al. (2019) and Acemoglu et al. (2020) using Spanish and French data and also
earlier cross-country regressions as in Graetz and Michaels (2018). Second, it remains unclear if
robotization premia in plant size, low-skilled labor intensity, and exporter status are reminiscent of
the ex-ante differences due to self-selection of plants into robotization. Third, since our plant-level
robot dataset can be readily merged with the worker-level employment biographies in Germany, it is
exciting to investigate the wage and employment dynamics for workers in robot-adopting plants. We
plan to take up all those questions in our future work.
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Figures

Figure 1: The Intensive Margin: Robot Distribution in the Manufacturing Sector in 2018

Notes: (1) We sort plants by the number of robots reported in 2018. For plants with the same number of robots, they are randomly
sorted (a further sorting by plant-level attributes like plant size could artificially skew the distribution of robot intensity). The
same sorting is applied to both panels. (2) Survey weights are applied. (3) Average robot count or robot density (measured by
robot count per 1,000 employees) is calculated within each decile or bi-centile and rounded to the closest integer. (4) Due to
skewedness of the distribution, the first panel is plotted in log scale.
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Figure 2: Growth in the Extensive Margin from 2014 to 2018

Notes: (1) A plant is identified as a robot user in 2018 if it answered yes to the question of whether it used robots from 2014 to
2018 and its robot stock in 2018 was not zero. (2) Survey weights in 2018 are applied. (3) The estimated share of robot users
in 2014 is the product of the share of robot users in 2018 and the share of plants reporting a positive robot stock in 2014 in the
robot users in 2018 reporting a non-missing robot stock in 2014.
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Figure 3: Decomposition of Growth of Robot Stock: The Extensive versus Intensive Margin

Notes: (1) Calculations are based on the surveyed plants that reported their robot use in each year from 2014 to 2018. Survey
weights in 2018 are applied. (2) For each industry (sector), the contribution of the robot adopters to growth is defined as the
ratio of the total robot stock of robot adopters in 2018 to the robot stock aggregated over the existing users in 2014. The
contribution of the robot users to growth is defined as the percentage change of the aggregate robot stock from 2014 to 2018 for
the plants that already used robots in 2014.
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Tables

Table 1: Summary Statistics

Variable Mean Std. Dev. N

Summary Statistics in 2018

Employment 107.32 1100.12 15,307
Labor Productivity (€1,000/Worker) 56.79 69.39 8,267
log(TFP) 4.63 1.25 4,264
Exporter 0.22 0.41 13,156
Monthly Wage (€1,000) 2.07 2.14 12,386
Low-skilled Labor 0.34 0.30 15,307
Investment (€1,000) 1,410.24 52,105.62 14,282
Up-to-date Technology 0.62 0.48 15,262
Product Improvement 0.65 0.48 15,259
Process Improvement 0.83 0.38 15,259

Summary Statistics in 2014

Employment 103.62 967.73 7,832
Business Volume (€1,000) 25,297.10 770,542.76 5,008
Labor Productivity (€1,000/Worker) 56.81 66.37 4,418
log(TFP) 4.47 1.28 3,840
Exporter 0.23 0.42 6,587
Monthly Wage (€1,000) 1.92 1.09 5,812
Low-skilled Labor 0.27 0.27 7832

Notes: (1) The summary statistics are based on the sample of plants that provided a non-missing answer to whether they
used robots in 2018. (2) No survey weights are applied. (3) Employment is the total employment count. Labor Productivity
is defined as value added per worker. TFP is the residual obtained by regressing the business volume on labor, capital, and
intermediate input by industry. Capital stock is approximated using the method as in Müller (2017). Export is a dummy for
exporter status. Monthly Wage is the average monthly wage of all employees that are subject to social insurance contributions,
including part-time employees and apprentices. Low-skilled Labor is the share of workers without degree or apprenticeship in
total employment. Investment is the total investment. Up-to-date Technology is a dummy variable for plants that answer “up
to date” about their technological status. Product Improvement is a dummy variable for product improvement or refinement.
Process improvement is a dummy variable for development or implementation of improved procedure. Business Volume is the
total sales (CPI-deflated).
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Table 2: The Extensive Margin: Share of Robot Users by Industry in 2018

Industry/Sector Weighted (%) Unweighted (%) # of Surveyed Plants

All Manufacturing 8.22 14.52 3,257

plastics 25.55 30.98 184
motor vehicles 24.26 30.50 200
basic metals 12.67 21.00 200
fabricated metal 6.22 17.07 457
machinery and equipment 11.29 15.90 434
electrical equipment 11.33 15.34 163
glass/ceramic 7.74 14.44 187
precision/optical equipment 4.16 11.18 152
paper/print/wood 7.61 10.96 228
food/luxury 5.87 10.54 313
furniture/jewelry/sports/medical 9.67 8.68 265
chemical/pharmaceutical 7.12 5.85 205
textiles/clothing 3.27 2.26 133
repair/installation 0.10 0.74 136

All Non-manufacturing 0.94 1.16 12,050

mining 5.71 12.00 25
agriculture/forestry 7.41 4.79 334
research/development 0.28 4.17 72
reparation of consumer goods 6.78 2.94 34
wholesale trade 1.62 2.51 479
retail trade 1.43 1.88 1,170
culture/sports/entertaining 2.00 1.71 175
legal accounting/advertising 1.46 1.38 290
building/installation 1.45 1.24 807
information/communication 0.43 1.24 322
architecture 0.34 1.22 328
other services 0.24 1.20 332
transport/warehousing 0.97 1.19 587
consulting 0.27 1.18 170
human health 0.34 1.04 1,828
main building sector 0.37 1.01 296
other non-manufacturing 0.28 0.49 4,937

Total 1.55 4.00 15,307

Notes: (1) Column “Weighted” reports the share of robot users with survey weights. (2) Column “Unweighted” reports the
share of robot users without survey weights. (3) The last column reports the total number of surveyed plants (robot users
and non-users). (4) The second to last row is a residual category that consists of all the “other non-manufacturing” industries
with the unweighted user share below 1%, which include itinerant trading/landscaping, repair/installation, activities of member-
ship, civil service/social insurance, hotel business/gastronomy, energy, real estate activities, placement/temporary provision of
labor, education, financial/insurance sector, sales/maintenance/repair of, marketing/design/translation, renting, and veterinary
industry.
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Table 4: Robotization Premia on the Intensive Margin

Dependent Employment Labor TFP Exporter Wage Low-skilled
Variable Productivity Labor

Controls: Industry and State Fixed Effects

log(Robots) 0.393*** 0.080*** -0.001 0.012 0.073*** 0.005
(0.049) (0.028) (0.016) (0.016) (0.018) (0.009)

N 553 392 224 534 483 553
Adjusted R2 0.436 0.263 0.891 0.291 0.424 0.174

Controls: Industry and State Fixed Effects and Plant Size

log(Robots) 0.023 0.002 -0.014 0.022 0.014
(0.029) (0.017) (0.017) (0.017) (0.009)

N 392 224 534 483 553
Adjusted R2 0.317 0.890 0.319 0.508 0.187

Notes: (1) The table reports the estimated coefficient of the number of robots (in log). (2) No survey weights are applied. (3)
The dependent variables, Employment, Labor Productivity, TFP, and Wage, are all in log values. Exporter is a dummy variable.
Low-skilled Labor is the share of low-skilled labor in total employment. (4) Both specifications are based on the full sample
of robot users in 2018. The first specification includes industry (43 IAB aggregated NACE 2-digit industries) and state fixed
effects. The second specification includes both fixed effects and plant-level employment (in log). (5) Robust standard errors are
reported in parentheses. (6) *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Robotization Premia: Heterogeneity in Robot Types

Employment Labor TFP Exporter Wage Low-skilled
Productivity Labor

Extensive Margin

Cage Robot User 0.935*** 0.132* -0.029 0.167*** 0.014 0.007
(0.121) (0.072) (0.043) (0.029) (0.052) (0.022)

Expensive Robot User 0.719*** 0.056 0.023 0.050 -0.020 0.036
(0.129) (0.077) (0.046) (0.031) (0.055) (0.024)

Other Robot User 0.697*** -0.144 -0.096 0.093** 0.071 0.012
(0.160) (0.097) (0.061) (0.038) (0.067) (0.029)

N 15,206 8,224 4,248 13,074 12,267 15,206
Adjusted R2 0.228 0.250 0.935 0.303 0.356 0.211

Intensive Margin

log(Robots) 0.387*** 0.031 -0.010 -0.015 0.024 0.018*
(0.051) (0.030) (0.018) (0.017) (0.018) (0.010)

Share of 0.551*** 0.042 0.001 0.102** -0.006 -0.004
Cage Robots (0.158) (0.092) (0.063) (0.052) (0.054) (0.028)

Share of 0.440*** 0.082 0.032 -0.014 0.014 0.038
Expensive Robots (0.139) (0.080) (0.049) (0.045) (0.048) (0.025)

N 513 375 218 502 460 513
Adjusted R2 0.459 0.327 0.889 0.334 0.494 0.201

Notes: (1) For the first panel, in 2018, 390 plants solely used cage robots (CageUser = 1), 323 plants solely used expensive robots
(ExpUser = 1), and 107 plants were tagged as other robot users (OthUser = 1). 207 plants solely used both cage and expensive
robots (CageUser = ExpUser = 1). Robot using plants that did not answer survey questions on robots types are excluded. (2)
For the first panel, the control group are non robot using plants. (3) The dependent variables, Employment, Labor Productivity,
TFP, and Wage, are all in log values. Exporter is a dummy variable. Low-skilled Labor is the share of low-skilled labor in total
employment. (4) Column “Employment” includes only industry and state fixed effects; the other columns include both industry
and state fixed effects and the employment count (in log) as controls. (5) No survey weights are applied. (6) Robust standard
errors are reported in parentheses. (7) *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Correlates of Robot Adoption: Alternative Firm Size Control

(1) (2) (3) (4)

Sample Full Full Manuf. Non-Manuf.

Business Volume 0.009*** 0.009*** 0.024*** 0.003**
(0.001) (0.002) (0.005) (0.002)

Labor Productivity -0.007** -0.008** -0.017 -0.005*
(0.003) (0.004) (0.011) (0.003)

Low-skilled Labor 0.023*** 0.024** 0.051* 0.010
(0.008) (0.010) (0.028) (0.008)

Minimum Wage 0.008* 0.008 0.029** -0.001
(0.005) (0.005) (0.014) (0.004)

Exporter 0.028*** 0.027*** 0.028** 0.014**
(0.006) (0.006) (0.014) (0.006)

Other controls No Yes Yes Yes
Industry FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
N 4,244 3,747 1,178 2,569
Adjusted R2 0.046 0.051 0.067 0.007

Notes: (1) The table reports OLS regression results for robot adoption. (2) No survey weights are applied. (3) The independent
variables, Business Volume and Labor Productivity, are all in log values. Minimum Wage is a dummy variable which equals one
if the plant raised wages due to the minimum wage regulation in 2015. Exporter is a dummy variable. Low-skilled Labor is the
share of low-skilled labor in total employment. (4) Other controls are a set of dummy variables for up-to-date technology, labor
scarcity, collective wage agreement, process improvement, works council, high competitive pressure, and foreign ownership. (5)
Both industry (43 IAB aggregated NACE 2-digit industries) and state fixed effects are included. (6) Robust standard errors are
reported in parentheses. (7) *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Correlates of Robot Adoption: The Panel Sample

(1) (2) (3) (4)

Sample Full Full Manuf. Non-Manuf.

Employment 0.005*** 0.004*** 0.012*** 0.001*
(0.001) (0.001) (0.004) (0.001)

Labor Productivity 0.001 -0.000 0.002 -0.001
(0.001) (0.002) (0.006) (0.001)

Low-skilled Labor 0.007 0.009* 0.032** -0.001
(0.004) (0.005) (0.015) (0.004)

Minimum Wage 0.004 0.004 0.015* -0.001
(0.003) (0.003) (0.008) (0.002)

Exporter 0.014*** 0.014*** 0.018*** 0.003
(0.003) (0.003) (0.006) (0.003)

Other controls No Yes Yes Yes
Industry-period FE Yes Yes Yes Yes
State-period FE Yes Yes Yes Yes
N 8,228 7,498 2,333 5,165
Adjusted R2 0.273 0.279 0.308 0.193

Notes: (1) The table reports the regression results for robot adoption, repeated for 2 periods of robot adoption. Explanatory
variables for the first period of adoption are from base year 2014, while for the second period of adoption the base year is 2016.
(2) No survey weights are applied. (3) The independent variables, Employment and Labor Productivity, are all in log values.
Minimum Wage is a dummy variable which equals one if the plant raised wages due to the minimum wage regulation in 2015.
Exporter is a dummy variable. Low-skilled Labor is the share of low-skilled labor in total employment. (4) Other controls are a
set of dummy variables for up-to-date technology, labor scarcity, collective wage agreement, process improvement, works council,
high competitive pressure, and foreign ownership in the base year. (5) Standard errors clustered at the plant level are reported
in parentheses. (6) *** p<0.01, ** p<0.05, * p<0.1.
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A Appendix

A.1 Survey Questions

We provide below a word-to-word English translation of the section on robot use in the 2019 IAB
Establishment Survey.

Question 77.
a) Have you used robots over the last 5 years for operational performance or production? [A robot
is any automated machine with multiple axis or directions of movement, programmed to perform
specific tasks (partially) without human intervention. This includes industrial robots but also service
robots. This excludes machine tools, e.g. CNC-machines.] Yes/No.
If so:
b) How many robots have you used in total over the last five years? An estimation will suffice. If
more robots are used in one robot cell, please count them individually. An estimation will suffice.
[Interviewer: If “none” enter “0”. Please enter “XXXX” if there is no information possible to single
years.]
If 2018 no use of any robot or no information possible, go to question 81. If there was use of at least
one robot in 2018, go to question 78.

Question 78.
If there was use of at least one robot in 2018: How many of the robots used in 2018 were purchased
at a price of less than 50,000 Euros? Please – if possible – consider only the purchase price, without
any further costs for tools or the integration of the robots into your production circle.

Question 79.
How many of the robots used in 2018 are separated from employees during the regular operations
with the help of a protection device, e.g. cage, fence, separate room, light barrier or sensor mat?

Question 80.
How many of the robots used in 2018 did you just purchase in 2018?
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A.2 Cross Validation and Stylized Facts: Additional Figures

Figure A1: Cross Validation with the IFR Data in 2018

Notes: (1) Robot density is defined as the number of robots per 1,000 employees. (2) Robot counts in 2018 are aggregated
at industry level and divided by the aggregate number of employees per industry to obtain IAB robot density. As the IAB
Establishment Panel is representative on industry level, we use the same employment count to derive IFR robot density. (3) The
correlation coefficient of robot density across industries between the two datasets is 0.84. If only the manufacturing industries
are considered, the correlation coefficient is 0.96.
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Figure A2: Robot Distribution in the Manufacturing Sector in 2018 (without Survey Weights)

Notes: (1) We sort plants by the number of robots reported in 2018. For plants with the same number of robots, they are randomly
sorted (a further sorting by plant-level attributes like plant size could artificially skew the distribution of robot intensity). The
same sorting is applied to both panels. (2) No survey weights are applied. (3) Average robot count or robot density (measured
by robot count per 1,000 employees) is calculated within each decile or bi-centile and rounded to the closest integer. (4) Due to
skewedness of the distribution, the first panel is plotted in log scale.
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Figure A3: Growth in the Extensive Margin from 2014 to 2018

Notes: (1) No survey weights are applied. (2) A plant is identified as a robot user in 2018 if it answered yes to the question of
whether it used robots from 2014 to 2018 and its robot stock in 2018 was not zero. (3) The estimated share of robot users in
2014 is the product of the share of robot users in 2018 and the share of plants reporting a positive robot stock in 2014 in the
robot users in 2018 reporting a non-missing robot stock in 2014.
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Figure A4: Growth in the Extensive Margin from 2014 to 2018: Lower and Upper Bounds

Notes: (1) Survey weights in 2018 are applied. (2) A plant is identified as a robot user in 2018 if it answered yes to the question
of whether it used robots from 2014 to 2018 and its robot stock in 2018 was not zero. (3) The lower bound for the share of robot
users in 2014 is based on the share of plants stating their robot stock being positive in 2014, assuming missing values to be zero.
(4) The upper bound for the share of robot users in 2014 is based on the share of plants stating their robot stock being positive
in 2014, assuming missing values to be positive, such that these plants with missing robot stock are counted as robot users in
2014.
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Figure A5: Decomposition of Growth of Robot Stock (without Survey Weights)

Notes: (1) Calculations are based on the surveyed plants that reported their robot use in each year from 2014 to 2018. (2)
No survey weights are applied. (3) For each industry (sector), the contribution of the robot adopters to growth is defined as
the ratio of the total robot stock of robot adopters in 2018 to the robot stock aggregated over the existing users in 2014. The
contribution of the robot users to growth is defined as the percentage change of the aggregate robot stock from 2014 to 2018 for
the plants that already used robots in 2014.
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