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Abstract

This thesis is working towards the development of a new method in the field of structure
determination of biomolecules. Until now, single molecule Förster resonance energy transfer
(smFRET) represents the method of choice for obtaining dynamic structure information at the
level of single molecules. To do so, organic dye molecules are attached to specific sites of the
biomolecule and based on their dipole–dipole coupling and the resulting energy transfer efficiency,
the distance, and, therefore, also the molecular conformation can be reconstructed.
In this project, we aim towards a similar method based on quantum metrology measurements,
using nitrogen vacancy (NV) centres in diamond as sensors for dipolar interactions of molecular
spin labels. The main advantage of this approach is based on the NV as stable sensor and the
actual size of the spin labels, being much smaller than the organic dye molecules used in FRET.
For the establishment of the NV centre as sensor for electron spin dipolar interactions, we
use double electron-electron resonance (DEER) measurements as a known tool in electron
paramagnetic resonance (EPR) experiments. Yet, the AXY sequence, another method developed
from dynamical decoupling measurements is employed aswell. It is applied in order to be able to
gather more information about the detected systems by the detection of individual frequencies,
resolving the individual couplings of the interacting electron spins. At this point, this thesis
analyses the various approaches and requirements for the sensing measurements necessary for
these detection methods.
A major difficulty of this approach got evident during the evaluation of the gathered data. For the
reconstruction of the DEER measurement results with a unknown depth of the used NV centre,
the information about the applied magnetic field was insufficient. Thereupon, we addressed this
issue of the insufficient information with the development of a novel magnetic field reconstruction,
obtaining all measurable parameters for a precise determination of the three-dimensional magnetic
field orientation. Additionally, a benchmark study of this method proofs its reliability and
consistency for magnetic field variations.
The final part of this thesis combines the gathered information of the dipolar coupling parameters
measured with the help of NVs into a simulation for the reconstruction of the distance between
coupled electron spins. Since the actual measurement of all quantities is still challenging, an
artificial system of two interacting electron spins is used for the validation of this simulation.
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1 Introduction

Understanding living organisms starts by the mere investigation of macro-organisms, observable
by the unaided human eye, continues on a smaller scale with micro-organisms, only visible
with the help of instruments, and – nowadays – concludes in observations on the nano-meter
scale: the world of molecules and atoms. Yet, any scale reduction of the observables, as for
example the distance of participating molecules in biological processes, requires more complex
measurement or analysis techniques. These obstacles are introduced by the errors and deviations
from the sample preparation, movement, and the sheer amount of samples necessary to allow a
processing in the first place. Well-known examples for such techniques are the X-Ray Crystallo-
graphy (XRC) and the Cryogenic Electron Microscopy (cryo EM), both observing the entire
three-dimensional structure of crystals and molecules with a sub-atomic resolution [1,2], or the
Förster Resonance Energy Transfer (FRET), reconstructing relative positions on molecules and
molecular complexes [3] together with their variation during cellular processes on a nano-meter
scale.
These techniques are limited by constraints, which measurements on such small scales can bring
forth. For instance, possible deviations from the natural structure can be introduced by the
necessary sample preparation process for measurements based on XRC and cryo EM techniques.
Here, the inherent crystallisation or rapid freezing can generate artificial environments or trap the
molecules in specific states. [4,5] Additionally, this trapping of the molecule state can prohibit the
observation of dynamic processes. However, such impacts on natural occurrence and structure
are not intended and, therefore, have to be addressed.
The FRET technique therefore takes a different approach at observation and preparation. It does
not intend to observe the entire macro-molecule at the same time, but only specific sites, and can
thus omit strongly impacting preparations. It thereby enables the real-time distance measurement
between molecular sites in vitro and in vivo [6] on a single molecule level. [7–11]

In order to measure FRET and reconstruct relative positions between molecular complexes,
fluorophores are flexibly linked to single sites on the biomolecules of interest. [12] However, the
created antennas on the sites, consisting of the linkers in combination with the fluorophores,
introduce a measurement uncertainty with their relative positioning, orientation and rotation, as
well as dynamics. Altogether, the size of these antennas influence the dipole-dipole interaction of
the linked fluorophores and, thus, the measured energy transfer efficiency used in the calculation
of their relative distance.
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Trying to overcome these uncertainties, most approaches assume a time-wise averaging or
time-regime partitioning, ultimately reconstructing the entire build-up of the molecular complexes
through simulations. [13,14]

In recent developments, dipole-dipole interaction experiments similar to FRET measurements are
performed by exchanging the interacting fluorophores with coupled electron spins. [15] Prominent
examples of such electron spin labels are various nitroxide spin-based structures, strictly smaller
in size than common fluorophores. This exchange reduces the accessible volume of the antenna
and its associated degrees of freedom and, consequently decreases the uncertainty introduced
by these parameters. The distance between the labels may then be measured by observing the
interaction strength of coupled electron spin labels.
However, measuring electron spin interactions using Electron Paramagnetic Resonance (EPR)
experiments proves difficult as well. Due to the utilised sensor and comparably weak signal
strengths in these measurements, it is necessary to detect a large amount of interacting pairs at
the same time, leading to a statistical averaging of individually contributing conformations. An
approach to overcome this downside relies on the variation of the detection method, allowing
the detection of double-electron resonances on a single molecule level regardless of the almost
negligible amount of energy transferred in this process.
Recent experiments showed the possibility to determine the positions of single electron spins
performing EPR measurements by using Nitrogen Vacancy (NV) centres in diamond as suffi-
ciently sensitive sensors. Two striking experiments hereof are the reconstruction of electron spin
positions on a diamond surface, performed by Sushkov et al. [16], and the detection of a single
spin-labelled biomolecule by Shi et al. [17]. These model examples are based on the favourable
properties of NV centres in diamond as magnetic resonance sensors for quantum metrology
experiments. This is mainly founded on the outstanding features of NVs, such as the possibility
to coherently manipulate and readout their quantum states with an exceedingly long lifetime even
at ambient conditions. [18–20]

In order to establish a general overview on this work’s achieved development towards NV based
EPR measurements of electron-spin labelled complexes, this thesis is divided into three partitions:
First and foremost, the beginning chapters are dedicated to the experimental theory and relevant
fundamentals around NV centres in diamond. In this regard, the theory of in this work employed
measurement sequences and their general interpretations are introduced as well.
Subsequently, the following chapters discuss the performed magnetic resonance experiments with
their particular interpretation, the consequently arising open question about the absolute magnetic
field vector orientation, and the development of a new measurement routine as a possible solution.
Concluding the experimental part, this work presents a model system, allowing to reconstruct the
distance of coupled electron spins with the help of NV-based EPR measurements, as performed
in the previous chapters.
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2 Physical Fundamentals for NV-based Sensing

As a key requirement for EPR measurements on a single spin sensor basis, it is essential to
understand the fundamentals of all involved building blocks individually, as well as their intercon-
nection in the experiment. Therefore and as an introduction to the experiments, this chapter gives
a detailed overview of the NV centre, which serves as the quantum sensor in the experiments
discussed in this work. More precisely, presented are the basic properties of the NV centre, its
environment, and its interplay with external fields, as for example magnetic fields or proximal
nuclear and electron spins.
To offer a pictorial representation of the employed spin manipulations, the Bloch sphere repres-
entation provides a powerful tool, visualising the performed spin state changes.

However, before proceeding to the dynamics of the NV centre, the following section deals with
NV impurities in diamond lattices and their physical properties, such as the electronic structure
and optical accessibility. These properties motivate the sole use of NV centres in diamond as
quantum sensors for the performed experiments.
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Diamonds - Properties and Manufacturing

2.1 Diamonds - Properties and Manufacturing

Diamonds are not only known for their elegance as jewellery, but also their outstanding physical
properties, which are almost all exceptionally pronounced when compared to other naturally
occurring materials. The most often mentioned properties are the high thermal conductivity,
extreme hardness, and electronic characteristics [21]. Additionally, diamonds have remarkable
optical features. For instance, the high refractive index of = = 2.42 and its resulting transparency
for all wavelengths of visible light. Those characteristics altogether make diamonds of great use
and variability in nowadays scientific and engineering applications.

2.1.1 Atomic Structure of Diamond

In the work with diamonds as environment for quantum sensing, it is important to discuss the
underlying lattice structure. With this, also its atom composition and basic effects arising due to
different occupants on the lattice sites are crucial.

Figure 2.1: Face centred cubic lattice structure of diamond with covalent bonds.
Each carbon atom is connected to its four nearest neighbours, spanning a tetrahedron.
The inter atomic distance is 1.54Å with a lattice constant of 00 = 3.57Å.

Condensed Matter Topology

The physical properties of diamonds at ambient temperature are determined by its face-centred
cubic (fcc) structure. The pure atomic structure consists of carbon atoms in B?3 hybridisation
exclusively, where each atom itself is bound to its four nearest neighbours with an inter-atomic
distance of 1.54Å.
Due to the tetrahedral conformation of the atoms with a bonding angle of 109.47°, the lattice
constant is followingly given as 00 = 3.57Å. Its cubic unit cell consists of eight whole atoms,
composed by the partial eight corner atoms ( 18 · 8), the three partial face centred atoms ( 12 · 6), and
the four inner atoms. Thus, the two-atomic Bravais lattice basis is determined by their respective
origins in (0, 0, 0) and ( 14 ,

1
4 ,

1
4 ).
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Diamonds - Properties and Manufacturing

Atomic Composition

There exist two naturally occurring stable isotopes of carbon, which can both be found in diamond.
Firstly and more common, there is the 12� isotope with a natural abundance of 98.9 % [22]. Since
this isotope consists of each six protons and neutrons, it has no free nuclear spin or charge. In
contrast, the second stable isotope 13� possesses one additional neutron, resulting in a non-zero
nuclear spin quantum number �n = 1

2 . The natural abundance of
13� is given by only 1.1 % [22],

but in terms of mean distance between atom sites in the diamond lattice, this leads to roughly 10
lattice sites between two adjacent 13� atoms.
While a diamond lattice theoretically consists of a strict, equidistant repetition of atoms, there have
been many defects observed. A typical defect is the substitution of a carbon atom with an atom of
a different element. There have already been more than 80 other elements forming impurities
detected in the crystal lattice of diamond, whereas nitrogen, boron, oxygen, and hydrogen are the
most prominent of those [22]. Since boron (atomic number 5) and nitrogen (atomic number 7)
atoms are roughly of the same size and mass as carbon, they are the most likely to be substituted
into the diamond lattice [23]. This incorporation is dependent on the growth conditions, hence
for natural diamond, the composition can vary drastically, although for industrially produced
diamonds, those values can be controlled quite accurately.
Comparable to carbon, natural nitrogen also occurs in two stable isotopes with one additional
proton and neutron each. The vast majority of nitrogen occurs as 14# with a natural abundance
of 99.6 %, while 15# makes up only 0.4 %. For 14# , each of the seven protons and neutrons
contribute a nuclear spin of ± 1

2 , giving the nucleus a total magnetic spin number �n = 1. As a
result of the additional neutron in 15# , this leads to a total spin quantum number �n = 1

2 .

Classification

Due to nitrogen impurities, diamonds can be classified into two different categories, Type I with a
high nitrogen content and Type II with a lower nitrogen content [23]. Going even further, in 1965,
Dyer et al. [24] subdivided those types into four more specific groups:

• Type Ia: high nitrogen content with platelets of nitrogen (500 − 3000 ppm),

• Type Ib: high nitrogen content with nitrogen as single substitutional atoms (< 100 ppm),

• Type IIa: very low nitrogen content (< 1 ppm), or

• Type IIb: very low nitrogen content (< 1 ppm) with boron impurities.

Resulting from the amount and type of impurities incorporated into the diamond lattice, the crystal
can appear in different colours, giving those crystal impurities also the name colour centres.
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Diamonds - Properties and Manufacturing

2.1.2 Production of Artificial Diamonds

Naturally grown diamonds, as used for the manufacturing of jewellery, are very rare, making them
an expensive resource. In addition, the high amount and variety of impurities in natural diamond
make them unfit for scientific and industrial purposes.
Hence, the development of techniques to produce artificial diamonds was an industrially driven
priority from the 1950’s on [25] and lead to the possibility to engineer artificial diamonds with a
high purity since the early 1980’s [26]. Nowadays, there exist two different prominent production
approaches. Both rely on a seed, where the diamond is grown onto.

HPHT

The first production approach involves High-Pressure High Temperature (HPHT) techniques,
mimicking the conditions of natural diamond growth with pressures up to 10 GPa and temperatures
of at least 1400 °C. For those techniques, the seed diamond is placed together with a high purity
carbon source and a metal alloy solvent in a press system. In this system, the metal is melted
due to the high temperatures. Then, the carbon gets dissolved and diffuses through the metal
solvent until it ultimately precipitates onto the seed. While graphite is the more stable allotrope of
carbon atoms, the high pressure of this process shifts the reaction equilibrium to the creation of a
diamond structure. After the pressure is released, the grown structure inherits the crystal structure
of the diamond seed [27].

CVD

The second approach is based on Chemical Vapour Deposition (CVD) and can be categorised
into normal CVD and enhanced CVD. For both techniques, the diamond is also grown onto a
seed, though with a much lower pressure compared to the HPHT production. The main difference
of the two CVD techniques is the required seed, which has to be a diamond for common CVD,
whereas due to the development of thermal- and plasma-enhanced CVD, a non-diamond seed can
be used in enhanced CVD. For all CVD methods, the temperature during the diamond growth
is much lower, being between 500 °C − 1200 °C, and an activated carbon source (e.g. methane)
leads to the sedimentation of carbon atoms onto the seed substrate. Yet, since the pressure is
lower than for HPHT, not only carbon-containing feed-gas, but also atomic hydrogen is needed
in the gas mixture to ensure the growth of diamond instead of graphite. The atomic hydrogen
selectively etches off the double bonds created in the formation of graphite. Hence, only the
diamond structure is allowed to expand. The growth rate of this process is dependent on the
transport efficiency of the reactant species to the seed [28].
Those techniques are muchmore expensive than HPHT, but allow to produce high-purity diamonds
with only few embedded impurities. For those techniques, the amount of crystal impurities is
dependent on the quality of the feed-gas and condition of the growth chamber. Going even one step
further, it is also possible to achieve isotopically pure diamond layers consisting of almost pure
12�, as used for one diamond sample employed in this work (Sec. 5.1.1), or 13� respectively. [29]

6



Nitrogen Vacancy Centres in Diamond

2.2 Nitrogen Vacancy Centres in Diamond

As already mentioned, the crystal structure of real diamond, even if fabricated industrially, is not
perfect. However, if impurities are implanted deliberately, they offer a lot of potential for today’s
research. The most mentioned impurities for quantum sensing applications are the nitrogen, the
silicon, and the germanium vacancy defects. Nevertheless, due to the remarkable usability even at
room temperature, this work exclusively relies on the NV centre. Therefore, it is the only defect
taken into further consideration from now on.

2.2.1 Creation of Nitrogen Vacancy Centres

For the creation of NV centres, a nitrogen atom in combination with a vacancy in the diamond
lattice are required. Here, a vacancy is an unoccupied site in the crystal lattice. Those vacant sites
are able to diffuse through the diamond lattice at temperatures of around 600 °C [30]. This process
of annealing is usually driven between 400 °C − 1000 °C [31] and after binding to a nitrogen atom,
the combination stays stable up to more than 1400 °C [30]. Due to the almost uniform distribution
of nitrogen atoms in type I diamonds, this would lead to an equally uniform distribution of NV
centres in the sample.

One possible method for NV creation is focusing a nitrogen ion beam onto the diamond
surface [31,32]. It leads to the implantation of nitrogen atoms and the removal of extra carbon
atoms from the lattice. The amount of implanted defects is hereby dependent on the implantation
dose and the depth depends on the acceleration energy applied to the ion beam (discussed for
the employed samples in Sec. 5.1.1). Therefore, if a type II substrate with a very low amount of
intrinsic nitrogen is used, distinct areas (shape and depth) of NVs can be implanted.

Another method is the contamination of the feed-gas during the growth process (described
in Sec. 2.1.2) with nitrogen. In this realisation, confined layers containing NVs can be grown
onto diamond substrates. Here, the amount of defects is dependent on the gas composition and
the depth can be controlled by the layer height and the subsequent uncontaminated overgrowth
with pure carbon.

2.2.2 Properties of the Nitrogen Vacancy Centre

When speaking about the NV centre as a quantum sensor, it is essential to understand the
underlying features, as the lattice structure and the thus resulting electronic structure which
determindes the optical addressability.

7



Nitrogen Vacancy Centres in Diamond

Lattice Incorporation

The NV centre is a point defect in diamond, replacing two adjacent carbon atoms by one nitrogen
atom and a vacant site, the vacancy. This incorporation into the diamond lattice, leads to eight
possible orientations of the NV principal axis, connecting the nitrogen atom with the vacancy,
along the four crystallographic axes: [1̄1̄1], [11̄1̄], [111], and [1̄11̄]. A measurement technique
for the determination of directionality is described in Doherty et al. [33].
In this thesis, all used properties of the NV centre are invariant to sequence changes of the nitrogen
and vacancy, for what reason their order can be ignored. Thus, only four orientations remain,
depicted in Fig. 2.2.
The NV centre’s neighbouring atoms are three carbon atoms on both sides, which creates an
overall tetrahedral structure.
Due to this structure, the NV centre belongs to the symmetry group designated by�3E . This group
is characterised by a three-fold axis symmetry and an additional three-vertical-plane symmetry.
The axis symmetry is given by rotations of 120° around the principal axis and the three vertical
planes are spanned by the NV axis with the connecting carbon atoms.

Figure 2.2: The four possible orientations of the NV centre in diamond (nitrogen
green; vacancy blue). Due to symmetry, the principal axis connecting the nitrogen
atom and the vacancy can be along the four crystallographic axes [1̄1̄1], [11̄1̄],
[111], and [1̄11̄].

Electronic Structure

NV centres can exist in two stable charge states, the neutral NV0 and the negatively charged
NV− . Those two states can be inter-converted by photo-induced ionisation with blue or red laser
light. [34]

The NV0 electron configuration has five electrons in total: three obtained by the dangling carbon
bonds and two from the dangling nitrogen bond. Out of those five electrons, four combine to
pairs with B?3-like orbitals and the fifth electron remains free. This odd number of electrons leads
to an effective spin singlet state with spin angular momentum ( = 1

2 . Contrary, the negatively

8



Nitrogen Vacancy Centres in Diamond

charged NV− has an even number of electrons, carrying an integer spin angular momentum of
( = 1. [18] The additional sixth electron is acquired from an arbitrary donor in the diamond lattice,
for example another substitutional nitrogen atom (shown in Fig. 2.3), leading to spin triplet states
for the NV− .
Since all measurements described in this thesis are exclusively performed with specimen of the
NV− , the minus sign will be omitted and the name ’NV’ will be used synonymously.

Figure 2.3: A schematic of the NV electronic structure for the negatively charged
NV− . In total, five electrons are provided by the surrounding atoms and one
additional by a donor in the lattice.

Due to the integer spin number of the NV centre, the ground and excited states are triplets, with the
<B = ±1 states being degenerate. This leaves the third state, the <B = 0 state, with no magnetic
moment. The resulting level scheme is displayed in Fig. 2.4.

excitation
510 nm − 540 nm

ground states
3�2

excited states

3�

2.87 GHz

1.42 GHz

fluorescence
637 nm − 800 nm

1�

1�1

1042 nm

<B
±1

0

±1

0

strong

strong

Figure 2.4: The energy structure of a NV with the triplet ground and excited
states, both degenerate due to their electronic spin state. The decay path over the
metastable intermediate singlet states connects the <B = ±1 excited states with the
<B = 0 ground state strongly (according to McGuinness [35]).
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Nitrogen Vacancy Centres in Diamond

Besides the 3�2 ground state |6〉 and 3� excited state |4〉, there exist the singlet intermediate
states 1�1 and 1�1. Yet, since there is neither a connection expected between the 1�1 singlet
state to the 3� state, nor from the 1� state to the 3�2 state, those two intermediate states can be
combined into an effective state |3B〉. [36]

Regarding the energy differences of the given states, the spin-spin interaction of the two unpaired
electrons introduces a splitting of the <B = 0 and <B = ±1 ground states. This Zero-Field
Splitting (ZFS) separates the two states by � = 2.87 GHz [37] and is present even without any
additional field. For the excited state, this effect results in a ZFS of � = 1.42 GHz [38].
The typical lifetimes of the excited states are 12 ns for the |4, <B = 0〉 state, 7.8 ns for the
|4, <B = ±1〉 states, [39] and on the order of 370 ns for the effective state |3B〉 [36].

Optical Addressability

One of the most crucial properties of the NV centre, leading to its great impact on many quantum
applications, is its optical addressability. It not only allows to initialise the system into a defined
state, but also enables the optical readout of the actual spin state.
For the initialisation, an off-resonant green laser with a wavelength of _ = 510 nm− 540 nm [34] is
applied to the NV centre, exciting the system into the |4〉 states. After this excitation, there are
two different decay paths back to the ground state:

· The direct decay and

· the indirect decay via the intermediate singlet states.

The first decay path is spin-conserving and leads to the emission of a red photon with a wavelength
of _ = 637 nm − 800 nm.
The second decay path is partially non-radiative and connects to the metastable singlet states |3B〉,
where the inter-singlet decay is expressed via the emission of infra-red light (_ = 1042 nm) [40].
The probability of this inter-system crossing is state-dependent. On the one hand, the coupling of
the |4, <B = ±1〉 → |3B〉 transition is strong, compared to the second excited state coupling of
the |4, <B = 0〉 → |3B〉 transition. On the other hand, the coupling of the |3B〉 → |6, <B = ±1〉
transition is weaker than the |3B〉 → |6, <B = 0〉 ground state coupling. The combination of those
effects lead to a population conversion into the |6, <B = 0〉 state and also to a reduction of the
fluorescence signal by approximately 30 %. This second decay path is more likely to happen if
the initial state was one of the |6, <B = ±1〉 states. Therefore, those states are called dark states.

In conclusion, the optical excitation has two significant meanings for this work: it allows
the optical initialisation in the <B = 0 ground state by application of green laser light. Addition-
ally, this optical excitation enables the optical readout of the initial NV state by detection of the
fluorescence signal. [20]
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2.3 Spins and Spin Dynamics

For electrons and nuclei, spin is an intrinsic form of angular momentum resulting from a magnetic
dipole moment µ. The mathematical treatment in a magnetic field and the coupling between two
similar spins is identical, yet, the magnetic moment of nuclear spins is much smaller than that
of electron spins. Therefore, different properties and interactions are relevant for the performed
measurements for both species.
For the description of a spin in a magnetic fieldB it is practical to start with the classical picture
of a magnetic moment in the magnetic field. Hence, the energy is given as

� = −µ ·B. (2.1)

The spin magnetic moment can be calculated by its charge @, mass<, and spin angular momentum
S via

µ = 6
@

2<
S, (2.2)

with the dimensionless g-factor 6, which is dependent on the particle type (values given in
Tab. 2.1) and the spin angular momentum S = ℏ

2σ defined by the Pauli matrices.

Table 2.1: Electron and nuclear spin g factors. [41]

Particle type g-factor

electron −2.00232
proton 5.586
neutron −3.8261

Assuming an alignment of the magnetic field with the quantisation axis I and the magnetic field
amplitude �0, Eq. 2.1 rewrites as

� = −`I�0. (2.3)

Now, with the quantisation of the spin eigenvalues for a spin- 1
2 particle, the magnitude of the spin

angular momentum along the I-axis is given by ± ℏ2 (see Fig. 2.5):

� = ±ℏ
2
W̃8�0, (2.4)

where the reduced gyromagnetic ratio is defined dependent on the particle type 8 via

W̃8 =
W8

2c
=
68`8

2c
. (2.5)
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�0, I

+ℏ2

− ℏ2

Figure 2.5: Allowed spin angular momentum values for the I projection of a spin- 1
2

particle leads to a half integer magnitude of ± 1
2 .

2.3.1 Larmor Precession of Spins

As shown in Fig. 2.6, the tilt between the magnetic fieldB and the magnetic moment of the spin
leads to a torque, resulting in a precession of the spin around the magnetic field direction.

�0, I

a!

Figure 2.6: In a semi-classical picture, a magnetic moment exposed to a magnetic
field precesses around the magnetic field direction with its specific Larmor
frequency a! . The sign of the gyromagnetic ratio of the spin determines the
rotation direction of the precession and the frequency is proportional to the
magnetic field strength.

This Larmor frequency of the spin can be calculated using the time derivative of the angular
momentum

dµ
dC

= Wµ ×B. (2.6)

For a magnetic fieldB = (0, 0, �0)) aligned along I, the Larmor frequency is

a! =
l!

2c
= W̃�0. (2.7)

The sign of the gyromagnetic ration determines the rotation direction of the Larmor precession
and the frequency is directly proportional to the strength of the magnetic field.
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2.3.2 Dipole-Dipole Interaction Hamiltonian

Since spins carrying a magnetic moment µ are not only influenced by the magnetic field, but also
by other spins in close proximity, the dipolar coupling which leads to the interaction has to be
discussed. Those dipolar interactions arise due to the magnetostatic field, created by a magnetic
dipole µ8 of spin 8 which in turn affects the magnetic dipole µ 9 of spin 9 . The distance r8 9 of
those spins is given by their individual positions r8 and r 9 , shown in Fig. 2.7.

G

H

B, I

µ8

µ 9

r 8

r 9

r
8 9 =
r
8 −
r
9

r
8 9

Z

Figure 2.7: Schematic 3d-illustration of two coupled magnetic moments µi and µj.
The distance between the spins is given by r8 9 = r8 − r 9 . The angle Z between
the I-direction and the connection vector r8 9 holds true for the magnetic field
alignment along I withB = (0, 0, �0)) .

For two dipoles in close proximity, the potential energy reads as

� =
µ1 · µ2

r3
12
− 3 (µ1 · r12) (µ2 · r12)

r5
12

. (2.8)

This equation can now be used to infer a general dipolar contribution to the #-spin-coupling
Hamiltonian by the superposition principle:

Hdip =
∑
8, 9
8≠ 9

µ8 · µ 9
r3
8 9

−
3
(
µ8 · r8 9

) (
µ 9 · r8 9

)
r5
8 9

. (2.9)

Considering the dipole momentµ8 = W8ℏS8 , Eq. 2.9 can be rewritten in terms of magnetic moment
vector S8 as

Hdip =
∑
8, 9
8≠ 9

`0W8W 9ℏ

4c
��r8 9 ��3

[
S8S 9 −

3��r8 9 ��2 (
S8 · r8 9

) (
S 9 · r8 9

) ]
, (2.10)
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with the vacuum magnetic permeability `0. For strong magnetic fields B = (0, 0, �0), this
Hamiltonian can be rewritten as

Hdip =
1
2

∑
8, 9
8≠ 9

38 9

(
1 − 3 cos2 Z8 9

) [
3(I
8
(I
9
− S8 · S 9

]
, (2.11)

with the dipolar coupling 38 9 =
`0W8W 9ℏ

4c |r8 9 |3
and the angle \8 9 between the connection vector r8 9 and

the magnetic field vectorB. Using the common ladder operator definitions (+ = (G + 8(H and
(− = (G − 8(H , the Hamiltonian can be reduced further to

Hdip =
1
2

∑
8, 9
8≠ 9

38 9

(
1 − 3 cos2 Z8 9

) [
2(I
8
(I
9
− 1

2

(
(+8 (

−
9 + (−8 (+9

)]
, (2.12)

with the transverse coupling part dependent on (±
8
and the parallel coupling part dependent on (I

8
.

In Eq. 2.12, the angle dependent contribution
(
1 − 3 cos2 Z8 9

)
vanishes for all connection angles

Z8 9 = 54.74° between spins 8 and 9 . This magic angle and the resulting phenomena are well
exploited in many different applications of nowadays magnetic resonance measurements [42].

Electron Spins

From Eq. 2.2, the definition of the magnetic moment of an electron, or also called Bohr magneton,
follows as

`� =
4ℏ

2<4
= 9.2740 × 10−24 J

T
, (2.13)

with the electron mass <4, the elementary charge 4, and the reduced Planck constant ℏ. The
electron spin operator is from here on denoted as S =

(
(G , (H , (I

)) .
The energy splitting of a single unpaired electron with spin quantum number ±1

2 and the
two energy levels �± = ± 1

264`��0 is given as

Δ� = 64`1�0, (2.14)

and shown in Fig. 2.8. The corresponding transition frequency is calculated via l = Δ�
ℏ
.

For two strongly coupled electron spins, the two levels |↑↑〉 and |↓↓〉 are energy-wise well separated,
and do not contribute to the transition frequency sensed by the NV centre. Therefore, the dipolar
interaction for two coupled electron spins described by Eq. 2.12 becomes

H4−4− = −
1
2
38 9 (1 − 3 cos2 Z8 9) (̃G , (2.15)

with the transition spin operator (̃G = 1
2 ( |↑↓〉 〈↓↑| + h.c.).
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Applied Magnetic Field
En

er
gy

Δ� = ℎa = 64`��0

<B = +1
2

<B = − 1
2

Figure 2.8: Energy levels of a single unpaired electron spin in a static magnetic
field B, with amplitude �0. The magnetic field is aligned along the electron
spin quantisation axis. In green, the energy difference Δ� depicts the transition
frequency of the two spin states +1

2 and − 1
2 .

Nuclear Spins

As for the Bohr magneton, Eq. 2.2 defines the nuclear magneton similar as

`# =
4ℏ

2<?
= 5.0508 × 10−27 J

T
, (2.16)

with the only difference of using the proton mass <? instead. The nuclear spin operator is from
here on denoted as I =

(
�G , �H , �I

)) .
For resonance measurements performed at a few hundred Gauss, the detected Larmor frequencies
of nuclear spins are between 50 kHz − 10 000 kHz. Values for typical nuclear spin species and
the corresponding Larmor frequencies at a commonly measured magnetic field amplitude are
given in Tab. 2.2.

Table 2.2: Exemplary nuclear Larmor frequencies, commonly sensed by NV
centres in diamond at �0 = 250 G.

Nucleus W̃ |a! |
type in kHz

G in kHz

1H 4.257747892 1064.4
13C 1.0708 267.7
14N 0.3077 76.9
15N −0.4316 107.9
19F 4.0052 1001.3

Since electron spins also precess in a magnetic field, a way to differ between the response to
the magnetic field of both types is necessary. By calculating the ratio of Eq. 2.13 and Eq. 2.16,
the mass ratios of both particles determines the relative strength of the interactions which are
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roughly three orders of magnitude smaller for nuclear spins. Therefore, the Larmor frequency of
electron spins for weak magnetic fields of 100 G − 500 G is already quite large (in the order of
MHz) compared to the Larmor frequencies of nuclear spins.

2.3.3 The Bloch Sphere Representation

In the Bloch sphere representation the north and south poles of a sphere are assigned to the basis
vectors of a two-level system, namely |↑〉 and |↓〉. Hence, each point on this sphere corresponds to
one particular superposition state |Ψ〉 = U |↑〉 + V |↓〉, depicted in Fig. 2.9. Using the probability
normalisation |U |2 + |V |2 = 1 allows to determine the pre-factors U and V by two spherical angles
\ and q:

U = cos
(
\

2

)
, (2.17)

V = sin
(
\

2

)
48q . (2.18)

Here, the system is assumed to be a pure state, leading to a radius equal to 1. The angle intervals
are given as q ∈ [0, 2c) and \ ∈ [0, c), whereas the complex phase 48q in Eq. 2.18 has no impact
on the expectation value |V |2.

G
H

I, |↑〉

|↓〉

q

\

Figure 2.9: Bloch sphere representation for a superposition state |Ψ〉. The state is
depicted as a vector pointing into the direction of a single point on the unit sphere
and can be described using the two corresponding angles \ and q.

Following the Bloch representation, the Bloch vector R for an arbitrary pure state |Ψ〉 is the
expectation value of the Pauli spin matrices σ =

(
fG , fH , fI

)) :
16
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R = 〈σ〉 = 〈Ψ| σ |Ψ〉 =
©«

sin \ cos q
sin \ sin q

cos \

ª®®®¬ . (2.19)

2.4 NV Spin Hamiltonian

The NV spin Hamiltonian describes the different interactions of a NV with its environment, static
magnetic fields, different type of spin-spin interactions, and microwave (MW) fields present in
the system. Due to the in this work performed spin state manipulations, quantum gates or just
gates, the total Hamiltonian is split into two parts: the time-independent system Hamiltonian
H0 and the time-dependent interaction Hamiltonian Hint = Hint(C). Accordingly, the system
Hamiltonian is

H = H0 + Hint. (2.20)

2.4.1 Static System Hamiltonian

The main influence on the time-independent system Hamiltonian comes from the inter-electron
interactionHZFS, the electron spin Zeeman interactionHB, the hyperfine interactionHHF of the
NV electron spin with nuclear spins, and the dipolar couplingHDip of the NV electron spin to
other proximal electron spins:

H0 = HZFS + HB + HHF + HDip. (2.21)

As described in Sec. 2.2.2, the NV is assumed to be a triplet system where the basis is chosen such
that the spin quantisation is along the z-direction. Now, the individual contributions of Eq. 2.21
are discussed in more detail.

Zero-Field Hamiltonian

The first and one of the strongest contribution to the static Hamiltonian is the inter-electron
interaction HamiltonianHZFS. Since the two unpaired electrons of the NV centre are very close
together, they have a strong dipole-dipole interaction. This interaction exists without an additional
field and the resulting energy shift is therefore called zero-field splitting. It is described by the
electron spin (S) interaction connected with the ZFS tensorD as [37,43]

HZFS = S
†
DS, (2.22)

whereD is a symmetric (�̃8 9 = �̃ 98) and traceless (tr(D) = 0) tensor which can be diagonalised.
Its diagonal elements fulfil �GG + �HH + �II = 0, which allows to rewrite Eq. 2.22 as

HZFS = �GG(
2
G + �HH(2

H + �II(2
I . (2.23)
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For ( = 1 systems like the NV centre, it only requires two independent parameters � and � to
represent the symmetry and strain of the crystal field. Those parameters are connected with the
ZFS tensor via � = 3

2�II and � =
�GG−�HH

2 , reducing Eq. 2.23 to

HZFS = �

(
(2
I −

((( + 1)
3

)
+ �

(
(2
G − (2

H

)
. (2.24)

Considering the NV as distortion free (�GG ≈ �HH), the associated strain parameter � is negligible
compared to the ground state splitting � = 2.87 GHz. Consequently, the ( = 1, inter-electron
spin interaction Hamiltonian simplifies to

HZFS = �(
2
I . (2.25)

Electron Zeeman Interaction Hamiltonian

The second contribution in Eq. 2.21, ranging from a weak disturbance to a very strong interaction,
is the interaction of the electron spin with the magnetic field B. This electron spin Zeeman
interactionHB is dependent on the magnetic field’s strength and orientation with respect to the
electron spin S. It connects both via

HB = −W4BTS, (2.26)

where W4 ≈ 2.8 MHz
G is the gyromagnetic ration of the NV centres’ electron spin. For common

measurements, the magnetic field is aligned along the quantisation axis I of the NV centre,
resulting inB = (0, 0, �I)) and further leads to the final, aligned Zeeman interaction Hamiltonian

HB = −W4�I(I . (2.27)

In the case of a misaligned magnetic field, as it is necessary for the reconstruction EPR
measurements (chapter 7), the assumption B = (0, 0, �I)) does not hold true. Therefore, a
more general Zeeman interaction Hamiltonian, containing the magnetic field alignment, has to be
considered. This leads to the angular dependency

HB = −W4�0 [cos(\)(I + sin(\)(G] , (2.28)

with \ the misalignment angle between the magnetic field and the NV axis and �0 the absolute
field amplitude.

Hyperfine Interaction Hamiltonian

The third contribution to the system Hamiltonian Eq. 2.21 is the hyperfine interaction HHF,
describing the interaction between the NV centre’s electron spin S and coupled nuclear spins I .
This Hamiltonian can be seen as two parts: the first part corresponds to the coupling with the
very own nitrogen nuclear spin (4−N), and the second part corresponds to the interaction with
surrounding nuclear spins (4−nuc). Consequently, the hyperfine interaction becomes
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HHF = HHF(4−N) + HHF(4−nuc) . (2.29)

While the contribution of the ZFS and magnetic field Hamiltonian have a large impact on the NV
energy levels (on the order of some GHz), the hyperfine interaction with the own nitrogen atom is
only on the order of a few MHz.
For the first part of the hyperfine interaction, the connection between the nuclear spin I and the
electron spin S is characterized by the hyperfine interaction tensor A with

HHF(4−N) = I
†
AS. (2.30)

Similar to the case of the ZFS tensor D, the hyperfine interaction tensor is also symmetric
(�8 9 = � 98) and can therefore be diagonalised with its parallel �‖ and perpendicular �⊥
components as diagonal elements. For nuclei with � ≥ 1 there exists an additional contribution by
the quadrupole moment with a non-zero quadrupole interaction P. Combining this, the hyperfine
interaction Hamiltonian can be written as

HHF(4−N) = �‖(I �I + �⊥
(
(G �G + (H �H

)
+ P �2

I . (2.31)

As discussed in Sec. 2.1.1, there exist two nitrogen isotopes 14N and 15N. Consequently, the
nitrogen atom of the NV centre can carry different nuclear spin numbers �=, dependent on the
type of isotope present.
For the 14N isotope, which has a nuclear spin �= = 1, the non-zero quadrupole interaction P has
to be taken into account. Whereas, for the 15N the nuclear spin �= = 1

2 results in no quadrupole
interaction, simplifying Eq. 2.31 by setting the third term to zero. The different interaction
constants are given in Tab. 2.3.

Table 2.3: The hyperfine parameters �‖ , �⊥, and P for the nitrogen spin interaction
in the NV centre. This particular table for the isotopes 14N and 15N is taken from
Felton et al. [44].

Isotope �‖ �⊥ P
type in MHz in MHz in MHz

14N −2.14 −2.70 −5.10
15N 3.03 3.65 -

Due to the hyperfine interaction, the energies of the electron spin states split further as depicted
in Fig. 2.10. The allowed transitions are nuclear spin state conserving and thus of the form
Δ<( = ±1 and Δ<� = 0. Therefore, the <B = 0 ↔ <B = ±1 transition frequencies are split
isotope-dependent into triplets or doublets: For the 14N isotope, the splitting leads to three
transition frequencies, split by Δa = 2.2 MHz, ordered symmetrically around the m� = 0 trans-
ition. For the 15N isotope, the difference between the two possible frequencies isΔa = 3.1 MHz. [45]
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ZFS Zeeman hyperfine

� = 2.87 GHz

� = 264`0�0

2.8 MHz
4.6 MHz

2.8 MHz
4.6 MHz

5.1 MHz

<B <�

+1

−1

0

0
−1

+1

0
+1

−1

0

±1

Figure 2.10: Exemplary energy level scheme for the NV centre with a 14N isotope.
Included are the static effects of the ZFS, the electron spin Zeeman interaction, and
the hyperfine interaction. The allowed transitions are nuclear spin state conserving
and thus of the form Δ<( = ±1 and Δ<� = 0.

The second part of the hyperfine interaction is the magnetic dipole-dipole interaction between the
NV and other nearby nuclear spins. It can be written according to Cai et al. [46] and in agreement
with the general dipolar interaction described by Eq. 2.10 as

ĤHF(4−spin) =
∑
8

38 {3 (S ·A8) (I8 ·A8) − S · I8} . (2.32)

Here, the only difference compared to Eq. 2.10 is the mixture of an electron spin with nuclear
spins, and due to that, the exchange of the gyromagnetic ratios by the proper species W4W=. As a
result, the interaction strength is defined by 38 = `0W4W=ℏ

4c |r8 |3
and refers to the 8-th coupled nuclear

spin with the connection vector r8 .
The energy mismatch resulting from the high ZFS does not allow direct spin flip-flop processes,
which permits the secular approximation [47] simplifying Eq. 2.32 to

HHF(4−spin) = (I
∑
8

68

{
3AI

(
A8,G �8,G + A8,H �8,H

)
+

(
3A2
8,I − 1

)
�8,I

}
. (2.33)

Dipolar Interaction Hamiltonian

Similar to the hyperfine interaction with proximal nuclear spins, the NV centre is also sensible
to electron spins in close proximity. The coupling is defined by Eq. 2.11 with the second spin
operator - the NV spin operator - independent of the summation. Hence, Eq. 2.11 can be simplified
to

HDip = (I
∑
8

38

(
1 − 3 cos2 Z8

)
(I
8
. (2.34)

20



NV Spin Hamiltonian

Additionally to the direct interaction, the coupled electron spins are also influenced by the magnetic
field. Thus, their Zeeman effect (similar to Eq. 2.27) contributes to the total Hamiltonian via

H4−,Zeeman = −W4
∑
8

� (I
8
, (2.35)

for each 8-th coupled electron spin.

2.4.2 Time-Dependent Interaction Hamiltonian

If an additional driving field is applied to the NV centre, a time-dependent perturbation leads
to a state transition of the electron spin state. This time-dependent interaction Hamiltonian
Hint = Hint (C) is introduced by a controlled, oscillating magnetic field B (C), which leads to a
perturbation of the system. This magnetic field is generated by MW radiation applied to the NV
centre. [48] Hence, the interaction Hamiltonian reads

Hint (C) = −W4B (C) S. (2.36)

Comparing the microwave field’s I contribution with the large effect of the electron Zeeman
interaction, it is negligible. Furthermore, with no loss of generality, the interaction axis can be
chosen freely as long as the two candidates G ′ and H′ form a complete basis with I. Thus, without
any limitations, the interaction can be chosen to be parallel to one of the two directions of the spin
system.
For a MW field with oscillation frequency l<F and the assumption to have the interac-
tion parallel to the G direction of the spin system, the magnetic field can be written as
B (C) = (�G cos (l<F C) , 0, 0)) . This allows to simplify the interaction Hamiltonian to

H8=C (C) = −W4�G cos (l<F C) (G . (2.37)

By applying a linearly polarised resonant MW field, a state transition is performed, driving the
<B = 0↔ <B = −1 or <B = 0↔ <B = +1 transition.
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2.4.3 Integration of the Individual Hamiltonian Contributions

In summary, including all individual terms into the NV spin Hamiltonian shown in Eq. 2.20, the
full system is described by the total Hamiltonian:

H = �(2
I

− W4�I(I
+ �‖(I �I + �⊥

(
(G �G + (H �H

)
+ P �2

I

+ (I
∑
8

68

{
3AI

(
A8,G �8,G + A8,H �8,H

)
+

(
3A2
8,I − 1

)
�8,I

}
+ (I

∑
8

38

(
1 − 3 cos2 Z8

)
(I
8
− W4

∑
8

� (I
8

− W4�G cos (l<F C) (G . (2.38)

With Eq. 2.38, not only the time-independent system Hamiltonian is taken into account, but also
the time-dependent interaction introduced by a MW field. Therefore, this system representation
allows to discuss all encountered phenomena of this work.

2.4.4 Effect of a Driving Field

Spin state manipulations, that is performing quantum gates, is the underlying technique for all
sensing experiments. This requires a more precise investigation of the effect of a driving field
introduced with Eq. 2.37.
For sake of simplicity, the system Hamiltonian can be transformed into the rotating frame by
using the transformation Hrot = *H*† + 8ℏm*mt *

† (described more closely in chapter 9). The
required transformation operator for the here present two-level system with a strong and constant
magnetic field in the z-direction is given as * = 4−8

l0C
2 fI with l0 =

�e−�g
ℏ

. Here, �4 is the
energy of the excited states, |±1〉 and �g is the ground state energy of |0〉.
Rewriting the system Hamiltonian in terms of energy and neglecting the weak interaction terms
(hyperfine interaction and dipolar couplings) then results in

H = −ℏl0
2
fI − W4�G cos (l<F C − X0) fG . (2.39)

Herein, an additional phase X0 is introduced, which gives information about the switching time of
the harmonic radiation (more closely discussed in Sec. 3.1.3).
For a static magnetic field aligned with respect to the NV axis, the only difference compared to
the zero-field system is the shift of the transition energy ℏl0. Rewriting the final Hamiltonian in
terms of fG and fH leads to

Ĥrot = −
W4�G

2
(
cos (X0) fG + sin (X0) fH

)
. (2.40)
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From Eq. 2.40, it becomes evident that is possible to perform rotations around the different axes
in the xy-plane by controlling the phase of the interaction.

2.4.5 Vector Magnetometry

For NV sensing experiments it is a crucial tasks to determine the magnetic field alignment with
respect to the NV principal axis. This requires an understanding of the effect an applied, static
magnetic field has on the respective NV transition frequencies.
Assuming that the magnetic field is interacting strongly with the NV centre, only the zero-field
Hamiltonian in combination with the Zeeman interaction Hamiltonian needs to be considered
in the calculation, thus neglecting all weakly interacting terms. Yet, it is important to keep the
distortion parameter � of the zero-field Hamiltonian from Eq. 2.24. Thus, the spin Hamiltonian
can be expressed as

H = �

(
(2
I −

((( + 1)
3

)
+ �

(
(2
G − (2

H

)
+ `�6BTS. (2.41)

As depicted in Fig. 2.11, the magnetic field vectorB can be determined by three parameters: the
B-field amplitude � = |B | and the two angles \ and q.

Figure 2.11: The magnetic field vector (blue) and its corresponding angles \ and q
with respect to the NV principal axis connecting the nitrogen atom (green) and the
vacancy (blue).

According to Balasubramanian et al. [49], those B-field parameters can be determined for the spin
levels of equation Eq. 2.41 by the characteristic polynomial

G3 −
(
�2

3
+ �2 + V2

)
G − V

2

2
Δ − �

6

(
4�2 + V2

)
+ 2�3

27
= 0, (2.42)

with the alignment factorΔ = � cos (2\) + 2� cos (2q) sin2 \ and theB-field parameter V = `�6�.
Following their calculation [49], the solution for the magnetic field amplitude and alignment can
be determined by the frequencies a1 and a2 of the |<B = 0〉 ↔ |<B = ±1〉 transitions. Then the
amplitude � is calculated via

� =
1

3`�6

(
a2

1 + a
2
2 − a1a2 − �2 − 3�2

)
. (2.43)

Likewise, the alignment factor can be expressed in terms of frequencies as
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Δ =
7�3 + 2 (a1 + a2)

[
2
(
a2

1 + a
2
2
)
− 5a1a2 − 9�2] − 3�

(
a2

1 + a
2
2 − a1a2 + 9�2)

9
(
a2

1 + a
2
2 − a1a2 − �2 − 3�2) . (2.44)

A further comparison with the alignment factor from Eq. 2.42 uncovers a relation between the
alignment angles and the transition frequencies.
For a NV centre the distortion parameters are usually much smaller than the ZFS. Therefore, the
alignment factor can be reduced and the tilt angle is determined by

\ =
1
2

arccos
(
Δ

�

)
. (2.45)

Summarising, this chapter gives an overview about the material and physical properties of the
NV as a sensor for magnetic resonance detection of magnetic fields, nuclear spins, and electron
spins with their various interactions. Additionally, by the modelling of the system Hamiltonian, a
framework for a more elaborate discussion of the in this work employed measurement methods,
as well as the obtained results is build up.
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3 Methodology and Spin Dynamics

The measurable quantities in the laboratory are ultimately determined by the basic structure
and energy manifold of a NV centre. In the foregoing chapters, the relevant physical model
to describe the NV defect in diamond was developed and, subsequently, an introduction to the
corresponding measurements and the description of their schemes is required. Therefore, this
chapter is dedicated to the methodology of the for this work performed measurements, the indi-
vidual resulting spin dynamics, and the general interpretation approaches of any obtained outcomes.

As a beginning, the basic methods determining the important preliminary factors for all NV based
measurements are explained. Continuing on with that information, more complex schemes for
environmental sensing are introduced to conclude the necessary basis for the final section: the
measurements combining the NV electron spin interacting with proximal nuclear and electron
spins.
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3.1 Characterisation of the NV Parameters

For any type of NV-based sensing measurement, it is important to be able to initialise the NV’s
electron spin state - further also referred to as the NV state - in a well-defined and control-
lable way. This is achieved by laser illumination, transferring the NV’s current state into the
<B = 0 state. Yet, this process is dependent on the coupling of the lights’ electromagnetic field to
the NV dipole, consequently, the excitation efficiency is linked to the polarisation of the laser beam.

After the initialisation of the NV electron spin state, the NV would be exposed to all its
environmental effects, resulting in a state transition (decay) into its thermal equilibrium. This
resulting state is generally described by the superposition of the spin states, with the probability
amplitudes dependent on the NV environment.
To allow more complex sensing schemes, the spin state has to be addressed in a more elaborate
way. Due to its MW addressability (Sec. 2.4.4) this can be done via resonant electromagnetic
field generation applied proximally to the measured NV centre. This requires a determination
of the resonance frequency of the spin state transition. Additionally and due to the amplitude
dependency of the driving field onto the transition rate, the duration for the different state transition
interactions has to be determined as well.

3.1.1 Polarisation Anisotropy

As described in Sec. 2.2.2, the NV centre can occur in four different orientations incorporated
into the diamond lattice. Yet, since they are dependent on the directionality of the beam path and
the polarisation of the excitation laser, those four orientations are not optically distinguishable.
Due to the employed sample type and optical build-up in this work (further described in chapter 4),
only the (001) diamond surface orientation and [001] beam path direction are considered. As a
result, the four possible NV orientations are projected into the optically accessible two-dimensional
xy-plane, depicted in Fig. 3.1. Therein it becomes visible how the four axes are grouped into two
subsets of two parallel axes each and the angle between the two remaining optical directions is
given by 90°.

G

H
(111)

(111) (111)

(111)

Figure 3.1: Projection of the four NV axes into the optically accessible xy-plane.
Due to the experimental build-up and the lattice incorporation of the NV, two
orientations are each similarly addressed by the laser light.
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Characterisation of the NV Parameters

Dependent on the type and orientation of the laser polarisation, the overall fluorescence signal of
the NV centre varies. For the used linear polarisation, the electric field is confined to a single
plane. The relative orientation of this plane can be changed by a half-wave plate in the optical
beam path. Hereby, the orientation change depends on the angle U between the polarisation
direction of the incident beam and the crystallographic axis of the wave plate. After propagation
through the wave plate, the relative orientation is given by −U. By varying this relative angle U
the laser polarisation can be matched to the actual NV orientation by signal maximisation. The
overall signal � (U) is following a sinusoidal behaviour, with

� = �0 sin
(
2c
?
U + U0

)
+ ^, (3.1)

where �0 is the NV fluorescence difference between parallel and orthogonal polarisation of the
incident light, U0 the angular offset (defined by the NV orientation, the initial laser polarisation
direction, and the installation of the half-wave plate), and ^ the signal offset (defined by the
fluorescence signal of orthogonal light).
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Figure 3.2: Polarisation anisotropy measurement of optically distinguishable NV
orientations. Due to the relative orientation between the diamond crystal lattice
and the optical beam path, two different NV orientations are coupled similarly to
the electromagnetic light field. Those two orientations are henceforth referred to
as ab-pol (blue) and cd-pol (red) NVs.

The exemplary plots for the two optically differentiable NV orientation 2-tuples are shown in
Fig. 3.2. Furthermore, NVs are referred to by their orientation as ab-pol and cd-pol NVs.
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3.1.2 Optically Detected Magnetic Resonance (ODMR)

Certainly a very crucial information for NV based measurements is the knowledge of the resonance
frequencies for the possible spin state transitions (|0〉 ↔ |±1〉). For this determination, a common
measurement technique is the Optically Detected Magnetic Resonance (ODMR). Following its
name, ODMR generally relies on the optical addressability (described in Sec. 2.2.2 ), as well as
the MW frequency accessibility (Sec. 2.4.4) of the spin state transitions [48].

In ODMR, green laser light is applied to the specimen, making the NV centre detectable by its red
fluorescence. Simultaneously, a MW radiation field with variable frequency is generated in the
NVs’ proximity. Then, by sweeping the frequency of the MW field around the expected transition
frequency, a reduction of the red fluorescence signal is observed if the resonance condition
ℏl<F ∼ ℏl0 = Δ� = �4 − �6 is fulfilled.
For the description of this process, the steady-state situation of an equilibrium between the
continuous excitation and the different decay processes is assumed. According to Jensen et al. [50],
the overall appearance of the signal is dependent on the detuning X = l0 −l<F of the microwave
field and has a Lorentzian lineshape:

� (X) = � (∞)
[
1 − �W2

X2 + W2

]
. (3.2)

Here, � (∞) is the signal for off-resonant excitation, � is the contrast of the resonance, and 2W is its
Full Width Half Maximum (FWHM). In addition, the broadness of the Lorentzian is dependent
on the amplitude of the MW field, meaning, a higher field amplitude leads to a broader magnetic
resonance signal and vice versa.
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Figure 3.3: ODMR measurements (a) without an external field � = 0 G and
(b) with external magnetic field � = (41.5 ± 1.4) G. The peak with the lower
transition frequency corresponds to the |0〉 ↔ |−1〉 transition. The individual
peaks are fitted by single Lorentzian functions.

Dependent on the environment, the single Lorentzian peak shown in Fig. 3.3a can split up into
multiple peaks.
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A very common effect which leads to a splitting of the ODMR signal is the Zeeman effect
(Sec. 2.4.1). Here, a static magnetic field applied to the NV centre lifts the degeneracy of the
|<B = ±1〉 states. This splits the signal into two dips for its transition frequencies (|0〉 ↔ |−1〉
and |0〉 ↔ |+1〉) (Fig. 3.3b).
Another reason for a splitting of the signal are proximal spins coupled strongly to the NV centre.
This strong coupling can lead to a multitude of resonance dips as, for example, proximal carbon
nuclear spins can result in a splitting into two, three, or up to four dips [51]. The number of visible
resonance dips here is dependent on the atomic lattice distance (shell) to the NV centre and their
respective coupling strength.

3.1.3 Rabi Oscillations

In order to measure magnetic resonances of other spins and fields, the NV has to be in a state with
a non-zero magnetic moment. Yet, after the initialisation, the NV is in the |0〉 state with zero mag-
netic moment. To fulfil the requirement, the NV spin has to be transferred into either the |±1〉 states
or a superposition of the different spin states. Such an arbitrary superposition state U |0〉 + V |±1〉,
can be achieved by applying a MWfield resonant to the NV transition frequencyl<F . Hereby, the
final state probability amplitudes U and V are dependent on the duration g<F of theMW interaction,
as well as on the initial state of the NV previous to the manipulation. A continuous driving
of theMWfield results in population oscillations of the spin states, also called Rabi oscillations. [19]

In order to measure Rabi oscillations, the measurement sequence as depicted in Fig. 3.4a is
performed. In the beginning, the spin state is optically initialised into the |0〉 state. After this
initial state definition and to sample the state population transfer of the system, the MW field is
applied for different durations g<F to the NV. In the end, the concluding state readout is another
laser pulse, encoding the NV spin state into the fluorescence signal.
Plotting this fluorescence signal as a function of the pulse duration g<F , the Rabi frequency and
period can be determined (exemplary measurement shown in Fig. 3.4b).

The overall shape of the signal is sinusoidal and can be approximated by

� (C) = � sin (ΩC + X) + �0, (3.3)

with the Rabi frequency ΩRabi, the phase X, and the mixed state signal �0. Therefore, the Rabi
period is given by )Rabi =

1
ΩRabi

.
Dependent on the accurateness of the MW frequency and signal, the oscillation can addi-
tionally show an exponential decay, combining effects arising from off-resonant driving. For
aMWfield with detuning Δ, the resulting oscillation frequency is given asΩeff =

√
Ω2

Rabi + Δ2. [52]

As discussed in Sec. 2.4.4, the spin state manipulation can lead to different rotation axes dependent
on the relative phase X0 with respect to the rotating wave frame of reference (see Eq. 2.40). Hereby,
the beginning of the first MW manipulation after the initialisation determines the time g0 = 0,
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reference for all further MW phases.
The effect of the phase X0 can be visualised on the Bloch sphere (Fig. 3.5), where the MW phase
determines the rotation axis. In case of a zero phase X0 = 0, the rotation axis coincides with
the x-direction, leading to a rotation of the state vector in the yz-plane with Rabi frequency
ΩRabi = W4� (Fig. 3.5a). In comparison, if the relative phase of the signal is shifted a quarter
period, corresponding to a phase X0 =

c
2 , the rotation axis is along the y-axis and the plane of

rotation for the state is the xz-plane (Fig. 3.5b).
Accordingly, for measurements with variable relative phases, MW manipulations are going to
be denoted with their respective phase in the index. Since the most common techniques employ
either a zero- or a c

2 -phase, those are going to be referred to as x- or y-phase.
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Figure 3.4: (a) Schematic Rabi measurement sequence with an altered microwave
pulse duration g (blue). The initialisation and readout is done optically by laser
pulses (green). (b) Exemplary obtained measurement result for the Rabi oscillation
with Rabi period )Rabi = (35.27 ± 0.03) ns.

The MW interactions of a defined strength and duration are going to be pulses, or spin flips
whereof the most commonly used ones are c- and c

2 -flips. In particular, a c-flip is a population
inversion depicted by a 180° rotation on the Bloch sphere. In contrast, a c

2 -flip results in
a 90° rotation, most commonly used to create a superposition state |Ψ〉 = 1√

2
( |0〉 + |±1〉) or

a projection into the population states, allowing a readout of the relative phase i between the states.
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Figure 3.5: Rabi rotation on the Bloch sphere. The rotation axis (blue) for the state
rotation (relative phase of superposition state) is dependent on the phase of the
microwave field. The examples show (a) a clockwise rotation around the x-axis
(q = 0°) and (b) a clockwise rotation around the y-axis (q = 90°). The final state
is dependent on the duration of the interaction, here chosen to be g = 2c

3Ω with the
Rabi frequency Ω.

3.2 Sensing of the NV Environment

So far, measurements for the determination of NV manipulation parameters have been described
and allow now to define more complex schemes for measurements of the NV environment.
The environmental sensing schemes, here referred to as sequences, are frequency filter func-
tions, consisting of different MW pulses separated by free evolution times g. By variation of
those times and pulses, the filter functions can be tuned to - or decoupled from - certain frequencies.

In the measurement, the varied quantities, like the free evolution time g, are repeated consecutively
and the total number of time- or frequency-points is denoted by # . Since each repetition has
to have the initialisation in the beginning and the readout in the end, those two are combined.
In particular, the fluorescence signal during the initialisation contains the state information of
the previously measured quantity. Additionally and due to the shot noise limitation of the state
readout, each cycle of the # measured points is repeated " times, reducing the noise of the
measurement by a factor of 1√

"
, thus increasing the signal to noise ratio (SNR) accordingly

(discussed in chapter 9).
The highest possible contrast �max for those NV fluorescence-based measurements is determined
by the bright state signal �0 and the dark state signal �1 via

�max =
�0 − �1
�0

. (3.4)
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Sensing of the NV Environment

3.2.1 Pulsed Optically Detected Magnetic Resonance (pulsedODMR)

The first sensing experiment is dedicated to measure the NV transition frequencies more accurately
than common ODMR (Sec. 3.1.2). By decreasing the MW power in continuous ODMR, the
linewidth of the signal can be reduced [53]. Nevertheless, since continuous driving results in Rabi
oscillations with power dependent Rabi period )Ω, the effective measured intensity for fulfilling
the resonance condition is time averaged. It thus depends on the fraction: measurement duration
C for a single frequency point to the Rabi period )Ω for the corresponding power. The time
dependent superposition state can thus be approximated by

|Ψ〉 ∼ cos
(
C

)Ω
c

)
|0〉 + 48q sin

(
C

)Ω
c

)
|±1〉 . (3.5)

In conclusion, a simplifiedmaximum contrast for continuous ODMR can be given by the intensities
of the bright state signal and mixed state signal �Ψ. Looking at the limits of this estimation, the
contrast is given by

∼ 1
2�max for strong driving, and

∼ �max for observation times matching ( 2:−1
2 )Ω).

Yet, those estimations rely on an idealised system with no trapping effects due to strong laser
intensity and an initial state |Ψ〉 = |0〉 in the beginning of the observation.
A more elaborate scheme is to exchange the continuous driving and continuous readout with
a pulsed version, the pulsed ODMR. This sequence is depicted in Fig. 3.6a. Due to the laser
initialisation, the initial state is guaranteed to be |Ψ〉 = |0〉 and with the subsequent c-pulse, a
population inversion into the |±1〉 states is achieved. This results in the highest possible contrast
�max.

Similar to the ODMR measurement, the lineshape is Lorentzian with a power dependent width.
Thus decreasing the MW power with matching Rabi period, the linewidth can be narrowed down
until the most proximal environment of the NV can be sensed.
For a linewidth on the order of some 100 kHz, the NVs’ own nitrogen atom can be identified.
As shown in Fig. 3.6b, the interaction with the 14# nitrogen nucleus leads to a splitting of
2.1 MHz between the three resonance lines. If the linewidth gets reduced even further to roughly
10 kHz−50 kHz, weakly coupled carbon nuclear spins [51] can be detected as an additional splitting
of the dips.
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Figure 3.6: (a) Schematic pulsed ODMR measurement sequence where the
microwave pulse frequency a (blue) is altered and the duration is chosen power
dependent to match a population inversion. The initialisation and readout are done
optically by a laser pulse (green). (b) Exemplary obtained measurement result for
the pulsed ODMR measurement with Rabi period )Rabi = 1.5 µs. The resonance
frequency is split due to the 14# of the NV with the three transition frequencies
given by a1 = 2201.59 MHz, a2 = 2203.76 MHz, and a3 = 2205.92 MHz.

3.2.2 NV Lifetime Measurements

For NV based sensing experiments, the coherence time or lifetime – the time how long the NV
stays in the given initial state – is crucial. During a free evolution time, the NV accumulates a
phase due to the interaction with internal and external fields. This signal is given by a relative
phase i of the electron spin state and therefore a dephasing, or also called decoherence of the
system.
As the sensed frequency a is indirectly proportional to the duration g between the pulses of
the sequence, a lower bound for detectable frequencies can be estimated by the lifetime of the
measured NV centre.
This lifetime is a parameter dependent on the environment of the individual NV centre and
thus, it is crucial to determine it for each NV itself. Furthermore, since the diamonds’ internal
environment is mostly constant in time, those parameters have to be specified only once per site.

Thermal Relaxation

The longest lifetime of a NV is the thermal relaxation time or also called spin-lattice relaxation
time. According to its name, this )1-time is the time the NV spin state takes to decay back into
its thermal equilibrium via phononic interaction with the diamond lattice. [54] These phononic
interactions are strongly temperature-dependent, thus, the )1-time can be prolonged even further
using low-temperature measurements.
For the measurement of the <B = 0 )1-time, the free evolution time of the NV between the
initialisation and the readout laser pulse is varied. If, in comparison the relaxation time of the
<B = ±1 state is measured, an additional c-pulse right after the initialisation is added (Fig. 3.7a).
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Figure 3.7: (a) Schematic thermal relaxation time measurement sequence where
the free evolution time g is altered. The c-pulse after the laser initialisation is
optional if the )1-time for the <B = ±1 state is measured. Otherwise the )1-time
of the NV in the <B = 0 state is measured. (b) Obtained measurement result for
the )1-time with )1 > 1 ms.

In order to obtain the )1-time, an exponential decay

� (g) ∝ 4−g/)1 (3.6)

is used as fit-function. Therefore, the )1-time is the information about the duration it takes for the
fluorescence signal to decay to 1

4
-th of its initial value.

Ramsey (FID)

The Free Induction Decay (FID) or )∗2 dephasing time can be measured by the Ramsey
pulse sequence (Fig. 3.9a). [55] After the initialisation, a c

2 -pulse creates a superposition state
|Ψ〉 = 1√

2

(
|0〉 + 48i0 |−1〉

)
. During the following free evolution time g, the NV is exposed to its

environment. The combination of all interactions during this evolution time can be summarised
to an effective magnetic field �∗. The influence of this effective field causes an accumulation of
the relative phase i (g) with

i (g) = 2cW4
∫ g

0
�∗ (C) dC. (3.7)

The final state after the free evolution can consequently be summarised by

|Ψ〉 = 1
√

2

(
|0〉 + 48 (i0+i (g)) |−1〉

)
. (3.8)
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Figure 3.8: Effect of the Ramsey measurement onto the NV spin state depicted on
the Bloch sphere. The rotation axis and direction is blue, the state before (faded)
and after (solid) the individual interactions is a red vector, and the trajectories are
red and dashed lines. For the sake of visibility of the second c/2-pulse plot, the
trajectory of the population projection and the final states are only shown for states
on the positive half-sphere (G > 0).
The first c2 -pulse rotates the state around the x-axis and creates a superposition
state |Ψ〉 = 1√

2

(
|0〉 + 48i0 |−1〉

)
. During the free evolution time g, the effective

field �∗ leads to the accumulation of an additional phase i (g). The second
c
2 -pulse projects the resulting state into the population plane for the following
readout.

Concluding the sequence, a second c
2 -pulse maps the gained phase of the spin into the population

states |0〉 or |−1〉.
The state change during the free evolution time of the FID sequence can be visualised on the
Bloch sphere by a rotation of the state vector in the xy-plane around the z-axis (see Fig. 3.8). In
the case of an unperturbed two-level system, this would lead to a sinusoidal oscillation, but due to
the surrounding spins and the thus possible excitation transfer, a beating and decay of the signal
can be observed.

From the measured FID signal, the )∗2 time can be inferred as the decay time of the envelope of
the damped oscillations (Fig. 3.9b). The signal can be described by the convolution of sinusoidal
functions with an exponential decay:

� (g) ∝
∑
8

cos (l8g + q8) 4−(g/)
∗

2 )? . (3.9)

Here, the parameter ? is dependent on the type of noise in the systems environment, but usually
set to ? = 2. In summary: the )∗2 time gives information about the inverse linewidth of the
magnetic field gradients [56](magnetic field inhomogeneity) affecting the NV spin state.
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Figure 3.9: (a) Schematic FID measurement sequence where the free evolution
time duration g is altered. (b) Obtained measurement result for the )∗2 dephasing
time where the oscillations originate from static noise of the NV environment, here
)∗2 = 740 ns with two oscillation frequencies l1 = 2.03 MHz and l2 = 240 kHz.

Hahn-Echo

Amore advanced approach compared to the Ramsey measurement can be achieved by supplement-
ing the Ramsey sequence (Fig. 3.9a) with an additional c-pulse during the free evolution time
g. The resulting sequence is the Hahn-echo [57,58] and is shown in Fig. 3.10a with a symmetric
sequential arrangement.

If the free evolution times g′ and g′′ are equal, the c-pulse acts as a decoupling-pulse. This
inverts the NVs’ gained phase of both evolutions and thus decouples the NV from certain types of
environmental noise. Following the mathematical description of Eq. 3.7, the decoupling effect
can be introduced by an additional time-dependent function 5 (C) describing the interaction-sign
of the NV:

i (g) = 2cW4
∫ g

0
5 (C) �∗ (C) dC

= 2cW4
[∫ g/2

0
�∗ (C) dC −

∫ g

g/2
�∗ (C) dC

]
. (3.10)

It is striking that both contributions in Eq. 3.10 cancel each other out for static noise (with
�∗ (C) = �∗ ) or if the measurement duration g is long compared to fluctuations of the environment
(with �∗ (0) ' �∗ (g/2) ' �∗ (g)). Therefore, the c-pulse can also be seen as a refocusing-pulse,
leading to a refocus of the spin echo (also called revival) after the second free evolution. This effect
is depicted in Fig. 3.11 where after the second free evolution time the initial state is recovered.
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Figure 3.10: (a) Schematic Hahn-echo measurement sequence where the free
evolution time durations g2 are altered. (b) Obtained measurement result for the )2
coherence time with )2 = (19.4 ± 1.2) `s.
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Figure 3.11: Effect of the Hahn-echo onto the NV spin state depicted on the
Bloch sphere. The rotation axis and direction is blue, the state before (faded) and
after (solid) the individual interactions are red vectors, and the trajectories are
dashed red lines. For the sake of visibility of the c-pulse plot, the trajectory of the
population projection are only shown for states on the positive half-sphere (G > 0).
As a first step, a c

2 -pulse rotates the state around the x-axis and creates a
superposition state |Ψ〉 = 1√

2

(
|0〉 + 48i0 |−1〉

)
. During the second step, the free

evolution time g, the effective field �∗ leads to the accumulation of an additional
phase i (g). In the third step, the c-pulse inverts the phase and therefore leads to
a cancelling out effect of the previously gained phase in the forth step. The second
c
2 -pulse is the last step and projects the resulting state into the population plane
for the following readout.

During the first free evolution time, the state gains a phase dependent on the environment, as
depicted for four exemplary state vectors in the second step of Fig. 3.11. Due to the c-pulse, the
phase is inverted, which then leads to a cancelling out effect of the previously gained phase during
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the second free evolution and thus a recovery of the state after the population projection with the
second c/2-pulse. This happens for all environmental noises which do not vary over the time
of the measurement. If the rotation axis would additionally be tilted with respect to the z-axis,
the state vector would leave the xy-plane in the first free evolution. Yet, after the c-pulse and
the second free evolution, this static effect would also cancel out and the initial state could be
recovered.
Overall, the Hahn-echo allows to suppress the prominent sinusoidal dephasing of the Ramsey
measurement (Eq. 3.9) and is therefore given by merely the exponential decay

� (g) ∝ 4−(g/)2) ? . (3.11)

The decay time of this measurement gives information about the state information loss due to the
effect of coupled spins and is therefore called spin-spin relaxation time or )2-time. It depends
on the dephasing due to coupled spins and noise parallel to the z-axis. Comparing the )∗2 -time
to the )2-time, the latter is prolonged due to the decoupling from the inhomogeneity effects
of themagnetic field and thus, only the homogeneous part of themagnetic field is taken into account.

As discussed, the )1-time, the )2-time, and the )∗2 -time are intrinsic parameters to the NV, they
are further referred to as lifetime of the NV. Whereas, the term coherence time, even so describing
the same effect of decoherence, is used more globally. Therefore, also the ’prolonging of the time’
a state can be reconstructed due to more complex sensing schemes is accounted for.

3.2.3 Dynamical Decoupling of the NV Dynamics

After the discovery of spin echoes like the Hahn-echo [57], many different schemes to suppress
the undesired dephasing effects in sensing experiments have been developed. Those schemes
rely on the time-dependent control and modulation of sequences to dynamically decouple the
sensor from decoherence effects, thus, giving this category of measurements its name Dynamical
Decoupling (DD). It is important to note, that DD sequences are based on open-loop control
and are consequently independent of system feedback. In addition to their ability to increase the
coherence time of NV centres, they also allow the detection of resonance signals of nuclear spins
and electron spins, measured using Nuclear Magnetic Resonance (NMR) and EPR experiments.
This is done by resonant tuning of the free evolution times to match certain frequencies.
In contrast to common NMR, sensing experiments with NV centres are based on two-state
quantum systems (Quantum Bit (QuBit)s), nevertheless, many approved NMR schemes can be
adapted and used similar for decoherence suppression in NV measurements. [59]

XY Sequence

As a first improvement of the Hahn-echo, it is evident to replace the single c-pulse during the free
evolution time by # consecutive c-pulses, equidistant in time, leading to the CPMG sequence,
named after the inventors Carr, Purcell, Meiboom, and Gill. [60,61] The resulting sequence allows
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to decouple the NV even better from environmental effects and, thus, leads to an increase of the
coherence time.
Yet, all c-pulses have the same phase in the rotating frame of reference, which results in a
decoupling of noise solely from the orthogonal plane with respect to the rotation axis. If
additionally to the increased number of c-pulses, their respective phase is altered, one arrives at
the XY-N or XY8 sequence. [62] Furthermore, the XY8-block which consists of the eight c-pulses
and the total eight free evolution times (see Fig. 3.12) can be repeated #-times, with the number
of repetitions also referred to as order of the XY sequence. Thus, the total free evolution time is
given as ) = #totg = 8#g.
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Figure 3.12: Schematic XY-N sequence with eight c-pulses arranged with alternat-
ing phase leading to a noise decoupling along both, the x- and y-axis. To increase
the order, the XY8-block in-between can be repeated # times. The whole XY-N
sequence is enfolded by two c

2 -pulses, the laser initialisation, and the readout.

In general, such sequences lead to a noise cancellation of high frequent environmental noise. But,
if the free evolution time is resonant with the frequency a of the noise, it leads to an accumulation
of the signal. This effect can be understood by consideration of a signal with period ) = 1

a
. If

the period of this signal coincides with a single sensing block (g − c − g) of the DD sequence,
the gained phase during both free evolution times add up. Therefore, the coherence of the NV
gets lost and a signal at g = )

2 =
1

2a can be observed. This signal arises consequently due to the
coupling between the spins and allows to gather information about their interaction.
Since also higher harmonics of the signal can superpose with this resonance condition, signals
at higher frequencies :a, with : even, can be measured. [63] Taking those higher harmonics into
account, a more general resonance condition can be formulated: [64]

g: =
2: − 1

2a
, with : ∈ N, (3.12)

As also nuclear spins in a magnetic field produce small alternating current (ac) fields, those
signals can be detected by the NV centre. By use of the specific Larmor frequency lLarmor and
the parallel component of the hyperfine interaction �‖ , the resonance condition for such NMR
spectroscopy measurements can be formulated more precise:

g: =
(2: − 1)c
lLarmor + �‖

, with : ∈ N. (3.13)
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Here, the hyperfine interaction has to be taken into account due to the shift of the effectively
sensed Larmor frequency. [65]

For DD measurements, the totally gathered phase is dependent on the strength of the resonant
signal, though for a higher order # , weak signals can be amplified due to the increased number of
repetitions and the such resulting summation of the phase. Additionally, due to the filter function,
which is given by the DD sequence, and the higher number of repetitions, a more narrow-banded
signal detection can be achieved. Being more precise, the spectral resolution of the detected
frequency a is limited in the linewidth by Δa ∝ 1

8# g .

AXY Sequence

Another DD protocol tailored further towards not only the suppressing of noise, but the detection
of spins coupled to the NV centre is the adaptive XY-N (AXY-N) sequence. [66] In comparison
to the XY-N sequence, it is based on a more elaborate way of designing the filter function with
non-equally-spaced decoupling pulses [67]. Thus, it is more precise and tunable to the signal of
proximal nuclear and electron spins.
By varying the phases and the spacing between the individual pulses, this sequence can be adjusted
to different type of signals. The here employed version consists of eight pulse blocks and two
variable free evolution times g2 and g3 . Similar to the XY-N sequence, the eight pulse blocks can
be seen as each four effective -- and . -blocks (see Fig. 3.13a).
Comparably to the XY-N sequence, the detectable frequencies are dependent on the sensing
duration g�� between the different c-pulse. For the AXY-N sequence, g�� is composed of
the free evolution times g2 between the five c-pulses of one - (Fig. 3.13b) and one . -block
(Fig. 3.13c) and the free evolution time connecting those two blocks. This leads to the sensing
time

g�� = 8g2 + 4g3 , (3.14)

and, thus, the detected frequencies

a =
1
g��

=
1

8g2 + 4g3
. (3.15)

For the linewidth, the entire measurement duration has to be taken into account and by increase of
the order, a better frequency resolution can be achieved:

Δa ∝ 1
4#g��

. (3.16)

Since the signal strength of the AXY-N measurement is dependent on different parameters, a
variety of related AXY measurements is necessary to determine the optimal settings for the best
signal detection.
Hereof, the main parameters influencing the detection of the signal are the AXY order and total
duration (conditional parameters), the dipolar coupling strength (fixed/wanted parameter), and the
Fourier amplitude.
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Figure 3.13: (a) Schematic AXY-N sequence with four times two effective pulse
blocks. The whole AXY-N sequence is enfolded by two c

2 -pulses, the laser
initialisation, and the readout. The effective pulse blocks are denoted by (b) - and
(c) . , where each block itself consists of five c-pulses with individual phase X in
the rotating frame of reference. The free evolution time between the c-pulses is
g2, whereas the first and last free evolution time of one block is given by g3 . To
increase the order of the AXY sequence, the entire AXY-block can be repeated
#-times.

The Fourier amplitude � is a parameter, which determines the signal strength dependent on the
ratio of the free evolution times g2 and g3 . It is given by

c� = 2 + 4 cos
(

cg2

2g2 + g3

)
− 4 cos

(
cg2

4g2 + 2g3

)
. (3.17)

As shown in Fig. 3.14, its maximum value (∼ 0.63) is reached for very short times g2 , compared
to g3 . Yet, if for higher order measurements the signal strength is to strong and leads to a
signal overshoot, it allows to tune down the signal strength with simultaneously keeping the high
frequency resolution.
To determine the Fourier amplitude of a resonance, the sensing duration g�� for the specific
signal is kept constant and the ratio g2/g3 is varied. The resulting signal follows a sinusoidal
behaviour

) ( 51) ∝ cos (0.25 51�G)) = cos (0.25 51�G#g��) , (3.18)

with 51 the first harmonic of the Fourier amplitude and �G the G-part of the spin-coupling.
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Figure 3.14: Fourier amplitude of the AXY-N sequence. Its maximum value∼ 0.63
is reached for very short times g2 , compared to g3 , and it converges asymptotically
to zero for very long times g2. Overall, the Fourier amplitude is an adjustment
parameter for signal detection.

Another way to determine the Fourier amplitude is by variation of the AXY order (order sweep).
To do so, the sensing duration g�� for the specific signal is kept constant and the order # is
increased. Due to the reduction of the signal linewidth for higher orders, it is important to ensure
the position of the resonance precisely. As for the free evolution time ratio, the signal follows the
sinusoidal behaviour of Eq. 3.18.
Additionally to the Fourier amplitude, the order sweep gives information about the order
dependency of the signal. Thus, two parameters of the signal strength can be determined using
this measurement. Nevertheless, due to the required accuracy of the resonance position, it is much
more feasible to use the ratio as variable than the order (more closely discussed in Sec. 5.3.2).

Randomisation of Pulse Phases

Up to now, perfect delta-peak shaped pulses with no phase errors have been assumed. However,
due to finite time for the state transition and also the arising imperfections in signal manipulation,
this is experimentally not achievable.
The first modification of the used pulse schemes is done for each measurement which relies on
free evolution times g. Due to the finite driving strength via the MW field, the duration of the
individual gates is on the order of 10 ns − 100 ns. This would lead to a biased measurement
outcome, shifted by the proportionate effect of the gate durations. To prevent this error, the
free evolution times are adjusted to the time from the middle of one pulse to the middle of the
subsequent pulse.

Another modification is suggested by Wang et al. [68]. Their method not only reduces the impact
of the finite pulse lengths, but also corrects the measurement outcome towards effects introduced
by imperfections of the applied gates. Therefore, spurious signals as the higher order peaks of
nuclear spins can be removed reliable.
The crucial point of this optimisation is to add a random phase q8 to each pulse of a building
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block of the DD sequence (see Fig. 3.15). It is important to note that each random phase has to be
independent. This allows a reduction of the false signal accumulation effect. To further increase
the effectiveness of the phase randomisation, the random phases of the building blocks can be
refreshed after each run-through.

Laser

Standard DD-N:
Block 1 Block 2 Block 3

• • •

Rand DD-N:
+q1 +q2 +q3

• • •

Figure 3.15: Comparison of a standard DD and a randomised phase DD sequence.
Each of the # individual DD-blocks gets a random phase q8 added to each pulse
of the specific block.

3.3 Coherent Control of External Electron Spins

In the course of this chapter, a variety of experimental protocols to measure signals of spins in
the proximity of the NV centre have been developed. Yet, all those protocols solely focus on the
manipulation of the NV centre, allowing to decouple it from certain type of noise and detect
specific resonant signals. As discussed in Sec. 3.2.2, this decoupling leads to a cancellation
of spin signals as the shown effect of the oscillation suppression due to the refocus pulse in
the Hahn-echo against the prominent oscillations in the Ramsey measurement (comparison of
Fig. 3.9b and Fig. 3.10b).
In contrast to the advantage of increasing the coherence time by those DD sequences, the
suppression of spin signals like the resonance of proximal electron spins is a significant downside
for EPR measurements. To overcome this obstacle, an additional manipulation of the addressed,
none-NV electron spin state can be done and, thus, the signal of those spins can be recovered
selectively.
In this work, the electron spin of the NV is always assumed to be part of the system and is going to
be called the NV spin. In contrast, when speaking about electron spins, only additional or external
spins are considered.

3.3.1 Double Electron-Electron Resonance (DEER)

An overall grouping of measurements which contain the manipulation of more than a single
electron spin and their interaction happens under the synonymous used names Double Electron-
Electron Resonance (DEER) and Pulsed ELectron-electron DOuble Resonance (PELDOR).
To be able to work with electron spins, it is important to perform preliminary measurements to
determine the manipulation parameters similar to those, performed on the NV spin. Yet, since
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those additional electron spins are not optically addressable, the readout of the effect of their
manipulation is done with the help of the NV centre. This can be done due to the coupling of
both spins. If for example the electron spin state is flipped simultaneously to the NV spin in the
Hahn-echo sequence (Fig. 3.10a), the effect of the phase cancellation of the NV centre during the
second free evolution time holds still true for all effects constant in time, except the signal of the
flipped electron spin [69].
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Figure 3.16: Schematic DEER measurement sequence. The NV manipulation
(blue) is similar to the Hahn-echo, but the free evolution times g2 are kept constant
and chosen to be resonant to the coupling strength of the addressed electron spin.
The second manipulation scheme (orange) is addressing the additional electron
spins and is timed such that its symmetrically in the middle of the Hahn-echo.

In the general measurement scheme, as shown in Fig. 3.16, the microwave manipulation of the
electron spin is simultaneous to the c-gate on the NV spin. This is done to achieve two equivalent
(symmetrical) sensing durations with the NV centre. Thus, for a resonant pulse on the electron
spin, the coherence of the NV gets lost and the effect of the electron spin manipulation can be
determined from the fluorescence signal of the NV centre.
Following the phase calculation of Eq. 3.10, a c-flip of the electron spin state would lead to an
additional sign-change of the interaction and thus,

i (g) = 2cW4
[∫ g/2

0
�4- (C) dC +

∫ g

g/2
�4- (C) dC

]
. (3.19)

According to the direction selectivity of the Hahn-echo ((I interaction component), the field
�4- (C) acting on the NV spin can be approximated by the coupling of the electron spin to the NV
(Eq. 2.34). This also holds true due to the big energy difference of the ZFS and Zeeman effect
to the dipolar coupling between the spins. This leads to the effective field � = � (I , with the
abbreviation � = 3

(
1 − 3 cos2 Z

)
.

Finally, the gathered phase of the NV centre after the DEER measurement is given by

i (g) = 2cW4� (Ig. (3.20)

Electron Spin Resonance

In order to perform electron spin manipulations, the first step is to determine the electron spin
resonance frequency a4- . Therefore, the DEER sequence is applied for a range of frequencies
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(orange pulse line in Fig. 3.16) around the expected resonance frequency. To do so, there are three
parameters which have to be estimated preliminary: the resonance frequency, the gate duration,
and the free evolution time of the Hahn-echo.
The first estimation has to be done for the resonance frequency. As described in Sec. 2.3.2, the
level splitting of a spin- 1

2 system is given by � = 64`��0 (Eq. 2.14). Thus, the frequency is
expected around a4- = 2.8 MHz

G �0.
For the second estimation, the gate duration for the maximal contrast, the Rabi period of the
electron spin has to be approximated. Therefore, the type of those spins plays a crucial role.
If the addressed spin is a ( = 1 system, the Rabi period is on the same order as the NV Rabi
period. But for electron spins, which are ( = 1/2 systems, this does not hold true. A common
method to determine the spin quantum number in EPR measurements, is to compare the Rabi
periods for known and unknown systems [70]. Even so that the NV is a ( = 1 system, and thus,
with three energy levels described in a 3 × 3 space, the high energy mismatch of the transitions
leads to a treatment in an effective 2 × 2 subspaces. Those subspaces are spanned by either the
<B = 0 and <B = −1, or the <B = 0 and <B = +1 states. Due to the normalisation, the transition
matrix elements for the NV have a magnitude of 1/

√
2, whereas the proximal electron spins as

( = 1/2 systems have a magnitude of 1/2. Therefore, the Rabi period of the electron spins can be
calculated from a known NV Rabi period as

Ω4- =
ΩNV√

2
. (3.21)

It is important to note, that the same driving strength has to be assumed for both manipulations,
but due to the experimental imperfections in signal generation, amplification, and transmission,
only an approximation can be guaranteed.
The last estimation is about the free evolution time of the Hahn-echo. This parameter is dependent
on the dipolar coupling of the spins and due to the unknown distance and orientation only a vague
guess is possible. For a coupling of around some hundreds of kHz, the interaction time should be
on the order of some µs. Yet, as long as the interaction time is long enough to ensure the ability to
transfer energy and not to long to still see contrast in the NV measurement, this parameter is not
so crucial.

Similar to the ODMR and pulsed ODMR measurement (Sec. 3.1.2 and Sec. 3.2.1), a Lorentzian
lineshape (Eq. 3.2) is expected with the resonance frequency as expectation value and the linewidth
dependent on the power-broadening effect (see measurement Sec. 5.2.1).

Electron Spin Rabi Frequency

After the determination of the resonance frequency, the Rabi period Ω4- of the electron spins
can be determined precisely. As already discussed, Eq. 3.21 gives an estimation for an idealised
system, but mainly due to the non-linear frequency-dependent amplification of the amplifier and
the imperfect antenna for the microwave guidance (see chapter 4), the Rabi period can deviate
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from the expected value.
To measure the Rabi period, the DEER sequence is used with the proper resonance frequency and
a variation of the pulse duration of the electron spin manipulation (orange pulse line in Fig. 3.16,
measurement shown in Sec. 5.2.2).
The outcome is similar to the Rabi oscillations discussed in Sec. 3.1.3. As an effect of the
symmetric sequence and the resulting acquired phase, the measurement is independent on the
initial state of the electron spin and the Rabi period can be calculated by using Eq. 3.3.

DEER Lifetime

To determine the exact impact of a precise electron spin flip onto the NV spin state, the DEER
sequence as shown in Fig. 3.17 is measured.
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Figure 3.17: Schematic DEER measurement sequence. The NV manipulation
(blue) is similar to the Hahn-echo with a variation of the free evolution times g2 .
The second manipulation scheme (orange) is addressing the additional electron
spins with a c-pulse on their respective frequency.

If a single electron spin is addressed by the c-pulse, the expected result would be an exponential
decay with a single modulation frequency corresponding to the dipolar coupling (Eq. 3.20) of the
NV to the electron. For more than one spin coupled to the NV and addressed by the microwave
manipulation, the created field of the = electron spins is of the form

� =
∑
=

�= (
I
=, (3.22)

and, thus, the dipolar coupling can not be inferred by a single measurement. To be able to
reconstruct the individual couplings for more than one electron spin, a multitude of DEER
measurements has to be performed. Hereof, each DEER measurement has to be performed with a
different orientation of the magnetic field and, consequently, a variation of the = dipolar coupling
factors �8 , with 8 ∈ (1, ..., =).

There exist many different approaches based on Hahn-echo like DEER measurements with a
simultaneous electron-spin c-pulse [69,71,72], a variation of the electron-spin c-pulse timing [73–75],
and also an increasing number of c-pulses in the Hahn-echo of the NV centre manipulation [76,77].
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Those DEER lifetime measurements can also be pushed to the point of performing XY-N [17]

or AXY-N type sequences with simultaneous c-pulses on the electron spin frequency for each
individual pulse of the NV sequence.
All those DEER measurements are constructed to be more selective in the measured interaction
and to have a higher frequency resolution for the couplings compared to the normal Hahn-DEER.
Since all those sequences rely on the same decoupling mechanisms, they are limited in their
maximal sensing duration and, thus, their frequency detection range. This limitation is given by
the )2-time of the utilised NV centre, which is usually on the order of 5 µs − 70 µs.

3.3.2 Correlation DEER protocol

Another DEER approach is based on a sensing scheme with a limitation by the )1-time of the NV,
thus, increasing the maximal free evolution time of the sensing blocks by up to two orders of
magnitude. Compared to the up to now discussed DEER measurements, this allows to work also
with shallow NVs as sensors, regardless of their truncated )2 time due to the surface induced
noise.
The NV sequence part is based on two Hahn-echo like blocks separated by an additional free
evolution time g′ (blue pulse line in Fig. 3.18) [78]. With this sequence, the phase accumulation of
the two bordering pulse blocks can be compared, thus allowing to detect variations in the signals
the NV is exposed to during the free evolution time g′.
Nevertheless, to detect the signal of electron spins, the sequence has to be complemented by an
additional manipulation of the proximal electron spins (orange pulse line in Fig. 3.18) [16].
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Figure 3.18: Schematic correlation DEER measurement sequence. The NV
manipulation (blue) consists of two Hahn-echo like pulse blocks, separated by a
free evolution time g′. The second manipulation scheme (orange) is addressing
the additional electron spins with c-pulses simultaneous to the NV c-pulses and
with different sequences in between the free evolution time g′.

The MW manipulation block of the proximal electron spins during the free evolution time g′ can
be any presented sequence for electron spin manipulation as the Rabi oscillations (Sec. 3.1.3) or
the coherence-time measurements (Sec. 3.2.2).
The free evolution times of the two NV manipulation blocks is working as a selection rule for the
coupling strength of the measured electron spin signal [16] with the strength indirectly proportional
to the probe times g = g/2 + g/2.
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4 Experimental Setup

With the previous chapters introducing the physical model, the measurement theory, and the
general result interpretation, this chapter is dedicated to the necessary setup used in the performed
sensing experiments.
The entire setup consists of many individual parts, which can be grouped into two higher-level
assemblies:
First of all is the confocal microscope, used for the all-optical excitation and readout of the NV
spin state. Secondly, there is the wiring and control of the components used for the MW gen-
eration andMWcontrol, the peripheral devices, and the temperature control of the sample chamber.

49



Confocal Microscope for NV Sensing Experiments

4.1 Confocal Microscope for NV Sensing Experiments

The first assembly is the confocal microscope which is placed on an air-damped optical table
to reduce mechanical vibrations. The schematics of the home-build confocal microscope setup
is shown in Fig. 4.1. A detailed part list, containing information about the specifications and
manufacturers is provided in chapter 9.
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Pinhole
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Mirror
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Mirror
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Figure 4.1: Schematic build up of the home-build, room temperature confocal
microscope. All the optical parts are placed on an air-damped optical table to
decouple from mechanical vibrations. The optical pathway is placed in three
separate optical cardboard housings to reduce temperature oscillations, dust
deposition, and interfering light.

Laser

As laser source, a pre-coupled laser-diode system ’iBeam Smart’ from Toptica Photonics with a
wavelength of _ = 519 nm is used.
This laser-diode can be directly operated in pulsed mode, with an external Transistor–Transistor
Logic (TTL) signal as trigger. The switching between the lasing states is done via its ’digital
in’ port and allows to switch with a frequency of up to 250 MHz and a rise- and fall-time of
below 1.5 ns. Additionally to its internal stabilisation and to ensure its temperature stability even
further, the laser-diode is placed on a passive heat-sink, which is attached to the optical table to
increase the energy flow. The location of the laser on the optical table is chosen such, that it is
well separated from the sample, thus reducing unwanted heat transfer.
From there on, the laser is guided by the single-mode optical fibre into the first housing of the
setup. Additionally to the guidance, the optical fibre guarantees a ’cleaning’ of the laser mode
due to the Gaussian TEM00 mode being the only transmitted mode.

Excitation Module

In the first housing part, the preparation of the laser light for the optical excitation is done.
First of all, a bandpass filter with central wavelength _central = 520 nm and FWHM Δ_ = 40 nm
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cleans up unwanted fibre fluorescence and reduces the interfering light, not emitted by the
laser-diode. As a second component, a _/2-plate is placed on a home-build, remote controlled
rotational stage. As described in Sec. 3.1.1, the waveplate is used to rotate the laser light
polarisation to match the NV axis and, hence, maximise the excitation rate. To be able to rotate the
laser polarisation and match the four possible NV lattice orientations automatically, an Arduino
controlled rotation stage, driven by a stepper motor is implemented (further details about the
rotation stage are given in chapter 9). Two additional mirrors are placed in the beam path to guide
the laser beam onto a dichroic mirror, which is coated to transmit the red fluorescence signal of
the NV into the detection path and to reflect the green laser light into the sample chamber.
Instead of the dichroic mirror, a beam-sampler was used in the beginning of the performed
experiments. Despite its lower index of reflection of the green laser light, as well as its lower index
of transmission of the red fluorescence signal, the beam-sampler was advantageous due to the
strong back-reflex signal. The back-reflex image of the sample surface allows to visually focus the
objective onto the desired area of the sample. Yet, due to the cleaner wavefront after the reflection
and transmission and the higher corresponding indices, the beam-sampler got exchanged by a
dichoric-mirror. This increased the counting signal and at the same time allowed to decrease the
used laser power by one order of magnitude.

Sample Module

In the sample chamber, a 100× immersion-oil objective from Nikon with a numerical aperture of
#� = 1.45 is focusing the laser light onto the diamond to excite the NV. The same objective is
also used to collimate the emitted red fluorescence of the measured NV centre. As depicted in
Fig. 4.2, the diamond is placed on top of a cover glass and the objective focuses the laser beam
through both, the cover glass and the diamond, onto the NVs, which are located close to the upper
surface of the diamond sample. For this reason, 00-type cover glasses are used, which means
that they are 60 µm − 80 µm thin. Therefore, the objectives working distance of 130 µm allows a
diamond thickness of up to 50 µm.

Detection Module

The last part of the beam path is the detection path. From the objective on, the emitted red
fluorescence is transmitted through the dichroic mirror into the housing of the detection setup.
This housing is used to decrease the stray light and background light and hereby reduces the
background signal to the dark count rate of the detector. In the housing, a 2 5 lens setup is used to
focus the fluorescence signal through a 25 µm pinhole and an additional longpass filter onto the
Avalanche Photo-Diode (APD). Here, the pinhole removes all signals not aligned with the focal
plane and the 650 nm longpass filter reduces the false-transmitted laser light by the dirchoic mirror
even further. The here used APD is a single photon counting device from Excelitas Technologies
with an efficiency of 80 %, a short dead time of typically 22 ns, and a dark count rate of less than
80 photons per second.
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Figure 4.2: Schematic, illustrating the experimental geometry of the confocal head
of the microscope. The diamond is placed on top of a cover-slide (or sample
holder). The objective focuses the laser beam (green beam) through both, the
cover glass and the diamond, onto the upper surface, where the NVs are located.
The same path is used for the fluorescence detection (red beam). Above the optical
part, an assembly of neodymium magnets is used to apply a magnetic field to the
sample. Image taken from Weggler et al. [79]

4.2 Control of the Experimental Setup

As control of the entire experiment, a computer is the central device, operating all setup components.
For the control of the setup, the processing of the measurement data, and the entire visualisation
the modular python software QuDi [80] is used. This software allows to control all measurement
parts and makes running the experiment due to its intuitive user interface straight forward.
The wiring diagram schematising the interconnections of the setup, as shown in Fig. 4.3 and can
be subdivided into three parts:
As a first part, there is the combination of the MW sources and the MW control. This part is
also responsible for the timing of the experiment. The second part contains the whole peripheral
devices, used for the preparation, initialisation, and readout of the experiment. The temperature
control is the third and final part, ensuring a stable environment of the sample during the
measurement.

4.2.1 Microwave Source and Control for the MW-Field Generation

For the MW generation, different devices can be used. The first MW source is the SMIQ, a
vector signal generator from Rohde & Schwarz. This device is used for the continuous ODMR
measurements (Sec. 3.1.2), where the internal frequency switching triggers the time intervals for
the signal summation of the fluorescence signal counting. Therefore, a defined frequency range is
ramped through with a defined frequency step size, and time continuous signal summation.
The second MW source is an Arbitrary Waveform Generator (AWG) from Tektronix, which
is used for all other, pulse-based measurements. Due to its high time-resolution of up to
50 G Samples/s with an amplitude resolution of up to 10 Bit and the large memory, it allows to
output the entire pulse sequences as a single waveform file, thus, ensuring the rotating frame of
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Figure 4.3: Schematic wiring diagram of the experimental setup. The type of
connection is color-coded, where: red is the MW path, dark blue are the Markers
(logical level 1.4 V), light blue are the Flags (used like Markers as logical level),
green is the counter-signal, purple are theUniversal Serial Bus (USB)-connections
for the control, and orange are Ethernet connections for the communication.

reference during the measurement with a high vertical resolution.

Besides its function as a MW generator, the AWG is also used for switching and timing of
the experiment. Therefore, the two markers Mk1 and Mk2, as well as the additional Flags FlagA
and FlagB are used as digital triggers, allowing to control the external devices timed with respect
to the waveform. The first marker is used for the digital switching of the laser diode and the
second marker synchronises the gated counting of the APD signal with respect to the NV response
and laser signal. The first Flag outputs a pulse of ∼ 40 ns to signal the end of one sequence
run-through and thus, the start of another repetition. Due to this reason, it is called the sequence
trigger. To switch the MW-switch between the two inputs, the second Flag is set to logical low
(through-put of SMIQ signal) or logical high (through-put of AWG signal).
To reach the required MW power, the signal is amplified with an external amplifier from Amplifier
Research (ar) and afterwards routed to the sample holder. The sample holder is depicted in
Fig. 4.4 and is home-build from a circuit board to approximately match the wire impedance of 50Ω.

A 25 `m thin copper wire is used as MW antenna and is stretched between the two contacts of the
circuit board across the surface of the diamond sample. To reduce reflections of the MW signal
behind the sample, the final termination is done by a MW sink, attenuating the MW signal.

4.2.2 Peripheral Devices of the Setup Control

The second part of the wiring diagram of the experimental setup, the peripheral devices, are used
to prepare the necessary parameters, and initialise and readout the NV.
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Figure 4.4: Top-view of the home-build sample holder, build from a circuit board
with the impedance matching approximately the wire impedance of 50Ω. The
diamond sample is placed onto a cover glass overlapping the circular opening in
the middle, which is framed by a larger opening from the bottom, allowing the
objective to be moved across (from below) the sample surface.

Signal Counting

For the readout of the fluorescence signal, the APD is used as counting device. Since two different
types of readout are required in the experiment, the count signal from the APD is copied by
the Field-Programmable Gate Array (FPGA) and then looped through to the NI-DAQ, a data
acquisition and I/O module from National Instruments.
The copied count signal is used for continuous counting with the NI-DAQ. It is called slow
counting and is used for the non-time-critical counting, employed in the Counter of QuDi,
showing the direct response of the APD, the scanning of the fluorescence image, and the ODMR
measurement.
Besides the copying of the signal, the FPGA is also used for the fast counting. This fast counting
is used for the time-critical readout of the pulsed measurement sequences, where the counting of
the fluorescence signal detected by the APD is timed with respect to the laser initialisation of the
NV centre and the delay timing introduced by the interconnection paths.
Additional to the fast counting, the FPGA measures a time-trace of the signal and generates a
histogram of the count data with respect to the measurement sequence. This gated counting is
triggered by the sequence trigger and the count signal is transferred to the computer afterwards.

Sample Positioning

To be able to remotely adjust the scanning position for the measurement all over the diamond
sample and at the same time allow a precise positioning of the NVs in the confocal volume of the
objective, the sample holder is mounted onto two translational stages (from Physical Instruments)
which are stacked on top of each other.
For a coarse positioning of the sample, a piezo linear-motor stage with a range of 25 mm× 25 mm
is used. This stage is connected via its controller directly to the computer and steered by the
provided PI MikroMove software.
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For the fine positioning, a XYZ-stage with a range of 70 µm × 70 µm × 50 µm is build into the
setup. The analogue driving of the stage is achieved by the digital-to-analogue I/O module of the
NI-DAQ and the control is done by QuDi and used for the confocal scanning and tracking of the
individual NVs. Accordingly, high resolution confocal images of the sample in the X-Y plane
(Fig. 4.5a) and the X-Z (or Y-Z) plane (Fig. 4.5b) can be recorded.

(a) (b)

Figure 4.5: Exemplary high resolution confocal images of the sample showing
NVs in the diffraction-limit of the confocal microscope. The yellow spots are NVs
and the background is shown in purple. (a) X-Y plane of the diamond sample. (b)
X-Z plane displayed upside down. The area below the NVs (below ∼ −6 µm) is
the immersion oil with small particles scattering the light and above the NVs is
the diamond without implantation sites. Due to the height of the diamond plate
(∼ 35 µm), the cover slide and the used fixation (above ∼ 10 µm) can be seen as
well as the used MW wire.

Magnetic Field Generation

For the magnetic field application, a cross-shaped assembly build out of 12 neodymium permanent
magnets, as depicted in Fig. 4.2, is used. This magnet configuration allows to create a magnetic
field of more than 1500 G at the diamond surface.
As the orientational alignment and amplitude adjust-ability of the applied magnetic field are
two of the most crucial capabilities for the experimental setup, the motorised stages for the
magnet positioning are chosen accordingly. The exact positioning is achieved by a combination
of three translational stages (PI LS110) with a resolution of 0.2 µm and one rotational stage (PI
PRS110) with a resolution of 0.002° from Physical Instruments. Additionally and due to the high
repeatability of < ±1 µm for the translational stages and < ±0.01° for the rotational stage, it is
also guaranteed to be able to reapply a previously determined field with a very high accuracy.
The control of the magnet stages can be done automatically via the QuDi software or manually by
the provided PI MikroMove software.
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Laser Light Preparation

For the control of the laser pulses, the marker of the AWG is connected to the ’digital in’ port of
the laser-diode, thus allowing an exact timing of the switching between the lasing states of the
diode (more closely described in Sec. 4.1). Additionally, the laser is connected to the computer
via a serial communication port to be able to control the output power of the laser-diode and to
enable the communication with the device via console commands.
For the _/2 stage control, the Arduino is connected via USB to the computer. This allows a direct
communication via a console. For the sake of simplicity, a python hardware module for this
rotational stage is added to the QuDi software. But since no graphical user interface is added yet,
the communication has to be done via the QuDi console.

4.2.3 Temperature Control of the Sample Chamber

Due to the temperature dependency of the NVs’ energy levels [81], already small fluctuations of
the ambient temperature can lead to a detectable shift of the transition frequencies of the NV
centre. Combining this effect with the thermal elongation of the used materials in the sample
chamber (sample holder circuit board, cover-slide subsurface below the diamond), temperature
instabilities would decrease the signal contrast during longer measurements drastically. Yet, by
refocusing the position of the NV in the confocal volume and re-determination of the transition
frequency, those effects could be corrected for. This would still lead to a prolonging of the actual
measurement duration due to the sequence regeneration and upload without increasing the SNR.
To preserve the setup against such thermal instabilities, the sample chamber which contains the
positioning stages of the sample, as well as the positioning stages of the magnets, is placed in
an insulated box. To increase the thermal stability, a Proportional-Integral-Derivative (PID)
controller in combination with two 155 W thermoelectric coolers is used for a feedback-loop
control of the temperature in the sample chamber.
With this controlled environment, a temperature of (292.15 ± 0.05) K is achieved. With this
stability, stable measurements continuing over many hours can be performed with almost no loss
of signal contrast.
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5 Towards EPR Measurements - Characterisation of
Interaction Effects

Combining the theory, the measurement protocol, and the experimental build-up, the previous
chapters give a general map of the measurements employed for the performed EPR experiments.
These basic modules are used as a foundation for the determination of dipolar couplings between
spins. In more detail: those spins shall ultimately be electron spin labels attached to specific
sites of biological molecules to determine the conformation and conformational changes of the
molecule via the performed EPR experiments.

In the following, the utilised diamond samples with their implanted NV centres and their
specific characteristics are presented. To reveal the resonance and the interaction of proximal
electron spins different EPR measurements are performed, proving the existence of electron spins
coupled to the measured NVs. To rule out the misinterpretation of those obtained resonances the
depth of the NV-containing layer, their interaction with nuclear spins, and the dipolar couplings
are investigated as well.

All measurements are performed as #-times repeated read-outs of the NV spin states (# ∼
106...107), averaging the effect of the performed gates and the sensed interactions. The number of
repetitions # is here dependent on the signal strength and contrast relative to the NV signal. In
order to qualitatively compare similar measurements, # is kept constant in these cases.
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5.1 Sample Classification

As presented in Sec. 4.1, an objective focuses the laser through a cover glass and through the
diamond onto the NVs, located on the top surface of the diamond. This setup-order ensures a
clean diamond surface as an environment for biomolecules and their optimal buffer solution in
later experiments. Additionally, a surface treatment and cleaning is enabled without performing
the whole preparation anew.
In order to create NVs suitable for electron spin dipolar coupling measurements, the diamond
creation and modification, as well as the nitrogen implantation has to be performed in a specific
manner ensuring the necessary parameters for the performed measurements. Therefore, this
section gives an overview of the employed diamond samples and preparation steps required
previous to the experiment. Since the intrinsic lifetime parameter of NVs can be used as a
reference of their environmental interactions, it is used in the final part of this section to measure
the modification impact of the applied diamond preparation.

5.1.1 Nitrogen Vacancy Implantation Parameters

Due to the long optical pathway through the cover glass and the diamond, in combination with the
finite working distance of the objective, the diamond itself has to be a very thin slice. Therefore,
the used diamond samples are laser-cut and polished to a thickness of 35 µm − 50 µm. This
allows to move the objectives’ focus along the optical I direction into different depths close to the
diamond surface.
For the NV creation, the ion-beam implantation technique (Sec. 2.2.1) was chosen and circular
spots with a diameter of roughly 100 µm are implanted. With this technique it is possible to offer
a range of different environments within the same sample, thus, establishing a big variety of NV
parameters to choose from for all further sensing experiments.

The experiment requires different coherence times of the NVs with the required duration
dependent on the distance between the electron spins in the NV detection volume. Being more
precise, a lower bound for the required NV coherence time can be calculated using Eq. 3.15:
For electron spins with a dipolar interaction of 500 kHz, a coherence time of only around 2 µs
is necessary, while for a electron spin coupling of 100 kHz, the coherence time has to exceed
already 10 µs. This can be offered by using various implantation depths, determined by the utilised
implantation energy during the ion-beam implantation. To enable a proficient coherence time
tuning, NVs were implanted at three depth ranges using three different implantation energies: [82]

• 1.5 keV for very shallow NVs (less than 7 nm),

• 2.5 keV for NVs with a depth of less than 10 nm, and

• 5 keV for deeper NVs (up to 20 nm).

As a downside, the depth does not only influence the coherence time, but also the interaction
strength between NVs and spins located on the diamond surface. This makes the choice of depth
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a trade-off between optimal sensing duration and dipolar coupling strengths strong enough to
be detectable. Yet, for both samples, only the spots with an implantation energy of 2.5 keV are
characterised in this work. Thus, all values here can be compared independently of their expected
implantation depth.
Another parameter of the implantation is the dose of nitrogen ions used, which defines the number
of created NVs per implantation area. For the here performed measurements, it is the goal to
measure with well separated specimen, but at the same time sense signals on as much area on
the surface above the NV layer as possible. To achieve both, a variation of implantation doses
ranging from 109 N+

cm2 up to 1012 N+
cm2 is used.

5.1.2 Diamond Sample Identification

The first experiments are performed with sample T001-1, a 35 µm thin diamond slice with nine
different implantation spots, where each spot has a specific density and depth, as shown in the
sample map (Fig. 5.1a).

(a) (b)

Figure 5.1: Images of the 2 mm × 2 mm diamond samples, recorded using a
light-optical microscope with 10× magnification. The implantation spots are
marked with a grid. (a) Sample T001-1 with NVs implanted into the diamond
with natural abundance of 13�. (b) Sample T002-2 with the NVs implanted into a
roughly 100 nm thick layer of highly purified 12�. The implantations were done
by Johannes Lang and the overgrowth was done by Christian Osterkamp, both
from the Institute of Quantum Optics from Ulm University.

During the measurement of various NMR experiments with sample T001-1, it got evident how
the natural abundance of 13� and the thus arising nuclear spin signal disturbed the signals of
interest. Therefore, a second sample, T002-2 with the same height and two implantation spots was
prepared (Fig. 5.1b). The main difference between those two samples is the additional overgrowth
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on sample T002-2 with a 100 nm thick layer of enriched 12� atoms, done before the implantation
step. This nuclear spin-free layer is isolating the subsequently implanted NVs from the nuclear
spins of the seed diamond plate and serves as a calm environment, decreasing interfering signals
from the surrounding area.
To be able to select from a number of known NVs, the areas in the implantations spots have
been characterised and defined in maps, allowing to measure the same sites repeatedly. For both
samples up to 50 different NVs have been measured and named by their sample, their implantation
spot, the measurement map, and the number of measured site. After the implementation of the
_/2-rotation stage, the polarisation axis was incorporated in the nomenclature as well.

5.1.3 Diamond Surface Preparation

Prior to the actual measurements and in order to remove dirt accumulations from the diamond
surface, the diamond samples have be cleaned thoroughly. For this surface cleaning, the diamond
sample is boiled at 130 °C in a three-acid mixture with equal volumes of concentrated sulphuric
acid (�2($4), nitric acid (�#$3), and perchloric acid (��;$4) for three hours. The oxidising
effect of the acid cleaning also leads to the binding of oxygen radicals to the open bonds of the
diamond surface, thus, introducing free electron spins in the proximity of the NVs, required in
some of the performed measurements.
To verify that the measured interactions result from spins attached to the diamond surface, the
same acid cleaning can be used to reset the locations of the surface radicals. After such a reset,
signals from surface radicals would not show the same distance-dependent interactions twice in a
row, whereas signals from electron spins located in the diamond lattice would still be the same.

5.1.4 Coherence Time Measurements

In both samples, only NVs containing 14# as their own nuclear spin were measured. For these,
the transition frequencies of the �= = 0 dips have been used exclusively for the NV manipulation
and magnetic field determination (as described in the vector magnetometry Sec. 2.4.5 and field
vector reconstruction in chapter 6).
In all performed Ramsey measurements (Sec. 3.2.2) the interaction with proximal 13� nuclear
spins are visible. Those measurements also show the shell-dependent coupling strength, as
mentioned in the ODMR introduction in Sec. 3.1.2 and as documented by Dréau et al. [51].
Nevertheless, only a single NV was measured with a 13�-interaction strong enough to be effecting
the ODMR measurement directly (discussed in more detail in Sec. 5.3.2).
Overall, the enriched layer of 12� atop of sample T002-2 led to a lower degree of this effect, due
to the reduced number of carbon nuclear spins in the NV layer. Yet, this also proofs the fact, that
no 13�-free layer was achieved by the overgrowth.
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As it serves as a frequency limit for the electron spin sensing experiments, the )2-time measured
by the Hahn-echo (Sec. 3.2.2) is more important for the performed DEER experiments. To
compare the effect of the overgrowth on the second sample, we subdivided the )2-time into three
categories:

• )2 < 10 µs as short,

• )2 = 10 µs − 30 µs as normal, and

• )2 > 30 µs as long coherence time.

A sample comparison of the )2-time regime fractions, depicted in Tab. 5.1, shows a clear
prolonging effect for the overgrown sample T002-2. The resulting overall higher amount of NVs
with a normal or long )2-time of sample T002-2 offers a bigger selection for all further sensing
experiments of weak dipolar couplings.

Table 5.1: )2-time subdivision into three categories. There were 24 different NVs
measured for sample T001-1 and 22 NVs for sample T002-2. Only values for
comparable magnetic field amplitudes were taken into consideration.

T001-1 T002-2

short ∼ 33% ∼ 9%
normal ∼ 46% ∼ 55%
long ∼ 21% ∼ 36%

Out of the specimen with a long )2-time, almost one third of the measured NVs in sample T002-2
showed a coherence time of more than 50 µs, corresponding to detectable frequencies of down to
a few kHz. Hereof, the most prolonged coherence time is )2 = (79.8 ± 3.4) µs.
Therefore, the overgrown sample T002-2 offers a high number of possible sites for EPR
measurements with a large range of detectable frequencies and thus serves as a suitable sample
for this work.

5.2 DEER Experiments

After the discussion of the parameters influencing the performed sensing measurements, as for
instance the depth and lifetime of a NV centre in the used samples, the detection of electron spins
using different EPR measurements has to be done.

A first and fast proof of the existence of electron spins coupled to the NV centre are the
DEER experiments, as described in the spin dynamics section (Sec. 3.3.1). They directly indicate
resonances of proximal electron spins, yet, they do not indicate the individual source type of
the measured signal. This means that either electron spins in the diamond lattice or atop of the
diamond surface can be the origin of the measured signal. Here, the signal from atop of the
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diamond sample would be generated by spin radicals, or for more advanced measurements spin
labels attached to biomolecules or ionised atoms of the biomolecule additionally deposited atop
of the diamond surface. On the contrary, the internal electron spin signals are most likely to be
generated by P1 centres: isolated nitrogen atoms, substituting single carbon atoms of the diamond
lattice, or other NV-like impurities embedded into the diamond.
Nevertheless, there are various methods to distinguish between the different sources of signals.
Firstly, to determine whether the signal origin is internal or external, the diamond can be acid-
cleaned after the measurements to reset the external electron spin positions and, thus, only lead to
a variation of the induced signal from external electron spins. Secondly, to differ between the
remaining signals of the internal sources, the optical spectra of the measured confocal spot can be
investigated. This leads to an accurate determination of the vacancy specimen or leaves only the
P1 centre as source of the signal.
With all methods for the differentiation of the signal origin available, the next step is to investigate
the manipulation and interaction of electron spins coupled to a NV centre. Therefore, the following
section discusses the performed DEER resonance-, Rabi-, and coupling-measurements in more
detail.

5.2.1 DEER Transition Frequency

Proving the existence of proximal electron spins and at the same time identifying the proper
resonance – or transition – frequency for all further manipulations, the electron spin resonance
measurements are performed ( described in Sec. 3.3.1).

An exemplary result measured at � = (466.4 ± 0.5) G is shown in Fig. 5.2, where both meas-
urements were performed following the pulse sequence depicted in Fig. 3.16. Yet, for the first
measurement, the pp amplitude of the electron spin manipulation c-pulse is set to +pp = 0 mV,
whereas the second part is measured with the amplitude set to +pp = 125 mV. For the ap-
plied magnetic field, the resonance frequency of a spin-1

2 system is expected to be around
aexpect = (1306.2 ± 1.4)MHz.
As the measurements show, this signal is detectable only with a non-zero pulse amplitude and
around the expected transition frequency. The overall lineshape can be described by a Lorentzian
function, similar to the effect for the NV (Sec. 3.1.2), and shows a power dependent width,
narrowing with decreasing MW amplitude as determined in Tab. 5.2. For the lowest values of the
amplitude a convergence of the peak width to a lower bound is identifiable. This lower bound can
arise due to the shorter lifetime of the additional electron spins compared to the long lifetime of
the measured NV centres.
Another way to review the source of the signal is the determination of the gyromagnetic ratio
by variation of the applied magnetic field amplitude. In Fig. 5.3, the resonance frequencies
show a linear dependency corresponding to Eq. 2.14 with the expected gyromagnetic ratio
W4 = 64`1 = 2.8 MHz

G for free electron spins.
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Figure 5.2: Measurement of the DEER resonance transition frequency for the
determination of the external electron spin signal. The readout of the NV spin
state is performed for the bright (green) and dark (red) state spin projection at
the end of the measurement. For the evaluation with a Lorentzian fit function
(orange), the differential signal (blue) is used, calculated as the difference between
both readouts (bright and dark state signals). These measurements on T001-1
Spot9 Map03 NV04 were performed at � = (466.4 ± 0.5) G with Peak-to-Peak
(pp) signal amplitudes +pp = 0 mV (left) and +pp = 125 mV (right) at the AWG.
The MW-pulse duration for the electron spin manipulation was set to g4− = 65 ns.
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Figure 5.3: Measurement of the external electron spin resonance frequency. The
theoretical frequency (dashed dark red) for the spin-1

2 transition is calculated
according to Eq. 2.14. Due to its negligible magnitude compared to the frequency
range, the error of the calculated point is shown exemplary for the first point in the
magnified section of the graph and waived in the overall view.
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Table 5.2: Resonance frequencies determined by the DEER resonance detection of
the spin- 1

2 system including the power-dependent peak width. These measurements
on T002-2 Spot2 Map01 NV03 are performed at � ∼ 242 G. Due to the frequency
range of the amplifier used in this experiment, the resonance peak width measured
at this magnetic field amplitude exceeds the linearity specifications, allowing no
exact statement about the resonance position and FWHM measured with 125 mV.

+pp a FWHM
in mV in MHz in MHz

125 > 100
62.5 676.8 ± 0.8 76.0 ± 6.0
31.25 675.6 ± 0.6 34.0 ± 4.0
15.6 676.3 ± 0.7 25.9 ± 2.7
7.8 676.9 ± 0.5 16.6 ± 1.7
4.0 677.5 ± 0.5 14.0 ± 1.4
2.0 677.3 ± 0.5 15.6 ± 1.9

5.2.2 DEER Rabi

Up to this point, the duration of the MW-pulse is only a rough estimation and therefore, the
next measurement is the determination of the electron spin Rabi-period. This allows to measure
using time-wise matching pulses on the additional electron spins, increasing the contrast to its
maximum. This measurement also follows the sequence shown in Fig. 3.16, however, in contrast
to the DEER resonance, the frequency is kept constant while the duration of the MW-pulse is
varied.
The results in Fig. 5.4 show the electron spin Rabi oscillations for four different MW amplitudes.
With an increasing MW amplitude a proportional increase of the Rabi-frequency Ω is observed,
where the overall proportion of the frequency-to-power dependency in this measurement is given
by 0.9813 ± 0.0005.

According to Sec. 3.3.1 and Schweiger and Jeschke [70], the relation between the Rabi-period of
a spin-1 and a spin- 1

2 system should differ by a factor of 1√
2
∼ 0.707. This estimation is done

for ideal systems without a frequency-dependent signal generation and amplification. For the
here performed experiments the imperfection of the amplifier flatness and signal transmission is
visible in all measurements. For example, shown in Fig. 5.4, the Rabi-period ratio of the two
systems is given by ∼ 0.937 and thus higher than expected.

Overall, by combination of the DEER preliminary measurements, it got evident that the transition
frequency can be directly calculated from the applied magnetic field amplitude. However, the
Rabi-period needs to be determined for each amplitude and field anew to correct for technical
imperfections.
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Figure 5.4: Four DEER Rabi measurements with different AWG pp amplitudes
for the determination of the electron spin response. Changing the AWG pp
amplitude shows a direct proportionality between the driving strength and the Rabi
period Ω. These measurements were performed on T001-1 Spot9 Map04 NV04 at
� = (441.0 ± 0.5) G with the NV parameters (+pp, )Rabi) = (125 mV, 50.8 ns).

5.2.3 DEER Coupling

After the determination of the proper parameters for the electron spin resonance frequency c-pulse,
DEERmeasurements can be performed as described in the spin dynamic and methodology chapter
(Sec. 3.3.1).
In Fig. 5.5, the additional MW-pulse in the DEER measurement leads to a distinct variation of
the originally obtained Hahn-echo signal. The first and striking change of this example is the
appearance of one pre-eminent oscillation, and secondly, a reduction of the NV spin coherence
time. Nevertheless, the reconstruction of the decay required at least two frequencies to describe
the variation of the signal entirely. Following the description of the dipolar coupling in Eq. 3.22,
this behaviour can be explained by one strongly coupled electron spin in close proximity to the
NV centre and a spin bath farther apart and, thus, the superposition of many slightly varied
frequencies.
Those two effects are apparent for all performed DEER measurements, yet most of the measured
NVs show a faster decay more prominently than a strongly pronounced oscillation frequency. This
can be explained by the statistical distribution of the radicals on the diamond surface. As stated
by Sushkov et al. [16], they measured a lower limit of approximately 5 nm as spacing between
surface spins for a diamond similarly treated as the here measured sample. Thus, for an expected
NV-depth of roughly 5 nm, only radicals straight above the NV centre itself can be suspected
to show such a strong coupling. Already a lateral shift of 1 nm of the surface electrons leads to
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a bisection of the expected distance difference between the NV and the most proximal surface
electrons.
As another result of the DEER and the Hahn-echo signal comparison, the free evolution time g
of the maximally measured contrast can be obtained. This parameter is used in further DEER
measurements to maximise and normalise the overall contrast, as for example used in the power
dependent linewidth measurements shown in Tab. 5.2.
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Figure 5.5: Comparison between the Hahn-echo and DEER measurement on T001-
1 Spot9 Map04 NV04 at � ≈ 440 G. The free evolution time for the maximum
contrast in the differential signal of both measurements is used for the highest
contrast in following DEER measurements (g = 6.2 µs for this measurement). It
is visible that the lifetime of the NV is reduced by the second c-pulse ( without
additional pulse)2 = 26.11 µs). Additionally, an oscillationwithl = (76 ± 2) kHz
appears, most likely introduced by a single and strongly coupled electron spin,
proximal to the NV.

According to the theory of the position reconstruction of the quantum spin reporters [16], a variation
of the magnetic field leads to a variation of the dipolar-coupling between the NV and the surface
radicals. This can be understood by reconsideration of the dipolar-coupling Hamiltonian between
electron spins (Eq. 2.15 and Eq. 2.34). Here, the interaction of the spins 8 and 9 is dependent
on two parameters: first, the inter-spin distance

��ri j �� and, secondly, the angle \8 9 between the
spin-connection vector ri j and the magnetic field orientation. While the former parameter is a
constant for bound surface radicals, the latter parameter can be controlled by an alteration of the
magnetic field orientation.

In Fig. 5.6, a magnetic field orientation variation measurement for T001-1 Spot9 Map05 NV02 is
presented. The four different magnetic field orientations at � ≈ 441 G are calculated according
to Balasubramanian et al. [49] and their effect on the NV coherence time is observed. For this
specific site, the Hahn-echo yielded a spin-spin relaxation time of )2 = (15.1 ± 1.8) µs and by
application of the additional electron spin flip, this value got reduced. For small misalignments of
up to 8°, the coherence time got shortened by a factor of roughly 2.5, whereas for the highest
misalignment of 11.8°, it even got reduced by a factor of almost 5.
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Figure 5.6: TheDEER couplingmeasurement performed for four different magnetic
field alignments with respect to the NV axis. Without the manipulation on the
second frequency, the overall NV lifetime is (15.1 ± 1.8) µs. These results were
measured on T001-1 Spot9Map05NV02 at � ≈ 441 G. The variation of the lifetime
due to the additionally introduced interaction is visible in all four measurements.
Furthermore, they show a slight variation in the visible coupling frequency.

In addition to the effect on the overall coherence time, different oscillation frequencies got visible.
For the measurements with 3.2° and 7.7°, the oscillation frequencies are approximately 150 kHz
while for the measurements with 0.3° and 11.8° misalignment, the prominent oscillation frequency
is around 240 kHz.
Yet, a more detailed reconstruction for this set of data was impracticable. This got evident by
a closer analysis of the magnetic field orientation and the resulting lack of information. The
calculated angles \ of the misalignment between the NV principal axis and the magnetic field
orientations are defined by the scalar product between the two directions. Under consideration
of direction independence of those two vectors, the scalar product function is explicit only in
two dimensions. However, the real space is three-dimensional, this results in a cone of possible
magnetic field orientations around the NV axis (described and analysed in more detail in chapter 6).
Concluding thesemeasurements, the lack of information could be overcome bymoremeasurements
with different magnetic field misalignments or by a more detailed knowledge about the magnetic
field orientation in the laboratory frame. Nevertheless, the former solution only holds true if the
electron spins are located on a defined distance with respect to the diamond sample surface, as
for example the depth of the NV for surface spins [16]. For the case of entirely unknown spatial
coordinates of the electron spins, as it is present for biomolecules with attached spin labels

67



DEER Experiments

or radicalised internal atoms, only the knowledge about the three-dimensional magnetic field
orientation allows to reconstruct the inter-spin distances.

5.2.4 DEER Correlation Measurements

As a proof of principle, the DEER correlation measurement is performed to measure Rabi
oscillations on external electron spins. The result in Fig. 5.7a shows the possibility to coherently
manipulate the electron spins in the free evolution time between the two sensing blocks of the
sequence shown in Fig. 3.18.
In order to compare both electron spin Rabi measurements, they are performed on T001-1 Spot9
MapX NV04 using the same MW amplitude of 50 mV for the electron spin manipulation (Fig. 5.7).
Here, the two measurements are in good agreement and yielded a Rabi period of (35.2 ± 0.6) ns
and (35.1 ± 0.4) ns respectively.
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Figure 5.7: Rabi oscillations measured on the external electron spins with the (a)
DEER correlation measurement and (b) the normal DEER Rabi measurement.
These results were measured on T001-1 Spot9 MapX NV04 at � ≈ 303 G with
a MW amplitude of 50 mV for the electron spin manipulation. The measured
Rabi periods are in good agreement with (35.2 ± 0.6) ns and (35.1 ± 0.4) ns
respectively.

This readout and manipulation scheme allows to overcome the )2 limitation of the DEER
measurement by keeping the NV in a pure state, limited by its )1-time. Additionally, this sequence
enables more complex sensing schemes than the DEER measurement. Due to the electron
spin interaction block among the two Hahn-like sensing blocks, also schemes like Ramsey or
Hahn-echos applied to the external electron spins are feasible. Therefore, not only the coupling of
the NV with the additional electron spins, but also their individual couplings can be investigated.
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5.3 Sensing of the NV Environment

Up to now, all presented DEER measurements ultimately rely on the manipulation of the external
electron spins as mechanism for the signal detection. But as already presented in the section about
the DD of the NV (Sec. 3.2.3), it is possible to sense proximal fields by the controlled modulation
of the free evolution times of such DD sequences.
This alternative technique also allows to detect the dipolar coupling between identical external
electron spins, even so their resonance frequencies are the same. Yet, not only signals originating
from electron spins, but also signals due to nuclear spins can be detected. It is therefore necessary
to be able to distinguish the type of spin, responsible for the obtained signal.
Here, the detectable signals are induced by the Larmor precession or the dipolar coupling of spins.
As explained in the derivation of the spin dynamics (Sec. 2.3), those frequencies are dependent
on the magnetic field, the inter-spin distance, and the spin types of the interaction.
For nuclear spins, the Larmor frequency is roughly three orders of magnitude smaller than for
electron spins (comparison of the magnetic moments Eq. 2.13 and Eq. 2.16) and dependent on the
amplitude of the magnetic field. In contrast, the dipolar interaction is dependent on the distance
between the spins and the orientation of the magnetic field. As an estimation, those values can
be calculated for typical parameters of the performed experiments. If the applied magnetic field
amplitude is on the order of 200 G − 300 G, the Larmor frequencies for common nuclear spin
species are on the order of a few hundred kHz up to some MHz (see also Tab. 2.2). At the same
time, the dipolar interaction of electron spins, calculated according to Eq. 2.15 as

add = 6
2
4`

2
B

1
4c`0ℎ

3 cos2 Z − 1
|A |3

= 52.04 GHzÅ3 5 (Z)
|A |3

, (5.1)

is on the same range of frequencies (a few hundred kHz) for an electron inter-spin distance of
5 nm. Yet, by comparing measurements performed for a variation of the magnetic field amplitude
while preserving a fixed orientation with measurements of a fixed magnetic field amplitude but a
variation of the field orientation, the change of the signals clearly indicate their spin specie and
interaction origin.

5.3.1 Depth Determination using DD Protocols

As a first prediction parameter and to estimate the coupling between the external electron spins
and the NV, the depth of the NV can be determined. This parameter can also be used as a upper
bound for their expected coupling strength.
According to Pham et al. [83], the depth of a shallow NV can be determined by its interaction
with hydrogen nuclear spins contained in the immersion oil tipped atop of the diamond surface.
They describe a technique, where the sensing volume dependent field created by the statistical
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distribution of those nuclear spins gets analysed, and thus, the depth of the sensor can be
determined.
In order to do so, the XY-N sequence (Sec. 3.2.3) with the sensing windows timed around the
expected Larmor frequency of hydrogen nuclear spins, as well as the entire decay for the used
order # has to be measured. With those two sets of data, the differential signal contrasts

� =
�bright − �dark

�bright + �dark
, (5.2)

of both measurements can be determined, allowing to correct for noise arising from laser
fluctuations. Afterwards, the signal of the interaction dip has to be normalised by dividing the data
set by the decay of the whole measurement. The resulting dip in the normalised signal contrast
� (g) can be described by the magnetic field fluctuations �RMS of the nuclear spins detected by
the employed XY-N sequence and thus created filter function  (#g): [83]

� (g) ≈ exp
{
− 2
c2 W

2
4�

2
RMS (#g)

}
. (5.3)

In Eq. 5.3, the NV depth dependency of the signal is included by the multiplier �2
RMS (3NV),

describing the magnetic field fluctuations as

�2
RMS = d

(
`0ℏW=

4c

)2
(

5c
9633

NV

)
, (5.4)

with d the particle density of the sensed immersion oil.
In the signal contrast function, the position and shape of the dip is mainly dependent on the
hydrogen spin Larmor frequency l! and XY order # , entering the DD filter function

 (#g) ≈ (#g)2sinc2
[
#g

2

(
l! −

c

g

)]
. (5.5)

If the finite lifetime )∗2 of the diffusing hydrogen nuclear spins is taken into account, Eq. 5.5 has to
be varied and the assumed delta-like nuclear spin response has to be substituted by a Lorentzian
shaped function (derivation and filter function given in Pham et al. [83]).
Nevertheless, this method and evaluation holds true only for a disturbance free system. For the in
this work used diamond samples, proximal 13C nuclear spins are detected at each measured site.
Therefore, the randomisation of the pulse phases, as described in Sec. 3.2.3, has to be used to get
rid of the overlapping signal and at the same time employ the presented method for the NV depth
determination.
As shown in the depth measurement performed on T001-1 Spot9 MapX1 NV03 at (315.9 ± 0.7) G
(Fig. 5.8), the depth of the exemplary measured NV for an implantation energy of 2.5 keV was
determined to be 3NV = (5.5 ± 0.1) nm. Yet, in the measurement of the entire decay, also the dip
of carbon nuclear spins was visible at the expected Larmor frequency with the corresponding
free evolution time of g = 1.48 µs. In order to still be able to reconstruct the NV depth following
Eq. 5.3, the carbon signal can either be subtracted by a signal deconvolution, or circumvented
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by a proper measurement sequence definition sparing the time-steps around the carbon nuclear
response, while later was done for this measurement.
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Figure 5.8: Depth determinationmeasurement result for T001-1 Spot9MapX1NV03
using the randomisation of the XY-N sequence with # = 2. The measurement
was performed at (315.9 ± 0.7) G and yielded a depth of 3NV = (5.5 ± 0.1) nm
for this specific NV. The implantation energy used for Spot9 was 2.5 keV.

Therefore, we are able to determine the depth of individual NV centres, independent of their
coupling to secondary nuclear spin species, and hereby express a upper bound for the coupling
strength to external electron spins.

5.3.2 Effects of Strongly Coupled Nuclear Spins

Since all diamond samples used in the here performed experiments contain carbon nuclear spins,
it is necessary to investigate the effect of such spins onto the detection schemes employed for
electron spin dipolar couplings. Out of these nuclear spins, strongly coupled ones can be used as an
exemplary system, allowing to cross-correlate the various measurement methods and reconstruct
the interaction redundantly.
In order to understand and extract these effects of a strongly coupled 13� nuclear spin, measure-
ments of T002-2 Spot2 Map01 NV08 showing these effects are discussed in more detail.
For this NV, already the pulsed ODMR measurement, shown in Fig. 5.9a, contained an ad-
ditional splitting of the three NV-14N lines. This splitting is approximately 0.65 MHz and
indicates a strongly coupled nuclear spin. While the spin-spin relaxation time is as long as
)2 = (40.2 ± 1.2) µs, the Ramsey measurement showed a multitude of different oscillation
frequencies and a lifetime of )∗2 = (1.97 ± 0.10) µs (Fig. 5.9b).

In order to describe the system, the Hamiltonian containing the interaction of the NV with the
nuclear spin has to be analysed. Following Eq. 2.32 for a single nuclear spin and according to
Taminiau et al. [65], the system can be described using

H = lℎ (cos b (I �I + sin b (I �G) + lLarmor�I , (5.6)
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Figure 5.9: First measurements on T002-2 Spot2 Map01 NV08 at � ≈ 310 G. (a)
Three NV resonance dips measured via pulsed ODMR with an additional splitting
of roughly 0.65 MHz. (b) Ramsey measurement with at least three sine-functions
required for a fit convergence. Both measurements indicate the strong coupling of
a 13� nuclear spin, located very close to the NV.

with the hyperfine coupling lℎ and the angle b between the two components, depicted in Fig. 5.10.
Overall, the first part in Eq. 5.6 describes the interaction of the NV spin with the nuclear spin,
whereas the second part arises due to the nuclear Zeeman effect only. This leads to an interaction,
dependent on the <B = 0,±1 electron spin state of the NV.

�0, I

NV

13�

lLarmor

l

lℎ

b

Figure 5.10: Schematic of the hyperfine coupling between the NV (grey) and a
single 13� nuclear spin (green). The effective precession l is tilted away from
the Larmor precession due to the effect of the proximal NV and the such arising
hyperfine coupling. Based on Taminiau et al. [65].

As a next step and verification of the signal source, the AXY-N measurement was repeated for
different magnetic field amplitudes and the magnetic field orientation aligned with respect to the
NV axis.

As shown in Fig. 5.11, each measurement contains a signal at the expected Larmor frequency of a
nuclear carbon spin l13� = 1.0708 |�| and a second peak with an additional offset. Yet, for a
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Figure 5.11: Measurement of the AXY-2 sequence on T002-2 Spot2 Map01 NV08:
1BC measurement at (241.6 ± 0.3) G, 2=3 measurement at (263.0 ± 0.3) G, 3A3
measurement at (310.2 ± 0.2) G, and 4Cℎ measurement at (359.7 ± 0.2) G. The
peaks at lower frequencies correspond to the Larmor frequency of a 13� nuclear
spin and the peaks at higher frequencies contain the parallel component of the
hyperfine coupling between the nuclear spin and the NV.

variation of the magnetic field, this second peak shifts similarly as the Larmor frequency and can
be explained by the additional �I part of the Hamiltonian (Eq. 5.6). This signal follows

l̃ = lLarmor ± 0.5�I , (5.7)

with the parallel hyperfine coupling component �I = lℎ cos b and the sign dependent on the
sign of the NV electron spin state. According to Eq. 5.7, the first part of the hyperfine coupling
between the proximal 13� nuclear spin and the NV is given as �I = (589.0 ± 1.6) kHz.
Following the description of the AXY-N measurement in Sec. 3.2.3, the perpendicular component
of the hyperfine interaction can bemeasured using the order sweep, as well as the Fourier-amplitude
sweep. The two results in Fig. 5.13 show the outcome for the resonance of the nuclear spin
and both measurements are in good agreement with each other where the order sweep yields
�G = (214.0 ± 0.5) kHz and the Fourier-amplitude sweep yields �G = (221.9 ± 1.6) kHz. Thus,
the hyperfine coupling and the tilt angle b can be calculated according to

�I

cos b
= lℎ =

�G

sin b
, (5.8)

as b = ((20.64 ± 0.20)°, (19.97 ± 0.10)°) and, thus, lℎ = (628.1 ± 1.5) kHz. This result is also
consistent with the results obtained by the pODMR measurement, shown in Fig. 5.9a.
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Figure 5.12: Analysis of the AXY-2 signals, shown in Fig. 5.11. One peak follows
the nuclear Zeeman effect lLarmor = W13� |�| and the second one is shifted due to
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Figure 5.13: Fourier sweep (left) and order sweep (right) measurement result
for T002-2 Spot2 Map01 NV08 at ( |�| = (312.9 ± 0.3) G, \ = (7.2 ± 0.3)°).
The directional coupling component corresponding to Eq. 3.18 is determined
as �G = (221.9 ± 1.6) kHz (Fourier sweep) and �G = (214.0 ± 0.5) kHz (order
sweep). This interaction is introduced by a strongly coupled 13� nuclear spin, only
a few Å apart from the NV.

The here calculated hyperfine interaction of the nuclear spin hints a location in either theM or
N shell of the 13� families, introduced by Dréau et al. [51]. The offset from the here expected
hyperfine coupling (N-shell: 560 kHz, M-shell: 700 kHz) can possibly be explained by an
additional spin, coupled to the system. This would also explain the number of different frequencies
in the Ramsey measurement. Overall, this result is corresponding to a inter-spin distance of the
13� nuclear spin and NV spin of less than 0.6 nm.
Concluding, this section allows to differ between the various signals of nuclear spins and electron
spins measured using DD sequences. Thus, the next step is the determination of electron spin
couplings using the AXY measurement.
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5.3.3 Electron Spin Dipolar Coupling Measurements

In Fig. 5.14, an exemplary AXY-N measurement of T002-2 Spot2 Map01 NV17 at roughly 315 G
is shown. For this site, the measurements have been performed for four different magnetic field
alignments with respect to the NV centre principal axis. The misalignment angles \ are given
between 4° and 7°. Since this particular NV shows no interaction with a proximal carbon nuclear
spin with the expected Larmor frequency around lLarmor ∼ 335 kHz, it is chosen for the further
investigation of the AXY-N signal.
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Figure 5.14: AXY-N measurement of T002-2 Spot2 Map01 NV17. This exemplary
measurement at roughly 315 G is performed for frequencies from 100 kHz up to
475 kHz and using the order # = 2. Shown is the differential signal of the bright
and dark state read-out. Multiple dips are visible, yet no variation of their positions
was detected for a changed magnetic field alignment.

The measurement in Fig. 5.14 shows multiple sharp and narrow dips for lower frequencies
(< 225 kHz) and some broader dips for higher frequencies (> 225 kHz). Nevertheless, no peak
coincides with Larmor frequencies of nuclear spin species usually found in the diamond lattice.
According to Eq. 2.7, a variation of the magnetic field amplitude would result in a change of the
nuclear spin Larmor frequency. Yet, for the performed variation of the magnetic field amplitude,
the measured signals stayed constant and, therefore, the resonances are supposed to be connected
to electron spins in the diamond lattice or atop of the diamond surface. The multitude of narrow
dips at low frequencies could possibly arise due to interference of many electron spin interactions
and the used AXY-N sequence.

Although a variation of the signal is expected for electron spin dipolar couplings conducted by
the magnetic field orientation, this effect was not visible for the four performed misalignment
measurements.
As depicted in Fig. 5.15, the small change of less than 1° in the alignment for the individual
AXY-N measurement results for most angles Z in a variation of around 1 % (angular part of
Eq. 5.1). This value translates for an expected inter-electron spin distance |r | ≈ 5 nm into a change
of the dipolar coupling of roughly 4 kHz at the maxima. Only around the two zero-crossings of
the dipolar coupling, a higher percentage variation is expected. Yet, the dipolar coupling of this
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Figure 5.15: Variation of the dipolar coupling dependent on the angle Z and
an alignment change of 1° between the magnetic field orientation and the spin
connecting vector. Only around the zero-crossing at Z = 54.75° and Z = 125.3°, a
big variation can be determined.

regime is well below 100 kHz and, thus, part of the many narrow dips shown in Fig. 5.14.

In summary, this chapter proofs that a manipulation of electron spins and differentiation between
the participating spin species proximal to the measured NV is possible. Nevertheless, to be able
to discuss the inter-spin distance of electron spins in more detail and, subsequently, determine the
relative spatial distribution of those spins, a more elaborate knowledge of the applied magnetic
field is absolutely essential.
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6 Magnetic Field Vector Reconstruction

Up to now, the required theory and experiments for NV based EPR measurements of the dipolar
coupling between electron spins attached to the diamond surface in the vicinity of the NV have
been described and performed. Yet, it got evident that during the performed measurements,
a crucial information for the reconstruction of the spin position and spin network distances is
missing. Due to the nature of the electron spin interaction described by Eq. 5.1, the coupling
strength of two electron spins is dependent on two factors. On the one hand, on their distance,
and, on the other hand, strongly dependent on the angle between the connection vector of the
spins and the orientation of the magnetic field. The latter one can also be used as a parameter to
tune the dipolar coupling strength by variation of the magnetic field orientation.
In order to achieve this, it is important to be able to reconstruct the magnetic field vector B
in the general applicable laboratory frame decoupled from the individual NV axis. However,
there already exist different approaches for the full determination of the B-field orientation.
Hereof, exemplary methods are based on NV ensembles containing all four NV orientations in
close proximity [84], ensemble based measurements with continuous wave readout and frequency
multiplexing [85], or a strongly coupled carbon nuclear spin in close proximity [86]. Yet, those
methods rely on special prerequisites which have to be fulfilled in order to determine the magnetic
field orientation.
In the following chapter, a more general method without specific attributes of the NV centres is
going to be presented. The description follows Weggler et al. [79] in a more detailed fashion.
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6.1 Theoretical Description of the Model

Based on the previously presented B-field misalignment determination (Sec. 2.4.5), the polar angle
as well as the B-field amplitude can been determined. Nevertheless, due to the C3a symmetry of
the NV, the azimuthal angle cannot be defined by this method. In order to break this symmetry, a
set of NVs with different orientations but exposed to the same magnetic field can be used.
The main idea is to contract the four orientations shown in Fig. 2.2 into one spot with the vacancy
in the centre and the nitrogen atoms in a tetrahedral conformation around the centre position, as it
is shown in Fig. 6.1.

Figure 6.1: Contraction of the four possible NV orientations in diamond (nitrogen
green; vacancy blue). Due to symmetry, the four principal axes connecting the
nitrogen atoms and the vacancy are along the four crystallographic axes [1̄1̄1],
[11̄1̄], [111], and [1̄11̄]. (Image taken and adapted from Weggler et al. [79].)

This can be done as long as the sample, here the individual NV centres, is moved into the
confocal volume and, thus, the magnetic field is identical during all measurements. Hereupon
performing ODMR measurements and misalignment calculations according to Balasubramanian
et al. [49](Sec. 2.4.5) for at least three of the four NV orientations, a triangulation can be performed
where only one possible magnetic field orientation responsible for the individual level shifts can
be determined.
For one single NV orientation, the thus determined angle \ (\

!
≠ 0°) results in a cone like shape

of infinite possible magnetic field orientations with the NV principal axis as rotation axis for the
mapping.
If the knowledge of two different measured NV orientations is combined, this indefiniteness can
be reduced to only four possible orientations, containing a factor of 2 due to the directionality of
the magnetic field vector (point symmetry with respect to the centre of the tetrahedron if only two
axes are considered).
If a third NV orientation is included, this set can be further reduced down to maximally two
possible magnetic field orientations (still containing the factor of 2 due to the point symmetry).
Yet, due to the direction independence of the scalar product and, thus, the direction independence
of the interactions, this leads to a well defined solution in the diamond frame of reference. To
additionally define the magnetic field vector in the laboratory frame, the polarisation anisotropy
measurement (Sec. 3.1.1) has to be extended to be able to differ between the two similarly reacting
NV orientations. This can be achieved by introduction of a second objective atop of the diamond
sample, tilted with respect to the optical beam path (modification shown in Fig. 6.2).
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Figure 6.2: Schematic, illustrating the alternative experimental geometry with
both objectives focused onto the same spot. The excitation is done via the second,
rotatable mounted objective (green optical pathway), which replaces the magnets,
while the detection is still performed with the lower objective (red optical pathway).
(Image taken from Weggler et al. [79].)

The configuration shown in Fig. 6.2 allows to differ between the two NV orientations by intensity
comparison of the fluorescence signal of both axes. If the laser light polarisation is optimised
along one of the two axes, the second axis shows a decreased signal and vice versa.

6.2 Mathematical Description

In order to determine the axis orientation of the magnetic field vector, a mathematical description
of the problem is necessary. Since only the angular components of the magnetic field are
determined, each vector is considered as a unit vector, neglecting its amplitude (length) in all
calculations.

6.2.1 Intersecting Cone Model

Here, the first method is the Intersecting-Cone-Model (ICM), following the vectorial nature of
the underlying physics. After the contraction of the four NV orientations, the cones describing
the misalignment angles \8 for each measured NV axisNV8 are defined by an axis tilted with
respect to the individualNV8 . Subsequently, this exemplary magnetic field vector can be rotated
aroundNV8 , creating a cone of possible field orientations, as shown in Fig. 6.3.
It is important to note, that geometrically those cones do not intersect. As shown in Fig. 6.4, the
measurement, as well as the scalar product return the smaller angles for both axes and, thus, the
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NV1 NV2

NV3
NV4

Figure 6.3: Geometric interpretation of the intersecting cone model. The four
NV axes are shown in black with three exemplary cones for NV1: [11̄1̄](green),
NV2: [1̄11̄](orange), and NV3: [1̄1̄1](blue). The cones intersect in one axis, the
magnetic field orientation vector responsible for the individual levels determined
for the three measured NVs.

sum of two angles result in \8 + \ 9 < 109.47° and is therefore smaller than the angle between two
NV axes. In order to obtain the intersection of the cones, the possible magnetic field orientations
have to be point mirrored with respect to the origin if the misalignment angle fulfils \i > 54.735°.

[11̄1̄][1̄11̄]

B

2\8
2\ 9

Figure 6.4: 2D interpretation of the intersection of cones of themagnetic field vector
for two NV axes. The cones do not intersect due to the direction independence of
the scalar product.

After the definition of the cones, the maximum of the scalar product for all possible magnetic
field orientations has to be searched. However, since the scalar product is independent of the
direction of the used vectors, the point mirroring is only necessary for the pictorial representation
of the intersecting cone model. Without this step, the minimum of the scalar product (anti-parallel
configuration) is the solution of the magnetic field vector.
For the error calculation, the individual cones have to be defined by the normally distributed
angles \ ′

8
∈ [\8 ±Δ\8], leading to a rhombus-like shaped surface area of the unit sphere as angular

error interval.
A major drawback of this method is the required computing time of the reconstruction which
follows a ) ∝ =3 behaviour, with = the number of individual cone vectors. For the sake of
simplicity of this approximation, = is assumed to be equal for the three cones, nevertheless,
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it should be chosen proportional to the cone angle \. Due to the strong dependency of the
reconstruction accuracy on the cone granularities, a multitude of scalar products are necessary
to achieve an error of less than 2°. Yet, a speed-up can be achieved by a ranged divide and
conquer method, reducing the number of calculations by a factor of 2<, with < the number of
steps necessary for the algorithms convergence. Therefore, a rougher resolution is used for the
first step and then, the resolution is stepwise increased in a range around the possible intersections,
with the range dependent on the previous granularity.

6.2.2 Intersection of Spheres

In order to reduce the runtime complexity and increase the calculation accuracy, a varied
description of the formalism can be used. Therefore, the magnetic field cones are cut with the unit
sphere encircling the four NV axes. This cut can mathematically be described by the intersection
of the unit sphere and spheres around the endpoints of the (normalised) NV axes. The radii of
those endpoint spheres are defined by the opening angles of the magnetic field cones as shown in
Fig. 6.5.

[11̄1̄]
\
\

B

r

Figure 6.5: Utilisation of the law of cosine for the determination of the radii for
the endpoint spheres, exemplary shown for the NV axis [11̄1̄], the magnetic field
B, and the respective cone angle \.

Those radii r8 , can be determined by the law of cosine for non-rectangular triangles

02 = 12 + 22 − 212 cos(U), (6.1)

with the angles opposite to the side labelled with the corresponding Greek letters. Since the
magnetic field vector and the NV axes are taken as normalised vectors, the individual radii are
calculated as

A8 =
√

2 − 2 cos(\8). (6.2)

Followingly, the endpoint spheres are determined by

(G − sgn(#+8,G)1)2 + (H − sgn(#+8,H)1)2 + (I − sgn(#+8,I)1)2 = A2
8 , (6.3)

with the signum function extracting each particular axis direction (sign) of the NV axes. The
intersection of two spheres in three dimensions results in a plane equation, describing the plane
which contains the intersection circle of the spheres (intersection of spheres essential). Therefore,
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the final planar equation containing the circle with all possible magnetic field orientations for the
8-th NV axis is given as

sgn(#+8,G)G + sgn(#+8,H)H + sgn(#+8,I)I =
√

3 cos (\i) . (6.4)

In comparison to the intersection of cone model with a direction independent scalar product,
this calculation relies on a real point of intersection for the magnetic field vector determination.
Therefore, it is important to perform the pointmirroring and, thus, themirrored angles \ ′

8
= 180°−\8

are used in Eq. 6.4 if the individual misalignment is larger than 54.735°.
In order to determine the final solution vector describing the magnetic field vector, a set of three
equations (Eq. 6.4) has to be used. As long as those three planes are linearly independent (not
parallel), they intersect in exactly one point for an error-free problem or have a single smallest
distance point if the misalignment angles are defective.

6.2.3 Error Calculation

If a set of three plane-equations (Eq. 6.4) for three different NV axes is solved at once, the
individual errors are combined and only the mean value is taken into account. This is visible in
a non-unit length of the solution magnetic field vector. If for instance one misalignment angle
is more defective than the others, this would lead to an averaging in the solving of the set of
equations and, thus, a neglect of the distorted character of the measurement. The error would
mainly contribute to the length of the solution vector |B |, a not considerable parameter due to the
restriction of a normalised problem.
A possible solution for this purpose is the additional information about the length of the solution
vector

|B | = �2
G + �2

H + �2
I ≡ 1. (6.5)

The condition of Eq. 6.5 allows to obtain three sets of each time three equations. Hereof, each
individual set of three equations consists of twice Eq. 6.4, the permutations of two NV orientations
8, 9 taken out of the four possible orientations (for example NV1 with \1 and NV2 with \2),
and once the normalisation condition of Eq. 6.5. In Fig. 6.6, a 2D projection into the angular
components of the resulting solution vectors is shown. In order to combine the results of the three
solutions, a covariant distribution, emphasising the distorted character of the measurement can be
used.
For the particular solutions shown in Fig. 6.6, each time one million samples are taken from the
normally distributed angles \8, 9 ±Δ\8, 9 and solved individually. For the final magnetic field vector,
the expectation value µ and its standard deviation � are defined as the centre and covariance
matrix describing the smallest enclosing ellipse, which contains 95.5 % of all simulated points.
Due to the interest in the angular components of the magnetic field vector, a bivariate normal
distribution withB,x ∈ R2 and � ∈ R2G2 and the probability density function

?(x;B,�) = 1
2c |� |1/2

exp
{
−1

2
(x −B))�−1(x −B)

}
(6.6)
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Figure 6.6: Angular distribution (q and k) for a B-field orientation vector recon-
struction. The expectation value µ and its standard deviation � are shown in black
with the standard deviation intervals Σ, 2Σ, and 3Σ. They describe a smallest
enclosing ellipse, containing 68.2 %, 95.5 %, and 99.7 % of all simulated points.
The three distributions shown in yellow, green, and blue represent the solutions of
the three individual sets combining two different NV axes at one.

is used for the calculation.

6.3 Measurements and B-Field Vector Reconstruction

As proof of principle, a variety of magnetic field reconstructions have been performed. For
this purpose, the first measurement is aimed towards the determination of an achievable error
margin and, thus, high resolution pODMR measurements with minimised linewidth are required.
The second measurement series is performed to monitor the reproducibility and accuracy of
the determination for a known magnetic field change. At the same time, a time consumption
estimation allows to classify the usability of this method.
Therefore, the following section describes the sequence of measurements to determine the 3D
magnetic field vector in more detail.

6.3.1 Fluorescence Anisotropy

The first necessarymeasurement for themagnetic field reconstruction is the fluorescence anisotropy
measurement (Sec. 3.1.1). This allows a first differentiation between the possible NV orientations
into two 2-tuples containing NVs of the ab-pol (marked grey in Fig. 6.7) and the cd-pol (marked
white in Fig. 6.7).
As shown in Fig. 6.7, this defined map allows to measure with various NVs of the same polarisation
orientation without a further extensive search. Therefore, two confocal images with the laser
polarisation rotated accordingly are recorded and the fluorescence signals are compared. For
more closely characterised sites, also the specific fluorescence anisotropy measurement as shown
in Fig. 3.2 is performed.
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Figure 6.7: Fluorescence scan of the used sample area. This scan shows a part of
T001 Spot2 Map01 with the tagged NVs used for the measurements. The colour
coding is dependent on the fluorescence anisotropy, magnetic field parallelism,
and measure-ability: Marked with a grey background are NVs of the ab-bol while
the white background is used for those NVs of the cd-pol (see Sec. 3.1.1). The
red and green shows the differentiation between the magnetic field effect on the
NVs of one polarisation direction. Additionally marked are uncharacterised sites
in magenta and blinking sites in cyan.

6.3.2 Straining Effect of a Misaligned Magnetic Field

As the fluorescence anisotropy measurement only yields a partial differentiation, another way to
further distinguish between the NV orientations is needed. Therefore the influence of a specifically
oriented magnetic field onto the different NVs can be employed.
If the magnetic field is aligned parallel to one of the two NV orientations of one polarisation
direction, the misalignment angle for the second axis is roughly 70°. Thus, the fluorescence signal
of the NVs of the misaligned axis is strongly decreased compared to the ones with an aligned
field. This allows to differ between the final two orientations shown in green and red in Fig. 6.7.
Additionally and according to Eq. 2.28, the resonance frequencies are dependent on the field
orientation angle \. Thus, already for a weak magnetic field of around 20 G, a clear shift of the
ODMR resonance dips can be detected, allowing to verify the assignment even more sufficient.
Putting those measurements into a nutshell, it is possible to distinguish between the four possible
NV orientations already using simple confocal measurements. This selection allows to define sets
of NVs to perform the magnetic field reconstruction measurements.
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In Fig. 6.8, the pODMR measurements of a set of three different NV orientations performed at
the same magnetic field is shown. Here, the orientation dependent transition frequency positions
are clearly visible.
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Figure 6.8: Pulsed ODMR measurement results for three different NV orientations,
normalised to the individual maximum Rabi contrast. The relative contrast of the
fluorescence signal is shown in blue with the Lorentzian fit drawn in orange. For
NV1, the transition frequencies |0〉 → |−1〉 (a) and |0〉 → |+1〉 (b) with angle
\1 = 13.42°. For NV2, the transition frequencies |0〉 → |−1〉 (c) and |0〉 → |+1〉
(d) with angle \2 = 62.89°. For NV3, the transition frequencies |0〉 → |−1〉 (e)
and |0〉 → |+1〉 (f) with angle \3 = 66.61°. To obtain a comparable linewidth, all
measurements are performed with a Rabi period of Ω ≈ 1.58 µs while subject to a
B-field with |�| ≈ 230 Gauss.

Also striking is the asymmetric shift of the nuclear spin dependent resonance splitting. Here,
the energy shift between �= = −1 and �= = 0 for the <B = −1 transitions and between �= = +1
and �= = 0 for the <B = +1 transitions gets smaller compared to the individual second splitting.
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In order to investigate this behaviour in more detail, a single NV centre (T002-2 Spot2 Map01
NV46) is measured at roughly 230 G for different magnetic field orientations ranging from almost
0° misalignment up to 60° misalignment. In Fig. 6.9, the four frequency differences are shown.
For both electron spin transitions, the splitting to the lower frequency dip gets reduced, while the
splitting to the higher frequency dip gets increased.
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Figure 6.9: Asymmetric shift of theNV transition frequencies due to the 14# nuclear
spin interaction. The measurements (dashed lines and points) are performed for
both NV electron spin transitions: (a) <B = |0〉 → |−1〉, and (b) <B = |0〉 → |+1〉
on T002-2 Spot2 Map01 NV46. Additionally, the corresponding theory curves are
shown as solid lines.

This effect can be seen by a closer investigation of the effecting transition Hamiltonian. Therefore,
the NV contributions of the ZFS Hamiltonian (Eq. 2.25) and electron Zeeman Hamiltonian
(Eq. 2.28), as well as the nuclear spin contribution of the hyperfine splitting Hamiltonian (Eq. 2.31)
have to be considered. Additionally, the Larmor frequency term of the nuclear spin, similar to the
electron Zeeman effect has to be taken into account via

H = l14# (cos \ �I + sin \ �G) . (6.7)

Solving this eigenvalue problem numerically, a misalignment dependent level splitting can be
observed. The corresponding theory curves are also shown in Fig. 6.9, standing in qualitative
agreement with the obtained asymmetry.

6.3.3 Reconstruction of the Magnetic Field Orientation

If the magnetic field reconstruction is applied to the measurement data of the first set of
measurements shown in Fig. 6.8, a single solution magnetic field vector is obtained. The result
shown in Fig. 6.10 contains the B-field vector, the covariance distribution of the error, and the
four NV axes.
The simulation yields as solution B-field vector angles
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NV1 NV2

NV3
NV4

Figure 6.10: Result for the reconstruction of the B-field vector(solid blue) using
the data from Fig. 6.8. For the simulation, the axes [11̄1̄], [1̄11̄], and [1̄1̄1] are
used with the red area representing the angular covariance distribution of the result
(500 random points shown from the 107 points of the calculated distribution).

���123 (q, k) =
(
−33.46°
116.50°

)
(6.8)

with the corresponding covariance matrix

ΣΣΣ123 =

(
0.35° −0.05°
−0.05° 0.16°

)
. (6.9)

These results show an error of less than 0.4° in both components with a small ellipticity (small
off-diagonal elements), thus a good agreement of the three measured axes. If for instance the
pODMR result of one of the NV axes is replaced by the measurement of the fourth axis, the
same result should be obtained. Yet, due to the huge misalignment of \4 = (83.21 ± 0.13)°
measured for the [111] axis, the pODMR measurement shows a very low contrast and, thus, also
an imprecise fit result for the actual resonance frequency (measurement shown in Fig. 6.11).

If the simulation is performed for a combination of the first, second, and fourth NV axes, the
solution B-field vector angles are

���124 (q, k) =
(
−34.42°
115.86°

)
(6.10)

with the corresponding covariance matrix

ΣΣΣ124 =

(
3.8° 2.4°
2.4° 1.6°

)
. (6.11)
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Figure 6.11: pODMR measurement for the [111] NV axis. The fluorescence
signal is shown in blue with the Lorentzian fit drawn in orange. The transition
frequencies (a) |0〉 → |−1〉 and (b) |0〉 → |+1〉 with the resulting misalignment
angle \4 = 83.21°.

Overall, a good agreement between the two results is obtained. Yet, the larger uncertainty
due to the noisy measurement of NV4 in the second combination leads to a larger error with a
pronounced ellipticity, confirming the poor angle determination in the case of a largemisalignment.

In the second set of measurements, the linear magnet positions (G, H, and I) have been kept
constant. However, the rotation stage of the magnet was rotated in 10° steps, starting from a NV
axis misalignment of roughly 12° and ranging up to 32°. In order to minimise the measurement
duration, only common ODMR measurements are performed.

Table 6.1: Magnet position and resulting magnetic field vector simulation for the
stepwise rotation of the magnet stage. These measurements are performed on a
set of four NVs: T002-2 Spot2 Map01 NV09, NV10, NV31, NV32. The linear
axes of the magnet stage are kept constant at G = 69.90 mm, H = 93.20 mm, and
I = 272.75 mm. The given B-field values are taken for NV1.

Magnet angle B-field amplitude B-field vector Covariance
and misalignment angles matrix

98.8° 251.1 ± 0.2
12.3 ± 0.2

(
−36.65°
115.58°

) (
0.53° −0.05°
−0.05° 0.22°

)
108.8° 246.1 ± 0.1

22.42 ± 0.07

(
−30.67°
106.81°

) (
0.12° −0.16°
−0.16° 0.22°

)
118.8° 240.2 ± 0.2

32.49 ± 0.07

(
−25.56°
98.17°

) (
0.23° −0.33°
−0.33° 0.48°

)

As the results in Tab. 6.1 show, the obtained errors are still on the order of maximally 0.53° and
thus comparable to the error obtained for the case of pODMR measurements, resolving the exact
transition frequencies. Comparing the resulting three B-field vector solutions, the first rotation
led to a variation of the B-field vector of 10.39°, the second rotation yielded another change of
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9.98°, and the overall difference between the first and the third rotation angle is 20.37°. As it is
also visible in Fig. 6.12, the stepwise rotation of the magnet stage led to a continuous rotation
of the reconstructed magnetic field vector confined to a single plain. Additionally, the obtained
angle change superposes with the applied rearrangement of the magnet stage, confirming the
reproducibility, as well as the accuracy of the developed method.

NV1 NV2

NV3
NV4

Figure 6.12: Reconstruction of the stepwise change of the magnetic field vector
alignment. The three solution magnetic field vectors are drawn in blue with the 10°
steps (red) of the rotation confined into a single plane. For the sake of visibility,
the covariance error distributions are not shown.

In terms of required measurement time, the measurements for a single magnetic field vector
reconstruction can be reduced to four measurements. These are twomeasurements to determine the
B-field amplitude and the misalignment with respect to the first NV axis, and two measurements
of either the <B = |0〉 to <B = |−1〉 or <B = |0〉 to <B = |+1〉 transition for the two additionally
required axes. With those values, the missing two transition frequencies can be calculated,
solving the eigenvalue problem as described in Sec. 6.3.2. Therefore, the measurements for one
magnetic field vector reconstruction are in the range of 30 min − 60 min. For the simulation, the
calculation of a single point is on the order of a few µs, thus not contributing to the overall duration.

Concludingly, the here presented method gives the ability to determine precise information about
all three components of the magnetic field. This allows to furthermore determine the angular
difference of various magnetic field vectors applied to a NV centre, or a network of interacting
electron spins.
Combining this knowledge with the performed EPR measurements presented in chapter 5, it is
possible to gather the information, necessary for the reconstruction of the dipolar interaction
between electron spins.

89





7 Electron Spin Distance Reconstruction

In order to gather all prerequisites necessary for the determination of the inter-electron-spin-
distance, all previous chapters are dedicated to the comprehension of the sensor (chapter 2), the
applied measurement schemes (chapter 3), and the underlying mechanisms as dipolar coupling and
the magnetic field reconstruction (chapter 5 and chapter 6). However, no explicit reconstruction
of the distance or position of the electron spins has been presented yet.
In the following chapter, a framework for a possible method to simulate the spin network and the
distance between those spins is introduced. This method is based on the data obtained by DEER
(Sec. 3.3.1) and AXY-N (Sec. 3.2.3) measurements and methodologically related to the ICM
(Sec. 6.2.1). To understand the connection, an inversion of the ICM has to be considered: Similar
to the reconstruction of the magnetic field vector, the orientation of a NV can be reconstructed
by ODMR measurements, however, for the inverted method three know magnetic field vectors
are used and the ODMR measurements for each field are performed on a single NV. In this case,
the intersection of the three cones around the magnetic field orientations is achieved only in the
underlying NV axis.
In the following chapter, a similar principle is used for the reconstruction of the underlying
electron-spin distance of a measured set of dipolar interactions.
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7.1 Intersecting Cone Model Revisited

Comparable to the ICM, the principle of the electron spin distance reconstruction is as single
underlying vector contained in all cones around the magnetic field vectors passed to the simulation.
Once again, only the orientation of this vector is of importance, neither the length, nor the spatial
location directly contribute to the model.
In order to reconstruct this vector, first, the distance space

[��ree,min
�� , ��ree,max

��] is sampled in
steps, with the step size and distance interval being free parameters strongly influencing the
time consumption and accuracy of the simulation. For each element of this distance space, the
simulation is done once, calculating the most-likely solutions responsible for the passed dipolar
couplings.
In the second step, the distance samples A8 and the dipolar couplings a33, 9 , where 9 denotes each
element of the set of measured dipolar couplings, are used to calculate an array of possible angles
responsible for the individual dipolar couplings a33, 9 . Due to the underlying angle dependent
function of the dipolar interaction, : can range from zero up to four, therefore, up to four angles
Z: (: ∈ [0, 4]) can be responsible for a sole dipolar coupling strength. Considering only the angle
dependent part of the dipolar interaction (see also Eq. 5.1)

a33, 9 =

(
3 cos2 Z 9 ,: − 1

)
5

(
|A |3

)
, (7.1)

Fig. 7.1 shows the regions with two (green) and four (red) solutions for a given distance A8 .

c
2

cZ ′ Z ′′
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2

Z

��3 cos2 Z − 1
��

Figure 7.1: Angular dependency of the electron spin dipolar interaction, showing
the two regions with two (green area) and four (red area) possible solutions.

Due to the absorption of the interaction sign, the codomain of
(
3 cos2 Z 9 ,: − 1

)
is restricted to

[0, 2], thus combining the possible solutions Z: between Z ′ = 35.27° and Z ′′ = 144.73°. Due to
the pseudo-random values of the sample distances A8 , zero solutions are possible if the measured
interaction strength is higher than

a33, 9 > 2 5

(
|A8 |3

)
. (7.2)
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This second step has to be done for each dipolar coupling a33, 9 individually, resulting in

 =
∏
∀ 9
: (a33, 9) (7.3)

possible solutions. Due to the decreasing dipolar coupling strength for an increasing distance A8 ,
this equation has a minimum for an overestimation and a maximum for an underestimation of the
inter-spin-distance. Therefore, it can be useful to implement a break after convergence, and at the
same time starting with

��ree,max
�� while decreasing the distance.

As final simulation step for one sampled value A8, the overlap of the obtained possible solutions
has to be calculated. This is done by the ICM method, creating cones with the obtained possible
solution angles Z 9 ,: around the magnetic field vectorsB 9 . For those cones the extreme value of
the scalar product has to be found for each combination of each time two out of the 9 cones of
all  solutions. It is apparent, that the granularity of the sampled cones, similar to the original
ICM, drastically impacts the runtime of the simulation. In the overlap calculation, a confidence
interval for the acceptance can be defined, usually set to 95 %, reducing the returned space of
false possible solutions tremendously.
In order to obtain the final solutions, the returned solution vectors have to be used to re-calculate
the dipolar couplings resulting for the given conformation. By comparison with the dipolar
couplings obtained by the original measurement, the space of false possible solutions can be
reduced even further. Here, the deviation can be calculated according to

Δadd =

∑
∀ 9
(a33, 9,sim − a33, 9,meas)2


1
2

, (7.4)

eliminating all sets with a deviation higher than a threshold value Δadd,max. Since the comparison
also takes the orientations and thus, the angle between the spin connecting vector and the magnetic
field vector into account, a minimum of Eq. 7.4 is found for the underlying inter-electron-spin
distance and orientation.

7.2 Functionality- and Quality-Test of the Simulation

For the validation of the simulation, first, three magnetic field vectors have to be assumed. This is
done twice to compare the solutions for the same electron spin distance reconstruction.
The first set (Fig. 7.2a) starts with one B-field aligned along NV4 ([111]), and the other two freely
rotated with respect to this axis by each two random rotations between 0° and 180°. The second
set (Fig. 7.2b) takes the same rotation angles, but starts with the first B-field axis aligned along
NV3 ([1̄1̄1]). Yet, both starting orientations can also be chosen without any further restrictions.
Here, they are aligned along the NV axes due to simplicity and because measurements would be
done in a same manner.
Secondly, as the intention is to verify the reconstruction of an electron spin distance, an arbitrarily
oriented electron spin connection vector of length |ree | = 5 nm is defined. For this vector, both
sets of the three magnetic field orientations are used to calculate the dipolar interaction strengths,
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normally obtained through the measurement. It is important to note that due to the measurement
scheme (AXY-N measurement presented in Sec. 3.2.3), the sign of the dipolar interaction gets
neglected and thus, only the positive values for the dipolar interaction strengths are determined.
Using those three dipolar interaction values without the inter-spin distance, the simulation is
monitored for its convergence by reconstructing the underlying electron spin connection. As
given in Tab. 7.1 for the set shown in (Fig. 7.2a), the reconstruction shows a good agreement with
the obtained dipolar interaction (smallest Δadd) for the originally used values.

Table 7.1: Electron spin distance reconstruction for a simulated system of two
electron spins measured for three magnetic field orientations. The first row (green)
shows the values from the system simulation (ground truth), while the red marked
rows show the configuration with the smallest deviation to the simulated values.
Only the subspace for 5 nm is given, though the reconstruction is performed for
possible distances ree ∈ [4.2, 5.8] nm with a step size of 0.1 nm.

|A44 | add,1,sim add,2,sim add,3,sim Δadd

in nm in kHz in kHz in kHz in kHz

5.0000 437.4888 153.4428 568.4867 0
5.0000 326.8971 79.3405 440.5122 184.6596
5.0000 -341.8694 -366.6680 -330.4881 333.5437
5.0000 437.6176 -152.5171 568.1585 0.9905
5.0000 -326.8658 -388.6853 -313.1909 364.3521
5.0000 -138.4508 -330.4792 -95.9731 586.5448
5.0000 -205.7582 -351.2722 -173.5698 498.7934
5.0000 -212.7618 -280.5646 -181.6440 465.0908
5.0000 -165.3552 -248.9485 -126.9904 527.3491
5.0000 -165.3552 -248.9485 -126.9904 527.3491
5.0000 -212.7618 -280.5646 -181.6440 465.0908
5.0000 -205.7582 -351.2722 -173.5698 498.7934
5.0000 -138.4508 -330.4792 -95.9731 586.5448
5.0000 -326.8658 -388.6853 -313.1909 364.3521
5.0000 437.6176 -152.5171 568.1585 0.9905
5.0000 -341.8694 -366.6680 -330.4881 333.5437
5.0000 326.8971 79.3405 440.5122 184.6596

In Tab. 7.1 two rows are highlighted as possible solutions. Both describe the same problem, but
due to the use of the scalar product in the simulation, they are the anti-parallel solution vectors
resulting in the same dipolar coupling strengths.
Comparing both reconstructions shown in Fig. 7.2, the simulation converges towards the same
result vector even so very different starting problems are passed. Yet, it got evident that dependent
on the orientation difference between the B-field vectors and the solution electron spin connection
vector, the simulation can be very time and resource consuming. In order to avoid these problems,
a break condition and a divide and conquer like algorithm can be implemented, reducing the
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Figure 7.2: Result for the reconstruction of the electron spin distance. (a) The first
set of three B-field vectors (blue) with the first vector aligned along NV4. The
other two vectors are obtained by random rotations of the first B-field vector. (b)
The second set of three B-field vectors (blue) achieved by the same rotation angles,
yet NV3 as starting axis. For both reconstructions, the same electron spin vector is
used and the solution is shown as the intersection of the three cones (red vector).

calculation effort.
Since the magnetic field vectors are not the same for all problems, a solution similar to the
intersecting sphere model (Sec. 6.2.2) can not be implemented. Such a model would require fixed
axes for the creation of a general and well defined system of equations.
Overall, this method opens up a reliable possibility to reconstruct the distance between two
electron spins, based on the interaction measured by the help of a NV centre. Although an
individual reconstruction is time costly, it needs to be done only once for a given set of interacting
spins, thereby, lessening the effect of the long calculation time in relation to the measurement time
of the contributing dipolar interactions. Furthermore, due to the structure of the simulation, it is
possible to extend the number of reconstructed electron spin distances. In doing so, the number
of possible solutions calculated in Eq. 7.3 increases due to the increasing number of interactions
between = electron spins with (

=

2

)
=

=!
2(= − 2)! (7.5)

individual interactions.
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8 Conclusion and Outlook

This thesis worked towards the reconstruction of an interacting electron spin network, attached
as spin-labels to specific sites of biomolecules, such as enzymes or proteins. For this purpose,
shallow NV centres in diamond are considered as possible sensors, susceptible enough to measure
the interactions on a single molecules level. In particular, we want to reconstruct the distance
between individual electron spins based on measurements of their dipolar coupling.

In the first experimental part of this work (chapter 5), we showed that it is possible to use shallow
NVs as sensors to measure magnetic resonance signals arising from proximal spins. Furthermore,
we are now able to distinguish between electron and nuclear spins, dependent on the sensed
interaction and the signal response to a variation of the magnetic field. In order to simplify
the detection of electron spins, the demanded go-to targets for the distance reconstruction of
molecules, we demonstrated the feasibility of the resonant MW manipulation and spin state
sensing of non-NV electron spins, using various NV-based readout methods. Following the results
of these EPR sensing measurements, a lack of information about the magnetic field orientation
became evident, prohibiting a distance reconstruction with the measured electron spin resonances.
In the second part of this thesis (chapter 6), we established a reliable method to reconstruct the
three-dimensional orientation of an arbitrarily oriented magnetic field vector applied to the NV
centre and its vicinity. This new method allows to obtain all necessary information for the distance
reconstruction with a now defined set of measurements. Nevertheless, the results described in
chapter 5 cannot be re-evaluated due to the required set of measurements unknown in the first
place. Due to the simplicity of the used optical setup and, at the same time, the absence of
specific requirements of the employed NV centres, this method is generally feasible and can be
performed on most setups and samples without any further complications. This feasibility through
simplicity therefore allows us to characterise the magnetic field at the focus of the objectives
confocal volume universally, even more, to use this method as an actual calibration for other
non-NV-based measurements.
In the last part (chapter 7), we designed a framework to simulate the electron-spin-network
configuration, more explicitly, the distance and interactions between the networked electron
spins. The used quantities for this reconstruction are dipolar couplings and magnetic field vectors,
measurable with the presented measurement sequences, calculations, and the NV as sensor. In
order to test the distance reconstruction we used artificial systems of electron spin configurations,
showing a reliable convergence of the reconstructed electron spin network independent of the
pseudo-measured input. Up to now, this spin-network reconstruction is implemented for only two
interacting electron spins, however, the framework here easily allows for an extension with only
minor modifications of the code. Yet, due to the mathematical complexity of the reconstruction,
this increase of networking spins results in a major increase of the average calculation time.
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Recapitulating, we were able to prove the potential of using NVs in diamond as EPR sensors
and developed the framing theory and evaluation to combine all necessary quantities for the
reconstruction of an interacting electron spin network. From here on, the next step is the
reconstruction of the position and distance of an actual spin system, such as surface radicals,
commonly located on the diamond surface after a tri-acid cleaning [16]. Due to their stable location
on the diamond surface, they present an elementary system with a reduced number of degrees of
freedom, as for example a fixed height and no disruptive translation or rotation as flexible linkers
would exhibit. Therefore, they can now be used to further investigate the still unknown effects of
the various parameters on the AXY sensing measurements (exemplary measurements described
in Sec. 5.3.3).
After reconstructing the spatial structure of the surface radicals, it is important to increase the
degrees of freedom in a well-controlled manner. One way to achieve this may rely on DNA
origami structures. These structures can be designed to label site-specifically, allowing to create
an electron spin network with a desired number of spin labels in defined distances with respect
to each other. [87] This step can be divided into two tasks: the nano-positioning of the DNA on
the diamond surface and stabilising the photo-stability of the electron spin labels. Considering
the first task, one solution to position and bind the DNA onto the diamond may be based on
carboxylation, a surface functionalisation method allowing to tether DNA strands to hydroxide
ions on the diamond surface. [88] Alternative ways are offered by diamond surface treatment as
used for nano-diamonds, attaching DNA-origamis via charge and hydrophobic interactions in
order to have fluorescent centres in close proximity. [89] Now, further considering the second
task, the electron spin labels require a higher photo-stability, otherwise prohibiting long DEER
measurements due to photo-bleaching of the antennas. [17,88] Here, various improvements can be
done. Firstly, and following the measurement schemes presented in chapter 5, the performed
sensing schemes can be optimised in terms of measurement time, reducing the photo-bleaching
effect by a shorter measurement duration. Secondly, and in order to overcome the short lifetime,
different labelling schemes, such as as ionised metal ions, can be used as more stable spin labels.
Here, different metal centres as �D2+ or "=2+ were already established in DEER experiments
performed with biomolecules, proving to be reliable and stable antennas for dipolar coupling
measurements. [90]
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9 Appendix

A.1: Unitary Transformation

In order to investigate interactions in quantum mechanics and quantum optics, a commonly used
tool is the unitary transformation into the rotating frame. In order to resolve part of the time
evolution, this transformation allows a change of the reference frame, resulting in a more simple
system to interpret.
If the system HamiltonianH( is assumed to be in the Schrödinger picture, the time evolution of
the state |Ψ〉( can be calculated as

8ℏ
m |Ψ〉(
mt

= H( |Ψ〉( . (9.1)

Taking the unitary operator* = 48
�C
ℏ with � a hermitian operator, the state transformation from

the Schrödinger picture into the rotating frame is

|Ψ〉 = * |Ψ〉( . (9.2)

Combining Eq. 9.2 with the Schrödinger equation (Eq. 9.1), it transforms as

8ℏ
m* |Ψ〉(
mt

=8ℏ*
m |Ψ〉(
mt

+ 8ℏm*
mt
|Ψ〉(

=

(
*H(*† + 8ℏ

m*

mt
*†

)
|Ψ〉( (9.3)

Hence, the transformation into the rotating frame is given as

H = *H(*† + 8ℏ
m*

mt
*†. (9.4)
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Figure 9.1: Fluorescence signal of the NV for a 3 µs laser pulse. The green data
illustrates the signal obtain for the NV initially in the bright state, while the red
data corresponds to the fluorescence signal for the NV initially in the dark state.
For the normalisation, the count signal after gref ∼ 1.5 µs is used. The sum of
counts framed by the dashed lines and the fluorescence signals are used for the
state read-out (0 ns − 300 ns) and the normalisation (1500 ns − 1800 ns) of the NV
spins state.

A.2: Readout and State Information

In order to optically initialise the NV in the <B = 0 ground state, a green laser (532 nm) has to be
applied to the NV for roughly 1 `s. The optical excitation allows an all-optical read-out of the
initial NV state by detection of the fluorescence signal. [20]

For the determination of the initial state of the NV, the laser illumination is prolonged and lasts
3 `s. In the first 300 ns of this illumination, the NV initial spin state information is contained.
The acquired counts during this illumination are used as NV state signal. The second part after
1.5 `s contains the steady state signal of the bright state <B = 0 and is used as NV reference signal
(exemplary data shown in Fig. 9.1).

For the calculation of the fluorescence signal, the signal of both intervals are compared:

Intensity =
NV state signal

NV reference signal
. (9.5)

During the performed experiments, the average count rate is between 50 k#
B
and 150 k#

B
. Therefore,

the expected number of incident photons during the 300 ns of the NV state signal detection is
roughly 0.01 − 0.05. For the purpose of signal identification, the signal has to overcome the
photon shot noise limitation

√
# of the # detected photons, and, thus, it is essential to repeat the

individual read-out many times:
In terms of the in this work used resonance detection methods, as for instance the XY and AXY
methods and a sensed frequency of ∼ 300 kHz, this results in ∼ 105 detection intervals per second.
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A single sequence with an alternating read-out consists normally of ∼ 400 points, resulting in less
than 10 photons detected per second and single point read-out.
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A.3: Setup Components

Part Description Supplier Part Number

Arbitrary Waveform Generator Tektronix AWG 70001a
Avalanche Photo Diode Excelitas SPCM-AQRH-14
Digital-Analog Converter National Instruments (NI) NI USB-6343
Diode Laser Toptica iBeam Smart 515-S
Fibre Coupler Schäfter+Kirchhoff 60FC-F-4-M12NIR-10
FPGA Opal Kelly XEM6310-LX45
Microwave Amplifier Amplifier Research (ar) 50HM1GAB-47M1
Microwave Switch Mini Circuits ZASWA-2-50DR+
Microwave Wire Goodfellow CU005171 Cu Wire
Multi Axis Positioning System Physical Instruments (PI) LS110 12" 2SM

2x LS110 6" 2SM
PRS-110 PK24501B
2x SMC Hydra Pollux

Objective Nikon CFI P-Apo 100x Oil-Objective
Optical Components AHF Bandpass-Filter F47-515

Langpass-Filter F76-631
Thorlabs Beam Sampler BSF20-F

Lens AC254-100-B-ML-1"
Lens AC254-060-B-ML-1"
Norland Optical Adhesive NOA63
Pinhole P25S
sm Fiber Patch P1-630A-FC-2
_
2 -Plate AQWP05M-600

Vector Signal Generator Rohde & Schwarz SMIQ03B
2D Piezo Stage System Physical Instruments (PI) C-867.260 Piezo Controller

M-686 XY Stage
3D Piezo Stage System Physical Instruments (PI) E-727.3RDA
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A.4: CAD-Constructions

All CAD-Constructions have been created in Autodesk Inventor Professional 2019.

CAD technical drawing: Shaft adapter for the motor of the _2 rotation stage.

CAD technical drawing: Objective adapter for the translation of the microscope
objective along the optical path (focusing on the diamond surface).
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CAD technical drawing: Adapter to attach the sample holder to the 3D piezo stage
of the sample positioning.

CAD technical drawing: Support mount for the translation stage assembly (for 12"
linear stage).
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CAD technical drawing: Support mount of the translation stage assembly (for 6"
linear stage and the rotation stage).

CAD technical drawing: Base of the stage assemblies.
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CAD technical drawing: Table-base of the entire magnet stage assembly.

CAD technical drawing: Back-plate for the vertical assembly of the 12" linear
stage.
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CAD technical drawing: Back-plate for the horizontal assembly of the rotation
stage.

CAD technical drawing: Force transmission bar for the table assembly.
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CAD technical drawing: Middle pillar of the table assembly.

CAD technical drawing: Side pillar of the table assembly.
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A.5: Lambda-Half Plate Rotation Stage

An image of the whole assembly of the rotation stage with the _/2-plate mounted in the setup is
shown in Fig. 9.2.

Figure 9.2: Image of the home-build rotation stage for the _/2-plate in the optical
pathway.

The control itself is done via an ’Arduino Nano’ in combination with the ’Pololu A4988 Stepper
Motor Driver Carrier’ and a ’Pololu NEMA14 Stepper Motor’. There are nine cables connected
to the Arduino:

• two for the power supply of the stepper-driver board (orange=5V, yellow=gnd),

• three for the steppermotor control (red=D6=step, orange=D7=direction, yellow=D8=enable/sleep),

• two for the zero switch of the rotation stage (purple1=D4, purple2=gnd),

• and two to the bottom of the Arduino for the Light-Emitting Diode (LED) control
(black=gnd, red=D5=+(pwm-controlled)).

Additionally, the two power supply cables for the stepper motor, the five connections from the
Arduino are attached to the Stepper Motor Driver Carrier:

• the power supply for the stepper motor (white=+=9V,black=-=gnd),

• the power supply for the stepper driver (orange=+=5V, yellow=-=gnd),
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• and the motor control (S=step=red, D=direction=orange, E=enable=yellow).

The stepper motor itself has to be attached to the white socket on the stepper driver board and the
direction of the zero-switch should does not matter. It has to be ensured, that the extra power
supply can deliver at least 12 V and 1 A.
The _/2-plate is screwed into a "25 thread which is glued onto a 3D printed adapter. Via four
"3 screws, the waveplate and adapter are connected to the rotation mount.
For an additional illumination of the sample, the LEDs can be used as a faint light source.
To connect the Arduino to the PC, a COmmunication Port (COM)-Port connection needs to be
operated with:

• 115200 baud

• 8 Bits

• Parity None

• One stop bit

• No flow control

For the hardware programming, arduinoC is used and the communication can be done with the
following COM-commands:

• PWM <value> can be set between 0 and 255 and will set the brightness of the LEDs

• ROT <value> will rotate the stage by <value> degree, > 0 will rotate clock wise (CW),
< 0 will rotate counter-clock wise (CCW)

• GOTO <value> will rotate table to <value> degree

• GET will return the position if zeroed

• ZERO will find the zero position

• HELP will print this help

All input for the stage control has to be floating point (one floating point digit) in degree and
integer for the LED control. The conversion between microsteps, steps, and input towards the
wished amount of the degree to turn the stage is given by steps to turn = angle(in degree)×90.
If the switch is not touched, the ZERO command rotates the stage CCW with full speed until
it finds the switch position. Afterwards, it turns the stage in 1° steps CW slowly back until it
touches the switch. If the switch is touched when the ZERO command is called, the stage rotates
for 5° CW and then performs the same approach as in the previous case.
As a speed-up, the stage decides to turn CW or CCW, dependent on the shortest way to the input
value. One full rotation takes roughly 90 s and the duration for the rotation command is returned
after sending the command.
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