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Abstract

Models of quantum gravity imply a fundamental revision of our description of

position and momentum. This revision manifests in modifications of the canon-

ical commutation relations. Experimental tests of such modifications remain an

outstanding challenge. In recent years, tabletop experiments to test for quantum

gravity have been proposed. This thesis address two main challenges to such

experiments.

The first contribution is related to the recent proposal to use cavity-optomechanical

systems to test for these deformations [Nat. Phys. 8, 393-397 (2012)]. Improv-

ing the achievable precision of such devices represents a major challenge that we

address with our present work. More specifically, we develop sophisticated paths

in phase-space of such optomechanical systems to obtain significantly improved

accuracy and precision under contributions from higher-order corrections to the

optomechanical Hamiltonian. An accurate estimate of the required number of

experimental runs is presented based on a rigorous error analysis that accounts for

uncertainty in mean photon number, which can arise from classical fluctuations or

from quantum shot noise in measurements. Furthermore, we propose a method

to increase precision by using squeezed states of light. Finally, we demonstrate

the robustness of our scheme to experimental imperfection, thereby improving the

prospects of carrying out tests of quantum gravity with near-future optomechanical
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technology.

The second contribution is based on the fact that the deformations in the

canonical commutator scale with the mass of test particles, which motivates

experiments using macroscopic composite particles. Here we consider a challenge

to such tests, namely that quantum gravity corrections of canonical commutation

relations are expected to be suppressed with increasing number of constituent

particles. Since the precise scaling of this suppression is unknown, it needs to

be bounded experimentally and explicitly incorporated into rigorous analyses of

quantum gravity tests. We analyse this scaling based on concrete experiments

involving macroscopic pendula and provide tight bounds that exceed those of

current experiments based on quantum mechanical oscillators. Furthermore, we

discuss possible experiments that promise even stronger bounds.

Thus, the work in this thesis brings rigorous and well-controlled tests of quantum

gravity closer to reality.
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Chapter 1

Introduction

One of the most important open problems in physics is the unification of quantum

mechanics and gravity [5]. However, quantising gravity is not straightforward and

despite continuous efforts in promising lines of research like string theory and loop

quantum gravity, no clear-cut theory has emerged. One of the major challenges

to developing such a theory is the lack of experimental evidence. This thesis

contributes towards addressing this challenge.

Since there is no one widely-accepted theory, many phenomenological models of

quantum gravity have been proposed. One feature of these models is the existence of

a minimum length scale of the order of Planck length [6]. Detecting the existence of

such a minimal length scale is one of the main goals of the field, but has so far eluded

experimental verification. Direct detection of the Planck length, 1.6× 10−35 m, is

infeasible with current and foreseeable technology because the effects of quantum

gravity are expected to become directly relevant only at energies of the order of

Planck energy which is Ep = 1.2× 1019 GeV. This is 15 orders of magnitude larger

than the energy scales achievable in the Large Hadron Collider today. Hence, it

seems unlikely that these energy scales will be achieved in the near future and we

must resort to indirect methods. So in order to experimentally probe quantum

1
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gravity, we must rely on indirect tests of signatures of Planck length.

One class of indirect tests of a minimal length scale relies on observing distant

astronomical events for cosmological consequences of these effects [7,8]. For instance,

quantum gravity predicts that the velocity of photons depends on their energies.

Thus, photons travelling from distant gamma ray bursts over cosmological distances

will incur a detectable spread in their arrival times. This approach, however, suffers

from challenges as it includes model-dependent assumptions, for example about

the evolution of the objects that emit them and about the perturbations due to

billions of light years of interstellar medium traversed by the gamma-rays. This

lack of control of the experimental conditions is compounded by the limitations

to possible improvements to the precision of such experiments due to limitations

on the distance to observable gamma-ray bursts and the maximal energy of the

gamma-rays. This motivates looking for an alternative route to detecting Planck-

scale effects, which allow, at least in principle, for improving the sensitivity of the

experiment with advancing technology.

1.1 Minimal length scale by means of deformed

commutators

One such route involves using table-top experiments that can be controlled precisely,

for example, those based on optical, optomechanical and matter-wave devices [3, 4,

9–11]. The underlying concept on which several such experiments rely upon is that

the canonical commutation relations of position and momentum are deformed as

a consequence of a variety of formulations of quantum gravity [6, 12–15]. These

deformations are a phenomenological approach to modelling the existence of a

minimum length scale in quantum gravity and different models of quantum gravity
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involve different forms of modification of the commutator [16–18]. One such

paradigmatic model is [16]

[x, p] = i~
(

1 +
β0

(Mpc)2
p2

)
, (1.1)

where Mp = 2.176435× 10−8 kg and c = 299792458 m/s are the Planck mass and

speed of light respectively. β0 is a dimensionless parameter which is expected to be

of the order of unity if the minimal length scale is of the order of Planck length, but

it is not fixed by theory. Measuring or placing bounds on this parameter is thus

the open experimental challenge that is the focus of these table-top experiments.

To get a heuristic idea on how quantum gravity implies a deformation in the

canonical commutator like in Eq. (1.1), we perform a thought experiment following

the argument in Ref. [19] which is based on Ref. [20]. We consider the usual

argument that is used to motivate Heisenberg uncertainty principle but modify it

to include the effects of gravity. Consider an experiment where we try to measure

the position of an electron using photons of wavelength λ reflected off it into a lens.

The resolution of the position measurement is limited by diffraction and therefore

∆x ∼ λ

sin θ
. (1.2)

The accuracy in position can be improved by using higher frequency photons. But,

according to Heisenberg, the photons impart some of their momenta onto the

electron, and the uncertainty in the x−component of the momentum is

∆p ∼ ~
λ

sin θ. (1.3)

With this, we have the Heisenberg uncertainty principle

∆x∆p ∼ ~. (1.4)
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According to the HUP, the uncertainty in x can be made arbitrarily small if we

allow for an arbitrarily large uncertainty in momentum and there is no minimum

length scale. So, in principle, if we build a powerful enough microscope, we could

resolve distances within the Planck length.

However, the equation changes if we also account for gravity. The photon not

only transfers some of its momentum to the electron, but also exerts gravitational

force on it. This gravitational force leads to an additional change in the position of

the electron, which should be accounted for. To calculate this additional change

in position, we assume that the photon interacts over some distance r. The

acceleration experienced by the electron is proportional to E/c2 = h/λc and is

a ∼ Gh

r2λc
. (1.5)

Therefore, over the time-scale of interaction t = r/c, the distance moved by the

electron is of the order of l ∼ Gh/λc3, which on projecting along the x axis is

∆xgrav ∼
Gh

λc3
sin θ. (1.6)

Writing it in terms of ∆p, we obtain

∆xgrav ∼
G∆p

c3
. (1.7)

Putting together the uncertainty in position from Heisenberg uncertainty principle

and from gravitational effects, we obtain

∆x & max

(
~

∆p
,
G∆p

c3

)
&

√
~G
c3
. (1.8)

The last relation uses the AM-GM inequality and the quantity
√

~G
c3

is defined as

the Planck length. Hence, we see that accounting for gravitational effects enforces

the existence of a minimal length scale beyond which no system can be probed.
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Eq. (1.8) can be rewritten as a generalised uncertainty principle by simply

adding the two terms with an arbitrary weighting constant β0 to obtain

∆x∆p & ~ + β0
G(∆p)2

c3
= ~

(
1 + β0

(
∆p

Mpc

)2
)

(1.9)

where in the last step, we have rewritten in terms of the Planck mass. This

uncertainty principle can be seen as a result of a deformed commutator of the form

[x, p] = i~
(

1 +
β0

(Mpc)2
p2

)
. (1.10)

This argument may seem hand-wavy and a result of using Newtonian physics to

calculate the scattering of the photon off the electron, but other arguments using

general relativity [20], string theory [21] and calculating the horizon of a black

hole [12, 13] all yield similar results.

Other models of quantum gravity yield slightly different forms of commutator

deformations. One such model [17] leads to the form

[x, p]µ0 = i~
(

1 + 2µ0
(p/c)2 +m2

M2
p

) 1
2

(1.11)

where the strength of the correction to canonical commutator is given by constant

µ0. Notice that this deformation depends on the mass m of the particle. In the limit

m� p/c .Mp, the commutator reduces to the β0 commutator of Eq. (1.1). So, in

existing and current analyses, we consider the other limit where p/c� m .Mp in

which case the commutator reduces to

[x, p]µ0 = i~
(

1 + µ0
m2

M2
p

)
. (1.12)

Another recently proposed model [18] of quantum gravity leads to the deformation

[x, p]γ0 = i~

(
1− γ0

p

Mp c
+ γ2

0

(
p

Mp c

)2
)

(1.13)
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with quantum gravity parameter γ0. We consider the limit γ0 � 1 or p/c�Mp,

where the commutator reduces to

[x, p]γ0 = i~
(

1− γ0
p

Mpc

)
. (1.14)

This thesis deals with experiments that aim to measure the values of the parameters

β0, µ0 and γ0 or at least place an upper bound on them.

1.2 Tests of deformed commutators

One approach to bounding the value of parameters like β0 is to use single particle

systems, for example, using measurements of Landau levels, of the Lamb shift, or

of electron tunnelling through a potential barrier [22]. However, the best bound

obtained with these methods is β0 < 1020, which is far from the expected β0 ∼ 1 [19].

To improve the bounds significantly, recent experimental proposals suggest using

massive composite systems rather than elementary particles. These experiments

aim to exploit the fact that the quantum gravity signal is enhanced with larger

momenta, which result from larger system mass. Experiments and proposals

in this direction include those based on the change in resonant frequency of a

harmonic oscillator [4,11,23], the change in broadening times of large molecular

wave-packets [24], and optomechanical schemes [3, 9].

The first part of the thesis is based on using an optomechanical scheme to

test for quantum gravity signatures based on the work by Pikovski et al. [3]. The

scheme in Ref. [3] proposes to measure the canonical commutator of a massive

object directly in order to bound the parameters β0, γ0 and µ0. Using laser pulses,

the state of the mechanical resonator is taken through a loop in phase space

causing the commutator of the position and momentum operator of the mechanical
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oscillator to be mapped to the phase of the outgoing light. The commutator is

measured and the contribution from regular quantum mechanics is subtracted to

estimate the quantum gravity parameter. This proposal is promising in exploring

an entirely new parameter space at the intersection of quantum mechanics and

gravity. Furthermore, technological progress and advanced experimental protocols

have the potential to improve sensitivity by many orders of magnitude.

In Ref. [1] and in this thesis, we show that despite the novel idea in the use of

optomechanics to probe quantum gravity, there are some challenges in the analysis

of this proposal that make it difficult to realise experimentally. The contributions

from the higher order corrections to the cavity Hamiltonian are much larger than the

quantum gravity signal and need to be taken into account to avoid false positives.

The precision of the estimated parameters is reduced because of uncertainty in the

incident-light mean photon number, which can arise from classical fluctuations or

from quantum shot noise in measurement. We address these issues by taking higher

order terms into account and suggesting different, more complicated paths in phase

space so that the imprecision arising from photon number uncertainty is minimised.

We also suggest using squeezed states of light to further improve precision.

Another major challenge in the proposal of Refs. [3, 9] and many other pro-

posals [4, 11,23] that use macroscopic objects to test for quantum gravity is that

the implications of using multi-particle systems to probe quantum gravity are not

clear. This is because the deformations of the canonical commutation relations

like Eq. (1.1) have been derived for point particles and not for centre of mass

(COM) modes of multi-particle objects [25]. The deformations for the COM modes

are expected to decrease with the number of constituent particles in the test ob-

ject [25,26], but the exact expression for this suppression is not known and therefore
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needs to be bounded by experiment. Even if the scaling with particle number of this

suppression was known, the question of what constitutes a fundamental particle

remains open. This scaling of quantum-gravity deformations with the number of

particles is a direct consequence of the so-called soccer-ball problem [27–29].

In Ref. [2] and in this thesis, we argue that the inclusion and hence estimation

of the suppression of the quantum gravity parameter is essential for the rigorous

interpretation of any experiment that uses composite test objects. To this end, we

introduce a phenomenological parameter α0 to account for this unknown scaling

law and the canonical commutator deformation now reads as

[x, p] = i~
(

1 +
β0

Nα0(Mpc)2
p2

)
(1.15)

where N is the number of constituent particles in the test object. We propose to

assess any such experiment by the exclusion area in a two-dimensional parameter

space spanned by α0 and β0 and carry out such an analysis for three experiments.

While the precise value of α0 is unknown, it is commonly accepted that it needs to

be positive [25,26]. We shall see that the best bounds that can be calculated from

recent experiments based on micro- and nano-scale quantum harmonic oscillators [4,

11] are in fact negative for β0 = 1 (and in fact any β0 < 106).

Here we show that measured data of a macroscopic pendulum reveals the first

positive bound on α0 for any value of β0 > 10−3 based on a careful analytical

examination of the effect of deformations of the canonical commutation relations

(Eq. (1.15)) on the time period of a pendulum. Specifically, we obtain α0 > 0.12

for a value of β0 = 1, which is expected in various models of quantum gravity.

The reason for this significant enhancement of the bound over those obtained from

micro- and nano-scale quantum harmonic oscillators can be traced back to the
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low achievable momenta in those experiments which in turn lead to very weak

deformations of the canonical commutation relations, for example, in the second

term in Eq. (1.15). We argue that our bound on α0 can be improved further by

moving a pendulum to a vacuum set-up with optimised low damping suspension

or by moving to diamagnetically levitated systems which exhibit extremely low

damping rates [30,31] on earth and promise even better values when located in a

space probe.

While performing the calculations of the time period of a pendulum when the

canonical commutators are deformed, we unify two different methods to calculate

the same. Our results pertaining to the time period are derived using the method

of deformed Poisson brackets [32–34]. We also put this method on a more rigorous

footing by connecting it to the calculations based on deformed commutators [16,35,

36] and show that the two results match. These two approaches have so far been

considered independent [37], but we connect the two approaches and show that we

obtain identical results. Finally, we show that the suppression of quantum gravity

deformations is not just restricted to this one framework of oscillator frequency

measurement. For instance, we consider the optomechanical system of Refs. [3, 9]

and verify that broadly analogous considerations hold.

This thesis is organised as follows: In Chapter 2, we give relevant background

for this thesis. In particular, we describe the methods to estimate quantum gravity

parameters using the optomechanical scheme in Ref. [3] and by measuring the

frequency of harmonic oscillators in Refs. [4, 11]. In Chapter 3, we show that the

method used in Ref. [3] is not experimentally feasible and devise modifications to the

method using new experimental schemes and different initial states. Furthermore,

we check the effect of experimental imperfections and theoretical assumptions on
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the suggested new schemes in Chapter 4. In Chapter 5, we extend the time period

calculations of Refs. [4, 11], which deal with harmonic oscillators in the presence

of deformed commutators, to those of a pendulum. These calculations use the

framework of the two parameter deformations (β0 and α0) that we introduced

in Ref. [2]. The time period calculations are performed using both deformed

commutators and Poisson brackets and we show that the two approaches result

in identical expressions. Using the expression for changes in the time period of

a pendulum, we use experimental data to place bounds on the quantum gravity

parameters in Chapter 6. We further suggest other experiments to substantially

improve the bounds. Finally, we conclude the thesis with a summary and outlook

in Chapter 7.



Chapter 2

Background

This chapter provides relevant background material that will be used in the rest

of the thesis. In Section 2.1, we first describe the existing scheme [3] for testing

quantum gravity effects via cavity optomechanics which we will analyse and improve

in Chapters 3 and 4. We then describe the experiments performed to test for the

same deformed commutators by measuring the frequency of harmonic oscillators

in Section 2.2 and discuss this scheme further in Chapters 5 and 6. Finally,

Section 2.3, we discuss generalised coherent states that are useful in the calculations

of Chapter 5.

2.1 Optomechanical scheme by Pikovski et al.

In this section, we detail the experimental scheme of Ref. [3]. This scheme uses

the optomechanical coupling between light and mechanical modes to imprint the

canonical commutator of the mechanical mode, as in Eq. (1.1), onto the phase of

light. By measuring the phase of light, we can make estimates of quantum gravity

parameters like β0.

We first introduce relevant notation and describe the Hamiltonian of the system

11
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that couples the light and mechanical modes. We then detail the experimental

scheme that causes the laser pulses to acquire a phase that depends on the commu-

tator. We then perform the uncertainty analysis and list the suggested required

experimental parameters.

2.1.1 The Hamiltonian

The Hamiltonian that couples the light and mechanical resonator is given by

H = ~ωmnm + ~
cn0

2(L+ x)
a†a, (2.1)

where nm is the number operator of the mechanical modes, L is the length of the

cavity at zero displacement, x is the position operator describing the displacement

from the mean position of the mirror, the integer n0 depends on the frequency

of the light incident at the cavity and a and a† are the annihilation and creation

operators of light modes.

The Hamiltonian is approximated by expanding to first order in x as

H ≈ ~ωmnm + ~ωLa†a− ~ωL
x

L
a†a, (2.2)

where

ωL =
cn0

2L
. (2.3)

Rewriting the Hamiltonian in terms of the dimensionless quadratures

X = x

(
~

mωm

)− 1
2

P = p (~mωm)−
1
2

(2.4)

where m is the mass of the mirror and ωm is the frequency of the mirror, and

defining

g0 = ωL

(
~

mωmL2

) 1
2

(2.5)
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we rewrite the Hamiltonian in a slightly more simplified notation as

H ≈ ~ωmnm + ~ωLa†a− ~g0Xa
†a. (2.6)

In Section 3.1, we will show that the approximation Eq. (2.2) of truncating

the Hamiltonian to only the first order is not valid under the conditions that

are relevant to the detection of possible quantum gravitational corrections to the

canonical commutation relations. Nonetheless, we demonstrate the implications

of this assumption in the remainder of this section to describe the experimental

scheme [3].

2.1.2 The scheme: measuring deformations in the
commutator

The experimental scheme that is described in this section is based on the idea

of pulsed optomechanics [38], i.e., the light that interacts with the mechanical

resonator is only sent in short pulses. In the following calculations, we work in the

interaction picture with respect to H0 = ~ωLa†a. Hence, during these short pulses,

the effective Hamiltonian is approximately

Hon ≈ −~g0Xa
†a

=: −~g0Xn

(2.7)

where we have rewritten n = a†a. When there is no pulse, the Hamiltonian is only

governed by the free evolution of the mechanical resonator, i.e.,

Hoff = ~ωmnm. (2.8)

When laser light is sent in pulses, the effective unitary operator is approximately

given by the time evolution due to Hon and Hoff alternatively, i.e.,

U = . . . eiθnmeiλnXeiθnmeiλnXeiθnmeiλnX (2.9)
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where θ and λ depend on the frequency of the mechanical oscillator, decay rate in

the cavity, the duration between laser pulses and duration of laser pulses. Here,

λ ' g0/κ with κ is the optical amplitude decay rate and n = a†a. λ depends on

the finesse F of the cavity as λ = 4Fx0/λL where λL is the optical wavelength and

x0 =
(

~
mωm

) 1
2
.

This experimental scheme involves implementing the unitary operator

U = eiλnP e−iλnXe−iλnP eiλnX (2.10)

which can be obtained from Eq. (2.9) with four pulses and choosing the duration

between laser pulses such that θ = π/2.

We now show that implementing this unitary operator leads to the outgoing

light acquiring a phase that depends on the commutator of X and P . The deformed

commutator in Eq. (1.1) can be rewritten in a simpler manner in terms of the

dimensionless position and momentum operators (Eq. (2.4)) as

[X,P ] = i
(
1 + β′P 2

)
, (2.11)

where β′ = β0
~ωmm
Mpc

. Using the new commutation rules, the unitary operator can

be calculated up to first order in β′ to obtain

U = e−iλ
2n2

e−iβ
′(λ2n2P 2+λ3n3P+(1/3)λ4n4). (2.12)

The quantity that is measured during the experiment is the phase of the outgoing

light. To estimate the phase, we calculate the mean optical field of the outgoing

light, which is

〈a〉 = Tr
(
aUρthm ⊗ ρα` U †

)
(2.13)
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for initial mechanical and optical state ρthm and ρα` respectively. The initial state of

the mechanical oscillator is assumed to be the thermal state

ρthm =
∞∑

nm=0

n̄nm

(1 + n̄)1+nm
|nm〉 〈nm| (2.14)

where n̄ is the mean phonon number of the oscillator. The state of light is initially

in a coherent state given by

ρα` = |α〉 〈α| = e−|α|
2
∑
n`,k`

αn`α∗k`√
n`!k`!

|n`〉 〈k`| (2.15)

where |n`〉 are the Fock states. The mean photon number of the coherent state |α〉

is given by Np = |α|2. For Np � 1 and λ2N3
p � n̄, the mean optical field can be

calculated and is approximately

〈a`〉 ≈ αe−iλ
2−Np(1−e−i2λ

2
)e−iΘβ (2.16)

where Θβ is given by

Θβ ≈
4

3
β′N3

pλ
4e−i6λ

2

. (2.17)

The initial state of light is |α〉, whose mean optical field is α. We see that after

the pulse sequences and interaction with the mechanical oscillator, the light has

picked up a phase ΦT which is

ΦT = λ2 − iNp(1− e−i2λ
2

) + Θβ

≈ 2λ2Np + Θβ.

(2.18)

This approximation holds when the number of photons Np is large. The first

term 2λ2Np occurs as a result of quantum mechanics alone (from the fact that the

commutator [x, p] = i~), but the terms Θβ is as a result of the deformations in the

commutator.
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Similar calculations can be performed with the γ0 and µ0 commutators (Eq. (1.14),

Eq. (1.12)), which can be rewritten in terms of the dimensionless variables as

[X,P ] = i (1− γP ) for γ = γ0

√
~mω
Mpc

(2.19)

and

[X,P ] = i (1 + µ) for µ = µ0
m2

M2
p

. (2.20)

These calculations lead to the phases

Θγ ≈ −
3

2
γN2

pλ
3e−i4λ

2

(2.21)

and

Θµ ≈ 2µNpλ
2e−i2λ

2

. (2.22)

In order to estimate the contribution from quantum gravity, the total phase ΦT is

measured experimentally and the quantum mechanical contribution λ2 − iNp(1−

e−i2λ
2
) ≈ 2λ2Np is subtracted from the total phase to get Θβ/γ/µ.

For convenience, the current analysis makes the assumption that a and a†

remain unchanged as a function of X and P as in usual quantum mechanics. The

justification behind this assumption needs to be studied further.

2.1.3 Uncertainty analysis and required experimental
parameters

Having calculated the phase that is acquired by light due to quantum gravity

deformations, here we discuss the feasibility of such an experiment by calculating

the uncertainty in the estimated parameters for some optimistic experimental

parameters.

The precision to which the quantum gravity parameters are determined depends

on the experimental parameters used and the number of times, Nr, the experiment
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is performed. The values of µ0, γ0 and β0 are expected to be of order 1 [19]. To

have a precision of δµ0 ∼ 1, δγ0 ∼ 1 and δβ0 ∼ 1, the required number of runs of

experiment is calculated. It is assumed that the uncertainty in the total measured

phase ΦT is proportional to the uncertainty in the quantum gravity parameters,

i.e, the other terms contribute a negligible amount of uncertainty. We will show in

Section 3.2 that this assumption is not always correct. The number of experimental

runs Nr is calculated using the relation

δ 〈ΦT 〉 =
1

2
√
NpNr

(2.23)

and the results are listed in Table 2.1.

Parameters µ equation γ equation β′ equation

F 105 2× 105 4× 105

m 10−11 kg 10−9 kg 10−7 kg
ωm
2π

105 Hz 105 Hz 105 Hz

λL 1064 nm 1064 nm 532 nm

Np 108 5× 1010 1014

δ 〈Φ〉 10−4 10−8 10−10

Nr 1 105 106

Table 2.1: Experimental parameters as suggested in Table 2 of Ref. [3]. Reprinted
by permission from Springer Nature and Copyright Clearance Center: I. Pikovski,
M. R. Vanner, et al. Probing Planck- scale physics with quantum optics. Nat.
Phys., 8(5), 393, 2012.

In summary, the Pikovski et al. scheme measures the quantum gravity param-

eters by using optomechanics to output light whose phase is proportional to the

quantum gravity parameters. The calculations of the phase of the outgoing light

are performed assuming that the cavity Hamiltonian is truncated to first order in

the displacement of the cavity’s mirror. The experimental parameters required to

perform this experiment are calculated assuming that the uncertainty in the mean
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number of photons can be ignored. In Sections 3.1 and 3.2, we show that these

assumptions are not valid and in Sections 3.3 and 3.4, we suggest modifications to

the scheme and to the calculations to overcome these challenges.

2.2 Tests of deformations via measuring

frequency of harmonic oscillators

In this section, we describe a second method to estimate the commutator deforma-

tion parameters, namely from the measurement of frequency of harmonic oscillators.

Deformations in the canonical commutators lead to a shift in the resonant frequency

of a harmonic oscillator that is directly dependent on the quantum gravity parame-

ter. Experiments that measure the frequency of harmonic oscillators very precisely

have been performed [4,11] to place bounds on the quantum gravity parameters.

Here, we detail the theory behind and the results of these experiments.

2.2.1 Theory: Effect of deformed commutator on
harmonic oscillator

The derivation of the change in frequency in Refs. [4, 11] is as follows. We assume

that under the deformed commutators, the Hamiltonian maintains the classical

form

H =
1

2
mω2x2 +

p2

2m
(2.24)

and the commutator is given by Eq. (1.1)

[x, p] = i~
(

1 +
β0

(Mpc)2
p2

)
. (2.25)

We also assume that the Heisenberg equation of motion i.e.,

dA

dt
=

1

i~
[A,H] (2.26)
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still holds despite the commutators being deformed.

One method to simplify calculations is to define a transformed momentum

operator p̃ such that the commutator [x, p̃] is restored to the value i~ while

still keeping the Heisenberg equation of motion intact. Such a transformation

implies that the harmonic oscillator Hamiltonian has additional non-linear terms

depending on the quantum gravity parameter β0. To linear order in β0/(Mpc)
2,

the transformation is given by

p̃ ≈ p− β0

3(Mpc)2
p3 (2.27)

due to which the Hamiltonian can be rewritten in terms of p̃ as

H ≈ 1

2
mω2x2 +

p̃2

2m
+ β0

p̃4

3m(Mpc)2
. (2.28)

The equations of motion can be calculated for x and p using the Heisenberg

equation of motion in Eq. (2.26) to obtain

ẋ =
p̃

m

(
1 +

4β0

3(Mpc)2
p̃2

)
˙̃p = −mω2x

(2.29)

which can then be solved for initial conditions p̃(0) = mωA and x(0) = 0 to obtain

the solution

x(t) = A

{
sin(ω̃t) +

β0m
2ω2A2

8(Mpc)2
sin(3ω̃t)

}
(2.30)

where

ω̃ =

(
1 + β0

m2ω2A2

2(Mpc)2

)
ω. (2.31)

Hence, we see that not only is the oscillation frequency (Eq. (2.31)) modified

due to deformed commutators, but the shape of the oscillation (third harmonics)

(Eq. (2.30)) is also modified. By measuring the motion of a harmonic oscillator
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very precisely, one can estimate the parameter β0. Even if no definite value of β0

can be determined, very precise measurements can help us place tight bounds on

the value. We note that this approach is still based on classical mechanics because

we have defined boundary conditions such that we know both the momentum and

position at time t = 0 exactly, i.e., p̃(0) = mωA and x(0) = 0. A fully quantum

mechanical treatment can be performed by starting with the modified quantum

Hamiltonian as in Ref. [16] as will be shown in Section 5.2.

2.2.2 Experimental bounds on parameters

Experiments were performed on three different oscillators with masses approximately

10−4, 10−7 and 10−11kg respectively in Ref. [4]. The parameter β0 was estimated

both from monitoring the dependence of the oscillator frequency and the third

harmonic on the amplitude of oscillations. These two estimates of β0 were calculated

independently. Table 2.2 lists the results of the experiment. We note that the bound

Mass (kg) β0 bound from Eq. (2.31) β0 bound from Eq. (2.30)

3.3× 10−5 3× 107 2× 1011

7.7× 10−8 5× 1013 2× 1018

2× 10−11 2× 1019 1× 1026

Table 2.2: Estimates of the quantum gravity parameter from measurements on three
oscillators by from Table 1 of Ref. [4], CC BY 4.0, https://creativecommons.
org/licenses/by/4.0/

is tighter when calculated from frequency change of the oscillator as compared to

the bound from measuring the third harmonic. We also note that the more massive

oscillators provide tighter bounds.

In Ref. [11], frequency measurement a harmonic oscillator was performed to

place even tighter bounds on the parameter β0. Using a massive sapphire split-bar

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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resonator of mass 0.3 kg, the bound obtained was β0 < 5× 106, which is an order of

magnitude improvement over the bound in Ref. [4]. The bounds can be improved

by using different kinds of oscillators, for example, a bulk acoustic wave quartz

resonator, whose frequencies can be estimated more precisely.

We also note that in deriving the bounds on the quantum gravity parameter in

Refs. [4, 11], it has been assumed that the form of the deformed commutator in

Eq. (1.1) holds even for multi-particle systems. We show later in this thesis that

this assumption may not be valid.

2.3 Gazeau-Klauder states

In Section 2.2, we saw that the deformation in the commutators can be alternatively

expressed as a modification in the harmonic oscillator Hamiltonian. However, the

analysis was entirely classical. The modified quantum mechanical Hamiltonian

is derived in Ref. [16], but it is not clear how to choose the initial state of the

oscillator. To compare with classical results, a natural choice is a coherent state,

but due to the modified Hamiltonian, our usual definition of coherent states no

longer hold because the coherent state does not remain one after evolution under

this Hamiltonian. Hence, in this section, we introduce generalised coherent states

that are suited for this modified Hamiltonian. These states are the Gazeau-Klauder

states which were introduced in Ref. [39]. Here, we describe them in detail, closely

following the details in Ref. [39].

Since a coherent state |α〉 is parametrised by one complex number, we generalise

it slightly by considering states parametrised by two real parameters |J, γ〉. To

ensure that |J, γ〉 behaves like a classical state, we demand that it satisfies the

following conditions with respect to the given Hamiltonian H:
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1. The continuity condition

(J ′, γ′)→ (J, γ) =⇒ |J ′, γ′〉 → |J, γ〉 (2.32)

2. Resolution of identity ∫
dµ(J, γ) |J, γ〉 〈J, γ| = 1 (2.33)

3. Temporal stability such that the time-evolved state is always a generalised

coherent state

e−iHt/~ |J, γ〉 = |J, γ + ωt〉 (2.34)

4. The energy of the state only depends on J

〈J, γ|H|J, γ〉 = ~ωJ (2.35)

The conditions Eqs. (2.34) and (2.35) are defined with respect to a Hamiltonian,

and so coherent states do not satisfy them with respect to a modified Hamiltonian

and we need these generalised states.

If the eigenvalues and eigenstates of the Hamiltonian are defined such that

H |n〉 = ~ωen |n〉 , (2.36)

we can verify that the definition of the generalised coherent state

|J, γ〉 =
1

N(J)

∑
n

Jn/2e−iγen√
ρn

|n〉 (2.37)

where

ρn =
n∏
k=1

ek

N(J)2 =
∑
n

Jn

ρn

(2.38)
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satisfies all the above properties.

As an example, we consider the harmonic oscillator Hamiltonian. Here, the

eigenvalues are given by H |n〉 = ~ωn |n〉 (after ignoring the constants) and therefore

en = n. (2.39)

We now find the generalised coherent state associated with this Hamiltonian. We

find that

ρn =
n∏
k=1

ek = n!

N(J)2 =
∑
n

Jn

ρn
=
∑
n

Jn

n!
= eJ

(2.40)

and therefore, the state is

|J, γ〉 = e−J/2
∑
n

Jn/2e−iγn√
n!

|n〉 . (2.41)

Note that if we define the complex number α such that α =
√
Je−iγ , then the state

can be rewritten as

|J, γ〉 = e−
|α|2
2

∑
n

αn√
n!
|n〉 (2.42)

which is exactly the definition of a coherent state. Thus we see that the Gazeau-

Klauder state reduces to the coherent state when the Hamiltonian is the harmonic

oscillator Hamiltonian.

To summarise, in this chapter, we first described the proposal of Ref. [3]

to estimate quantum gravity parameters based in optomechanics in Section 2.1.

In Section 2.2, we described the experiments [4, 11] performed to estimate the

parameters from frequency measurements of oscillators. Finally, we introduced

generalised coherent states that are the most classical states under a Hamiltonian

modified from deformed commutators.



Chapter 3

Results: Improved
optomechanical scheme

In Section 2.1.3, we described an experimental scheme [3] using optomechanics that

seemed to be able to very precisely measure the quantum gravity parameters. In

this chapter, we show that high precision cannot be achieved with this scheme and

suggest methods to overcome these challenges.

In Sections 3.1 and 3.2, we revisit the analysis of Ref. [3] to show that the

scheme is not experimentally feasible. Specifically, in Section 3.1, we show that the

higher order terms in the optomechanical Hamiltonian have a large contribution to

the phase measured in the experiment. This large contribution significantly reduces

the accuracy of the estimated quantum gravity parameters and hence cannot be

ignored. In Section 3.2, we show that the precision of the estimated parameter is

decreases by several orders of magnitude when the non-zero uncertainty in the mean

photon number is accounted for. To have the same precision in the parameters as

originally intended, we would need to repeat the experiment far more often than

suggested originally, making the experiment infeasible.

To overcome these challenges, we suggest a modification to the scheme by using

24
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a different sequence of pulses in Section 3.3. With the new sequence, we show that

the experimental runs are brought down to being feasible again. We also show that

the scheme can further be improved by using squeezed states of light in Section 3.4.

The calculations of Sections 3.1 to 3.4 are performed assuming the γ0 model of

deformed commutators. So, in Section 3.5, we perform the same calculations for

the other models of deformed commutators.

3.1 Revisiting analysis: Accuracy

In this section, we show that the accuracy of the experimental scheme of Ref. [3]

can be significantly improved by taking into account the higher order terms in

the optomechanical Hamiltonian. Specifically, we calculate the additional phase

incurred by the outgoing light due to these higher order terms and show that this

additional phase is much larger than the quantum gravitational signal, thereby

reducing the accuracy of the parameter estimates.

The optomechanical Hamiltonian is given by Eq. (2.1) which is

H = ~ωmnm + ~
cn0

2(L+ x)
a†a. (3.1)

Instead of truncating to linear order in x, we retain the higher order terms to

obtain the Hamiltonian

H = ~ωmnm + ~ωLa†a− ~g0Xa
†a+ ~g0kX

2a†a+ . . . (3.2)

where k =
√

~
mωmL2 . To make the notation easier, we define the quantities HX and

HP as

HX =nλ0

(
X − kX2 + k2X3 − . . .

)
HP =nλ0

(
P − kP 2 + k2P 3 − . . .

)
.

(3.3)
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Following the same scheme of pulsed optomechanics as described in the background

in Section 2.1.2, the four-displacement operator given by

U = eiHP e−iHXe−iHP eiHX . (3.4)

While we focus on the nonlinearities of the form Eq. (3.2) for concreteness, our

analysis can also be used for other forms of non-linearities in X in the Hamiltonian.

For example, the accuracy might possibly be improved by considering corrections

arising from the microscopic Hamiltonian by generalising the procedure adopted in

Ref. [40] to higher powers of X than unity.

The effect of some specific anharmonic terms in the Hamiltonian, namely either

X3 or X4 terms, on the phase has been studied in Ref. [41] but here we perform

the analysis to obtain accurate estimates of the quantum gravity parameter.

To illustrate the effect of the higher order terms and for ease of calculation, we

consider the Hamiltonian expanded up to third order in X and P . We evaluate

U up to sixth order terms of the Baker-Campbell-Hausdorff (BCH) formula using

Mathematica code [42]. Keeping only those terms that contribute to a phase larger

than the minimum phase uncertainty, the operator is now given by

U = exp
{
−i
[
φQG + λ2

0n
2 − 2kλ3

0n
3 + 4k2λ4

0n
4

+
√

2kλ2
0n

2
(
(−1 + i)am + (−1− i)a†m

)
+

7√
2
k2λ3

0n
3
(
(1− i)am + (1 + i)a†m

)]}
(3.5)

where

φQG =



1
3
β′λ4

0n
4 β0 case

−1
2
γλ3

0n
3 γ0 case

µλ2
0n

2 µ0 case

(3.6)
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and am and a†m are the are the annihilation and creation operators of the modes of

the mechanical resonator. The error due to this truncation in terms is discussed in

Section 4.4.

We now calculate the phase acquired by light under the action of the above

unitary operator on the system. Light is initially in a coherent state |α〉 and the

oscillator is initially in a thermal state ρthm. Therefore, the mean optical field is

given by

〈a〉 = Tr
(
U †aU |α〉 〈α| ⊗ ρthm

)
. (3.7)

In the following subsection, we now evaluate the expression for mean optical field

〈a〉 to express it in the form

〈a〉 = α′e−iΦT . (3.8)

Since initially the mean field is 〈a〉i = α, the phase acquired by the light is given

by ΦT .

3.1.1 Calculating the mean optical field

In this subsection, we detail the steps in calculating the phase acquired by the

outgoing light from the pulse sequence that acts on the system. The main result of

this section is the expression for phase, Eq. (3.53), which is obtained by evaluating

the expression for mean field Eq. (3.7) starting from Eq. (3.5).

In the following calculations, since we are only interested in the largest contri-

bution from the quantum gravity phase, we ignore the corrections to this phase

arising from higher order terms of the Hamiltonian. To make the notation easier



CHAPTER 3. RESULTS: IMPROVED OPTOMECHANICAL SCHEME 28

to follow, we define the terms

w(n) = λ2
0n

2 − 2kλ3
0n

3 + 4k2λ4
0n

4, (3.9)

x = (−1− i)
√

2kλ2
0, (3.10)

y = (1 + i)
7√
2
k2λ3

0. (3.11)

so that the unitary operator in Eq. (3.5) can be written as

U = e−iw(n)+(x∗n2+y∗n3)a†m−(xn2+yn3)am . (3.12)

To evaluate U †aU easily, we rewrite U as

U = e−iw(n)e(x∗a†m−xam)n2+(y∗a†m−yam)n3

(3.13)

and using the Zassenhaus formula [43], split it into parts as

U = e(x∗a†m−xam)n2

e(y∗a†m−yam)n3

e−
1
2
n5(x∗y−xy∗)e−iw(n). (3.14)

Therefore U †aU is

U †aU = eiw(n)e
1
2
n5(x∗y−xy∗)e−(y∗a†m−yam)n3

× e−(x∗a†m−xam)n2

ae(x∗a†m−xam)n2

× e(y∗a†m−yam)n3

e−
1
2
n5(x∗y−xy∗)e−iw(n). (3.15)

In the following steps, we try to express U †aU as V a where V is some operator.

We first evaluate e−(x∗a†m−xam)n2

ae(x∗a†m−xam)n2

from the expression for U †aU

using the BCH formula

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + . . . . (3.16)
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to obtain

e−(x∗a†m−xam)n2

ae(x∗a†m−xam)n2

= a−
(
x∗a†m − xam

) [
n2, a

]
+

1

2!

(
x∗a†m − xam

)2 [
n2,
[
n2, a

]]
+ . . . .. (3.17)

Observing that [
n2, a

]
= − (2n+ 1) a (3.18)

and simplifying, we get

e−(x∗a†m−xam)n2

ae(x∗a†m−xam)n2

= e(x∗a†m−xam)(2n+1)a. (3.19)

Now U †aU reads as follows:

U †aU = eiw(n)e
1
2
n5(x∗y−xy∗)e−(y∗a†m−yam)n3

e(x∗a†m−xam)(2n+1)

× ae(y∗a†m−yam)n3

e−
1
2
n5(x∗y−xy∗)e−iw(n). (3.20)

To perform similar calculations for the y terms, we should first interchange the

terms e−(y∗a†m−yam)n3

and e(x∗a†m−xam)(2n+1). Using the Zassenhaus formula again,

we obtain

e−(y∗a†m−yam)n3

e(x∗a†m−xam)(2n+1) = e(x∗a†m−xam)(2n+1)e−(y∗a†m−yam)n3

× e(x∗y−xy∗)(2n4+n3). (3.21)

We now evaluate e−(y∗a†m−yam)n3

ae(y∗a†m−yam)n3

similarly to Eq. (3.17) using the

BCH formula to obtain

e−(y∗a†m−yam)n3

ae(y∗a†m−yam)n3

= a−
(
y∗a†m − yam

) [
n3, a

]
+

1

2!

(
y∗a†m − yam

)2 [
n3,
[
n3, a

]]
+ . . . .. (3.22)
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Using the formula [
n3, a

]
= −

(
3n2 + 3n+ 1

)
a (3.23)

and simplifying, we find

e−(y∗a†m−yam)n3

ae(y∗a†m−yam)n3

= e(y∗a†m−yam)(3n2+3n+1)a. (3.24)

Now U †aU is given by

U †aU = e(x∗y−xy∗)(2n4+n3)eiw(n)e
1
2
n5(x∗y−xy∗)e(x∗a†m−xam)(2n+1)

× e(y∗a†m−yam)(3n2+3n+1)ae−
1
2
n5(x∗y−xy∗)e−iw(n). (3.25)

Once again, using similar techniques, we evaluate e
1
2
n5(x∗y−xy∗)ae−

1
2
n5(x∗y−xy∗)

and eiw(n)ae−iw(n). Observing that[
n5, a

]
= −

(
5n4 + 10n3 + 10n2 + 5n+ 1

)
a, (3.26)

we simplify

e
1
2
n5(x∗y−xy∗)ae−

1
2
n5(x∗y−xy∗) = e−

1
2

(x∗y−xy∗)(5n4+10n3+10n2+5n+1)a. (3.27)

and substituting for w(n) and observing that[
n4, a

]
= −

(
4n3 + 6n2 + 4n+ 1

)
a, (3.28)

we obtain

eiw(n)ae−iw(n) = ei2kλ
3
0(3n2+3n+1)e−iλ

2
0(2n+1)e−i4k

2λ40(4n3+6n2+4n+1)a. (3.29)

Now U †aU is given by

U †aU = e(x∗y−xy∗)(2n4+n3)e(x∗a†m−xam)(2n+1)e(y∗a†m−yam)(3n2+3n+1)

× ei2kλ
3
0(3n2+3n+1)e−

1
2

(x∗y−xy∗)(5n4+10n3+10n2+5n+1)

× e−iλ
2
0(2n+1)e−i4k

2λ40(4n3+6n2+4n+1)a. (3.30)
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which can be simplified and re-written as

U †aU = e−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)ei2kλ
3
0(3n2+3n+1)e−iλ

2
0(2n+1)

× e−i4k
2λ40(4n3+6n2+4n+1)e(x∗a†m−xam)(2n+1)e(y∗a†m−yam)(3n2+3n+1)a. (3.31)

Having expressed U †aU as V a, it is now easier to calculate the quantity of

interest: the expectation value of the annihilation operator on light states. Note

that a |α〉 = α |α〉. Writing Eq. (3.7) explicitly, 〈a〉 is

〈a〉 = Tr
(

e−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)e−iλ
2
0(2n+1)

× ei2kλ
3
0(3n2+3n+1)e−i4k

2λ40(4n3+6n2+4n+1)

× e(x∗a†m−xam)(2n+1)e(y∗a†m−yam)(3n2+3n+1)

×α |α〉 〈α| ⊗ ρthm
)
. (3.32)

Writing the trace explicitly as a sum over Fock state expectation values, we have

〈a〉 =
∞∑
m=0

n̄m

(1 + n̄)1+m
〈α,m|αe−i4k

2λ40(4n3+6n2+4n+1)

× e−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)e−iλ
2
0(2n+1)

× ei2kλ
3
0(3n2+3n+1)e(x∗a†m−xam)(2n+1)

× e(y∗a†m−yam)(3n2+3n+1) |α,m〉 . (3.33)

In the remainder of this subsection, we simplify the above expression. Inserting

identities
∑∞

k=0 |k〉 〈k| and
∑∞

n=0 |n〉 〈n| in the Hilbert space of the light field, the
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mean optical field can be rewritten as

〈a〉 =
∞∑
m=0

∞∑
k,n=0

n̄m

(1 + n̄)1+m

× 〈α,m|αe−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)

× e−i4k
2λ40(4n3+6n2+4n+1)ei2kλ

3
0(3n2+3n+1)

× e−iλ
2
0(2n+1) |k,m〉 〈k,m| e(x∗a†m−xam)(2n+1)

× e(y∗a†m−yam)(3n2+3n+1) |n,m〉 〈n,m|α,m〉 (3.34)

and using the relationship 〈k|n〉 = δn,k, we obtain

〈a〉 =
∞∑
m=0

∞∑
n=0

n̄m

(1 + n̄)1+m
〈α|n〉 ei2kλ30(3n2+3n+1)e−iλ

2
0(2n+1)α

× e−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)e−i4k
2λ40(4n3+6n2+4n+1)

× 〈m| e(x∗a†m−xam)(2n+1)e(y∗a†m−yam)(3n2+3n+1) |m〉 〈n|α〉 . (3.35)

This expression can be evaluated straight-forwardly except for the expression

〈m| e(x∗a†m−xam)(2n+1)e(y∗a†m−yam)(4n3+6n2+4n+1) |m〉 (3.36)

which we now evaluate. To shorten the notation, we define the variables

υ = y
(
3n2 + 3n+ 1

)
(3.37)

χ = x (2n+ 1) . (3.38)

We denote the displaced Fock state e(υ∗a†m−υam) |m〉 as |υ∗,m〉. By definition

〈m| e(χ∗a†m−χam)e(υ∗a†m−υam) |m〉 = 〈−χ∗,m|υ∗,m〉 . (3.39)

Using the formula for the overlap of two displaced Fock states from Ref. [44], we

have

〈−χ∗,m|υ∗,m〉 = 〈−χ∗|υ∗〉m!
m∑
j=0

(υ∗ + χ∗)m−j (−χ− υ)m−j

j! (m− j)! (m− j)! (3.40)
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where

〈−χ∗|υ∗〉 = exp

{
−χυ∗ − 1

2

(
|χ|2 + |υ|2

)}
. (3.41)

We now sum over the mechanical modes in the expression for 〈a〉 in Eq. (3.35).

The sum is given by

∞∑
m=0

n̄m

(1 + n̄)1+m
〈−χ∗,m|υ∗,m〉

= 〈−χ∗|υ∗〉
∞∑
m=0

m∑
j=0

n̄m

(1 + n̄)m+1
m!(−1)m−j

|χ+ υ|2(m−j)

j! [(m− j)!]2
(3.42)

To evaluate the above expression, replace m− j with k. This gives us

∞∑
m=0

n̄m

(1 + n̄)1+m
〈−χ∗,m|υ∗,m〉

= 〈−χ∗|υ∗〉
m∑
k=0

∞∑
m=k

n̄m

(1 + n̄)m+1
m!(−1)k

|χ+ υ|2k

(m− k)! (k!)2

= 〈−χ∗|υ∗〉
m∑
k=0

(−1)k
|χ+ υ|2k

k!

∞∑
m=k

(
m

k

)
n̄m

(1 + n̄)m+1

= 〈−χ∗|υ∗〉
m∑
k=0

(−1)k
|χ+ υ|2k n̄k

k!

= 〈−χ∗|υ∗〉 e−|χ+υ|2n̄

= e−χυ
∗− 1

2(|χ|2+|υ|2)e−|χ+υ|2n̄. (3.43)

Rewriting the expression back in terms of the original variables x, y and n, we get

e−χυ
∗− 1

2(|χ|2+|υ|2)e−|χ+υ|2n̄ = e−xy
∗(2n+1)(3n2+3n+1)

× e
− 1

2

(
|x|2(2n+1)2+|y|2(3n2+3n+1)

2
)

× e−|x(2n+1)+y(3n2+3n+1)|2n̄. (3.44)

Also note that the other terms that are in the expression for 〈a〉 are given by

〈α|n〉 〈n|α〉 = e−|α|
2 |α|2n
n!

. (3.45)
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Plugging the expressions Eqs. (3.44) and (3.45) back into the expression for 〈a〉

Eq. (3.35), we obtain

〈a〉 =
∞∑
n=0

αe−|α|
2 |α|2n
n!

e−
1
2

(x∗y−xy∗)(n4+8n3+10n2+5n+1)

× e−iλ
2
0(2n+1)e−i4k

2λ40(4n3+6n2+4n+1)

× ei2kλ
3
0(3n2+3n+1)e−xy

∗(2n+1)(3n2+3n+1)

× e
− 1

2

(
|x|2(2n+1)2+|y|2(3n2+3n+1)

2
)

× e−|x(2n+1)+y(3n2+3n+1)|2n̄ (3.46)

which is exact for the given expression for U in Eq. (3.5). This expression can be

evaluated numerically for a more accurate estimation of the phase. However, to

obtain a qualitative estimate, we evaluate it using the saddle point approximation

(to leading order in Np) and find

〈a〉 =αe−
1
2(4|x|2N2

p+9|y|2N4
p)

× e−
1
2

(x∗y−xy∗)N4
p−i2λ20Np−i16k2λ40N

3
p+i6kλ30N

2
p

× e(4|x|2N2
p+9|y|2N4

p+6(xy∗+x∗y)N3
p)n̄. (3.47)

We note that this approximation may not be valid for all cases, for instance when

the terms ignored by the approximation are much larger than the quantum gravity

signal.

Expressing 〈a〉 in terms of an amplitude and phase

〈a〉 = α′e−iΦQM , (3.48)

we find that the new amplitude is

α′ = αe−
1
2(4|x|2N2

p+9|y|2N4
p)e(4|x|2N2

p+9|y|2N4
p+6(xy∗+x∗y)N3

p)n̄ (3.49)
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and the new phase is

ΦQM =
1

2i
(x∗y − xy∗)N4

p + 2λ2
0Np + 16k2λ4

0N
3
p − 6kλ3

0N
2
p (3.50)

which on substituting with x and y from Eqs. (3.10) and (3.11) gives

ΦQM = 2λ2
0Np − 6kλ3

0N
2
p + 16k2λ4

0N
3
p . (3.51)

This is the phase that light acquires from the optomechanical Hamiltonian. Also

including the contribution from the quantum gravitational deformed commutators,

we find the total phase

ΦT = ΦQG + 2λ2
0Np − 6kλ3

0N
2
p + 16k2λ4

0N
3
p . (3.52)

and

ΦQG =



4
3
β′λ4

0N
3
p β0 case

−3
2
γλ3

0N
2
p γ0 case

2µλ2
0Np µ0 case,

(3.53)

which differs from the phase obtained in Eq. (2.18).

The assumptions made in the calculation of the phase in this subsection and

their validities are discussed in Section 4.4.

3.1.2 Contribution of the higher order terms

Comparing these results with those obtained in Eq. (2.18), we observe that we

have the extra contribution −6kλ3
0N

2
p + 16k2λ4

0N
3
p . In Table 3.1, we evaluate the

magnitude of this contribution for the experimental parameters suggested in Ref. [3]

( Table 2.1) and compare it to the minimum uncertainty in the phase due to quantum

mechanical fluctuations and the expected magnitude of the quantum gravity signal.
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Description Terms µ0 case γ0 case β0 case

Quantum gravity phase ΦQG 10−4 4× 10−9 3× 10−10

Min. phase uncertainty 1

2
√
NpNr

5× 10−7 2× 10−8 5× 10−10

QM phase from [3] 2λ2
0Np 4× 102 104 106

From higher order terms −6kλ3
0N

2
p + 16k2λ4

0N
3
p 0.2 45 7× 105

Table 3.1: Magnitude of terms using the parameters suggested by Pikovski et al..
Note that the contribution from the higher order terms is much larger than both the
signal due to quantum gravity and the minimum phase uncertainty. Reproduced
from Ref [1]. ©2018 APS

We see that these extra terms are larger than both the minimum uncertainty and

the quantum gravity signal and therefore cannot be ignored. Ignoring them leads

to overestimation of the quantum gravity parameters.

In summary, higher order terms in the cavity Hamiltonian have to be considered

while calculating the quantum gravity phase ΦQG from the total phase ΦT . This is

done in Section 3.3.

3.2 Revisiting analysis: Precision

In this section, we show that the precision of the proposal of Ref. [3] is lowered in a

more careful analysis. The precision calculation of Ref. [3] considers the uncertainty

in the measurement of the total phase, ∆ΦT , as can be seen in Eq. (2.23). However,

the uncertainty in the average number of photons in each laser pulse, ∆Np, is not

considered. We show here that since the experiment requires very high precision, it

is crucial to also account for uncertainty in the mean photon number.

The analysis of Ref. [3] assumes that the mean photon number is known

precisely before the experiment measuring the phase and that it remains unchanged

during the entire run of the experiment. However, on the one hand, the required
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precision of the mean photon number will necessitate large experimental time for

its measurement. On the other hand, even if an exceedingly precise measurement

of the photon number is performed at the beginning of the experiment, lasers

suffer from classical intensity fluctuations and drifts due to which the mean photon

number becomes increasingly uncertain over time. Thus, the uncertainty in the

mean photon number must be accounted for.

3.2.1 Noise models to account for photon number
uncertainty

Here we consider two schemes to account for this uncertainty. In the first scheme,

the intensity is measured repeatedly before each run of the experiment, for example

by impinging the laser pulses on a low-reflectivity beamsplitter and performing

intensity measurement on the reflected light, and the transmitted light is discarded

(other methods for measuring mean-photon number will lead to a similar analysis).

By repeatedly measuring the light intensity, the effects of classical intensity fluc-

tuations are eliminated because the remaining pulses, which are used in the QG

parameter estimation, will have photon number close to the measured preceding

pulses. However, the mean photon number precision attained in these frequent

measurements is limited by quantum shot noise, which we account for below. In

the second scheme, the laser intensity is similarly measured once with very high

precision in the beginning of the experiment such that the effect of the quantum

noise is minimised as we explain below. The uncertainty in photon number is now

dominated by classical fluctuation in photon number. The actual experimental

method and the error model would depend strongly on the experimental considera-

tions, for instance the time and experimental complexity required to perform each
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kind of measurement in the lab and the amount of classical and quantum noise

present. We now describe the schemes in detail.

Quantum-noise-limited scheme: Here we propose a scheme in which the

mean photon number is estimated by measuring the photon number before each

run of the phase measurement. Thus, the quantum gravity parameter estimation is

performed before the mean photon number of the laser can fluctuate significantly.

While now the classical fluctuations do not contribute to the mean photon number

uncertainty, the measured mean photon number unavoidably suffers from quantum

uncertainty. Specifically, if R measurements of the photon number are made, the

error in the mean photon number ∆Np due to quantum uncertainty is
√
Np/R. For

high-intensity pulses, the uncertainty from classical fluctuations is usually much

larger than the quantum uncertainty even for a single (R = 1) photon-number

measurement, in which case this model is useful as it provides a lower bound on the

intensity fluctuations experienced in the experiment. In this analysis, we consider

the case of R = 1 for simplicity.

Classical-noise-limited scheme: The second scheme to measure the laser

intensity precisely (using feedback and a long measurement time) once before the

experiment begins. For this single measurement performed in the beginning of the

experiment, effectively R → ∞ so there is no contribution from quantum noise,

and we call this scheme classical-noise limited. We then perform the quantum

gravity parameter estimation assuming that the mean photon number remains

unchanged for the duration of the many runs of the experiment. In this case, the

uncertainty in mean photon number arises from classical fluctuations of the form

∆Np = εNp. The relative error from classical fluctuations in photon number for

short, high-intensity pulses (as required in the experiment) is of the order of 10−3
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to 10−2 after stabilising the laser intensity. These values are calculated under the

assumption that the relative error in laser intensity is ε = 10−4 over a few hours,

which might be attainable in the near future for the short, high intensity pulses

that are required in this experiment. The actual model would be something in

between these two schemes described here.

3.2.2 Precision calculation of quantum gravity parameters

Here we present an analysis of the precision of the quantum gravity parameters

under both these schemes. An outline of the calculations is as follows. We express

the quantum gravity parameter as a function of the total measured phase and the

average number of photons by substituting Eqs. (3.51) and (3.53) in

ΦQG = ΦT − ΦQM (3.54)

and use standard techniques in error propagation [45] to determine the variance in

the calculated parameter. The variance of the estimated quantum gravity parameter

is expressed as a function of the variances and covariance of the measured quantities

Np and ΦT . The calculations for the γ0 model are detailed below.

We begin by rewriting the quantum gravity contribution to the phase Eq. (3.53)

as

ΦQG = −γ0κλ
3
0N

2
p where κ :=

3
√
~mω

2Mpc
. (3.55)

Expressing γ0 in terms of ΦT and Np, we get

γ0 =
−1

κλ3
0

(
ΦT

N2
p

)
+

2

κλ0Np

− 6k

κ
+

16k2λ0Np

κ
(3.56)
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and the variance in γ0 is given by [45]

(∆γ0)2 =

(
1

κλ3
0N

2
p

)2

(∆ΦT )2 +

(
2ΦT

κλ3
0N

3
p

− 2

κλ0N2
p

+
16k2λ0

κ

)2

(∆Np)
2 (3.57)

for one run of the experiment.

The incident light is in a coherent state but the outgoing light is not because

its state gets distorted under the action of the four-displacement operator U . The

standard deviation of ΦT for such a distorted state is given by

∆ΦT ≈
√

1

4Np

+ sin2 (λ2
0 + 6kλ3

0Np) (3.58)

whose calculations are detailed in Section 4.1. The value of error in photon number

depends on the experimental scheme used, as described above. In the quantum-

noise-limited scheme, the standard deviation in the the inferred photon number is

given by ∆Np =
√
Np whereas in the classical-noise-limited scheme, the uncertainty

in inferred photon number is given by ∆Np = εNp. Since the phase and intensity

measurements are performed on different pulses, the covariance is zero. We also

note that for the experimental parameters suggested by Ref. [3] (Table 2.1), the

effect of the distortion is negligible. However, we present it here for the sake of

completeness.

The variance in γ0 should ideally be calculated by measuring the values and

variances of the total phase and number of photons. However, to numerically

estimate the precision, we substitute the expression for ΦT from Eq. (3.52) and

assume that γ0 ∼ 0. For the experimental parameters in Table 2.1, we obtain the

value of the variance (∆γ0)2 to be 1014 (5 × 1016) in the quantum-noise-limited
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(classical-noise-limited) scheme. Hence, in order to have (∆γ0)2 ∼ 1, we need to

perform the experiment Nr = 1014 (5× 1016) times.

The number of experimental runs as predicted by Ref. [3] is Nr = 105. The

difference arises because the first term of Eq. (3.57) (the uncertainty in phase) is

considered by Ref. [3] in the calculation of variance (Eq. (2.23)) but the second

term accounting for uncertainty in mean number of photons is ignored.

Similar calculations are performed for the β0 and µ0 cases (details in Section 3.5)

and the required number of experimental runs is listed in Table 3.2.

Required number of runs µ0 case γ0 case β0 case

Suggested in Ref. [3] 1 105 106

Including ∆Np =
√
Np 105 1014 1019

Including ∆Np = εNp 105 5× 1016 1025

Table 3.2: Required number of experimental runs in Pikovski et al. versus when
accounting for uncertainty in number of photons ∆Np (quantum- and classical-noise-
limited schemes, with ε = 10−4) for different phenomenological models. Reproduced
from Ref [1]. ©2018 APS

In summary, we see that the required number of experimental runs can be

many orders of magnitude larger when the uncertainty in the number of photons

is accounted for. This large increase in the number of experimental runs makes

the experimental scheme no longer feasible for the same precision. Hence, we must

modify the scheme for it to be feasible.

3.3 Improved phase space paths to reduce the

experimental requirement

In this section, we suggest modifications to the proposal of Ref. [3] to make the

scheme experimentally feasible by reducing the required number of experimental
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runs. Specifically, we suggest different pulse sequences of the laser pulses, cor-

responding to a different path in phase space, to reduce the required number of

experimental runs by many orders of magnitude. We also ensure that the calculated

quantum gravity parameters are accurate by taking into account the higher order

terms of the cavity Hamiltonian in these calculations.

The remainder of this section is organised as follows. We first describe the

path in phase space that reduces the required number of runs. We then calculate

the phase acquired by light due to the action of the unitary operator that effects

this path. From the expression of the acquired phase, we calculate the variance in

the estimated QG parameter and therefore the required number of runs for the

same experimental parameters as before and show that the number of runs is many

orders of magnitude smaller.

In all calculations in this section, we focus on the γ0 commutator (Eq. (1.14)).

Results from similar calculations in the β0 and µ0 (Eqs. (1.1) and (1.12)) commu-

tators are described in Section 3.5.

3.3.1 Improved phase space paths

Examining the expression for the variance in γ0 in Eq. (3.57), we notice that most

of the contribution to the variance in the quantum gravity parameters comes from

the quantum mechanical terms. So, reducing the quantum mechanical contribution

can reduce the variance, and therefore the number of runs required to attain a set

precision. Here, we use different pulse sequences to reduce the quantum mechanical

contribution and hence the variance.

In order to come up with better pulse sequences, it is helpful to graphically
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visualise the pulse sequence on Ref. [3]. The unitary operator in Eq. (2.10)

U = eiλnP e−iλnXe−iλnP eiλnX (3.59)

can be interpreted as a series of displacement operators in the X,P phase space of

the mechanical oscillators with the same amplitude of displacement, which results

in coming back to the same point in phase space. This is represented by a square

in Fig. 3.1. The solid circle represents the starting point and the hollow circle the

ending point.

Figure 3.1: U : The loop in the X,P phase space of the mechanical oscillator as per
the experimental scheme of Pikovski et al. Figure reproduced from Ref [1]. ©2018
APS

The new path to reduce the number of runs is composed of four such rectangular

loops. Each of the loops is similar to that described by Eq. (2.10) and Fig. 3.1, but

starts at a different point on the rectangle, sometimes even outside the rectangle.

This four-loop path in phase space corresponds to the unitary operator

Uγ0 = U1U
†
2U
†
3U4 (3.60)

where the individual components are given by

U1 = e−2iHXe−iHP eiHXeiHP eiHX

U2 = e−
7
3
iHXe−iHP eiHXeiHP e

4
3
iHX

U3 = e
2
3
iHP e−iHXe−iHP eiHXe

1
3
iHP

U4 = eiHP e−iHXe−iHP eiHX .

(3.61)
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Figure 3.2: Uγ0 : The final shape of the path in phase space to remove QM
contribution for the γ commutator. The system starts at the filled dot and ends at
the unfilled dot. The paths are staggered for clarity, but actually overlap. Figure
reproduced from Ref [1]. ©2018 APS

When the four loops are put together to obtain the composite loop, some parts

of the path cancel and the final path is depicted in Fig. 3.2. Even though the

individual operators are strictly not displacement operators because of the higher

order corrections, we represent the path in such a figure for easier visualisation.

However, we note that the higher order terms would lead to squeezing-like behaviour,

which is not captured in this representation. The steps to arrive at such a path

are detailed in the next subsection. Depending on the coherence time of the

experimental setup, we can also design paths that are made of smaller or larger

number of loops as described below.

Experimental realisation of a square path in phase space (Fig. 3.1) can be

performed using a pulsed optomechanics setup described by Ref. [3]. Specifically,

the transformation of Fig. 3.1 is implemented by alternating between phase-space

translations along X and P axes using an optical loop to introduce time delays.
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The composite rectangular paths in phase space (Fig. 3.2) of our proposal needs

variable time delays, which can be realised by introducing an additional optical

loop into the Ref. [3] setup. This additional loop is required to be connected to the

original optical loop with fast switching, which can be implemented for instance by

electro-optical modulation [46].

3.3.2 Arriving at the improved loops in phase space

The steps to arrive at the sophisticated path are outlined here. First, we consider

unitary operators which describe arbitrary rectangular pulse sequences. Such

unitary operators are given by UX and UP , where changing the values of a, b and c

changes the dimensions of the loop and also determines the starting point. The

operators are given by

UX = e−iaHXe−icHP eibHXeicHP e−i(b−a)HX (3.62)

and

UP = eiaHP e−icHXe−ibHP eicHXei(b−a)HP (3.63)

and are represented as loops in phase space in Figs. 3.3 and 3.4.

a

b− a

c

b

c

Figure 3.3: Shape of the path in phase space corresponding to UX . Figure repro-
duced from Ref [1]. ©2018 APS

We then fix the number of loops that we want the sophisticated path to be

made of. More paths can reduce the required number of runs, but they also increase
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c

ab− a

c

b

Figure 3.4: Shape of the path in phase space corresponding to UP . Figure repro-
duced from Ref [1]. ©2018 APS

the required coherence time. Also, calculating the final phase of light can be more

computationally intense with a larger number of loops. So, depending on the

coherence time, the number of loops can be chosen. In this case, we choose four

loops, two like UX and two like UP .

Once the loops are chosen, we express the final unitary operator as a single

exponential of a sum of operators like in Eq. (3.5) instead of a product of expo-

nentials using the BCH formula. This is done using Mathematica package [42].

The final simplified unitary operator is expressed as a function of the parameters

{ai, bi, ci}; i = 1, 2, 3, 4 for the four loops.

We order the resulting terms in order of descending magnitude of how much

these terms contribute to the final phase of light. In this ordering, we assume that

the ordering is the same if we directly substitute the experimental parameters in

the operators (i.e., replacing the operator n with the average number of photons

Np).

Once the ordering is done, we choose values of the parameters {ai, bi, ci} such

that the coefficients of the largest m quantum mechanical terms are zero, while

the coefficient of the quantum gravity term is nonzero. We choose the largest m

possible such that the solutions {ai, bi, ci} exist. This is how we determine a path in
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phase space that can minimize the quantum mechanical contribution while keeping

the quantum gravity contribution non-zero to arrive at Eq. (3.60).

3.3.3 Calculation of phase from the new paths

Here, we calculate the phase acquired by light due to the action of the unitary

operator Uγ0 in Eq. (3.60).

We begin by first expressing Uγ0 as a single exponential by evaluating the BCH

formula up to the sixth order. This is done using Mathematica code [42] to obtain

the result

Uγ0 = exp

{
−i
(

1

3
γλ3

0n
3 − 40

3
k3λ5

0n
5 + 24k4λ6

0n
6

+

√
2

3
k2λ3

0n
3
(
(−1− i) a− (1− i) a†

))}
. (3.64)

Following similar calculations as in Section 3.1, we find that the mean optical field

is given by the expression

〈a〉 =
∞∑
n=0

αe−|α|
2 |α|2n
n!

e−
i
3
γλ30(3n2+3n+1)

× ei
40
3
k3λ50(5n4+10n3+10n2+5n+1)

× e−i24k4λ60(6n5+15n4+20n3+15n2+6n+1)

× e−
4
9
k4λ60(3n2+3n+1)

2
(n̄+ 1

2) (3.65)

which can be evaluated numerically if higher accuracy is required. Using the saddle

point approximation like in Section 3.1.1, the phase acquired by the outgoing light

is then evaluated to be

ΦT = γλ3
0N

2
p −

200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p +

4840

9
k5λ7

0N
6
p . (3.66)
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In the calculation of the phase, several assumptions have been made. Details

about these assumptions and a discussion regarding their validity are presented in

Section 4.4.

3.3.4 Calculation of improved precision

The parameter γ0 is estimated from the total measured phase by subtracting the

rest of the terms (that arise from quantum mechanics alone). The variance in the

estimated γ0 for one run of the experiment is calculated below. If the experiment is

performed Nr number of times, the variance reduces by a factor of Nr. We calculate

the number of runs required to for the variance to be of order 1, i.e., (∆γ0)2 ∼ 1.

Here we calculate the uncertainty in γ0 assuming that we know λ0 exactly, but

neither the total measured phase ΦT nor the average number of photons in the

optical state Np. The calculations and assumptions here are similar to those in

Section 3.2.

In order to estimate the variance, we use Eq. (3.66), to express γ0 as a function

of the experimentally measured quantities ΦT and Np.

γ0 =
1

κλ3
0

(
ΦT

N2
p

)
+

200λ2
0k

3

3κ
N2
p −

144λ3
0k

4

κ
N3
p −

4840λ4
0k

5

9κ
N4
p . (3.67)

where

κ :=

√
~mω
Mpc

. (3.68)

Using standard techniques in error propagation [45], we determine the uncertainty

in γ0 to be

(∆γ0)2 =

(
1

κλ3
0N

2
p

)2

(∆ΦT )2

+

(
− 2ΦT

κλ3
0N

3
p

+
400λ2

0k
3

3κ
Np −

432λ3
0k

4

κ
N2
p

)2

(∆Np)
2 (3.69)
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for one run of the experiment. The uncertainty in photon number is

∆Np =
√
Np or ∆Np = εNp (3.70)

depending on the experimental scheme used, as described in Section 3.2. We

also note that the state of light after the action of the unitary operator is no

longer coherent but distorted, albeit by a small quantity. However for the sake of

completeness, we calculate the standard deviation of ΦT for such a distorted state

in Section 4.1 and is given by

∆ΦT ≈
√

1

4Np

+ sin2

(
360k4λ6

0N
4
p −

400

3
k3λ5

0N
3
p

)
. (3.71)

Using this analysis, we estimate the value of the variance for experimental

parameters suggested by Ref. [3] and obtain (∆γ0)2 = 6 × 105 with either of

the error models for ∆Np estimation. The value is the same in both schemes

because we have now successfully eliminated contribution from ∆Np terms for these

experimental parameters and all the contribution is from ∆ΦT terms. The number

of experimental runs required to have (∆γ0)2 = 1 is

Nr = 6× 105, (3.72)

as opposed to 1014 or 5× 1016 runs required if we perform only the single loop. We

also note that for the given experimental parameters, the effect of the distortion of

the state is negligible but is presented here for completeness.

In summary, we can increase the sensitivity of the experiment to possible quan-

tum gravity effects by using sophisticated paths in phase space. These changes

significantly improve the prospects for realising tests of quantum gravity experi-

mentally with near-future quantum technology.
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3.4 Squeezed states to improve precision

In this section, we show that the precision in the estimated QG parameter can be

further increased by using squeezed states of light.

We see from Eq. (3.69) that the variance in γ0 depends both on ∆ΦT and ∆Np.

Plugging in the experimental parameters suggested by Ref. [3], we see that in the γ0

case, the contribution from the ∆ΦT term is the largest. Therefore, we can perform

the experiment using light squeezed in the phase ΦT so that ∆ΦT is reduced at the

expense of ∆Np thereby improving precision. For different experimental parameters,

if the contribution to the variance is larger from ∆Np, then light squeezed in photon

number improves precision.

To calculate the effect of squeezing quantitatively, we first recap and derive

some results about the number and phase properties of squeezed light.

3.4.1 Number and phase statistics of squeezed states

First, we introduce some notation and an assumption regarding the state of light

used. To understand how using squeezed states affects the uncertainty in the signal,

we consider ideal squeezed states, which are defined as squeezed vacuum states

which are displaced in phase space. The state is given by

|α, r〉 = D(α)S(r) |0〉 (3.73)

where S(r) is the squeezing operator with squeezing parameter r

S(r) = exp

(
ra2

m − ra†2m
2

)
(3.74)

and D(α) is the displacement operator displacement vector α

D(α) = exp
(
αa†m − α∗am

)
(3.75)



CHAPTER 3. RESULTS: IMPROVED OPTOMECHANICAL SCHEME 51

where a†m and am are the creation and annihilation operators respectively.

In calculating the uncertainties in the final measured phase of light due to it

being in a squeezed state, we assume that the final state can be described by an

ideal squeezed state with squeezing parameter r and displacement α. The final

state that is measured can be described by an ideal squeezed state if the unitary

operator only rotates the state and does not distort it as illustrated in Fig. 3.5.

S(r) |0〉 D(α)S(r) |0〉

U(φ)D(α)S(r) |0〉

∆p

∆x

Figure 3.5: A rotated displaced squeezed state for real displacement vector α.
Figure reproduced from Ref [1]. ©2018 APS

In the next subsections, we calculate the average photon number Np = 〈n̂〉, the

uncertainty in the number of photons ∆Np =
√
〈(∆n̂)2〉 and the uncertainty in the

total phase ∆ΦT in terms of the squeezing parameter and displacement vector. In
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order to calculate these quantities, we use the relations

D†(α)aD(α) = a+ α (3.76)

D†(α)a†D(α) = a† + α∗, (3.77)

and

S†(r)aS(r) = a cosh r − a† sinh r (3.78)

S†(r)a†S(r) = a† cosh r − a sinh r (3.79)

which can be derived from the definitions Eq. (3.75) and Eq. (3.74).

Calculation of average photon number in a displaced squeezed state

The average photon number is given by

Np = 〈n̂〉 (3.80)

= 〈α, r|a†a|α, r〉 (3.81)

= 〈0|S†D†a†aDS|0〉 . (3.82)

We now evaluate D†a†aD using Eq. (3.76) and Eq. (3.77) to obtain

D†a†aD =D†a†DD†aD (3.83)

=
(
a† + α∗

)
(a+ α) (3.84)

= a†a+ αa† + α∗a+ |α|2. (3.85)

Using Eq. (3.78) and Eq. (3.79), we see that

S†D†a†aDS =S†a†aS + αS†a†S + α∗S†aS + |α|2S†S (3.86)

=
(
a† cosh r − a sinh r

) (
a cosh r − a† sinh r

)
+ α

(
a† cosh r − a sinh r

)
+ α∗

(
a cosh r − a† sinh r

)
+ |α|2. (3.87)
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The surviving terms in 〈0|S†D†a†aDS|0〉 are

〈0|S†D†a†aDS|0〉 = 〈0|aa†|0〉 sinh2 r + |α|2. (3.88)

This gives

Np = |α|2 + sinh2 r. (3.89)

Calculation of spread in photon number in a displaced squeezed state

The uncertainty in the photon number is defined as

∆Np =
√
〈(∆n̂)2〉 (3.90)

=

√
〈n̂2〉 − 〈n̂〉2. (3.91)

We begin by evaluating 〈n̂2〉. Writing it explicitly, we have

〈n̂2〉 = 〈α, r|a†aa†a|α, r〉 (3.92)

= 〈0|S†D†a†aa†aDS|0〉 . (3.93)

We evaluate D†a†aa†aD using Eq. (3.85) to obtain

D†a†aa†aD =
(
a†a+ αa† + α∗a+ |α|2

)2
. (3.94)

Only terms with even number of operators in the above expression contribute to

the calculation of 〈n̂2〉. Keeping only such contributing terms, we get

〈n̂2〉 =α2 〈0|S†a†2S|0〉+ α∗2 〈0|S†a2S|0〉+ |α|2 + |α|4

+ 〈0|S†a†aa†aS|0〉+ 4|α|2 〈0|S†a†aS|0〉 . (3.95)

Using Eq. (3.78) and Eq. (3.79) and simplifying, we find

〈n̂2〉 = 2 sinh2 r cosh2 r + sinh4 r − α∗2 sinh r cosh r

− α2 sinh r cosh r + 4|α|2 sinh2 r

+ |α|2 + |α|4. (3.96)
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To calculate 〈n̂〉2, recall that from Eq. (3.89) we have

〈n̂〉 = |α|2 + sinh2 r. (3.97)

We now calculate the variance in the photon number to be

〈(∆n̂)2〉 = 〈n̂2〉 − 〈n̂〉2 (3.98)

= 2 sinh2 r cosh2 r + sinh4 r − α∗2 sinh r cosh r

− α2 sinh r cosh r + 4|α|2 sinh2 r + |α|2 + |α|4

−
(
|α|4 + sinh4 r + 2|α|2 sinh2 r

)
(3.99)

= 2 sinh2 r cosh2 r + |α|2 − α∗2 sinh r cosh r

− α2 sinh r cosh r + 2|α|2 sinh2 r. (3.100)

Writing α := |α|eiφ, we rewrite the above expression as

〈(∆n̂)2〉 =
1

2
sinh2 2r + |α|2

(
1 + 2 sinh2 r

−2 sinh r cosh r cos 2φ) (3.101)

which can be rewritten as

〈(∆n̂)2〉 =
1

2
sinh2 2r + |α|2

(
e2r sin2 φ+ e−2r cos2 φ

)
. (3.102)

Therefore,

∆Np =

√
1

2
sinh2 2r + |α|2

(
e2r sin2 φ+ e−2r cos2 φ

)
(3.103)

which matches the expression of [47]. We consider real displacements. Thus, we

set φ = 0 and obtain

∆Np =

√
1

2
sinh2 2r + |α|2e−2r, (3.104)

which, after substituting Eq. (3.89), is

(∆Np)
2 =

1

2
sinh2 2r +

(
Np − sinh2 r

)
e−2r. (3.105)
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Calculation of uncertainty in measuring total phase for squeezed light

The uncertainty in measuring the total phase ΦT is the spread in the coherent

state in the tangential direction (along Φ) divided by the length of the vector, |α|.

Since a global phase and displacement does not alter the squeezing, we can instead

consider a squeezed vacuum state to measure the spread in the P quadrature. The

P quadrature is given by

P =
(
a− a†

)
/2i (3.106)

and the spread in the state is given by

∆P =

√
〈P 2〉 − 〈P 〉2. (3.107)

The mean of the P quadrature is zero, as can be seen from Eq. (3.78) and

Eq. (3.79). Explicitly,

〈P 〉 =
(
〈0|S†aS|0〉 − 〈0|S†a†S|0〉

)
/2i (3.108)

= 0. (3.109)

We now calculate 〈P 2〉 as

〈P 2〉 =
1

4
〈0|S†

(
1 + 2a†a− a2 − a†2

)
S|0〉 (3.110)

=
1

4

(
1 + 2 sinh2 r + 2 sinh r cosh r

)
(3.111)

=
1

4
e2r. (3.112)

Therefore,

∆P =
1

2
er. (3.113)

Putting it all together we get,

∆ΦT =
1

2|α|e
r (3.114)
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which, on substituting from Eq. (3.89) gives

∆ΦT =
er

2
√
Np − sinh2 r

(3.115)

which remains positive by virtue of Eq. (3.89). This is the uncertainty in ΦT when

only one measurement is made.

3.4.2 Precision improvement due to squeezed light

In this experimental proposal, large values of Np are required. For large values, the

uncertainties in number of photons (Eq. (3.105)) and phase (Eq. (3.115)) can be

approximated to

(∆Np)
2 ≈ Npe

−2r. (3.116)

and

(∆ΦT )2 ≈ e2r

4Np

(3.117)

respectively. Substituting these values of uncertainties in Eq. (3.69), we note that

the precision (∆γ0)2, or equivalently the number of experimental runs Nr, depends

on the squeezing parameter r. The dependence of the number of experimental

runs required is plotted as a function of the squeezing parameter in Fig. 3.6 for the

experimental parameters as suggested by Ref. [3] (Table 2.1).

We see that the best precision is obtained for a squeezing parameter of r

r = −2.3 at which the required number of runs is Nr = 2× 104. This is an order

of magnitude improvement over using coherent light, as seen in Eq. (3.72).

Similar calculations for the β0 and µ0 cases are presented in Section 3.5. In these

cases, the contribution to ∆β0 and ∆µ0 is dominated by the ∆Np contribution, in

which case it is useful to use light squeezed in photon number.
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Figure 3.6: Logarithm of the required number of runs, log10(Nr), as a function of
the squeezing parameter r for fixed experimental parameters. Figure reproduced
from Ref [1]. ©2018 APS

3.5 Calculation details for the β0 and µ0 case

In all the sections in this chapter so far, we have explicitly performed calculations

only for the γ0 commutator. In this chapter, we present the results for the β0 and

µ0 commutators. Since the methods are identical to the previous sections, the

details are not described here.

3.5.1 Experimental requirement after accounting for
higher order terms and photon number uncertainty

In this subsection, we discuss the experimental requirement if we use the scheme

of Ref. [3] using the β0 and µ0 deformed commutators. We do this by considering

the higher order terms of the cavity Hamiltonian as described in Section 3.1 and

accounting for the uncertainty in photon number as described in Section 3.2.
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β0 case

Here, the quantum gravity signal is given by

ΦQG = β0κ
′λ4

0N
3
p for κ′ :=

4~mω
3Mpc

. (3.118)

The expression for β0 now reads

β0 =
1

κ′λ4
0

(
ΦT

N3
p

)
− 2

κ′λ2
0N

2
p

+
6k

κ′λ0Np

− 16k2

κ′
(3.119)

and its standard deviation is given by

(∆β0)2 =

(
1

κ′λ4
0N

3
p

)2

(∆ΦT )2 +

(
− 3ΦT

κ′λ4
0N

4
p

+
4

κ′λ2
0N

3
p

− 6k

κ′λ0N2
p

)2

(∆Np)
2 (3.120)

for one run of the experiment. To estimate the precision, we substitute for ΦT and

evaluate (∆β0)2 for β0 ∼ 0. We obtain that for a precision of (∆β0)2 ∼ 1, we need

to perform the experiment Nr = 1019 (1025) times in the quantum-noise-limited

(classical-noise-limited) scheme, which is much less feasible than the 106 required

experimental runs claimed in Ref. [3].

µ0 case

The quantum gravity signal is rewritten as

ΦQG = µ0κ
′′λ2

0Np for κ′′ := 2
m2

M2
p

. (3.121)

The expression for µ0 is given by

µ0 =
1

κ′′λ2
0

(
ΦT

Np

)
− 2

κ′′
+

6kλ0Np

κ′′
− 16k2λ2

0N
2
p

κ′′
. (3.122)
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and its variance is

(∆µ0)2 =

(
1

κ′′λ2
0Np

)2

(∆ΦT )2 +

(
− ΦT

κ′′λ2
0N

2
p

+
6kλ0

κ′′

−32k2λ2
0Np

κ′′

)2

(∆Np)
2 (3.123)

for one run of the experiment. Substituting for ΦT , and assuming µ0 ∼ 0, the

variance is (∆µ0)2 = 105 in both schemes. So, to have (∆µ0)2 ∼ 1, we need to

perform the experiment Nr = 105 times as opposed to O(1) times [3].

3.5.2 Improved schemes in β0 and µ0 cases

In this subsection, we present results for β0 and µ0 cases using improved paths in

phase space similar to those of Section 3.3 for the γ0 case and using squeezed light

as described in Section 3.4. Specifically, we calculate the expected phase and the

required number of experimental runs for the β0 and µ0 using unitary operators

similar to that detailed in Section 3.1.1.

β0 case

Here we present the analysis for the β0 case. In this case, we suggest two possible

solutions Uβ0,1 and Uβ0,2 with different advantages and disadvantages. The first

solution is described below.

First solution – This path in phase space is identical to the path suggested

for the γ0 case. We perform similar calculations as in the γ0 case to evaluate Uβ0,1

which implements the path in Fig. 3.2. Each of the individual loops was evaluated

to sixth order in the BCH formula and the composition of the four loops was
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evaluated to third order in BCH formula to obtain the phase

ΦT = − 40

9
βλ4

0N
3
p −

200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p +

1624

3
k5λ7

0N
6
p

− 99680

27
k6λ8

0N
7
p − 3116k7λ9

0N
8
p + . . . . (3.124)

The advantage of this solution is that the total number of runs required decreases

by a few orders of magnitude. However, a major disadvantage of this four-loop path

is that the assumptions made in the above evaluation of Uβ0,1 (and the acquired

phase thereof) are not controlled. In more detail, increasing the BCH order from

5 to 6 while evaluating the composition of the four loops leads to an additional

contribution to the phase that is larger than the quantum gravity signal. Thus,

there is no evidence that the phase obtained from the BCH approximations for

higher than 6 orders is insignificant. In summary, the four-loop path is infeasible

for estimating β0 requires overcoming potential issues with the convergence of the

expected phase. Instead, we suggest a different solution.

Second solution – This path in phase space is composed of only one rectangular

loop like the original [3] but starting at a different vertex of the rectangle. The

path is given by Uβ0,2.

Uβ0,2 = e−iHXe−iHP eiHXeiHP (3.125)

The path is depicted in Fig. 3.7.

Performing calculations similar to those in Eq. (3.7)–Eq. (3.53), we calculate

the phase of the measured light ΦT to be

ΦT =
4

3
βλ4

0N
3
p + 2λ2

0Np − 2k3λ5
0N

4
p + 35k4λ6

0N
5
p − 4k5λ7

0N
6
p . (3.126)

Since the shape of the loop remains the same as in the original case, the largest

contribution to the quantum mechanical phase remains the same. However, the
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Figure 3.7: Uβ0,2: The shape of the path that reduces some of the QM contribution
for the β0 commutator. Figure reproduced from Ref [1]. ©2018 APS

second-largest term is reduced by 2 orders of magnitude by starting from the

different vertex in the loop, which simplifies the phase calculations substantially.

Now we estimate the number of experimental runs required for the precise

estimation of β0. From Eq. (3.126), β0 is determined from the total measured phase

ΦT using the relation

β0 =
3

4κ′λ4
0

(
ΦT

N3
p

)
− 3

2κ′λ2
0N

2
p

+
3k3λ0

2κ′
Np −

105k4λ2
0

4κ′
N2
p +

3k5λ3
0

κ′
N3
p (3.127)

for

κ′ :=
~mω
Mpc

. (3.128)

The uncertainty in β0 for one run of the experiment is given by

(∆β0)2 =

(
− 9ΦT

4κλ4
0N

4
p

+
3

κ′λ2
0N

3
p

+
3k3λ0

2κ′

−105k4λ2
0Np

2κ′

)2

(∆Np)
2 +

(
3

4κλ4
0N

3
p

)2

(∆ΦT )2 (3.129)

With the following experimental parameters, as suggested in [3]

Np = 1014,

m = 10−7 kg,

F = 4× 105,

λL = 532 nm,
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we obtain (∆β0)2 = 1018 (1024) in the quantum-noise-limited (classical-noise-limited)

scheme. Thus, by performing 104 runs of the quantum-noise-limited experiment, an

upper bound of β+ ∆β < 107 can be attained, which is still 26 orders of magnitude

better than present bounds. As will be described in Section 4.1, the state undergoes

possible distortion because of the nonlinear (in n) terms in the unitary operator, but

this distortion is expected to be insignificant for current experimental parameters.

Assuming that the distortion does not significantly affect the phase statistics, we

see that if we also have squeezing with r = 3, we get (∆β0)2 = 1015 (1021).

We now calculate the number of runs if we use the four-loop path of Fig. 3.2.

Performing similar calculations, we get number of runs to be Nr = 1016 (1022). As

expected, the precision is higher in this case but the accuracy is possibly lower

because of the uncontrolled approximation. Using a squeezing parameter r = 3, we

can further reduce the number of runs by three orders of magnitude; Nr = 1013

(1019).

µ0 case

In the µ0 case, the largest quantum mechanical term cannot be removed from the

total phase. So, the path in phase space is just a rectangular loop like the original

path [3]. However, choosing a different starting point leads to smaller quantum

mechanical terms in total. The optimal path is effected by the unitary operator

Uµ0 = e−iHXe−iHP eiHXeiHP (3.130)

and is depicted in Fig. 3.8.

Performing calculations similar to the γ0 and β0 cases, the total phase ΦT is

given by

ΦT = 2µλ2
0Np + 2λ2

0Np − 2k3λ5
0N

4
p + 35k4λ6

0N
5
p . (3.131)
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Figure 3.8: Uµ0 : The shape of the path to reduce QM contribution for the µ
commutator. Figure reproduced from Ref [1]. ©2018 APS

Here, as in the second β0 case, the largest contribution to the quantum mechanical

phase remains the same. However, choosing a different starting point in the loop

reduces the second-largest term by seven orders of magnitude. This leads to a

marginal improvement in the number of runs with no extra experimental cost.

From Eq. (3.131), the value of µ0 is estimated as

µ0 =
1

2κ′′λ2
0

(
ΦT

Np

)
− 1

κ′′
+
k3λ3

0N
3
p

κ′′
− 35k4λ4

0N
4
p

2κ′′
(3.132)

for

κ′′ :=
m2

M2
p

. (3.133)

The variance in µ0 is therefore given by

(∆µ0)2 =

(
1

2κ′′λ2
0Np

)2

(∆ΦT )2 +

(
− ΦT

2κ′′λ2
0N

2
p

+
3k3λ3

0

κ′′
N2
p −

70k4λ4
0

κ′′
N3
p

)2

(∆Np)
2 (3.134)

for one run of the experiment.

We evaluate the expression first for coherent states of light. For the same

experimental parameters in the original proposal, we evaluate (∆µ0)2 = 105 in both

cases, which is the same as before because the path is almost the same. However

we note that the error decreases monotonically with Np, with m and with F , hence
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the highest possible value of these parameters should be chosen for the experiment.

Keeping the parameters

λL = 1064 nm (3.135)

L = 4µm (3.136)

ωm = 2π × 105 (3.137)

F = 105 (3.138)

fixed and changing the mean photon number and the oscillator mass to

Np = 109, (3.139)

m = 10−10 kg, (3.140)

we obtain (∆µ0)
2 = 2.2 (22) for a single run of the experiment in the quantum-

noise-limited (classical-noise-limited) scheme. If we also include using squeezed light

with the squeezing parameter r = −3, the variance in the quantum-noise-limited

scheme further reduces to (∆µ0)
2 = 10−3. We can further increase the signal to

noise ratio by increasing the mass of the oscillator.

To summarise this chapter, we have shown that the experimental scheme

suggested in Ref. [3] is not experimentally feasible and we suggested modifications

to this scheme to render it feasible.

More specifically, we show in Section 3.1 that the proposed experiment is not

accurate when higher order corrections of the cavity Hamiltonian are considered, and

in Section 3.2, show that it is not precise when accounting for non-zero uncertainty

in mean photon number. We show in Table 3.2 that the required number of

experimental runs is much larger when these sources of error are considered, thus

making the scheme experimentally infeasible.
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We suggest modifications to the scheme to improve the precision in Section 3.3

and Section 3.4. We suggest new paths in phase space which improve the precision

by many orders of magnitude by improving the signal to noise ration. One such

new path is illustrated in Fig. 3.2. We further show that using squeezed states of

light can further improve the precision by around an order of magnitude as shown

in Fig. 3.6. Finally, in Section 3.5, we list the results obtained by using new paths

and using squeezed light for the other models of deformed commutators.



Chapter 4

Results: Effect of imperfections
and assumptions

In Chapter 3, we proposed a new experimental scheme that improves the precision

by many orders of magnitude. In this chapter, we check the robustness of this new

scheme to experimental imperfections and assumptions made in the calculations.

In calculating the uncertainty in phase and photon number in Section 3.4, we

assumed that the only effect of the unitary operator is a rotation in the coherent

state. In Section 4.1, we go beyond this assumption and consider the effect of

distortion in the coherent state on the variances of phase and mean photon number of

the coherent state. In Section 4.2, we study the effects of imperfect implementation

of the phase-space loops. Specifically, we consider area-preserving fluctuations in

the loops and quantify the deviation in the acquired phase under these fluctuations.

The third imperfection that we consider is in the imperfect preparation of the initial

state of the oscillator. In Section 4.3, we detail the phase deviation due to small

non-zero off-diagonal terms in the density matrix of the prepared thermal state

corresponding to unintended coherences in the system. Finally, in Section 4.4, we

discuss the assumptions made in the calculations of Chapter 3, especially regarding

66



CHAPTER 4. RESULTS: EFFECT OF IMPERFECTIONS AND
ASSUMPTIONS 67

uncontrolled truncation of terms while calculating the unitary operator.

4.1 State distortion

The experimental proposal considered in Section 3.3 assumes that the state of

light that is initially in a coherent state remains in such a state under the unitary

transformation describing the action of the pulsed laser sequences. However, this is

not true when the unitary operator such as the one in Eq. (3.64) has terms that

are non-linear in photon number n. In this case, the coherent states are distorted

along with being rotated. The distortion of the coherent state due to nonlinear n

terms keeps the variance in mean photon number unchanged but the variance in

the phase, (∆Φ)2, changes. In this section, we calculate the value of ∆Φ for this

distorted state.

The outline of the calculations is as follows. The initial state of light is in a

coherent state |α〉 for real α with average photon number Np = |α|2. The unitary

operator that acts on the state during the experiment is given by eif(n) and we

assume f(n) to be a polynomial in n. If f(n) is not linear in n, the coherent state

is distorted in addition to being rotated. To calculate the distortion, we bring the

state back to the X axis and calculate the spread in P which we denote by ∆P .

We assume that ∆Φ ≈ ∆P√
Np

.

The calculations are detailed here. To bring the state back to the X axis, we

calculate the phase Φ(Np) of the state eif(n) |α〉 and rotate the state back by angle

Φ(Np). The state on the X axis is given by

|ξ〉 = ei{f(n)−Φ(Np)n} |α〉 =: U |α〉 . (4.1)

Here, the function Φ(n) is calculated from f(n) by replacing nm by (n+ 1)m − nm
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for all non-zero m.

The variance (∆P )2 is calculated by

(∆P )2 = 〈P 2〉ξ − 〈P 〉
2
ξ . (4.2)

We first calculate 〈P 〉ξ which in terms of a and a† is

〈P 〉ξ =
1

2i
〈a− a†〉ξ . (4.3)

Writing in terms of the initial coherent state, we have

〈P 〉ξ =
1

2i

(
〈α|U †aU |α〉 − 〈α|U †a†U |α〉

)
. (4.4)

We can show that

U †aU = ei{Φ(n)−Φ(Np)}a (4.5)

and making the saddle point approximation, we can approximate

〈α|eiΦ(n)|α〉 ≈ eiΦ(Np). (4.6)

Therefore,

〈P 〉ξ =
1

2i
(α− α∗) (4.7)

which for real α gives

〈P 〉ξ = 0. (4.8)

To calculate the variance in Φ and therefore in P , we now evaluate 〈P 2〉ξ:

〈P 2〉ξ = − 1

4
〈a2 + a†2 − 2a†a− 1〉ξ

= − 1

4

(
〈α|U †a2U |α〉+ 〈α|U †a†2U |α〉

−2 〈α|U †a†aU |α〉 − 1
)
. (4.9)
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U commutes with a†a = n, so U †a†aU = a†a and therefore 〈α|U †a†aU |α〉 = Np.

We now evaluate U †a2U . We observe

U †a2U =
(
U †aU

)2

= ei{Φ(n)−Φ(Np)}a ei{Φ(n)−Φ(Np)}a

= e2i{Φ(n)−Φ(Np)}eiΘ(n)a2 (4.10)

where the function Θ(n) is calculated from Φ(n) by replacing nm by (n+ 1)m− nm

for all non-zero m. Therefore

〈P 2〉ξ = − 1

4

(
Npe

iΘ(Np) +Npe
−iΘ(Np) − 2Np − 1

)
=

1

4

(
1 + 4Np sin2 Θ(Np)

2

)
. (4.11)

This leads to

(∆Φ)2 =
1

4Np

+ sin2 Θ(Np)

2
(4.12)

which is the expression that has been used in Eq. (3.71) of Section 3.3. We also

note that for the given experimental parameters, the correction due to distortion is

negligible.

4.2 Area preserving fluctuations

In this section, we calculate the phase acquired by light when the paths in phase

space described in Section 3.3 are imperfect. Specifically, we assume that state of

the mechanical resonator undergoes area-preserving fluctuations in phase space.

Here, we provide sufficient conditions for these deformations to have a negligible

effect on the estimation of the quantum gravity signal.

Different kinds of area-preserving deformations are analyzed and are depicted

in Fig. 4.1. The deformations have a magnitude of ε for loops whose dimensions
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Figure 4.1: Figure showing different kinds of are-preserving fluctuations. (a) Loop
starting from an arbitrary point along X with fluctuations along the opposite X
side (b) Loop starting from an arbitrary point along P with fluctuations along the
adjacent X side (c) Loop starting from an arbitrary point along P with fluctuations
along the opposite P side (d) Loop starting from an arbitrary point along X with
fluctuations along the P side. Figure reproduced from Ref [1]. ©2018 APS

are of order 1. We calculate the deviation from a perfect loop to leading order in ε

for all kinds of deformations and tabulate the results in Table 4.1. The calculations

are similar to those shown in the previous sections and are hence not detailed here.

In the remainder of the section, we provide conditions for the deformations to

be negligible compared to the quantum gravity signal.

In the γ0 case, we consider different instances of some or all of the four loops

undergoing area-preserving deformations in one of the edges. Among the different

deformations, we choose the case with the largest contribution to the phase. Under

this deformation, the experimental requirements for this contribution to be less
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Final path composed of Leading
order term in
ε

Leading
order term in
ε

Leading
order term in
ε

(γ case) (β case) (µ case)

Only one out of four loops de-
formed as depicted in Fig. 4.1a

4kn3λ3
0ε

3 4kn3λ3
0ε

3 4kn3λ3
0ε

3

Only one out of four loops de-
formed as depicted in 4.1c respec-
tively

k2n4λ4
0ε

3 3k2n4λ4
0ε

3 3k2n4λ4
0ε

3

Each of the four loops is deformed
with identical ε along the edge op-
posite to the starting edge. De-
formations depicted in Figs. 4.1a
and 4.1c

16
3
k2n4λ4

0ε
3

Each of the four loops is deformed
but deformations arise only on
the edges parallel to X-axis, i.e.,
Figs. 4.1a and 4.1b

842
9
k5n7λ7

0ε
3

Each of the four loops is deformed
but deformations arise only on
the edges parallel to P -axis, i.e.,
Figs. 4.1c and 4.1d

4
3
k2n4λ4

0ε
3

In comparison, the magnitude of
the signal term:

γ0

√
~mωm
3Mpc

λ0n
3 β0

~ωmm
3Mpc

λ4
0n

4 µ0
m2

M2
p
λ2

0n
2

Table 4.1: Summary of the leading order terms (in ε) in the phase for different
kinds of deformations. Reproduced from Ref [1]. ©2018 APS
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than the quantum gravity signal is

12N2
pλ

3
0kε

3 <γ0

√
~mωm
Mpc

λ0N
2
p (4.13)

ε3 <γ0
mωmL

12Mpc
. (4.14)

Numerically, this translates to ε < 10−4 for γ0 ∼ 1.

In the β0 case, the corresponding requirement is

12N2
pλ

3
0kε

3 <β0
4~ωmm
3Mpc

λ4
0N

3
p (4.15)

ε3 <β0

√
~m3w3

mL

9Mpc
λ0Np (4.16)

which numerically means that ε < 10−6 for reasonable experimental parameters for

this proposal. Finally, the µ0 case requires that

12N2
pλ

3
0kε

3 < 2µ0
m2

M2
p

λ2
0Np (4.17)

ε3 <µ0
L
√
m3ωm

6M2
pλ0Np

√
~
, (4.18)

which leads to the condition that ε < 102 or 103 depending on the choice of

reasonable experimental parameters. This completes our analysis of the fluctuations

in the phase-space paths and gives us an estimate of how well the experiment

should be performed to circumvent errors from imperfect loops.

4.3 Imperfect thermal state

The proposed scheme of Section 3.3 assumes that the mechanical oscillator is in a

thermal state with low phonon number. In this section, we calculate the resultant

phase of light for an imperfectly prepared initial thermal state of the mechanical
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resonator and present conditions for which imperfect state preparation does not

affect the quantum gravity signal.

For this calculation, we consider a state that is a mixture of a thermal state

and a pure state

ρ =
1

1 + ε
ρth +

ε

1 + ε
|ψ〉 〈ψ| (4.19)

where |ψ〉 = 1√
2

(|0〉+ |1〉), which models unwanted off-diagonal terms in the density

matrix. As usual, we evaluate the mean optical field

〈a〉 = Tr
(
U †aU |α〉 〈α| ⊗ ρ

)
. (4.20)

to estimate the measured phase in the different quantum gravity cases.

At the end of this section, we present the required condition for the β0 and µ0

cases. The detailed calculations in the γ0 case are as follows.

4.3.1 Calculations in the γ0 case

The unitary operator U for the γ0 case is given by

U = exp
{
−iw(n) +

(
x∗n3 + y∗n4

)
a†m −

(
xn3 + yn4

)
am
}

(4.21)

where

w(n) = −40

3
k3λ5

0n
5 + 24k4λ6

0n
6 (4.22)

x = (1− i)
√

2

3
k2λ3

0 (4.23)

y = (−26 + 10i)

√
2

3
k3λ4

0. (4.24)

The final state of light is given by the expression for the thermal state followed by

the contribution from the pure state as follows:

〈a〉 =
1

1 + ε
α′e−iΦQM +

ε

1 + ε
Tr
(
U †aU |α〉 〈α| ⊗ |ψ〉 〈ψ|

)
. (4.25)
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Here, the results from the thermal state are known, that is,

α′ =αe−
1
2(9|x|2N4

p+16|y|2N6
p)

× e−(9|x|2N4
p+16|y|2N6

p+12(xy∗+x∗y)N5
p)n̄ (4.26)

and

ΦQM =
1

2i
(x∗y − xy∗)N6

p −
200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p (4.27)

as can be seen from calculations in Section 3.1.1.

We now evaluate the second part of the expression 〈a0〉 = Tr
(
U †aU |α〉 〈α| ⊗ |ψ〉 〈ψ|

)
.

Performing calculations similar to that in Section 3.1.1 we see that

U †aU = e−
1
2

(x∗y−xy∗)(n6+15n5+33n4+35n3+21n2+7n+1)

× ei
40
3
k3λ50(5n4+10n3+10n2+5n+1)

× e−i24k4λ60(6n5+15n4+20n3+15n2+6n+1)

× e(x∗a†m−xam)(3n2+3n+1)

× e(y∗a†m−yam)(4n3+6n2+4n+1)a. (4.28)

Therefore,

〈a0〉 =
∞∑
n=0

α 〈α|n〉 〈n|α〉 ei 403 k3λ50(5n4+10n3+10n2+5n+1)

× e−i24k4λ60(6n5+15n4+20n3+15n2+6n+1)

× e−
1
2

(x∗y−xy∗)(n6+15n5+33n4+35n3+21n2+7n+1)

× 〈ψ| e(x∗a†m−xam)(3n2+3n+1)

× e(y∗a†m−yam)(4n3+6n2+4n+1) |ψ〉 . (4.29)
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To simplify the evaluation of the above expression, we define the variables

υ = y
(
4n3 + 6n2 + 4n+ 1

)
(4.30)

χ = x
(
3n2 + 3n+ 1

)
(4.31)

and denote the displaced Fock state e(υ∗a†m−υam) |m〉 as |υ∗,m〉. We rewrite

〈ψ| e(x∗a†m−xam)(3n2+3n+1)e(y∗a†m−yam)(4n3+6n2+4n+1) |ψ〉

as

〈ψ| e(χ∗a†m−χam)e(υ∗a†m−υam) |ψ〉 =
1

2
{〈−χ∗, 0|υ∗, 0〉+ 〈−χ∗, 0|υ∗, 1〉

+ 〈−χ∗, 1|υ∗, 0〉+ 〈−χ∗, 1|υ∗, 1〉} . (4.32)

Using the formula for the overlap of two displaced Fock states from [44]

〈−χ∗,m|υ∗, n〉 = 〈−χ∗|υ∗〉
√
m!n!

×
min(m,n)∑
j=0

(υ∗ + χ∗)m−j (−χ− υ)n−j

j! (m− j)! (n− j)! (4.33)

where

〈−χ∗|υ∗〉 = exp

{
−χυ∗ − 1

2

(
|χ|2 + |υ|2

)}
(4.34)

we can evaluate the expression to find

〈ψ| e(χ∗a†m−χam)e(υ∗a†m−υam) |ψ〉 =
1

2
〈−χ∗|υ∗〉 {1 + χ∗ + υ∗ − χ− υ

+1− |χ|2 − |υ|2 − χυ∗ − χ∗υ
}
. (4.35)

Also note that the remaining terms that are in the expression for 〈a〉 are given

by

〈α|n〉 〈n|α〉 = e−|α|
2 |α|2n
n!

. (4.36)
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Substituting all the above expressions in the expression for 〈a0〉, we get

〈a0〉 =
∞∑
n=0

αe−|α|
2 |α|2n
n!

ei
40
3
k3λ50(5n4+10n3+10n2+5n+1)

× e−i24k4λ60(6n5+15n4+20n3+15n2+6n+1)

× e−
1
2

(x∗y−xy∗)(n6+15n5+33n4+35n3+21n2+7n+1)

× e−xy
∗(3n2+3n+1)(4n3+6n2+4n+1)

× e
− 1

2

(
|x|2(3n2+3n+1)

2
+|y|2(4n3+6n2+4n+1)

2
)

× 1

2

{
1 + (x∗ − x)

(
3n2 + 3n+ 1

)
+ (y∗ − y)

(
4n3 + 6n2 + 4n+ 1

)
+ 1

− |x|2
(
3n2 + 3n+ 1

)2 − |y|2
(
4n3 + 6n2 + 4n+ 1

)2

− (x∗y + xy∗)
(
12n5 + 30n4 + 34n3

+21n2 + 12n+ 1
)}
. (4.37)

The expression can be approximated (to leading order in Np) to be

〈a0〉 = αe−
1
2(9|x|2N4

p+16|y|2N6
p)

× e−
1
2

(x∗y−xy∗)N6
p+i 200

3
k3λ50N

4
p−i144k4λ60N

5
p

× 1

2

{
1 + 3 (x∗ − x)N2

p + 4 (y∗ − y)N3
p − 9|x|2N4

p

+1− 16|y|2N6
p − 12 (x∗y + xy∗)N5

p

}
. (4.38)

If we express 〈a0〉 in the form

〈a0〉 = α0e−iΘ0 , (4.39)

the new amplitude is

α0 ≈ αe−(9|x|2N4
p+16|y|2N6

p+6(x∗y+xy∗)N5
p) (4.40)
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and the new phase is

Θ0 ≈
1

2i
(x∗y − xy∗)N6

p −
200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p

− 1

2i

{
3 (x∗ − x)N2

p + 4 (y∗ − y)N3
p

}
(4.41)

which on substituting with x and y gives

Θ0 ≈−
32

9
k5λ7

0N
6
p −

200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p

−
√

2k2λ3
0N

2
p +

40
√

2

3
k3λ4

0N
3
p . (4.42)

Putting the two equations together, the final state of light is given by

〈a〉 =
1

1 + ε
α′e−iΦQM +

ε

1 + ε
α0e−iΘ0 . (4.43)

In the remainder of this section, we calculate the effective amplitude and phase

of the light. The mean field is simplified to

〈a〉 =
1

1 + ε
α′e−iΦQM

(
1 + ε

α0

α′
e−i(Θ0−ΦQM)

)
. (4.44)

Define

ε
α0

α′
e−i(Θ0−ΦQM) = reiφ. (4.45)

Expressing 1 + reiφ in the polar form, we have

1 + reiφ =
√

1 + r2 + 2r cosφ ei tan−1( r sinφ
1+r cosφ) (4.46)

which to first order in r is (first order in ε)

1 + reiφ = (1 + r cosφ) eir sinφ. (4.47)

Therefore, the mean field is given by

〈a〉 =
1

1 + ε
α′
(

1 + ε
α0

α′
cos (Θ0 − ΦQM)

)
e−iΦQM

e−iε
α0
α′ sin (Θ0−ΦQM), (4.48)
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where the respective amplitude and phase of the output light are given by

α′ =αe−
1
2(9|x|2N4

p+16|y|2N6
p)

× e−(9|x|2N4
p+16|y|2N6

p+12(xy∗+x∗y)N5
p)n̄, (4.49)

α0

α′
= e(9|x|2N4

p+16|y|2N6
p+12(xy∗+x∗y)N5

p)(n̄− 1
2) (4.50)

and

ΦQM = − 200

3
k3λ5

0N
4
p + 144k4λ6

0N
5
p −

32

9
k5λ7

0N
6
p , (4.51)

Θ0 − ΦQM = −
√

2k2λ3
0N

2
p +

40

3

√
2k3λ4

0N
3
p . (4.52)

Note that the correction to the phase is given by εα0

α′
sin (Θ0 − ΦQM). Thus, for

imperfect preparation to have no significant impact on the results, we require

ε
α0

α′
sin (Θ0 − ΦQM) < ΦQG. (4.53)

4.3.2 Results in the µ0 case

Calculating similar quantities for the µ0 case yields

α′ =αe−
1
2(4|x|2N2

p+9|y|2N4
p)

e−(4|x|2N2
p+9|y|2N4

p+6(xy∗+x∗y)N3
p)n̄, (4.54)

ΦQM = 2λ2
0Np − 2k3λ5

0N
4
p , (4.55)

α0

α′
= e(4|x|2N2

p+9|y|2N4
p+6(xy∗+x∗y)N3

p)(n̄− 1
2), (4.56)

and

Θ0 − ΦQM = −2
√

2kλ2
0Np +

3√
2
k2λ3

0N
2
p (4.57)

for

x = (−1− i)
√

2kλ2
0 (4.58)

y = (−1 + i)
1√
2
k2λ3

0. (4.59)
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4.3.3 Results in the β0 case

Similarly for the β0 case, we obtain

α′ =α exp

{
−1

2

(
4|x|2N2

p + 9|y|2N4
p + 16|z|2N6

p

)}
× exp

{
−
(
4|x|2N2

p + 9|y|2N4
p + 16|z|2N6

p

+6 (xy∗ + x∗y)N3
p + 12 (yz∗ + y∗z)N5

p

+8 (xz∗ + x∗z)N4
p

)
n̄
}
, (4.60)

ΦQM = 2λ2
0Np + 6k2λ2

0Np − 2k3λ5
0N

4
p − 4k5λ7

0N
6
p . (4.61)

α0

α′
= exp

{(
4|x|2N2

p + 9|y|2N4
p + 16|z|2N6

p

+6 (xy∗ + x∗y)N3
p + 12 (yz∗ + y∗z)N5

p

+8 (xz∗ + x∗z)N4
p

)(
n̄− 1

2

)}
, (4.62)

and

Θ0 − ΦQM = −2
√

2kλ2
0Np +

3√
2
k2λ3

0N
2
p + 8

√
2k3λ4

0N
3
p (4.63)

for

x = (−1− i)
√

2kλ2
0 (4.64)

y = (−1 + i)
1√
2
k2λ3

0 (4.65)

z = (1 + i) 2
√

2k3λ4
0. (4.66)

In summary, the state preparation should be such that the phase contribution

of the off-diagonal terms is less than the quantum gravity signal, i.e.,

ε
α0

α′
sin (Θ0 − ΦQM) < ΦQG. (4.67)

The expressions for α0

α′
and Θ0 − ΦQM have been derived here for different models

of deformed commutators.
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4.4 Open problem: Accuracy of the

assumptions made in the calculations

In Section 3.3 we calculated the phase acquired by light after the action of the

suggested operator Eq. (3.60). Similar calculations are detailed in Section 3.1.1. In

the calculation of the phase, we make several approximations. We note that this

is not a deficiency of our approach but also arises implicitly in Ref. [3] where the

effect of the truncation was however not estimated. In this section, we describe the

approximations made and discuss their validity.

First, we recall the assumptions made in simplifying the unitary operator. In

order to calculate the phase, we first need to express the unitary operator, which is a

product (Eq. (3.4)) of exponentials of operators, as a single exponential of operators

that is not truncated like Eq. (3.5). This simplification cannot be performed exactly

for an arbitrary Hamiltonian. So, we need to truncate the Hamiltonian (Eq. (3.3))

to a finite order in k. This is our first approximation. The second approximation is

choosing a finite order in BCH formula based on available computation resources.

The unitary operator thus calculated has many terms in the exponent. We calculate

the phase contribution from only the terms larger than the minimum uncertainty

and ignore the rest to obtain the approximate unitary operator Eq. (3.12), thus

making our third approximation. The final approximation made is the saddle-point

approximation, which is employed in going from Eq. (3.46) to Eq. (3.47).

The exact (or general) form of the phase from the unitary operator calculated

to an arbitrary order of BCH formula or k is not known. So, it is difficult to prove

convergence of the phase rigorously. We, therefore, try to check the validity of

the assumptions heuristically. One approach to check the validity of truncation
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in the BCH order is to fix a specific order in k (like k = 2) and calculate the

phase contribution from each order in BCH. A condition for the validity of our

assumptions is that these phase contributions fall off quickly with increasing BCH

order. However, we were not able to calculate the phase for each BCH order exactly.

This is because even for a finite number of terms in each BCH order, there can be

infinitely many phase terms. This is illustrated in the Section 4.4.1 below. Checking

the validity of truncation in the k order has the same challenge of not being able

to calculate the phase. Also, since the phase cannot be calculated exactly even

for a few terms in the unitary operator for a given BCH and k order, we cannot

comment on the validity of truncating the unitary operator. We leave a proof of

the validity of these assumptions as an open problem.

We instead give heuristic evidence to the validity of the approximations of

calculating the unitary operator to a given BCH and k order. We give evidence

that the term with the largest phase contribution from each BCH order drops off

geometrically, even though we can make no statement about the sum of all terms

from that BCH order. Consider simplifying the expression eiHXeiHP for

HX =nλ0

(
X − kX2 + k2X3 − . . .

)
HP =nλ0

(
P − kP 2 + k2P 3 − . . .

)
.

(4.68)

In the final simplification, we see that the phase contribution from the terms

constant in X and P is larger than the phase contribution from the non-constant

terms. This is because the terms dependent on the mechanical modes (terms with

X and P ) only contribute through their commutators while the constant terms

contribute directly as can be seen in the calculations in Section 3.1.1. So, for small

coefficients (knλ0 < 1), the largest contribution is from the constant term.
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The constant term from first order in BCH, [HX , HP ], comes from [X,P ] and

is therefore of the order n2λ2
0. The constant term from second order comes from

terms like [X, [X,P 2]] and [P, [P,X2]]. We see that these terms have coefficients of

the order of kn3λ3
0. Similarly, the constant term from BCH order m is of the order

of km−2nmλm0 . So, the largest term in each BCH order falls of geometrically. The

phase contribution from such a term is of the order of km−2λm0 N
m−1
p . If we assume

that the sum of the rest of the terms is negligible, we need only to calculate up

to BCH order m such that the phase is less than the minimum uncertainty ∆ΦT .

That is,

km−2λm0 N
m−1
p <

1

2
√
NpNr

. (4.69)

For the γ0 experimental parameters, we estimate that this condition is satisfied

for m = 6. So we need to calculate up to BCH order 6 and k order 4. Similarly,

m = 28 in the β0 case and m = 5 in the µ0 case suffice.

4.4.1 Example: infinite number of phase terms from
unitary operator

Consider the case when the unitary operator is given by

U = eχn
2+υn3

(4.70)

where χ is linear and υ quadratic in am and a†m. For example

χ = x∗a†m − xam

υ = y∗a†2m − ya2
m.

(4.71)

The final quantity to be calculated is the mean field of light which is

〈a〉 = Tr
(
U †aU |α〉 〈α| ⊗ ρthm

)
. (4.72)
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The first step in this calculation is to simplify U †aU and express it as Oa where O

is an operator only dependent on n. a acts on |α〉 to give α |α〉. The operator a

can then be removed from the trace. The mean field is then given by

〈a〉 = αTr
(
O |α〉 〈α| ⊗ ρthm

)
. (4.73)

Here we show that the approach that works in simplifying U †aU used in the

calculations of Section 3.1.1 does not work in the case where the unitary operator

is of the form given by Eqs. (4.70) and (4.71). This approach relies on splitting

U into a product of exponentials each containing one power of n as is done while

going from Eq. (3.13) to Eq. (3.14). Using the Zassenhaus formula

e(χ+υ) = eχ eυ e−
1
2

[χ,υ] e
1
6

(2[υ,[χ,υ]]+[χ,[χ,υ]])

× e−
1
24

([[[χ,υ],χ],χ]+3[[[χ,υ],χ],υ]+3[[[χ,υ],υ],υ]) . . . (4.74)

we see that the expansion does not truncate due to υ being quadratic in am and a†m.

Terms of the form [υ, χ], [υ, [υ, χ]], [υ, [υ, [υ, χ]]] and so on are non-zero and linear

functions of am and a†m. Terms of the form [χ, [υ, χ]], [χ, [υ, [υ, χ]]], [χ, [υ, [υ, [υ, χ]]]]

are non-zero and functions of n alone, not am or a†m. So, even with a small number

of terms in the unitary operator, we cannot calculate the phase of the state of light

exactly.

In summary of this chapter, we have calculated the effects of many experimental

imperfections and theoretical assumptions in the calculation of the measurable

phase in Chapter 3. In Section 4.1, we calculate the variance in the phase due to

distortions of the coherent state to obtain the result Eq. (4.12). The error that

arises in the phase of light due to area-preserving imperfections in implementing

the phase space loops are tabulated in Table 4.1 of Section 4.2. We have also
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estimated how small these imperfections can be for the scheme to still be meaningful.

In Section 4.3, we calculated the deviation in phase due to imperfections in the

initial state preparation and obtained conditions for the imperfections to have

no significant impact on the results in Eq. (4.53). Finally, in Section 4.4, we list

all the assumptions made in the calculations, including truncation of terms and

using a finite order of the BCH formula, and give heuristic arguments for these

assumptions.



Chapter 5

Results: Correction to time
period of a pendulum

As we have shown in Section 2.2, one of the effects of quantum gravity is that the

time period of a harmonic oscillator is modified. The quantum gravity parameters

can be determined or at least bounded by measuring the time period of such

oscillators precisely. Experiments have been performed using oscillators in the

quantum regime to bound the quantum gravity parameters [4, 11], but strictly

speaking, the formalism used in these works is only valid for single particles. One

of the main contributions in this thesis is the introduction of a new parametrisation

for deformations involving composite particels. This formalism, introduced in

Eq. (1.15) of Chapter 1, allows us to use macroscopic systems to test for these

deformations. In this chapter and the next, we exploit this formalism for such tests.

Specifically, we extend the calculations of corrections to the time period of a

harmonic oscillator to that of a pendulum. To make the calculations simpler, in

Section 5.1, we perform these calculations using classical mechanics. We derive the

results by assuming that the Poisson brackets are deformed [32–34] in the same way

that the commutators are deformed due to quantum gravity. To ensure that these

85
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results are not a consequence of using classical mechanics, in Section 5.2 we show

that the Poisson equation approach and a fully quantum mechanical calculation

yield the same result for the time period of a harmonic oscillator. This shows that

the expression for the time period calculated using classical mechanics also extends

to the quantum regime and thus provides further evidence for the correctness of

our approach.

As a side remark we note that these matching results also connects two different

approaches to studying deformed commutators, namely modifying the Poisson

bracket [32–34] and modifying the commutator [16,35,36]. These two approaches

have so far been thought to be separate [37].

5.1 Classical calculations based on deformed

Poisson bracket

Here we calculate the corrections to the time period of a pendulum due to quantum

gravity deformations of the canonical commutation relations so that it can then

be compared against experimental data. We consider a pendulum of mass m and

length L. To find the Hamiltonian of a pendulum in terms of its x coordinates, we

begin by expressing it in angular coordinates. The Hamiltonian is

H =
1

2
mL2θ̇2 +mgL (1− cos θ) . (5.1)

where θ is the angle between the pendulum string and the vertical. However, there

are no quantum-mechanical uncertainty relations for θ and pθ since they are not

Hermitian variables. So, we rewrite the energy in terms of x and px using the
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relation x = L sin θ. The Lagrangian, after ignoring constants, is

L =
1

2
mL2θ̇2 +mgL cos θ (5.2)

=
mẋ2

2 cos2 θ
+mgL cos θ. (5.3)

The momentum px, conjugate to the coordinate x, is defined as

px =
∂L
∂ẋ

=
mẋ

cos2 θ
=

mL2ẋ

L2 − x2
. (5.4)

For ease of notation, we express x in terms of θ. The Hamiltonian can be calculated

from the Lagrangian to obtain

H = pxẋ− L (5.5)

=
p2
x

2m
cos2 θ −mgL cos θ. (5.6)

From here on, we drop the subscript x in px.

The time period can be obtained from the Hamiltonian in two ways. Here,

we take the approach that defines a new momentum operator which satisfies the

standard canonical commutation relations and hence the standard Heisenberg

equations of motion. In this approach the Hamiltonian is modified as was discussed

in Section 2.2. In an alternative, equivalent, approach the Hamiltonian can be

left unchanged while the equations of motion are modified due to the deformed

commutator [48]. Here we follow the first method due to ease of calculation.

For illustrative purposes, we perform the calculations using classical mechanics

but in Section 5.2, we show that the results hold even by performing quantum

calculations with deformed commutators. Here, we deform the standard Poisson

brackets in analogy to the deformation of the canonical commutation relation due

to quantum gravity [32–34], i.e.,

{x, p} = 1 + βp2 (5.7)
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where

β =
β0

Nα0(Mpc)2
. (5.8)

To ensure that the equations of motion are unchanged, a new momentum operator

p̃ is defined such that we recover the standard Poisson bracket, i.e.,

{x, p̃} = 1. (5.9)

We now express the Hamiltonian in terms of this modified momentum p̃ in order

to solve for the time-evolution of the pendulum.

To find the relation between p and p̃, we write p = f(p̃). The deformed Poisson

bracket therefore becomes

{x, f(p̃)} = 1 + βf(p̃)2. (5.10)

Since {x, p̃} = 1 as in regular classical mechanics, the relation

{x, f(p̃)} =
df(p̃)

dp̃
(5.11)

holds. From Eq. (5.10) and Eq. (5.11), we obtain the differential equation

df(p̃)

dp̃
= 1 + βf(p̃)2 (5.12)

which can be solved with the condition that p = 0 when p̃ = 0. Therefore, we

obtain the relation between p and p̃

p = f(p̃) =
tan
(√

βp̃
)

√
β

(5.13)

which on inverting is

p̃ =
tan−1

(√
βp
)

√
β

. (5.14)

This result does not make the small momentum assumption of Refs. [4, 11].
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Writing the Hamiltonian in terms of the new momentum operator p̃, we note

that it is modified to

H =
1

2mβ
tan2

(√
βp̃
)

cos2 θ −mgL cos θ. (5.15)

This modification of the Hamiltonian compared to Eq. (5.6) ensures that the

equations of motion remain unchanged with respect to x and p̃, i.e.,

ẋ =
∂H

∂p̃
=

cos2 θ

m
√
β

tan
(√

βp̃
)

sec2
(√

βp̃
)
. (5.16)

To solve this equation of motion, we express the momentum p̃ in terms of a

constant of motion, the total energy of the system. From the expression for the

energy in Eq. (5.15), note that the total energy in the system is E = −mgL cosφ

(when p̃ = 0), where φ is the angular amplitude. Substituting for total energy in

Eq. (5.15), the redefined momentum p̃ (Eq. (5.14)) can be expressed in terms of

the angular displacement θ and amplitude φ as

p̃ = − 1√
β

tan−1
(√

2m2gLf(θ)β
)

(5.17)

where

f(θ) :=
cos θ − cosφ

cos2 θ
. (5.18)

Therefore, in terms of the angular variable θ, the equation of motion Eq. (5.16)

can be rewritten as

θ̇L cos θ = −cos2 θ

m
√
β

√
2m2gLf(θ)β

(
1 + 2m2gLf(θ)β

)
(5.19)

and simplified to

θ̇ =
dθ

dt
= − cos θ

√
2
g

L
f(θ)

(
1 + 2m2gLf(θ)β

)
. (5.20)
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Separating variables and integrating over half a cycle, we obtain the time period

for half an oscillation

T2π

2
=

∫ φ

−φ
dθ

1

cos θ
√

2 g
L
f(θ) (1 + 2m2gLf(θ)β)

. (5.21)

Since β � 1, as can be numerically verified from the above equation, the expression

can be simplified to

T2π ≈
√

2L

g

∫ φ

−φ
dθ

{
1√

cos θ − cosφ
− β2m2gL

√
cos θ − cosφ

cos2 θ

}
. (5.22)

Furthermore, for small amplitudes, we can approximate the time-period to

T2π ≈ 2π

√
L

g

(
1 +

φ2

16
− β

2
m2gLφ2

)
(5.23)

and in terms of the amplitude A, where A = φL, it can be expressed as

T2π ≈ 2π

√
L

g

(
1 +

A2

16L2
− β0m

2g

2Nα0(Mpc)2L
A2

)
. (5.24)

Here, we note that the time period of a pendulum is modified by a term proportional

to the quantum gravity parameters. Hence by measuring the amplitude-dependence

of the the time period very precisely, we can bound the quantum gravity parameters.

This is done by using measured experimental data in Section 6.1.

5.2 Full quantum mechanical calculations based

on deformed canonical commutators

In Section 5.1, we found that the time period of a pendulum is modified by quantum

gravity effects. Since the calculations were based on classical mechanics, it could

happen that these results are a consequence of using classical mechanics. In

this section, we refute this argument by performing calculations in a quantum
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mechanical framework and obtaining the same results. However, finding the time

period of a quantum pendulum modified due to quantum gravity is very involved.

So here we instead compare the time period of a harmonic oscillator obtained using

classical and quantum mechanics and show that they match, thereby validating

our results.

An outline of the calculations is as follows: We start with the eigenvalues

and eigenfunctions of the quantum harmonic oscillator derived in Refs. [16, 49].

Since ladder operators are defined differently due to commutator deformation,

we use a generalised Heisenberg algebra [50] to find the action of the ladder

operators on the eigenstates. Using this algebra, we derive the expressions for

the position and momentum operators in terms of the ladder operators. With

this, the operators are well defined. In order to choose the most classical pure

state in our calculations, we choose a definition of coherent states, the Gazeau-

Klauder states [39], such that the states remain coherent states during the evolution

under this Hamiltonian. Calculating the expectation value of the position operator

with respect to these Gazeau-Klauder coherent states, we recover the classical

calculations. The calculations are detailed in the remainder of this section.

5.2.1 Formalism

In this section, we work in the momentum basis where the operators x̂ and p̂ are

defined by their action on the momentum wave-functions as

x̂ψ(p) = i~(1 + βp2)
∂ψ(p)

∂p
(5.25)

p̂ψ(p) = pψ(p). (5.26)
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These definitions of x̂ and p̂ allow us to write the harmonic oscillator Hamiltonian

as

Ĥ = −~2mω2

2

(
(1 + βp2)

∂

∂p

)2

+
p2

2m
. (5.27)

Solving the Schrödinger equation Ĥψn(p) = Enψn(p), the energy eigenvalues are

found to be [16]

En = ~ω
(
n+

1

2

)(√
1 +

1

16r
+

1

4
√
r

)
+

~ω
4
√
r
n2 (5.28)

for 1/r = (2βm~ω)2 and the eigenfunctions in the momentum basis are [49]

ψn(p) = (−i)n2λΓ(λ)

√
n!(n+ λ)

√
β

2πΓ(n+ 2λ)
(1− s2)λ/2Cλ

n(s)

=: zn(1− s2)λ/2Cλ
n(s)

(5.29)

where Cλ
n(s) are Gegenbauer polynomials and

s =

√
βp√

1 + βp2
(5.30)

λ =
1

2
+

√
1

4
+

1

(m~ωβ)2
. (5.31)

The phase (−i)n in Eq. (5.29) has been introduced so that in the limit β → 0,

we recover results from quantum mechanics, namely â =
√

mω
2~ x̂ + i√

2m~ω p̂. The

eigenvalues Eq. (5.28) and eigenfunctions Eq. (5.29) so obtained are useful in

defining the Fock basis {|n〉}, which is used in the calculations in the rest of this

section. The eigenfunctions are defined by ψn(p) = 〈p|n〉 and the number operator

n̂ is defined such that n̂ |n〉 = n |n〉. So, in the Fock basis, the Hamiltonian is

H = ~ω
(
n̂+

1

2

)(√
1 +

1

16r
+

1

4
√
r

)
+

~ω
4
√
r
n̂2 (5.32)

which we use in the rest of this section.
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5.2.2 Generalised Heisenberg algebra

Due to the quantum gravitational modifications of the canonical commutator, the

ladder operators and their commutation relations also would be modified. Here,

we find the commutator between the ladder operators based on their action on

an energy eigenstate. Using the version of generalised Heisenberg algebra used in

Ref. [50], we find the action of the annihilation operator on state |n〉 to be

â |n〉 =
√
n (1 + ν + νn) |n− 1〉 (5.33)

for ν = βm~ω/2. Similarly, the action of the creation operator on a Fock state

is [50]

â† |n〉 =
√

(n+ 1) (1 + ν + ν(n+ 1)) |n+ 1〉 . (5.34)

Therefore, the number operator is related to the ladder operators as

â†â = n̂ (1 + ν + νn̂) (5.35)

and the commutator is derived to be

[
â, â†

]
≈ 1 + 2ν(1 + â†â) (5.36)

to first order in ν (or equivalently first order in β).

5.2.3 Calculating position and momentum in terms of
ladder operators

The relation between the canonical operators x̂ and p̂ and the ladder operators â

and â† is modified due to deformed commutators. In this section, we derive the

modified expression for the position and momentum operators in terms of the ladder

operators. The outline of the calculations is as follows: We start with Eq. (5.33) in
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the momentum basis and use recursion relations of the eigenfunctions to express

ψn−1(p) in terms of ψn(p). This gives us the operator â in the momentum basis

which can be expressed in terms of the operators x̂ and p̂. This relation is then

inverted to obtain x̂ in terms of the ladder operators.

The calculations are detailed below. Eq. (5.33) in the momentum basis is

âψn(p) =
√
n (1 + ν + νn)ψn−1(p). (5.37)

Using the following recursion relations of Gegenbauer polynomials

(n+ 2λ)Cλ
n(s) =

d

ds
Cλ
n+1(s)− s d

ds
Cλ
n(s) (5.38)

(1− s2)
d

ds
Cλ
n(s) = (n+ 2λ)sCλ

n(s)− (n+ 1)Cλ
n+1(s) (5.39)

ψn−1(p) can be expressed in terms of ψn(p) and its derivatives. Therefore, we

obtain the action of the annihilation operators on the wavefunction to be

âψn = i

√
(1 + ν + νn) (n+ λ− 1)(λ+ n)β

(n+ 2λ− 1)(1 + βp2)

{
1 + βp2

β(λ+ n)

d

dp
+ p

}
ψn. (5.40)

Since the ψns form a complete basis [16], Eq. (5.40) can be written in operator form.

In the limit of β � 1 and using the definitions of the position and momentum

operators in Eq. (5.25) and Eq. (5.26), we obtain

â =

√
mω

2~

[
x̂− β

{
1

2
p̂2x̂+

m~ω
4

x̂

}]
+

i√
2m~ω

[
p̂+

β

4

{
−2p̂3 + ~mωp̂(1 + 4n̂)

}]
.

(5.41)

A similar expression for the creation operator â† is

â† =

√
mω

2~

[
x̂− β

{
1

2
x̂p̂2 +

m~ω
4

x̂

}]
− i√

2m~ω

[
p̂+

β

4

{
−2p̂3 + ~mω(1 + 4n̂)p̂

}]
.

(5.42)
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The relations Eq. (5.41) and Eq. (5.42) can be inverted to find the expressions

for x̂

x̂ =

√
~

2mω

(
â+ â†

)
+
β

4

√
~3mω

2

(
â†â2 + â†2â− â3 − â†3

)
(5.43)

and similarly p̂

p̂ = i

√
~mω

2

(
â† − â

)
+ iβ

(~mω)3/2

4
√

2

(
â†â2 − â†2â+ â3 − â†3 + 2â− 2â†

)
(5.44)

in terms of the ladder operators. Most of the calculations in this section were

performed using Mathematica.

Here, we have defined the position operator in terms of the ladder operators,

whose action on the Fock states is known. In the next section, we find the trajectory

of the oscillator by finding the expectation value of the position operator with

respect to some generalised coherent state.

5.2.4 Trajectory of the pendulum

To compare the result ultimately with that obtained from classical mechanics in

Section 5.1, we consider the most classical pure state as the initial state. So, we

choose the generalised coherent states, the Gazeau-Klauder states, that were defined

in Section 2.3. The Hamiltonian in this case can be rewritten from Eq. (5.28) as

H = ~ω
(
n+ νn+ νn2 +

1

2
(1 + ν)

)
(5.45)

and therefore

en = n (1 + ν + νn) . (5.46)

To recap, the Gazeau-Klauder coherent states [39], are

|J, γ〉 =
1

N(J)

∑
n

Jn/2e−iγen√
ρn

|n〉 (5.47)
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where ρn =
∏n

k=1 ek and N(J)2 =
∑

n
Jn

ρn
.

Using the rules of the generalised Heisenberg algebra (Eqs. (5.33) and (5.34)),

and the expressions for the position (Eq. (5.43)) and momentum (Eq. (5.44))

operators derived in the above section, we calculate the expectation value of

position and momentum in this state. For illustration, we calculate the expectation

value of the annihilation operator â. Writing the state |J, γ〉 explicitly in terms of

the Fock states and using Eq. (5.33) and simplifying, we obtain

〈J, γ|â|J, γ〉 =
∑
n,m

J (m+n)/2e−iγ(en−em)√en
N2
√
ρmρn

δn−1,m

=

√
J

N2

∑
n

Jn−1

ρn−1

e−iγ(1+2nν)

≈
√
J

N2
e−iγ

(
N2 − iγ2ν

∑
n

n
Jn−1

ρn−1

)
.

(5.48)

We now evaluate the second term considering that en−1 = n− 1 +O(β). Since this

term is already of order β (or equivalently ν) and we neglect second order terms,

we can assume that en−1 ≈ n − 1 for this calculation. Hence, this term can be

evaluated as follows: ∑
n

n
Jn−1

ρn−1

≈
∑
n

en−1
Jn−1

ρn−1

+
∑
n

Jn−1

ρn−1

=
∑
n

Jn−1

ρn−2

+
∑
n

Jn−1

ρn−1

= N2(J + 1).

(5.49)

Putting the equations together, we obtain the expected value of the annihilation

operator

〈J, γ|â|J, γ〉 =
√
Je−iγ (1− iγ2ν (J + 1)) . (5.50)
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The expectation values of other functions of â and â† can be similarly evaluated to

obtain the expectation values of x̂ and p̂, which, up to first order in β are given by

〈J, γ|x̂|J, γ〉 =

√
2~J
mω

cos γ + β
√

2~3mω

{
J3/2

4
cos γ

−J
3/2

4
cos 3γ −

√
J(1 + J)γ sin γ

} (5.51)

and

〈J, γ|p̂|J, γ〉 = −
√

2~mωJ sin γ + β
(~mω)3/2

2
√

2

{
J3/2 sin γ + J3/2 sin 3γ

+ 2J1/2 sin γ − 4γ
√
J(1 + J) cos γ } .

(5.52)

Since these states satisfy the relation e−iHt/~ |J, γ〉 = |J, γ + ωt〉, the time-evolved

expectation values are easily obtained by replacing γ with γ + ωt. In these

calculations, we have assumed not only that β � 1 but also βγ � 1 and βωt� 1.

To evaluate the position of the oscillator as a function of time in terms of

measurable quantities, we choose the initial state |J, γ〉 such that the oscillator

starts at rest with non-zero amplitude, i.e., 〈p(0)〉 = 0 and 〈x(0)〉 = A. This

condition is satisfied when γ = 0 and J = mωA2

2~ , as can be seen from Eqs. (5.51)

and (5.52). Therefore, for this initial state, the expectation value of position in

terms of its amplitude is

〈x(t)〉 = A cosωt+ β
m2ω2A3

2
sinωt

{
cosωt sinωt− ωt

(
1 +

2~
mωA2

)}
. (5.53)

We now compare the time-dependent position thus obtained with that obtained

from the classical calculations. Since we are comparing quantum harmonic oscillator

calculations with that of classical pendulum calculations, we compare the classical

limit of Eq. (5.53) to the solution of the low amplitude limit of the differential

equation Eq. (5.16). We can verify that the classical limit (~→ 0) of Eq. (5.53)

〈x(t)〉 = A cosωt+ β
m2ω2A3

2
sinωt (cosωt sinωt− ωt) (5.54)
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satisfies the differential equation

ẋ = −ω
√

(A2 − x2)
{

1 + βm2ω2
(
A2 − x2

)}
, (5.55)

which is the low amplitude limit of the differential equation Eq. (5.16) with

ω =
√
g/L. This shows that the two approaches match, thereby validating the

easier, classical approach.

In summary, we have shown that one of the effects of the deformed commutators

is an observed change in time period of a pendulum. This modification to the time

period is calculated in Section 5.1 using classical mechanics by assuming deformed

Poisson brackets to obtain Eqs. (5.21) and (5.24). In Section 5.2, we also calculate

the modification to the time period of a harmonic oscillator using a fully quantum

mechanical approach, where the canonical commutators are deformed, to obtain

the trajectory of the oscillator in Eq. (5.53). We then show that the two approaches

yield the same modification to the time period of a harmonic oscillator, thereby

validating our results. We also note that the two approaches of modifying Poisson

brackets and modifying commutators had so far thought to be separate and our

results connects them. In the next chapter, we use experimental data of measured

time period of a pendulum to place bounds on the quantum gravity parameters.



Chapter 6

Results: Obtaining experimental
bounds on quantum gravity
parameters

As we show in Section 2.2, there are two arbitrary parameters in the models of

deformed commutators: α0, which determines the scaling of the deformations with

particle number, and β0, which determines the magnitude of the deformations. The

best experiments so far could only place negative bounds on α0 when β0 = 1. In

this chapter, we consider experiments to place better bounds on these quantum

gravity parameters.

In Chapter 5, we calculated the corrections to the time period of a pendulum

due to quantum gravitational effects. With precise measurements of the pendulum

time period as a function of its amplitude, bounds can be placed on the parameters.

Precise time period measurements of a pendulum have been performed for many

decades now. Using data from one such experiment [51], we provide the first positive

bound on α0 in Section 6.1. To substantially improve the bounds, we suggest

an experiment using levitated diamagnetic spheres in Section 6.2. Furthermore,

in Section 6.3, we show that even the existing experimental scheme based on

99
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optomechanics can be slightly modified to obtain better bounds on α0.

6.1 Pendulum experiment to bound quantum

gravity parameters

In this section, we use experimental data from precise measurements of the time

period of a pendulum to place bounds on the quantum gravity parameters α0

and β0 using Eq. (5.24). From Eq. (5.24), we see that the quantum gravitational

corrections to the time period are amplitude dependent. Hence, we consider an

experiment [51] which measures the time-period as a function of its amplitude.

The experimental data is represented in Fig.(3) of Ref. [51], which plots the

measured time-period as a function of the square of the amplitude. From Eq. (5.24),

we see that the intercept T0 of this line is

T0 = 2π

√
L

g
(6.1)

and the slope s is

s = 2π

√
L

g

(
1

16L2
− β0m

2g

2Nα0(Mpc)2L

)
. (6.2)

Since the expression for the slope of this plot includes corrections from quantum

gravity, we calculate the slope from Fig.(3) to compare with theory.

We extracted the data from Fig.(3) of the paper by magnifying it and deter-

mining the central positions of the data points. This data is used to calculate the

slope and intercept. Table 6.1 contains the data extracted from the experimental

results obtained in Ref. [51]. We use this extracted data to perform a linear fit

using the reported error of 2% in amplitude measurement and negligible error in
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A2(cm2) T2π(s) A2(cm2) T2π(s)

43 3.47315 578 3.47438

52 3.47308 709 3.47468

132 3.47341 837 3.47498

168 3.47342 1020 3.47538

204 3.47351 1228 3.47583

244 3.47363 1404 3.47633

293 3.47373 1760 3.47705

360 3.47396 1850 3.47736

387 3.47394 2115 3.47801

443 3.47409 2160 3.47798

Table 6.1: Measured data of the time-period of a pendulum as a function of its
amplitude extracted from Smith (1964). Reproduced from Ref [2], CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/

time-period measurement [51]. From this fit we obtain the value of the intercept

T0 = 3.473 010(4) s. (6.3)

Using this value and following the analysis of Ref. [51], we can precisely infer the

effective length of the pendulum to be

L = g

(
T0

2π

)2

= 2.995 384(6) m. (6.4)

In this calculation, the local value of acceleration due to gravity g = 9.803 93 m s−2

has been used [51]. The pendulum is an iron cylinder of radius 2.54 cm and height

5.08 cm and therefore a mass of approximately 1.22 kg.

Using the obtained value of the length L and mass m, the expected slope is

numerically evaluated to be

2π

√
L

g

(
1

16L2
− β0m

2g

2Nα0(Mpc)2L

)
= 0.0242− 0.20

β0

Nα0
. (6.5)

https://creativecommons.org/licenses/by/4.0/
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From the linear fit of the data (Table 6.1), the slope of the line is obtained to be

0.0246± 0.0005 (95% confidence interval). We see that for the fit and Eq. (6.5) to

be consistent, we obtain −0.005 < β0
Nα0

< 0.0005. For β0 positive, the condition

becomes

β0N
−α0 < 5× 10−4. (6.6)

For the determination of N we assume that the nucleons form the elementary

particles. Since the mass of one nucleon is 1 a.m.u = 1.66× 10−27 kg, the number

of nucleons in the iron cylinder is

N =
1.22

1.66× 10−27

= 7.32× 1026.

(6.7)

For this value of N , we obtain α0 > 0.12 for β0 = 1. Note that the bound on

α0 is quite insensitive to the precise number of nucleons. The region excluded by

Eq. (6.6) in the α0, β0 plane is plotted in Fig. 6.1.

Recent experiment using oscillators in the quantum regime have been used

to provide bounds on β0 under the assumption that α0 = 0. We argue however

that any test of consequences of deformed canonical commutation relations due

to quantum gravity need to account for both α0 and β0. So we calculate the

bounds on α0 for the value of β0 ∼ 1 that is expected from quantum gravity

models [19]. The best bound on α0 from the experiments of Ref. [4] is α0 > −0.33

for β0 = 1. Similarly, from Ref. [11] we obtain α0 > −0.25. Note that these bounds

are significantly worse than those obtained in the present work using the data

from [51]. In Fig. 6.1 we present the parameter ranges that have been excluded in

the α0, β0-plane in the three experiments discussed here.
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This work

Bawaj et al. 2015

Bushev et al. 2019

Diamagnetic levitation

Pikovski et al. 2012

-1.0 -0.5 0.5 1.0
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10-15
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1015
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Figure 6.1: Excluded regions of parameter space from different experi-
ments. Solid lines represent bounds obtained from experimental data and dashed
lines represent expected bounds from proposed experiments. The shaded areas
represents the region excluded by these experiments. The present work based on
Smith (1964) provides the largest excluded region of parameters which, in particular,
excludes the point β0 = 1, α0 = 0, thereby showing that suppression of quantum
gravity deformations should be accounted for if β0 ∼ 1 as expected from quantum
gravity models. The proposal to use massive levitated diamagnetic objects promises
significant improvement in bounds. A modified version of this figure is already pub-
lished in Ref. [2], CC BY 4.0, https://creativecommons.org/licenses/by/4.0/

Quantum gravity suggests corrections to the canonical commutation relations

that are proportional to a parameter β0. This parameter is expected to be of order

of unity if physics exhibits a minimum length of order of the Planck length but is

also expected to scale as N−α0 where N is the number of constituent particles of

the test mass – a consequence of the soccer ball problem of quantum gravity. We

strongly argue that any test of such physics needs to account for both parameters

α0 and β0 in its analysis. We perform an analysis of several quantum regime

https://creativecommons.org/licenses/by/4.0/
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experiments in those terms to show that they cannot provide positive bounds on

α0 while we find that a macroscopic pendulum can provide the first positive bound

on α0 assuming β0 = 1. This shows that the suppressions with the number of

particles cannot be ignored in tests of quantum gravity and that entering the deep

quantum regime is not essential for the observation of quantum gravity corrections

to physical dynamics. We discuss possible advanced experimental designs and the

parameter requirements to allow for entering tests in the α0 > 1 regime that is

suggested by various models of quantum gravity.

6.2 Diamagnetic levitation for enhanced tests

of quantum gravity

In order to explore how far we can possibly bound the α0-parameter, here we

propose an experiment that relies on the precise measurement of the oscillation

frequency of a diamagnetic levitated particle to obtain enhanced bounds on the

quantum gravity parameters.

In an experiment on a space probe, such as LISA pathfinder, one could imagine

to levitate a particle in a uniform magnetic field gradient. In this case the frequency

of oscillation would be [52]

ω =

√
1

ρµ0

χV

(
dB

dx

)2

(6.8)

where ρ is the mass density of the object, µ0 is the vacuum permeability, χV is the

magnetic volume susceptibility of the material and we assume a constant magnetic

field gradient dB
dx

. Since the oscillations can be approximated as harmonic, the

change in frequency resulting from deformed commutators can be obtained from
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Eq. (5.24) by identifying that ω =
√
g/L. The change in frequency is therefore

∆ω =
β0m

2ω3A2

2Nα0(Mpc)2
. (6.9)

The oscillation frequency of levitated objects can be measured very precisely due

to very low damping rates. Here we assume, optimistically, that the damping

rate is the only source of error in frequency measurement. At low pressures of

266× 10−10 Pa, the damping rate is expected to be γ = 1.2× 10−7 Hz [53,54]. If,

in the experiment, no deviation from the expected frequency is observed, then

∆ω . γ/
√
M where M is the number of measurements taken.

We calculate the bounds that one would obtain if such an experiment can

be performed. We consider optimistic parameters of a gold sphere of diameter

10 cm that is levitated in a uniform magnetic field gradient of 103 T/m3 that is

initially displaced with an amplitude of 10 cm. The density and magnetic volume

susceptibility of gold are ρ = 19300 kg/m3 and χV = 3.287× 10−5 [55] respectively.

From these parameters, we estimate that for β0 = 1, we obtain α0 > 0.35 for

M = 1, which is a much better bound than the one obtained with a pendulum

in Section 6.1. The region of parameter space that can be excluded from such

an experiment is shown in Fig. 6.1. This bound may be further improved by

performing the experiment in space, where the pressure is about 2000 times lower

which leads to a further reduction in γ.

6.3 Other experiments to bound the

parameters

Experiments to place bounds on quantum gravity parameters are not restricted to

the framework of measuring the change in frequency of oscillators. Here we show
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that the other existing optomechanical scheme can also be used to placed stringent

bounds on α0 if an appropriate initial state is considered.

Specifically, we consider the optomechanical scheme of Refs. [3, 9] that is

described in Section 2.1. To recap, in this scheme, the mechanical resonator is

initially in a thermal state very close to the ground state. After interacting with

the resonator, the field of the light pulse is [3]

〈a`〉 ≈ ξe−i2λ
2Np−i(4/3)β~mωλ4N3

p (6.10)

where ξ is the amplitude of the coherent state |ξ〉 of light, as derived in Eqs. (2.17)

and (2.18). Using the experimental parameters of Ref. [3] (Table 2.1) and the error

analysis detailed in Section 3.2 and assuming that experiment returns a null result,

we obtain the bound β0N
−α0 < 106 which leads to α0 > −0.3 for β0 = 1. The

excluded parameter range is presented in Fig. 6.1.

This bound can be improved if, instead of the ground state, the resonator is

initially in a coherent state with a large enough momentum. In this case, the

output field is given by

〈a`〉 ≈ ξe−i2λ
2Np−i(4/3)β~mωλ4N3

p+iβλ2Np2〈p〉2 (6.11)

for the initial state of the oscillator in a coherent state with mean initial momentum

〈p〉. We see that the extra term arising from a non-zero initial momentum can, in

principle, be made very large by choosing a more massive oscillator. If we make the

optimistic assumption that all other parameters remain the same but the mass is

increased to 10−3 kg, we can achieve a a positive bound on α0. While such a large

mass is likely to reduce the optomechanical coupling it nevertheless suggests that

the measurement of the phase of the output light for macroscopic systems may

provide another method to obtain a good bound on the deformation parameters.
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To summarise, in this chapter, we have discussed the experimental bounding of

the quantum gravity parameters. Using data of measured time period of a pendulum

in Ref. [51], we obtain the bound α0 > 0.12 in Section 6.1, which is the first positive

bound on the parameter α0 for β0 = 1. We have also suggested experiments using

levitated diamagnetic spheres in Section 6.2 and phase measurement of light in

pulsed optomechanics in Section 6.3 to also obtain positive bounds on α0 and also

to possibly improve the bounds substantially. Using these experiments, we argue

that we need to consider both parameters α0 and β0 to place reasonable bounds on

the parameters. Hence, we have introduced the α0, β0 phase space and plotted the

regions on phase space exclude by different experiments in Fig. 6.1.



Chapter 7

Summary and Outlook

7.1 Summary

To summarise this thesis, we have addressed two key challenges faced by tabletop

experiments to test for deformations in canonical commutators.

First, in Ref. [1], we address the challenge of improving the accuracy and

precision of cavity-optomechanical tests of quantum gravity as shown in Chapter 3.

On one hand, unaccounted-for mean photon number uncertainty and quantum

mechanical contributions to the phase lead to low precision (Section 3.2), while

on the other, higher order terms of cavity Hamiltonian lead to low accuracy via

unaccounted phase (Section 3.1). We account for the higher-order terms and develop

sophisticated paths in phase-space to obtain experimentally feasible accuracy and

precision (Section 3.3), and we suggest the use of squeezed light to further improve

precision (Section 3.4).

Considering the quantum-noise-limited scheme, where the intensity is measured

throughout the experiment, our proposed phase-space paths and rigorous analysis

reduces the number of experimental runs from 1014 to 105 for the case of the γ0 model

for the same experimental parameters as in the original proposal (Sections 3.3
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and 3.4). Similarly, considering the classical-noise-limited scheme, where the

intensity is measured precisely at the beginning of the experiment, the required

number of experimental runs reduces from 1016 to 105.

For the β0 and µ0 models, our suggested paths are similar to the original path

(Section 3.5). However, our refined analysis can help us choose better experimental

parameters. With these parameters, the required number of experimental runs

decreases by three and five orders of magnitude for the β0 and µ0 cases respectively.

We also test the robustness of our scheme to experimental imperfections in

Chapter 4, including the effects of distortion from the unitary operator on the light

state (Section 4.1), imperfect implementation of the laser pulses (Section 4.2), and

the imperfect preparation of the initial thermal state of the resonator (Section 4.3).

In Section 4.4, we discuss the assumptions made in the calculations of Chapter 3.

By improving the accuracy and the required number of runs, and by accounting

for experimental imperfections, our work opens the way for tests of quantum gravity

with near-future optomechanical technology.

The second key problem that we address in Ref. [2] is the use of composite

macroscopic systems to test for deformed commutators. There are four main

contributions in this work. Firstly, we introduce a new phenomenological parameter,

which we call α0, to the models of deformed commutators in order to take into

account the so-called soccer ball problem. The idea is to replace the quantum

gravity parameter β0 with β0/N
α0 and instead of placing bounds on only β0, one

must exclude regions in a 2D plane of β0 and α0. This is presented in Chapter 1

and exploited in the analysis of Section 6.1. This new parameterization enables

comprehensive tests of quantum gravity using composite particles. Secondly, in

Section 6.1, we use the results of an old experiment that measures the time period
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of a pendulum precisely to obtain more stringent bounds on the parameters β0

and α0 than those obtained from other experiments. To obtain the bound, we first

calculate the modifications to the time period of a pendulum due to quantum gravity

(Section 5.1). Third, we show that the results obtained were not only a consequence

of using classical mechanics by showing the equivalence of a classical treatment using

deformed Poisson brackets and a quantum treatment using deformed commutators

(Section 5.2). Finally, we also discuss other possible experiments that promise even

more stringent bounds in Sections 6.2 and 6.3.

These four improvements together bring rigorous and well-controlled tests of

quantum gravity closer to reality.

7.2 Open problems

The open problems and potential future directions are as follows.

• As described in Section 4.4, there are numerous theoretical approximations in

calculating the phase acquired by light after the optomechanical interaction

in Chapter 3. These errors mainly arise from the truncation of terms in the

Hamiltonian and the resulting unitary. The errors from these approximations

might be small, but perhaps not negligible compared to the phase from

quantum gravity. Hence, it is relevant to quantify the error from all the

approximations.

• In Eq. (3.2), we have accounted for the higher order terms of the optome-

chanical Hamiltonian. However, this expansion is not strictly correct and to

perform a more accurate estimation of the quantum gravity parameters, one
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could use a more rigorous expression for the non-linearities, for example that

in Ref. [40].

• In calculating the effect of the light pulses on the mechanical oscillator and

phase of light in Chapter 3, we have not included the effects of dissipation.

These could have a large effect on the small quantum gravity parameters,

and should therefore be quantised.

• In Section 5.2, we have calculated the change in time period of a quantum

harmonic oscillator under deformed commutators. To more rigorously com-

pare with the classical calculations, time period calculations for a quantum

pendulum can be performed.

• In Section 5.2, we have chosen the initial state of the pendulum to be a

generalised coherent state. A more realistic initial state would be a thermal

state. However, it is not clear how to define a thermal state in the presence

of deformed commutators. Hence, it would also be a useful contribution to

be able to consistently define a thermal state when the commutators are

deformed.

• Another potential future direction to understand deformed commutators

could be to connect our formalism, which is based on the Gazeau-Klauder

coherent states (Section 2.3), with that of Ref. [56], which starts with a

somewhat different definition of creation and annihilation operators.

• The bounds placed on the quantum gravity parameters from the old pendulum

experiment in Section 6.1 does not consider the effect of dissipation on the

change in frequency of a pendulum. Future experiments could measure the
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amount of dissipation and include its effect on the slope and intercept of the

T versus A2 plot in order for the bounds to be more precise.

This completes the list of suggested open problems to bring tabletop tests of

quantum gravity closer to reality.
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G. J. Milburn, and M. Aspelmeyer. Pulsed quantum optomechanics. Proc.

Natl. Acad. Sci. U. S. A., 108(39):16182–16187, 2011.

[39] J. P. Gazeau and J. R. Klauder. Coherent states for systems with discrete and

continuous spectrum. J. Phys. A. Math. Gen., 32(1):123–132, 1999.

[40] C. K. Law. Interaction between a moving mirror and radiation pressure: A

hamiltonian formulation. Phys. Rev. A, 51:2537–2541, 1995.

[41] L. Latmiral, F. Armata, M. G. Genoni, I. Pikovski, and M. S. Kim. Probing

anharmonicity of a quantum oscillator in an optomechanical cavity. Phys. Rev.

A, 93:052306, 2016.

[42] S. Machnes. Qlib package. (unpublished). 2017.

[43] F. Casas, A. Murua, and M. Nadinic. Efficient computation of the zassenhaus

formula. Comput. Phys. Commun., 183(11):2386 – 2391, 2012.

[44] A. Wunsche. Displaced fock states and their connection to quasiprobabilities.

Quant. Semiclass. Opt. Euro. Opt. Soc. B., 3(6):359, 1991.

[45] H. H. Ku. Notes on the Use of Propagation of Error Formulas. J. Res. Natl.

Stand. Sec. C, 70C(4):75–79, 1966.
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