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Abstract

Environment perception systems for automated vehicles and driver assistance systems
commonly use radar and lidar sensors as well as cameras for tracking other vehicles.
While these sensors exhibit different strengths and weaknesses, they share the ability
to resolve multiple measurements for a single object: lidar sensors typically provide
multiple distance measurements for a vehicle, modern high-resolution radar sensors
yield multiple detections, and objects cover a set of pixels in camera images.

Such dense data is valuable for obtaining a detailed and precise representation of the
environment. From a tracking perspective, however, it poses three major challenges:
First, tracking algorithms have to process multiple measurements for one object and
thus face the extended object problem. This conflicts with the classical assumption
of at most one measurement per cycle and object. Secondly, the increased amount of
data further complicates multi-object problems which involve measurement-to-object
associations in the presence of clutter, occlusion, and misdetections. Thirdly, the
data from several heterogeneous sensors needs to be fused into a consistent estimate
in order to benefit from complementary sensor strengths or to either achieve increased
sensor fields of view or redundancy.

This thesis presents a tracking framework that is based on finite set statistics (FISST)
and tackles these challenges for the application of vehicle tracking in a Bayesian
fashion. The employed multi-object filter uses labeled multi-Bernoulli distributions
and allows for combining different sensor modules with sensor-specific update routines
through centralized fusion. Furthermore, extended object measurement models which
work on the full raw sensor data are developed. In particular, it is demonstrated how
separable likelihood approaches can be used to incorporate accurate vehicle models
for lidar data and semantically labeled camera images. Additionally, two radar
vehicle models are developed. They are able to process multiple radar detections
and allow for tracking vehicles in arbitrary maneuvers, including turning vehicles or
cross-traffic. While the first radar model is based on expert knowledge, the second
uses variational Gaussian mixtures and is learned from actual measurements. The
methods are evaluated on experimental data with accurate ground truth. The results
demonstrate that the extended object models achieve precise estimates, that the
data-driven variational radar model is able to outperform the manually designed
model, and how different sensor combinations improve the performance.






Kurzfassung

Umgebungserfassungssysteme fiir automatisierte Fahrzeuge oder Fahrerassistenzsys-
teme verwenden iiblicherweise Radar- oder Lidarsensoren sowie Kameras, um andere
Fahrzeuge zu erfassen und zu verfolgen. Wéhrend diese Sensoren verschiedene Vor-
und Nachteile aufweisen, so teilen sie die Fahigkeit, mehrere Messungen fiir ein
einzelnes Objekt auflésen zu konnen: Lidarsensoren liefern tiblicherweise mehrere
Distanzmessungen fiir ein Fahrzeug, moderne hochauflésende Radarsensoren erzeu-
gen mehrere Detektionen und Objekte erstrecken sich iiber mehrere Pixel eines
Kamerabilds.

Diese Datendichte ist wertvoll, um ein detailliertes und préazises Abbild der Umge-
bung zu erhalten. Aus Objektverfolgungssicht ergeben sich daraus jedoch drei
Herausforderungen: Erstens muss die Objektverfolgung mehrere Messungen fiir ein
einzelnes Objekt verarbeiten und steht daher vor dem Problem, mit sogenannten aus-
gedehnten Objekten umgehen zu miissen. Dies steht im Widerspruch zur klassischen
Annahme von maximal einer Messung pro Objekt und Messzyklus. Zweitens erschw-
ert die zusétzliche Datenmenge Multiobjektproblemstellungen, welche Assoziationen
zwischen Messungen und Objekten unter Beriicksichtigung von Falschmessungen,
Sensorrauschen, Verdeckungen und Fehldetektionen erforderlich machen. Drittens
miissen Messungen von verschiedenen, heterogenen Sensoren zu einer einheitlichen
Schéitzung fusioniert werden, um von sich ergénzenden Sensorstérken zur profitieren
oder um vergréerte Sensorsichtbereiche oder Redundanz zu erreichen.

Diese Arbeit stellt ein Objektverfolgungssystem vor, welches auf der Methode der
Finite-Set-Statistics (FISST) beruht und diese drei Herausforderungen fiir die An-
wendung der Fahrzeugverfolgung auf Bayes’sche Weise 16st. Der eingesetzte Multiob-
jektfilter verwendet Labeled-Multi-Bernoulli-(LMB)-Verteilungen und erméglicht die
Kombination verschiedener Sensormodule mit sensorspezifischen Update-Routinen
durch eine zentrale Fusionsarchitektur. Zusétzlich werden Messmodelle fiir aus-
gedehnte Objekte entwickelt, die direkt auf den Sensorrohdaten arbeiten. Im Beson-
deren wird gezeigt, wie separierbare Wahrscheinlichkeitsfunktionen es ermoglichen,
préazise Fahrzeugmodelle fiir Laserdaten sowie semantisch klassifizierte Kamerabilder
zu integrieren. Aulerdem werden zwei Radarmodelle entwickelt, die mehrere Radard-
etektionen verarbeiten kénnen und das Verfolgen von Fahrzeugen in beliebigen
Mangvern erlauben, einschliefflich abbiegender Fahrzeuge und Querverkehr. Wéhrend



das erste Radarmessmodell auf Expertenwissen basiert, wird das zweite mithilfe
variationeller Gaufimixturen auf Basis realer Messungen gelernt. Die Ansétze werden
auf experimentellen Sensordaten, fiir welche akkurate Referenzwerte zur Verfiigung
stehen, ausgewertet. Die Ergebnisse zeigen, dass die Messmodelle fiir ausgedehnte
Objekte préazise Schétzergebnisse erreichen, dass das datengestiitzte variationelle
Radarmodell bessere Ergebnisse erreicht als das hdndisch entwickelte Modell und
wie die Kombination verschiedener Sensoren die Leistungsfdhigkeit erhoht.
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Chapter 1

Introduction

One of the basic lessons in driving school is how to correctly monitor the surrounding
of one’s vehicle, for example by doing the shoulder check. This ability is vital for
safely navigating through dense traffic and avoiding collisions with other traffic
participants. Of course, perceiving the surrounding is equally important for modern
driver assistance systems or even automated vehicles since the decision to trigger
an emergency braking maneuver, an evasion maneuver, a lane change or simply
planning the future trajectory of the vehicle cannot be made without any knowledge
about the environment.

In most vehicle environment perception systems, tracking modules are a key com-
ponent to obtain an object-level representation of the surrounding. That is, they
provide a list of objects which represent the other traffic participants and estimate
their state, i.e. their position, orientation, motion, or size, using the measurements of
the vehicle’s sensors. For this purpose, today’s production cars mostly use ultrasonic
sensors, radar sensors, and monocular or stereo cameras. Also, lidar sensors, which
measure distances using laser rays, have been becoming increasingly popular in sensor
set-ups of experimental automated vehicles. Each sensor type exhibits different
shortcomings and advantages. For instance, camera sensors are particularly good at
providing valuable semantic information, whereas lidar sensors yield precise distance
and geometric information. In contrast, radar sensors are able to directly measure
the object motion by exploiting the Doppler effect and are more robust against
occlusions or adverse weather or lighting conditions. The combination of multiple
heterogeneous sensors is often desirable to benefit from these complementary sensor
strengths. At the same time, sensor fusion allows to increase the field of view (FOV)
or to achieve redundancy in cases of sensor failure.

The amount of information that is conveyed by a sensor strongly depends on its
resolution in relation to the observed object’s extent. The higher the resolution is,
the more measurements the sensor is able to provide from the object. Cameras,
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for instance, have a particularly high resolution and provide rich and detailed
information about the environment using many pixels. Yet, the advent of densely
scanning lidar sensors and advances in radar sensor technology have led to additional
high-resolution sensors for vehicle environment perception. That is, lidar sensors
yield multiple distance measurements and modern radar sensors are able to resolve
multiple detections for a single vehicle. This increase in information is valuable as it
allows constructing a more detailed representation of the environment, for example
by being able to extract the object dimensions or contour.

For obtaining state estimates of all objects in a vehicle’s surrounding, tracking
algorithms face three major challenges: First, the sensor measurements need to
be properly processed to extract the estimates. This is typically done by finding
appropriate measurement models that relate the received measurements to the
object states. Secondly, tracking other traffic participants constitutes a complex
multi-object tracking problem. There may be several objects in the FOV and the
sensors additionally output clutter measurements that originate from objects that
are not of interest (e.g. stationary objects which are not within the scope of the
tracking module such as houses) or are simply sensor noise. Tracking algorithms
therefore need to determine the number of objects that are currently present and
need to associate the received measurements to existing objects or to clutter. Yet,
such associations may be ambiguous, e.g. in the case of objects that are close to
each other, and finding the correct association is oftentimes non-trivial. As a third
challenge, the measurements from different, possibly heterogeneous sensors need to
be fused to consistent estimates in order to achieve the mentioned benefits of sensor
fusion.

Particularly the first two challenges are further complicated by the increased resolu-
tion of modern sensors. Tracking algorithms now receive multiple measurements per
object and the object extent or shape plays a crucial role in the measurement process.
This is commonly referred to as the extended object problem. However, the presence
of multiple measurements violates the assumption of at most one measurement per
object that is made in most classical tracking algorithms. Therefore, new ways to
process the additional data are necessary. Apart from multiple measurements for
relevant objects, high-resolution sensors also yield more measurements from objects
that are irrelevant for the tracking task and consequently an increased number of
clutter measurements. The additional clutter measurements in conjunction with mul-
tiple measurements per object exacerbate the association problem in a multi-object
setting.

A widespread solution to the mentioned challenges is to break the full problem
down into subproblems. For example, data processing is usually outsourced to
preprocessing routines that first convert the multiple measurements to single object
detections or meta-measurements by, for example, computing the centroid or fitting
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bounding boxes. Thus, the amount of data is reduced, the assumption of receiving
at most one measurement is again satisfied, and standard tracking approaches
can be applied. Also, the multi-object problem is oftentimes solved by making
hard association decisions, treating the objects independently in architectures with
multiple tracking filter instances, and using heuristics for track management, i.e.
track initialization and termination. Such strategies simplify the problem but
can lead to deteriorated tracking performance. Using one out of many possible
associations, for instance, discards information and wrong associations cannot simply
be corrected in subsequent time steps. On the other hand, preprocessing routines
may fail if the available information from one time step is not sufficient for extracting
meaningful meta-measurements or if there is at least considerable ambiguity that
can only be resolved by accumulating information over several time steps. Moreover,
the reduction of data to a single meta-measurement inherently leads to a loss of
information for the tracking filter.

For this reason, there has been active research in the tracking community to find
new methods that deal with the multi-object and extended object problems in a
principled way. In particular, different multi-object filters that consider the entire
multi-object problem and take the association uncertainty into account have been
developed. Also, new filter variants that tackle the extended object problem have
been proposed. They make use of extended object measurement models which take
the object extent into account and are able to process multiple measurements per
object. In the past years, efforts have been made to transfer these new approaches
to automotive tracking applications. Multi-object filters and existing extended
object measurement models have been applied to track traffic participants and new
measurement models for different object and sensor types have been developed.
Yet, some of the available extended object models, for example the random matrix
model, are based on rather restrictive theoretical assumptions that are not suitable
in the vehicle tracking context. Others require detailed expert knowledge in the
design phase, such as manually created reflection point models, or use simplistic
models of the measurement principle that do not allow for full usage of the available
information, for example knowledge about the absence of objects contained in lidar
scans. Also, most work focuses on particular parts of the problems, e.g. the multi-
object problem or extended object measurement models for a certain sensor type.
There has, however, been little work on tracking frameworks that aim at fusing
data from heterogeneous sensors to achieve a continuous 360° coverage of the vehicle
environment while fully considering the multi-object and extended object problems.

Therefore, the objective of this thesis is to advance the work on multiple extended
object tracking for vehicle environment perception in two ways: First, the goal is to
propose new extended object measurement models which not only operate directly on
the raw sensor data but also naturally emulate the measurement principle to achieve
accurate tracking results and the ability to cope with ambiguity. Secondly, the
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thesis aims at developing a tracking framework that solves the mentioned challenges
rigorously in an integral Bayesian formulation. In this regard, the thesis particularly
focuses on tracking vehicles on the basis of radar, lidar, and camera data. The
Bayesian end-to-end formulation is achieved by using a multi-object approach based
on the theory of finite set statistics (FISST). It describes the entire multi-object state
as well as the measurements in form of random finite sets (RFSs), i.e. set-valued
random variables. By providing mathematical tools for estimating the multi-object
posterior distribution in a Bayesian fashion, FISST allows for a probabilistic top-down
description of the complete tracking problem.

The specific contributions of this thesis are threefold. First, it proposes a FISST-
based tracking architecture which uses a labeled RFS formulation, allows for the
combination of different sensor-specific multi-object measurement models, and con-
tains a prediction routine that approximately avoids overlapping vehicles. Secondly,
it develops two extended object models for radar-based vehicle tracking that on
the one hand use expert knowledge and on the other hand a machine learning
approach based on variational Bayes, a new approach for lidar tracking that allows
to integrate ray-based extended object models into the FISST world, and a simple
extended object measurement model for incorporating semantical information from
scene-labeled monocular camera images. Thirdly, the thesis constitutes the first
work that implements data fusion from three sensor types using a full extended
object formulation. All proposed methods are evaluated using experimental data
including accurate ground truth.

The remainder of the thesis is organized as follows: Chapter 2 first introduces
the basics of Bayesian inference, which forms the foundation of all theoretical
methods that are applied in the tracking framework. Subsequently, Chapter 3
reviews the fundamentals of tracking and particularly those methods that are
paramount to this work in the fields of single object tracking, multi-object tracking,
extended object tracking, and sensor fusion. Chapter 4 then discusses the state of
the art in vehicle tracking using the three sensor types and derives the proposed
tracking framework, including the problem formulation, architecture, and multi-
object prediction. Afterwards, Chapter 5 describes the extended object measurement
models for lidar, camera, as well as radar data, and Chapter 6 evaluates and discusses
the proposed approaches. Chapter 7 concludes the thesis.



Chapter 2

Fundamentals of Bayesian
Inference

The goal of statistical inference is to obtain information about unknown variables
or models from measurements [BT08, p. 408]. These variables may for example
represent states of a dynamic system or static quantities and one might be interested
in finding the best model structure or model parameters. Two different schools of
thought have emerged in statistical inference for solving such problems: the Bayesian
and the frequentist approach [BT08, p. 408]. While frequentists treat the quantities
of interest as unknown constants, the Bayesian approach models them as random
variables and aims at inferring their distributions. Further conclusions about the
values can then be drawn from these distributions.

There has been a prolonged debate about the assets and drawbacks of both ap-
proaches, see for example [HU91]. Frequentists oftentimes object to the idea of
modeling an unknown but essentially deterministic quantity as random variable with
a prior distribution, whereas supporters of the Bayesian approach argue that the
introduction of a prior allows to systematically incorporate prior knowledge [BTO0S,
p. 409]. Despite this debate, the Bayesian method has attracted great interest in the
recent decades. It is widely used in the field of machine learning and is paramount in
tracking. Also, the introduction of a prior helps to avoid singularities that sometimes
arise in classical solutions; see for example [Bis13, pp. 480-481].

For these reasons, the methods in this thesis are entirely Bayesian and this chapter
aims at establishing the necessary mathematical foundations. First, Section 2.1
introduces the basic mathematical concept and Bayes’ theorem. Then, Sections 2.2
to 2.4 discuss different possibilities to solve the Bayes update.
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2.1 Basic Principle and Bayes’ Theorem

Bayesian inference can be applied to a variety of problems in terms of the number of
involved variables and their nature. For the sake of simplicity, however, this section
first focuses on a simple problem that comprises two continuous random variables':
the unknown quantity and an observation. The unknown quantity is denoted by x
and is oftentimes termed latent (i.e. hidden or unobserved) variable. It takes its
values from the sample space X, that is x € X, which comprises all possible values.
The latent variable x cannot be observed directly, e.g. due to the system structure.
Instead, information can be obtained through the measurement or observed variable
z € Z which is connected to z and where Z denotes the measurement space. The
goal is to find the posterior distribution p(x|z) over the value of x which incorporates
the information contained in the measurement?. In this example, both random
variables are assumed to be continuous and hence, their probabilistic characteristics
are described by probability densities. Yet, the concept can be easily adapted to
discrete random variables by using probability mass functions and replacing the
integrals that occur in the following by sums.

The basic procedure for inferring the posterior distribution consists of three steps.
First, a prior density p(x) over the latent variable is formulated. It contains all prior
knowledge about the variable and may be chosen rather uninformative, i.e. “flat”, or
informative, i.e. “tight”, depending on the amount or reliability of the knowledge.

In a second step, a measurement model is specified by formulating the likelihood
function g(z|z). It relates = to the received measurement by modeling the measure-
ment process and incorporating measurement noise. In each experiment, a particular
realization of the random variable z is observed while x remains the unknown pa-
rameter of the function. This usage as a function of z explains the term likelihood
function despite g(z|z) being a density of the measurement z that is defined on Z.

The third step then computes the posterior density p(z|z) from the prior density and
the likelihood function. That is, the prior knowledge is refined by applying Bayes’
theorem, which yields

gGzlz)p(x) _ g(zlz)p(=)
p(2) [ 9(z|z)p(x) dz’

1The random variables may either be scalars or vectors. This thesis does not distinguish between
these two types. Please refer to the list of symbols at the end of the thesis for an overview of
the used notation.

2Note that this thesis does not make a notational difference between a random variable and its
realization. Also, probability densities or probability mass functions are generally denoted by
p(+). The functions are distinguishable by the arguments (e.g. prior p(z) vs. posterior p(z|z)).
Some special densities, such as likelihood functions, are indicated by special letters.

p(alz) = (2.1)




2.1 Basic Principle and Bayes’ Theorem 7

p(x) prior
posterior
p(x]2)
z Bayes’
thi
g(z|z) 5 likelihood function coremt
T

z x

Figure 2.1: Illustration of the Bayesian inference procedure for a scalar
variable x with measurement z from the same space

The factor p(z) in the denominator normalizes the resulting posterior and is sometimes
referred to as model evidence. It indicates how likely the measurement is when
marginalizing over all possible values of the latent variable.

Figure 2.1 illustrates the basic procedure of Bayesian inference for a simple scalar
example. It is assumed that X and Z are identical and it is shown how incorporating
information from a measurement leads to a refined posterior density with decreased
variance.

Once the posterior density is obtained, it can be used to infer different properties
about the latent variable. For example, one might be interested in obtaining an
estimate Z. In Bayesian inference there are two mainly used estimators: the maximum
a posteriori (MAP) estimator and the minimum mean square error (MMSE) estimator
[BLKO1, pp. 92, 99]. The MAP estimator is defined as

Zmap = argmax p(z|z) (2.2)

xr
and searches—as implied by the name—for the maximum value of the posterior
distribution. In contrast, the MMSE estimator outputs the estimate that minimizes

the mean square error E[(# — x)?|2z] where E[-] denotes the expectation. It can be
shown [BLKO1, p. 99] that this results in

Immse = Elz|z] = /xp(x|z) dz. (2.3)
That is, the MMSE estimate is the expected value of the posterior density.

Despite the relatively simple overall procedure, performing Bayesian inference can be
computationally challenging. This is due to the integral in the denominator of (2.1)
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which needs to be evaluated for obtaining the posterior density. While closed-form
solutions are available for some particular densities and likelihood functions, others
require approximation schemes. The following sections detail different approaches
for solving (2.1) that are used in this thesis.

2.2 Parametric Distributions and Conjugate Priors

The probably most widely used way to describe the characteristics of a random
variable is to use parametric distributions. These distributions have in common
that their shape and statistical moments are governed by a finite set of parameters.
There are many different variants suitable for different applications or different types
of random variables. In Bayesian inference, parametric distributions can be used as
densities over the latent variable or as likelihood functions. If used for the likelihood
function, one or more of the distribution parameters take up the role of the unknown
latent variables which influence the shape of the likelihood function.

Conjugate priors, as first introduced in [RS70], are a particularly useful class of
distributions over the latent variable as they allow for efficient analytic solutions
o (2.1). Loosely speaking, a prior distribution p(x) is said to be a conjugate prior
to a likelihood function g(z|z) if the resulting posterior distribution p(z|z) has the
same functional form as p(z) [GCS™14, pp. 35-36]. Thus, the recursive application
of Bayes’ theorem is facilitated and (2.1) reduces to updating the parameters of the
latent variable’s distribution.

The following subsections introduce several continuous and discrete parametric
distributions that are relevant for the thesis. Also, their conjugate priors are presented
where necessary. Additionally, short notations for the probability mass functions
and densities which emphasize the dependence on the distribution parameters are
introduced.

2.2.1 Bernoulli Distribution

One of the simplest discrete distributions is the Bernoulli distribution. It is defined
for the two events x € {0,1} and is used to model the probability of success in trials
with binary outcome, e.g. when flipping a coin. Its probability mass function is
[Bis13, p. 685]

p(z) = Ber(z|r) = r*(1 —r)!= (2.4)
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with the parameter r € [0, 1] denoting the probability of success. The conjugate
prior to the Bernoulli distribution is the beta distribution [Bis13, p. 686], which is,
however, not used in this thesis.

2.2.2 Multinomial and Dirichlet Distributions

The multinomial distribution is an extension of the Bernoulli distribution to experi-
ments with multiple possible outcomes. It is thus a multivariate discrete distribution
over a binary 1-of-n, variable with n, dimensions. That is, exactly one element of
the random vector = takes the value 1 while the others are 0. The probability mass
function is [Bis13, pp. 690-691]

p(x) = Mult(z H w? (2.5)

The parameter vector w contains the probability for each possible outcome and its
elements w; thus have to sum to one.

The Dirichlet distribution is the conjugate prior to the multinomial distribution. It
is a continuous distribution over a random vector with n,, elements and where the
elements satisfy 0 < w; <1 and Z"_“’l w; = 1. Hence, it is a suitable distribution for
the parameter vector w of the multinomial distribution. The probability density is

[Bis13, p. 687]

p(w) = Dir(wlp) = me , (2.6)

where the elements of the parameter vector p have to satisfy p; > 0. When the
Dirichlet distribution is used as conjugate prior to the multinomial distribution, p;
can be interpreted as the effective number of observations of a specific outcome w;
in a multinomial experiment [Bis13, p. 687]. The normalization factor is

1)
R iR m) =0

with the Gamma function I'(:) (see e.g. [FEHP11, pp. 56, 57]) and

i=> o (28)
i=1
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2.2.3 Poisson Distribution

The Poisson distribution is a discrete distribution which is used for modeling the
number of occurrences of an event. It is defined by the density [FEHP11, p. 152]
)\.’E
p(z) = Poi(z|A) = — A (2.9)
T

and is defined for x € Ny, i.e. for all natural numbers including zero. The rate
parameter A > 0 models the expected number of occurrences (E[z] = A) and also
determines the variance (E[(x — E[z])?] = \). The conjugate prior to the Poisson
distribution, which is again not required in this thesis, is the gamma distribution
(see e.g. [FEHP11, Chapter 22]).

2.2.4 Uniform Distribution

The uniform distribution is a continuous distribution defined over the interval
T € [uy, uy) ¥ uy > uy. Its probability density function is [Bisl3, p. 692]

1

Uqy — U

p(z) = U(zfur, uy) = (2.10)
and assigns the same density value to each possible x. There exist different types of
conjugate priors from the class of Pareto distributions [Fin97, p. 13], depending on
which of the two interval parameters is unknown and serves as latent variable.

2.2.5 Multivariate Gaussian and Wishart Distributions

The multivariate Gaussian distribution is one of the most common continuous
distributions over random vectors. Its density is given by

]. 1 Ts—1
— ) = —g(@—p) 27 (z—p) 211
p(x) = N(z|p, X) CERTTIN (2.11)

where n, is again the dimension of the random vector x, u is the mean, and X is
the covariance matrix. Furthermore, det(-) denotes the determinant. In some cases,
it is convenient to replace the covariance matrix by its inverse, the precision matrix
H. Then, the short notation is N (x|u, H ).

If the likelihood function is a Gaussian distribution with unknown mean p and known
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covariance matrix X, the conjugate prior is again a Gaussian distribution. This fact is,
for instance, used in the Kalman filter (see Section 3.1.1). In contrast, the conjugate
prior of a Gaussian likelihood function with known mean g and unknown precision
matrix H is a Wishart distribution [Bis13, p. 693]. The Wishart distribution is
hence a distribution over a matrix-variate random variable H under the assumption
that H is positive semi-definite. Its probability density is [Bisl3, p. 693]

p(H) = W(H|V,v) = BV, v)det(H) 3 ¢~ T 1) (2.12)

where Tr(:) is the trace of a matrix, H has dimensions np x np, and V is the
symmetric, positive definite nj x n; scale matrix parameter. The normalization
factor is

-1

. vny  np(np—1) +0 1—34
B(V,v)=det(V)"2 | 2 5t 71-4’”(‘4’7 ) HF <V+22) . (2.13)
i=1

Also, the number of degrees of freedom v has to satisfy v > nj — 1.

If neither the mean nor the precision matrix of a Gaussian likelihood function is
known, the conjugate prior is a Gaussian-Wishart distribution [Bis13, p. 690]. Its
probability density is

p(p, H) = N (plvy, (BH)  YW(H|V, v), (2.14)

with the mean of the prior Gaussian v and the additional scaling parameter f3.

2.2.6 Multivariate Student’s t-Distribution

If a random variable z is distributed according to a normal distribution with mean g
and a precision matrix that follows a Wishart prior, the density of  can be obtained
by marginalizing over the random precision matrix. This yields a multivariate
Student’s t-distribution of the form [AK65; Bis13, p. 692]

—v—ng

p(x) = St(z|p, A, v) = L5+ 5) det(A)3 (1 - (z = W) Al = 1)

v
2
G omE 7

(2.15)
Here, A is the new precision matrix parameter of Student’s t-distribution. For
v — 00, the multivariate Student’s t-distribution becomes a multivariate Gaussian
distribution with mean p and precision matrix A [Bisl3, p. 692]. Appendix A lists
marginal and conditional densities that can be derived from Student’s t-distribution.
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2.3 Importance Sampling

In some cases, there is no convenient analytical solution of (2.1). If, for example,
there is no suitable conjugate prior for a likelihood function, or the integral in the
denominator cannot be evaluated, approximation schemes are necessary. Sampling
methods are one alternative that is especially suitable, if an exact analytical descrip-
tion of the posterior density is dispensable and the goal is rather to compute specific
properties of the posterior distribution, such as the expected value. An overview of
different sampling methods can be found in [Bis13, Chapter 11]. Here, the focus is
set on importance sampling, which forms the basis for the particle filter approaches
that are used in the subsequent chapters. The explanations closely follow [RAGO04,
pp. 36-37].

Before turning to the solution of Bayes’ theorem, the section starts with some
preliminary considerations. Suppose the goal is to compute the expected value of a
random variable with density p(x) with respect to some function f(-),

Blf(@) = [ f@)plz) da. (216)
which, for instance, corresponds to computing the mean when setting f(z) = «. If an
analytical solution of the integral is intractable, it is possible to instead draw samples

2@ from p(x) and compute the expected value using Monte Carlo integration. Then,
the integral reduces to a sum over the n, samples

Blf(o)] = - 3 7l )

which allows for a simple numerical implementation.

Now suppose that one cannot directly sample from p(z). In such cases, the technique
of importance sampling can be applied. The integral from (2.16) is rewritten as

i/ - [ f<x>§§j§q<x> da (2.18)

by introducing the proposal density ¢(x). If the proposal density satisfies [RAGO04,
p. 36]
p(x) >0=q(x) >0V zeX, (2.19)
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the expected value
1 & D\ (o (i
B[S () = —— 3 fa)i?) (2:20)
P =1

can be computed by sampling from the proposal density ¢(z) and computing the
importance weights

p(z)
q(z®)’
In cases where the density p(x) or the proposal density ¢(z) are only known up
to a normalization constant, i.e. p(x) and ¢(x), the importance weights @ (z(*) =
p(2™)/G(z) have to be normalized via [RAG04, p. 37; Bis13, p. 533]

w(z™) = (2.21)

(x®
)y — o) 299
U)(x ) Z;Lil 12}(.1'(])>7 ( . )
and the expected value is then approximated by
np
Elf(x)] ~ Y f@)w(@®). (2.23)
i=1

Note that the choice of the proposal density is of particular practical relevance in
importance sampling. Proposal densities that are close to the actual densities avoid
the generation of many samples that receive low weights and hardly contribute to
the final result.

In Bayesian inference, one’s goal is oftentimes to compute the expected value of
a latent variable’s posterior density p(x|z), e.g. to obtain the MMSE estimate (cf.
(2.3)). If the solution of (2.1) is not readily available, this density will be unknown
and—as in the previous considerations—it cannot be sampled from. Yet, (2.1) can
be solved approximately using importance sampling. The expected value of the
posterior density is

E[z|z] = /xp(m|z) dz. (2.24)

For some proposal density g(x), the importance weights can be obtained by inserting
(2.1) into (2.21)

o) — SEP)  gelopt) 025)
p(2)q(x) q(x)
and noting that omitting the constant normalizing factor p(z) = [ g(z|z)p(x) dz,

which is assumed intractable, leads to importance weights that need to be normalized.
If, for instance, the prior density p(z) is chosen as proposal density, the importance
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weights further reduce to w(z()) o g(z|z) = w(z®). Hence, an approximation of
(2.24) can be obtained by drawing samples from the prior density p(z), evaluating the
likelihood function point-wise for the samples, normalizing the importance weights
through (2.22), and computing

Elz|z] ~ Zw(x(i))x(i). (2.26)
i=1

2.4 Variational Bayes

Another alternative to solving (2.1) in cases where simple analytical solutions are not
available is the use of the variational Bayes framework. In this method, approximate
densities are obtained by maximizing lower bounds on the true densities using
calculus of variations. In the following, the basic principle of the approach is first
explained in Section 2.4.1 before Section 2.4.2 introduces the application of the
method to density estimation using Gaussian mixtures. The explanations are mostly
based on [Bis13, Chapters 9 and 10].

2.4.1 Basic Principle

So far, the previous sections dealt with inferring the posterior density of a single
latent variable x given a single measurement z, whereas variational Bayes is typically
applied to larger models with multiple latent variables. Also, multiple measurements
are typically received over several experiments. Therefore, the estimation problem is
generalized in this section. All n unknown variables of the model are combined in the
set X = {2z, ...,2(™} and the m measurements in the set Z = {21 ... 2(M}.
Again, the goal is to find the posterior distribution p(X|Z).

The cornerstone of variational Bayes is the insight, that one can construct a lower
bound on the logarithm of the model evidence p(Z), also called the log marginal
distribution,

Inp(Z) = In ( / g(x)2 E]i(X? ) dX) > / ¢(X)In (pg&f )) dxX = z(q(xz;,m

where the relationship follows from Jensen’s inequality [Jen06] for concave functions
(cf. [Bea03, p. 47]). To construct the lower bound L(¢(X)), an auxiliary density over
the latent variables ¢(X) was introduced. Note that the lower bound is a functional
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(i.e. a function of functions) as it depends on the auxiliary density. It can be shown
that the difference between the lower bound and log marginal distribution is given
by the Kullback-Leibler divergence [NH98; Bis13, pp. 450-451, p. 463]3

KL(q|lp) = */Q(X) In <pé)(()|§)> dx, (2.28)
and hence
Inp(Z) = £(g(X)) + KL(q]lp). (2.29)

The Kullback-Leibler divergence satisfies KL(g||p) > 0 and can be interpreted to
measure the similarity of two distributions. It is zero if and only if p(X|Z) = ¢(X).
Therefore, the closeness of the lower bound £(¢(X)) to the actual log marginal
distribution strongly depends on the chosen ¢(X) and it is equal to Inp(Z) if the
auxiliary density and the posterior distribution are equal.

Conversely, the closer the lower bound L£(¢(X)) is to Inp(Z), the better ¢(X)
approximates the true posterior p(X|Z). This relationship is exploited for Bayesian
inference to obtain an approximate solution for the posterior density. For this
purpose, ¢(X) is restricted to a certain family of distributions and the lower bound
L(g(X)) is maximized with respect to ¢(X). This only requires knowledge of p(X, Z)
and is equivalent to minimizing the Kullback-Leibler divergence KL(g||p). The
optimization results in the optimal solution ¢*(X) which approximates the posterior
distribution best for the chosen distribution family.

A particularly common class for the auxiliary density is that of factorized distributions.
It is assumed that the auxiliary distribution over the latent variables can be factorized
into ¢ independent and disjoint subgroups X; such that

a(X) = J [ as(X0). (2.30)

This approximation scheme is oftentimes called mean field approximation due to its
origin in mean field theory from theoretical physics [TLGO08]. The optimal solution
for ¢*(X) is then obtained by iteratively maximizing the lower bound £(g(X)) with
respect to the different factors ¢;(X;). The optimal solution for a particular factor
at a particular iteration step is [Bis13, pp. 465-466]

Ingj(X;) = Ex,,; [Inp(X, Z)] + const, (2.31)

where the expectation is computed with respect to all other variable subgroups X;;.

3In contrast to standard definitions of the Kullback Leibler divergence, the posterior density
p(X|Z) was directly inserted here for the application of variational Bayes.
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Figure 2.2: Density estimation example: Observed data generated by a
mixture of two Gaussians and resulting Student’s t-mixture
using the variational Gaussian mixture approach

2.4.2 Variational Gaussian Mixtures

One common application of variational Bayes is density estimation using Gaussian
mixtures. Density estimation is a form of model inference, where the goal is to obtain
a probabilistic model that explains the observed data Z, i.e. its distribution. Once
the model is obtained, it can be used for further analysis or to make predictions about
future data. Variational Gaussian mixtures (VGMs) have first been proposed for this
application in [Att00; Att99] and are later employed to find a vehicle measurement
model in Section 5.3.3.

Gaussian mixtures are a weighted superposition of multiple Gaussians and are a
popular tool for modeling complex distributions. They provide great flexibility
and are able to capture multi-modalities and rather complex relations, as long as
the number of components is sufficient. When applied to density estimation, it is
assumed that a Gaussian mixture model with unknown parameters generated the
observed data. Then, the goal is to find the correct parameter values for the different
components given the observed data. This can be done in a fully Bayesian approach
using variational tools. Figure 2.2 provides an illustration for a two-dimensional
example where the observed data was generated by a mixture of two Gaussian
distributions. Using VGMSs one can find a predictive density as shown in Fig. 2.2b
which explains the observed data and allows predicting future values.

The following paragraphs sketch the different steps that are needed to formulate and
solve the VGM problem. First, the probabilistic model, i.e. the Gaussian mixture
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Figure 2.3: Schematic of a one-dimensional Gaussian mixture model with ¢ =
4 components and parameters M, H, and w. The exemplary data
set Z contains m = 2 measurements whose source components
are encoded in the auxiliary variable set L.

model, is formulated. A schematic illustration of the Gaussian mixture model and
the involved variables for a simplified one-dimensional case is shown in Fig. 2.3.

Each Gaussian distribution in a Gaussian mixture with ¢ components is described by
its mean ) and its precision matrix H (]) The parameters of all components are

combined in the sets M = {u™ ... u(9} and H = {H 1y, -+ H}, respectively.
In the context of VGMs, it is assumed that each data point in the data set Z =
{z(l), ey z(m)} was generated independently by one of the ¢ components in the
mixture. This is encoded in the auxiliary variables (V) which are c-dimensional
binary 1-of-c vectors. That is, the entry corresponding to the component of origin is
1 and the remaining entries are 0. Again, the auxiliary variables of all m data points
are combined in the set L. For given mixture parameters and auxiliary variables,
the data likelihood is thus

P M H) = T[T NGO, 1)

i=1j=1

(2.32)

As the data points are assumed to be independent, the above data likelihood simply
multiplies the likelihoods of the individual data points. For each data point, the
second product selects the Gaussian component that it originated from, as encoded
in the auxiliary variable [(). That is, all factors but one will become 1 as their
auxiliary variables lj(-l) are zero.

Each component in the Gaussian mixture is assigned a mixing coefficient 0 < w; <1
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which indicates the contribution of the component to the mixture. The larger the
mixing coefficient of a component, the more measurements this component will be
responsible for. All mixing coefficients are combined in the c-dimensional vector
w and sum to one. The distribution over the auxiliary variables L depends on the
mixing coefficients and is a product of m multinomial distributions (cf. Section 2.2.2)

p(Llw) = H Mult (19 |w) = H f[ wl( ). (2.33)

i=1j=1

The two equations (2.32) and (2.33) constitute the underlying Gaussian mixture
model and specify how measurements are created from the mixture if the parameters
of the model, i.e. the mean vectors M, the precision matrices H, and the mixing
coefficients w, are known. Note that the use of the auxiliary latent variables L makes
the associations of measurements to their source component explicit and splits the
model into two parts: One part, (2.33), for modeling which components created the
respective measurements and another part, (2.32), for modeling which values they
take, given the components of origin and their parameters.*

As stated before, density estimation using VGMs assumes that the observed data
was generated by the above model. Yet, the parameters M, H, and w as well as
the auxiliary variables L are unknown. To be able to compute their estimates in
a Bayesian fashion, conjugate prior distributions are defined for each of them. In
particular, the prior distribution over the mixing coefficients is chosen as the Dirichlet
distribution

p(w) = Dir(w|po) = C(po) Hw : (2.35)

Here, the parameter pg is a scalar as the same value is used for all mixing coefficients.
The prior over the mean and precision matrices is

p(M, H) = p(M|H)p HN Do, By " H)WH |V, o) (2:36)
Jj=1
and thus consists of an independent Gaussian-Wishart distribution for each com-

ponent with parameters 7o, Bo, V5, and vy. Together with the parameter of the
Dirichlet prior pg they form the hyperparameters of the model.

4The classical formulation of a Gaussian mixture as a sum of weighted Gaussian distributions can
be obtained from (2.32) and (2.33) by marginalizing over the auxiliary variables L. This yields

m

p(Z|w, M, H) = Zp Z|L, M, H)p(L|w) = sz NED |, 1. (2.34)

L =1 j=1



2.4 Variational Bayes 19

Now, the variational Bayes technique is used to determine an approximate posterior
distribution ¢*(L,w, M, H) ~ p(L,w, M, H|Z) over the unknown parameters and
auxiliary variables given the observed data. As a first step, the joint density over
the unknown variables and the observed data, which is necessary for computing
the lower bound from (2.27), is established. It is obtained by combining the data
likelihood from (2.32), the distribution over the auxiliary variables (2.33), and the
prior densities from (2.35) and (2.36), which yields

p(Z, L, w, M, H) = p(Z|L, M, H)p(L|w)p(w)p(M|H)p(H). (2.37)

For maximizing the lower bound via the mean field approximation and (2.31), the
form of the auxiliary density ¢(L,w, M, H) needs to be specified. It is factorized into

q(Lyw,M,H) = q(L)q(w, M, H). (2.38)

The above factorization is a design choice that turns out to yield convenient ana-
lytical optimization terms. The optimal solutions are then computed by iteratively
maximizing the lower bound with respect to ¢(L) and g(w, M, H) until a convergence
criterion is reached. The structure of the resulting optimal auxiliary density which
approximates the true posterior p(L,w, M, H|Z) is

q"(L,w, M, H) = q*(L)q*(w)q*(M|H)q*(H)7 (2'39)

where the different factors are again of the same form as the distributions from (2.33),
(2.35), and (2.36). That is, the optimal density over the auxiliary variables ¢*(L)
is a product of multinomial distributions and the optimal density over the mixing
coefficients ¢*(w) is a Dirichlet distribution with updated hyperparameter vector
elements p;. For each component of the Gaussian mixture, the optimal density over
the mean vector and precision matrix is a Gaussian-Wishart density with updated
hyperparameters f;, V), and v;. In contrast to the prior hyperparameters, the
updated hyperparameters are different for each component and depend on the data
that the component explains. For the sake of completeness, the optimal densities
and equations of the updated parameters are presented in Appendix B.

In summary, the above procedure yields posterior distributions over the mixing
coefficients of the mixture model, over the precision matrix and mean vector of each

component, and over the auxiliary variables which indicate the source component of
each measurement. This information can then be used to derive a predictive density

p(2|2) = (Il M, H)p(llw)q* (w)g* (M|H)q" (H) dwdM dH,  (2.40)
3l

which reveals where a new measurement Z will most likely occur given the previously
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observed data. It is obtained by first combining the mixture model equations
(2.32) and (2.33) for the new measurement % with its single auxiliary variable [
and the posterior densities of the model parameters from (2.39) to a joint density
and marginalizing over the parameters and the auxiliary variable. The resulting
predictive density is the multivariate Student’s t-mixture [Bis13, pp. 482-483]

p(212) = z ZpJSt D, Ay vy +1 - ns), (2.41)
7j=1 ]

where n; denotes the dimension of Z and

(v +1—nz)B;
Agy = j?ﬁj]z(j)- (2.42)

Interestingly, the predictive density from (2.41) is not a Gaussian mixture any more.
This is due to the uncertainty in the model parameters that is captured by their
posterior densities and is integrated in the predictive density. If one would instead
extract MMSE estimates for the parameters from their posterior densities, neglect
the uncertainty, and directly insert the estimates into the mixture model, one would
end up with an approximate predictive density that is again in Gaussian mixture
form.

An illustration of a predictive density is shown for the two-dimensional introductory
example in Fig. 2.2b. Here, the number of mixture components ¢ was set to five. In
the resulting Student’s t-mixture, however, only two components received relevant
weights and contribute significantly to the result. Hence, the VGMs approach was
able to identify the correct number of mixtures elements in the data-generating
Gaussian mixture.



Chapter 3

Fundamentals of Object Tracking

Tracking is defined as the estimation of a moving object’s state using extraneous
or remote measurements [BLKO1, p. 2]. The specification of the measurements
being extraneous, i.e. from a sensor that is not mounted on the moving object itself,
helps to distinguish tracking from ego-motion estimation using on-board sensors.
While the definition does not restrict tracking to a certain technique, the probably
most widely used methods are based on the Bayesian principle. In contrast to the
inference methods from Chapter 2, however, Bayesian tracking is tailored to a more
specific application. That is, the latent variables usually correspond to the state
of an object, which for instance describes the pose and motion. Furthermore, the
process is run iteratively to account for steadily arriving measurements, and an
additional step that accounts for the object’s motion is included.

Depending on the number of objects that are tracked, tracking is oftentimes catego-
rized into single object or multi-object tracking. Alternatively, tracking algorithms
can also be distinguished with respect to the number of measurements that are
received from the objects. As mentioned in the introduction, most traditional ap-
proaches assume that each object generates a single measurement per time step,
whereas extended object tracking allows for objects to give rise to multiple measure-
ments. Merged measurements constitute another special case in which the sensor
resolution is so low that multiple objects only give rise to a single measurement.
This case, however, is not considered in this thesis. In general, the complexity
of the tracking problem grows with the number of possible events and outcomes.
Besides having to estimate the state of multiple objects, for example, multi-object
tracking has to find out how many objects are present. Also, different possible
associations between measurements and objects need to be considered, which is even
more complicated in the extended object case.

This chapter provides the necessary tracking preliminaries for this thesis and an
overview of existing approaches. It is intended to provide a basic understanding of
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relevant concepts but does not assess the different concepts. The motivation for the
chosen methods and developments of this work is later discussed in Chapter 4 with
respect to the particular application of vehicle tracking.

Section 3.1 starts by introducing the basic formulation for the single-object case
and the particle filter as a specific tracking method. Section 3.2 then extends the
problem to the multi-object case and Section 3.3 presents multi-object tracking based
on finite set statistics (FISST). Section 3.4 focuses on measurement models and
algorithms for extended object tracking. Lastly, Section 3.5 presents an overview of
tracking architectures for fusing measurements from multiple sensors.

3.1 Single Object Tracking

In the simplest case, the tracking problem consists of a single object which gives rise
to exactly one measurement at each time step. This section starts by first presenting
the Bayesian foundations and a brief overview of popular solutions before detailing
particle filters approaches in Sections 3.1.2 and 3.1.3.

3.1.1 Problem Formulation

The goal is to recursively provide estimates of a moving object’s state x € X based
on cyclic measurements z from a sensor. Whereas x referred to arbitrary latent
variables in Chapter 2, it is confined to denoting the state of an object in the tracking
context. This is due to the commonly used state space representation of the object
model and the fact that the variables of interest are quantities from the object’s
state, e.g. its position, speed, or orientation. Analogously, X is referred to as the
state space. The discrete-time system model is given by

T = fn(Th—1, At €1 1-1) (3.1)

and
2 = hn (T, €nk), (3.2)

for some initial value xg and with & € N denoting the time index from the natural
numbers N. Note that the time instants represented by the different k& correspond
to the arrivals of new measurements and are not necessarily spaced equally in
time. Therefore, difference between two consecutive time instants is encoded in At.
Equation (3.1) is the object model and describes the object’s behavior over time
using the transition function f,,(-), where the subscript m is used for differentiation
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from other functions. In contrast, the measurement model (3.2) relates the object
state zj to the current measurement z; through the measurement function h,,(-).
The arguments €y 31 and €, model process and measurement noise sequences.
While f,,(-) depends on the time difference, hy,(-) is assumed to be independent of
the time throughout this thesis. Under the assumption of uncorrelated noise, (3.1)
is a Markov process where the state from time step k only depends on the state and
process noise from step £ — 1 and not on other previous states or noise values.

To obtain estimates of the object state recursively, the problem is cast in a Bayesian
inference problem with two steps. The prediction step

p(Tk|z1:6-1) =/f($k|$k—1)p($k—1|z1:k—1)dxk—1 (3.3)

computes the prior state density p(x|z1:.x—1) based on the posterior density of the
previous step p(xg_1|z1:x—1) and the transition density f(xp|zr—1). The notation
z1:k—1 implies that the prior for the state zj incorporates the information from all
previous measurements, i.e. from step 1 to & — 1. The transition density models the
change of the object state over time and results from the deterministic and stochastic
portion of (3.1). Equation (3.3) is also referred to as the Chapman-Kolmogorov
equation. In the update step, the posterior density of the object state xj is computed
using Bayes’ theorem

 g(zlzr)p(Tr]21k-1)
plaslar) = J 9Czrlzr)p(ae]z1:0—1) oy (34)

Here, the likelihood function g(zx|zk) is a density obtained from (3.2). To be able to
apply (3.3) and (3.4) iteratively, the filter is initialized with an initial density p(zo).

As in Chapter 2, the Bayes update is not analytically solvable in the general case.
This additionally holds for the prediction step in (3.3) which also involves an integral
over the previous posterior and the transition density. Thus, the state density needs
to be a conjugate prior to the likelihood function and closed under the Chapman-
Kolmogorov equation, if an analytical solution is desired. The Kalman filter [Kal60;
BLKO1, Section 5.2; RAGO04, pp. 7-9] provides such a solution in the case of linear
transition and measurement functions with zero-mean white Gaussian noise. It
assumes that the initial state follows a Gaussian distribution and exploits that linear
transformations of Gaussian distributions again result in Gaussian distributions as
well as the conjugacy of Gaussian priors to Gaussian likelihood functions.

Yet, the assumptions made for deriving the Kalman filter do not hold for nonlinear
systems or non-Gaussian process or measurement noise. Therefore, approximate
solutions have been derived for such cases. The extended Kalman filter (EKF)
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[BLKO1, pp. 381-387], for example, linearizes the transition and measurement
equations to be able to apply the linear Kalman filter routine. Both process and
measurement noise are assumed to be additive white Gaussian noise. In contrast,
the unscented Kalman filter (UKF) [JU97; Wv00] conducts an approximation of
the resulting densities through sigma points instead of approximating the system
model. Thus, the computation of Jacobians for linearization is avoided and noise
that enters the system equations nonlinearly can be considered. Still, it is necessary
that process and measurement noise are sufficiently described by their central second
order moment, i.e. their covariance matrix.

3.1.2 Particle Filter

Particle filters provide another approach to nonlinear tracking problems based on
importance sampling methods (cf. Section 2.3). In contrast to the Kalman filter
and its derivatives, particle filters do not make assumptions about the nature of
the process and measurement noise or linearity of the system model. Thus, they
work for systems with strong nonlinearities or multi-modal noise. This is, however,
achieved at the expense of a typically increased computational burden due to the
involved sampling procedures.

The particle filtering technique uses sequential importance sampling which is an
extension of importance sampling. That is, the posterior density is approximated
by a set of n, particles which are assigned weights. It can be shown [RAGO04, pp.
38-39] that the particles approximate the true posterior by iteratively updating the
particle weights according to

@ )g<zum,ﬁ“>f<x?|x;?1>

w(zy) o w(zy? : (3.5)

gz |2 | 2)

where q(a:?”acﬁﬁl,zk) is again the proposal density from which the particles are
sampled and which may be conditioned on the last state and the current measurement.
The approximate posterior is then

np

p(zg|z1:8) = Zw(xfﬁ)& (mk - xé”) , (3.6)

i=1

with &(-) denoting the Kronecker delta.

While there are many different particle filter variants [RAGO04, Section 3.5], the most
common version is the sequential importance resampling (SIR) filter [GSS93; RAG04,
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pp. 48-49; AMGCO02]. It uses the transitional density f(m,gi)|x,gill) as proposal
density and proceeds in the following steps:
1. Draw samples xg) from the proposal density f (xg)|x§;ll) by applying the
transition function to the particles from the previous posterior.

2. Compute the particle weights by evaluating the likelihood function

w(zl) o g(zila) (3.7)

and normalize them using (2.22) to obtain the approximate posterior (3.6).

3. Resample the particles by drawing a new set of particles from (3.6) such that
the probability of drawing a particular particle is w(ml(;)). Subsequently, set
the new weights to w(x,(;)) =1/n,.

The resampling step helps to avoid the degeneracy problem which occurs if the
number of particles with significant weight reduces over time until all but one particle
have zero weights. This effect is unavoidable for particle weights in the form of
(3.5); see [DGAOQ] for a theoretical explanation. By drawing new particles at each
time step, particles with insignificant weight are pruned from the distribution and
highly weighted particles are reproduced. In this thesis, the strategy of systematic
resampling [RAGO4, p. 42] is used.

As resampling always introduces a certain loss of information, the classical SIR
scheme can be adapted such that resampling is only conducted if the estimate of the
effective sample size [RAGO04, p. 40]

o = —————— (3.8)

falls below a certain threshold. In case the resampling step is not executed, the
subsequent computation of the particle weights has to be modified to w(x,(;)) x

w(@® Ng(ze]zl).

3.1.3 Rao-Blackwellized Particle Filter

The number of particles is a crucial factor for the computational demands of particle
filters. It has been reported that the required number of particles depends on
the dimension of the state space as well as other factors, see [RAGO04, pp. 58-59;
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DdAMR00; DHO03; GSS93], and computations may become rather involved for large
systems. Rao-Blackwellized particle filters (RBPFs) [DAMR00; DGAOQ0] alleviate
this issue by reducing the space that is sampled from through marginalization of
analytically solvable substructures. For this purpose, the state vector is split into
two parts z, = [#T,,21,]T and it is assumed that the posterior density can be
written in the form ’

P(@1 ks Tok]21:8) = (22,1 |T1 1, 21:0)P(T1 8] 21:8) s (3.9)

i.e. that one is able to find suitable models for such a factorization. Under the
assumption that computing the posterior density p(zak|T1,k, 21:1) Is analytically
tractable, e.g. for a linear Gaussian or discrete substructure of x5y, only the
distribution of x;  is approximated by samples. This yields

p
Pl wanloie) & Y w(@l))s (:vl,k — wg%) pi(@arlat’), 21). (3.10)
=1

Intuitively, each particle represents a particular realization of 1 and holds an ana-
lytical density over 3 j conditioned on its value x1 ;. The densities p; (xg,k|xﬁ€, 21:k)
are then analytically updated for each particle while the particle weights are uiodated
using the classical importance sampling scheme. Here, the subscript i has been
introduced for the analytical densities to emphasize that the densities are distinct
for each particle. For the proposal density p(x; k|z1,5—1), the particle weights are

w(xgz;) o g(zk\xgz)k) = /g(zﬂxﬁ%,xg,k)pi(x27k|mgf3§,zl;k,l) dzg . (3.11)

That is, they are determined by marginalizing the uncertainty in g .

3.2 Overview of Multi-Object Tracking

In multi-object tracking, the problem from the previous section is extended by
assuming the presence of not only one but multiple objects. Therefore, multi-object
tracking approaches need to solve the far more complex problem of estimating the
state of multiple objects as well as their number given a set of measurements. There
may be misdetections and measurements may either originate from the objects or be
clutter measurements that are caused by other irrelevant objects or by sensor noise.
Moreover, the number of objects may vary as objects enter or leave the sensor field of
view (FOV) and objects may influence each other or their measurement generation
process, e.g. in case of occlusion.
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One of the greatest underlying challenges is measurement-to-object association,
i.e. determining which object is updated with which measurement and which
measurements are considered clutter. The simplest solutions is to combine multiple
single object filters and to include a greedy nearest neighbor (NN) association step,
which assigns the closest measurement to each object. Yet, this method has, for
example, been reported to fail in cases where objects are so close to each other
(see e.g. [FBS83]) that a measurement is assigned to multiple objects or that
there is considerable ambiguity in the correct association decision. Hence, different
approaches for rigorously solving the multi-object problem have been developed in
the literature. The following paragraphs provide a brief outline of two widespread
approaches to multi-object tracking, namely joint probabilistic data association
(JPDA) and multiple hypotheses tracking (MHT). The third approach, which is
based on FISST and is used in this thesis, is presented in more detail in the following
section. A more comprehensive overview of multi-object tracking can be found in
[VMB*15].

Probabilistic data association (PDA) was first used for tracking a single target in
the presence of multiple measurements, i.e. one object measurement and additional
clutter measurements, in [BT75]. As the correct association is unknown, association
probabilities are computed and a weighted update using all measurements is con-
ducted. The likelier an association, the greater is the influence of the corresponding
measurement during update. The JPDA filter [FBS83] is an extension of the PDA
approach to multi-object tracking. It computes the association probabilities jointly
for all present targets while assuming that each measurement may only be assigned
to one object or to clutter. In the JPDA filter, the object number is assumed to be
known [VMB*15] which implies that all tracked objects exits. The joint integrated
probabilistic data association (JIPDA) filter [ME02; MEO04] additionally incorporates
an existence probability for each object which serves as a quality measure and can
be used for principled track management.

In contrast, MHT approaches construct different association hypotheses which are
then evaluated individually instead of using a weighted update. This results in
different object hypotheses that represent variants of how the trajectory may have
evolved. These hypotheses are propagated over several time steps which allows
for resolving uncertainty in previous situations as soon as new measurements are
able to provide the missing information. This leads to a deferred decision logic
[Bla04]. To avoid combinatorial explosion, MHT approaches typically use pruning of
insignificant hypotheses or gating and clustering to only construct necessary and
meaningful hypotheses. While ideas of association chains with different branches
date back to [Sit64] and the propagation of multiple hypotheses in combination with
suboptimal variants have been investigated in [SSH74], [Rei79] is considered the first
full systematic MHT approach. An extensive overview of different formulations and
variants of MHT is presented in [Bla04].
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3.3 Multi-Object Tracking Using Finite Set
Statistics

JPDA and MHT methods have been used for several decades and essentially try to
find solutions to the association problem which are then combined with classical
single-object tracking techniques for each object. In contrast, multi-object tracking
based on FISST is a rather recent approach which provides a fundamental formulation
of the multi-object tracking problem in a Bayesian sense. From this formulation,
different multi-object tracking algorithms can be derived. This section presents
FISST preliminaries and tracking algorithms necessary for understanding this thesis.
Concise tutorials on the topic can be found in [Mah04; Mah13] and for extensive
details, refer to [Mah07a; Mah14].

3.3.1 Multi-Object Bayes Filter

In FISST-based multi-object tracking, the multi-object state is described by the
random finite set (RFS) X = {z(M) ... 2(XD} with the elements representing the
object states. An RFS is a set-valued random variable and its realizations may be
any finite subset of the state space X or the empty set (). That is, all elements are
from X and the number of elements in the set, its cardinality |X|, may be 0 or
any positive integer. Note that in contrast to the sets of random variables from
Section 2.4, which were a collection of a fixed number of random vectors, the number
of elements in an RFS is also a random variable. Therefore, this representation allows
capturing both the uncertainty in the object states as well as in the number of objects.
Likewise, the measurements at each time step are combined in the measurement set
Z ={zM, ..., 202D} which is again an RFS that may take the value of any finite
subset (including () of the measurement space Z. Thus, the variation in the number
of measurements at each time step can be captured.

As in single object tracking, the goal is to recursively compute the posterior dis-
tribution over X given all measurement sets Z;.; that have been received so far.
Similarly to (3.3) and (3.4), the multi-object Bayes filter [Mah07a, Chapter 14]
proceeds in two steps. In the prediction step, the prior density

M4l Zit) = [ A )m (K| Zuao)0 X (3.12)
is determined using the multi-object transition density f(Xj|Xx—1) and the posterior

multi-object density from time step k — 1, m(Xx—1|Z1:,—1). The new measurements
Zy, are then incorporated through the multi-object likelihood function g(Zx|X) in
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the update step. This yields the posterior multi-object density

9 Ze| Xi)m (X k| Z1:k-1)
(X | Zrk) = fg(Zklka;w(Xklkzlzk:)éXk' (3.13)

Despite the close resemblance to the single object Bayes filter from Section 3.1.1,
(3.12) and (3.13) exhibit considerable differences:

1. The involved densities are densities over set-valued random variables and not
random vectors.

2. The integrals are set integrals which are indicated by the differential operator
0 and defined in the following section.

3. In contrast to the transition density in (3.3), which only models the evolution
of the state, the multi-object transition density f(X|Xr—_1) may also govern
the evolution of the number of objects, e.g. through object appearance or
disappearance. It may also model dependencies among the present objects.

4. The multi-object likelihood function g(Zx|X ) describes the entire measurement
generation process which can, for example, include misdetections or clutter
measurements.

3.3.2 Multi-Object Distributions

As for standard random variables, there are different distributions that can be used
to model the probabilistic characteristics of an RFS. This section first presents some
basic properties of multi-object densities and then presents four common types.

A multi-object density 7(X) = 7({z1), ..., 2(XD}) captures both the uncertainty
in the values of the set elements as well as their number. Note that the argument
of the density is a set. Alternatively, multi-object densities can also be written in
vector notation

1 (1 axn isti (@
(@@, 21Xy |X|!7r({x oot for dlst.mct x, (3.14)
0, otherwise.

The difference in both notations lies in the factorial. It arises because sets are
unordered and there are |X|! different possibilities to obtain ordered vectors from
the set.
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Set integrals of multi-object densities as used in (3.12) and (3.13) are defined as
[Mah07a, p. 361]

=1 , ,
/W(X)(SX: E 5/%({:5(1),...7x(z)})dx(1)...dx(z)
i=0

X*

=7(0)+ Z 77(33(1), . ,x(i)) dz™ ... dz®. (3.15)
i=1g,

As in standard probability theory, the set integral of a multi-object density has to
equal one when integrating over the entire sample space [Mah07a, p. 362].

The cardinality distribution, i.e. the distribution over the number of elements in a
set, is obtained by integrating over the state space [Mah07a, p. 363],

1

)= = /W({x(l), DYy dz® el X (3.16)

p(|X

In FISST, the first-order moment of a multi-object density is called the probability
hypothesis density (PHD). It is an intensity function over the state space which
measures how many objects are present in a particular area of the state space and
integrates to the expected number of objects in that area. As PHDs do not play a
central role in this thesis, the reader is referred to [MahO7a, pp. 568-569] for more
information.

Bernoulli RFS

A Bernoulli RFS X is one of the simplest multi-object densities as it only takes two
cardinality values. With probability r, the set either contains one element, whose
state is distributed according to some density p(x), or it is empty with probability
1 — r. The multi-object density is thus [Mah14, pp. 100-101]

1—r, iftX=0
(X)=1< r-plx), HX=A{z} . (3.17)
0, if | X]>2

The cardinality distribution is p(|X| =0) =1—r and p(|X|=1) =r.
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Multi-Bernoulli RFS

The previous concept can be extended to RFSs with multiple elements by form-
ing a union of multiple Bernoulli RFSs. This yields a combined parameter set
{(r®,p(2))}1<i<. which specifies each of the ¢ components’ existence probability
7 and density p*)(z). The corresponding multi-object density for | X| < ¢ is (cf.
[Mah14, p. 102])

()= ] (177’(1‘)) 11 (r@)p(i)(:c(e(f)))), (3.18)

0€0 0(i)=0 6(i)>0
where the summation is over all possible association mappings 0 : {1,...,¢} —
{0,...,]|X]|} from the association space ©. The association mappings assign each

Bernoulli component to either one element of the set | X| or to the event of being
empty which is encoded by the value 0. The association mappings are due to the
uncertainty in which component gave rise to which set element and construct different
hypotheses. To ensure that only one component is assigned to an element of X,
it is postulated that 6(i) = 6(j) implies ¢ = j. The cardinality distribution of a
multi-Bernoulli RFS is a Poisson binomial distribution [Wan93]. It is unimodal and

its mean is E[|X|] = 37, @)

Independent Identically Distributed RFS

In contrast to multi-Bernoulli RFSs, independent identically distributed RFS are
more flexible in the cardinality distribution but more restrictive in the distribution
of the element values. In particular, they suppose that the cardinality follows some
arbitrary cardinality distribution p(|X|) and that all elements are independent and
identically distributed (i.i.d.) according to some common density p(z)—hence the
name. The multi-object density is given by [Mah14, p. 100]

w(X) = [X|'p(IX]) ] ple) = IX]! p( XD (3.19)
rzeX

The second equality introduces the multi-object exponential notation

RO 2 ] ), O] =1, (3.20)

zeX

which is a short notation for products of real-valued functions h(-) applied to all
elements of a set.
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Poisson RFS

A Poisson RFS is a special form of an independent identically distributed RFS and
uses a Poisson distribution for the cardinality. Inserting the Poisson distribution
into (3.19) yields [MahQ7a, p. 366]

T(X) = e ()], (3.21)

where Ap(-) is also referred to a as the intensity function.

3.3.3 Labeled Multi-Object Distributions

In tracking applications, one is not only interested in obtaining an estimate of the
objects and their states at the current time but also in the trajectories of the objects
over time. Hence, the notion of object identity which allows to link estimates over
multiple time steps becomes relevant. So far, however, the presented RFSs were
defined on the state space X. Thus, the set elements typically comprise kinematic
states such as position or speed and do not provide a means of identification. In
particular, the RFS elements are unordered and therefore, identity cannot be assigned
from a particular position in the set. Yet, element identity can be introduced by
augmenting the object states with an additional label state.

This concept has been rigorously formulated in [VV13] and was termed labeled RFSs.
A labeled RFS X = {z(),... (XD} is an RFS defined on X x L which contains
labeled states & = [#7,£]T € X x L. Note that labeled quantities and their densities
are notationally distinguished from unlabeled RF'Ss, states, and densities by using
bold letters. The labels ¢ € L are taken from the label space IL which is a collection
of distinct positive integers. The set of labels occurring in a labeled RFS can be
retrieved by using the projection function

LX)={¢|[z", 0" € X}, (3.22)

which iterates over all labeled states in the set and extracts their labels. An additional
requirement for a a labeled RFSs is that its labels be distinct. This requirement
ensures unique identities and can be mathematically expressed using the distinct
label indicator

A(X) = 5(1£(X)| - X)) (3.23)

which is one if and only if the number of labels equals the number of RFS elements!.

1This notation uses the fact that sets only contain distinct elements and that the cardinality of a
set does not count multiple occurrences of a particular element.
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Figure 3.1: Schematic illustration of an LMB distribution

As the elements of labeled RFSs contain discrete labels, the set integral over a labeled
RFS is [VV13]

/ X)6X = Z > / {zD, .. DY) de® . dz®.  (3.24)

=0 [é(l) LG )]e]LLX,

Having defined labeled RFSs, two particular labeled multi-object distributions are
presented in the following. They have been proposed in [VV13] and have proven to
be useful for multi-object tracking with object identities.

Labeled Multi-Bernoulli Distribution

A labeled multi-Bernoulli (LMB) distribution [VV13] is the extension of a multi-
Bernoulli distribution to labeled RFSs. Again, the parameter set of the distribution
{(r®, p®(2))}seL contains the existence probability 7() and state density p)(z) of
each component and the components are independent of each other. This formulation
equates the Bernoulli component identity with the label and it is assumed that if
component ¢ gives rise to an element (i.e. it is not empty), the label of the element is
£. Tt also implies that the label space L defines the number of components that are
present in the LMB distribution. A schematic illustration of an LMB distribution
is shown in Fig. 3.1. It illustrates the distribution as a collection of independent
pairs of state densities and existence probabilities which are depicted by ellipses and
gauges, respectively.

The multi-object density is

™ (X) = AX)w(L(X)p()]* (3.25)
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with L (0®
- T
w(l) =[] (1 - r@)) I1 1L(_7)7~<e> (3.26)
i€L tel

Here, the identity p(x,¢) = p'¥) (x) was used and the inclusion function 1,(¢) which
is equal to 1 if and only if £ € IL is used to assign zero probability to labeled RFSs
with nonexistent labels. Equation (3.25) still resembles the multi-Bernoulli density
from (3.18). It does, however, differ in the additional elements for ensuring distinct
and valid labels. Also, it avoids association mappings as the association between
the Bernoulli components and set elements is implicitly given by the labels. The
compact notation furthermore separates the densities over the element values from
the weight w(L£(X)) which computes the probability that all elements in X exist.
As the labels do not affect the cardinality distribution, it is a unimodal Poisson
binomial distribution as for multi-Bernoulli distributions.

One of the major limitations of LMB distributions is that the Bernoulli components
are assumed independent and dependence among objects can thus not be modeled.
For example, statements such as “either both objects are present or none” cannot be
accurately represented as they would require a multi-modal cardinality distribution.

Generalized Labeled Multi-Bernoulli Distribution

Generalized labeled multi-Bernoulli (GLMB) distributions [VV13] overcome the
limitations of LMB distributions and provide more flexibility. Their multi-object
density is

7 (X) = AX) Y w9 (X)) [p00)] (3.27)

ceC

where the weights have to satisfy

S w1 =1. (3.28)

ICL ceC

There are two major differences to LMB distributions: First, the weights are not
as strictly defined as in an LMB distribution and not limited to a multiplication of
independent components. Secondly, the density allows for multiple realizations c
from the space of possible realizations C.

Since the definition of the GLMB distribution is rather abstract and difficult to
imagine, Fig. 3.2 illustrates the special case of a GLMB distribution with two
components and only one realization c¢. The distribution holds the state densities of
the two components and the weights for all possible label combinations, i.e. w({0}),
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Figure 3.2: Illustration of a GLMB distribution with two objects and one
realization

w({1}, w({2}), and w({1,2}). These weights indicate how likely the particular
combinations of objects are and may be chosen arbitrarily as long as (3.28) is
satisfied. Intuitively, such a GLMB distribution can thus be interpreted as a
collection of weighted multi-object state hypotheses that define which objects are
present and which are not. In contrast to the LMB distribution, the freedom in
choosing the weights allows capturing object dependence and, for instance, to model
the multi-modal example of either both or no object being present.

By introducing multiple realizations, the GLMB definition permits the inclusion of
additional multi-object hypothesis variants with distinct weights and state densities.
These variants allow including several outcomes with respect to some discrete event
c. In Fig. 3.2, adding different realizations to the distribution would add new
rows of hypotheses that are indexed by different values for ¢ and in which state
densities and weights differ. For example, realizations can be used to model different
association possibilities which lead to different posterior state densities and weights.
The relationship is then indicated by indexing the weights and densities with the
association mapping.

d-generalized labeled multi-Bernoulli (6-GLMB) distributions [VV13] are a special
case of GLMB distributions which specify particular forms for the realizations and
weights that are useful for emphasizing association variants and efficient ways for
implementation. In this work, however, the derivations use the general notation of
GLMB distributions and the reader is hence referred to [VV13] for more information.

Conversion Between LMB and GLMB Distributions

An LMB distribution constitutes a special case of a GLMB distribution with a single
realization and weights as defined by (3.26). Consequently, an LMB distribution can
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be transformed to the representation of Fig. 3.2 by enumerating all possible label
combinations I and computing the weights w(I) through (3.26).

Due to the ability of GLMB distributions to represent more complex constellations
with object dependencies, however, a direct conversion from a GLMB distribution to
an LMB distribution is not possible in the general case. Instead, an approximation
scheme is necessary. Such a scheme was proposed for the special case of §-GLMB
distributions in [RVVD14; Reul4, pp. 95-97] and used for GLMB distributions in
[BRGT16]. It preserves the first-order moment, i.e. the PHD, and involves computing
the existence probability of each object

r =33 "w ()1, (o) (3.29)

ICL ceC

by summing the weights of all components that contain object . Additionally, the
state densities are obtained as the mixture distribution

P (x r(@ 3wl W' (z, 0). (3.30)

ICL ceC

Since the resulting LMB distribution with parameters from (3.29) and (3.30) assumes
independent objects, this approximation leads to a loss of information about object
dependencies. See [Reuld, pp. 97-100] for a detailed discussion.

3.3.4 Multi-Object Filters for Tracking

Just as the standard Bayes filter from Section 3.1.1, the multi-object Bayes filter
from (3.12) and (3.13) is in most cases computationally intractable. This is again due
to the integrals that have to be evaluated and further complicated by the fact that
the integrals are now computed over sets. Therefore, several tractable multi-object
filters that are approximate or based on simplifying assumptions have been proposed.
Before giving a short overview of existing filters, the standard multi-object transition
model and multi-object likelihood function, which form the basis for most of these
multi-object filters, are presented.

Standard Multi-Object Transition Model

The full standard multi-object transition model as defined in [Mah07a, pp. 472-
473] considers four different cases of object behavior: object appearance, object
disappearance, object motion, and object spawning. The latter case is a special form
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Figure 3.3: Three cases handled by the standard multi-object transition
model: survival and motion, disappearance, and appearance (cf.
[MahO07a, p. 478])
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of object appearance. It is used for cases where new objects emerge from an existing
object and allows conditioning the number of spawned objects and their state on
the parent object. This is oftentimes of interest in military applications where, for
example, missiles emerge from fighter jets. Since such cases are not of interest for
the applications considered in this thesis, the case of spawning is neglected.

The remaining three cases are illustrated in Fig. 3.3 and are based on the following
assumptions:

1. An existing object x;_1 may survive to the next time step k with the persistence
probability? ps(zr_1). It may disappear with complementary probability

gs(xp—1) =1 — pg(zr—_1).

2. If an object survives, its state evolves according to the single object transition
density fi(zr|xg—1).

3. New objects appear according to some birth density wp(X).

4. All objects move, appear, or disappear independently.

2Note that pg (zr—1) is not a density over z;_1 but a function of xx_; that specifies the probability
of survival.
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Figure 3.4: Three cases handled by the standard multi-object likelihood:
detection, misdetection, and clutter (cf. [Mah07a, p. 409])

Standard Multi-Object Likelihood

The standard multi-object likelihood [MahQ7a, pp. 420-421], cf. Fig. 3.4, is similar in
its structure and considers three cases: object detection, misdetections, and clutter.
The underlying assumptions are

1. An object may be detected by the sensor with the detection probability?3
pp(zy) or it is not detected (misdetection) with complementary probability

qp(rx) =1 —pp(x).

2. If detected, the object gives rise to one measurement z; which follows the
single object likelihood function g(zg|xy).

3. The measurement set Z is a union of object and clutter measurements and
the clutter measurements follow a Poisson RFS go(-) with intensity function
k(zk) = Aepc(zr). That is, the expected number of clutter measurements is
Ac and they are i.i.d. according to the clutter density pc(z).

4. Each object measurement is generated by a single object only and the object
measurements as well as clutter measurements are (conditionally) independent.

3 Again, the detection probability pp (zr) is a function of the state that outputs a probability
value and not a density.
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Overview of Multi-Object Filter Variants

As in standard Bayesian inference and single-object tracking, there are different
strategies for finding tractable solutions to the multi-object Bayes filter. The
following paragraphs provide a brief overview of different approaches. A more
detailed comparison including a table summarizing the different characteristics is
given in [Reuld, Appendix C].

PHD filters [Mah03], for example, only propagate the PHD of the multi-object
distribution. This moment approximation avoids the computation of complex set
integrals but there is no information about track identities and the cardinality
estimates are unstable. Cardinalized probability hypothesis density (CPHD) filters
[Mah07b] are an extension to PHD filters and try to overcome this limitation by
additionally propagating the cardinality distribution.

An alternative is to apply sampling-based methods and to approximate the multi-
object posterior by particles as proposed in [VSD03; VSDO05]. In contrast to classical
particle filters, the particles represent the full multi-object state and may thus have
different dimensionality. While such sampling approaches allow for more complicated
transition and likelihood models, the high-dimensional spaces require a large number
of particles which may lead to practical performance problems [VSD05]. A real-time
capable implementation based on a simplified multi-object likelihood function has
been presented in [RWWT13].

In contrast to the moment approximation and sampling-based approach, other filters
choose a particular type of multi-object distribution and propagate their parameters.
This is for example done in the cardinality-balanced multi-target multi-Bernoulli
(CBMeMBer) filter [VVC09] which models the multi-object distribution as a multi-
Bernoulli distribution. Yet, the multi-Bernoulli distribution is not a conjugate
prior to the standard multi-object likelihood function and an approximation step is
necessary to again obtain a posterior density in multi-Bernoulli form.

The concept of using a particular form for the multi-object distribution has also
been transferred to labeled RFSs in [VV13]. The presented equations for the GLMB
and 6-GLMB filters* explicitly consider object identity. Also, they make use of
GLMB-type distributions being closed under the standard multi-object transition
(i.e. the resulting density is again in GLMB form) and that they are a conjugate
prior to the standard multi-object likelihood function (again in terms of the resulting
posterior density being of the same form). Thus, these filters are able to propagate
the full multi-object distribution and do, in contrast to the CBMeMBer filter, not

4Note that the GLMB and §-GLMB filters are conceptually identical but differ in the used notation.
The 0-GLMB formulation accentuates an efficient implementation.
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include an approximation step during update. Yet, a major drawback of the GLMB
and J-GLMB filters is that the number of components in the multi-object distribution
increases exponentially over time (cf. [RVVD14; VV13]). The LMB filter [RVVD14]
diminishes this issue by combining the ideas from the CBMeMBer and GLMB-type
filters. It uses an LMB distribution, which provides the notion of object identity
and is closed under the standard multi-object transition, for modeling the multi-
object density. As the update step yields a GLMB distribution for an LMB prior,
an approximation step which reduces the posterior to an LMB distribution with
matching first-order moment is introduced (cf. Section 3.3.3).

Poisson multi-Bernoulli mixtures (PMBMs) [GWGS18; Willba] constitute another
conjugate prior to the standard measurement model and are closed under the
prediction when using a Poisson RFS as birth density. The PMBM distribution
consists of a Poisson RFS that models the distribution of undetected objects and
a mixture of multi-Bernoulli distributions for detected objects. The weights of the
different mixture components depend on the different association hypotheses that
can be constructed. As for the GLMB filter, the number of mixture components
increases drastically over time and different approximation variants have thus been
proposed in [Will5a; Will5b]. The use of a Poisson RFS for undetected objects
helps to incorporate information about the number of such objects and where they
could be located (e.g. in occluded areas) [GBR17; Will5a].

3.4 Extended Object Tracking

The aforementioned multi-object tracking approaches extend the standard single
object tracking problem from Section 3.1 in two ways. First, they consider multiple
objects and multiple measurements at the same time and secondly, they explicitly
model effects such as object appearance, disappearance, clutter, and misdetections.
Yet, they are still based on the assumption that the object size is negligible with
respect to sensor resolution and an object gives rise to at most one measurement.
This is called the point object assumption and illustrated in Fig. 3.5a.

If, however, the object size exceeds sensor resolution (cf. Fig. 3.5b), the point object
assumption is no longer valid and multiple measurements may be received. As
previously established in the introduction, tracking algorithms are faced with the
extended object problem in such cases. To avoid the disadvantages of preprocessing
routines that were mentioned in the introduction, i.e. the loss of information and
difficulties in ambiguous situations, a variety of new single-object measurement
models that are able to process multiple measurements at a time and multi-object
filters that are able to accommodate such measurements models have been developed.
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(a) Point object (b) Extended object

Figure 3.5: Schematic comparison of point and extended objects in depen-
dence on the sensor resolution

The following subsections provide a short summary of the basic and most known
approaches. A more complete overview of different measurement models and multi-
object filters for extended object tracking is given in [GBR17].

3.4.1 Measurement Models for Extended Object Tracking

Measurement models for a single extended object can be constructed in different
ways. This section reviews three common approaches that use a set of reflection
points, define a spatial distribution, or estimate the shape using a contour model.

Reflection Point Models

Reflection point models assume that an extended object consists of several distinct
measurement sources that may be perceived by the sensor. Early variants of such
an approach have for instance been used for extended object tracking in [Dez98;
SG99]. As illustrated in Fig. 3.6a, the reflection points could, for example, be the
corners of an object which may be especially dominant features for a sensor. At
each measurement cycle, the sensor measures one or multiple reflection points and
the union of the resulting measurements constitutes the measurement set Z. The
reflection points are usually distributed over the object extent and their position is
typically given with respect to the object center of motion. Thus, they provide a
description of the shape or structure of the object.
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Figure 3.6: Extended object measurement models

There are different possible variations of the reflection point approach. The reflection
points may, for example, be fixed in both position and number if the appearance of
the tracked object is well-known. Alternatively, their position and number could be
made part of the object state and estimated concurrently. Also, one may restrict
the number of measurements a sensor receives from a single reflection point to one
or allow for multiple measurements.

To demonstrate the likelihood function for a reflection point model, the following
explanations focus on the simple case of a set of ¢ fixed reflection points that each
give rise to at most one measurement. Particularly, a reflection point generates a
measurement if and only if it is detected, which is the case with detection probability
pg). The reflection point’s likelihood function p((z|x) (cf. Fig. 3.6a) models where
measurements are expected in case of detection. The resulting likelihood function
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for the overall reflection point model is (cf. [GBR17])

p(Zlz)=>" T[] a -0 ] p&p?CDa), (3.31)

0€© 6(i)=0 0(i)>0

where the number of measurements is at most the number of reflection points.
Also, 6 is again an association mapping 6 : {1,...,¢c} — {0,...,|X|} which maps
the reflection points to the measurements or the case of misdetection (0) under
the restriction that each measurement may only be assigned to a single reflection
point. Hence, different variants of measurement-to-reflection-point relationships are
constructed. This is necessary since the origins of the measurements are unknown
and the likelihood function has to take all possibilities of which reflection point gave
rise to which measurement into account.

Depending on the number of reflection points and measurements as well as their
positions, this association problem can be difficult to solve and there may be many
possibilities. As the problem is identical to that in multi-object tracking, where
measurements need to be associated to objects, techniques from multi-object tracking
can be used for obtaining good solutions in the presence of ambiguity. Increasing the
flexibility in the model, e.g. by allowing for multiple measurements from one reflection
point or varying numbers and positions of reflection points, further complicates the
association problem and estimation.

Spatial Distribution Models

Spatial distribution models as proposed in [GGMS05; GS05] directly define the
distribution of the measurements around the object g(z|z), i.e. the likelihood
function. They assume that all measurements are distributed according to this
likelihood function and are conditionally independent. Additionally, they model a
distribution over the number of received measurements. In particular, the original
definition used an inhomogeneous Poisson point process for this purpose. Yet, other
cardinality distributions are possible and thus the overall likelihood can be written
in the form of an independent identically distributed RFS (cf. (3.19))

p(Z|z) = X! p(IX])[g([a)]?, (3.32)

which again uses the multi-object exponential notation from (3.20). The term
spatial distribution indicates that the model directly specifies a distribution over the
locations of the measurements. Note, however, that the principle is not limited to
measurement locations and can be extended to other measurement quantities.
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In [GS05], the authors suggest that the spatial distribution can be obtained by first
specifying a distribution over possible measurement sources y and convolving it with
a sensor error model p(z|y) that captures sensor noise. This yields [GS05]

olzl) = / p(=|9)p(ylz) dy (3.33)

and allows for splitting the modeling process into two basic effects. As an alternative
to this procedure, the spatial distribution can also be modeled directly. Figure 3.6b
shows an exemplary distribution of a stick-shaped object with Gaussian noise as
presented in [GS05]. One of the major advantages of the spatial distribution models
is the avoidance of explicit association hypotheses, which renders efficient particle
filter implementations possible [GS05].

A special form of a spatial distribution that allows for an analytical solution has been
presented in [Koc08]. It is referred to as random matrix model and assumes that
objects have an elliptical shape. The measurement likelihood or spatial distribution
is a Gaussian distribution

g(z\x,Z) :N(z|xP087;)v (3'34)

where the mean is given by the object position zpes. The spread of the measurements
and thus the object size is governed by the covariance matrix X. To estimate the object
extent, the covariance matrix is assumed unknown and estimated in conjunction with
the kinematic state. For this purpose, the combined state distribution is modeled as
Gaussian-inverse-Wishart distribution which is a conjugate prior to the likelihood
model from (3.34). Due to the Gaussian structure, the random matrix model is
especially suited for objects that create unstructured measurement clusters. An
illustration of the model is provided in Fig. 3.6¢c. Further details on the approach
including modeling assumptions can be found in [Koc08] and an overview of different
variants and enhancements is given in [GBR17].

Contour Models

A third variant of extended object models uses a parametric description of the object
contour to describe the object shape. Two particular variants for star-convex shapes
are the random hypersurface model (RHM) [BH14] and the Gaussian process (GP)
model [WO15]. In a star-convex shape, there exists a center point inside the object
from which all points on the contour are visible, i.e. there exists a line connecting the
center point and the contour point which lies entirely inside the object. Therefore,
the contour can be described by a radius function r(x) that defines the radius over
the angle x of the connecting line. See Fig. 3.6d for an illustration.
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RHM models assume that the measurements are generated on a scaled contour of
the object and the measurement equation is [GBR17]

z=15-7(K,D) + Tpos + €. (3.35)

Here, s is the random and unknown scaling factor, p are the parameters of the
radius function, xpes is again the position of the object center, and e is additive
noise. The use of the scaling factor allows measurements to be generated inside the
object if necessary. While the initial proposal [BH09] demonstrated the approach for
elliptically shaped targets, [BH11] proposed to use a Fourier series expansion of the
radius function

ny
a
r(k,p) = — + Z a; cos(ik) + b; sin(ik). (3.36)
2 O
It uses ny terms, is defined over the angle x, and assumes a periodicity of 27. The
Fourier coefficients ag, a;, and b;, which define the shape of the radius function and
hence the contour, are combined in the parameter vector

p= [ao,al,blv'"aa’nfvbnf]T' (337)

For tracking and shape estimation, the parameter vector is appended to the object
state and concurrently updated in a nonlinear Gaussian filter. Thus, the radius
function is adapted to the measurements while tracking.

The GP model from [WO15] represents the radius function using a probabilistic
description in terms of a GP [RWO06, p. 13]. The values of the radius functions at
specific angles are assumed to follow a Gaussian distribution

r() ~ N(r(8)ly(r), Z(k, 1)) (3.38)

with a mean vector v(x) that depends on the angles x and the covariance matrix

k(k1,k1) ... k(K1,En,)
Yk, k") = (3.39)

k(kn,, k1) . Kk(Kn., &n,)

which is constructed using a periodical kernel k(-,-) (see e.g. [RWO06, p. 92]). This
kernel governs the shape of the resulting function and how the function values
influence each other. GPs allow computing a predictive distribution for function
values at specific angles by learning from previously observed function and angles
pairs. This is achieved by conditioning the joint Gaussian distribution over observed
and unknown function values on the observed values. As GPs are originally a batch
method, a recursive formulation with fixed basis angles is used in [WO15]. The
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Figure 3.7: Three cases handled by the generalization of standard multi-
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corresponding function values and the object state can then be estimated concurrently
and the predictive density is used as measurement likelihood function g(z|x).

3.4.2 Filters for Extended Object Tracking

Several filter variants based on FISST have been proposed to accommodate such
measurement models for single extended objects in a multi-object tracking framework.
Most of these approaches are based on a generalization of the standard multi-object
likelihood from Section 3.3.4; see [Mahl4, pp. 115-116]. As illustrated in Fig. 3.7, it
replaces Assumption 2 by allowing objects to give rise to a set of measurements Zp
if detected. These measurements follow the single-object likelihood function g(Zp|x)
which incorporates the suitable extended object model, e.g. (3.31) or (3.32).

An elaborate overview of different adaptions of the multi-object filters from Sec-
tion 3.3.4 to the extended object case is given in [GBR17]. Examples are the
extended object versions of the PHD [Mah09] and CPHD [LGO13], the GLMB
and LMB [BRG*15; BRGT16] filters, and those of the PMBM filter variants in
[GFS16; XGSF18]. While these filters differ form their point object variants in
the measurement model, their respective characteristics in terms of assumptions,
advantages, or disadvantages remain the same.
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3.5 Sensor Fusion Approaches

Tracking filters are one method to fuse data from multiple sensors and to achieve
the benefits that were listed in the introduction. This section briefly discusses three
common fusion architecture variants following the comprehensive overview given in
[BTW11, Chapter 8]. In contrast to [BTW11], however, where the procedure is split
into first associating and then fusing the data, this section uses the word fusion to
refer to the entire procedure in a more general sense.

The timely order of measurements is a crucial factor in sensor fusion as sensors may be
asynchronous and may exhibit different latencies. If the latencies differ considerably,
measurements from sensors with high latency may arrive after newer measurements
from fast sensors have arrived, which leads to out-of-sequence problems. While there
has been some work on solving such issues, see e.g. [Bar02], this thesis assumes
that sensor measurements arrive in correct order and out-of-sequence problems are
therefore not further considered.

In static fusion, a composite measurement is formed by combining measurements
from multiple sensors into one. This composite measurement can then be used in a
tracking filter, as shown in Fig. 3.8a. However, static fusion requires synchronized
sensors. Also, it becomes especially susceptible to sensor failure if it uses combination
algorithms that require the availability of data from both sensors at all times.

Track-to-track fusion (see Fig. 3.8b) is another architecture variant in which each
of the sensor modules possesses its own full tracking pipeline and outputs object
tracks. These tracks are then combined in a fusion center by fusing the track
estimates. There are different variants of track-to-track fusion which differ in the
communication between the fusion center and the sensor modules as well as in the
way tracks are processed over time in the fusion center. That is, the fusion center
may or may not provide feedback to the sensor modules and it may or may not
keep tracks in memory. The core issue to be considered in designing track-to-track
fusion architectures is to avoid overconfidence in the fused estimates. This can be
caused by ignoring correlation in the track estimates of the sensor modules due to
common process noise or by reusing information from measurements in architectures
with memory. Different approaches tackling these issues are presented in [BTW11,
Chapter 9]. In the special case of linear systems, optimal results can be achieved by
using information matrix fusion [BTW11, pp. 559-566].

In centralized fusion, see Fig. 3.8¢, measurements from all sensors are fed to a central
tracking filter which processes the measurements iteratively. This variant achieves
optimal performance as it uses all available information [BTW11, p. 557]. The
issue of correlated data is avoided even in the presence of complicated nonlinear
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Figure 3.8: Illustration of sensor fusion architectures

systems. Moreover, it does not require synchronized sensors as in static fusion since
measurements can be easily processed at the time of arrival. One of the major
drawbacks of centralized fusion is that all measurements need to be transmitted to
the fusion center which typically requires more data to be transfered than for object
lists and may be an issue in presence of limited communication bandwidth.



Chapter 4

Framework for Tracking Multiple
Vehicles

After having laid the foundations of Bayesian inference and tracking algorithms,
this chapter turns the attention to the application of vehicle tracking using different
homogeneous sensors. The chapter starts in Section 4.1 by reviewing the current
state of the art in vehicle tracking. It highlights and discusses different solutions in
terms of data processing, multi-object tracking, as well as sensor fusion to provide a
more detailed motivation and differentiation of the work in this thesis to existing
methods. Subsequently, the chapter introduces the proposed tracking framework
that tackles the three challenges in a fully Bayesian fashion while using all available
information and providing the ability to easily add and remove sensors. First, the
underlying Bayesian problem formulation is presented in Section 4.2 and Section 4.3
then details the system architecture as well as the different steps in the filter cycle.

4.1 State of the Art in Vehicle Tracking

Due to the great interest in developing driver assistance systems and automated
vehicles in the past years, literature on vehicle tracking is vast and a complete
overview of all proposed approaches for the different sensor types is beyond the scope
of this thesis. Nonetheless, this section provides a concise overview of different ways
that have been chosen to deal with the extended object and multi-object problems
as well as sensor fusion.
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Figure 4.1: Exemplary radar measurements of a vehicle plotted in vehicle co-
ordinates (cf. Section 4.2). The Doppler velocities are indicated
by the vectors.

4.1.1 Radar Data Processing

Radar sensors emit and receive electromagnetic waves to perceive their environment.
Particularly their ability to directly measure the relative radial velocity (Doppler
velocity) is one of their most distinctive features in comparison to other automotive
sensors. Processing the reflected electromagnetic waves constitutes a whole discipline
of research itself, see e.g. [Sko02; Winl16]. In this thesis, it is assumed that radar
sensors directly provide measurements on detection level. That is, they yield a set of
measurement points with corresponding range, azimuth angle, and Doppler velocity
values. Figure 4.1 shows two examples of radar measurements that originate from a
vehicle and have been recorded using a sensor that is later used in the experimental
evaluation.

Processing radar data for vehicle tracking is challenging for several reasons. First,
radar measurements oftentimes do not exhibit a clear geometric structure as it is the
case for lidar measurements. Secondly, the number of measurements that are received
from an object hinges on the sensor’s capability to resolve different reflections. This
can depend on various factors including the sensor-to-object constellation as well as
the vehicle motion. In case of the sensor that was used in this thesis, for example,
the amount of measurements varies from a complete misdetection over a single
measurement in the mid and far range (cf. Fig. 4.1a) to over twenty measurements
in the close range (cf. Fig. 4.1b). Thirdly, the Doppler velocity leaves considerable
ambiguity in the object motion as it only measures the radial component of the
object velocity vector.

Researchers have proposed several approaches that first process such radar data
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before using the resulting meta-measurements in tracking. Clustering methods have,
for example, been presented in [KKD12; SRKW16] and [DAK'15; EAK16] discuss
tracking approaches that are based on clustered data. Also, box fitting methods for
radar data have been proposed in [RKDW16; RKK*15; SSSW17]. A third variant
of preprocessing routines aims at exploiting the Doppler information and extracts
motion estimates from a single frame by analyzing the Doppler profile of the received
measurements. When using a single sensor only, this method allows to extract
the vehicle speed [FR06; KBD*13; RX17]. If two synchronized radar sensors are
available, an additional estimate of the yaw rate can be computed [KBK*14]. The
application of such approaches in a tracking framework is discussed in [KBKT16].

Such preprocessing routines are particularly successful if there is a sufficient amount
of measurements for a single vehicle, as for instance in the example of Fig. 4.1b. By
simply computing the centroid of a measurement cluster, however, one is subject to
migration of the resulting position due to varying aspect angles and sensor noise.
Also, box fitting and Doppler profile analysis fail if the amount of measurements is
low, as for example in the extreme case of Fig. 4.1a.

Apart from the preprocessing routines, a variety of extended object measurement mod-
els for radar-based tracking have been proposed. In [CSKR14; DRBU09; KYY ' 15],
the authors assume that vehicles can be described as rectangles and that measure-
ments are generated at their corners or edge centers. This can be interpreted as a
particular form of a reflection point model. The publications [GSDB07; HSSS12]
employ more detailed reflection point models that are constructed from typical
radar reflection characteristics and consider visibility regions for each reflection
point. Reflection point models that allow for estimating the number and position
of the reflection centers have been presented in [HLS12; SRW14]. Other extended
object approaches that use an elliptically shaped spatial distribution are the vol-
canormal density [BDD17] and a random matrix model that has been extended
to account for Doppler measurements [SRW15]. However, the latter approach was
only applied to vessel tracking and does not consider the variation of the Doppler
measurements over the tracked object. Furthermore, a stick model that describes the
rear surface of a vehicle and is intersected with radar beams for tracking preceding
vehicles [ASW13] and the application of Gaussian processs (GPs) without considering
Doppler measurements [MBMW17] have been proposed.

In contrast to the preprocessing routines, these extended object models do not
require a particular number of radar measurements. Yet, they also exhibit some
disadvantages: A drawback of reflection point models is, for instance, that finding
suitable sets of reflection points becomes more complex as the sensor resolution
increases and the sensors are able to resolve more and more scatter centers (cf.
Fig. 4.1b). Also, the other methods either use a rather coarse or partial description
of the vehicle shape or do not fully exploit the available Doppler information.
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Figure 4.2: Exemplary lidar measurements plotted in vehicle coordinates (cf.
Section 4.2). The lidar rays are indicated as gray lines.

4.1.2 Lidar Data Processing

Automotive lidar sensors scan the environment by emitting laser impulses from one
or more vertical layers and rotating the rays over the field of view (FOV). If a ray is
reflected by an object, the distance is measured using the time of flight principle
[GG16]. Thus, they provide dense point clouds with precise range and angular
measurements that oftentimes exhibit the geometrical structure of observed objects.
Due to the focused laser rays, lidar measurements are subject to occlusion effects as
known from camera images. Also, the object material strongly influences the return
signal strength and absorption, e.g. for black vehicles, may occur. In principle, a
Doppler shift is observable for objects that move relative to the sensor. Due to the
high frequency of the involved electromagnetic waves, however, measuring these
shifts is costly and is omitted in automotive sensors.

Lidar-based tracking can be categorized into 2D and 3D approaches depending on
the type of lidar sensor that is used. The work on lidar tracking in this thesis is
based on a sensor that mostly provides 2D information and therefore the thesis
supposes the availability of planar lidar scans as illustrated in Fig. 4.2a. Accordingly,
the following literature review focuses on 2D approaches and only mentions some
work from the large body of 3D lidar processing.
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Like in radar-based methods, preprocessing routines play an important role in lidar-
based tracking. A majority of approaches, see e.g. [BRAD16; CSKR14; DRBU0Y;
KBDO05; MDMO09; MNM*13], fits bounding boxes or L- and I-shapes to the data.
Alternatively, [MCH™T08] extracts the closest distance and the outermost angles of
point cloud clusters as meta-measurements. A routine for extracting a detailed
surface from 3D lidar measurements was presented in [SKDT11] and approaches
that extract polyline segments from lidar data to update a polyline vehicle model
have been presented in [Eff09; RBLT08]. Recently, the application of convolutional
neural networks to 3D lidar data for bounding box regression as in [LZX16] has also
become popular.

Again, the lidar preprocessing routines, particularly the box fitting approaches,
face difficulties if the correct meta-measurements cannot be easily extracted. The
measurements may, for example, be corrupted by noise and may not clearly exhibit
the shape; see the upper example of Fig. 4.2b. Here, the measurements appear to
follow an L-shape that is rotated by approximately 45° whereas the actual vehicle was
oriented in parallel to the lidar rays. Interestingly, the correct orientation becomes
apparent to the observer when examining the adjacent rays that indicate free space
to both sides of the vehicle. Yet, most pre-processing routines do not make use of
this negative information, i.e. of the absence of measurements, and only work on
point clouds of positive returns. Box fitting also becomes difficult when objects enter
or leave the sensor FOV and are only partially visible as in the lower example of
Fig. 4.2b. Heuristic rules are oftentimes necessary to cope with these special cases.

Therefore, several extended object measurement models that process the lidar
measurements directly have been proposed. For example, [GLO11] presents a
method for computing multiple predicted measurement locations for rectangular and
elliptical object shapes. This approach is extended using two measurement modes in
[GRMS14] and motivated as an approximation of a spatial distribution approach.
Moreover, a polyline object model that processes all measurements is discussed in
[WC17], and GPs have been applied to vehicle tracking in [HSRD16; MBMW17;
WO15]. Additionally, local grid maps, i.e. small grid maps that are attached to the
tracked object and allow for free-form descriptions, have been applied in [SADD13;
SADD14b] for the 2D case and in [SKD"12] for the 3D case. There has also been
work on ray tracing approaches in [PT09; VA09; VWN12] which closely emulate the
sensor principle and directly compare the expected and measured distance readings
using geometric object models. Lastly, some approaches [HLT13; KBS17] that are
based in optimization as opposed to Bayesian inference accumulate a point cloud
over time as shape representation and obtain tracking results from matching the
measured point cloud to the current estimate.

The free-form models such as local grid maps, GPs, or polylines provide the greatest
flexibility in the object shape. This flexibility is advantageous for tracking objects
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of considerably different shape but it may complicate estimation if objects exhibit
a similar and simple shape. The rectangular models from [GLO11; GRMS14]
simplify the shape but use an approximate prediction of the measurement locations,
require considering different cases for the number of visible sides, and use an
internal association step. The ray-based methods, in contrast, emulate the sensor
measurement principle the closest. Despite being computationally more demanding,
they allow for accurate predictions of the number and location of measurements and
enable a coherent incorporation of negative information.

4.1.3 Camera Data Processing

Object tracking using camera images constitutes an entire discipline in the field
of computer vision with an enormous variety of applications. For vehicle environ-
ment perception, information from mono cameras is mostly used in form of object
detections, e.g. bounding boxes. The detections are then used as measurements
in tracking filters and are oftentimes fused with data from other sensors; see for
instance [CSKR14; KBD05; KNW*15; MDMO09]. A recent approach that is solely
based on detections with additional distance information is presented in [SBR118].
The detections are obtained from applying a convolutional neural network (CNN) to
mono camera images.

Besides object detection in images, scene labeling is another task from computer
vision in which the goal is to assign semantic labels to each pixel in a mono camera
image. That is, each pixel is labeled with the class of the object that it displays.
Figure 4.3 shows an example using two classes. Especially the application of CNNs,
see e.g. [FCNL13; LSD15], has greatly contributed to the performance and popularity
of scene labeling. In contrast to bounding box detections, scene labeling provides
more dense semantic information which allows inferring the contour of labeled
patches. Yet, it does not provide instance-level information and several objects may
be merged to a large patch of identically labeled pixels. To the best of the author’s
knowledge, there are no published attempts to use scene labeling information in a
classical tracking approach where it is fused with information from other sensors
such as radar.

4.1.4 Tracking Filters

In terms of the multi-object problem, a large body of the literature assumes that
vehicles are independent of each other and that there is no considerable ambiguity
in the measurement association. Therefore, they employ a bank of single-object
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Figure 4.3: Scene labeling example: The image is labeled using the classes
vehicle (red) and background (blue).

trackers such as Kalman filters, extended Kalman filters (EKFs), unscented Kalman
filters (UKFs), or particle filters in combination with different association schemes.
Examples are given in [CSKR14; DRBU(09; Eff09; MNM™13; RMM15; SWBH12;
VDNI15].

Other publications have investigated the application of multi-object filters to vehicle
tracking. For example, [MDMO09; MMD10] proposed the use of the joint integrated
probabilistic data association (JIPDA) filter. Also, several multi-object filters based
on random finite sets have been applied. Gaussian mixture implementations of
the probability hypothesis density (PHD) filter were used in [GLO11; GRMS14;
MBMW17] in conjunction with different extended object measurement models. The
particle implementation of the PHD filter was used in [SADD14a] to track multiple
vehicles using local grid maps. The application of the labeled multi-Bernoulli (LMB)
filter to preprocessed measurements from lidar, camera, or radar data has been
investigated in [KNW™15; Reul4] and the extended object variant of the LMB filter
in combination with a GP model was used in [HSRD16]. Also, an approach based on
the Poisson multi-Bernoulli mixture (PMBM) distribution using camera detections
was presented in [SBR118].

4.1.5 Sensor Fusion

To fuse data from different sensor types, some publications propose static fusion
methods and combine the sensor data before filtering. Examples are [HLT13], which
combines color information from images with 3D point clouds, [KBK*14; KBK'16]
which combine data from two radar sensors to obtain an instantaneous estimate of
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speed and yaw rate, and [BKBD15] which feeds prior information from lidar sensors
into a radar preprocessing routine.

Examples for track-to-track fusion were presented in [ASKB12] using a theoretically
rigorous information fusion approach or in [DGV™16] with special focus on fusing
shape estimates from heterogeneous sensor types.

A majority of vehicle tracking approaches uses a centralized fusion architecture where
measurements from different sensors are processed in a single filter. Preprocessed
measurements are, for instance, fused in a centralized fashion in [BRAD16; CSKR14;
DRBU09; EAK16; KBD05; KNW*15; MDM09; MMD10; Reul4; SWBH12]. In
contrast, centralized fusion using extended object measurement models, as presented
in [MBMW17; SRW14], is rather rare.

4.1.6 Discussion

The survey of the state of the art confirms the claims that have been made in
the introduction. It is observable that many of the vehicle tracking frameworks
resort to a classical structure with separate preprocessing and association modules in
combination with independent tracking filters for the individual objects. Nonetheless,
there has been work to solve the three aspects of data processing, the multi-object
problem, and sensor fusion in a principled way and without resorting to intermediate
simplifications. Yet, most of the approaches focus on parts of the problem, e.g.
by centering on the multi-object tracking problem alone or providing methods for
tracking multiple extended objects using a single sensor type. In cases where data
from multiple sensors is fused using multi-object filters, it is often the case that the
likelihood functions of different sensors share identical building blocks. For example,
they use the same extended object model as in [MBMW17] or the same multi-object
likelihood as in [KNW*15; MDM09; MMD10; Reul4]. However, these models may
not always be the most appropriate ones for all sensor types.

Moreover, there is a variety of extended object models for tracking with radar or lidar
sensors. Their different strengths and weaknesses have their origin in the conflict of
interest between using simple models with restrictive assumptions, elaborate models
with high detail, or models that provide great flexibility. The random matrix model,
which exploits the availability of conjugate priors, for example, does not play an
important role in vehicle tracking as the assumptions that enable conjugacy are too
simplistic. GP models, on the other hand, are also computationally efficient and do
provide great flexibility in the shape. Yet, they fail at accurately modeling the lidar
measurement principle as they do allow for measurements on the averted surface
or do not use the negative information that is provided. In contrast, full-fledged
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reflection point models for radar sensors use a detailed model of the radar reflection
characteristics but require expert knowledge in creating these models including the
visibility regions of each reflection point.

As stated in the introduction, the goal of this thesis is to develop a tracking
framework that provides an integrated probabilistic approach to the extended object
problem, the multi-object problem, and sensor fusion, which works in ambiguous
situations and uses all available information from the sensors. Consequently, the
goal is to firstly propose new extended object models that are specifically tailored
to vehicle tracking with a particular sensor type and find a good trade off between
mathematical rigor, analytical simplicity, and accurateness in the measurement
process. Thus, this work strives for achieving accurate tracking results and natural
handling of typical sensor characteristics such as ambiguity in the data or partly
visible objects. Secondly, the thesis aims at developing a framework that provides
the necessary theoretical foundation without imposing overly restrictive limitations
on sensor-specific measurement models and update routines.

4.2 Problem Formulation

After having reviewed and discussed existing work on vehicle tracking, this section
begins to introduce the tracking framework that is put forward in this thesis by
providing the basic problem formulation. Its task is to estimate the number of
vehicles in an ego-vehicle’s surrounding as well as their states based on data obtained
from the ego-vehicle’s on-board sensors. For this purpose, a finite set statistics
(FISST)-based formulation is chosen. The used random finite sets (RFSs) allow for
varying numbers of objects or measurements and the multi-object Bayes filter from
Section 3.3.1 provides the means for a probabilistic end-to-end formulation which
embraces the entire problem from raw measurements to the state estimates. Due
to the explicit consideration of multiple measurements, different extended object
measurement models can be incorporated naturally.

The multi-object state X = {w,(fl), . 7£B](€n)} is modeled as a labeled RF'S where
each element is the labeled state vector o) = [z}, ¢]T of a vehicle and the labels ¢
indicate the respective vehicle’s identity. Each vehicle’s state 2, = [¢F,(f]T € X
is composed of two portions. The kinematic state & = [Tr.k, YR k> Pk, Vi, Wi] T
describes the vehicle pose and motion at time step k£ and consists of the position
of the rear axle center [zg,yri|", the vehicle orientation ¢y, the speed vy in
direction of the vehicle orientation, and the yaw rate wg. As illustrated in Fig. 4.4,
all quantities are estimated with respect to the ego-vehicle’s coordinate system which
is indicated by the subscript VC. The second part of the state vector constitutes
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Figure 4.4: Schematic illustration of the vehicle state vector

the extent portion (; = [ag, bx]T which consists of the vehicle width aj and length
bi. The position of the rear axle is assumed to be fixed at 77% of the vehicle length,

which has empirically shown to be a suitable value for many vehicle types'.

The perception sensors are mounted on the ego-vehicle and provide measurements
in the sensor coordinate (SC) systems. From sensor calibration, the transformation
between sensor and vehicle coordinates is known and objects can be transformed
from one coordinate system to another. The mathematical representation of the
measurements depends on the sensor characteristics. If the number of measurements
is able to change from cycle to cycle, they are represented using a measurement
set Zj, otherwise all measurements are combined in a fixed-size vector z;. Further
details are presented in the measurement model sections of Chapter 5.

Apart from the vehicle and sensor coordinate systems, this thesis uses the object
coordinate system as a third frame if quantities are best described with respect to
the object under consideration. It is denoted by the subscript OC and attached
to the tracked vehicles in the same way, the vehicle coordinate system is attached
to the ego-vehicle. To simplify notation, this thesis avoids the explicit declaration
of transformations between the coordinate systems. Instead the convention is that
all quantities are given with respect to the vehicle coordinate system if there is no
involvement of sensors and their measurements. Accordingly, the quantities are
defined in the sensor coordinate system in the opposite case. For example, the object
position and orientation are automatically assumed to be given with respect to the
sensor coordinate system when used in the measurement model formulation. The use
of the object coordinate system is explicitly specified by the appropriate subscript
where applicable.

1The value was chosen after examining the rear axle position from the technical documentation of
different vehicles, including sedans, a compact car, and a van.
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4.3 System Architecture and Filter Cycle

To solve the multi-object Bayes filter, the multi-object distributions are modeled
as LMB and generalized labeled multi-Bernoulli (GLMB) distributions as in the
LMB filter [RVVD14] and the extended object LMB filter from [BRG*16]. The
framework uses a structure that is similar to the LMB filter and which outputs a
posterior LMB distribtion over the multi-object state. Therefore, each vehicle is
described by its state distribution p()(z) and its probability of existence r(*). Due to
dependencies that are introduced during prediction and update, GLMB distributions
become necessary in intermediate steps.

A labeled RFS approach is chosen since different studies have indicated that such
methods are able to outperform other filters such as the cardinalized probability
hypothesis density (CPHD) [BRG'16] or cardinality-balanced multi-target multi-
Bernoulli (CBMeMBer) [RVVD14] filters. In comparison to Poisson multi-Bernoulli
mixture (PMBM) methods, they also provide a rigorous notion of object identity.

The data from multiple sensors is fused in a centralized fusion architecture. Thus,
the sensors are not required to be synchronized and all information from the data is
directly available at the fusion center. Also, there is no dependence on the availability
of other sensors as in static fusion. Figure 4.5 shows a schematic illustration of the
overall system architecture and the filter cycle. Every time new measurements arrive
from a sensor, a new filter cycle is triggered. It is assumed that measurements arrive
in correct order and out-of-sequence problems are not considered. In set-ups where
latencies differ considerably among the sensor types, adequate buffering strategies
can be used to achieve a correct order of the arriving measurements.

Both the prediction step, which models the evolution of the multi-object state over
time, and track management are independent of the current sensor type. In contrast,
the update routine for processing the measurements and initialization procedure
for generating new objects differ for each sensor. These operations are therefore
capsuled in sensor modules which expect a prior multi-object distribution in GLMB
form and output a posterior LMB distribution as well as an LMB birth density
with new object hypotheses. Each sensor module is parameterized for a particular
sensor, i.e. it contains all necessary information such as detection probabilities and
mounting position or orientation. If a particular sensor type is used multiple times,
each sensor uses its own instance of the corresponding sensor module.

Note that the sensor module architecture differs from previous approaches such as
[KNW*15; MDM09; MMD10] which were also aiming at a generic fusion architecture.
They achieve clear sensor interfaces by using identical update procedures and specify-
ing measurement models with common parameters such as the detection probability.
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Figure 4.5: Schematic of the system architecture

Here, the interface is instead defined in terms of multi-object distributions that are
transmitted from and to the sensor modules. This still achieves an architecture
with clear and generic interfaces that allow for easy adding or removing of sensors.
At the same time, all operations that involve sensor measurements and knowledge
about the sensor characteristics are clearly capsuled in sensor modules. Thus, the
architecture avoids heavy restrictions on the update, and measurement models that
best suit the corresponding sensor data can be included. The framework is therefore
not limited to using the generalized standard multi-object measurement model that
is for example employed in the extended object LMB filter.

In terms of hardware implementation, the architecture allows for two different options.
Sensor modules could be either implemented in the fusion center which would require
a transmission of the entire measurement data to the fusion center or the modules
could be implemented on sensor processors which would require transmitting the
predicted and posterior multi-object densities between fusion center and sensors.

The remainder of this chapter provides further details on the involved processing
steps. All explanations focus on a single filter cycle. To shorten notation, the time
indices k are dropped in the following and prior quantities are distinguished by the
subscript +.
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4.3.1 Prediction

In the standard multi-object transition model from Section 3.3.4, all objects are
predicted independently. Thus, it may happen that two vehicles are predicted to
nearby positions which would—under consideration of the vehicle extent—lead to
physically impossible overlaps. To avoid such situations, [RWD12; Reul4, Section
4.2] have proposed adaptions of the prediction step for sequential Monte Carlo (SMC)
implementations of the multi-object Bayes filter. They include a second prediction
step which validates predicted multi-object state and adjust it by discarding particles
with impossible object constellations or by adapting their weights. This thesis adopts
the introduction of a second prediction step and transfers the idea to filters using
LMB distributions. The resulting two-stage prediction routine ensures physical
consistency among extended objects and is presented in the following.

Step 1: Standard Multi-Object Transition Model

Before prediction, the posterior distribution of the multi-object state is in LMB
from and hence follows (3.25) and (3.26). The label space L is made up of the
current vehicle hypotheses’ labels. The first prediction step uses the standard multi-
object transition model from Section 3.3.4 and considers cases 1 and 2, i.e. object
survival with corresponding state transition or object disappearance. The third case,
object appearance, is delegated to the sensor modules and track management as it
involves sensor measurements and knowledge about the sensor characteristics; see
the following subsections. As in the LMB and extended object LMB filters [BRGT16;
RVVD14], the parameters of the resulting prior LMB distribution are

T,Ef) = n()r®, (4.1)

_ fps(.%',f)f (24|, O)p(z, £)dz
pi(zy,l) = - T’(;) ) (4.2)
00 = [[ pste. 01w sle, Op(e, Odda. (43)

Equation (4.2) mostly corresponds to the standard prediction equation of the Bayes
filter (3.3) and computes the prior state density p4(z4,£) under consideration of the
persistence probability. In contrast, (4.1) computes the prior existence probability
by discounting the previous value with the normalization factor (4.3), which is the
expected value of the probability of persistence? ps(x,¥). Therefore, the decrease
in the existence probability depends on the persistence probability values in the

2Recall that pg (z,£) is a probability, which is a function of the labeled state, and not a density
(cf. Section 3.3.4).



62 Framework for Tracking Multiple Vehicles

areas where the object is located. If the persistence probability is low, the existence
probability decreases accordingly.

The evolution of the kinematic states is modeled by a constant turn rate and velocity
(CTRV) model [Ger89] (see [SRWO08] for a comparison of models) which assumes
curvilinear motion of the vehicle with constant speed and a constant yaw rate. Its
deterministic part is superimposed with process noise for all kinematic states. This
yields

TR+ Tr+ ;- (sin(wy - At + @) —sin(p)) + €,
yrs | |un 2 (= cos(ws - At+ ) + cos(e) + ey

Y+ | = o+ wy At +e, ) (4.4)
Ut V€

W w + €,

where At is the time difference from the last to the current measurement, and €,
€y, €p, €, as well as €, are the process noise terms. See Section 6.3.3 for more
implementation details and information on the chosen noise.

If the probability of persistence pg(x,¢) is chosen independently of the update time
intervals, the decay rate of a vehicle’s existence probability strongly depends on the
frequency of newly arriving measurements. This frequency is mainly governed by
the number and type of sensors that are used in the current fusion constellation. In
the proposed framework, the probability of persistence is modeled such that adding
and removing sensors does not affect the intended behavior. In a first step, the
FOVs of all registered sensors are combined and it is tested if vehicles are located
inside or outside of the overall FOV. The probability of persistence is determined by
assuming exponentially distributed events of object disappearance and computing
the probability that a vehicle has disappeared within the last cycle interval. By
choosing large expected time intervals between object disappearance in the FOV
and short intervals outside the FOV, it is ensured that vehicles which are not visible
to the sensors are discarded quickly whereas vehicles inside the sensor FOVs are
maintained for longer periods of time.

Step 2: Accounting for the Extent

As previously mentioned, the goal of the second prediction step is to achieve physical
consistency without overlaps. For this purpose, the second prediction step conditions
the predicted multi-object state on the event of being physically consistent, which
is denoted by F. This method has been developed as part of this thesis and has
been presented in the prior publication [SRD16]. The conditional prior multi-object
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distribution
g(FI X )m (X )
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is obtained by applying Bayes’ theorem and using a likelihood for a physically
consistent state in the form of

9(FIX ) =g(FIL (X)) = [ (1 =polti ;). (4.6)
{0 b5)eL(X 4 )16, }

e (X 4| F) = (4.5)

It evaluates the overlap probability po(¢;,¢;) of all label pairs in X | and assigns
high likelihood values to multi-object states where the overlap probabilities are small
for all pairs. As summarized in the following proposition, the resulting predicted
multi-object density is in GLMB form.

Proposition 1. Let the current distribution of the predicted multi-object state X 4
be an LMB distribution with label space Ly and parameters from (4.1) and (4.2).
The predicted multi-object state conditioned on the event of being physically consistent
F using the consistency model from (4.6) then follows a GLMB distribution of the
form

T (X4 F) = A (X )wi (£(X4))[pr ()X, (4.7)
with
wi(l) = — IFIDwL )
= o FDE ) (48)

and where w. (L) is obtained by inserting the existence probabilities (4.1) into (3.26).

Proof. The numerator of (4.5) is
9(FIX)m (X 1) = g(FIL (X)) A (X4 ) (£(X 1)) [+ ()] F (4.9)

Integrating (4.9) yields the denominator
/g(]:|X+)7T+(X+)5X+

Z/g(ﬂﬁ (X4 )A (X )4 (£(X 1)) ()] F+6X ¢

= Z (FlJ)yw(J {/P+($+a')d$+r

JelLy

= 3 g(Flys () (4.10)

JEL,
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where the second equality follows from applying Lemma 3 from [VV13]. Inserting
(4.9) and (4.10) into (4.5) yields (4.7) and (4.8). O

The formulation (4.6) makes the assumption that the overlap probability po (¢, ;)
is a function of the labels of the involved objects and does not depend on their state.
This assumption is crucial for finding a simple analytical solution for computing the
denominator (4.10) which avoids full consideration of the state uncertainties and the
accompanying complexity. However, the vehicle states certainly play a central role
in determining the overlap of two vehicles and therefore, the approximate overlap
probability

1, it A@Y)nAE) £0
i i) = ’ + + 4.11
polti ;) { 0, otherwise ( )

is chosen. It uses a function A(x) which returns the occupied area of a vehicle with
state x and passes the expected values of the prior state distributions from (4.2)

7 = Ep{ («)] (4.12)

to this function. These expected values are indexed by the vehicle labels, can be
calculated beforehand, and are not dependent on particular object states in X ;.
Of course, the approximation of the actual states by the expected value introduces
errors if the state density is rather broad. In such situations it may be the case
that certain vehicle state combinations which either cause or avoid an overlap are
neglected.

As a result, the two prediction steps output a prior multi-object state distribution
which is in GLMB form. In contrast to the standard multi-object transition model
that is used in the LMB and extended object LMB filters and which predicts objects
independently, the check for physical consistency introduces object dependencies.
Multi-object hypotheses with overlapping vehicles (in terms of their mean states)
are excluded. Thus, some vehicles may only exist in multi-object hypotheses that do
not contain another overlapping vehicle or vice versa.

4.3.2 Sensor Modules

The sensor modules receive the predicted GLMB distribution and comprise all pro-
cessing steps that involve sensor measurements or are sensor-specific. This includes
computing the posterior GLMB distribution based on the received measurements, ini-
tializing new object hypotheses, and approximating the posterior GLMB distribution
by an LMB distribution.
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The computation of the posterior GLMB distribution in the update step implements
(3.13) and strongly depends on the multi-object measurement model. This is
particularly the case as this thesis avoids using a fixed multi-object likelihood model
and argues that different formulations may be appropriate for the different sensor
types. Therefore, the ability to include different multi-object measurement models is
crucial and the placement of the entire multi-object measurement model into the
sensor modules provides the necessary flexibility.

As initially proposed in [RVVD14] for the LMB filter, the posterior GLMB distribu-
tion is reduced to a posterior LMB distribution in the approximation step. Thus, a
combinatorial explosion of GLMB multi-object hypotheses over time is avoided. For
this purpose, the approximation scheme from Section 3.3.3 is used. As the set of
multi-object hypotheses depends on the chosen multi-object measurement model,
the resulting approximation equations slightly differ for the sensor modules. The
posterior LMB distribution then contains multiple vehicle hypotheses from the label
space L with updated state densities and existence probabilities.

Apart from the posterior LMB distribution, the sensor modules output a birth density
which is also in LMB form and comprises new vehicle hypotheses. The initialization
routine is again sensor-dependent and only implemented for the lidar and radar
modules. The common rationale is that objects are initialized for all measurements
which have not considerably contributed to updating an existing vehicle but which
indicate a possible vehicle. All new vehicle hypotheses receive labels from the label

space B, an initial existence probability rg), and an initial state distribution pg) (x).

Thus, the parameter set of the birth density is wp = {(rg),pg) ())}een-

More detailed information about the measurement models used in the respective
sensor modules are presented in Chapter 5 and Chapter 6 provides implementation
details for the initialization routines.

4.3.3 Track Management

After the posterior LMB density and birth density have been transmitted by the
sensor module, the track management step post-processes the posterior density by
triggering resampling procedures if necessary and pruning object hypotheses with
low existence probabilities from the density. This results the posterior label space L
which excludes the pruned labels. The posterior multi-object density is then output
and used to obtain estimates for the cardinality and each vehicle’s state.

Before passing the multi-object distribution to the next prediction step, the birth
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density is appended to the posterior LMB distribution. Thus, the label spaces of
both distributions, i.e. I. and B, which comprise the present vehicle hypotheses are
combined. This leads to the augmented prior label space L, = L UB that is used in
the next iteration.



Chapter 5

Extended Object Measurement
Models

Extended object measurement models that are tailored to the measurement principles
of the different sensors are the core components of the sensor modules. This chapter
describes the measurement models that were developed for radar, lidar, and semantic
labeling data. The chapter starts by introducing the lidar measurement model in
Section 5.1 and then continues to present the measurement models for the semantic
labeling module in Section 5.2 and the radar sensors in Section 5.3.

5.1 Lidar Measurement Model

As presented in Section 3.3.4, most extended object filters that are based on finite set
statistics (FISST) utilize a generalization of the standard multi-object measurement
model, which assumes that objects are detected with a certain probability of detection
and, if detected, independently generate sets of measurements. Filters that have
been derived using this measurement model have been widely used for lidar-based
tracking in conjunction with different extended object models; see for example
[GLO11; GRMS14; HSRD16; MBMW17; SADD14a]. To make the model applicable,
all positive returns from the laser rays are collected and treated as a set of detection-
type measurements.

This practice discards all negative information that is contained in the measurements
that did not yield a return, i.e. information about the absence of objects as discussed
in Section 4.1.2. Yet, the use of negative information may convey additional infor-
mation and the benefits have been studied in a variety of tracking applications, e.g.
[Koc04]. The standard extended object measurement model additionally neglects
the fact that the sensor scans the environment in a predefined pattern and therefore



68 Extended Object Measurement Models

yvc

Ego-Vehicle

Figure 5.1: Schematic illustration of lidar measurements and the sensor
coordinate (SC) system

provides a constant number of measurements in each laser scan. Furthermore, the
measurement process depends on object constellations, for example in cases where
one object occludes another. Consequently, objects do not generate measurements
independently.

In contrast to the mentioned approaches, the goal of the lidar measurement model
developed in this thesis is to accurately model the measurement process and to be
able to exploit the known scan pattern as well as knowledge about the absence of
objects. Therefore, a ray-based extended object model similar to [PT09] is combined
with a separable likelihood approach for the multi-object portion. Preliminary results
on this approach have been presented in the prior publications [SRD16; SRD17].

It is assumed that the lidar sensor operates with a single layer and therefore yields
a 2D scan of the environment with known azimuth angle pattern, as illustrated in
Fig. 5.1. For each ray, the sensor either provides a distance measurement z; if it
receives a return or the information that no object is present, i.e. z; = 3. As the
number of rays m is fixed, all measurements are combined in the measurement vector
2= 21, 2m]T.

5.1.1 Multi-Object Measurement Model

The predefined angular pattern of lidar measurements is very similar to the pixel
patterns of images where the number of pixels is also constant and the angular region
that a pixel covers is known. For such image tracking tasks, Vo et al. [VVPS10]
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developed the separable likelihood model for FISST-based multi-object tracking.
It works on a measurement vector instead of the classical measurement set that is
assumed in the standard FISST literature. Different applications of the separable
likelihood model to real-world image data were demonstrated in [HVV13; HVVS12].
The similarity of the measurement patterns makes the separable likelihood model a
natural candidate for incorporating lidar data in a multi-object tracking framework.

The following assumptions constitute the original separable likelihood model:

1. The indices of measurements that are affected by an object can be computed
for a given object state x and are denoted by the set T'(x).

2. Objects are separable in the measurement space. That is, T(xz) N T(x’) =0
holds for two distinct objects with labels £ # ¢'.

3. The measurement likelihood of a single measurement z; is

1) = | wilzile), ieT(x)
k) ={ S ST (5.1)

where @;(z;|x) is the foreground likelihood that comes into effect if the mea-
surement is affected by an object and ;(z;) is the background likelihood.

4. The ray likelihoods are (conditionally) independent and the overall likelihood
of the measurement vector z is thus

0= (11 I w0 T ). 62

zEX icT(x) i¢Uzex T(x)

Here, the first term multiplies all foreground likelihoods by iterating over all
indices that are contained in any 7'(x) and the second term multiplies the
remaining rays’ background likelihoods, as they were not affected by any object.

The assumption of separability in the measurement space (i.e. Assumption 2) is
paramount for being able to compute independent and efficient object updates. It
rules out any uncertainty in associating measurements to different objects and states
that objects do not interfere in the measurement process. This assumption is valid
in the initial tracking problem from [VVPS10]. It assumes that multiple extended
objects, which cannot overlap, move in a common plane. This plane is evenly split
and covered by the image pixels. As each pixel covers a particular portion of the
plane and objects do not overlap, it can only be affected by a single object. See
Fig. 5.2a for an illustration.
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Figure 5.2: Schematic illustrations of the separable likelihood model for pixel
and lidar measurements

In this work, the idea is to replace the original pixel measurements by distance
measurements from an automotive lidar sensor. See Fig. 5.2b for an illustration. A
measurement is considered affected by a vehicle, if the corresponding ray targets
it. When using this formulation, however, Assumption 2 is no longer valid. While
the objects are still extended and can physically not overlap, the lidar only provides
measurements from a perspective on the ground. As illustrated in Fig. 5.2b, several
vehicles may therefore cover the same azimuth range and some rays may be considered
affected by multiple vehicles. Neglecting this violation and simply using rays for
multiple objects results in estimation errors in the number of objects. See the prior
publication [SRD16] for an example.

Therefore, this thesis extends the separable likelihood model by including an occlusion
model. The measurement index set 7T'(x) is made dependent on all present objects
and the affected rays are determined for each object considering possible occlusions
caused by other vehicles. If a ray hits two objects, it is only assigned to the
measurement index set of the front vehicle. Thus, the affected rays have to be
computed for each multi-object state hypothesis individually. To avoid additional
combinatorial complexity that arises from the uncertainty in the object state, the
occluded areas are again approximately computed from the prior mean states (4.12)
of the involved objects. As in the second prediction step in Section 4.3.1, these
mean values are indexed by the object labels and T'(x) is replaced by T (f(f)) where
the subscript I denotes the dependence on the set of present object labels I. The
process is illustrated in Fig. 5.3. Introducing this procedure allows the multi-object
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Figure 5.3: Computing the affected rays with the new occlusion model for
different multi-object state hypotheses with label set I

measurement model to handle occlusion situations inherently and to only use the
information from rays that can actually see the vehicle. In case a vehicle is in full
occlusion, Ty (Z ¢ )) returns an empty set and the presence or absence of the vehicle
does not mﬂuence the multi-object measurement likelihood. Thus, the update does
not affect the vehicle and only the prediction step gradually decreases its existence
probability.

With the proposed modification, the multi-object likelihood from (5.2) becomes

( I 11 %(zim) ( 11 wi(zi)>~ (5.3)

2EX jeT. x) (2 (z)) i¢UmexT£<x)(i(p)

The first term still multiplies the likelihoods of all rays that were affected by an object
and are contained in one of the sets T (x) (¥ ¢ )) Yet, these sets are now depended

on the constellation of all present objects. Slmllarly, the second term multiplies the

background likelihood of all rays that are not contained in any Tz (x) (x&)) Equation

(5.3) can be rearranged to

9:1X) = f(2) T] 9200 (1), (5.4)

xzxeX

where the first term

=[] iz (5.5)
i=1
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contains the background likelihood of all rays in the scan. The second term multiplies

atzle) = ] ‘m (5.6)

ieT(z()

with I = £(X), for all objects. This function contains the ratio of foreground and
background likelihood of all rays that are affected by an object  and, hence, cancels
the respective background likelihoods from the background term f(z). Note that if
Tr(29) =0, gr(z|z) = 1.

In [PVVT15], Papi et al. demonstrated that generalized labeled multi-Bernoulli
(GLMB) distributions are a conjugate prior to the original separable likelihood model.
As the introduced modifications do not affect the line of argument that is made
in the proof, this is also true for the extended version. The posterior multi-object
density is obtained by inserting the multi-object likelihood from (5.4) to (5.6) and
the prior multi-object distribution from (4.7) and (4.8) into the multi-object Bayes
update (3.13). Following [PVV ™15, Proposition 1], the posterior multi-object density
is!

™ (X|2) = AX)w(L(X)) [pﬁ(x)(.p)}x . (5.7)
Substituting [ = £(X), w(L(X)) and pg(x)(,£|z) are
o) - e ()" (5.8)
S rer, wr () ()]
_ g1(z|z)py (=, 0)
pr(x,l)z) = —Ul,z(ﬁ) , (5.9)
with
nr.2(0) :/gj(z\x)p+(x7£) dz. (5.10)

In the original separable likelihood model, the update of the object state densities
is conducted independently for each object and the complexity of the multi-object
distribution does not grow over time. In contrast, the modified separable likelihood
model results in multiple state densities for a single object due to the different
possible object constellations, as indicated by the index I in (5.9) and (5.10). Note,
however, that the likelihoods of individual measurements only have to be computed
once for each object and can then be assembled using (5.6) for the different index

1This formulation of a GLMB distribution slightly extends the original definition which does not
admit state densities that are indexed by the labels of the multi-object state £ (X). Yet, it was
chosen for notational simplicity. In fact, an equivalent formulation using the standard sum over
multiple realizations could be constructed and used instead.
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sets. Also, the multiple state densities are immediately combined to a single state
density in the labeled multi-Bernoulli (LMB) approximation step that follows the
update. See Section 5.1.3 for more details.

5.1.2 Lidar Ray Model

To complete the lidar measurement model, both the foreground and background
likelihoods in (5.6) need to be specified. For each ray, the measurement z; may
either take a continuous value in the interval between zero and the maximum range
of the lidar sensor zpax or it is set to # if the measurement did not yield a return.
Therefore, the background likelihood for rays that do not target a vehicle consists of
two parts and is given by

b)) = { e G.11)

PR, bgr /Zmax, otherwise

The probability of receiving a return pr e is set to 0.5 and a uniform density over
the interval from zero to the maximum sensor range zy.x is used if a distance reading
is obtained. Thus, the background model is made agnostic with regards to the events
of receiving or not receiving a return and to where a distance measurement occurred.

The likelihoods for rays that target a vehicle are determined by using a ray tracing
approach that is strongly based on [PT09]. It employs a vehicle template which
is constructed using three rectangles and depicted in Fig. 5.4. The two inner
rectangles confine the vehicle surface where measurements are expected to occur.
The outer rectangle limits the template and defines a free space around the vehicle
in combination with the middle rectangle. As vehicles are assumed to be clearly
delimited objects, no other objects are expected in the free space.

The likelihood structure for rays that target a vehicle is similar to the background
model. It is given by

pilzle) = { PR, - Pj(zi|x), otherwise ° (5.12)

where pr ; again denotes the probability of receiving a return and p;(z;|z) is a
density over the possible distance values. The subscripts j € {1,2,3} indicate the
type of ray and allow a parameterization of both parts in dependence on the path
a ray takes through the vehicle template. Figure 5.4 shows that there are three
different paths depending on which rectangles the ray intersects.

Type-1 rays only pass through the free space of the template and do not hit the
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Figure 5.4: Vehicle template for the single object lidar model. Adapted and
reprinted with permission from [SRD16] ©2016 IEEE.

vehicle directly. They are used to ensure that the vehicle is clearly delimited and
that no measurement falls in the free space area next to the vehicle. The probability
of receiving a return is set to pr,1 = 0.5 and therefore no preference is given to either
event. If a distance measurement is received, its likelihood for falling in the free space
area is low whereas the remainder of the density over the distance measurements
p1(zi|z) does not favor particular values. See Fig. 5.5a for an illustration.

Type-2 rays pass the free space and the outer surface areas. They do not intersect
with the inner rectangle and therefore do not penetrate the interior. The distance
density pa(z|z) (see Fig. 5.5b) favors measurements on the vehicle surface and
penalizes measurements in the free space. To account for measurements from small
objects in front of the vehicle, e.g. pedestrians or bicycles, which are not handled
in the occlusion routine of the multi-object likelihood, measurements in front of
the vehicle template receive a moderate likelihood. Because the rectangular shape
of the surface is only an approximation of the actual vehicle contour, it cannot be
ensured that rays passing the outer surface area actually hit the vehicle. Therefore,
measurements behind the template are not penalized heavily and the probability of
receiving a return is set to a value slightly larger than in the background model, i.e
pr,2(zs) > 0.5. The exact value is furthermore made dependent on the distance to
the vehicle surface zg, to account for a decreasing probability of receiving a return
with increasing distance.

Type-3 rays hit the vehicle body directly. The distance density ps(z;|z) (see Fig. 5.5¢)
is very similar to that of type-2 rays but differs in two aspects: As laser rays are not
able to penetrate the vehicle body, except for windows, measurements behind the
vehicle surface are very unlikely and are assigned a low likelihood. Also, the density
favors measurements close to the surface center in order to achieve an accurate
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angular alignment. The probability of receiving a return is set to large values, i.e
pr,3(zs) > pr2(zs) > 0.5 and is again made dependent on the distance to the

vehicle surface.

5.1.3 Approximation

In the approximation step, the posterior GLMB distribution from (5.7) to (5.10) is

approximated by an LMB distribution with the new parameters
P = Z w()1 (¢) (5.13)
ICLy
and 1
pO(z) = G} > w1 (O)pr(x,£]2). (5.14)

ICLy
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Figure 5.6: Illustration of scene labeling measurements
5.2 Scene Labeling Measurement Model

As a second measurement model, this thesis proposes a simple multi-object mea-
surement model that allows exploiting the additional semantic information from
scene labeled images for improving the vehicle tracking accuracy. The model was
first published in the prior publication [SGRD17]. Similar to lidar data, the labeled
images can be interpreted as a measurement vector with a fixed number of entries
z = |z1,-..,2m] by simply concatenating all m pixel labels. Each vector entry z; is
a binary variable which takes the value 1 if the pixel is labeled with the vehicle class
or 0 if it belongs to any other class; see Fig. 5.6 for an illustration.

As the measurement vector has again a fixed size, the separable likelihood model from
Section 5.1.1 is also used as multi-object likelihood for the scene labeling module.
Bernoulli distributions (cf. (2.4)) over the binary measurements z; are chosen for
the foreground and background likelihood functions ¢;(z;|) and ;(z;), respectively.
By adapting the Bernoulli distribution parameters r, and ry, one can tune the
likelihood function to the performance of the used scene labeling approach. The
parameters indicate, how likely it is to obtain a vehicle class label for a pixel if the
pixel actually shows a vehicle or if the pixel shows background. Note, however, that
the separable likelihood model makes the important assumption of (conditionally)
independent measurements. As this independence is not given in many scene labeling
approaches, the Bernoulli parameters may need to be chosen conservatively. See
Section 6.6.1 for a more detailed discussion.

To obtain all pixels T'(x) that are covered by a vehicle, a pixel mask is constructed
using a simplified 3D vehicle model. It consists of a mesh with 18 points that
roughly describe the shape of sedan. The points are given in a normalized object
coordinate system and the model can therefore be scaled to different vehicle sizes.
Figure 5.7a illustrates an exemplary vehicle model scaled to a length of 5m, a width
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Figure 5.7: Mask generation for the scene labeling model [SGRD17]

of 1.8 m, and a height of 1.5m. By projecting the 3D point cloud into the image
plane and computing the convex hull around the projected points, a vehicle mask
which indicates all relevant pixels T'(x) is constructed. See Fig. 5.7b. Determining
the convex hull is computationally efficient but only provides approximate masks
as the actual vehicle contour is not convex for certain aspect angles. As the intent
of the 3D model is to only provide a coarse vehicle shape that works for different
vehicle types and not to replicate the contour of a specific vehicle in all detail, this
simplification is tolerable.

Due to the typical mounting position of cameras, vehicles are not generally separable
in the measurement space and vehicles may occlude each other. Therefore, Assump-
tion 2 of the separable likelihood model from Section 5.1.1 is again not satisfied and
countermeasures need to be implemented to avoid estimation errors. As in the lidar
measurement model, the scene labeling model therefore handles occlusion directly.
The pixel masks are computed in dependence on the objects that are present in
the multi-object state and on the expected value of the predicted states. Therefore,
the set of affected measurements for a particular object T'(x) is again replaced by
Tj(si’gf)) and the multi-object likelihood is the same as the lidar model from (5.3),
(5.5), and (5.6). Consequently, the updated GLMB distribution is given by (5.7)
to (5.10) and the approximation equations are also identical to those of the lidar
sensor module in (5.13) and (5.14).

5.3 Radar Measurement Model

The formulation of the radar model is based on the assumption of detection-type
radar data, as previously stated in Section 4.1.1. That is, each sensor outputs a set of
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radar detections Z = {z(l), e z(m)} C Z which may originate from actual vehicles,
are caused by sensor noise, or stem from irrelevant objects such as buildings, poles,
or guard rails. In contrast to the other sensors, the number of measurements m
typically varies from cycle to cycle. Each detection z(*) = [d() o), vg)]T comprises
the measured range d¥, azimuth angle a9, and Doppler velocity vg). A schematic
illustration is shown in Fig. 5.8.

The Doppler velocity measures the radial speed of an object relative to the radar
sensor. It is computed by projecting the object velocity vector onto the line of sight
from the sensor to the measurement location. For the vehicle model from Section 4.2,
the object velocity at the location of the measurement is

veos(p) —w (d(i) sin (o) —yr

5.15
vsin(p) +w (d(i) cos (aV) —zp (5:15)

vo =

It is composed of the translational portion from the longitudinal speed of the vehicle
and a rotational portion due to the yaw rate. The translational portion is equal for
all possible measurement locations, whereas the rotational portion depends on the
lever arm between the center of motion, i.e. the center of the rear axle, and the
measurement location. The radial component of the object velocity then equals the
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Doppler velocity and is given by

T |cos (a®)

UD =0 lsin (a(i))l

= cos (@) (v cos(p) —w (d(i) sin (@) — yR>>

+ sin (a(i)) (U sin(p) +w (d(i) cos (a(i)) - xR))

= cos (o) (vecos(p) +wyr) +sin (V) (vsin(p) — wag) . (5.16)
— —
SD,1 SD,2

From (5.16), there are important observations to be made: First, the Doppler
velocity only depends on the azimuth angle of the measurement and not on the
range. Secondly, all five kinematic states of the vehicle affect the Doppler velocity.
Thirdly, there is a considerable ambiguity due to the radial measurement principle
and the kinematic state cannot be fully inferred from a single measurement. This
affirms the problem of preprocessing routines when dealing with a single or few
measurements as in Fig. 4.1a. Even if multiple measurements with different azimuth
angles a(?) are available, the equation does not allow for determining the individual
states’ values but only the values of the two terms sp ; and sp 2. Also note that the
above equation is only valid for the rigid parts of the vehicle body and it does not
model deviating Doppler measurements from rotating wheels.

In the following, the multi-object portion for the radar measurement models is first
presented. Then, two different single object models which can be incorporated in
the multi-object likelihood are proposed.

5.3.1 Multi-Object Measurement Model

The detection-type nature of radar measurements and their mathematical representa-
tion as random finite set (RFS) make the generalization of the standard multi-object
likelihood model to the extended object problem a suitable formulation for the
multi-object portion of the measurement model. As discussed in Section 3.4.2, it
extends the standard multi-object likelihood by allowing for multiple measurements
from a single object. Hence, the underlying assumptions are (cf. Section 3.3.4)

1. An object may be detected by the sensor with the detection probability
pp(x) or it is not detected (misdetection) with complementary probability

qD(m) =1 —pD(:I:).
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2. If detected, the object gives rise to a set of measurements Zo which is dis-
tributed according to g(Zo|x).

3. The measurement set Z is a union of object and clutter measurements and
the clutter measurements follow a Poisson RFS go(-) with intensity function
k(z) = Aepc(z). That is, the expected number of clutter measurements is A¢
and they are independent and identically distributed (i.i.d.) according to the
clutter density pc(z).

4. Each object measurement originates from a single object only and the object
and clutter measurements are (conditionally) independent.

These assumptions yield the formulas of the multi-object measurement model
[BRGT16]
|X|+1 x
9(ZIX)=9c(2) > > [%{(Z)('W)} (5.17)

i=1 U(Z)ePi(Z)

60 (U(2))
with
p@D9Usny(D)T8)  gp) <
Yz (z, 0)0) = k() o7 0> : (5.18)
ap(z,0), 0(0) =0
and
9o(Z) = e [r(-)])7. (5.19)

Essentially, (5.17) determines the likelihood of the obtained measurements by sum-
ming over all variants of how the measurement set could have been composed and how
well the measurements match the object or clutter models. For this purpose, the first
sum iterates over the different hypotheses of how many objects from the multi-object
state were actually detected. Then, different partition and association variants are
constructed in the second sum. Each measurement partition U(Z) separates the
measurement set into mutually exclusive clusters. One cluster contains all clutter
measurements and each of the remaining clusters contains the measurements from a
particular object. The set of all partitions that contain 4 clusters and therefore allow
for the detection of i — 1 objects is denoted by P;(Z). For a particular partition,
the association mapping 0 : £(X) — {0,1,...,|U(Z)|} then assigns the objects to
the measurement partitions or the case of misdetection under the assumption that
each cluster in the partition may only be assigned to one object. That is, an object
assigned to the index 0 is considered not detected and 6(¢) = 6(¢") > 0 implies £ = ¢'.
The space of all association mappings for a given partition is denoted by ©(U(Z)).

The last term in (5.17) evaluates the measurement likelihood (5.18) for each object
under the assumption of a given partition and association. If an object is detected,
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i.e. 8(£) > 0, the single object likelihood
9(Zolx,t) = e [Arg(-|a)) % (5.20)

is computed for the assigned cluster Zp = Uy(y)(Z). Here, the number of measure-
ments is assumed to be Poisson distributed with expected value Ay. At the same
time, the denominator of (5.18) cancels the associated measurements from the overall
clutter term (5.19).

As shown in [BRG'16], GLMB densities are a conjugate prior to the multi-object
measurement model from (5.17) to (5.19). For the prior GLMB distribution from
(4.7) and (4.8), the posterior GLMB density is [BRG116]

|X|+1
T(X12)=AX) Y Y wun(L(X)10) [p(U(2),0)] (5.21)
i=1 u(z)ePi(2)
00 U(2))
with
I
w4 (I) [Uu(z)('|9)}
|J]+1 J’
Y Y e o)

JELy =1y 2)ep;i(2)
0e0U(Z))

wy(z)(110) = (5.22)

p(, (U(Z),0) = p+(x+,n2:p;(é|)9(;:+,e|9)’ (5.23)

and
Mu(z)(€)0) = /P+($+,E)¢U(Z)($+7£\9) dz. (5.24)

As a consequence of the multi-object likelihood, the posterior GLMB now contains
distinct multi-object hypotheses for the different partitioning and association variants.

5.3.2 Direct Scattering Model

As discussed in Section 4.1.1, the lack of a clear geometric structure and the ambiguity
in the Doppler measurements poses a challenge for preprocessing routines, especially
in the case of few measurements. As this inverse path from measurements to a
vehicle state hypothesis is difficult, the idea of the direct scattering model is to
provide a simple extended object measurement model that uses the direct path and
defines where measurements are likely for a given vehicle state. The approach is
similar to the single object model used for lidar sensors and transfers the basic idea
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to the radar realm. At the same time, the goal is a measurement model which is
particularly tailored to the application of radar-based vehicle tracking and overcomes
the limitations of existing approaches that were mentioned in Section 4.1.1. It fully
incorporates the available Doppler information, uses a shape that is suitable for
vehicles, and avoids the association problem and detailed knowledge about reflection
characteristics that is required for reflection point models. Also, it is not restricted
to particular traffic situations and is designed to work for cross-traffic or turning
vehicles as well as ambiguous situations. First versions of the direct scattering model
were presented in the master’s thesis [Knil5] and in the prior publications to this
thesis [KSD16; SKRD16].

In the direct scattering model, the likelihood function g(z|z) that is required in
(5.20) is factored into three distinct densities for the three measurement quantities,

9(zlz) = g(d, o, vp|z) = g(vpla, )g(d]e, x)g(alz). (5.25)

The azimuth density g(«|x) models which azimuth angles are likely for a given vehicle
state, and the range density g(d|a, x) as well as the Doppler density g(vp|a, ) model
how likely particular range and Doppler measurements are, given the vehicle state
and the azimuth angle of the measurement.

To determine the azimuth and range densities, the direct scattering model uses a
rectangular vehicle model as depicted in Fig. 5.8. As shown in Fig. 5.9, the azimuth
density is simply constructed by generating a trapezoidal density over the azimuth
angle interval that is covered by the rectangle. That is, a uniform density is used for
azimuth measurements that lie in between the azimuth angles of the most right and
most left corner of the rectangle. The density values linearly decrease in a transition
region to both sides of the rectangle to allow for measurements at azimuth angles
slightly to the right and left of the rectangle. Outside the transition region, the
likelihood is set to 0 as measurements that originate from the vehicle are expected
close to the azimuth interval covered by the rectangle.

For obtaining the range density g(d|«, ), the rectangular vehicle model is intersected
with an idealized radar ray with the given azimuth angle a. See Fig. 5.10 for an
illustration. If a ray targets the vehicle directly, the two intersection distances
with the rectangle, d;; and dj2, are computed. The density over the possible
distance measurements is then constructed using a Gaussian mixture with three
components. One component is centered at dy i, one component at the center of the
intersection interval, and the third component at dy ;. The mixture weights and
standard deviations are chosen such that measurements on the surface facing the
sensor receive the highest likelihood while measurements inside the rectangle and
on the averted surface receive lower likelihoods. Still, the model allows for such
measurements as they may be caused from parts of the underbody or the wheels
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Figure 5.10: Construction of the range density g(d|a, x) in the direct scat-
tering model. Adapted an reprinted with permission from
[SKRD16] ©2016 IEEE.

on the far side. The distance density for rays that do not target the rectangle is
modeled using a single Gaussian distribution centered at the projection point of
the closest corner on the ray. The standard deviation of the Gaussian is linearly
increased with the distance to the rectangle which results in a continuous transition
towards a uniform density.

Lastly, the Doppler density g(vp|a, ) for a given vehicle state and azimuth angle is
a Gaussian distribution with the mean value set to the expected Doppler velocity as
given by (5.16) and an appropriate standard deviation.
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When using the direct scattering model, the clutter density pc(z) from the multi-
object measurement model is set to a uniform distribution over the azimuth and
range and a mixture of a uniform and a Gaussian density for the Doppler values.
The Gaussian density is centered at a Doppler value of zero to emphasize that most
clutter measurements stem from static objects.

To avoid overly complex computations, the direct scattering model uses rather
simplified ray and rectangle models to determine expected measurement values. As
a consequence, modeling errors are introduced. In practice, for example, a radar
sensor may not be able to resolve reflections from different parts of the vehicle
body and output merged detections that contain merged distance or Doppler values.
Additionally, the actual vehicle shape may deviate from the rectangular form. It is
therefore advisable to select standard deviations for the involved densities that are
larger than the nominal sensor specifications to account for these simplifications.

5.3.3 Variational Radar Model

The major issue of existing radar measurement models from the literature as well as
the proposed direct scattering model is that they are handcrafted. The models are
either based on rather restrictive assumptions that make designing the model more
convenient (e.g. by assuming an elliptical object shape) or use a more elaborate
description at the expense of a certain modeling and implementation effort (e.g.
reflection center models or the direct scattering model). Yet, the models still provide
a simplified representation of the measurement likelihood and do not necessarily
represent the actual distribution of the measurements. Also, manual adaption and
tuning is necessary if certain measurement effects are to be included in the existing
model. For example, none of the discussed models considers measurements from
rotating wheels with strongly varying Doppler measurements and incorporating this
effect would require additional modifications.

Despite for tracking, radar measurement models are also vital for simulation appli-
cations in which the goal is to simulate radar data, e.g. for testing purposes. For
instance, reflection center models for simulation were derived in [SBW08] as well as
[BY06] and the latter inspired the development of the reflection point models from
[GSDBO7; HSSS12] for tracking. Recently, there have been publications that pursue
a more data-driven approach. A statistical study of vehicle radar measurement
characteristics in dependence on the aspect angle was for example conducted in
[BML*17] and a simulation model for generating radar intensity grids based on
deep learning has been presented in [WHWK17]. Also, [HHR*15; HHR*16] propose
a simulation model based on kernel methods. Thus, a probabilistic measurement
model that is constructed from previous measurement examples is achieved.
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This thesis proposes a second radar-based vehicle model, the variational radar model,
that transfers the idea of using machine learning techniques to tracking. By directly
inferring the model from actual radar data, the goal is to overcome the shortcomings
of previous approaches, i.e. to avoid manual engineering effort, to automatically
capture different sensor effects, and to obtain a probabilistic model that is close to
the true measurement process. The variational radar model was first presented in
the prior publication [SD19].

The general underlying idea is to find the likelihood function g(z|z) that is required
in (5.20) as a conditional density of the joint distribution p(z,x). That is,

~p(
9(z|lz) = @) (5.26)

where the marginal distribution p(z) can be obtained by integrating p(z,z) over
z. The joint distribution p(z,z) is learned from actual pairs of vehicle states and
corresponding measurements using the variational Gaussian mixture (VGM) approach
for density estimation from Section 2.4.2. This idea is similar to that of [HHR*15;
HHR™16] but differs in the way the joint density is learned. Instead of using a
kernel-based approach that requires storing all training data and online look-up
operations, the VGM method outputs a more compact analytical Student’s t-mixture
representation. The resulting density is used as a spatial distribution model which
can be easily incorporated into the tracking framework. Note that the same method
could also be used to form a reflection point model if one interprets the mixture
component centers as reflection points and the corresponding Student’s t-densities
as measurement noise. Yet, measurements would then have to be associated to
particular reflection points during update. This is completely avoided by the spatial
distribution approach. As discussed in the following, however, some modifications of
this general principle are necessary to facilitate a practical implementation.

Dimension Reduction

As a consequence of the three-dimensional measurement space and the seven-
dimensional state space, the combination of both spaces, over which the joint
density p(z,x) is defined, is ten-dimensional. To be able to capture all basic relation-
ships between the vehicle state and the radar measurements, VGMs require data
from all relevant portions of this joint state, despite their ability to generalize to
a certain extent. That is, recordings of vehicles at different locations in the sensor
field of view (FOV), with different orientations, speeds, yaw rates, and sizes would
be necessary to learn typical measurement locations and to capture the nonlinear
relationship between vehicle motion and Doppler velocity.
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By reducing the dimension of the joint space, the amount of necessary training data
can be considerably decreased and the training process is simplified. Therefore,
both the measurements and the vehicle state are preprocessed using transformation
functions and the joint density is then learned over the reduced space. The nonlinear
transformation function for measurements is

Z; ijoc/b
2=z = f.x,2) = | zy0c/a |, (5.27)
Zé vp — @D

where ¥p is the expected Doppler velocity given by (5.16) and z, oc as well as
zy,0oc are the Cartesian positions of the measurement in the object coordinate
system. Essentially, this function transforms all measurements to a normalized
object coordinate system and computes the deviation of the Doppler measurement
from the predicted value. Moreover, the vehicle state is transformed using

1’ = f.(x) = p — atan2(ygr, TR). (5.28)

Hence, it is reduced to a quantity z’ that approximately equals the aspect angle
under which the sensor sees the vehicle. Note that the compact notation of the
transformation functions conceals that their computation involves all vehicle states.
The yaw angle not only enters through (5.28) but is, in combination with the vehicle
position, also necessary in (5.27) for transforming the measurements to the object
coordinate system. Additionally, all states from the kinematic portion of the state
vector are used for computing the expected Doppler velocity.

While this dimension reduction procedure is manually designed, it can be viewed
as a means to incorporate prior knowledge about the sensor behavior. Subtracting
the expected Doppler velocity avoids the necessity of relearning this well-known but
nonlinear effect. Additionally, transforming measurements to a normalized object
coordinate system implies the insight that the relative location of measurements
does not strongly depend on the position of the vehicle in the FOV but rather on
the aspect angle under which the sensor sees the vehicle. Interesting improvements
of the proposed approach that have, however, not been tested in this thesis, would
be to include the distance to the vehicle as additional variable or to use dimension
reduction techniques such as [TSLO00] that discover suitable manifolds themselves.

Computing the Measurement Likelihood

After dimension reduction, the VGM approach is applied to the set of training data
Zp where each individual training data point is given by 200 = /()T 2/()]T This
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Figure 5.11: Schematic illustration of the variational radar model using the
location of measurements as marginal example: The likelihood
function is computed for an exemplary rear perspective by
conditioning the joint density on the aspect angle x’ = 0.

yields a predictive density p(Z’,%'|Zp) in the form of a Student’s t-mixture (see
(2.41)). In the following, the dependence on the training data and the tilde for
indicating predicted values is omitted for brevity.

Determining the likelihood of radar measurements then involves two steps. First,
the measurements need to be transformed to the reduced representation using (5.27)
and (5.28). This involves the full object state and implicitly considers several aspects
such as the distance to the vehicle or its speed and yaw rate. Afterwards, the
likelihood function for the relative position of the measurements and the Doppler
error conditioned on the aspect angle g(z’|z’) is computed as in (5.26), i.e. by
dividing through the marginal density of the aspect angle. See Appendix A for the
corresponding equations. The process is illustrated in Fig. 5.11 for the example of a
rear perspective (i.e. 2/ = 0). For easy visualization, the illustration only depicts a
schematic of the marginal density over the location of the measurements.

Incorporating the Variational Radar Model in the Multi-Object
Likelihood

As a consequence of dimension reduction, the measurement likelihood g(z2’|z’) is
a density over a transformed measurement space that for instance defines the
measurement location using Cartesian instead of polar coordinates. Yet, the multi-
object likelihood model defines a density for the measurement set Z which is a
finite subset of the original measurement space. The involved densities for single
measurements therefore need to be defined over the original state space and simply
inserting g(z'|z’") into (5.20) and subsequently into (5.18) is mathematically incorrect.
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To illustrate the direct consequences, the ratio
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that is computed in (5.18) for Zp = Uy(;)(Z) in case an object has been associated
with measurements, is reformulated. The right hand side directly reveals that the
ratio is composed of two factors. One which is only influenced by the number
of associated measurements and another factor which compares how well each
measurement fits to the object and clutter likelihoods. If a density that is defined
over a different space was simply inserted, a meaningful comparison between object
and clutter measurements would be prohibited. Furthermore, the likelihoods of
different vehicles would be rendered incomparable as this is based on a consistent
comparison to the common clutter likelihood.

From the rules of computing derived distributions for transformed variables (see e.g.
[GTO08]), however, the identity

) (5.30)
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can be derived. It states that the ratio between object and clutter likelihood remains
equal if both densities are transformed using the same transformation function. Thus,
the ratio in (5.18) and (5.29) can be replaced by the ratio between the measurement
likelihood g(2’|z") from the VGM approach and the transformed clutter density
while concurrently ensuring proper comparisons between vehicle and clutter densities
as well as among different vehicles. The inverse transformation function f; (2, z)
which is required for deriving the identity does exist but is not defined at the location
of the sensor origin due to the ambiguity in transforming the origin to a polar
representation. Since measurements at the sensor origin are irrelevant in practical
applications, this pathological case is neglected. Also note that g(z'|x) = g(2'|2’) as
x contains all information that is encoded in the aspect angle x’.

To further simplify the computation of the likelihood ratio, this thesis avoids the
transformation of the clutter density from the original measurement space to the
reduced space. Instead, it is assumed that clutter measurements are uniformly
distributed over the Cartesian sensor coordinate system while the clutter density
for the Doppler values remains identical to that of the direct scattering model.
The transformation from a Cartesian sensor coordinate system to the normalized
object coordinate system only involves scaling the density by the factor a - b. This
factor originates from the scaling of the coordinate system by the vehicle size and is
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computed by evaluating the determinant of the inverse transformation function (cf.
(5.30)). As the overall clutter density go(Z) from (5.19) is canceled in the update
step of the multi-object Bayes filter and does not appear in the posterior GLMB
density, a transformation of this Cartesian clutter density to the original space is
not necessary.

5.3.4 Approximation

Due to the multiple partitioning and association hypotheses, there may be many
components in the posterior GLMB distribution from (5.21) to (5.24). The approxi-
mation step reduces these components to the simpler posterior LMB distribution
with parameters

[7]+1
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Chapter 6

Implementation and Evaluation

In this chapter, the proposed extended object models and the sensor fusion frame-
work are evaluated on experimental data. The chapter starts by presenting the
experimental set-up as well as the evaluation data and methods. Section 6.2 then
discusses the procedure for learning the variational radar model and the resulting
density. Afterwards, the chapter turns its attention to tracking and presents general
implementation details in Section 6.3, followed by an evaluation of radar-based and
lidar-based tracking in Section 6.4 and Section 6.5. Finally, Section 6.6 discusses the
performance of different sensor fusion variants including the radar, lidar and scene
labeling models.

6.1 Experimental Set-Up

Three different experimental vehicles were used for evaluation. One experimental
vehicle was used as ego-vehicle to record the sensor data and two reference vehicles
were deployed for generating ground truth data. The following section further details
the sensor set-ups of the three vehicles before the data itself is discussed subsequently.

6.1.1 Experimental Vehicles

The data for evaluation purposes is recorded with the experimental vehicle shown in
Fig. 6.1. It is an Mercedes E-Class S212 and the vehicle is equipped with several
proprioceptive as well as exteroceptive sensors. An illustration of the fields of view
(FOVs) of the exteroceptive sensors is provided in Fig. 6.2.

Four short range radar sensors are mounted in the corners of the front and rear
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Figure 6.1: Experimental ego-vehicle (Photo: Elvira Eberhardt, Ulm Uni-

versity)
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Figure 6.2: Sensor FOVs of the experimental vehicle: front left (—), front

right( ), rear left (—), rear right (—) radar sensors, lidar (—),
and camera (—)
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bumpers. The FOV of each sensor has experimentally been determined to cover a
range of 43 m with an opening angle of about 170°. All radar sensors are rotated
to the sides by approximately 45° and hence cover the entire close-up range of the
vehicle. The areas directly in front, behind, and next to the ego-vehicle are covered
by two sensors, whereas small parts in between are only covered by a single sensor.
The radars operate in the 76 GHz band and use chirp sequence modulation (cf.
[Win16]). The azimuth angles are obtained by comparing the received signal from
multiple antennas using a monopulse approach (cf. [Win16]). Each sensor provides
20 scans per second which contain at most 64 radar detections.

The four-layer Ibeo Lux 2010 lidar is additionally mounted in the center of the front
bumper. The four scan layers are evenly spaced in the vertical direction and cover
an elevation angle range of 3.2°. As the intersection with the ground plane is rather
close to the ego-vehicle for the two lower layers, they are not used in this work and
are therefore not further considered. The sensor is configured to provide range scans
at a frequency of 12.5 Hz with an angular resolution of 0.5°. The azimuth angle
coverage of the two upper layers is asymmetric and extends from —50° to the left to
35° to the right of the sensor axis. For each ray, the sensor is able to resolve three
echoes. This can be advantageous if there are several objects at different distances
within the vertical opening angle of the beam.

Moreover, a Baumer SXG21 camera with a charge-coupled device (CCD) imager
is mounted behind the windshield. It provides images at a frequency of 15Hz
and a resolution of 1920x1080 pixels. Since it is equipped with a wide angle lens,
the opening angle in azimuth direction is approximately 105°. However, the scene
labeling data is only available for a portion of the entire image, as discussed in
Section 6.6.1. This leads to the approximately 97° opening angle that is illustrated
in Fig. 6.2.

To measure the ego-vehicle motion as well as its pose in a global coordinate system,
a GeneSys Automotive Dynamic Motion Analyzer (ADMA), which combines an
inertial measurement unit (IMU) and a differential global positioning system (DGPS),
is mounted as proprioceptive sensor. It yields measurements at a rate of 50 Hz and
in the best case reaches a root mean square accuracy in the position of up to 2 cm,
of up to 0.015° in the yaw angle, and 0.0083 m/s in the speed. The measurements
may, however, be less precise under imperfect conditions, e.g. if only few satellites
are available. The ADMA data is used to determine the motion of the ego-vehicle in
between measurements and to compute ground truth data (see below).

All sensors are calibrated with respect to the vehicle coordinate system of the ego-
vehicle and the transformations from and to the sensor coordinate systems are hence
known. As both the camera and the lidar sensor are triggered by external input
signals, the recording times of these sensors’ measurements are known relatively



94 Implementation and Evaluation

precisely. In contrast, the radar sensors are running freely and their average la-
tency caused by internal data processing and data transmission has been estimated
individually. The latencies are compensated for by adjusting the recording time
stamp.

In most of the experimental scenarios, two additional experimental vehicles serve as
target vehicles. These vehicles are a Mercedes E-Class S212 and a Mercedes C-Class
S205. Both are also equipped with a GeneSys ADMA IMU / DGPS system. All
ADMA systems as well as the vehicle computers are synchronized to the time of the
global positioning system (GPS). This allows for computing ground truth values for
the vehicle states by transforming the pose and motion of the reference vehicles into
the vehicle coordinate system of the ego-vehicle.

6.1.2 Experimental Data and Evaluation Methods

Four different data sets were recorded for evaluating the proposed tracking approach
on real-world data: a training data set for learning the variational radar model as
well as a single object data set, a multi-object data set, and data from a traffic
scenario on public roads. The training data set is solely used for obtaining the
variational radar model and is discussed in more detail in Section 6.2. In contrast,
the remaining three data sets are used for assessing the tracking accuracy with
respect to different performance criteria.

The single and multi-object data sets were recorded on a closed test site using the
experimental ego-vehicle as well as the two reference vehicles. Therefore, precise
ground truth is available for the number of visible vehicles, i.e. the true cardinality,
and all vehicle states. The single object data set comprises ten different scenarios
that were recorded with the E-Class reference vehicle. They cover both typical traffic
situations such as cross-traffic, or turning and passing vehicles as well as two artificial
scenarios in which the reference vehicle drives a complex and dynamic figure eight
trajectory. The data set is used to assess the tracking accuracy for a single vehicle
in detail without the influence of other objects.

The multi-object data set contains nine different scenarios with both reference
vehicles. The scenarios emulate typical traffic situations such as various following
and passing scenes, oncoming traffic, and cross traffic with occlusion. Using this
data set, the accuracy of the cardinality estimate is evaluated and effects that are
caused by object dependencies are studied.

The public road scenario was recorded at a T-intersection in an urban setting.
It contains eleven different vehicles which range from small cars over sedans and
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Table 6.1: Duration of the evaluation data sets and the contained number
of measurement steps for each sensor type

Single Object ~ Multi-Object Real World Total
Data Set Data Set Scenario
Radar 16,956 17,491 2,280 36,727
Lidar 2,652 2,736 356 5,744
Scene Labeling 3,154 3,288 416 6,858
Duration 3min 32s 3min 39s 28.5s 7min 39s

convertibles to vans. Thus, this scenario is not limited to the reference vehicle types
and is used to illustrate the ability to generalize to other vehicles. Yet, no accurate
ground truth is available for this data. Instead the vehicle poses and dimensions
were manually labeled using the front lidar sensor of the ego-vehicle, which provides
the most accurate image of the environment. The labels are only available in the
lidar’s FOV, i.e. in front of the ego-vehicle.

Table 6.1 lists the number of measurement steps of each sensor type in the data
sets as well as the duration. Since the four radar sensors have the highest update
rate, the number of radar measurement steps is considerably larger than those of
the other sensors.

To assess the performance of the tracking framework, estimates are extracted for
each object state as well as the cardinality in a minimum mean square error (MMSE)
sense. Thus, both the single object accuracy and multi-object performance are
considered. The expected values of the single object densities are computed to obtain
MMSE estimates of the vehicle states and the root mean squared errors (RMSEs)
are computed for each state by comparing the estimates to the ground truth. In
some scenarios, the reference vehicles are at standstill and then start to slowly move.
In such cases the initialization routines are not always able to pick up the correct
orientation of motion. As it is assumed that vehicles only move in the forward
direction, it may therefore happen that vehicles are initialized with an orientation
offset of 180°. To avoid that this speed estimation error affects the orientation and
position estimates, the evaluation considers both orientation hypotheses and selects
the correct one for cases where the ground truth speed is below 1.5m/s.

The cardinality estimate is also obtained in a MMSE sense by computing the expected
value of the posterior cardinality distribution. It is compared to the ground truth
cardinality which is obtained by counting the reference vehicles that are in the FOV
of the used sensors and have a speed above 1m/s. This constraint is added since
the tracking algorithm only initializes moving vehicles (cf. Sections 6.4.1 and 6.5.1).
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To mitigate random effects caused by the particle implementation that is going to
be introduced in Section 6.3.1, the scenarios are run multiple times. All numerical
results are given as average values over all Monte Carlo runs, whereas the figures
show—unless otherwise stated—the results of one exemplary run.

6.2 Learning the Variational Radar Model

Before evaluating the actual tracking performance on the presented data sets, this
section first discusses the procedure, the data set, and settings that were used for
learning the variational radar model. Also, the resulting model is illustrated and
discussed.

6.2.1 Data Set

One of the major issues in machine learning is obtaining the training data and
annotating the data with ground truth values or labels. To avoid extensive manual
effort, the availability of experimental vehicles with highly precise IMU/DGPS
systems was exploited in this work. The Mercedes E-Class S212 reference vehicle
was recorded using the four short range radar sensors of the ego-vehicle and the
training data was generated by automatically associating the radar measurements
with the ground truth states of the reference vehicle. Thus, a simple but effective
procedure for generating training data is achieved. As consequence, however, the
training data set only contains measurements from a single vehicle type which is not
necessarily representative for all vehicles. Since radar data is not as detailed as lidar
data or camera images, however, it is expected that the resulting model generalizes
to other vehicles to a certain extent.

The training data set is disjunct from the remaining evaluation sequences and was
recorded on public roads and a closed test site. It comprises typical cross-traffic
or parallel traffic scenarios as well as artificial maneuvers, which were designed to
achieve a broad coverage of the training data space. In these maneuvers, the reference
vehicle for instance passed the ego-vehicle in straight lines at different distances
and angles, drove small circles at different positions in the FOV, or circuited the
ego-vehicle with different radii.

In cases where the ego-vehicle was at standstill, it was observed that its IMU/DGPS
system had difficulties to accurately determine the global yaw angle. As small errors
in the angle can translate to large errors in the ground truth position of the reference
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Figure 6.3: Illustrations of the training data for learning the variational
radar model. Reprinted with permission from [SD19] ©2019
IEEE.

vehicle, some recorded sequences were manually post-processed before generating
the training data. In cases where a considerable offset was noticeable, the yaw angle
was corrected by matching the ground truth data and the precise measurements
from the lidar sensor.

The data extraction routine projects the ground truth rectangle of the reference
vehicle to the sensor coordinate systems. All measurements that fall in an enclosing
rectangle that is enlarged by 0.5 m in each direction are then automatically associated
to the vehicle. For each measurement and vehicle state pair, a training data point
is then calculated by applying the transformation functions (5.27) and (5.28). The
resulting |Zp| transformed data points constitute the training data set Zp =

Z
0 20700y

The entire training data set was created from a total of approximately 123 minutes
of recordings and consists of 336,287 data points. Two views of the data set are
illustrated in Fig. 6.3. Figure 6.3a shows the positions of the measurements in the
normalized object coordinate system and Fig. 6.3b depicts the Doppler errors over
the normalized longitudinal axis. The plots show that most of the measurements
originate from the vehicle surface and that the Doppler errors are particularly large
at the positions of the front and rear axles, i.e. where one expects spurious wheel
measurements.

Figure 6.4 shows a histogram over the aspect angle 2’ in the training data. While the
data set contains roughly 20,000 observations that were taken from a rear perspective
around z’ = 0° and many from both side perspectives, there are considerably less
measurements from other aspect angles. For instance, the bin at —5° only contains
4736 measurements. Experiments showed that this imbalance can cause noticeable
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Figure 6.4: Histogram of the aspect angle 2’ in the training data set using
bins with a width of 5°

bias in tracking as the resulting measurement model for example favors aspect angles
around 0° over aspect angles around —5°. To avoid such issues, the training data
set was therefore balanced by selecting an equal number of measurements from
each aspect angle bin. This procedure discards many measurements and leads to
a balanced data set with 95,688 data points. While this number of measurements
proved to be sufficient for learning the model, it would be worthwhile to examine
alternative balancing techniques that use the entire available data in future work.

Variational Gaussian Mixture Settings

For learning the variational radar model, an existing MATLAB implementation?
of variational Gaussian mixtures (VGMs) was modified and used. The number
of components of the Gaussian mixture was set to ¢ = 70. Due to the lack of
expert knowledge on the Gaussian mixture structure, the parameters of the prior
distributions were set to yield uninformative priors. In particular, the Dirichlet
hyperparameter in (2.35) was chosen as py = 1. For the Gaussian-Wishart portion
(2.36), the mean vectors 7 were set to the mean of all data points, Sy = 1, vy =
N, + 1, where n,, is the dimension of the training data, and V; was chosen as
identity matrix.

6.2.2 Resulting Model

In the Student’s t-mixture density p(zp) = p(2, 2y, 2, ¥') that results from the

VGM approach, 20 out of the 70 components received mixing coefficients close to zero.

Loriginal version by Mo Chen, https://de.mathworks.com/matlabcentral/fileexchange,/35362-
variational-bayesian-inference-for-gaussian-mixture-model
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Figure 6.5: Plot of the marginal density p(z;,z,). The outer contour is
equivalent to the marginal clutter value for a vehicle of 2m width
and 5m length. The dashed rectangle depicts the normalized

vehicle dimensions.

They do not contribute to the overall density and only increase the computational
demands when evaluating the density. Therefore, these components were pruned
from the mixture density which results in a final mixture model with 50 components.

Since the four-dimensional predictive density is difficult to visualize, Fig. 6.5 illus-
trates the marginal density p(z7, z;) in a contour plot. It corresponds to the view
of the training data in Fig. 6.3a. The dashed rectangle indicates the normalized
vehicle bounding box and the lowest contour value was set to the marginal clutter
density if the vehicle had a size of 2 m by 5 m. While the model allows for spurious
measurements around the vehicle contour and inside the vehicle, it has clearly learned
that most measurements originate from the vehicle surface. Also, the centers of
the front and rear surface as well as the four wheels or wheel houses are clearly

identifiable as prominent measurement sources.

The actual measurement model that is derived from the predictive density by
conditioning on a particular aspect angle &’ using (5.26) is a three-dimensional
density. Figure 6.6 depicts several examples of this density marginalized over the
Doppler error, i.e. different variants of g(z;,2,|z). These plots illustrate how a
change in aspect angle affects the expected location of the radar measurements.
Figure 6.6a shows the conditional density when looking at the vehicle from a
slightly shifted front perspective. Measurements are expected over the entire front
surface and particularly slightly to the right of the front center. Since the proposed
VGM approach does not consider the periodic nature of the aspect angle, the front
perspective exhibits a peculiarity at the —m/m-boundary. As the sign changes,
there is an abrupt change in the involved mixture components. This transition has,
however, not been noticeable when tracking and the mixture components on both
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Figure 6.6: Plots of the marginalized conditional density g(z;,z;|z’) for
different values of the aspect angle x’. The line of sight is
indicated by the black arrows. The outer contour line equals
the marginal clutter density for a vehicle of 2 m width and 5
m length. The dashed rectangle depicts the normalized vehicle
dimensions.

sides expand over the entire front surface.

Figure 6.6b shows the conditional density when looking from the right, i.e. 2’ = —7.
Measurements are mostly expected to originate from the right vehicle surface and in
particular from the two wheel houses. When looking from the rear right perspective
as illustrated in Fig. 6.6¢c, the expected locations of measurements generally shift
towards the right rear corner of the vehicle. Yet, the two right wheel houses remain
distinct features. From the rear perspective (see Fig. 6.6d), measurements are mostly
expected around the center of the rear surface. In summary, the variational radar
model has learned that measurements mostly originate from the surface side facing
the sensor and from the wheels and wheel houses.

Figure 6.7 illustrates a different perspective of the conditional model by depicting
the conditional density g(z;, zy|z;, = —0.5,2" = —F), i.e. the density of the Doppler
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Figure 6.7: Conditional density g(z;, 2)|2;, = —0.5,2" = —3)

errors over the right vehicle surface when looking from the right. The figure shows
that the variational radar model expects larger Doppler errors at the position of
the front and rear axis. This demonstrates that the model has learned the possible
occurrence of spurious measurements from rotating wheels with deviating Doppler
measurements.

Note that the presented variational radar model strongly depends on the training
data and therefore the reference vehicle and radar sensor type. The transferability to
other radar sensors has not been investigated in this thesis. Also, there is potential for
further analysis with respect to the hyperparameters’ or the number of component’s
influence on the model quality.

6.3 General Tracking Implementation Details

To demonstrate the performance of the measurement models and the sensor fusion
framework, they were implemented in MATLAB. While the scripting language of
MATLAB allows for simple implementation and evaluation, it is slow in comparison
to lower-level languages such as C++ or parallelized programs for graphics processing
units (GPUs). Therefore, the runtime of the algorithms is not in the scope of this
thesis.

While Chapters 4 and 5 introduced the basic mathematical formulation, there
are some additional factors such as the choice of model parameters or computing
the prior and posterior single object densities that need to be considered. This
section discusses some general implementation details that affect the entire tracking
framework. Sensor-specific implementation details are introduced in the respective
evaluation sections.
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6.3.1 Particle Implementation for the Single Object Densities

Both the prediction and update steps alter the state densities of the individual
objects. So far, it was assumed that equations (4.2), (5.9), and (5.23), which
essentially conform to the prediction and update steps of the single object Bayes
filter from (3.3) and (3.4), are solvable. As discussed in Section 3.1, this is not the
case for general nonlinear object and measurement models. Instead, approximation
techniques are necessary for such instances. Since the measurement models from
Chapter 5 are heavily nonlinear, sampling-based approximations are therefore used
in this work and the state densities of the vehicles are represented using particles.

In particular, an approximate Rao-Blackwellization technique (cf. Section 3.1.3)
which avoids sampling from the entire seven-dimensional state space is used. It
is inspired by the work in [PT09] and has been previously used in [Sch13]. Only
the kinematic state portion ¢ of the combined state vector x = [¢7,¢T]7T is fully
represented by particles. Hence, each particle represents a hypothesis for the vehicle’s
pose, speed, and yaw rate. Additionally, each particle holds a discrete distribution
pi(C|€D, Z) over the extent portion ¢, which contains the width and length. As in
(3.10), the posterior state densities are hence approximated as

P& ¢|12) = Zw (696 (¢ = €9) pa(cle®, 2). (6.1)
Due to the discrete distribution, the particles weights after the update are (cf. (3.11))

w(€®) o< > g(Z1€D, Ops(¢I€™) dg, (6.2)

where g(Z[€® () is substituted by the appropriate likelihood function from (5.9) or
(5.23).

Updating the discrete distribution proceeds in a simplified fashion. At the beginning
of each filter cycle, the discrete distribution only holds a single hypothesis for the
extent state with probability one. Before the update, new hypotheses are generated
by varying the width and length in a sensor-specific routine. Depending on the
observability of the width and length, respectively, new hypotheses with increased or
decreased dimensions are generated locally around the current hypothesis and part
of the probability mass is shifted to the new hypotheses. This results in a discrete
extent distribution with a maximum of nine hypotheses and corresponds to a discrete
transition density for the extent. After evaluating the likelihood for all hypotheses,
the particle weight is determined using (6.2). Subsequently, the hypotheses are again
reduced to a single hypothesis by computing the expected value. Hence, an increase
of size hypotheses over time is avoided.
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This approximate size estimation routine is realized at the cost of losing information
from previous time steps and impedes that particles are able to capture the full
extent uncertainty. Thus, detrimental effects on the filter consistency, which asks the
estimation errors to follow the estimated state uncertainty, are expected. However,
the procedure allows adapting the particle size in form of a simple and directed local
search.

The number of particles n, that is used for each vehicle’s state density is set to
300. This number is increased by a factor of 2 and 3 for the lidar and radar model,
respectively, when initializing a new track. This allows covering a larger portion
of the state space when the initial state uncertainty is high. The initial number of
particles is then gradually decreased in each resampling step. Resampling is triggered
as soon as the effective sample size from (3.8) falls below a threshold of 0.3 and uses
the technique of systematic resampling [RAGO04, p. 42].

6.3.2 Ego-Motion Compensation

All vehicles are tracked in the vehicle coordinate system, i.e. in a coordinate system
that is attached to the ego-vehicle and moves with it. Yet, the constant turn rate
and velocity (CTRV) motion model only describes physically consistent motion in a
globally fixed coordinate system. Therefore, an ego-motion compensation step is
included before prediction. It transforms every vehicle from the vehicle coordinate
system of the last to that of the current time step. The necessary transformation
is computed from ego-motion information that is supplied by the ADMA of the
ego-vehicle.

6.3.3 Vehicle Model

The process noise of the kinematic vehicle model (4.4), which was introduced in
Section 4.3.1, is assumed to be uniform with zero mean. The maximum values of the
uniform distributions are computed using the parameters o,,,, 0y,, 0y, 0y, and o,,.
They are listed in Table 6.2 and defined as the maximum deviation that may occur
for the time interval of one second. This normalization to one second allows to adapt
the process noise magnitude to the prediction time interval by multiplying with the
time difference At. The major motivation behind using uniform distributions is to
increase the chance of obtaining particles that cover corner cases, such as maximum
deceleration during emergency braking maneuvers.

For computing the probability of persistence in the prediction step, the expected
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Table 6.2: Process noise parameters

States Maximum deviation
Ozp In M/ 3
Oyp I m/s 3
o, in °/s 40
o, in m/s? 9
o, in °/s? 3

disappearance time is set to 0.1 seconds and 10 seconds for objects outside and inside
the sensor FOVs, respectively.

Possible values for the vehicle extent are restricted to reasonable dimensions of
passenger cars. The limits are a minimum of 1.4m and a maximum of 2.5m for
the width as well as a minimum of 2.5m and a maximum of 7m for the length.
Moreover, the length-to-width ratio is constrained to values between 1.7 and 3.5.
These restrictions cover vehicle sizes between a smart car and vans and limit the
vehicle hypotheses to reasonable proportions. For computing new size hypotheses
during the update step, the width is varied by +0.1 m and the length by £+0.3 m.

It is furthermore assumed that vehicles only move in the forward direction. Therefore,
the vehicle speed is defined to be always positive and vehicle hypotheses are flipped,
i.e. their orientation is changed by 180° as soon as the speed falls below 0 m/s.

6.4 Evaluation of Radar Tracking

In a first step, the performance of radar tracking is evaluated for both the direct
scattering and the variational radar model. The framework uses four radar sensor
modules to fuse the measurements of the four short range radar sensors. This
section first introduces some radar-specific implementation details in Section 6.4.1,
before presenting the single object and multi-object accuracy of both approaches in
Sections 6.4.2 and 6.4.3.

6.4.1 Radar-Specific Implementation Details

The probability of detection that is required in the multi-object likelihood formulation
of (5.17) and (5.18) is generally set to 0.8. Yet, the value is decreased to a minimum
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Figure 6.8: Detection probability pp(z,£) over the radar sensor FOV

value of 0.1 in the vicinity of the FOV boundaries to account for the reduced
detection capability of the sensors in these areas and to achieve a smooth transition
to areas outside the FOV. See Fig. 6.8 for an illustration. Moreover, the expect
number of clutter measurements is set to A\ = 30 and the expected number of object
measurements (see (5.20)) is Ay = 5.

In the direct scattering model, the standard deviation for the Doppler measurements
is set to 0.4375m/s. For the range density that is depicted in Fig. 5.10, the mixture
weights are chosen as ¢; = 0.4, ¢c; = 0.55, c3 = 0.05 for the components centered at
the first rectangle intersection, in between the two intersections, and at the second
intersection. These values have been chosen empirically. The standard deviation of
the range measurements which is used in the first and third mixture component is
0.25 m, whereas that of the second one is chosen in dependence on the intersection
length. The transition region for the trapezoidal azimuth density shown in Fig. 5.9
is constructed such that the azimuth density values exceed the uniform azimuth
clutter density in a tolerance region of 1° to both sides of the vehicle rectangle.

Both approaches use an identical initialization routine. It clusters all measurements
which have not considerably contributed to updating an existing vehicle and which
are not covered by an existing vehicle hypothesis with an existence probability
above 0.2. The procedure is able to output multiple cluster hypotheses that may
contain identical measurements. Thus, several plausible initialization variants can be
considered and the filter can then select the best hypothesis after several time steps.
The resulting clusters are further analyzed with respect to their size and Doppler
characteristics. Only clusters which resemble vehicle measurements are then used
to initialize new vehicle hypotheses. In particular, clusters that are too large are
discarded. Also, at least 60% of the measurements in a cluster need to exhibit a
Doppler velocity that significantly differs from stationary objects. Thus, it is avoided
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that many new hypotheses are initialized for static objects. For small clusters with
up to two measurements, the threshold for the Doppler velocity is set to 2.5m/s and
it is linearly decreased to 1 m/s for larger clusters of more than five measurements.
Furthermore, the Doppler measurements in a cluster are tested for consistent rigid
body motion. Using a random sample consensus (RANSAC) type approach [FB81],
the algorithm checks whether a solution for the two object state terms sp; and sp 2
in (5.16) can be found with a sufficiently large consensus set.

If a suitable cluster is found, new particles are generated by sampling bounding boxes
that enclose the measurements and computing vehicle speeds and yaw rates that
match the measured Doppler velocities for the given vehicle poses. It is ensured that
yaw rate and speed conform to realistic vehicle motion and vehicles are initialized
up to a speed of 200 km/h. If the pose allows for observing the vehicle length, the
vehicle length is initialized with suitable values between 2.5 m and 7m. Otherwise,
average vehicle length values between 4 m and 5m are sampled as such values are
close to the length of typical vehicles. Since vehicles directly next to the ego-vehicle
are only partly visible to the four sensors, the initialization procedure agglomerates
measurements from neighboring sensors for improved initialization performance.

Theoretically, the multi-object likelihood (5.17) requires the computation of all
possible measurement partitions and associations. This combinatorial problem is
intractable even for a small amount of measurements and a practical implementation
therefore needs approximation schemes. In this work, measurement partitions are
obtained by applying the density-based spatial clustering of applications with noise
(DBSCAN) algorithm [EKSX96] with multiple distance thresholds between 0.5m
and 5m. Additionally, one partition is generated by assigning all measurements to
the closest predicted vehicle and treating the measurements that are not close to
any vehicle as clutter measurements. The DBSCAN clusters are again analyzed for
consistent rigid body motion. In case there are spurious measurements with deviating
Doppler velocities, additional cluster hypotheses without the outliers are generated.
This allows the algorithm to generate clusters of vehicle measurements while at
the same time excluding measurements from the wheels. Once the measurement
partitions are created, the ten best association variants are generated for each
partition using Murty’s algorithm [Mur68].

Apart from the motion of measured objects, the Doppler velocity is also influenced
by the motion of the ego-vehicle itself. Upon reception of radar measurements, this
influence is removed by computing the ego-motion portion using the available motion
data as well as sensor mounting position and subtracting it from the measured
Doppler values.
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6.4.2 Single Object Performance

First, the single object performance of radar-based tracking is evaluated using the
single object data set. Two exemplary scenarios are examined to illustrate the
tracking behavior in different situations with cross traffic, turning vehicles, and
parallel traffic that passes all four sensor FOVs. Also, they are used to highlight
differences between the two measurement models. The tracking accuracy with respect
to the ground truth is studied for both scenarios as well as the entire data set.

In the figure eight scenario, the reference vehicle drives a figure eight and circles in
front of the stationary ego-vehicle. This scenario is particularly interesting as the
number of radar measurements from the vehicle and the aspect angle constantly
change, and the maneuver is highly dynamic with yaw rates up to approximately
60°/s. Due to the fast turns and the crossing trajectory, the Doppler measurements
sometimes strongly vary over the vehicle body and do not directly equal the actual
vehicle speed as it is often the case in classical parallel traffic. Therefore, the scenario
is especially suitable for demonstrating the performance of the radar measurement
models in situations with complex Doppler relationships.

Figure 6.9 depicts excerpts of the scenario and the tracking results for both radar
models. The plots compare the estimated trajectories and selected vehicle poses
during the first eight in the scenario with the ground truth values. The vehicle is
visible to both front sensors and it is tracked continuously using the direct scattering
model (cf. Fig. 6.9a) and the variational radar model (cf. Fig. 6.9b). The two
models are able to deal with ambiguous situations where only a single measurement
is available, e.g. around 6.26 s, and with pronounced Doppler profiles as for instance
around 8.76s. However, a qualitative comparison of both results reveals that the
estimated trajectory of the variational radar model is smoother than that of the
direct scattering model and the estimated vehicle poses and size match the ground
truth rectangles more precisely.

The quantitative tracking accuracy in the figure eight scenario is illustrated in
Fig. 6.10 for the direct scattering model and in Fig. 6.11 for the variational radar
model. The figures compare the state estimates to ground truth values. Furthermore,
the overall RMSEs are listed in Table 6.3. In the figure eight scenario, the variational
radar model outperforms the direct scattering model for each state. It especially
improves the estimate of the vehicle dimensions, the yaw rate, and the orientation.

In a second scenario, the reference vehicle passes the stationary ego-vehicle. In
contrast to the turning motion of the previous experiment, this passing scenario
illustrates the performance in a typical parallel traffic situation. As the vehicle drives
through the FOVs of all four radar sensors, it furthermore demonstrates how radar
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(b) Variational radar model. Reprinted and adapted with permission from [SD19] ©2019
IEEE.

Figure 6.9: Excerpts of the figure eight scenario using both radar models:
radar measurements from the front left (o) and front right (+) sen-
sors, estimated trajectories (solid) and exemplary vehicle poses
(solid rectangles), reference trajectories (dashed) and reference
poses (dashed rectangles)

tracking handles FOV transitions and changes in the number of sensors that are able
to detect the vehicle. Figure 6.12 illustrates the tracking results for both models.
In the mid and far ranges, the sensors only yield one or two measurements which
provide little to no geometric information about the vehicle orientation, whereas
there are many measurements, including spurious wheel reflections, in the near field.
Both approaches are able to continuously track the reference vehicle during the
entire maneuver. At the beginning and towards the end of the scenario, however,
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Figure 6.10: Tracking accuracy in the figure eight scenario using radar data
and the direct scattering model: Comparison of estimates (solid)
and ground truth (dashed red) as well as errors e averaged over
20 runs. The y-position is plotted in gray.

the estimated trajectory of the variational radar model is considerably more precise
than the direct scattering estimate. Here, the direct scattering approach exhibits
rather large deviations in the y-position as well as the orientation. The RMSE
values that are listed in Table 6.3 confirm this observation. While the variational
radar model again outperforms the direct scattering model in all state estimates,
the improvement is especially large in these two quantities.

A closer analysis of the two measurement models explains this performance gap.
Figure 6.13 shows the conditional density g(d, «|z) that follows from the direct
scattering model (cf. Section 5.3.2) and indicates likely measurement positions in
polar coordinates. The density is constructed for an exemplary vehicle that is viewed
by the sensor form a rear perspective. Again, the Doppler values are marginalized
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Tracking accuracy in the figure eight scenario using radar data

and the variational radar model: Comparison of estimates
(solid) and ground truth (dashed red) as well as errors e aver-
aged over 20 runs. The y-position is plotted in gray. Reprinted
with permission from [SD19] ©2019 IEEE.

out to simplify visualization. As expected, measurements are most likely on the
rear surface of the vehicle. However, the highest likelihood values occur at the rear
corners. This is a result of the range density for radar rays that do not target the
vehicle directly but pass it. Since the single Gaussian does not extend over a large
range interval, it yields larger density values. This behavior is plausible as corners
are prominent radar features and are for example explicitly used in reflection point
models such as [HSSS12]. Yet, the analysis of the training data set for the variational
radar model in Section 6.2 revealed different characteristics for the used sensors. For
a rear perspective, they most frequently yield measurements from the center of the
rear surface. Consequently, the direct scattering estimates exhibit a bias in such
situations.
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Table 6.3: Tracking accuracy for the direct scattering and variational radar
models: RMSE values for the figure eight and passing scenarios,
overall results and the relative change for all single object scenarios.
The values are averaged over 20 runs for each scenario.

Direct Scattering Model Variational Model Change
States Figure Passing Overall Figure Passing Overall Overall
eight eight
zrinm  0.25 0.24 0.31 0.10 0.17 0.27 -12.68%
yrinm  0.19 0.42 0.40 0.13 0.18 0.26 -33.94%
@ in ° 3.60 7.92 9.41 2.29 3.12 7.28 -22.62%
v in m 0.35 0.23 0.55 0.25 0.17 0.36 -33.63%
win °/s 6.15 5.36 8.63 3.57 3.60 5.54 -35.83%
ainm 0.33 0.31 0.32 0.19 0.27 0.26 -19.66%
bin m 0.49 0.41 0.50 0.16 0.25 0.28 -42.92%
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(b) Variational radar model

Figure 6.12: Excerpts of the passing scenario using both radar models: radar

measurements from the front left (e), front right (v), rear left (o),
and rear right (o) sensors, sensor FOVs (colored dashed lines),
ego-vehicle (filled rectangle), estimated trajectories (solid) and
exemplary vehicle poses (solid rectangles), reference trajectories
(dashed) and reference poses (dashed rectangles)
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Figure 6.13: Marginalized conditional density g(d, «|z) of the direct scat-
tering model for an exemplary vehicle (dashed rectangle) with
state = [20m,0m, 0°,0m/s,0°/s,2m, 5m]. The line of sight
is indicated by the arrow. Note that the density is plotted in
Cartesian coordinates despite being defined over polar coordi-
nates.

A possible remedy for the rear perspective would be to alter the azimuth density
such that measurements that are close to the surface center are favored. Yet, such a
modification would not be valid for side perspectives and additional treatment of
other special cases would be necessary. In contrast, the variational radar measurement
model has automatically learned a measurement model that matches the actual data
and sensor characteristics without the need for elaborate manual tuning.

The passing scenario also demonstrates differences in the measurement clusters that
are favored by both radar measurement models to update the tracks. As discussed in
Section 6.4.1, the measurement partitioning routine also provides clusters that have
been checked for consistent rigid body motion and exclude spurious measurements.
To analyze which measurement clusters are used by the two models, Fig. 6.14
depicts the clusters that contributed the most in a particular situation of the passing
scenario. Additionally, the average estimated vehicle pose from the 20 Monte Carlo
runs is plotted. It can be seen that the front left sensor yields measurements from
the rotating wheels with Doppler measurements that are below or exceed those
of the vehicle body. When using the direct scattering model, the cluster with the
highest likelihood is one that excludes these wheel measurements. In case of the
variational radar model, however, the cluster that includes all radar measurements
contributes the most. This implies that the variational radar model is able to use all
measurements. Particularly the position of the wheel measurements might be one of
the major contributions to the improved length estimate that is observable when
comparing the estimated vehicle to the ground truth rectangle.

Apart from the RMSE values of the two presented scenarios, Table 6.3 also lists
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Figure 6.14: Comparison of the measurement clusters that contributed the
most during the update step at 7.84 s in the passing scenario:
cluster measurements (e), other measurements (e), average
vehicle estimate (rectangle), and reference vehicle (dashed rect-
angle)

the average values for all ten single object scenarios. The variational radar model
once more outperforms the direct scattering model with respect to all states. In
conclusion, the close approximation of the actual likelihood function that was achieved
by learning the model from actual sensor data is better in extracting the relevant
information from the measurements than a manually designed model.

6.4.3 Multi-Object Performance

So far, the accuracy was only evaluated for a single vehicle. This section adds an
analysis of the multi-object performance of both radar models using the multi-object
data set and the real-world scenario. The goal is to analyze the behavior in situations
with close-by vehicles, the ability to cope with clutter and to estimate the correct
number of vehicles, as well as the applicability to the public road scenario.

The parallel scenario is a particularly challenging scenario as it contains two vehicles
that drive very closely to each other. The vehicles first pass the ego-vehicle on both
sides. Then, they continue to drive in front of the ego-vehicle at a close distance
to each other before turning to the left and right, respectively, at the end of the
scenario. Figure 6.15 shows two tracking excerpts using both radar models. Since the
lateral distance is down to approximately 1 m when both vehicles are in front of the
ego-vehicle, the radar measurements are rather close to each other. As the reference
vehicles additionally drive at the approximately same speed, the sensors sometimes
have difficulties to resolve the two vehicles and produce merged measurements in
between the vehicles, see for example Fig. 6.15b at 22.06s.
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Figure 6.15: Excerpts of the parallel scenario using both radar models: radar
measurements from the front left (e), front right (v), rear left
(0), and rear right (o) sensors, sensor FOVs (colored dashed
lines), ego-vehicle (filled rectangle), exemplary vehicle poses
(solid rectangles), and reference poses (dashed rectangles)

In Fig. 6.15a it is observable that the direct scattering approach is facing difficulties
in this scenario. It repeatedly loses tracks in the period where the vehicles are
close to each other and even sets up a single track hypothesis for both vehicles at
around 26.5s. A major cause of the track losses are the previously discussed issues
of the direct scattering approach to yield a stable angle and position estimate if
only measurements from the rear surface are available (cf. Section 6.4.2). If; in
addition, uncertainty is large upon reinitialization, the close-by measurements of
the second vehicle can cause divergence of the track and lead to a single vehicle
hypothesis that uses measurements from both vehicles. In contrast, the variational
radar model shows superior accuracy in estimating the correct vehicle poses and is
able to continuously track both vehicles throughout the entire scenario.

This difference in performance is also observable in a comparison of the cardinality
estimates of both approaches as depicted in Fig. 6.16. The figure shows the expected
number of vehicles that the filter outputs averaged over 20 runs as well as the ground
truth for each time step. The difficulty of the direct scattering model to keep both
tracks appears as an underestimated cardinality between 20s and 30s. On the
contrary, the estimate of the variational radar model most of the time stays at the
correct value of two. The spikes in the cardinality plot that exceed the true value
are caused by false tracks which are initialized from clutter measurements. Such
false tracks with considerable existence probability appear between 20s and 25s
using both models and at around 5s using the direct scattering model. While the
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variational radar model avoids the clutter tracks at the beginning, it is sometimes
slower in initializing both vehicles which leads to a slower rise of the cardinality
estimate.

Figure 6.17 illustrates the false track at around 25s when using the variational
radar model as an example. In this case, the track was initialized from clutter
measurements with spurious Doppler velocities and it persists as long as other
measurements are able to confirm it. Such measurements are available since the
track was initialized in an area where multiple measurements from stationary objects
occur over several time steps. From a theoretical perspective, the assumption of
uniformly and uncorrelated (both in position and time) clutter that is made in the
multi-object measurement model from (5.17) to (5.19) is violated in this situation.
As a consequence, the filter outputs an erroneous cardinality estimate.

The accuracy of the cardinality estimate was evaluated on the entire multi-object
data set to assess the overall multi-object performance of both radar models. In
particular, the cardinality estimation errors were computed for all time steps and
an error histogram with bin widths of 0.25 was determined. The histogram for
both models is shown in Fig. 6.18. When using the direct scattering model, the
filter yields the correct cardinality estimate (i.e. a deviation of less than £0.125) in
66.8% of the steps whereas the variational variant achieves 73.8%. The cardinality
is underestimated in 15.7% of the steps when using the direct scattering model and
in 11.0% when using the variational radar model, whereas it is overestimated in
17.5% and 15.2% of the steps, respectively. In summary, the variational radar model
particularly reduces the number of steps in which the cardinality is underestimated
whereas the improvement in the overestimation case is smaller. This suggests the
interpretation that the variational model is especially better at tracking all existing
vehicles and that it has a smaller positive effect on the occurrence of false tracks
caused by clutter.
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Figure 6.17: Variational radar model: Exemplary clutter track (top) and
the two tracked vehicles (bottom) in the parallel scenario at
around 25 s with corresponding radar measurements from the
front left (o), front right (v), rear left (©), and rear right (o)
sensors as well as sensor FOVs (dashed lines)

In the previous evaluation experiments, the radar models were tested on the E-Class
and C-Class reference vehicles. As one of the vehicles was used to generate the
training data and both vehicle types are rather similar, the T-intersection scenario
is used to demonstrate the applicability to a wider range of vehicle types. Two
particular situations are illustrated in Fig. 6.19 for both radar models. Figure 6.19a
shows an occlusion situation in which two sedans pass the intersection. As soon as
the front sedan occludes the other vehicle, both approaches loose the rear sedan as
the radar sensors do not yield any measurements for 25 consecutive measurement
steps. The track is reinitialized once the vehicle becomes visible again. In contrast,

the front sedan is tracked continuously.

In the second situation, a van takes a turn at the intersection while a following
convertible and a compact van keep straight on. All three vehicles are tracked
continuously with both models. However, the direct scattering model shortly initial-
izes a false track in the vicinity of the turning van, whereas this is avoided by the

variational radar model.

The tracking accuracy of this scenario was evaluated for those areas where labels
were available, i.e. in the lidar FOV. The RMSE values were computed as average
values over 20 runs. The direct scattering model achieves values of 0.41 m and 0.58 m
for the x- and y-position, respectively, 4.6° for the orientation, as well as 0.25 m and
0.40m for the width and length. In contrast the results for the variational radar
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Figure 6.18: Histogram of cardinality estimation errors for the multi-object
scenarios: variational radar model (1) and direct scattering
model (1). For better visualization, the bars are shifted from
their actual centers which are multiples of 0.25. Reprinted with
permission from [SD19] ©2019 IEEE.

model are 0.21 m and 0.52m for the position, 4.3° for the orientation, as well as
0.40m and 0.54m for the width and length. In this scenario, the performance of
both models is rather balanced. The variational radar model is slightly superior in
terms of estimating the pose, whereas the direct scattering is better at estimating
the vehicle dimensions. The tracking filter outputs a track estimate for the labeled
vehicles in 96.3% and 95.1% of the steps for the direct scattering and variational
radar model, respectively. The missing steps are mostly due to belated initialization
and the loss of the rear sedan in the occlusion situation. From eye inspection, the
tracking performance deteriorates in the far range where the number of measurements
per object and their accuracy decreases and the number of measurement drop outs
and clutter increases.

6.4.4 Discussion

In summary, the evaluation experiments demonstrated several key aspects of the
tracking performance when using the direct scattering and the variational radar
model. As shown in the figure eight scenario, both models are able to track vehicles in
rather complicated maneuvers with varying aspect angles and measurement numbers
as well as complicated Doppler relationships. The direct scattering model, however,
does exhibit some difficulties in generating stable estimates of the vehicle pose if few
measurements are available over a longer period of time. In contrast, the variational
radar model outperforms the direct scattering approach in terms of the tracking
accuracy and multi-object performance. This shows how a close approximation of
the true single object likelihood that is learned from data is superior to a manually
designed likelihood function and uses the available information better.
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(a) Occlusion situation using the direct (b) Turning van and two other vehicles
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radar (bottom) models and the variational radar (bottom)

models

Figure 6.19: Excerpts of the T-intersection scenario using both radar mod-
els: radar measurements from the front left (o), front right (v),
rear left (0), and rear right (o) sensors, sensor FOVs (colored
dashed lines), ego-vehicle (filled rectangle), estimated trajec-
tories (solid) and exemplary vehicle poses (solid rectangles),
reference trajectories (dashed) and reference poses (dashed
rectangles). The variational radar model figures are reprinted
and adapted with permission from [SD19] ©2019 IEEE.

Moreover, the T-intersection scenario indicated a certain ability of the variational
radar model to generalize to other vehicle types. This is not surprising as even
high-resolution radar sensors provide a comparatively coarse image of the object.
Therefore, there is not as much information about distinctive vehicle features available
as in data from other sensor types such as cameras. Yet, problems are expected as
soon as there are significant changes in the radar characteristics, e.g. for trucks with
additional wheels and other typical scattering centers.
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Interestingly, the tracking accuracy of both radar models is similar in the T-
intersection scenario. This observation needs to be interpreted carefully as the
ground truth was obtained by manual labeling and this single scenario is not on par
with the variety of maneuvers in the single and multi-object data sets. It might,
however, show that the learned measurement model does not match all vehicle types
equally well and that the advantage over the direct scattering model diminishes in
such situations. Therefore, studying the effects of a training data set with multiple
vehicle types on the tracking accuracy would be an interesting direction for future
work and would provide additional insights.

Most methods for radar-based tracking from the literature were developed for other
radar sensors with different characteristics and resolution capabilities. As the
reported results are moreover obtained for different scenarios, a thorough comparison
is difficult. To still allow for a coarse assessment, the tracking results are compared
to the tracking approach from [KBK™*16] which uses a state of the art Doppler profile
preprocessing routine. It lists RMSE values of 5.20° for the orientation, 0.37 m/s for
the velocity, 3.71°/s for the yaw rate, and 0.87m for the Euclidean position error
when tracking with a state-of-the-art Doppler profile preprocessing routine with
two synchronized sensors. These results were obtained for a figure eight scenario
similar to that of this thesis using sensors with slightly better resolution. The
comparison with this similar scenario indicates an improved accuracy of the direct
scattering and variational radar models. Apart from the yaw rate estimate of the
direct scattering model, the RMSE values are lower. In contrast, [KBK116] is able
to report real-time capability. In terms of extended object models, a comparison
with the recently published volcanormal density [BDD17] on an identical data basis
would be interesting. The model is not used in a Bayesian tracking filter but in a
maximum likelihood estimator that optimizes over multiple time steps and reports
competitive accuracy for two scenarios.

One of the remaining challenges in the multi-object performance is to avoid false
tracks caused by correlated clutter measurements. This correlation is not considered
by the clutter model which assumes all clutter measurements to be independent,
uncorrelated over time, and uniformly distributed. Therefore, the filter is sometimes
overly confident in the existence probabilities and the deduced cardinality estimate.
Finding more appropriate clutter models or concurrently estimating the clutter
density could alleviate this issue.

Due to the superior performance, the following sensor fusion experiments use the
variational radar model for the radar sensors unless otherwise stated.
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6.5 Evaluation of Lidar Tracking

The separable likelihood approach for lidar-based tracking is evaluated as a second
constellation with a single sensor type. Section 6.5.1 first reviews some lidar specific
implementation issues and the evaluation results for both the single and multi-object
performance are then presented in Section 6.5.2. For the single object scenarios, the
focus of the performance evaluation again lies on the accuracy in comparison to the
ground truth. The multi-object evaluation then analyzes the cardinality estimates
as well as the effects of the proposed occlusion model on the performance.

6.5.1 Lidar-Specific Implementation Details

To obtain the planar lidar scan that the ray-based model from Section 5.1 is designed
for, the four layers of the ego-vehicle’s lidar sensor are reduced to an artificial
single-layer scan. In this procedure, the two lower layers are discarded and only the
two upper layers which provide a considerably larger range are used. The azimuth
pattern of the artificial scan is set to that of the two upper layers and the measured
range is set to that of the closest measurement from the two upper layers. As the
measurement density and quality decreases with distance, the lidar range is limited
to 100 m and measurements above this maximum range are not considered.

In the vehicle template from Fig. 5.4, the surface thickness is set to 0.45m and
the free space exceeds the outer surface rectangle by 0.7m in all directions. To
parameterize the range likelihood densities of the three ray types (cf. Fig. 5.5),
likelihood factors which define the desired ratio between the uniform clutter range
density and the density value for the particular section are introduced. These factors
are specified for all but one section (typically the vehicle surface) and multiplied with
the uniform density value. The density value of the remaining section is obtained
from normalization. Table 6.4 lists the used factors for the three ray types along
with the probabilities of receiving a return. As described in Section 5.1.2, these
probabilities are linearly decreased to the listed minimum values starting from 70 m.

Since there is no velocity information in a single lidar scan, the lidar module uses a
multi-step routine for initializing moving vehicles. In each step, the lidar points are
clustered using a modified version of the adaptive break point detector from [BA04].
Clusters in which more than half of the measurements have already contributed to
updating an existing vehicle as well as clusters that are too large or not sufficiently
convex are discarded. The remaining clusters are associated over consecutive time
steps using a nearest neighbor approach to obtain an estimate of the velocity vector.
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Table 6.4: Parameterization of the lidar ray likelihoods: return probabilities
and likelihood factors for the ray types from Figs. 5.4 and 5.5

Type-1 Ray Type-2 Ray Type-3 Ray
Factor Value Factor Value Factor Value
PR,1 0.5 DR,2 0.6 PR,3 0.65

PR,2,min 0.52 PR,3,min 0.55
Zrszer  0.001  Ozpg 0.6 Ozps 0.6

Zrszs & Zpszr  0.001  Zpszs 0.001

ZBF Zmax 0.5 ZBSZmax  0.001

If clusters from three time steps could be associated and the two velocity estimates
are consistent, a new vehicle hypothesis is initialized. Using three steps instead of
the necessary minimum of two steps helps to further decrease the number of false
tracks caused by sensor jitter.

For generating particles, bounding boxes which enclose the measurements are sampled
similarly to the radar initialization routine. Afterwards, the best bounding boxes
are selected by evaluating the single-object likelihood. In contrast to radar, there is
no precise motion information and the speed is therefore sampled in a broader range
around the estimated velocity vector. Also, the initial yaw rate is sampled from a
zero-mean Gaussian distribution with a standard deviation of 0.5rad/s.

As lidar provides especially dense geometric information, the size hypotheses genera-
tion of the lidar sensor module allows for changes in the vehicle length that exceed
0.3m. Thus, the length estimate can be adapted faster.

6.5.2 Tracking Performance

The single object accuracy is again evaluated on the single object data set. The
resulting RMSE values for the figure eight and passing scenario as well as the
complete data set are listed in Table 6.5. Also, Fig. 6.20 shows plots of the state
estimates and errors in detail for the figure eight scenario. Note that the results
are not directly comparable to those of the radar models in Section 6.4.2 as the
sensor FOVs and thus the time instants in which the vehicle is visible differ. This
is particularly true for the passing scenario, where the radar sensors are able to
perceive the vehicle for a considerably longer time. Yet, some (expected) trends
are observable: While the lidar model yields better orientation estimates due to
the rich geometric information, the speed and yaw rate estimation errors are larger
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Table 6.5: Accuracy of lidar-based tracking: RMSE values for the figure
eight and passing scenarios, overall results for all single object
scenarios. The values are averaged over 20 runs for each scenario.

States Figure eight Passing Overall

TR in m 0.18 0.17 0.21
Yyr in m 0.18 0.09 0.19
win° 1.66 1.70 2.38
v in m 0.84 0.69 0.93
w in °/s 10.37 6.90 11.30
a in m 0.16 0.25 0.19
bin m 0.17 0.60 0.32

than those of the radar models. A more detailed comparison of the sensor-specific
performance is provided in the following section on fusion of radar and lidar data.

The effect of the lidar occlusion model from Section 5.1.1 on the multi-object
performance is demonstrated using two scenarios from the multi-object data set.
In the occlusion scenario, both reference vehicles cross in front of the stationary
ego-vehicle. As soon as they are directly in front of the ego-vehicle, the front reference
vehicle fully occludes the rear vehicle. The tracking results for the first crossing
are illustrated in Fig. 6.21 without (Fig. 6.21a) and with (Fig. 6.21b) the occlusion
model. Even though the individual rays consider the case of measurements in front
of the vehicle, the rear track is lost in occlusion when not using the full multi-object
occlusion model. The fact that all measurements are in in front of the surface is
counted as strong evidence against the existence of the object. In contrast, the rear
vehicle is continuously tracked when enabling the occlusion model that only uses
the rays that are able to target the vehicle during update. In this scenario, the
occlusion model prevents a cardinality estimation error that is otherwise made due
to a violation of the separability assumption.

The occlusion scenario also demonstrates that the ray-based approach handles the
partial visibility of vehicles at the FOV boundaries naturally and automatically uses
the remaining rays without the need for special case treatments.

In the second scenario, the ego-vehicle follows two other vehicles that first enter the
lidar FOV from both sides and then drive in a row. When both vehicles are in front
of the ego-vehicle, the front vehicle is occluded for 22 update steps or about two
seconds before becoming visible again. Figure 6.22a illustrates this situation and
the estimation results. Note that the plotted trajectories do not reflect the actual
positions over ground since the trajectories are estimated in vehicle coordinates and
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Figure 6.20: Tracking accuracy in the figure eight scenario using lidar and
the separable likelihood model: Comparison of estimates (solid)
and ground truth (dashed red) as well as errors e averaged over
20 runs. The y-position is plotted in gray.

the ego-vehicle is moving. The estimated trajectory of the front vehicle shows a
strong deviation from the ground truth between the two plotted vehicle poses at
19.92s and 22.32s. This deviation occurs during the occlusion situation and causes
a track loss in most runs.

In this situation, the occlusion model enables keeping the occluded track for several
update steps without any measurements. Yet, the long duration causes a rapid
increase in the state uncertainty. This is further assisted by the rather large process
noise which is parameterized for highly dynamic maneuvers. Due to their relatively
low number, the particles are not able to sufficiently cover the possible state space
and, hence, no suitable particle is available in most runs as soon as new measurements
occur. This causes the track loss in most runs. Therefore, an increase in the particle
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(a) Without occlusion model (b) With occlusion model

Figure 6.21: Effect of the lidar occlusion model in a short occlusion situation:
lidar measurements (@), sensor FOV (straight dashed lines),
ego-vehicle (filled rectangle), estimated trajectories (solid) and
exemplary vehicle poses (solid rectangles), reference trajectories
(dashed) and reference poses (dashed rectangles)

number is expected to yield improved performance. Another possible remedy would
be to reduce process noise of occluded vehicles and to assume a rather monotonous
motion.

Figure 6.22b shows a second perspective on the scenario and illustrates another
challenge for lidar-only tracking. While both vehicles are tracked, the filter also
outputs two clutter tracks that originate form measurements of stationary objects.
As in the multi-object model of the radar model, this is caused by the simple clutter
model which assumes uniform, independent, and uncorrelated range values for clutter
measurements. In practice, however, clutter measurements are heavily correlated
both within one scan as well as over consecutive scans. As a consequence, clutter
measurements from a structured environment fit oftentimes better to the vehicle
than to the clutter model.

The cardinality errors with and without the clutter model are plotted in Fig. 6.23 as
histograms over the entire multi-object data set. The percentage of correct cardinality
estimates is lower as in the radar results. In contrast to lidar, radar sensors provide
Doppler measurements as additional information to distinguish between moving
objects and stationary clutter. Also, it is observable that the occlusion model slightly
reduces the cases where the cardinality is underestimated but it increases the cases
of overestimation. Here, the occlusion model not only allows keeping true positive
vehicle tracks but also false tracks in occlusion situations.
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Figure 6.22: Lidar tracking in a following scenario with two vehicles: lidar
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vehicle (filled rectangle), estimated trajectories (solid) and
exemplary vehicle poses (solid rectangles), reference trajectories
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Figure 6.23: Histogram of cardinality estimation errors for lidar-based track-
ing: with occlusion model (1) and without occlusion model (o).
For better visualization, the bars are shifted from their actual
centers which are multiples of 0.25.

6.5.3 Discussion

The lidar evaluation has demonstrated that the ray-based lidar model is able to
produce accurate results in the vehicle pose whereas it faces more difficulties than
the radar models in estimating the vehicle motion and in distinguishing clutter mea-
surements from vehicles. The lidar measurement model accurately reproduces the
lidar measurement principle and therefore avoids—apart from track initialization—
clustering routines and finding thresholds for segmentation. Also, it allows handling
aspect angle changes such as in the figure eight scenario, partly visible tracks at
the FOV boundaries, and occlusion situations naturally. Thus, the model circum-
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vents special case treatments which are oftentimes necessary in classical box fitting
approaches. The proposed occlusion model helps to maintain tracks in occlusion
situations but the availability of reasonable estimates in occlusion is limited by the
duration and increasing uncertainty. Keeping occluded vehicles over many update
steps seems questionable if no measurements are available. Yet, the following section
will demonstrate the usefulness of the occlusion model when fusing information from
other sensors.

While the cardinality estimates are correct in most of the time steps, there is a certain
susceptibility to cardinality errors caused by false tracks. As in the radar models,
this is due to the clutter density which neglects possible correlation among real
clutter measurements. Therefore, work on more precise clutter models or approaches
that concurrently estimate the clutter density could lead to further improvements.

6.6 Evaluation of Sensor Fusion

After having evaluated the performance of radar and lidar-based tracking for set-ups
with a single sensor type, this section investigates the benefits and performance of
sensor fusion. Different sensor constellations which also include the scene labeling
measurement model are evaluated and compared. To achieve a fair evaluation basis,
only the area that is covered by all three sensor types is used for evaluation. The
vehicle accuracy is moreover only evaluated if the reference vehicle is fully in this
area. Thus, estimates are only compared if all sensors were able to fully see the
vehicle and the radar sensors’ advantage of a larger FOV is diminished.

In the following, Section 6.6.1 first details some scene labeling implementation details
before Sections 6.6.2 to 6.6.4 present results for the fusion of radar and lidar, radar
and scene labeling, as well as the fusion of all three sensor types.

6.6.1 Scene-Labeling-Specific Implementation Details

The labeled images are obtained from processing the ego-vehicle’s wide angle camera
images using the scene labeling approach presented in [TG17]. It uses a convolutional
neural network (CNN) architecture to classify the pixels of the input image into
the classes vehicle, person, road, and background. The original input image is
downscaled by a factor of 0.25 which yields the input size of 480x270 pixels. As the
CNN only outputs class labels for those pixels where the receptive field is fully in
image, the resulting labeled image that is used as measurement has a resolution of
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383x171 pixels. Each pixel is assigned the class with the highest score in the final
soft-max classification layer of the network.

In the scene labeling sensor module, the labeled image is then undistorted and the
classification is transformed to a two-class problem by retaining the vehicle class and
merging the classification as person, road, and background to a single background
class. Additionally, irrelevant pixels such as those that lie on the ego-vehicle’s engine
hood are masked and not considered during update.

In contrast to the other two sensor types, the scene labeling module is not allowed
to initialize new tracks and is merely used to update vehicle tracks that have
been initialized by the other sensors. While principally possible, this avoids the
implementation of computer vision algorithms for detecting initial vehicle guesses
and handling the uncertainty in distance that exists in mono camera images.

As previously mentioned in Section 5.2, the parameters of the Bernoulli distributions
that are used as foreground and background likelihood functions for each pixel
need to be chosen carefully. Contrary to the independence assumption of the
separable likelihood model, the classification results of the individual pixels are not
independent due to the CNN architecture. If the scene labeling fails, it oftentimes
misclassifies larger connect pixel patches. Also, it was observed that the particular
parameterization of the scene labeling approach tends to erroneous classifications of
vehicles if they are close to the edges of the labeled image. Therefore, the Bernoulli
parameters are set to r, = 0.51 for foreground and r, = 0.5 for background pixels.
Moreover, the foreground parameter 7, is linearly decreased to 0.5 in the two outer
thirds of the image plane towards the left and right image border. The small
likelihood difference for a single pixel is amplified by multiplying the many pixels
that a vehicle typically covers.

6.6.2 Fusion of Radar and Lidar

In a first step, radar data is fused with lidar data using the variational radar model
and the ray-based lidar model. The evaluation analyzes the effects on fusing both
sensors on the tracking accuracy, the benefits of the lidar occlusion model, and the
ability to cope with sensor failure.

The accuracy results for the single object data set are listed in Table 6.6 as average
values of 20 Monte Carlo runs and compared to the performance when only using
radar and lidar. The relative change of the RMSE values with respect to the best
and worst error of the single sensor results are also specified. The fusion result
is always better than the worst estimate from both individual sensor results and
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Table 6.6: Comparison of average RMSE values over 20 Monte Carlo runs
when fusing radar and lidar data

States Variational Lidar Fusion = Comparison Comparison
Radar Model Model to best to worst

TR in m 0.15 0.16 0.15 -3.60% -7.75%

yg in m 0.23 0.18 0.15 -15.72% -33.52%

@ in ° 6.55 1.69 3.25 93.00% -50.29%

v in m 0.35 0.87 0.37 6.60% -57.83%

win °/s 5.54 11.43 5.01 -9.60% -56.20%

a in m 0.20 0.17 0.16 -5.77% -23.51%

b in m 0.22 0.26 0.23 3.43% -12.27%

considerably improves these values. This demonstrates that fusion particularly helps
to cancel the weaknesses of the respective sensors. For example, the relatively large
error in the yaw rate estimate of lidar-based tracking is reduced by more than fifty
percent.

Also, the fusion results are better than the best estimates of a single sensor, except
for the orientation, speed, and length. While fusion still improves the orientation
estimate in comparison to radar-only tracking, it does not achieve the accuracy of
lidar tracking. These deviations are due to a particular scenario from the data set
in which the reference vehicle drives a figure eight with yaw rates above those of
the previously discussed figure eight scenario. During the turns, the assumption of
the motion center being located at the center of the rear axle is not valid any more.
The tracking algorithm is able to compensate this shift of the center of motion when
using a single sensor type only. Yet, the combination of a precise orientation estimate
along with the Doppler measurements presumably counteracts the compensation
and causes track losses in some turns. Orientation uncertainty upon reinitialization
then causes increased orientation errors. Without this extremely dynamic scenario,
the fusion results would also outperform the single sensor type constellations with
respect to the orientation and speed.

The percentage of true cardinality estimates (i.e. the cardinality does not deviate
more than 0.125 from the true value) in the fusion evaluation area is 90.5% for lidar-
only and 95.1% for radar-only tracking?. When fusing radar and lidar measurements,
the percentage of true cardinality estimates is 95.6% and achieves the performance
of radar-only tracking.

2As there are few stationary clutter objects in the area in front of the ego vehicle, the cardinality
estimates are considerably better than when considering the entire sensor FOVs.
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Figure 6.24: Fusion of radar and lidar data in the occlusion scenario: lidar
measurements (o), radar measurements from the front left (o),
front right (v), rear left (0), and rear right (o) sensors

To analyze the effects of sensor fusion in occlusion situations, the two multi-object
scenarios from the lidar evaluation are revisited. Figure 6.24 shows the estimation
results in the occlusion scenario. Again, both vehicles are continuously tracked
through occlusion, similarly to lidar-only tracking with activated occlusion model.
However, a comparison of the occluded vehicle’s particle distribution (see Fig. 6.24b)
shows that the state uncertainty is considerably reduced and that the available radar
measurements ensure precise tracking also in the absence of lidar measurements.

Furthermore, fusion of both sensors ensures that the front vehicle in the following
scenario is continuously tracked through the occlusion period (see Fig. 6.25a) and
does not deviate as in lidar-only tracking (cf. Fig. 6.22a).

To evaluate the behavior in the case of sensor failure, i.e. in the case a sensor
stops delivering measurements, the lidar sensor was switched off in the figure eight
scenario between 8.6s and 20.3s. The results are illustrated in Fig. 6.25b. As soon
as the lidar measurements are missing, the filter keeps track of the vehicle only using
the available radar measurements. After the lidar sensor is switched on again, it
seamlessly continues using the measurements of both sensor types. This behavior is
possible as the chosen centralized fusion architecture avoids elements of static fusion
which require all sensors to be available at all times.
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Figure 6.25: Two scenarios that illustrate fusion of radar and lidar: lidar
measurements (o), radar measurements from the front left (o),
front right (v), rear left (o), and rear right (=) sensors, sensor
FOVs (dashed lines), ego-vehicle (filled rectangle), estimated
trajectories (solid) and exemplary vehicle poses (solid rect-
angles), reference trajectories (dashed) and reference poses
(dashed rectangles)

6.6.3 Fusion of Radar and Scene Labeling

Apart from lidar, camera images also provide rich information about the object
geometry and orientation and thus constitute an interesting complement to radar
data. Therefore, fusion of radar with scene labeling data is evaluated as a second
sensor constellation in this section. The focus is again set on analyzing the effects
on the tracking accuracy. Additionally, it is demonstrated how the occlusion model
in the scene labeling module allows for processing large label patches despite the
missing instance-level information.

The RMSE values for the single object data set are listed in Table 6.7. Again, sensor
fusion has a positive impact on the tracking accuracy. The estimation errors are
considerably reduced throughout the state vector. In particular, there is a notable
improvement in the orientation estimates due to the additional information. The
effect of sensor fusion on the percentage of correct cardinality estimates in the
multi-object data set is rather small and remains with 95.3% at the same level as
radar-only tracking (95.1%).

The fusion performance of radar and scene labeling is additionally illustrated in
Fig. 6.26 for the public road scenario. Figure 6.26a shows the occlusion situation
that causes a track loss of the rear vehicle when only using radar information. In
contrast, the rear vehicle is continuously tracked through occlusion when using the
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Table 6.7: Comparison of average RMSE values over 20 Monte Carlo runs
when fusing radar and scene labeling data

States Variational = Fusion Relative Change
Radar Model
TR in m 0.15 0.13 -17.69%
Yyg in m 0.23 0.15 -33.95%
@ in ° 6.55 4.00 -38.93%
v in m 0.35 0.30 -13.26%
w in °/s 5.54 4.96 -10.48%
a in m 0.20 0.20 -0.87%
b in m 0.22 0.18 -18.77%

fusion approach. This is due to the prolonged availability of measurements from the
rear vehicle in the labeled image and the occlusion model that was added to the
separable likelihood model. The occlusion model allows the scene labeling module
to internally split the patch of vehicle labels, which appears as one blob without any
instance information, and to assign the pixels to the respective vehicles.

An example of large a scale scene labeling failure is depicted in Fig. 6.26b. The filter
discards the vehicle track since a majority of the pixels showing the turning van is
not correctly classified over several time steps. As shown in the tracking excerpt
figure, the track is shortly after reinitialized by the radar sensors.

The overall tracking RMSE values with respect to the labeled ground truth is 0.23 m
and 0.48 m for the position, 4.2° for the orientation, and 0.39m as well as 0.54m
for the width and length. State estimates for the vehicles are available in the lidar
FOV in 96.0% of the cases. Here, the major cause for this slight improvement in
comparison to tracking with the variational radar model only is the avoidance of the
track loss during the occlusion situation.

In a final experiment, the large impact that fusion of scene labeling information can
have on the tracking accuracy is shown for the parallel scenario. Since the direct
scattering model exhibited great difficulties in maintaining continuous tracks in this
scenario (cf. Fig. 6.15a), it was used instead of the variational radar model. The
results and an exemplary labeled image are illustrated in Fig. 6.27. Due to the
information from the scene labeling data, the filter is able to clearly distinguish
the two vehicles and achieves improved orientation estimates. Consequently, it
continuously tracks both vehicles.
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Figure 6.26: Radar and scene labeling fusion in the T-intersection scenario:
front left (o), front right (v), rear left (o), and rear right (o)
radar measurements, labeled images with vehicle (red) and
background (blue) classes, sensor FOVs (colored dashed lines),
ego-vehicle (filled rectangle), estimated trajectories (solid) and
exemplary vehicle poses (solid rectangles / boxes), reference
trajectories (dashed) and reference poses (dashed rectangles)
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ments from the front left (®), front background (blue) classes, as well as
right (), rear left (0), and rear right (o) exemplary vehicle poses (boxes)
sensors, ego-vehicle (filled rectangle),
exemplary vehicle poses (solid rect-
angles), and reference poses (dashed
rectangles)

Figure 6.27: Parallel scenario when using scene labeling data and the direct
scattering model

6.6.4 Fusion of Radar, Lidar, and Scene Labeling

In a final experiment, the data from all three sensor types is fused. Table 6.8 lists
the RMSE values for the single object data set. The comparison with the results of
radar and lidar as well as radar and scene labeling fusion shows that the use of all
three sensor types is able to reduce the weaknesses of the two-sensor constellations.
Apart from the x-position and the length, which only slightly deteriorate, all RMSE
values are better than the worst estimate from the two comparison set-ups. Yet, the
achieved results do for most states not reach the accuracy of the best value.

From a theoretical perspective, one would expect that data fusion always improves
the accuracy. However, this supposes that all measurement and process models
exactly represent the true densities and that inference is made in an exact and not
approximate way. Thus, there are several issues that may cause the fact that the
combination of three sensors does not clearly outperform the constellations with two
sensors. Particularly the handcrafted measurement models may, for instance, contain
modeling errors or information may be lost in the resampling step of the particle
filter. Also, the use of all three sensor types results in an average of 67.5 measurement
cycles per second in the area in front of the ego-vehicle. Therefore, the information
gain of the temporally closely spaced measurements might be small in comparison to
modeling errors. Scene labeling and lidar data furthermore exhibit similar strengths
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Table 6.8: Comparison of average RMSE values over 20 Monte Carlo runs
of the different fusion constellations

States Radar + Radar + All Comparison  Comparison
Lidar Scene Labeling  Sensors to best to worst

TR in m 0.15 0.13 0.15 20.22% 2.65%

Yyg in m 0.15 0.15 0.15 -2.61% -3.24%

@ in ° 3.25 4.00 2.33 -28.36% -41.69%

v in m 0.37 0.30 0.35 16.73% -5.02%

win °/s 5.01 4.96 4.85 -2.09% -3.04%

a in m 0.16 0.20 0.16 1.46% -21.711%

b in m 0.23 0.18 0.23 28.06% 0.57%

in comparison to radar data. They both provide valuable information about the
orientation and size of objects. If used together, the contribution might not be
significantly greater than in the individual cases. Nonetheless, the combination of all
three sensor types increases the redundancy of the perception system and provides
greater protection against sensor failure.

Lastly, fusing radar, lidar, and scene labeling data yields the best value for the
correct cardinality estimate: The cardinality is correct in 95.9% of the time steps, as
opposed to 95.6% and 95.3% for radar and lidar as well as radar and scene labeling
fusion, respectively.

6.6.5 Discussion

In summary, the fusion evaluation experiments allow to draw several conclusions:
Fusing radar and lidar combines the strengths of both sensors and particularly helps
to merge the precision of the lidar in terms of the pose estimate with the accurate
motion information from the radar sensors. Also, the lidar occlusion model proves to
be valuable in such a fusion approach. It naturally models the absence of information
in the lidar data and permits the filter to focus on the remaining radar information.

Similar to lidar and radar fusion, the use of a rather simple scene labeling model is
able to greatly improve the tracking accuracy in comparison to radar-only tracking.
Again, the occlusion model allows to keep track of vehicles that are occluded in the
camera image and to separate the instance-free semantic information.

It was shown that fusion of data from three different sensor types and using extended
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object models for all sensors is possible. The detailed extended object models
closely emulate the measurement principles. They allow for proper consideration of
sensor-specific characteristics, such as occlusion in lidar and scene labeling data, as
well as the measurement uncertainty. In sensor fusion, it is particularly important
that all measurement models reflect the true measurement uncertainty as good
as possible. This avoids the introduction of overconfidence in the state estimates
through particular sensor modules. Hence, the extension of the data-driven approach
of the variational radar model to the other sensor types could further improve the
performance.

Finally, it was demonstrated that the proposed system architecture is able to cope
with sensor failures as it uses a centralized fusion architecture and does not rely on
static fusion elements.






Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goal of this thesis was to derive a vehicle tracking framework that tackles
the multi-object problem, the extended object problem, and sensor fusion in an
integral probabilistic manner and directly operates on the sensors’ raw measurements.
As solution, the thesis proposed a framework that is based on finite set statistics
(FISST) and provides a Bayesian end-to-end formulation for the entire problem.
The multi-object state is described in form of a random finite set (RFS) and the
framework aims at obtaining a posterior density of this multi-object state by applying
the multi-object Bayes filter. Its equations are solved by modeling the multi-object
densities as labeled multi-Bernoulli (LMB) and generalized labeled multi-Bernoulli
(GLMB) distributions and using an LMB-filter-like structure. The FISST-based
formulation not only provides a solution to the multi-object problem but also allows
for straightforward incorporation of extended object models, which are able to
process multiple measurements, closely model the sensor behavior, and aim at using
all available information.

There are several contributions that this work makes to the current state of the art.
First, it proposed a filter architecture that tackles the three mentioned problems in
a fully Bayesian fashion and allows for easy adding and removing of sensor modules
that accommodate entirely different measurement models and update routines. The
filter cycle additionally includes a second prediction step that was theoretically
derived and approximately avoids overlapping objects.

Secondly, several new extended object models were developed for vehicle tracking
using radar, lidar, and scene labeling data. In particular, two extended object
models for radar-based tracking were put forward in form of the direct scattering and
variational radar models. The direct scattering model is based on expert knowledge,
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whereas the variational radar model is the first extended object model for radar data
that is directly learned from actual measurements. Moreover, the separable likelihood
approach was transfered to tracking with lidar data. Thus, a new lidar measurement
model was established and it was shown how ray-based lidar measurement models
can be incorporated into FISST-based multi-object trackers. Lastly, an extended
object measurement model for scene labeling data was developed. It considers the
occlusion of objects and is able to cope with vision data that does not provide
instance-level information.

Thirdly, this thesis presented the first approach that fuses data from three heteroge-
neous sensor types using different sensor-specific extended object models and it was
demonstrated that the filter can be implemented using particle filtering techniques.

To assess the performance of the proposed methods, they were evaluated on multiple
single object and multi-object scenarios as well as a public road scenario. The
tracking accuracy was determined by comparing the estimates to precise ground
truth data for each state component. Also, the cardinality estimates were assessed to
measure the multi-object performance. Both radar models yield precise estimation
results. Yet, a comparison between the two models revealed that the variational radar
model for the most part outperforms the handcrafted direct scattering model. The
applicability of the proposed approaches to different vehicle types was demonstrated
using a public road scenario. In contrast to the radar models, the ray-based lidar
model achieves preciser estimates of the vehicle pose but is less accurate in estimating
the vehicle motion. Apart from tracking accuracy, the lidar evaluation analyzed
the effects of the occlusion model on the multi-object performance. It showed that
the model helps to continuously track vehicles through occlusions but that track
losses still occur due to the increasing uncertainty if there are no measurements
over longer occlusion periods. Finally, different sensor fusion constellations were
compared and analyzed. It was shown that combining radar with lidar or scene
labeling data improves the accuracy in both cases and that sensor fusion especially
helps to diminish the weaknesses of the individual sensors. As an additional variant,
all three sensor types where combined. This combination does not yield performance
gains that are as big as those of the two-sensor constellations but adds to sensor
redundancy. Also, it was demonstrated that the chosen architecture is able to deal
with sensor failure and does not rely on particular sensor constellations. In the fusion
experiments, the occlusion models proved to be particularly beneficial since they
model the absence of information for one sensor and allow for focusing on remaining
information from other sensors.

In summary, the developed framework and extended measurement models come with
several advantageous characteristics. The FISST formulation provides a rigorous
probabilistic formulation of the entire problem which clearly reveals approximations
as well as assumptions. It also allows for a principled approach to track management
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in terms of existence probabilities, which are obtained by systematically comparing
vehicle hypotheses among each other and to clutter models. Additionally, the
extended object models directly use all measurements and avoid preprocessing
routines which face difficulties if meta-measurements cannot be clearly extracted
and oftentimes require additional heuristics. For instance, the radar measurement
models are able to use all available Doppler information in cases with many but
also with only one radar detection. They are not restricted to particular maneuvers
and the variational radar model even processes spurious wheel measurements. Also,
the variational radar model avoids elaborate manual design and directly learns
the likelihood function form actual data. Besides, the lidar model uses negative
information, considers occlusions, and does not require special treatment at field of
view (FOV) boundaries as it is often the case in classical bounding box preprocessing
approaches.

Yet, there are also limitations to the developed methods that require consideration.
A rather obvious but particularly important insight is that the fully probabilistic
description only yields reasonable results if all probabilistic models are a sufficiently
good approximation of reality. Deviations from the true densities directly entail
consequences. For example, the assumption of independent and uniformly distributed
clutter does not accurately model clutter measurements from stationary objects.
This can lead to false tracks and to overconfidence in the cardinality estimate. Also,
the particle implementation introduces approximation errors which may lead to
imperfect posterior densities that do not capture the full uncertainty. Lastly, the
prototype MATLAB implementation was not intended for real-time application and
new fast implementations need to be developed for application in an autonomous
vehicle.

7.2 Suggestions for Future Work

These limitations lead to several recommendations for future work. Among those,
there are several aspects that could lead to further improvement of the methods
themselves. For example, it would be worthwhile to find new and advanced clutter
models which adapt themselves to the current conditions or directly estimate the
clutter density under consideration of typical correlations. This could further improve
the filter’s ability in distinguishing true vehicles from false tracks. Additionally,
the results of the variational radar model strongly suggest that learning sensor
models from actual data is beneficial and should be transferred to the other sensor
types. This would further contribute to using densities that closely approximate
reality. The variational radar model itself has only been tested using a training
data set of a single vehicle and obviously, using training data with multiple different
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vehicles would lead to additional insights. Analyzing to what extent different vehicle
types can be lumped into a single model and at which point a separation into
multiple vehicle classes is better, would be particularly useful for the application
to public road scenarios that, for example, comprise trucks. Apart from vehicles, a
full-fledged environment perception system also needs to track other object types
such as pedestrians or bicycles. This extension requires finding suitable combinations
of class-specific extended object models that achieve good performance and work
together well.

In terms of real-time capability, there are two ways that can be pursued. First
implementations of the variational radar model in C++, that were not optimized, have
achieved near real-time computations on a single central processing unit (CPU) core
and suggest that real-time capability can be achieved through careful implementation
using multiple cores. Certainly, the use of graphics processing units (GPUs) for
computing the particle updates would solve this issue. As an alternative, the
computational load of the particle implementation could be avoided by using other
approximation techniques such as an unscented Kalman filter (UKF) implementation.
For example, the Student’s t-mixture of the variational radar model could be
simplified to a Gaussian mixture and re-interpreted as a reflection point model. In
combination with approximate association techniques that establish correspondences
between reflection points and measurements, this would allow using UKFs.

One of the major limitations in extended object tracking research is the absence
of common benchmark data sets that allow a fair comparison between the over-
whelming variety of methods. This is particularly the case for radar data. Hence,
the preparation of such a data set and a thorough evaluation of different extended
object models would greatly help to obtain a conclusive comparison of the different
methods’ strengths and weaknesses.

Besides the development of extended object methods, there has been a drastic
increase of deep learning for vehicle environment perception. Deep learning methods
are transferred from computer vision tasks to other sensor types and are, for instance,
used for object classification or detection. Such approaches draw their performance
from large data sets and are thus able to infer plausible outcomes even if the current
data is ambiguous. As they additionally avoid manual engineering, the quality of
preprocessing results is currently improving. For example, fitting bounding boxes to
3D lidar data (see e.g. [LZX16]) yields promising results and could alleviate many
of the typical hand-crafted box fitting algorithms.

In contrast to deep learning approaches, Bayesian extended object tracking focuses
on using probabilistic measurement models that capture the uncertainty in the data.
Therefore, they are appropriate whenever the ambiguity in the data of a single time
step is so large that using preprocessing results, e.g. the average result from many
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observations, become deficient and an accumulation of information over several time
steps is necessary. At the current time, this appears to particularly be the case
for radar data and interestingly, the development of deep learning approaches for
radar sensors seems to lag behind the other sensor types. Nevertheless, bounding
box regression using deep learning and radar data is most certainly forthcoming and
for future work, a through comparison between such methods and extended object
tracking would be highly interesting.

If high-performance preprocessing routines are available, the basic concept of the
variational radar model could be used to bridge the cap between deep learning
methods and Bayesian tracking. The idea of learning a measurement model using
variational Gaussian mixtures (VGMSs) can, for instance, be transferred to measure-
ment models on bounding box level. Thus, the true uncertainty in the bounding
boxes as well as different preprocessing characteristics that, for instance, depend on
the aspect angle could be learned from data and used to achieve improved tracking
performance.






Appendix A

Marginal and Conditional of the
Multivariate Student’s
t-Distribution

For the sake of completeness, this appendix lists the marginal and conditional distri-
butions of a multivariate Student’s t-distribution as provided in [Rot13]. Additionally,
the marginal and conditional densities of Student’s t-mixtures are provided. The
marginal distribution is necessary for computing the measurement likelihood of the
variational radar model through (5.26). Alternatively, the conditional distribution
can be used directly.

Let x = [2T,23]" be a random variable that is distributed according to a multivariate
Student’s t-distribution St(z|u, X', v) of the form (2.15) and with parameters

p=[pt,pal",

) by
2= [ 3]
- [221 PV ( )
and v. The marginal distribution over x; is
p(x1) = /p(:vl,:vg) dze = St(x1|p1, X1, V). (A.2)

The conditional distribution of x; given a particular value for x, is

p(x1|w2) = St(@1|p1)2, E1j2, V1j2) (A.3)
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where p;(x1) is the marginal distribution of the i-th component according to (A.2).
The conditional density is
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where the densities p;(x2) and p;(x1|z2) are again the respective marginal and
conditional densities from (A.2) and (A.3).



Appendix B

Update Equations for the
Variational Gaussian Mixture

Computing the optimal approximation of the posterior over the latent variables from
(2.39) involves iteratively maximizing the lower bound from (2.27) with respect to
q(L) and g(w, M, H). That is, (2.31) is evaluated in turns to obtain the optimal
solutions ¢*(L) and ¢*(w, M, H).

Inserting the joint distribution p(Z, L,w, M, H) from (2.37) into (2.31), computing
the expected value with respect to w, M, and H, and normalizing the result yields
the optimal solution ¢*(L). It is again a product of m multinomial distributions of
the form (2.33) [Bis13, pp. 476-477],

¢ (L) = ﬁMult(z@w)). (B.1)
i=1

Here, each 7( is normalized such that Z;Zl Tj@ =1and

@) @2 _Me Vi) 6T (&) _ ()
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with
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Z (uy + ) +n,In2+1Indet(V;)) |, (B.3)
iy = exp (¥(py) — U(5)) (B.4)

the diagamma function ¥(-) [Bis13, p. 687], and where p = 25:1 p;-

Similarly, the optimal solution ¢*(w, M, H) is obtained by inserting (2.37) into
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(2.31) and computing the expected value with respect to L. This procedure yields a
factorized optimal result in the form ¢*(w, M, H) = ¢*(w)g¢* (M, H). These factors
are a Dirichlet distribution [Bis13, p.478]

¢*(w) = Dir(w|p), (B.5)

where the elements of the updated parameter are

pj = po+ 8j, (B.6)

and .
5= 10 (B.7)

i=1

The optimal solution for ¢*(M, H) is the product of ¢ Gaussian-Wishart distributions
[Bis13, p. 478]
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Acronyms

0-GLMB
ADMA

CBMeMBer
CCD

CNN
CPHD

CPU

CTRV

DBSCAN
DGPS

EKF

FISST
FOV

GLMB
GP
GPS
GPU

iid.
IMU

JIPDA
JPDA

LMB

0-generalized labeled multi-Bernoulli ........................ ... 35
Automotive Dynamic Motion Analyzer .......................... 93
cardinality-balanced multi-target multi-Bernoulli ............ 39, 59
charge-coupled device ......... ... .. i 93
convolutional neural network ............. ... ... ... ..., 54, 126
cardinalized probability hypothesis density .................. 39, 59
central processing unit ........ ... .o i i 140
constant turn rate and velocity .............. ... ... ... 62, 103, 154
density-based spatial clustering of applications with noise ...... 106
differential global positioning system .................... ... ..., 93
extended Kalman filter ........ ... ... ... ... ... ... 23, 55
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field of view .......... 1, 26, 52, 85, 91, 139
generalized labeled multi-Bernoulli .................. 34, 59, 72, 137
GaUSSIAN PIOCESS .ottt ittt e 44, 51
global positioning system ........ ... ... oL 94
graphics processing unit .............. i i, 101, 140
independent and identically distributed ............... ... ... 31, 80
inertial measurement unit ........... .. i 93
joint integrated probabilistic data association ................ 27, 55
joint probabilistic data association ............. ... ..ol 27

labeled multi-Bernoulli .............................. 33, 55, 73, 137
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MAP maximum a Posteriori ......... ... i 7
MHT multiple hypotheses tracking ............. ... ..ol 27
MMSE minimum mean SQUATE €TTOT ... ......uteureenneennnennneennn.. 7, 95
NN nearest neighbor ......... . .. 27
PDA probabilistic data association .............. ... i i 27
PHD probability hypothesis density ............ ... 30, 55
PMBM Poisson multi-Bernoulli mixture ............... ... ... ... .. 40, 55
RANSAC random sample CONSENSUS ... ..ottt et enenie e i 106
RBPF Rao-Blackwellized particle filter ............... ... ... ... ...... 26
RFS random finite set ....... ... ... il 4,28, 57, 79, 137
RHM random hypersurface model ........... .. .. .. .. .. . 44, 153
RMSE root mean SQUATed EITOT . ........vuutitenueate e, 95
SIR sequential importance resampling ........ ... ... .. L 24
SMC sequential Monte Carlo ........... ..o i 61
UKF unscented Kalman filter ............ ... ... ... ....... 24, 55, 140
VGM variational Gaussian mixture ........................ 16, 85, 98, 141
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General Notation

a

&

<

YN
4L

N N

g >

det(A)
E[]
Eq[]
exp(-)
[h()]4

Ng
Tr(A)
0A

scalar or vector

i-th element of a vector

estimate of the random variable a

mean or expected value of the random variable a
matrix

inverse of matrix A

transpose of matrix A

set

i-th element of a set A

i-th element of a set of matrices A

cardinality of a set

labeled vector

labeled set

function or density of a labeled quantity

space

differential of a scalar or vector a

determinant of the matrix A

expectation operator

expectation with respect to the random variable a
natural exponential function

multi-object exponential, i.e. product of the real-valued function h(-)
applied to all elements of A

dimension of the vector a
trace of the matrix A
differential of a set A as used in set integrals
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Densities

f@) single object or multi-object transition density

50) labeled multi-object transition density

g(*) measurement likelihood

gc () density of the clutter measurement set

p(a) density function over some random variable a

p(alb) conditional density of a random variable a given b

pc(+) density of a single clutter measurement

q(*) proposal density in importance sampling or auxiliary density in varia-

tional Bayes

optimal proposal density
mutli-object state density
labeled mutli-object state density

foreground likelihood of the i-th measurement in the separable likeli-
hood model

¥(+) background likelihood in the separable likelihood model

Yu(z)(+,-10)  generalized likelihood in the generalized standard multi-object likeli-
hood for given partition U(Z) and association mapping 6

Distributions

Ber(z|r) Bernoulli distribution with parameter r

Dir(z|p) Dirichlet distribution with parameter p

Mult(z|w) multinomial distribution with parameter vector w

N(z|p, X) multivariate Gaussian distribution over the random variable a with
mean g and covariance matrix X

Poi(z|\) Bernoulli distribution with rate parameter A

St(x|p, A,v) multivariate Student’s t-distribution over the random variable a with
parameters u, A, and v degrees of freedom

U(z|u,u,)  uniform distribution over the interval [u;, ty,]

W(X|V,v) Wishart distribution over the random matrix A with parameter V
and v degrees of freedom

Functions

la(a) inclusion function which is 1 if and only if a € A

A(Y) function that returns the area that is occupied by a vehicle in depen-
dence on its state

C(p) normalization factor of a Dirichlet distribution in dependence on the

parameters p
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fm () transition function of the system model

fa () state transformation function

f2() measurement transformation function

B (4) measurement function of the system model

k() Gaussian process kernel

KL(||) Kullback-Leibler divergence

B(V,v) normalization factor of the Wishart distribution

L(X) label projection function that retrieves all labels from a labeled set X

<,

=

D> 3
—~ TN/~
NN NG N

radius function in contour models

weight of a multi-object hypothesis (label set as argument) or a particle
/ importance weight (state vector as argument)

importance weight that has not yet been normalized

gamma function

distinct label indicator which is 1 if and only if all labels in X are
unique

Kronecker-delta function

normalization constant

association mapping

intensity function of the clutter process

() diagamma function

Matrices

H precision matrix of the multivariate Gaussian distribution

S sufficient statistic in computing the optimal solution in VGMs

\%4 matrix parameter of the Wishart distribution

A precision matrix of the multivariate Student’s t-distribution

Probabilities

PD probability of detection

pp(+) probability of detection as a function of the object state

po(,-) overlap probability for two objects as function of their labels

DR, bar probability of receiving a return in the background likelihood of the
lidar model

DR,j probability of receiving a return in the foreground likelihood of the
lidar model where j = {1, 2,3} for the three ray types

ps(+) probability of persistence as a function of the object state

ap(*)

probability of misdetection as a function of the object state
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qs() probability of disappearance as a function of the object state

Subscripts

0 initial value

1:k set of all measurements or measurement sets from the first to the k-th
time step

B density or variable corresponding to a newly-born object

k time step

oC object coordinates

SC sensor coordinates

Uz) for a given partition U(Z)

VC vehicle coordinates

+ prior quantity

Sets

H set of precision matrices H

1 label subset

J label subset

L set of latent variables [

M set of Gaussian distribution means pu

Pi(Z) set of all measurement partitions with ¢ clusters

() set of affected measurement indices in the lidar and scene labeling
measurement models

X multi-object state

X labeled multi-object state

VA measurement set

Zp training data set

Zo set of measurements that originate from a specific object

d parameter set of the VGM model

Spaces

L label space

N natural numbers excluding zero

Ny natural numbers including zero

X state space

(C] space of all possible associations

Z measurement space
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Scalars and Vectors

a

a;

St o

>3 3 S T~ a0 g

S
=

S

TR

YR

2D

Zmax

vehicle width

Fourier series coefficient in the random hypersurface model (RHM)
vehicle length

Fourier series coefficient in the RHM

number of components in a mixture

range

assignment vector and latent variable in Gaussian mixture model
object label

number of measurements or data points

number of objects

effective sample size in particle filters

number of particles

parameter vector of the RHM

parameter of the Bernoulli distribution and existence probability
scaling factor in the RHM

sufficient statistic in computing the optimal solution in VGMs
lumped state terms in the Doppler equation (5.16)

lower and upper interval bounds in a uniform distribution
vehicle speed

Doppler velocity

expected Doppler velocity

object velocity at the measurement location

parameter vector of the multinomial distribution which denotes the
event probabilities and weight vector in the VGM model

latent variable or state vector

labeled state vector

transformed state vector

x-position of the rear axle center
measurement source in spatial distribution models
y-position of the rear axle center
measurement vector or observed variable
training data vector

maximum sensor range in the lidar model
transformed measurement vector
azimuth angle
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B scaling parameter in the Gaussian portion of the Gaussian-Wishart
prior

y mean vector of the Gaussian portion in the Gaussian-Wishart prior

At time difference between two filter cycles

€ additive noise

€f process noise in the discrete-time system model

€n measurement noise in the discrete-time system model

€y process noise of the speed in the constant turn rate and velocity
(CTRV) model

€z process noise of the xg-position in the CTRV model

€y process noise of the yg-position in the CTRV model

€ process noise of the orientation in the CTRV model

€, process noise of the yaw rate in the CTRV model

¢ extent state vector portion

0 association mapping between objects and measurements

K angle of the connecting line between center and contour in star convex
shapes

Ao expected number of clutter measurements

AT expected number of measurements from an object

I mean of the multivariate Gaussian or multivariate Student’s
t-distribution

v degrees of freedom in a distribution

13 kinematic state vector portion

P parameter of Dirichlet distribution

T responsibilities in VGMs

") vehicle yaw angle

w vehicle yaw rate

Miscellaneous

F event that a multi-object state is physically consistent

L(q(X)) lower bound in variational Bayes which is a functional of the auxiliary

density g(X)
partition of the measurements Z
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