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Abstract

A unified method is presented for the fault diagnosis for a large class of distributed-
parameter systems that does not require a system approximation. The considered
system class includes parabolic, biharmonic, and heterodirectional hyperbolic ODE-
PDE systems. A residual generator is derived for the detection of additive and
multiplicative actuator, process and sensor faults with unknown signal form. This
residual generator is decoupled from disturbances that are described by a signal
model in the form of a finite-dimensional linear time-invariant system. With this
signal model, a large class of relevant signal forms for disturbances can be considered.
In addition to the modeled disturbances, also unknown but bounded disturbances are
taken into account by introducing a threshold for the fault detection residual signal.
Moreover, the fault diagnosis, i.e., the fault detection, isolation, and identification,
is regarded for additive actuator, process, and sensor faults with known signal form.
For the fault diagnosis, the signal form of both the fault and the disturbance are
assumed to be described also by a signal model. The fault identification is achieved
in finite time. If additionally the unknown but bounded disturbance is present,
then fault detection, isolation and estimation with a bounded estimation error are
achieved.

By applying integral transformations to the system description, an input-output
relation is established. From this expression, residual generators that are dedicated
to the fault detection and the fault diagnosis can be derived in the form of moving
horizon integrals. The used integral kernels are determined as the solution of a
feedforward control problem for an ODE-PDE system, which is solved by flatness-
based trajectory planning. Existing degrees of freedom in the trajectory planning
are utilized to make the resulting residual generator less sensitive with respect to
the unknown but bounded disturbance. In addition to systematically determining
the residual generators, the flatness-based approach also leads to conditions to easily
check the detectability and identifiability of the faults. For the implementation of
the resulting residual generators in discrete-time, finite impulse response filters can
be used. Simulation results for models motivated from engineering applications of a
cantilever with load at the free end and a cable with payload in constant flowing
water illustrate the theoretical results for the fault detection and diagnosis.
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Kurzfassung

Zur Fehlerdiagnose für eine große Klasse verteilt-parametrischer Systeme wird eine
einheitliche Methode vorgestellt, die keine Systemapproximation erfordert. Die be-
trachtete Systemklasse umfasst parabolische, biharmonische und heterodirektionale
hyperbolische ODE-PDE Systeme. Zur dedizierten Detektion von additiven und mul-
tiplikativen Aktor-, Prozess- sowie Sensorfehlern mit unbekannter Signalform wird
ein Residuengenerator hergeleitet. Dieser Residuengenerator kann von Störungen
entkoppelt werden, die sich durch ein endlich-dimensionales lineares zeitinvariantes
Signalmodell beschreiben lassen. Dieses Signalmodell ermöglicht die Berücksichti-
gung einer großen Klasse von relevanten Signalformen für die Störung. Zusätzlich
lassen sich auch unbekannte Störungen mit bekannter oberer Schranke durch die
Einführung eines Schwellenwertes für das zur Fehlerdetektion genutzte Residuum
berücksichtigen. Des Weiteren, wird die Fehlerdiagnose, d. h. die Fehlerdetektion,
-isolation und -identifikation, für additive Aktor-, Prozess- und Sensorfehler mit
bekannter Signalform behandelt. Zur Fehlerdiagnose wird angenommen, dass sich
die Signalform des Fehlers und der Störung durch ein endlich-dimensionales lineares
zeitinvariantes Signalmodell beschreiben lassen. Wenn zusätzlich unbekannte aber
betragsmäßig beschränkte Störungen auftreten, ist die Fehlerdetektion, -isolation
und -schätzung mit beschränktem und bekannten Schätzfehler dennoch möglich.

Durch Anwendung von Integraltransformationen auf die Systembeschreibung wird
eine Eingangs-Ausgangs-Beziehung aufgestellt. Aus diesem Zusammenhang lassen
sich Residuengeneratoren die speziell für die Fehlerdetektion und die Fehlerdiagnose
vorgesehen sind in Form von Integralen über einem gleitenden Horizont bestimmen.
Die verwendeten Integralkerne werden als Lösung eines Steuerungsproblems für
ein ODE-PDE-System bestimmt, das mit flachheitsbasierter Trajektorienplanung
gelöst wird. Vorhandene Freiheitsgrade in der Trajektorienplanung werden genutzt,
um den resultierenden Residuengenerator gegenüber der unbekannten, aber begren-
zten Störung unempfindlicher zu machen. Neben der systematischen Bestimmung
der Residuengeneratoren führt der flachheitsbasierte Ansatz auch zu Bedingungen
zur einfachen Überprüfung der Detektier- und Identifizierbarkeit der Fehler. Die
Implementierung der resultierenden Residuengeneratoren in diskreter Zeit erfolgt
durch Filter mit endlicher Impulsantwort. Simulationsergebnisse für aus technischen
Anwendungen motivierte Modelle eines Auslegers mit Last am freien Ende und
eines schweren Seils mit Last in konstant fließendem Wasser veranschaulichen die
theoretischen Ergebnisse zur Fehlererkennung und -diagnose.
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1 Introduction 1

Chapter 1

Introduction

The development of control methods enables the automation of more and more
complex tasks, increase process efficiency and improve product quality. However,
with the resulting increase in the automation, also the issues of operational safety,
availability and reliability become more and more important. In safety critical
systems, the occurrence of a fault can lead to serious consequences such as economic
loss, endangerment of people and ecological destruction. Faults are unpermitted
deviations of the system from standard conditions, which can cause a failure or
malfunction, i.e., a permanent or intermittent irregularity of the required function
(see, e.g., [43]). Thus, an essential step in avoiding the possible consequences of
failures or malfunctions is the early detection of a fault so that countermeasures
can be taken. Further information about the location and magnitude of the fault
can help to make the automated system more resilient by means of fault-tolerant
control methods, or to support and simplify maintenance. The detection of a
fault, the isolation of different faults and the identification of the magnitude of a
fault are summarized as fault diagnosis (see, e.g., [43]). To be specific, the fault
diagnosis consists of the fault detection, isolation and identification. Fault detection
is primarily concerned with determining the occurrence of a fault, fault isolation
is about distinguishing between different faults and fault identification addresses
the determination of the magnitude of a fault. Thus, the on-line supervision of
automated systems by a fault detection is a key technology to avoid catastrophic
consequences in safety-critical systems. In addition, the fault diagnosis can improve
the availability, reliability and maintainability of technical systems.

In the model-based fault diagnosis approaches, a mathematical model of the technical
process is used to derive a residual generator for a residual signal. The latter indicates
the presence of a fault and can be used for the fault isolation and identification.
When the dynamics of the technical process can be described by linear ordinary
differential equations (ODEs), a linear lumped-parameter system (LPS) is derived
as a model. For this system class, the model-based fault diagnosis approaches are a
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well-developed field (see, e.g., the monographs [12, 16, 28, 42]). However, whenever
a relevant quantity of the technical process does not only change in time but is
also continuously distributed over a spatial domain, the modeling of the technical
process leads to partial differential equations (PDEs). The derived system model
is then a distributed-parameter system (DPS). A spatial dependence of system
variables occurs in many models for technical processes. Examples are diffusion,
heat transfer, vibrations in flexible structures and wave propagation. The reaction-
diffusion equation and the heat equation are PDEs of parabolic type, which describe
balancing processes like matter diffusion or heat transfer. Important application
examples that are modeled by parabolic PDEs originate from the field of chemical
and biochemical engineering (see, e.g., [6, 44]). A specific example is a tubular reactor
as described in [45]. The typical PDE of the biharmonic type is the Euler-Bernoulli-
beam equation, which describes the distributed vibrations in a beam. The latter is a
relevant model in the field of smart materials (see, e.g., [8]) and flexible structures
(see, e.g., [7]). As discussed in [30], flexible robot manipulators in particular can be
modeled by biharmonic PDEs. With hyperbolic PDEs like the wave equation or the
transport equation, for example, vibrations in a string, transport processes, but also
time delays are described. An important subclass are the heterodirectional hyperbolic
PDE systems. They consist of transport PDEs propagating in both the negative
and positive direction of the spatial coordinate. Many hyperbolic PDE systems can
be rewritten into this form, including models for coupled string networks (see, e.g.,
[59]), transmission lines, networks of open channels and further application examples
described in [10]. Moreover, when the model of the technical system contains coupled
subsystems with lumped and distributed parameters, ODE-PDE systems are derived.
Examples are a flexible robot arm (see, e.g., [3]), a cable with a payload (see, e.g.,
[68]), a pneumatic system with a tank (see [47]) or a dual-cable elevator (see [88]).
Although the modeling often leads to nonlinear system models, in many cases it
is sufficient to consider a linearization of these. Recently, efficient control design
approaches have been developed for DPSs (see, e.g., [29, 52, 59, 62]), which increases
also the need for a systematic fault diagnosis method for this system class.

1.1 Fault diagnosis for distributed-parameter
systems

In contrast to the well-developed methods for the LPSs, the fault diagnosis methods
for DPSs are so far predominantly based on observers. In an early-lumping approach,
the observer used for the fault diagnosis is designed for a finite-dimensional model
of the DPS (see, e.g., [9, 32, 37, 39]). Thus, in principle, the well-developed fault
diagnosis methods for LPSs become accessible for the residual generator design,
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but the neglected dynamics must be additionally taken into account. The latter
introduces further complexity in the residual generator design and can also lead to
high-order models, which can further complicate the design process. In particular, as
discussed in [37], the approximation of some boundary controlled DPSs can become
challenging. The fault localization, which is also relevant for DPSs, is solved in [34]
based on a finite-dimensional observer used as a residual generator for a spatially
distributed residual signal.

In the late-lumping approaches, the residual generator is designed directly for the
DPS. A general fault diagnosis approach based on a late-lumping observer is described
in [20] for estimating process faults. However, the distributed state must be known,
which is rarely possible in real-world applications. For positive-real linear infinite-
dimensional systems, the fault detection for actuator faults is presented in [22], where
a late-lumping observer is used. Moreover, some nonlinearities have been taken
into account by observer-based approaches, shown in [4] and [21]. For parabolic
PDE systems with constant coefficients, boundary inputs and measurements, fault
diagnosis approaches are regarded in [15, 27], by using backstepping-based observers
as residual generators. Both approaches take into account distributed disturbances
but consider specific boundary conditions (BCs) and specific fault scenarios, which
limits the application of the method. Another observer-based fault diagnosis approach
in which measurements in the spatial domain and at the boundary are used is
presented in [33] for scalar parabolic PDE systems with constant coefficients. For
hyperbolic PDE systems, fault diagnosis residual generators based on observers that
are designed by the backstepping method can be found in [1, 26, 97]. To be specific,
the fault detection, identification and localization problem is solved in [1] for a 2× 2
heterodirectional hyperbolic PDE system. Multiplicative actuator and sensor faults
with constant fault parameters in a scalar first-order hyperbolic PDE system with
an additional integral term are considered in [97]. An additive distributed fault
affecting a wave equation subject to a distributed disturbance is taken into account
in [26]. These late lumping approaches have in common that no approximation
error has to be considered in the construction of the residual generator. However,
since the residual generator is based on an infinite-dimensional observer, at least
for the realization of this observer an approximation is required. An approach that
omits the latter drawback is the functional observer designed in [23] for the fault
detection in Riesz-spectral systems. However, only systems with in-domain input
and measurement can be regarded. An alternative to the observer-based approaches
is shown in [35], by using the Laplace transform and algebraic manipulations to
derive a residual generator for the detection and localization of a fault in an electrical
transmission line.

This non-exhaustive overview for the fault diagnosis for DPS shows that a lot of
relevant fault diagnosis problems have been already taken into account. However,
all the presented solutions are only applicable for a specific problem setting or
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require restrictive assumptions. In particular, no late-lumping approach for parabolic
and biharmonic PDE systems with spatially varying coefficients for boundary and
in-domain control inputs as well as measurements is available in the literature. There
are also no such results for general heterodirectional hyperbolic ODE-PDE systems.
Moreover, only a few of the existing fault diagnosis approaches take disturbances
into account.

Recently, a new approach for the design of the residual generator based on integral
transformations has been introduced in [98] for a simple parabolic system. It
was extended in [102] for a large system class including DPS with parabolic and
biharmonic PDEs, general BCs, boundary and in-domain inputs, measurements
as well as disturbances. In this approach, additive actuator, sensor and process
faults with a signal form that can be modeled by a polynomial are taken into
account. This approach was transferred to a faulty wave equation in [103] and
generalized to heterodirectional hyperbolic ODE-PDE systems in [104]. In the
latter contribution, also the signal class of the faults and disturbances is extended.
Both, the fault and the disturbance signals are assumed to be solutions of a signal
model in form of a lumped-parameter linear time-invariant (LTI) system, which
enables the modeling of polynomial and trigonometric signals as well as combinations
thereof. Thus, a significantly larger signal class can be taken into account that
includes relevant and frequently occurring signal types. A further result, based on
the integral transformation-based method, is the dedicated fault detection approach
for LPS in [106] that requires no knowledge of the fault signal form. In all these
contributions, the resulting residual generators consist of integral expressions on
a moving horizon for the control input and the measurement. Since the latter are
usually only available at sampled time points, the integral expressions must be
approximated in discrete-time. This approximation yields finite-impulse response
(FIR) filters, which are easy to implement with low computational effort.

1.2 Contribution

A fault detection and a fault diagnosis approach based on integral transformations
for linear parabolic, biharmonic and heterodirectional hyperbolic ODE-PDE systems
is presented in this thesis. Both, for fault detection and diagnosis, no system
approximation is required. In [102] and [104], the fault diagnosis problem is solved
with the focus on the identification, which requires the assumption that the fault
signals can be described by a signal model. As has been shown for LPSs in [106], this
restrictive assumption can be omitted if only fault detection is required. Thus, the
approach in [106] is transferred in this thesis to the DPSs to solve the fault detection
problem under less restrictive assumptions. A fault detection residual generator is
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designed to detect faults of additive and multiplicative type, which does not require
a known signal form for the fault. The corresponding residual signal is decoupled
from disturbances with known signal form that are modeled by lumped-parameter
LTI signal models. Unknown but bounded disturbances can be taken into account
by a threshold. The fault diagnosis problem, i.e., the fault detection, isolation
and identification, is solved for additive faults that have a known signal form and
can be described by a lumped-parameter LTI signal model. Similar to the fault
detection, the residual generator for the fault diagnosis can also be decoupled from
disturbances, which are described by a signal model of the same type. Because
integral transformations on a moving horizon are used, the fault identification is
achieved in finite time. If an unknown but bounded disturbance is present, the
fault detection, isolation and estimation with bounded estimation error can still be
achieved. For both, the fault detection and the fault diagnosis residual generator,
available degrees of freedom are used to make the residual signal less sensitive to
the unknown but bounded disturbances. This sensitivity optimization allows the
detection of small faults even in the presence of disturbances with unknown signal
forms and for the fault estimation, a low fault estimation error is achieved. To verify
the fault detectability and identifiability, conditions are derived that are simple
to evaluate and depend solely on the system parameters as well as the assumed
signal models for the faults and the disturbances. Note that the resulting residual
generators do not require a system approximation and no observer must be designed.
The resulting residual generators can be efficiently implemented in discrete-time by
FIR filters.

The fault diagnosis for DPSs with parabolic or biharmonic PDEs is already considered
in [102], but extended in this thesis to systems with general ODE-PDE couplings.
These couplings can occur both in the spatial domain and at the boundaries so that
the fault diagnosis becomes available for further relevant technical systems such as,
e.g., flexible robot arms [3]. Moreover, only fault and disturbance signals that can be
described by polynomials have been taken into account in [102]. To further increase
the flexibility of the proposed method and make it applicable to more fault diagnosis
settings, also the signal class of the faults and disturbances is extended. Similar to
[104], these signals are assumed to be described by lumped-parameter LTI signal
models in this thesis. Thus, also trigonometric signals or combinations of these and
polynomial signals can be taken into account.

The proposed approaches for the fault detection and diagnosis are based on integral
transformations on a moving horizon. The integral kernels of these transformations
can be determined so that an input-output relation is derived, which is decoupled
from the disturbance with known signal form. Based on this input-output relation,
the fault detection residual generator is obtained in form of integral expressions
on a moving horizon for the control input and the measurement signal. To derive
this residual generator, requirements on the integral kernels are imposed, which
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yield kernel equations in the form of an ODE-PDE system with initial and end
conditions, an algebraic constraint and a freely assignable input. The PDE subsystem
of this kernel equations is of the same type as the original system, i.e., it is either
of the parabolic, the biharmonic or the heterodirectional hyperbolic type. Because
of the given initial and end points, the kernel equations are a two-point initial-
boundary value problem. The latter can be solved by the determination of a suitable
feedforward control for the freely assignable input that drives the kernel equations
system from the initial point to the end point. To compute this transition, results
from the flatness-based trajectory planning are used. The flatness-based approach
was originally developed for LPS (see, e.g., [54, 74, 82]) and generalized to DPS in,
e.g., [53, 62, 73, 75, 93]. It uses a differential parametrization to express any system
variable in terms of a freely assignable parametrizing variable. If the components of
the latter are differentially independent, then it is a flat output and the system is
called flat. For such systems, the planning of a transition between given initial and
end points can be reformulated into an algebraic interpolation problem for a reference
trajectory that is assigned to the flat output. Since this interpolation can be achieved
by solving a linear system of equations, the solution of the two-point initial-boundary
value problem is significantly facilitated. Finally, the trajectories for the system
variables are obtained by the evaluation of the differential parametrizations with the
computed reference trajectory. Note that for the solution of the kernel equations,
only transitions for specific initial and end points have to be realized, which does not
necessarily require a differentially independent parametrizing variable. In particular,
for the fault detection problem, the obtained initial and end points are homogeneous.
Thus, it suffices to plan a reference trajectory for this specific transition under
consideration of the additional algebraic constraint. To verify the existence of such a
trajectory, a condition based on the coefficient matrices of the differential expressions
is derived in this thesis. On the one hand, this condition is significantly simpler
to evaluate than a flatness analysis of the DPS of the kernel equations and on the
other hand, it directly ensures the detectability of the fault. In contrast to the
fault detection, the fault diagnosis kernel equations ICs are inhomogeneous and in
general do not correspond to an equilibrium point of the corresponding ODE-PDE
system. Although this nonequilibrium point makes the trajectory planning more
difficult, it suffices to show that the required transition can be parametrized by a
suitable reference trajectory. For the planning of the latter, this thesis proposes a
constructive approach that provides also an easily verifiable condition.

Since the flatness analysis of the kernel equations system is avoided, the derived formal
differential parametrizations are called differential expressions and the corresponding
quantity to the flat output is called a parametrizing variable. Nevertheless, the
required differential expressions can still be derived by employing results from the
literature. To be specific, for kernel equations with a subsystem described by a PDE
of parabolic or biharmonic type, results from [75, 93] are used to determine the
differential expressions. However, this approach considers only dynamic BCs. To
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determine the differential expressions for the more general ODE-PDE couplings that
can occur in the kernel equations system the results from [75, 93] are supplemented
in this thesis. For faulty heterodirectional hyperbolic ODE-PDE systems, a kernel
equation with a PDE subsystem of the same type is obtained. The few flatness-based
trajectory planning approaches for this system class (see, e.g., [93, 94]) are not
suitable for the solution of the kernel equations. In particular, the approach in [93]
requires a fixpoint iteration and the approach in [94] is only described for systems
with constant coefficients. Thus, an alternative approach following the idea in [83] is
proposed in this thesis. In [83], the flatness-based motion planning for a DPS with
scalar parabolic PDE with varying coefficients is facilitated by mapping the original
system into a more suitable form by a backstepping transformation. The latter is
an established method for the feedback controller design of boundary controlled
DPSs and an introduction to it can be found, e.g., in [52]. In the sense of [83], the
backstepping transformation described in [41] is used to map the heterodirectional
hyperbolic ODE-PDE system of the kernel equations into a target system with a
cascade structure. Due to the latter, the differential expressions can be determined
explicitly (see [104]), which gives rise to a systematic solution of the kernel equations.

By making use of results from the flatness-based trajectory planning methods, an
interesting connection between the flatness and the fault detection as well as the
fault diagnosis is established. This connection makes already existing results in the
literature applicable to solve the fault detection and diagnosis problems systematically
for a large system class. Vice versa, this connection also allows to transfer results
derived for the solution of the kernel equations back to the motion planning for
DPSs. In addition to the extended results for the determination of the differential
expressions, a trade-off design for a residual generator is shown in this thesis that is
sensitive to the fault and less sensitive to the disturbance. This trade-off design is
derived by utilizing degrees of freedom in the reference trajectory planning, which
might also be useful in other transition planning tasks.

1.3 Relation to other integral transformation
based methods

Similar integral transformations as used in the proposed approach are also used
in the modulating functions method, for which an overview can be found in [70].
The modulating function method is an algebraic method, originally developed in
[81] for the parameter identification in LPS, which has been transferred to other
system classes. Examples are nonlinear LPS (see, e.g., [17]), fractional LPS (see,
e.g., [31]) and also DPS (see, e.g., [2, 56, 67]). Moreover, the modulating functions
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method has also been applied to state estimation problems (see, e.g., [46, 69, 90])
and source estimation in DPS (see, e.g., [5, 105]). For the derivative estimation,
approaches based on similar integral transformations are, e.g., [55, 61, 91]. Note
that such approaches for the derivative estimation have also been used to solve
fault detection problems for nonlinear systems in [57, 58, 66]. In contrast to the
proposed method in this thesis, the previously mentioned approaches are based on
integral transformations with prescribed integral kernels. Thus, available degrees
of freedom are not systematically chosen to achieve additional objectives as the
sensitivity optimization in this contribution. However, a systematic design for the
determination of the integral kernels that imposes a desired transfer behavior on the
derivative estimator is presented in [49, 65]. Moreover, in [77, 78], the modulating
functions method is presented for the parameter identification for linear LPSs, where
the determination of the modulating functions is firstly formulated in terms of a
transition problem for a dynamical system. Since the latter is solved by trajectory
planning methods, it shows interesting similarities to the presented approach in this
thesis.

Moreover, the integral transformation based approach introduced in [98] is also used
in [105] to reconstruct the source-term in a transport equation with time-varying
transportation speed. A further interesting extension of the proposed approach
can be found in [36], where it was modified to estimate the distributed state in a
parabolic system.

1.4 Outline of the thesis

In Chapter 2, the fault detection and diagnosis problem is solved for parabolic and
biharmonic ODE-PDE systems. At first, the considered system class as well as the
fault and disturbance signals are introduced in Section 2.1 and Section 2.2. Based on
this problem setting, the fault detection problem for parabolic and biharmonic ODE-
PDE systems is solved in Section 2.3. After a detailed problem formulation in Section
2.3.1, the integral expressions are used to derive an input-output expression in Section
2.3.2 from which the residual generator is derived in Section 2.3.3. For this residual
generator, the kernels of the applied integral transformations must be computed as
a solution of the fault detection kernel equations, which are determined in Section
2.3.4 employing results of the flatness-based trajectory planning methods. The fault
detection results are demonstrated for a simulation example of an Euler-Bernoulli
beam as model for a cantilever beam with a tip load in Section 2.3.5.

Subsequently, the fault diagnosis approach for the parabolic and biharmonic ODE-
PDE systems is presented in Section 2.4. After the introduction of the fault diagnosis
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problem formulation in Section 2.4.1, the fault diagnosis equation for the fault
identification respectively estimation is derived in Section 2.4.2. To make use of
the resulting residual generator, the fault diagnosis kernel equations are solved in
Section 2.4.3. Finally, the described fault diagnosis method is demonstrated for an
Euler-Bernoulli beam in Section 2.4.4.

In the Chapter 3, the fault detection and diagnosis problem is solved for hetero-
directional hyperbolic ODE-PDE systems, which are introduced in Section 3.1. The
fault detection for this system class presented in Section 3.2 follows basically the
same outline as the solution of the fault detection problem for the parabolic and
biharmonic ODE-PDE systems. This procedure leads to the input-output expression
described in Section 3.2.1 and the residual generator described in Section 3.2.2.
However, the solution of the fault detection kernel equation in Section 3.2.3 is more
involved due to the transport character of the hyperbolic PDEs. A backstepping
transformation is used to map the ODE-PDE system of the corresponding fault
detection kernel equations into a target system of cascade structure, which facilitates
the solution of the feedforward control problem. The described results are verified
for a 4× 4 heterodirectional ODE-PDE system as a model for a hanging cable with
a payload that is immersed in water with constant flow.

In Section 3.3, the fault diagnosis problem for the heterodirectional hyperbolic ODE-
PDE system is solved. For this, the fault diagnosis equation is derived in Section
3.3.1. The corresponding fault diagnosis kernel equations are taken into account in
Section 3.3.2. Simulation results in Section 3.3.3 demonstrate the effectiveness of the
fault diagnosis method for a simulation example of a hanging cable with a payload
immersed in water with constant flow.

A brief summary of the presented methods and an outlook on possible research fields
for extensions of the proposed method will conclude the thesis in Chapter 4.

1.5 Remarks on the notation

The identity matrix is denoted by I and is always assumed to be of appropriate
dimension. When the dimension of I does not result from the context, it is explicitly
specified, i.e., In ∈ Rn×n is the identity matrix of dimension n×n. By ei,n ∈ Rn, the
ith unit vector of dimension n is denoted. The zero matrix is denoted by 0, which is
always assumed to be of appropriate dimension. With A⊗B the Kronecker product is
referred to, i.e., A⊗B = [aij ]⊗B = [aijB] for matrices A ∈ Rm×n and B ∈ Rp×q of
arbitrary dimension (see, e.g., [11, Def. 7.1.2]). Derivatives are written in the notation
dzh(z) = d

dzh(z) respectively dth(t) = ḣ(t) = d
dth(t). Partial derivatives with respect
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to space and time are shortened by ∂zh(z, t) = ∂
∂zh(z, t) and ∂th(z, t) = ∂

∂th(z, t).
The pointwise evaluation of the derivative ∂zx(z, t)|z=zi at a point zi is abbreviated by
∂zx(zi, t). With R+ the positive real numbers are denoted, i.e., R+ = {x ∈ R|x > 0},
with R+

0 the nonnegative real numbers, i.e., R+
0 = {x ∈ R|x ≥ 0} and with R− the

negative real numbers, i.e., R− = {x ∈ R|x < 0}. For a vector h(t) ∈ Rn, |h(t)| is
the vector of absolute values, i.e., |h(t)| = col (|h1(t)|, . . . , |hn(t)|) ∈ (R+

0 )n.
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Chapter 2

Parabolic and biharmonic
ODE-PDE systems

In this chapter, the fault diagnosis problem is solved for ODE-PDE systems with
PDEs of parabolic or biharmonic type. Application examples that are modeled
by parabolic PDEs come from chemical and biochemical engineering (see, e.g., [6,
44]). Important examples are chemical fixed-bed and tubular reactors (see, e.g., [45,
71]). Moreover, for battery management systems, thermoelectrical models in the
form of parabolic PDEs are derived (see, e.g., [38, 84]). Typical real-world systems
that are modeled by the Euler-Bernoulli beam equation, i.e., a biharmonic PDE,
originate from the field of flexible and smart structures (see, e.g., [7, 8]). Specific
application examples are a piezo-actuated flexible structure considered in [80] or a
flexible robot arm (see, e.g., [3]). This non-exhaustive overview shows that a wide
range of technical processes can be modeled by parabolic and biharmonic ODE-PDE
systems, for which a unified description is introduced in the following section. The
fault and disturbance signals that are considered for the fault diagnosis are described
in Section 2.2. To ensure a safe and reliable operation of these systems, a fault
detection and diagnosis scheme for this system class is proposed in Section 2.3
respectively Section 2.4.
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2.1 System description

Consider the faulty linear ODE-PDE system, which may be of the parabolic or
biharmonic type and is described by

∂zx(z, t) = A[x(z)](t) +H1(z)w(t) +B1(z)u(t)
+G1(z)d(t) + E1(z)f(t), (z, t) ∈ (0, 1)× R+ (2.1a)

K0x(0, t) +K1x(1, t) +H2w(t)
= B2u(t) +G2d(t) + E2f(t), t > 0 (2.1b)

ẇ(t) = Fw(t) +
1∫

0

L1(z)x(z, t)dz + L2x(0, t)+L3x(1, t) +B3u(t)

+G3d(t) + E3f(t), t > 0 (2.1c)

y(t) =
1∫

0

C1(z)x(z, t)dz + C2x(0, t) + C3x(1, t)+C4w(t) +G4d(t)

+ E4f(t), t ≥ 0 (2.1d)

with the distributed state x(z, t) ∈ Rnx , the lumped state w(t) ∈ Rnw , the input
u(t) ∈ Rnu , the disturbance d(t) ∈ Rnd , the fault f(t) ∈ Rnf and the measurement
y(t) ∈ Rny . From these signals, only the input u(t) and the measurement y(t)
are assumed to be known. In (2.1a), the formal differential operator of the order
nA ∈ N+ is given by

A[x(z)](t) =
nA∑

i=0
Ai(z)∂itx(z, t) (2.2)

with Ai ∈ (C1[0, 1])nx×nx , i = 0, . . . , nA. The unknown initial conditions (ICs) are
∂itx(z, t)|t=0 = xi,0(z) ∈ Rnx , z ∈ [0, 1], i = 0, . . . , nA−1, as well as w(0) = w0 ∈ Rnw
and assumed to be compatible with the BCs (2.1b). With (2.1b), the required nx
BCs for the PDE subsystem (2.1a) and (2.1b) are specified by K0,K1 ∈ Rnx×nx
where K = [K0 K1 ] ∈ Rnx×2nx satisfies

rankK = nx. (2.3)

The system matrix of the ODE (2.1c) is F ∈ Rnw×nw and the coupling from the
PDE to the ODE is given by L1 ∈ (L2(0, 1))nw×nx and L2, L3 ∈ Rnw×nx . The
ODE subsystem affects the PDE subsystem (2.1a) via H1 ∈ (L2(0, 1))nx×nw and
H2 ∈ Rnx×nw . The input u(t), the disturbance d(t) and the fault f(t) act via
B1 ∈ (L2(0, 1))nx×nu , G1 ∈ (L2(0, 1))nx×nd , E1 ∈ (L2(0, 1))nx×nf and the real
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valued matrices of appropriate dimensions Bi, i = 2, 3, Gj , j = 2, 3, 4, as well as Ej
on the system. According to (2.1d), the output y(t) can contain in-domain, boundary
and ODE state measurements, which are characterized by C1 ∈ (L2(0, 1))ny×nx ,
C2, C3 ∈ Rny×nx and C4 ∈ Rny×nw . In the following, all system parameters are
assumed to be known. Note that the specified function classes for B1(z) and C1(z)
exclude pointwise inputs respectively measurements. However, this restriction is only
made for the sake of brevity, but is not a general limitation of the proposed method.
An example for the consideration of pointwise measurements can be found in [98,
99]. Furthermore, this restriction is also justified by the fact that such inputs and
measurements can usually be well approximated by suitable spatial characteristics.

A general discussion for the well-posedness of the system (2.1) is out of the scope
of this thesis. However, in the following it is assumed that the faulty system under
consideration is well-posed in the sense of Hadamard (see, e.g., [18, Chapter 2.1]).
This assumption is justified since the modeling of technical systems usually leads to
such systems. Note that with (2.1a), PDEs of parabolic, biharmonic and hyperbolic
type can be described in general. However, in this section only parabolic and
biharmonic PDEs are taken into account, since these can be treated in a common
framework. For PDEs of the hyperbolic type a more suitable system representation
is introduced in Section 3.

The representation of the PDE subsystem given by (2.1a) and (2.1b) as system of
first order PDEs with respect to the spatial variable z was originally introduced in
[75, 93] to facilitate the flatness-based solution of the motion planning problem for
DPSs realizing a setpoint change. This system representation for the PDE subsystem
has already been shown in [102] to be suitable to solve the fault diagnosis problem
for parabolic or biharmonic PDE systems. To consider also ODE-PDE couplings,
the PDE subsystem (2.1a) and (2.1b) is extended by the ODE (2.1c), which differs
from the system representation in [75, 93]. Although dynamic BCs can already be
accounted for in [75, 93] by differential operators, the form (2.1) with the explicit
ODE (2.1c) allows more general ODE-PDE couplings and is thus well suited to solve
fault detection and diagnosis problems.

To illustrate how a parabolic PDE system with an actuator dynamic described by
an ODE fits into the system description (2.1), the following example is given.
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Example 2.1 (Faulty parabolic system with actuator dynamics).
Consider the parabolic system

∂tv(z, t) = ∂z(α(z)∂zv(z, t)) + β(z)v(z, t) + g>1 (z)d(t), (z, t) ∈ (0, 1)× R+ (2.4a)
∂zv(0, t) = h>2 w(t), t > 0 (2.4b)
∂zv(1, t) = g>2 d(t), t > 0 (2.4c)

with the distributed state v(z, t) ∈ R and the lumped state w(t) ∈ Rnw described by
the ODE

ẇ(t) = Fw(t) +B3(u(t) + f1(t)), t > 0 (2.4d)

with the ICs v(z, 0) = v0 ∈ R and w(0) = w0 ∈ Rnw as well as input u(t) ∈ R. The
measurement y(t) ∈ R is given by

y(t) = c1v(1, t) + f2(t), t ≥ 0. (2.4e)

The system is subject to the disturbance d(t) ∈ R2 and the faults to be considered
are f(t) = col (f1(t), f2(t)) ∈ R2. The system parameters α(z), β(z) satisfy α, β ∈
C1[0, 1] and α(z) > 0, z ∈ [0, 1]. The remaining parameters are real valued vectors
respectively matrices of appropriate size. Hence, (2.4a) can be rewritten to

∂2
zv(z, t) = 1

α(z)∂tv(z, t)− dzα(z)
α(z) ∂zv(z, t)− β(z)

α(z)v(z, t)− g>1 (z)
α(z) d(t). (2.5)

Introducing x(z, t) = col (∂zv(z, t), v(z, t)), the first order differential operator A
(see (2.2)) has the coefficients

A0(z) =
[
−dzα(z)

α(z) −β(z)
α(z)

1 0

]
and A1(z) =

[
0 1

α(z)
0 0

]
. (2.6)

Furthermore, G1(z) = col
(
− g
>
1 (z)
α(z) , 0>

)
,

K0 =
[
1 0
0 0

]
, K1 =

[
0 0
1 0

]
, (2.7)

H2 = col
(
−h>2 , 0>

)
, G2 = col

(
0>, g>2

)
and C3 = [ 0 c1 ] are obtained. Due to the

two independent BCs (2.4b) and (2.4c), K satisfies (2.3). The fault f1(t) is an
actuator fault with E3 = B3[ 1 0 ] and f2(t) is a sensor fault with E4 = [ 0 1 ]. /

Also biharmonic PDEs with dynamic BCs can be described in the form of (2.1),
which is shown in Section 2.3.5 and Section 2.4.4. Hence, a large class of DPSs
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Actuator Process Sensor

Faulty system

u(t) uf (t)

fa(t) fs(t)

yr(t) y(t)

d(t)fp(t)

Figure 2.1: Separation of a faulty system into the actuator, process and
sensor part, which are subject to the actuator fault fa(t), the
process fault fp(t), the sensor fault fs(t) and the disturbance
d(t).

can be modeled by (2.1) and thus are considered for the fault diagnosis. For a less
abstract description of the following fault detection method, the interested reader is
encouraged to consult [100]. In this article, a similar fault diagnosis method for a
diffusion-reaction system is shown directly on the basis of the parabolic PDE.

2.2 Faults and disturbances

A technical system can be separated into the actuator, process and sensor parts,
which is shown in Figure 2.1. According to the component in which a fault occurs,
the fault is called an actuator fault, a process fault, or a sensor fault (see, e.g., [28]).
To be specific, a fault fi(t) = e>i,nf f(t), i ∈ {1, . . . , nf}, is called an actuator fault if
the system is subject to the faulty input signal

uf,j(t) = uj(t) + fi(t) (2.8)

where only uj(t) is known, which is the jth component of u(t). The fault fi(t) can be
taken into account in the setting of (2.1) by the fault input matrices Ek, k = 1, 2, 3,
which follow from

Bkej,nuuf,j(t) = Bkej,nuuj(t) +Bkej,nufi(t), (2.9)

and are given by Ekei,nf = Bkej,nu . To describe the sensor faults, let yr,j(t) be
the jth component of the fault free measurement yr(t) = y(t)− E4f(t) (see (2.1d)).
Then, a fault fi(t) is called a sensor fault if the jth component

yj(t) = yr,j(t) + fi(t), (2.10)

of the measurement y(t) is corrupted by a fault fi(t). According to (2.1d), this is
modeled by e>j,nyE4ei,nf = 1. If a fault fi(t) does not correspond to an actuator or
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a sensor fault, it is called a process fault. Depending on whether such a fault occurs
in the distributed- or the lumped-parameter subsystem, the fault input in (2.1) is
described by the matrices Ei, i = 1, 2, 3.

Moreover, a distinction between additive and multiplicative faults must be made.
Additive faults are unknown exogenous signals, which are independent of system
variables. This can be, e.g., an offset in an actuator, a drift in a sensor or when the
system is subject to an unknown exogenous signals (e.g., disturbances) that could
provoke a malfunction or damage to the technical process that must therefore be
monitored.

In contrast, a fault that leads to a change in a system parameter is called a multi-
plicative fault. Thus, the effect of a multiplicative fault on the system depends on a
corrupted system variable, i.e., u(t), x(z, t), w(t) or y(t) (see, e.g., [28, Section 3.5]).
The influence of a multiplicative actuator fault ∆fi(t) can be described by

uf,j(t) = (1 + ∆fi(t))uj(t), i ∈ {1, . . . , nf}. (2.11)

In order to consider this type of faults in the setting of (2.1), it is reformulated into
the form given in (2.8) by introducing fi(t) = ∆fi(t)uj(t). Similarly, a multiplicative
sensor fault ∆fi(t) affecting the measurement by

yj(t) = (1 + ∆fi(t)) yr,j(t), (2.12)

is regarded with fi(t) = ∆fi(t)yr,j(t) as additive sensor fault in (2.1). Distributed
multiplicative process faults would require the introduction of a space and time
dependent fault expression, which would make the system description and derivation
of the residual generator unnecessarily cumbersome. Thus, only multiplicative
process faults in lumped quantities are considered in the following. To be specific, a
multiplicative process fault ∆fi(t) in the jth component wj(t) of w(t) is rewritten
into an additive process fault by fi(t) = ∆fi(t)wj(t) and corresponding entries in the
fault input matrices Ei, i = 1, . . . , 4. Similarly, a multiplicative process fault ∆fi(t)
in the boundary values x(0, t) or x(1, t) can be rewritten into an additive process
fault by fi(t) = ∆fi(t)xj(0, t) respectively fi(t) = ∆fi(t)xj(1, t), j ∈ {1, . . . , nx},
and corresponding entries in Ei, i = 2, 3, 4. Note that in the following it is assumed
that the system is at first in a healthy state, i.e., f(t) ≡ 0 for 0 ≤ t < tf , where tf is
the fault occurrence time.

In addition to faults, technical systems are in general also subject to disturbances.
The latter are unknown exogenous signals that influence the system but do not
cause failures or malfunctions. Unlike faults, the occurrence of a disturbance during
operation must be tolerated. Thus, a major challenge in the fault diagnosis is
the reliable diagnosis or detection of faults even though disturbances are present.
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Although a disturbance d(t) must be assumed to be unknown, often some information
is still available that allows to specifically consider their influence on the fault
detection. To use this information in the following fault detection approach, assume
that d(t) is composed of two components d̃(t) ∈ Rnd̃ and d̄(t) ∈ Rnd̄ , so that it
satisfies

d(t) = G̃d̃(t) + Ḡd̄(t) (2.13)

with the known matrices G̃ ∈ Rnd×nd̃ and Ḡ ∈ Rnd×nd̄ . The components d̄i(t) of
d̄(t) are absolutely bounded by

|d̄i(t)| ≤ δi, i = 1, 2, . . . , nd̄, t ≥ 0, (2.14)

with known bound δ = col(δ1, . . . , δnd̄) ∈ Rnd̄ . The component d̃(t) is assumed to
be described by the signal model

v̇d(t) = Sdvd(t), t > 0 (2.15a)
d̃(t) = Rdvd(t), t ≥ 0 (2.15b)

with vd(t) ∈ Rnvd and the known matrices Sd ∈ Rnvd×nvd as well as Rd ∈ Rnd̃×nvd ,
where (Rd, Sd) is observable. Note that the spectrum of Sd satisfies σ(Sd) ⊂ jR and
Sd is not required to be diagonalizable. The signal model (2.15) describes only the
specific form of the signal, but the actual form (e.g., offset and slope for a drifting
fault or amplitude and phase in case of trigonometric signals) is determined by
the unknown IC vd(0) = v0

d ∈ Rnvd and thus d̃(t) is unknown. With the signal
model (2.15) signals of polynomial form, trigonometric signals or also combinations
thereof can be described (see, e.g., the examples in Section 2.3.5 and 2.4.4). Hence,
commonly occurring disturbance signals can be considered. In view of (2.13), the
component d̃(t) of a disturbance must only hold approximately on the moving horizon
It = [t−T, t] with finite length T ∈ R+, since the approximation error can be readily
taken into account by the bounded disturbance d̄(t). The length T of the moving
horizon is a design parameter that will be considered in Section 2.3.

2.3 Fault detection

A key technology to ensure the safety of automated systems is the reliable detection
of faults. This detection should be possible with as few assumptions as necessary
so that it can be used for a wide range of failure scenarios. Therefore, a residual
generator for fault detection is presented that does not require knowledge of the fault
signal form and reliably detects both additive and multiplicative faults. The specific
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faulty ODE-PDE system

〈mu, ·〉I
input filter

〈n, ·〉I
output filter

residual generator

u(t) y(t)

r(t)

f(t) d̃(t) d̄(t)
xi,0(z), w0

Figure 2.2: Structure of the residual generator for the fault detection with
an input filter 〈mu, u(t)〉I and an output filter 〈n, y(t)〉I.

fault detection problem is introduced in Section 2.3.1. Subsequently, an input-output
relation is determined in Section 2.3.2, from which the fault detection residual
generator is derived in Section 2.3.3. The required kernel equations are solved in
Section 2.3.4 by a flatness-based trajectory planning. Finally, a simulation example
for an Euler-Bernoulli beam in Section 2.3.5 visualizes the theoretical results.

2.3.1 Problem formulation

The fault detection problem consists in detecting the occurrence of a fault by means
of a residual signal. This problem is solved using a residual generator with the
structure shown in Figure 2.2 for the residual signal r(t) ∈ R. In accordance with
[12, Problem 6.2], the residual generator must

• consist of an input and an output filter,

• be independent of the operating point of the system,

• be independent of the ICs of the system,

• be independent of the disturbance d̃(t)

• and satisfy

r(t) 6≡ 0 for f(t) 6≡ 0, t ≥ T (2.16a)
r(t) ≡ 0 for f(t) ≡ 0, t ≥ T. (2.16b)

Based on (2.16), the definition of weak fault detectability is introduced.
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Definition 1 (Weak fault detectability [12, Definition 6.1]). A fault
fi(t) 6≡ 0, where fi(t) is the ith component of f(t), is weakly detectable if
there exists a residual generator such that the residual signal r(t) is affected
by fi(t) (see (2.16)).

A fault detection in sense of Definition 1 is called weak, since it is possible that the
residual signal r(t) may return to zero after a transient phase although a fault is
still present. For a residual signal r(t) to reliably indicate the presence of a fault
fi(t) even after the transient phase, strong fault detectability is required. The latter
is specified in the following definition.

Definition 2 (Strong fault detectability [12, Definition 6.2]). A fault
fi(t) is strongly detectable if there exists a residual generator such that r(t)
reaches a nonzero steady-state value for a fault signal that has a bounded
steady-state value different from zero.

However, (2.16) can only be achieved if d̄(t) ≡ 0. If a disturbance d̄(t) is present, i.e,
d̄(t) 6≡ 0, a threshold value rB > 0 must be introduced for secured fault detection,
i.e.,

|r(t)| ≤ rB , for f(t) ≡ 0, t ≥ T (2.17)

must hold, so that |r(t)| > rB necessarily indicates the presence of a fault f(t) 6≡ 0.

2.3.2 Determination of the input-output expression

In the following, an input-output expression is determined by the application of
integral transformations, from which the residual generator can be derived. For this,
the integral transformation for the PDE (2.1a)

M[x](t) =
1∫

0

T∫

0

m>(z, τ)x(z, t− τ)dτdz = 〈m,x(t)〉Ω,I (2.18a)
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with Ω = [0, 1] and I = [0, T ], T ∈ R+, for the BC (2.1b)

P[h](t) =
T∫

0

p>(τ)h(t− τ)dτ = 〈p, h(t)〉I, h(t) ∈ Rnx , (2.18b)

for the ODE (2.1c)

Qw[w](t) = 〈qw, w(t)〉I, (2.18c)

for the output equation (2.1d)

N [y](t) = 〈n, y(t)〉I (2.18d)

and for the signal model (2.15) of the disturbance d̃(t)

Qd[vd](t) = 〈qd, vd(t)〉I (2.18e)

are introduced. The moving horizon length T is a design parameter addressed more in
detail in Section 2.3.5. Due to the timeshift in the arguments of the transformations
in (2.18), these are evaluated on the moving horizon It = [t− T, t]. This becomes
obvious by a simple substitution τ̃ = t− τ , which yields, e.g.,

T∫

0

n>(τ)y(t− τ)dτ =
t∫

t−T

n>(t− τ̃)y(τ̃)dτ̃ , t ≥ T (2.19)

for (2.18d) and is illustrated in Figure 2.3. The integral kernels m(z, τ) ∈ Rnx ,
n(τ) ∈ Rny , qw(τ) ∈ Rnw , qd(τ) ∈ Rnvd and p(τ) ∈ Rnx are degrees of freedom
which are utilized to solve the fault detection problem. Note that similar integral
transformations are used in the modulating functions method for the parameter,
state and derivative estimation (see, e.g., [46, 49, 70, 78]). However, in these
approaches, the integral transformations are applied to treat derivatives of known
signals. In contrast, the integral kernels in the presented approach are used to
eliminate unknown system variables in order to derive an input-output expression
from which the residual generators are determined.

Apply the transformations (2.18) to the corresponding equations of (2.1), which
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t∗t∗ − Tτ
T 0

t

y(t)

t∗

〈n, y(t∗)〉I

t

〈n, y(t)〉I

n(τ)

It∗

Figure 2.3: Integral transformation 〈n, y(t)〉I ( ) of a signal y(t) ∈ R
( ) with the evaluation of the integral transformation visual-
ized at time t∗ by y(t), t ∈ It∗ = [t∗−T, t∗] ( ) and the integral
kernel n(τ) ∈ R ( ) depicted in an additional τ -coordinate
system.

yields

〈m, ∂zx(t)〉Ω,I = 〈m,A[x](t)〉Ω,I + 〈m,H1w(t)〉Ω,I + 〈m,B1u(t)〉Ω,I
+ 〈m,G1d(t)〉Ω,I + 〈m,E1f(t)〉Ω,I (2.20a)

〈p,KxB(t)〉I = −〈p,H2w(t)〉I + 〈p,B2u(t)〉I + 〈p,G2d(t)〉I + 〈p,E2f(t)〉I (2.20b)
〈qw, ẇ(t)〉I = 〈qw, Fw(t)〉I + 〈qw, L1x(t)〉Ω,I + 〈qw, LBxB(t)〉I + 〈qw, B3u(t)〉I

+ 〈qw, G3d(t)〉I + 〈qw, E3f(t)〉I (2.20c)
〈n, y(t)〉I = 〈n,C1x(t)〉Ω,I + 〈n,CBxB(t)〉I + 〈n,C4w(t)〉I

+ 〈n,G4d(t)〉I + 〈n,E4f(t)〉I (2.20d)

with xB(t) = col (x(0, t), x(1, t)), LB = [L2 L3 ] and CB = [C2 C3 ]. Note that

〈qw,
1∫

0

L1(z)x(z, t)dt〉I = 〈qw, L1x(t)〉Ω,I (2.21)

is used to obtain (2.20c) and a similar relation for 〈n,C1x(t)〉Ω,I in (2.20d). In the
following, the temporal and spatial derivatives, the operator A and also the matrices
in (2.20) are shifted to the integral kernels. Use integration by parts with respect
to z for the left-hand side in (2.20a) to transfer the spatial derivative to m(z, τ),
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yielding

〈m, ∂zx(t)〉Ω,I = 〈m(1), x(1, t)〉I − 〈m(0), x(0, t)〉I − 〈∂zm,x(t)〉Ω,I. (2.22)

In order to shift A to the kernel m(z, τ), use its representation (2.2) to obtain

〈m,A[x](t)〉Ω,I =
nA∑

i=0
〈m,Ai∂itx(t)〉Ω,I. (2.23)

With ∂itx(z, t− τ) = (−1)i∂iτx(z, t− τ) and by transposing of the matrices Ai(z),

〈m,Ai∂itx(t)〉Ω,I = (−1)i〈A>i m, ∂iτx(t)〉Ω,I (2.24)

follows for the summands in (2.23). Hence, the derivative operator ∂iτ can be shifted
to the kernel m(z, τ) by means of an i-folded integration by parts with respect to τ .
The result reads as

〈A>i m, ∂iτx(t)〉Ω,I =
i−1∑

j=0

[
(−1)j〈A>i ∂jτm(τ), ∂i−j−1

τ x(t− τ)〉Ω
]T
0

+ (−1)i〈A>i ∂iτm,x(t)〉Ω,I. (2.25)

The still unknown distributed values ∂iτx(z, t−τ)|τ∈{0,T}, z ∈ [0, 1], i = 0, . . . , nA−1
are eliminated by imposing

∂iτm(z, τ)|τ∈{0,T} = 0, z ∈ [0, 1], i = 0, 1, . . . , nA − 1. (2.26)

As a result of (2.24)–(2.26),

〈m,Ai∂itx(t)〉Ω,I = 〈A>i ∂iτm,x(t)〉Ω,I (2.27)

follows. Consequently, (2.23) reads as

〈m,A[x](t)〉Ω,I = 〈A∗[m], x(t)〉Ω,I, t ≥ T (2.28a)

with the formal adjoint

A∗[m(z)](τ) =
nA∑

i=0
A>i (z)∂iτm(z, τ). (2.28b)

In the term 〈m,H1w(t)〉Ω,I in (2.20a), the matrix H1(z) can be shifted to the kernel
by taking its transpose. Subsequently, the required form is achieved by changing the
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order of integration to

〈m,H1w(t)〉Ω,I = 〈H>1 m,w(t)〉Ω,I = 〈〈H1,m〉Ω, w(t)〉I, (2.29)

where 〈·, ·〉Ω represents the integration with respect to z ∈ Ω. Then, introducing

mB(τ) =
[
−m(0, τ)
m(1, τ)

]
(2.30)

and using (2.22), (2.28), as well as the form (2.29) for the remaining terms in (2.20a)
leads to

〈mB , xB(t)〉I = 〈A∗[m] + ∂zm,x(t)〉Ω,I + 〈〈H1,m〉Ω, w(t)〉I + 〈〈B1,m〉Ω, u(t)〉I
+ 〈〈G1,m〉Ω, d(t)〉I + 〈〈E1,m〉Ω, f(t)〉I. (2.31)

In (2.20b) and (2.20d) the related matrices are shifted to the kernels p(τ) and n(τ)
yielding

〈K>p, xB(t)〉I = −〈H>2 p, w(t)〉I + 〈B>2 p, u(t)〉I + 〈G>2 p, d(t)〉I
+ 〈E>2 p, f(t)〉I (2.32a)

〈n, y(t)〉I = 〈C>1 n, x(t)〉Ω,I + 〈C>Bn, xB〉I + 〈C>4 n,w(t)〉I
+ 〈G>4 n, d(t)〉I + 〈E>4 n, f(t)〉I. (2.32b)

For (2.20c), use ẇ(t− τ) = −dτw(t− τ), apply integration by parts with respect to
τ and impose

qw(τ)|τ∈{0,T} = 0 (2.33)

to obtain

〈qw, ẇ(t)〉I = 〈q̇w, w(t)〉I, (2.34)

where q̇w(τ) = dτqw(τ). Then, by shifting the matrices of the terms in the right-hand
side of (2.20c) to the integral kernels

〈q̇w − F>qw, w(t)〉I = 〈L>1 qw, x(t)〉Ω,I + 〈L>Bqw, xB(t)〉I + 〈B>3 qw, u(t)〉I
+ 〈G>3 qw, d(t)〉I + 〈E>3 qw, f(t)〉I (2.35)

follows. By setting

∂zm(z, τ) +A∗[m(z)](τ)− C>1 (z)n(τ)− L>1 (z)qw(τ) = 0 (2.36)
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one can insert (2.32b) and (2.35) in (2.31) to eliminate x(z, t), which yields

〈mB + C>Bn+ L>Bqw, xB(t)〉I = 〈n, y(t)〉I
+ 〈q̇w − F>qw − C>4 n+ 〈H1,m〉Ω, w(t)〉I
+ 〈〈B1,m〉Ω −B>3 qw, u(t)〉I
+ 〈〈G1,m〉Ω −G>3 qw −G>4 n, d(t)〉I
+ 〈〈E1,m〉Ω − E>3 qw − E>4 n, f(t)〉I. (2.37)

In (2.37), the left-hand side is still dependent on the unknown boundary value xB(t).
However, inserting

mB(τ) + C>Bn(τ) + L>Bqw(τ) = K>p(τ) (2.38)

in (2.37) and replacing the resulting term by (2.32a) leads to

〈−〈E1,m〉Ω + E>2 p+ E>3 qw + E>4 n, f(t)〉I = 〈n, y(t)〉I
+ 〈q̇w − F>qw + 〈H1,m〉Ω +H>2 p− C>4 n,w(t)〉I
+ 〈〈B1,m〉Ω −B>2 p−B>3 qw, u(t)〉I
+ 〈〈G1,m〉Ω −G>2 p−G>3 qw −G>4 n, d(t)〉I. (2.39)

The unknown ODE state w(t) in (2.39) is eliminated by imposing

q̇w(τ)− F>qw(τ) + 〈H1,m(τ)〉Ω +H>2 p(τ)− C>4 n(τ) = 0, τ ∈ (0, T ). (2.40)

By inserting (2.40) in (2.39), the expression

〈mf , f(t)〉I = 〈n, y(t)〉I + 〈mu, u(t)〉I + 〈md, d(t)〉I (2.41)

results, in which

mf (τ) = −〈E1,m(τ)〉Ω + E>2 p(τ) + E>3 qw(τ) + E>4 n(τ) (2.42a)
mu(τ) = 〈B1,m(τ)〉Ω −B>2 p(τ)−B>3 qw(τ) (2.42b)
md(τ) = 〈G1,m(τ)〉Ω −G>2 p(τ)−G>3 qw(τ)−G>4 n(τ) (2.42c)

with mf (τ) ∈ Rnf , mu(τ) ∈ Rnu and md(τ) ∈ Rnd are utilized.

In the next step, the disturbance d(t) is taken into account. In view of (2.13), the
disturbance term in (2.41) reads as

〈md, d(t)〉I = 〈md̃, d̃(t)〉I + 〈md̄, d̄(t)〉I (2.43)
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with md̃(τ) = G̃>md(τ) and md̄(τ) = Ḡ>md(τ). The signal model (2.15) of the
disturbance d̃(t) can be utilized to decouple (2.41) from d̃(t). Applying the transfor-
mation (2.18e) to (2.15a), using integration by parts in view of v̇d(t−τ) = −dτvd(t−τ)
and imposing

qd(τ)|τ∈{0,T} = 0, (2.44)

leads to

〈q̇d − S>d qd, vd(t)〉I = 0, (2.45)

where q̇d(τ) = dτqd(τ). The first term in the right-hand side of (2.43) can be
expressed in terms of vd(t) by making use of (2.15b), which yields

〈md̃, d̃(t)〉I = 〈R>d md̃, vd(t)〉I. (2.46)

Thus, inserting

q̇d(τ)− S>d qd(τ) = R>d md̃(τ), τ ∈ (0, T ) (2.47)

in (2.45) leads to 〈md̃, d̃(t)〉I = 0 in view of (2.46), i.e., (2.41) is independent of d̃(t)
(see (2.43)). Finally, the resulting input-output expression reads as

〈mf , f(t)〉I = 〈n, y(t)〉I + 〈mu, u(t)〉I + 〈md̄, d̄(t)〉I, t ≥ T. (2.48)

This expression depends only on the known measurement y(t), the known input u(t),
the fault f(t) and the unknown disturbances d̄(t). For (2.48) to hold, the integral
kernels must satisfy (2.26), (2.33), (2.36), (2.38), (2.40), (2.44) and (2.47), which
are summarized in the following lemma.
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Lemma 2.1 (Fault detection kernel equations). Let d̃(t) be described by
(2.15) and the integral kernels m(z, τ), p(τ), qw(τ), qd(τ) and n(τ) be a
solution of the fault detection kernel equation

∂zm(z, τ) = −A∗[m(z)](τ) + L>1 (z)qw(τ) + C>1 (z)n(τ) (2.49a)
K>p(τ) = mB(τ) + C>Bn(τ) + L>Bqw(τ) (2.49b)
q̇w(τ) = F>qw(τ)− 〈H1,m(τ)〉Ω −H>2 p(τ) + C>4 n(τ) (2.49c)
q̇d(τ) = S>d qd(τ) +R>d md̃(τ) (2.49d)

∂iτm(z, τ)|τ∈{0,T} = 0, z ∈ [0, 1], i = 0, . . . , nA − 1 (2.49e)
qw(τ)|τ∈{0,T} = 0 (2.49f)
qd(τ)|τ∈{0,T} = 0, (2.49g)

with (2.49a) defined on (z, τ) ∈ (0, 1) × (0, T ) and (2.49b)–(2.49d) on τ ∈
(0, T ). Then, the input-output expression (2.48) holds.

In order to make use of (2.48) for the fault detection, a solution for (2.49) must be
determined. A constructive approach for this is discussed in Section 2.3.4, whereas a
fault detectability condition based on system properties is derived in Section 2.3.4.3.

2.3.3 Residual generator

In view of the input-output expression (2.48),

r(t) = 〈n, y(t)〉I + 〈mu, u(t)〉I, t ≥ T (2.50)

is a candidate for the fault detection residual generator, since it only depends on
the known signals u(t) and y(t). It follows from the derivation of (2.48) that r(t) in
(2.50) is already independent of the operating point and the unknown ICs xi,0(z),
z ∈ [0, 1], i = 0, . . . , nA − 1 as well as w0. Hence, it remains to prove (2.16). In the
case d̄(t) ≡ 0, insert (2.50) in (2.48) to obtain

r(t) = 〈mf , f(t)〉I, t ≥ T, (2.51)

which already implies (2.16b). To show that also (2.16a) holds, rewrite (2.51) in
view of 〈mf , f(t)〉I =

∫ T
0
∑nf
i=1m

>
f (τ)ei,nf fi(t− τ)dτ in the form r(t) =

∑nf
i=1 ri(t)
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with

ri(t) =
T∫

0

m>f (τ)ei,nf fi(t− τ)dτ, t ≥ T. (2.52)

By continuing the components e>i,nfmf (τ) on τ > T with zeros, i.e., e>i,nfmf (τ) = 0,
τ ≥ T , the upper bound of the integration in (2.52) can be replaced by t. Thus,
the right-hand side in (2.52) can be regarded as the convolution of fi(t) with the
integral kernel e>i,nfmf (τ), i.e.,

ri(t) =
t∫

0

m>f (τ)ei,nf fi(t− τ)dτ, t ≥ T. (2.53)

Provided that fi(t) = 0 for t < T , the Titchmarsh convolution theorem [85, Theorem
VII] states that ri(t) given in (2.53) is not identically equal to zero on t ≥ T , if and
only if both e>i,nfmf (τ), τ ≥ 0 and fi(t), t ≥ T , are not identically equal to zero. As
a result, imposing

e>i,nfmf (τ) 6≡ 0, τ ∈ (0, T ), ∀i = 1, . . . , nf , (2.54)

ensures r(t) 6≡ 0, t ≥ T for fi(t) = 0, t < T and fi(t) 6≡ 0, t ≥ T , while fj(t) ≡ 0,
j 6= i, in view of (2.51). Under these assumptions, (2.50) satisfies (2.16) and is
thus a residual generator for separately occurring faults on t ≥ T . However, if
multiple faults occur simultaneously,

∑nf
i=1 ri(t) does not hold in general. Hence,

the specific case f(t) 6≡ 0, so that
∑nf
i=1 ri(t) ≡ 0 must be excluded. However, this is

non-restrictive since it requires the simultaneous occurrence of multiple faults and
additionally specific signals fi(t) depending on mf (τ). These results are summarized
in the following theorem.

Theorem 2.1 (Residual generator)
Assume that d̃(t) is described by a solution of (2.15), d̄(t) ≡ 0 holds and let
f(t) satisfy f(t) = 0, t < T , as well as 〈mf , f(t)〉I 6≡ 0 for f(t) 6≡ 0. If the
integral kernels satisfy (2.49) and (2.54), then (2.50) is a residual generator
for the system (2.1). A fault is detected if r(t) 6≡ 0, t ≥ T , with r(t) given by
(2.50).

Proof. The proof of Theorem 2.1 is based on the derivation of (2.50). If the integral
kernels satisfy (2.49), the residual generator (2.50) has the structure shown in Figure
2.2, consists only of the input and output filters 〈n, y(t)〉I and 〈mu, u(t)〉I and is
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independent of the operating point of the system, the ICs of the system as well as
the disturbance d̃(t). If (2.54) is satisfied, then it is ensured by the Titchmarsh
convolution theorem that r(t) is excited solely by the occurrence of a fault fi(t),
i.e., (2.16) holds. When multiple faults are present, which satisfy 〈mf , f(t)〉I 6≡ 0,
(2.16) is satisfied by the same reasoning. Thus, (2.50) is the sought for residual
generator. �

The residual generator (2.50) ensures only weak detectability (see Definition 1). This
is a consequence of taking faults into account that are as general as possible. In
order to achieve strong detectability (see Definition 2), further assumptions on the
fault must be imposed, which is investigated in Section 2.4.

To discuss the fault detection with respect to the unknown but bounded disturbance
d̄(t) 6≡ 0, insert (2.50) in (2.48) to obtain

r(t) = 〈mf , f(t)〉I − 〈md̄, d̄(t)〉I, t ≥ T. (2.55)

It follows from (2.55), that the residual is not only affected by the fault f(t) but
also by d̄(t). Hence, a threshold must be introduced to distinguish the influence of
f(t) and d̄(t) on r(t). To this end, consider the absolute value of the residual error

|〈mf , f(t)〉I − r(t)| = |〈md̄, d̄(t)〉I|, t ≥ T (2.56)

caused by d̄(t). Use the integral representation of 〈·, ·〉I to estimate (2.56) by

|〈md̄, d̄(t)〉I| ≤
T∫

0

|m>
d̄

(τ)d̄(t− τ)|dτ. (2.57)

Introduce the vector of absolute values |h(t)| = col(|h1(t)|, . . . , |hν(t)|) ∈ (R+
0 )ν ,

h(t) ∈ Rν , the integrand on the right-hand side of (2.57) can be estimated by

|m>
d̄

(τ)d̄(t− τ)| ≤ |md̄(τ)|>|d̄(t− τ)|. (2.58)

Then, (2.58) is bounded by

|m>
d̄

(τ)d̄(t− τ)| ≤ |md̄(τ)|>δ (2.59)

in view of (2.14). Since δ is constant, the fault detection threshold

rB =
T∫

0

|md̄(τ)|>dτδ (2.60)
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can be introduced. It follows from (2.57) and (2.59) that

|〈md̄, d̄(t)〉I| ≤ rB , t ≥ T (2.61)

holds. Furthermore, it can be concluded from (2.56) and (2.61) that in the fault free
case, i.e., f(t) ≡ 0, the residual r(t) satisfies

|r(t)| ≤ rB , t ≥ T. (2.62)

Consequently, if |r(t)| > rB , a fault must be present. The next theorem summarizes
this result.

Theorem 2.2 (Fault detection)
Assume that d̃(t) is described by a solution of (2.15), d̄(t) satisfies (2.14) and
〈mf , f(t)〉I 6≡ 0 holds for f(t) 6≡ 0. Let the integral kernels m(z, τ), qw(τ),
qd(τ) and n(τ) satisfy (2.49) and (2.54). Then, for the system (2.1), a fault
is detected if the threshold rB is exceeded by the residual signal r(t) given in
(2.50) for t ≥ T , i.e.,

|r(t)| > rB , t ≥ T. (2.63)

Proof. The proof of Theorem 2.2 is based on the fact that (2.50) is a residual
generator for the case d̄(t) ≡ 0 (see Theorem 2.1). Then, it follows from the residual
error (2.56) and the estimate (2.61) that a fault can be detected by (2.63). �

The first time instant at which the threshold value in the sense of (2.63) is exceeded,
is called the fault detection time t̂, which is an estimate for the fault occurrence
time tf , i.e., t̂ ≥ tf . Note that if a disturbance d̄(t) is present, missed detections are
possible if the excitation of the residual generator by the occurrence of a fault is not
sufficient. Hence, attention should be paid in the design of the residual generator
to keep the threshold sufficiently small compared to the excitation of the residual
generator for expected fault signals. Details on this trade-off design are discussed
for the simulation example in Section 2.3.5. However, (2.63) ensures that no false
alarms occur.
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2.3.4 Solution of the fault detection kernel equations

2.3.4.1 Fault detection kernel equations

A systematic approach for the computation of the integral kernels that satisfy (2.49)
and (2.54) can be derived by considering (2.49) as an ODE-PDE system. For this,
take into account that (2.49a) is a system of nx first-order PDEs with respect to
z. The corresponding nx BCs result from (2.49b). In view of (2.3), nx conditions
for the 2nx boundary values mB(τ) can be satisfied by a suitable choice of p(τ) in
(2.49b). Thus, the remaining nx conditions are independent of p(τ) and these are
the required BCs. The latter can be determined by making use of the left annihilator
(K>)⊥ ∈ Rnx×2nx of K>, which satisfies (K>)⊥K> = 0 and rank (K>)⊥ = nx.
Applying this annihilator to (2.49b) yields with

(K>)⊥
(
mB(τ) + C>Bn(τ) + L>Bqw(τ)

)
= 0 (2.64)

the nx BCs for (2.49a). Furthermore, with (2.64) being satisfied, (2.49b) is uniquely
solvable for p(τ) because of (2.3), i.e., p(τ) is given by

p(τ) = (K>)†
(
mB(τ) + C>Bn(τ) + L>Bqw(τ)

)
(2.65)

in terms ofmB(τ), qw(τ) and n(τ). In (2.65), (K>)† is the Moore-Penrose generalized
inverse, which can be computed with

(K>)† = (KK>)−1K (2.66)

in view of (2.3) (see, e.g., [11, Proposition 6.1.5 and Theorem 2.6.1, ix)]). From this,
a matrix K̃ = I −K>(K>)† ∈ R2nx×2nx satisfying K̃K> = 0 and rank K̃ = nx (see,
e.g., [11, Proposition 6.1.6., xix)]) is deduced. Consequently, (K>)⊥ with required
rank (K>)⊥ = nx results from choosing the nx linear independent rows of K̃.

The result (2.65) allows to eliminate p(τ) in (2.49c) and (2.49d). Insert (2.65) in
(2.49c) to obtain

q̇w(τ) =
(
F> −H>2 (K>)†L>B

)
qw(τ)− 〈H1,m(τ)〉Ω −H>2 (K>)†mB(τ)

+
(
C>4 −H>2 (K>)†C>B

)
n(τ). (2.67)

To rewrite (2.49d), insert md̃(τ) = G̃>md(τ) where p(τ) in md(τ) given in (2.42c)
is replaced by (2.65) to obtain

q̇d(τ) = S>d qd(τ)−R>d G̃>(G>2 (K>)†L>B +G>3 )qw(τ) +R>d G̃
>〈G1,m(τ)〉Ω

−R>d G̃>G>2 (K>)†mB(τ)−R>d G̃>(G>2 (K>)†C>B +G>4 )n(τ). (2.68)
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As a result, the fault detection kernel equations are represented by the ODE-PDE
system with the PDE

∂zm(z, τ) = −A∗[m(z)](τ) + L̄1(z)q(τ) + C>1 (z)n(τ) (2.69a)

defined on (z, τ) ∈ (0, 1)× (0, T ) following from (2.49a), the BCs

K̄0m(0, τ) + K̄1m(1, τ) + L̄2q(τ) = C̄2n(τ), τ ∈ (0, T ) (2.69b)

resulting from (2.64) with (2.30) and the ODE

q̇(τ) = Feq(τ) +
1∫

0

H̄1(z)m(z, τ)dz + H̄2m(0, τ) + H̄3m(1, τ) + C̄3n(τ), (2.69c)

defined on τ ∈ (0, T ) where q(τ) = col (qw(τ), qd(τ)) ∈ Rnq with nq = nw + nvd
summarizes (2.67) and (2.68). The matrix in (2.69a) is L̄1(z) = col

(
L>1 (z), 0>

)
.

The matrices in (2.69b) result from (2.64) with mB(τ) = col (−m(0, τ), m(1, τ)) to
[
−K̄0 K̄1

]
= (K>)⊥ (2.70a)

L̄2 = (K>)⊥
[
L>B 0

]
(2.70b)

C̄2 = −(K>)⊥C>B (2.70c)

where K̄0, K̄1 ∈ Rnx×nx and L̄2 ∈ Rnx×nq . The matrices in (2.69c) follow from
(2.67) as well as (2.68) and read as

Fe =
[

F> −H>2 (K>)†L>B 0
−R>d Ḡ>

(
G>2 (K>)†L>B +G>3

)
qw(τ) S>d

]
(2.71a)

H̄1(z) =
[
−H>1 (z)

R>d G̃
>G>1 (z)

]
(2.71b)

[
−H̄2 H̄3

]
=
[
−H>2

(
K>

)†

−R>d G̃>G>2
(
K>

)†

]
(2.71c)

C̄3 =
[

C>4 −H>2 (K>)†C>B
−R>d G̃>

(
G>2 (K>)†C>B +G>4

)
]

(2.71d)

where H̄2, H̄3 ∈ Rnq×nx . For convenience, the fault detection kernel equations are
summarized in the following lemma.
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Lemma 2.2 (Fault detection kernel equations as ODE-PDE system). Let
d̃(t) be described by (2.15) and the integral kernels m(z, τ), q(τ) and n(τ)
be a solution of the fault detection kernel equation

∂zm(z, τ) = −A∗[m(z)](τ) + L̄1(z)q(τ) + C>1 (z)n(τ) (2.72a)
K̄0m(0, τ) + K̄1m(1, τ) + L̄2q(τ) = C̄2n(τ), (2.72b)

q̇(τ) = Feq(τ) +
1∫

0

H̄1(z)m(z, τ)dz + H̄2m(0, τ)

+ H̄3m(1, τ) + C̄3n(τ), (2.72c)

and

∂iτm(z, τ)|τ∈{0,T} = 0, z ∈ [0, 1], i = 0, . . . , nA − 1 (2.73a)
q(τ)|τ∈{0,T} = 0 (2.73b)

with (2.72a) defined on (z, τ) ∈ (0, 1) × (0, T ) and (2.72b)–(2.72c) on τ ∈
(0, T ). The matrices in (2.72) are specified in (2.70) and (2.71). Then, the
input-output expression (2.48) holds.

The initial and end conditions (2.73) follow from (2.49e)–(2.49g). It follows that
(2.72) is a PDE-ODE system subject to the initial and end values (2.73) as well
as an input n(τ), which is a degree of freedom. Note that this two-point initial-
boundary-value problem is equivalent to (2.49) such that any integral kernels that
are a solution of (2.72) subject to (2.73) yield the input-output expression (2.48)
in accordance with Lemma 2.1. By the consideration of the additional algebraic
constraint (2.54) in this transition problem, it is ensured that (2.52) is a residual
generator in view of Theorem 2.1.

To solve this two-point initial-boundary-value problem, a suitable input n(τ) must
be determined so that m(z, τ) and q(τ) realize the transition subject to (2.54) from
the initial point to the end point given in (2.73) in finite time T . By embedding
the initial and end values (2.73) into setpoints, which is achieved by additionally
requiring

∂nAτ m(z, τ)|τ∈{0,T} = 0, z ∈ [0, 1] (2.74a)
dτq(τ)|τ∈{0,T} = 0, (2.74b)

the transition problem of the kernel equations is traced back to a setpoint change.
The latter can be solved systematically with results from the flatness-based motion
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planning, which is a well established method for the motion planning of DPSs
(see, e.g., [62, 73, 75, 93]). It is based on the introduction of a parametrizing
variable to express the system variables as functions of this so called flat output
and its derivatives (see, e.g., [62]). Based on these differential parametrizations, a
setpoint change between arbitrary setpoints of the system can be traced back to an
algebraic interpolation problem for a reference trajectory for the flat output. For
linear systems, the latter can be achieved by solving a linear system of equations,
which yields a systematic solution of the in general difficult to solve two-point
initial-boundary-value problem. However, since the transition between the specific
initial and end points (2.73) can be always achieved, it is not required to show that
the parametrizing variable is indeed a flat output. Nevertheless, it must be shown
that a transition between the given points can be parametrized, which also satisfies
the additional algebraic constraint (2.54). This requirement on the differential
expressions for the system variables m(z, τ), n(τ) and q(τ) of the kernel equations
system is investigated in Section 2.3.4.3. Before that, the parametrizing variable and
the associated differential expressions are introduced in the following section.

2.3.4.2 Determination of the differential expressions

In this section the differential expressions required for the motion planning are
derived. In the previous work [102] it was possible to use the results from [75, 93]
directly to determine the differential expressions for (2.72). However, the general
ODE-PDE coupling occurring in (2.72a) requires an extension of the results [75, 93].

For a systematic derivation of the differential expressions, the Laplace transform
with the correspondence h(z, τ) c sȟ(z, s) ∈ Cν for h(z, τ) ∈ Rν is employed. In
the following, the Laplace transformation is applied formally at first. However, a
rigorous mathematical justification can be obtained by using operational calculus
(see, e.g., [63, 75, 93]).

Use the Laplace correspondences ∂iτm(z, τ) c ssim̌(z, s), i = 0, . . . , nA, in view
of the homogeneous ICs (see (2.73)) as well as q(τ) c sq̌(s) and n(τ) c sň(s) to
obtain the formal Laplace transform of (2.72a)

∂zm̌(z, s) = −Ǎ∗(z, s)m̌(z, s) + L̄1(z)q̌(s) + C>1 (z)ň(s) (2.75a)

with Ǎ∗(z, s) =
∑nA
i=0A

>
i (z)si (see (2.28b)). The transformation of the BCs (2.72b)

reads as

K̄0m̌(0, s) + K̄1m̌(1, s) + L̄2q̌(s) = C̄2ň(s). (2.75b)
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Regard s in (2.75) as complex parameter, then (2.75) is a boundary-value problem
with (2.75a) as ODE with respect to z and the BCs given in (2.75b). Let Φ̌ :
Ω2 × C→ Cnx×nx be the state transition matrix related to (2.75a), which satisfies

∂zΦ̌(z, ζ, s) = −Ǎ∗(z, s)Φ̌(z, ζ, s), Φ̌(ζ, ζ, s) = I, (z, ζ, s) ∈ Ω2 × C (2.76)

(see [75, Assumption 1]). As a result

m̌(z, s) = Φ̌(z, 0, s)m̌(0, s) + Ψ̌L(z, s)q̌(s) + Ψ̌C(z, s)ň(s), (z, s) ∈ Ω× C (2.77)

is the general solution of (2.75a), with

Ψ̌L(z, s) =
z∫

0

Φ̌(z, ζ, s)L̄1(ζ)dζ, (z, s) ∈ Ω× C (2.78a)

Ψ̌C(z, s) =
z∫

0

Φ̌(z, ζ, s)C>1 (ζ)dζ, (z, s) ∈ Ω× C (2.78b)

(see, e.g., [16, Section 4.5]). For the consideration of the BCs (2.75b), insert (2.77)
in (2.75b) yielding

(
K̄0 + K̄1Φ̌(1, 0, s)

)
m̌(0, s) +

(
K̄1Ψ̌L(1, s) + L̄2

)
q̌(s)

=
(
C̄2 − K̄1Ψ̌C(1, s)

)
ň(s), (2.79)

which depends only on the lumped variables m̌(0, s), q̌(s) and the input ň(s). Apply
the formal Laplace transform to (2.72c), which gives

(sI − Fe) q̌(s) =
1∫

0

H̄1(z)m̌(z, s)dz + H̄2m̌(0, s) + H̄3m̌(1, s) + C̄3ň(s). (2.80)

This relation can be rewritten in terms of m̌(0, s), q̌(s) and ň(s), by inserting (2.77)
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in (2.80). The result

sI − Fe −

1∫

0

H̄1(z)Ψ̌L(z, s)ds− H̄3Ψ̌L(1, s)


 q̌

−




1∫

0

H̄1(z)Φ̌(z, 0, s)dz + H̄2 + H̄3Φ̌(1, 0, s)


 m̌(0, s)

=




1∫

0

H̄1(z)Ψ̌C(z, s)dz + C̄3 + H̄3Ψ̌C(1, s)


 ň(s) (2.81)

and (2.79) can be summarized in

Π̌(s)
[
m̌(0, s)
q̌(s)

]
= Ď(s)ň(s) (2.82)

with

Π̌(s) =
[
Π̌11(s) Π̌12(s)
Π̌21(s) Π̌22(s)

]
, Ď(s) =

[
Ď1(s)
Ď2(s)

]
(2.83)

and

Π̌11(s) = K̄0 + K̄1Φ̌(1, 0, s) (2.84a)
Π̌12(s) = K̄1Ψ̌L(1, s) + L̄2 (2.84b)

Π̌21(s) = −
1∫

0

H̄1(z)Φ̌(z, 0, s)dz − H̄2 − H̄3Φ̌(1, 0, s) (2.84c)

Π̌22(s) = sI − Fe −
1∫

0

H̄1(z)Ψ̌L(z, s)ds− H̄3Ψ̌L(1, s) (2.84d)

Ď1(s) = C̄2 − K̄1Ψ̌C(1, s) (2.84e)

Ď2(s) =
1∫

0

H̄1(z)Ψ̌C(z, s)dz + C̄3 + H̄3Ψ̌C(1, s). (2.84f)

A parametrizing variable µ̌(s) ∈ Cny can be introduced as

ň(s) = det Π̌(s)µ̌(s), (2.85a)
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which leads to
[
m̌(0, s)
q̌(s)

]
= adj Π̌(s)Ď(s)µ̌(s) (2.85b)

for (2.82) in view of Π̌(s) adj Π̌(s) = det Π̌(s)I. With (2.85), m̌(z, s) can be expressed
in terms of µ̌(s) by inserting (2.85b) and (2.85a) in (2.77), which yields

m̌(z, s) =
([

Φ̌(z, 0, s) Ψ̌L(z, s)
]

adj Π̌(s)Ď(s) + Ψ̌C(z, s) det Π̌(s)
)
µ̌(s). (2.86)

By introducing

$̌(s) = det Π̌(s) (2.87a)
Ǔ(s) = Jq adj Π̌(s)Ď(s) (2.87b)

V̌ (z, s) =
[
Φ̌(z, 0, s) Ψ̌L(z, s)

]
adj Π̌(s)Ď(s) + Ψ̌C(z, s) det Π̌(s) (2.87c)

with $̌(s) ∈ C, Jp = [ 0 I ] ∈ Rnq×nq+nx , Ǔ(s) ∈ Cnq×ny and V̌ (z, s) ∈ Cnx×ny , the
system variables m̌(z, s), q̌(s) and ň(s) in (2.85) and (2.86) can be rewritten to

m̌(z, s) = V̌ (z, s)µ̌(s) (2.88a)
q̌(s) = Ǔ(s)µ̌(s) (2.88b)
ň(s) = $̌(s)µ̌(s). (2.88c)

In order to determine the time domain correspondences for the expressions in (2.88),
the operators V̌ (z, s), Ǔ(s) and $̌(s) in (2.88) are developed as formal power series
in s. This series expansion can be achieved systematically as shown in [75], by
expressing Φ̌(z, ζ, s), Ψ̌L(z, s) and Ψ̌C(z, s) by the formal power series

Φ̌(z, ζ, s) =
∞∑

i=0
Φi(z, ζ)si, z, ζ ∈ Ω, s ∈ C (2.89a)

Ψ̌L(z, s) =
∞∑

i=0
ΨL,i(z)si, z ∈ Ω, s ∈ C (2.89b)

Ψ̌C(z, s) =
∞∑

i=0
ΨC,i(z)si, z ∈ Ω, s ∈ C. (2.89c)

Note that the coefficient matrices Φi(z, ζ) ∈ Rnx×nx , ΨL,i(z) ∈ Rnx×nq and ΨC,i(z) ∈
Rnx×ny in (2.89) can be computed numerically by using results from [75, 93] or the
recursive algorithm described in Appendix A.5.

Taking into account that term wise addition and the Cauchy product for multiplica-
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tion of formal power series results again in a formal power series (see Appendix A.1,
Lemma A.1), the operators V̌ (z, s), Ǔ(s) and $̌(s) in (2.87) can be also expressed
as the formal power series

V̌ (z, s) =
∞∑

i=0
Vi(z)si (2.90a)

Ǔ(s) =
∞∑

i=0
Uis

i (2.90b)

$̌(s) =
∞∑

i=0
$is

i (2.90c)

with Vi(z) ∈ Rnx×ny , Ui ∈ Rnq×ny and $i ∈ R by inserting (2.89) in the containing
matrices of (2.87) (see (2.83) and (2.84)). Using (2.90) in (2.88) allows a simple
transform of the system variables m̌(z, s), q̌(s) and ň(s) into the time domain
by applying the formal correspondence siµ̌(s) s cdiτµ(τ). This yields the formal
differential expressions in terms of diτµ(τ), i ∈ N0, which are summarized in the
following lemma.

Lemma 2.3 (Formal differential expressions). Let Vi(z), Ui(z) and $i be
given by the formal power series (2.90), which are defined by (2.87). Then,
the system variables m(z, τ), q(τ) and n(τ) can be parametrized by the
differential expressions

m(z, τ) =
∞∑

i=0
Vi(z)diτµ(τ) (2.91a)

q(τ) =
∞∑

i=0
Uidiτµ(τ) (2.91b)

n(τ) =
∞∑

i=0
$idiτµ(τ) (2.91c)

in terms of the parametrizing variable µ(τ) and its derivatives.

To make use of the so far only formal derivation of (2.91), the convergence of the
containing series must be ensured by a suitable choice of the parametrizing variable
µ(τ), which is considered in detail in Section 2.3.4.3.

For the residual generator (2.50), the computation of the threshold (2.60) and the
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investigation of fault detectability (see (2.54)), the integral kernels mu(τ), md̄(τ) and
mf (τ) are required, which can be also expressed in terms of differential expressions
with the parametrizing variable µ(τ). To this end, insert (2.65) in (2.92) to eliminate
the dependence on p(t), yielding

mf (τ) = −〈E1,m(τ)〉Ω + E>2 (K>)†mB(τ) +
(
E>2 (K>)†L>B + E>3

)
Jwq(τ)

+
(
E>2 (K>)†C>B + E>4

)
n(τ) (2.92a)

mu(τ) = 〈B1,m(τ)〉Ω −B>2 (K>)†mB(τ)−
(
B>2 (K>)†L>B +B>3

)
Jwq(τ) (2.92b)

md̄(τ) = Ḡ>
(
〈G1,m(τ)〉Ω −G>2 (K>)†mB(τ)−

(
G>2 (K>)†L>B +G>3

)
Jwq(τ)

−
(
G>2 (K>)†C>B +G>4

)
n(τ)

)
(2.92c)

with Jw = [I, 0] ∈ Rnw×nq . Then, (2.91) can be inserted in (2.42) to obtain

mf (τ) =
∞∑

i=0
Xidiτµ(τ) (2.93a)

mu(τ) =
∞∑

i=0
Xu,idiτµ(τ) (2.93b)

md̄(τ) =
∞∑

i=0
Xd̄,idiτµ(τ) (2.93c)

where Xi ∈ Rnf×ny , Xu,i ∈ Rnu×ny and Xd,i ∈ Rnd×ny read as

Xi = −〈E1, Vi〉Ω + E>2 (K>)†
[
−Vi(0)
Vi(1)

]
+
(
E>2 (K>)†L>B + E>3

)
JwUi

+
(
E>2 (K>)†C>B + E>4

)
$i (2.94a)

Xu,i = 〈B1, Vi〉Ω −B>2 (K>)†
[
−Vi(0)
Vi(1)

]
−
(
B>2 (K>)†L>B +B>3

)
JwUi (2.94b)

Xd̄,i = Ḡ>
(
〈G1, Vi〉Ω −G>2 (K>)†

[
−Vi(0)
Vi(1)

]
−
(
G>2 (K>)†L>B +G>3

)
JwUi

−
(
G>2 (K>)†C>B +G>4

)
$i

)
. (2.94c)

2.3.4.3 Fault detectability condition

With the differential expressions (2.91), the fault detection kernel equations (2.72),
(2.73) and (2.54) can be solved by the planning of a suitable reference trajectory
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µ? ∈ (C∞(I))ny for the parametrizing variable µ(τ). On the one hand, this reference
trajectory must ensure the convergence of the series in the so far formal differential
expressions (2.91) and on the other hand, it must be ensured that the required
nontrivial setpoint change can be parametrized by these differential expressions in
terms of µ?(τ). If both can be achieved, then the two-point initial-boundary-value
problem of the fault detection kernel equations can be reformulated into an algebraic
interpolation problem. With the latter a reference trajectory µ?(τ) can be determined
that yields a solution for the fault detection kernel equations by the evaluation of
the differential expressions. Thus, the residual generator (2.50) exists and the faults
can be detected.

In view of (2.91), it can be verified that the initial and end condition (2.73) are
satisfied if µ?(τ) holds

diτµ?(τ)|τ∈{0,T} = 0, i ∈ N0. (2.95)

However, the only analytic function satisfying (2.95) on an open neighborhood is the
zero function. Since a nontrivial setpoint change is required so that the additional
constraint (2.54) can be satisfied, µ?(τ) has to be locally non-analytic. A suitable
function class with this property are the Gevrey functions, which are specified in the
following definition.

Definition 3 (Gevrey functions [72, Definition 1.4.1]). Let Gα(I) be
the class of Gevrey functions of order α in I. The function ϑ(τ) is in Gα(I) if
ϑ ∈ C∞(I) and for every compact subset Ĩ of I there exists h ∈ R+ such that

|diτϑ(τ)| ≤ hi+1(i!)α (2.96)

holds for all i ∈ N+ and τ ∈ Ĩ.

Taking into account that G1(I) is the space of analytic functions on I (see [72]), µ?(τ)
must be chosen as Gevrey function of order α > 1 to be non analytic. A suitable
Gevrey function, satisfying the requirement (2.95) is

ϑ(τ) =





exp
(
−((1− τ

T ) τT )−σ
)

∫ T
0

exp
(
−((1− ζ

T ) ζT )−σ
)

dζ
: τ ∈ (0, T )

0 : otherwise,
(2.97)

which is a Gevrey function of order α = 1 + 1/σ (see, e.g., [60, Lemma 1]). It is
illustrated in Figure 2.4 for T = 1.75 and α = 1.999.
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Figure 2.4: Function (2.97) for different values of σ with corresponding
Gevrey orders α ∈ {1.6, 1.733, 1.866, 1.999} and T = 1.75.

Based on the bounded growth of the derivatives of Gevrey functions (see (2.96)),
requirements on the reference trajectory µ?(τ) can be determined to ensure the
convergence of the differential expressions (2.91). For this it is required to determine
the order of the power series (2.90) associated with the series in (2.91). The order
of formal power series is related to properties of entire functions and can be found
in [75, Definition 1] or Appendix A.1 Definition 4. The convergence of such series is
shown, e.g., in [93, Satz 5.4] and stated in the following theorem.

Theorem 2.3 (Convergence of formal power series)
Let the formal power series

ǎ(s) =
∞∑

i=0
ais

i (2.98)

with ai ∈ R be of order % with 0 < % < 1. If ϕ(τ) ∈ R is a Gevrey function
of order α < 1/% on τ ∈ I, then the corresponding series

a(τ) =
∞∑

i=0
aidiτϕ(τ) (2.99)

is locally uniform absolute convergent.

The proof of this theorem is based on the bounded growth of the derivatives of
Gevrey functions and shown in the proof of [93, Satz 5.4].

Thus, in view of Theorem 2.3, the series (2.91) are locally uniform absolute convergent,
if the formal power series (2.90) is of order 0 < % < 1 and the reference trajectory
µ? ∈ G(I) with α < 1

% holds. Nevertheless, the order of the power series (2.90) must
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be determined. For this, it is utilized that formal power series of order % form a
commutative ring, i.e., the addition and multiplication of formal power series of
order % result again in a formal power series of the same order (see [93, Hilfssatz
5.3] respectively Appendix A.1, Lemma A.1). Consequently, it suffices to determine
the order of the power series representations for Φ̌(z, ζ, s), Ψ̌L(z, s) and Ψ̌C(z, s) in
(2.89). As shown in [93], this can be achieved by an analysis of the structure of
Ǎ∗(z, s) as stated in the following lemma.

Lemma 2.4 (Order of the power series (2.89) [93, Satz 5.5]). Assume that
Ǎ∗(z, s) =

∑nA
i=0A

>
i (z)si has the structure

Ǎ∗(z, s) =



ǎ11(z, s) ǎ12(z, s) 0 . . . 0
...

. . .
...

ǎnx−2 1(z, s) ǎnx−2 2(z, s) . . . ǎnx−2nx−1(z, s) 0
ǎnx−1 1(z, s) ǎnx−1 2(z, s) . . . ǎnx−1nx−1(z, s) ǎnx−1nx(z, s)
ǎnx 1(z, s) ǎnx 2(z, s) . . . ǎnx nx−1(z, s) ǎnx nx(z, s)




(2.100)

with the polynomial components

ǎij(z, s) =
na,ij∑

k=0
aij,k(z)sk (2.101)

of degree deg ǎij(z, s) = na,ij and aij,k ∈ C[0, 1] for i, j = 1, . . . , nx, k =
1, . . . , na,ij , which satisfy the inequality

max
z∈Ω

deg ǎij(z, s)
%

≤ i− j + 1, (2.102)

for i, j = 1, . . . , nx, with i ≥ j − 1 and some % ∈ R satisfying 0 < % < 1
independent of i and j. Then, the components of Φ̌(z, ζ, s), Ψ̌L(z, s) and
Ψ̌C(z, s) are power series of order %.

Note that the required structure of Ǎ∗(z, s) in Lemma 2.4 relies on the choice of the
system variable x(z, t). If Ǎ∗(z, s) does not have the required structure (2.100), a
different choice of the system variable may lead to a suitable form. Moreover, the
structure of Ǎ∗(z, s) in this lemma is not restrictive. In the following example it is
shown that the operator Ǎ∗(z, s) related to the parabolic system in the Example 2.1
satisfies this condition.
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Example 2.2 (Order of the power series for Φ̌(z, ζ, s) related to the formal adjoint
system operator of the Example 2.1).
The formal adjoint system operator Ǎ∗(z, s) related to Example 2.1 has the repre-
sentation

Ǎ∗(z, s) =
[ −dzα(z)

α(z) 1
−β(z)
α(z) + 1

α(z)s 0

]
, (2.103)

see (2.6) and (2.28b). In view of (2.103), Ǎ∗(z, s) satisfies the structure given in
(2.100) and with

deg ǎij(z, s) =
{

1 : i = 2, j = 1
0 : otherwise

(2.104)

the inequality (2.102) yields 1
% ≤ 2. Hence, Φ̌(z, ζ, s) is a formal power series of order

% = 1
2 . /

The same can be shown for further parabolic and biharmonic PDE systems by an
appropriate choice of the state x(z, t) (see, e.g., [99, 102]). Although Lemma 2.4 is
only sufficient, it provides a straightforward verifiable condition for the determination
of the order of the formal power series (2.90) for a large class of DPSs.

Finally, the fault detectability condition (2.54) (see Theorem 2.1) must be taken
into account in the planning of a suitable reference trajectory µ?(τ). This is stated
in the following theorem.

Theorem 2.4 (Fault detectability)
Let

∃j ∈ N0 so that e>i,nfXj 6= 0>, ∀i = 1, . . . , nf , (2.105)

hold with Xj given in (2.94a) and assume, d̃(t) is described by (2.15) and
d̄(t) ≡ 0. Then, for the system (2.1), a fault fi(t) = e>i,nf f(t) is detectable
in the sense of Theorem 2.1. If the system is subject to d̄(t) 6≡ 0 satisfying
(2.14), then the fault fi(t) is detectable according to Theorem 2.2.

Proof. The result of Theorem 2.4 is proven by showing that there exists a reference
trajectory µ?(τ), which parametrizes the fault detection kernels m?(z, τ), q?(τ) and
n?(τ) so that they solve (2.72) subject to (2.73) and (2.54). Note that if (2.72)
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subject to (2.73) is satisfied, also (2.49) holds, which is the requirement of Theorem
2.1 and Theorem 2.2.

If µ? ∈ (Gα(I))ny , 1 < α < 1/% satisfies (2.95), the resulting m?(z, τ), q?(τ) and
n?(τ) from (2.91) are solutions of (2.72) subject to (2.73). A possible choice for
µ?(τ) satisfying these requirements is (2.97). Thus, it remains to prove that (2.54)
can be satisfied. Express the reference trajectory m?

f (τ) assigned to mf (τ) in terms
of µ?(τ) resulting from (2.93a) by

m?
f (τ) =

∞∑

j=0
Xjdjτµ?(τ). (2.106)

Take (2.106) component-wise into account, i.e., for each e>i,nfm
?
f (τ) and e>k,nyµ

?(τ).
Consider the ith component of m?

f (τ) in the form

e>i,nfm
?
f (τ) =

ny∑

k=1
m?
f,ik(τ). (2.107)

In (2.107), the terms

m?
f,ik(τ) =

∞∑

j=0
χjikdjτµ?k(τ), i = 1, . . . , nf , k = 1, . . . , ny, (2.108)

are ordered with respect to the kth component µ?k(τ) of µ?(τ), where χjik ∈ R are
the components of

Xj =




χj11 . . . χj1ny
...

. . .
...

χjnf1 . . . χjnfny


 , (2.109)

which satisfy χjik 6= 0 for some j ∈ N0 in view of (2.105). Consider the case
m?
f,ik(τ) ≡ 0, ∀k = 1, . . . , ny, so that (2.108) reads as

∞∑

j=0
χjikdjτµ?k(τ) ≡ 0, i = 1, . . . , nf , k = 1, . . . , ny. (2.110)

Then, (2.110) is a homogeneous differential equation with respect to µ?k(τ). The
only solution satisfying (2.110) with the ICs djτµ?k(τ)|τ=0 = 0, j ∈ N0, is the
trivial solution µ?k(τ) ≡ 0. Consequently, any µ?k(τ) 6≡ 0 satisfying (2.95) yields
m?
f,ik(τ) 6≡ 0, if χjik 6= 0 holds for some j ∈ N0. Moreover,

∑ny
k=0m

?
f,ik(τ) ≡ 0 with
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m?
f,ik(τ) 6≡ 0, can always be omitted by a suitable choice of µ?k(τ). Hence, under

assumption (2.105), a nontrivial reference trajectory µ? ∈ (Gα(I))ny , 1 < α < 1/%,
satisfying (2.95) exists so that the parametrized fault detection kernels m?(z, τ),
q?(τ) and n?(τ) resulting from (2.91) are solutions of (2.72) subject to (2.73) and
(2.54). �

Note that the condition (2.105) depends only on the coefficient matrices Xj , j ∈ N0,
of the differential expression (2.93a). In view of the derivation of Xj in Section
2.3.4.2, it follows that Xj depends only on parameters of the original system (2.1)
and the signal model (2.15) of the disturbance d̃(t). Hence, (2.105) is a system
property that can be verified a priori.

2.3.4.4 Systematic approach for the planning of the reference trajectory

If Theorem 2.4 holds, then it remains to choose a suitable reference trajectory µ?(τ).
In the following, an algorithm is proposed, which allows to specify the stationary
gain of the residual generator with respect to constant faults and to reduce the
influence of the disturbance d̄(t) on the residual signal. This allows to balance the
residual signal to the expected magnitudes of faults. Although this approach assumes
constant faults for the design of the residual generator, it is shown in Section 2.3.5,
that this approach leads also for time-varying faults to good results.

For the case of a constant fault fi(t) = const., i = 1, . . . , nf , t ≥ 0, (2.52) reads as

r(t) = m̄>f f, t ≥ T (2.111)

where

m̄f =
T∫

0

m?
f (τ)dτ (2.112)

is regarded as the stationary gain for constant faults. Since

m̄f,i 6= 0, ∀i = 1, . . . , nf , (2.113)

for the components m̄f,i of m̄f ensures the fault detectability condition (2.54), the
reference trajectory planning can be traced back to the determination of a m̄f

satisfying (2.113). To express (2.112) in terms of µ?(τ) insert (2.106) in (2.112),
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yielding

m̄f =
∞∑

i=0
Xi

T∫

0

diτµ?(τ)dτ (2.114)

after changing the order of the integration and summation. The latter is allowed
because the uniform convergence of the series (2.93a) is ensured by µ? ∈ (Gα(I))ny ,
1 < α < 1/%. Let µ?(τ) satisfy the initial and end conditions specified in (2.95).
Then, the evaluation of the integrals in (2.114) gives

T∫

0

diτµ?(τ)dτ =
[
di−1
τ µ?(τ)

]T
0 = 0, i > 0. (2.115)

With (2.115), (2.112) reads as

m̄f = X0

T∫

0

µ?(τ)dτ. (2.116)

In order to introduce degrees of freedom in the parametrizing variable µ?(τ), impose

µ?(τ) =
nµ∑

i=1
ϑ(τ)θi(τ)ηi (2.117)

with ηi ∈ Rny , i = 1, . . . , nµ, θ1 = 1 and linear independent functions θi ∈ C∞(I),
i = 2, . . . , nµ, ϑ ∈ Gα(I), 1 < α < 1/%,

diτϑ(τ)|τ∈{0,T} = 0, i ∈ N0 (2.118)

and
T∫

0

ϑ(τ)dτ = 1. (2.119)

In (2.117), ϑ(τ) ensures the convergence of the series (2.91) as well as the required
initial and end conditions (2.95). The degrees of freedom ηi will be used to ensure
(2.116) as well as to make the residual generator less sensitive to the disturbance
d̄(t).
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Rewrite (2.117) into the form

µ?(τ) = θ(τ)η (2.120)

with θ(τ) = ϑ(τ)[θ1(τ) · · · θnµ(τ)]⊗Iny , where Iny is the identity matrix of dimension
ny and η = col

(
η1, . . . , ηnµ

)
. Therein, A⊗B is the Kronecker product, i.e., A⊗B =

[aij ]⊗B = [aijB] for matrices A ∈ Rm×n and B ∈ Rp×q of arbitrary dimension (see,
e.g., [11, Def. 7.1.2]). Inserting (2.120) in (2.116) and introducing Θ =

∫ T
0 θ(τ)dτ

yields

m̄f = X0Θη. (2.121)

In general, X0Θ ∈ Rnf×nynµ is non-square, thus a compatible m̄f ∈ R(X0) must be
chosen, where R(X0) is the range of X0. Note that R(X0) = R(X0Θ) follows form
θ1 = 1 and [11, Proposition 2.6.3.]. Then, (2.121) has the solution

η = (X0Θ)†m̄f +
(
I − (X0Θ)†X0Θ

)
m̄∗f , (2.122)

where (X0Θ)† is the Moore-Penrose generalized inverse of X0Θ, which can be
computed by a singular value decomposition as described, e.g., in [11, Section 6.1].
If rank (I − (X0Θ)†X0Θ) > 0 holds, m̄∗f ∈ Rnynµ in (2.122) is a degree of freedom,
which will be used to minimize the influence of the disturbance d̄(t). In view of
(2.122), the fault detectability can be ensured by specifying an m̄f satisfying

e>i,nf m̄f 6= 0, ∀i = 1, . . . , nf , so that m̄f ∈ R(X0). (2.123)

This is possible if

e>i,nfX0 6= 0 (2.124)

holds, which is in accordance with the results of Theorem 2.4.

If rank (I − (X0Θ)†X0Θ) > 0 holds, there exist remaining degrees of freedom m̄∗f ,
which can be used to reduce the influence of d̄(t) on the residual signal r(t). By
regarding the threshold value rB as a measure for the influence of the disturbance
d̄(t) on the residual signal r(t), m̄∗f should be chosen to reduce rB . In view of (2.60),
express md̄(τ) in terms of m̄∗f by inserting (2.117) with (2.122) in (2.93c) after the
substitutions µ(τ)→ µ?(τ) and md̄(τ)→ m?

d̄
(τ) to obtain

m?
d̄
(τ) = θ̄0(τ) + θ̄1(τ)m̄∗f (2.125)
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with

θ̄0(τ) =
∞∑

i=0
Xd̄,idiτθ(τ) (X0Θ)† m̄f (2.126a)

θ̄1(τ) =
∞∑

i=0
Xd̄,idiτθ(τ)

(
I − (X0Θ)†X0Θ

)
. (2.126b)

Thus, the desired threshold value becomes

rB =
T∫

0

|θ̄0(τ) + θ̄1(τ)m̄∗f |>dτδ (2.127)

by inserting (2.125) in (2.60). Since rB is an upper bound for the effect of the
disturbance d̄(t) on the residual signal r(t), the threshold rB should be chosen to

rB = min
m̄∗
f
∈Rnynµ

T∫

0

|θ̄0(τ) + θ̄1(τ)m̄∗f |>dτδ. (2.128)

By (2.122) and the particular choice of ϑ(τ), it is ensured that the resulting reference
trajectory µ?(τ) from (2.120) leads to integral kernels m?(z, τ), q?(τ) and n?(τ) (see
(2.91)) that are solutions of (2.72) subject to (2.73) and (2.54) for any m̄∗f ∈ Rnynµ .
Thus, (2.128) can be solved numerically.

2.3.5 Fault detection for an Euler-Bernoulli beam

For the illustration of the presented fault detection approach, the cantilever beam
with a load at its tip depicted in Figure 2.5 is considered. The system setup is
inspired by the real-world setup treated in [79] to demonstrate the applicability of
the approach. A similar setup has been considered in the previous work [101] for
fault diagnosis. However, multiple inputs, outputs, disturbances and faults are added
to show the generality of the presented approach. The simulation of the beam and
the fault detection are implemented in MATLAB 2020a and are available in [108].

By assuming an Euler-Bernoulli beam with viscous external damping, the well-known
equation of motion for the deflection v(z, t) ∈ R reads as

µb(z)∂2
t v(z, t) + ρ(z)∂tv(z, t) + ∂2

z (λb(z)∂2
zv(z, t))

= b1(z)(1 + ∆f1(t))u1(t) + g1(z)(d̃(t) + d̄1(t)) + e1(z)f2(t) (2.129a)
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z1 Lp

z2 Lp

v(z, t)

z

z = 0 z = 1

mE , JE

d̄2(t)
u2(t) + f3(t)

y1(t), y2(t)

f4(t), f5(t) d̄3(t), d̄4(t)

b1(z) (u1(t) + f1(t))

f6(t) d̄5(t)

y3(t)

g1(z)(d̃(t) + d̄1(t)), e1(z)f2(t)

Figure 2.5: Schematic of the cantilever beam with a tip load and patches
mounted on opposite sides of the beam for the actuation as well
as a measurement described in (2.129).

and is defined on (z, t) ∈ (0, 1) × R+. The BCs of the cantilever beam with a tip
load are

v(0, t) = ∂zv(0, t) = 0, t > 0 (2.129b)
∂2
zv(1, t) = −JE∂2

t ∂zv(1, t) + g2d̄2(t), t > 0 (2.129c)
∂3
zv(1, t) = mE∂

2
t v(1, t) + b2(u2(t) + f3(t)), t > 0 (2.129d)

and the available measurements y(t) = col (y1(t), y2(t), y3(t)) ∈ R3 are given by

y(t) =




(1 + ∆f4(t))c1v(1, t) + d̄3(t)
c2∂zv(1, t) + d̄4(t) + f5(t)∫ 1

0 c3(z)∂2
zv(z, t)dz + d̄5(t) + f6(t)


 , t ≥ 0. (2.129e)

The beam is actuated by two asymmetrically controlled piezoelectric patches mounted
on the opposite surfaces of the beam and a force acting on the tip load. The
influence of the input u1(t) ∈ R on the system is modeled by the spatial characteristic
b1(z) = b0∂

2
zh1(z) ∈ R with h1 ∈ C2[0, 1] and the input u2(t) ∈ R has the gain b2 ∈ R.

The deflection and bending at the tip of the beam are available by measurements
y1(t), y2(t) ∈ R. Additionally, y3(t) ∈ R is the output of an attached strain gauge,
which has the spatial characteristic c3(z) = c0h2(z) ∈ R, h2 ∈ C2[0, 1]. The system
parameters are µb(z) = µc+µp(h1(z)+h2(z)) ∈ R, ρ(z) = ρc+ρp(h1(z)+h2(z)) ∈ R,
λb(z) = λc + λp(h1(z) + h2(z)) ∈ R, where the component with index c reflects the
parameters of the carrier layer and the components with index p the parameters of
the attached patches as described in [79] as well as parameters of the additionally
added strain gauge. The spatial characteristics h1(z) and h2(z) are described by
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Table 2.1: Normalized model parameters for the cantilever beam.
Value Parameter Value Parameter

µc 52.00× 10−3 µp 88.20× 10−3

ρc 139.50× 10−3 ρp 560× 10−3

λc 1.72 λp 5.60
JE 44.34× 10−9 mE 843.24× 10−6

b0 1.21× 10−3 b2 200× 10−6

g1 1.12× 10−3 g2 1× 10−3

c0 2.74× 103 c1, c2 1.00× 103

ez0 561.19× 10−6 ez1 1.68× 10−3

dh 197.04× 10−3 Lp 418.72× 10−3

z1 76.35× 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

z

h
1(

z
),

h
2(

z
)

Figure 2.6: Spatial characteristics h1(z) ( ) and h2(z) ( ) as piecewise
defined polynomials of order 5.

h1(z) = h̄(z − z1) and h2(z) = h̄(z − z2), z2 = z1 + Lp with the piecewise defined
function

h̄(z) =





0 : z ≤ 0
hs(z) : 0 < z < dh

1 : dh ≤ z ≤ Lp − dh
1− hs(z − Lp + d) : Lp − dh < z < Lp

0 : z ≥ Lp,

(2.130)

and are shown in Figure 2.6. In (2.130), hs(z) ∈ R, z ∈ [0, dh] is a polynomial of
order 5 satisfying ∂izhs(z)|z=0 = 0, i = 0, . . . , 2, hs(dh) = 1 and ∂izhs(z)|z=dh = 0,
i = 1, 2, so that hi(z), i = 1, 2, has the required smoothness. All system parameters
are normalized to the length Lc = 0.41m of the beam so that z ∈ (0, 1) holds and are
assembled in Table 2.1. Furthermore, the disturbance d̃(t) ∈ R is acting in-domain,
whereas the signal form of d̃(t) = d0

1 sin(3t + φd) is known but the parameters d0
1,

φd ∈ R are unknown. Hence, d̃(t) can be described by a signal model specified by
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known

Sd =
[
0 −3
3 0

]
, Rd =

[
0 1

]
(2.131)

and the unknown IC v0
d ∈ R2. The disturbances d̄i(t), i = 1, . . . , 5, are bounded

by |d̄i(t)| ≤ δi, with known upper bounds δ1 = 2 and δi = 0.10, i = 2, . . . , 5. The
input u1(t) is subject to the multiplicative fault ∆f1(t) ∈ R, which is rewritten as
additive fault f1(t) = u1(t)∆f1(t). With f2(t) ∈ R, an additive process fault, acting
in-domain with known spatial characteristic e1(z) = ez0 + ez2z

2 ∈ R is taken into
account. The fault f3(t) ∈ R is an additive actuator fault, affecting u2(t). The
measurement y1(t) is subject to a multiplicative fault ∆f4(t) ∈ R, which is rewritten
as additive fault f4(t) = ∆f4(t)c1v(1, t). The measurements y2(t) and y3(t) are
subject to the faults f5(t) ∈ R and f6(t) ∈ R, which are additive sensor faults.

In order to use the described fault detection approach, at first, (2.129) must be
rewritten into a system of the form (2.1). To this end, introduce

x(z, t) = col
(
∂3
zv(z, t), ∂2

zv(z, t), ∂zv(z, t), v(z, t)
)

(2.132)

so that the defining matrices of the operator A (see (2.1a)) are given by

A0(z) =




−2dzλb(z)
λb(z) −d2

zλb(z)
λb(z) 0 0

1 0 0 0
0 1 0 0
0 0 1 0


 , (2.133)

A1(z) = − ρ(z)
λb(z)e1,4 e

>
4,4 and A2(z) = −µb(z)λb(z)e1,4 e

>
4,4. Moreover, B1(z) = b1(z)

λb(z)e1,4e
>
1,2

and G1(z) = g1e1,4 e
>
1,5 result. For the dynamic BCs (2.129b)–(2.129d), the ODE

states

w(t) = col (∂t∂zv(1, t), ∂zv(1, t), ∂tv(1, t), v(1, t)) (2.134)

are introduced. With these, the boundary matrices for (2.1b) are

K0 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 ,K1 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 and H2 =




0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 −1


 . (2.135a)
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With (2.134), the matrices for the ODE (2.1c) read as

F =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


 , L3 =




0 − 1
JE

0 0
0 0 0 0
1
mE

0 0 0
0 0 0 0


 , (2.136)

B3 = − b2
mE

e3,4 e
>
2,2, G3 = g2

JE
e1,4 e

>
2,5 and for the output equation (2.1d), C1(z) =

c3(z)e3,3 e
>
2,4,

C3 =




0 0 0 c1
0 0 c2 0
0 0 0 0


 , (2.137)

as well as G4 = I3. The matrices to consider the components d̄(t) = col(d̄1(t), d̄2(t),
d̄3(t)) and d̃(t) of the disturbance d(t) (see (2.13)) read as G̃ = e1,5 and Ḡ = I. The
fault input matrices are E1(z) = b1(z)

λb(z)e1,4e
>
1,6 + e1(z)

λb(z)e1,4e
>
2,6, E3 = − b2

mE
e3,4 e

>
3,6 and

E4 = [0 I] ∈ R3×6.

The computation of the differential expressions (2.91) and (2.93) is implemented with
the help of the toolbox [109] that simplifies the implementation of time and space
dependent functions and operators in MATLAB. For the coefficient matrices Vi(z), Ui
and $i of the differential parametrization, it is required to compute Φi(z, ζ), ΨL,i(z)
and ΨC,i(z), which is done with the recursive algorithm proposed in Appendix A.5
on a discrete grid with 801 points for the spatial domain and the containing integral
terms are computed with the compound trapezoidal rule. Then,

X0 =




8.01× 1009 1.12× 1010 0
1.69× 1010 2.16× 1010 2.28× 1009

9.71× 1009 1.36× 1010 2.58× 1009

2.41× 1011 0 0
0 2.41× 1011 0
0 0 2.41× 1011




(2.138)

results by evaluating (2.94a) for i = 0 to verify the fault detectability in view of
(2.105). With (2.138), the requirement (2.124) for the application of the approach in
Section 2.3.4.4 for the planning of the reference trajectory µ?(τ) is satisfied. Hence,
it is used to obtain the following results. In the simulation, faults with the expected
magnitudes fex = col (41.82, 28.50, 30, 2.65, 16.51, 1.50) are assumed. To balance the
residual generator stationary gain m̄f with respect to to fex, m̄f should be close
to ¯̄mf = col(f−1

ex,1, . . . , f
−1
ex,nf

) where fex,i = e>i,nf fex, i = 1, . . . , nf . Additionally,
m̄f ∈ R(X0) must hold, which is required to solve (2.121). Both requirements can
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be achieved by

m̄f = X0X
†
0 ¯̄mf , (2.139)

since (2.139) minimizes ‖m̄f − ¯̄mf‖2 and ensures that m̄f ∈ R(X0) holds (see [11,
Fact 9.15.4]), where ‖·‖2 is the Euclidean norm. From the resulting

m̄f =
[
0.0154 0.0383 0.0258 0.378 0.0611 0.667

]>
, (2.140)

it is verified by (2.123) that the resulting reference trajectory µ?(τ) will lead to an
integral kernel m?

f (τ) that satisfies the detectability condition (2.54).

As linear independent functions θi(τ) in (2.117), the first five basis functions of a
Fourier series, i.e., θ1(τ) = 1, θ2(τ) = sin(πτT ), θ3(τ) = cos(πτT ), θ4(τ) = sin( 2πτ

T )
and θ5(τ) = cos( 2πτ

T ) are chosen, whereas nµ = 5 is determined so that an increase
would not lead to a relevant improvement of the resulting residual generator.

To choose an appropriate ϑ(τ) in (2.117) the upper bound 1/% of the Gevrey order α
for µ?(τ) must be determined. According to Lemma 2.4,

Ǎ∗(z, s) =




−2dzλb(z)
λb(z) 1 0 0
−d2

zλb(z)
λb(z) 0 1 0

0 0 0 1
−ρ(z)
λb(z) s−

µb(z)
λb(z)s

2 0 0 0




(2.141)

satisfies the required structure in (2.100). With (2.141), it follows from (2.102),
that the corresponding Φ̌(z, ζ, s), Ψ̌L(z, s) and Ψ̌C(z, s) are formal power series
of order % = 1/2. Thus, µ?(τ) must be a Gevrey function of order 1 < α < 2.
Hence, the Gevrey function specified in (2.97) is used for ϑ(τ), since it ensures the
requirements (2.118), (2.119) and thus the convergence of the series (2.91) and (2.93)
for 1 < α < 2.

The evaluation of the differential expressions requires to compute diτ (θj(τ)ϑ(τ)),
i > 0, j = 1, . . . , nµ, (see (2.120)), for which the product rule is applied so that only
the derivatives diτθj(τ) and diτϑ(τ) are required. The latter are computed with the
Symbolic Math Toolbox in MATLAB and are then numerically evaluated.

For the residual generator and the threshold rB, the integral kernels m?
u(τ), n?(τ)

and m?
d̄
(τ) must be determined. Since α < 2 ensures the convergence of the series in

the differential expressions, the integral kernels m?
u(τ), n?(τ) can be computed by a
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truncation of the defining series (2.91c), (2.93b) and (2.93c). To be specific,

n?ns(τ) =
ns∑

i=0
$idiτµ?(τ) (2.142a)

m?
u,ns(τ) =

ns∑

i=0
Xu,idiτµ?(τ) (2.142b)

m?
d̄,ns

(τ) =
ns∑

i=0
Xd̄,idiτµ?(τ) (2.142c)

are used as approximations for m?
u(τ), n?(τ) and m?

d̄
(τ), whereas ns = 12 is de-

termined, so that the relative increment of the last term is less than 10−6, i.e.,
‖$nsdnsτ µ?‖I,∞
‖n?ns‖I,∞

< 10−6 holds for (2.142a) and corresponding expressions for (2.142b)
as well as (2.142c). At this, ‖h‖I,∞ = supτ∈I |h(τ)|, h(τ) ∈ Rν , ν ∈ N is utilized.

The minimization problem (2.128) for the determination of m̄∗f is solved using the
fminsearch function from MATLAB, with zero as initial point. Although, this
ensures a local minimum only, it leads to suitable results. With the resulting m̄∗f ,
η can be computed with (2.122) to obtain the required reference trajectory µ?(τ)
from (2.120) for the computation of the integral kernels.

The remaining design parameters are α and T . In order to investigate their influence
on the residual generator, the threshold value rB given in (2.60) and a normalized
detection delay ∆f are used. The latter is introduced as a measure for the time from
the occurrence of a normalized fault hf (t) to its detection, i.e., ∆f is quantified by
the earliest time where |〈mf , hf (t)〉I| > rB, t ≥ 0, occurs. For the components of
hf (τ), the step functions hf,i(t) = 0, t < 0, i = 1, . . . , nf , and hf,i(t) = fex,i, t ≥ 0,
are used. Due to (2.121), the integral kernels calculated for different T and α have
the same m̄f (see (2.140)), so their thresholds rB and normalized detection delays
∆f can be compared. The result in Figure 2.7 shows that α should be close to the
upper bound 2, since this leads to a low threshold as well as a low ∆f . However,
a compromise is required for T . On the one hand, an increase in T leads to a low
threshold value rB, which allows to detect faults of small magnitude and reduces
missed detections. On the other hand, an increase in T would increase the fault
detection delay ∆f , which is indicated by ∆f in Figure 2.7. Choosing α = 1.999 and
T = 1.40, an acceptable threshold rB = 0.24 and a small ∆f = 0.11 are obtained.
The resulting integral kernels n(τ) and mu(τ) required for the residual generator
are depicted in Figure 2.8.

At first, the result in Theorem 2.1, i.e., the fault detection for the case d̄(t) ≡ 0, is
verified by a simulation. The input signal u(t) is a continuous signal taking randomly
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Figure 2.7: Fault detection threshold rB (see (2.60)) and normalized detec-
tion delay ∆f for different moving horizon lengths T and Gevrey
orders α.
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Figure 2.8: Integral kernels n(τ) and mu(τ) of the input and output filters
of the residual generator (2.50) computed with moving horizon
length T = 1.40, Gevrey order α = 1.999 and nµ = 5 basis
functions for the parametrization of µ?(τ).
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(a) Input u(t) and disturbance d̃(t) used in
the simulation.
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Figure 2.9: Excitation signals for the simulation of the cantilever beam.
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Figure 2.10: Fault scenarios for the fault detection with successively occur-
ring multiplicative actuator fault ∆fi(t) leading to the additive
fault signal f1(t), the time-varying additive process fault f2(t),
the constant additive actuator fault f3(t), the multiplicative
sensor fault ∆f4(t) leading to the additive fault signal f4(t),
the time-varying additive sensor fault f5(t) and the constant
additive sensor fault f6(t).
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values between ±100 and the disturbance component d̃(t) is the solution of the signal
model (2.131) with the IC v0

d = col (20, 0). Both are depicted in Figure 2.9a. In
the simulation, a fault fi(t), i = 1, . . . , 6, is only present for t ∈ Iif = [ti, ti + 6],
where t1 = 6, ti = ti−1 + 12, i = 2, . . . , 6. At this, ∆fi(t), t ∈ Iif , i = 1, 4, and fi(t),
t ∈ Iif , i = 3, 6, are constant values, whereas fi(t), t ∈ Iif , i = 2, 5, are signals taking
values randomly from a uniform distribution in the intervals [0, 30] respectively [0, 20]
yielding the fault signals shown in Figure 2.10.

For the simulation of the faulty beam in MATLAB, a finite-dimensional state-space
system of order 56 is derived by the Galerkin approximation of the beam with tip
load described in [79]. The simulation of the obtained finite-dimensional model
of the beam is performed by the lsim function of MATLAB with zero ICs and a
sampled time with the step size 5× 10−3. The numerical evaluation of the residual
generator (2.50) requires a discrete-time approximation of the containing integral
expressions. Under the assumption that the input signal u(t) and measurement y(t)
are available at equally spaced discrete-time samples, the integral expressions in
the residual generator (2.50) can be represented as FIR filters in discrete-time. A
detailed discussion about the representation of the integral expressions as FIR filters
can be found in [48], where similar expressions are used for the algebraic derivative
estimation. Based on the results in [48], the compound midpoint rule (see, e.g.,
[51]) is used to approximate the integral expressions and to derive the FIR filters.
In terms of a quasi-continuous implementation, the step size 5× 10−3 used in the
simulation was also used for the approximation of the integral expressions. Thus,
FIR filters of order 281 result, which are evaluated using the MATLAB function
filter and assuming u(t) = 0 and y(t) = 0 for t < 0. For 0 ≤ t < T , the residual
signal in Figure 2.11 has an initialization interval due to the unknown ICs of the
beam and the ODE signal model of the disturbance d̃(t). At the occurrence of a
fault fi(t) at ti, the residual is excited and indicates the presence of a fault. Because
of the particular choice of µ?(τ), the residual signal is balanced although the faults
have different amplitudes and effects on the system. Note that since the residual
generator considers the signals on the moving horizon It = [t− T, t], it requires the
time T = 1.40 after a fault has disappeared until the residual returns to zero.

In a second simulation, the disturbances d̄i(t), i = 1, . . . , 5, are chosen as the signals
shown in Figure 2.9b. The signals are changing their values at random time instants
from one bound to the other. It is explicitly chosen so that it has a high influence on
the residual signal. The second simulation, performed with the input and disturbance
signals shown in Figure 2.9 and the faults shown in Figure 2.10, yields the residual
signal in Figure 2.12. After the initialization interval 0 ≤ t < T , the residual signal
is bounded by ±rB until the occurrence of f1(t). The occurrence of the fault fi(t),
i = 1, . . . , 6, excites the residual generator, so that the threshold value is exceeded by
the residual signal shortly after the occurrence of the fault. However, the detection
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Figure 2.11: Residual signal r(t) ( ) for the detection of the faults fi(t),
i = 1, . . . , 6, ( ) from Figure 2.10 with the initialization interval
t < T ( ) assuming d̄(t) ≡ 0.
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Figure 2.12: Residual signal r(t) ( ) and the threshold value ±rB ( )
for the detection of the faults fi(t), i = 1, . . . , 6, from Figure
2.10, the presence of the faults indicated by ( ), the fault
detection ( ) at t̂i and the initialization interval t < T ( ) in
the presence of a disturbance d̄(t).

delay ∆̂i = t̂i − ti shown in Table 2.2 is dependent on the magnitude and the signal
form of the faults. Thus, an increasing fault as, e.g., f2(t) or a certain signal form
as of f5(t) can lead to a longer detection delay, but the faults fi(t), i = 1, 3, 5, are
detected very fast. This demonstrates that the proposed approach for the fault
detection is applicable for a complex system setup and a broad class of fault types
as well as signals. It allows the detection despite the excitation of the beam by the
input, the disturbance d̃(t) modeled by an ODE as well as the bounded disturbances
d̄i(t), i = 1, . . . , 5.
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Table 2.2: Detection delays of the fault detection for the cantilever beam
subject to the bounded disturbance d̄(t).
i 1 2 3 4 5 6

∆̂i 0.21 1.10 0.25 0.13 2.87 0.14

2.3.6 Concluding remarks

This section presented the fault detection for a DPS with parabolic or biharmonic
PDE and general ODE-PDE couplings. A residual generator with simple to im-
plement integral expressions is derived. The fault detection is decoupled from
disturbances with known signal form that can be described by the solution of an
ODE. If the system is subject to a disturbance that is only bounded with a known
bound, a threshold was introduced to achieve secured fault detection without false
alarms. The required integral kernels for the residual generator were derived by a
trajectory planning for an ODE-PDE system, which was solved by employing results
from the flatness-based trajectory planning. Based on the differential expressions for
the trajectory planning, a simple to evaluate fault detectability condition is derived,
that can be verified using only system parameters. With the example of a cantilever
beam with a load at the free end, the influence of the remaining degrees of freedom
is shown and the theoretical results are verified by simulations.

2.4 Fault diagnosis

In many applications, not only the detection of faults but their diagnosis, i.e., the
fault detection, isolation and identification, is relevant. To solve this challenging
problem, the fault f(t) is reconstructed by an input-output expression depending
solely on known signals u(t) and y(t). It allows a strong fault detection in sense of
Definition 2 and the fault isolation as well as the fault identification in finite time.
The fault diagnosis can be decoupled from disturbances described by the solution of
a signal model (see (2.15)). However, if also bounded disturbances d̄(t) are present,
then a threshold must be introduced to ensure the fault detection and isolation.
Moreover, the fault can be estimated with bounded estimation error. For the case
d̄(t) ≡ 0, an explicit expression is derived for each component fi(t), i = 1, . . . , nf ,
of f(t) based on the input-output equation (2.48), which is shown in the following
section. Subsequently, the fault diagnosis kernel equations are established in Section
2.4.3, which are solved by a trajectory planning to derive the required integral kernels
for the fault diagnosis. The theoretical results are demonstrated in a simulation for
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an Euler-Bernoulli beam in Section 2.4.4.

2.4.1 Problem formulation

Whereas the focus of the residual generator introduced in the previous section is the
detection of faults under less restrictive assumptions, the focus of the fault diagnosis
approach described in this section is on the identification, respectively estimation of
the fault. In order to solve this more challenging task, it is assumed that the fault
f(t) is described by a solution of the ODE signal model

v̇f (t) = Sfvf (t), t > 0 (2.143a)
f(t) = Rfvf (t), t ≥ 0 (2.143b)

with the state vf (t) ∈ Rnvf , the known matrices Sf ∈ Rnvf×nvf , Rf ∈ Rnf×nvf and
unknown ICs vf (ti) = vif ∈ Rnvf , i ∈ N+, t0 = 0. The matrix Sf is not required to be
diagonalizable and it is assumed that the spectrum of Sf satisfies σ(Sf ) ⊂ jR as well
as that the pair (Rf , Sf ) is observable (see, e.g., [16, Definition 6.01]). Furthermore,
the spectra of Sf and Sd must not be disjoint, i.e., σ(Sf ) ∩ σ(Sd) = ∅ must not
hold. The modeling of faults by (2.143) provides a systematic approach for a large
signal class, including frequently occurring fault signals described by polynomials
and trigonometric functions or combinations thereof. However, this restricts the fault
diagnosis to additive faults, since most multiplicative faults cannot be rewritten into
the additive form and satisfy (2.143). Nevertheless, (2.143) is a common assumption
in the fault diagnosis literature for LPS (see, e.g., [28, Section 14.4]) and covers
many relevant fault scenarios.

The occurrence of a fault is modeled by a change of the unknown IC vf (ti) = vif at
unknown time ti. This gives rise to piecewise defined signals for f(t), t ∈ (ti, ti+1),
given by piecewise solutions of (2.143) that are uniquely determined by vif . The time
intervals between changes of the faults are assumed to be uniformly lower bounded,
i.e., ti+1 − ti > ∆t > T must hold. For an illustration, the modeling of a drifting
fault is described in the following example.

Example 2.3 (ODE signal model for a drifting fault).
Consider a drifting fault described by the piecewise function

f(t) =
{

0 : 0 ≤ t < t1

a0 + a1t : t ≥ t1,
(2.144)

which occurs at t1 > ∆t and is specified by the coefficients a0, a1 ∈ R. The
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corresponding signal model reads as

Sf =
[
0 1
0 0

]
and Rf =

[
1 0

]
, (2.145a)

from which f(t) =
[
1 t− ti

]
vif follows. To model (2.144), the ICs are v0

f = 0 at
t0 = 0 and v1

f = col (a0 + a1t1, a1). /

The following fault diagnosis problems are solved for (2.1), (2.15), d̄(t) ≡ 0 and
(2.143):

1. fault detection: detection of the occurrence of a fault f(t),

2. fault isolation: independent detection of each fault fi(t), i = 1, . . . , nf , and

3. fault identification: determination of f(t).

If a disturbance d̄(t) 6≡ 0 is present, a threshold is introduced to achieve the fault
detection and isolation. Since fault identification is not possible any more in this
case, fault estimation, i.e, the estimation of the fault f(t) with bounded estimation
error is investigated.

2.4.2 Fault diagnosis equation

The derivation of the input-output expression, on which the fault diagnosis is based
on, is similar to the derivation of the input-output equation (2.48) used for the
residual generator in Section 2.3.2. In contrast to the pure fault detection discussed in
Section 2.3, the fault isolation and identification require an input-output expression
for each fault fi(t), i = 1, . . . , nf . These are established by the application of
the transformations (2.18) using nf different kernels mi(z, τ) ∈ Rnx , qi(τ) ∈ Rnw
and ni(τ) ∈ Rny , i = 1, . . . , nf . According to the derivation for (2.48), nf input-
output expressions are established by the substitutions m(z, τ)→ mi(z, τ), p(τ)→
pi(τ) ∈ Rnx , qw(τ) → qw,i(τ) ∈ Rnw , qd(τ) → qd,i(τ) ∈ Rnvd and n(τ) → ni(τ),
i = 1, . . . , nf , which requires that mi(z, τ), qi(τ) = col (qw,i(τ), qd,i(τ)) and ni(τ)
satisfy (2.72) and (2.73). The resulting input-output expressions become

〈mf,i, f(t)〉I = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I + 〈md̄,i, d̄(t)〉I, t ≥ T (2.146)

for i = 1, . . . , nf , where the substitutions mf (τ) → mf,i(τ) ∈ Rnf , mu(τ) →
mu,i(τ) ∈ Rnu , md̄(τ)→ md̄,i(τ) ∈ Rnd̄ are used in view of (2.92).
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2.4.2.1 Fault identification

At first, the fault identification problem is solved for the case d̄(t) ≡ 0. Under latter
assumption an identification equation for each fault fi(t), i = 1, . . . , nf , can be
derived from (2.146). By inserting (2.143) in (2.146) and assuming d̄(t) ≡ 0,

〈R>f mf,i, vf (t)〉I = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I (2.147)

is obtained. In order to derive an expression for the fault fi(t) from (2.147), a
transformation for the signal model of the fault (2.143)

Qf,i[vf ](t) = 〈qf,i, vf (t)〉I, (2.148)

with the integral kernel qf,i(τ) ∈ Rnvf is introduced. The application of (2.148) to
(2.143a) leads to

〈qf,i, v̇f (t)〉I = 〈qf,i, Sfvf (t)〉I. (2.149)

Let the fault f(t) occur at tj , j ∈ N0, i.e., the fault signal f(t), t ∈ (tj , tj+1),
is a solution of (2.143) on t ∈ (tj , tj+1) uniquely determined by the unknown IC
vf (ti) = vjf ∈ Rnvf . Thus, for t ∈ Ij = [tj + T, tj+1), the substitution v̇f (t− τ) by
−∂τvf (t− τ) and application of integration by parts to (2.149) results in

〈q̇f,i − S>f qf,i, vf (t)〉I = q>f,i(T )vf (t− T )− q>f,i(0)vf (t), t ∈ Ij . (2.150)

Given (2.143b), (2.150) can be solved for fi(t) = e>i,nfRfvf (t) using

q>f,i(0) = −e>i,nfRf and q>f,i(T ) = 0. (2.151)

With (2.151) and (2.143b) in (2.150)

f(t) = 〈q̇f,i − S>f qf,i, vf (t)〉I, t ∈ Ij (2.152)

is obtained. Imposing

q̇f,i(τ)− S>f qf,i(τ) = R>f mf,i(τ), τ ∈ I (2.153)

allows to insert (2.152) in (2.147). This leads to

fi(t) = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I, t ∈ Ij . (2.154)

Since (2.154) depends only on u(t) and y(t), the fault fi(t) can be determined by
an input-output expression depending only on known signals. The identification
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equation (2.154) can be summarized for i = 1, . . . , nf , to

f(t) = 〈N, y(t)〉I + 〈Mu, u(t)〉I, t ∈ Ij (2.155)

by introducing

N(τ) = [n1(τ) · · · nnf (τ) ] ∈ Rny×nf (2.156a)
Mu(τ) = [mu,1(τ) · · · mu,nf (τ) ] ∈ Rnu×nf . (2.156b)

Since the fault identification equation (2.155) only holds on t ∈ Ij = [tj + T, tj+1),
but tj is not known, the fault diagnosis residual generator candidate

f̂(t) = 〈N, y(t)〉I + 〈Mu, u(t)〉I, t ≥ T (2.157)

for the fault diagnosis residual signal f̂(t) ∈ Rnf is introduced. For f(t) ≡ 0, f̂(t) ≡ 0
holds on t ≥ T and f̂(t) = f(t), t ∈ Ij , implies f̂(t) 6≡ 0 on t ≥ T for f(t) 6≡ 0. This
holds for d̃(t) given by (2.15), any IC of the system and any input u(t). Thus, (2.157)
is a residual generator and f̂(t) is a residual signal. To be precise, f̂(t) = f(t), t ∈ Ij ,
implies strong fault detectability in sense of Definition 2. However, f̂(t) = f(t),
t ∈ Ij , implies also that the fault f(t) can be identified by this residual signal. Thus,
(2.157) is not only a residual generator but also suitable for the fault identification.
To represent this fact in contrast to the residual signal r(t) (see (2.50)), which allows
exclusively a detection of the fault, the new symbol f̂(t) is introduced. This fault
identification result is summarized in the following theorem.

Theorem 2.5 (Fault identification)
Let d̄ ≡ 0 hold, d̃(t) be described by a solution of the signal model (2.15) and
f(t) be described by a piecewise defined solution of the signal model (2.143).
Let the integral kernels mi(z, τ), qi(τ), ni(τ) and qf,i(τ), i = 1, . . . , nf ,
satisfy the kernel equations (2.72), (2.73), (2.151) and (2.153). Then, the
fault f(t) occurring at tj , j ∈ N0, is identified by f̂(t) given in (2.157) for
t ∈ Ij = [tj + T, tj+1).

The proof of Theorem 2.5 follows from the derivation of (2.157) and that f̂(t) = f(t)
holds for t ∈ Ij , j ∈ N0.

Note that the fault occurring at tj , j ∈ N0 is identified at t = tj + T in finite time.
Moreover, the identified fault signals already allow the fault isolation.
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2.4.2.2 Fault detection, isolation and estimation

In the presence of an unknown but bounded disturbance d̄(t) 6≡ 0, a threshold is
introduced to ensure the fault detection and fault isolation as well as to derive
an upper bound for the fault estimation error. Following the previously described
approach to obtain (2.154) while additionally taking d̄(t) into account, yields

fi(t) = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I + 〈md̄,i, d̄(t)〉I, t ∈ Ij . (2.158)

This can be separated into the known part

f̃i(t) = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I, t ∈ Ij (2.159)

and the unknown part

f̄i(t) = 〈md̄,i, d̄(t)〉I. (2.160)

Thus, the absolute value of the estimation error for each fault fi(t) caused by d̄(t) is
given by

|fi(t)− f̃i(t)| = |f̄i(t)|, i = 1, . . . , nf , t ∈ Ij (2.161)

and

f̄i(t) = 〈md̄,i, d̄(t)〉I. (2.162)

Similar to the derivation of the threshold rB,i (see (2.57)–(2.61)), an upper bound

fB,i =
T∫

0

|md̄,i(τ)|>dτδ, i = 1, . . . , nf , (2.163)

satisfying

|f̄i(t)| ≤ fB,i (2.164)

results as the upper bound for the fault estimation error. In order to achieve fault
diagnosis without knowing the fault occurrence time tj , the fault diagnosis residual
(2.157) is used. In view of (2.161) and (2.164) the components f̂i(t) of the fault
diagnosis residual f̂(t) are bounded by |f̂i(t)| ≤ fB,i for f(t) ≡ 0, t ≥ T , i = 1, . . . , nf .
As a conclusion, |f̂i(t)| > fB,i for t ≥ T necessarily indicates the presence of a fault.
This is summarized in the following theorem.
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Theorem 2.6 (Strong fault detection)
Let the integral kernelsmi(z, τ), qi(τ), ni(τ) and qf,i(τ), i = 1, . . . , nf , satisfy
(2.72), (2.73), (2.151) and (2.153). Assume that d̃(t) is described by a solution
of the signal model (2.15) and d̄(t) is bounded according to (2.14). Then, a
fault f(t) is detected for the system (2.1) if a threshold fB,i, i = 1, . . . , nf ,
given in (2.163) is exceeded by some component f̂i(t) of f̂(t) in (2.157), i.e.,

∃i ∈ {1, . . . , nf} so that |f̂i(t)| > fB,i, t ≥ T. (2.165)

For a fault that occurs at tj , f̂i(t) = f̃i(t) holds for t ∈ Ij , thus the strong fault
detection in sense of Definition 2 is achieved. The fault detection time t̂j , j ∈ N0, is
the first time instance a threshold value fB,i is exceeded by f̂i(t) (see (2.165)).

After the transient interval, i.e., t ≥ tj+T , only the residual signal f̂i(t) corresponding
to the present fault fi(t), but no other residual signal f̂k(t), k 6= i exceeds its threshold
value fB,k, i.e., |f̂k(t)| ≤ fB,k, k 6= i, on t ∈ Ij = [tj + T, tj+1). Thus, the exceeding
of the corresponding threshold |f̂i(t)| > fB,i for t ∈ Ij , indicates that the ith fault is
present, i.e., fault isolation is achieved. However, since only t̂j > tj is known, the
fault can be isolated for t ≥ t̂j + T , which is the result of the next theorem.

Theorem 2.7 (Fault isolation)
Let the integral kernelsmi(z, τ), qi(τ), ni(τ) and qf,i(τ), i = 1, . . . , nf , satisfy
(2.72), (2.73), (2.151) and (2.153). Assume that d̃(t) is described by a solution
of the signal model (2.15), d̄(t) is bounded according to (2.14) and f(t) is
piecewise described by solutions of the signal model (2.143). Then, the fault
fi(t), i ∈ {1, . . . , nf}, occurring at tj , j ∈ N0, is detected for the system (2.1)
if the threshold fB,i given in (2.163) is exceeded by the ith component f̂i(t)
of f̂(t) in (2.157) for t ≥ t̂j + T , i.e.,

|f̂i(t)| > fB,i, t ≥ t̂j + T. (2.166)

Moreover, for t ∈ Ij , f̂i(t) = f̃i(t) holds. Thus it follows from (2.161), that a fault
fi(t) is bounded by

f̂i(t)− fB,i ≤ fi(t) ≤ f̂i(t) + fB,i, t ∈ Ij . (2.167)

Consequently, the isolated faults can be estimated, which is the result of the next
theorem.
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Theorem 2.8 (Fault estimation)
Let the integral kernelsmi(z, τ), qi(τ), ni(τ) and qf,i(τ), i = 1, . . . , nf , satisfy
(2.72), (2.73), (2.151) and (2.153). Assume that d̃(t) is described by a solution
of the signal model (2.15), d̄(t) is bounded according to (2.14) and f(t) is
piecewise described by solutions of the signal model (2.143). Then, for the
system (2.1) the estimate f̂i(t) of a fault fi(t), i = 1, . . . , nf , occurring at tj ,
j ∈ N0, is bounded by

fi(t)− fB,i ≤ f̂i(t) ≤ fi(t) + fB,i, t ∈ [t̂j + T, tj+1) (2.168)

with f̂i(t) as ith component of f̂(t) obtained from the residual generator
(2.157) and fB,i given by (2.163).

The proofs of the Theorems 2.6, 2.7 and 2.8 follow from (2.161) and the estimate
(2.164), since f̂(t) = f̃(t) holds for t ∈ Ij .

2.4.3 Solution of the fault diagnosis kernel equations

In order to use the residual generator (2.157) for the fault diagnosis, the integral
kernels mi(z, τ), qi(τ) and ni(τ), i = 1, . . . , nf , must satisfy (2.72) and (2.73) as well
as qf,i(τ) must satisfy (2.151) and (2.153). In the following the design of these kernels
is traced back to the trajectory planning problem for the ODE-PDE system given by
(2.72) and (2.153) with the initial and end points given by (2.73) and (2.151), which
can be solved using results from the flatness-based trajectory planning.

In contrast to the fault detection kernel equations, the newly introduced transforma-
tion (2.148) leads to an additional ODE subsystem with nonhomogeneous ICs (see
(2.151)). Since the latter generally do not correspond to setpoints, it can no longer
be traced back to a setpoint change. Thus, the solution of the kernel equations
becomes more challenging.

2.4.3.1 Fault identification kernel equations

Use the substitutions m(z, τ)→ mi(z, τ), q(τ)→ qi(τ) and n(τ)→ ni(τ) in (2.72)
respectively (2.73), then the nf fault diagnosis kernel equations are obtained, which
are summarized in the following lemma.
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Lemma 2.5 (Fault diagnosis kernel equations). Let d̃(t) be described by
(2.15), the fault f(t) be described by (2.143) and the integral kernels mi(z, τ),
qi(τ), qf,i(τ) and ni(τ) be a solution of the fault diagnosis kernel equations,
which are given by the PDE

∂zmi(z, τ) = −A∗[mi(z)](τ) + L̄1(z)qi(τ) + C>1 (z)ni(τ) (2.169a)

defined on (z, τ) ∈ (0, 1)× (0, T ), the BCs

K̄0mi(0, τ) + K̄1mi(1, τ) + L̄2qi(τ) = C̄2ni(τ), τ ∈ (0, T ), (2.169b)

the ODEs

q̇i(τ) = Feqi(τ) +
1∫

0

H̄1(z)mi(z, τ)dz + H̄2mi(0, τ)+H̄3mi(1, τ)

+ C̄3n(τ) τ ∈ (0, T ) (2.169c)
q̇f,i(τ) = S>f qf,i(τ) +R>f mf,i(τ), τ ∈ (0, T ) (2.169d)

and the initial-end conditions

∂jτmi(z, τ)|τ=0 = 0, ∂jτmi(z, τ)|τ=T = 0 (2.170a)
qi(0) = 0, qi(T ) = 0 (2.170b)

qf,i(0) = −R>f ei,nf , qf,i(T ) = 0 (2.170c)

for i = 1, . . . , nf , where (2.170a) is defined on z ∈ [0, 1] for j = 0, . . . , nA − 1.
Then, the fault diagnosis residual generator (2.157) holds.

Each system (2.169) is a cascade of an ODE-PDE subsystem and an ODE subsystem,
as depicted in Figure 2.13, which are subject to the initial and end conditions (2.170).
Note that the nf kernel equations that must be solved for the fault diagnosis differ
only in the distinct ICs given in (2.170c). Moreover, each system (2.169) has the
input ni(τ) as a degree of freedom. Similar to the fault detection kernel equations
in Lemma 2.1, the fault diagnosis kernel equations described in Lemma 2.5 are a
two-point initial-boundary-value problem that can be solved by the determination
of an input ni(τ) that realizes the specified transition for mi(z, τ), qi(τ) and qf,i(τ).
In contrast to the fault detection kernel equations, no additional algebraic constraint
must be considered, but the IC (2.170c) for the ODE (2.169d) is in general not a
setpoint. In particular for sinusoidal faults, the IC corresponds to a nonequilibrium
point, as shown in the following example.
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Σ∞
mi

Σnq
qi

ODE-PDE
subsystem

mi(τ) qi(τ) Σnvf
qf,i

ni(τ) mi(τ)

qi(τ)

ODE
subsystem

Figure 2.13: Structure of the fault diagnosis kernel equations, composed of
the ODE-PDE subsystem including the PDE (Σ∞mi) described
by (2.169a), (2.169b) and the ODE (Σnqqi ) described by (2.169c)
as well as the ODE subsystem (Σnvfqf,i ) described by (2.169d).

Example 2.4 (Nonequilibrium ICs of the kernel equations ODE).
Assume a sinusoidal fault, i.e., f(t) = f0

1 sin(3t + φf ), with unknown parameters
f0

1 ∈ R and φf ∈ R. This signal form can be described a signal model (2.143) with

Sf =
[
0 −3
3 0

]
and Rf =

[
0 1

]
, (2.171)

and the unknown IC v0
f ∈ R2. Because Sf has full rank, the evaluation of the

setpoint requirement q̇f,i(τ)|τ=τ0 = 0 yields solely the homogeneous setpoint qsf,i = 0
for (2.170c) with mf,i(τ0) = 0. Thus, the IC qf,i(0) = −col (0, 1) is not a setpoint
of (2.170c). /

Consequently, the solution of the fault diagnosis kernel equations cannot be traced
back to a setpoint change for the ODE-PDE system (2.169), which requires the
solution of a more sophisticated feedforward control problem. In the sense of the
flatness-based trajectory planning, similar to Section 2.3.4, a differential expression
in terms of a parametrizing variable for the kernel equations system (2.169) is
determined in the following section. Based on this parametrization a solution for the
fault diagnosis kernel equations can be computed by a reformulation of the transition
problem into an interpolation problem for the parametrizing variable. Note that
also for this transition problem it is not necessary to verify that the parametrizing
variable is indeed a flat output, since it is sufficient if the specific transition from
the ICs to the end values specified in (2.170) can be parametrized. Whether this
parametrization is possible is checked in Section 2.4.3.3.
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2.4.3.2 Determination of the differential expression for the
ODE-PDE-ODE cascade system

Since the ODE-PDE subsystem for each integral kernelmi(z, τ) and qi(τ) of the kernel
equations (2.169a)–(2.169c) is equal to the kernel equation of the fault detection
problem (2.72), the differential expressions (2.91) can be used. Introducing the
substitution µ(τ)→ µi(τ), the differential expressions for the ODE-PDE subsystem
read as

mi(z, τ) =
∞∑

j=0
Vj(z)djτµi(τ) (2.172a)

qi(τ) =
∞∑

j=0
Ujdjτµi(τ) (2.172b)

ni(τ) =
∞∑

j=0
$jdjτµi(τ) (2.172c)

with i = 1, . . . , nf . Thus, it remains to determine a differential expression for qf,i(τ)
and a common parametrizing variable. For this, the formal Laplace transform
qf,i(τ) c sq̌f,i(s) and q̇f,i(τ) c ssq̌f,i(s) is used. Note that the latter transform
must be regarded formally since the nonhomogeneous ICs qf,i(0) = −R>f ei,nf (see
(2.170c)) are not considered explicitly in the following derivation of the differential
expressions. However, this simplification is justified by a time reversal shown in the
Appendix A.2. As a result of the formal Laplace transform of (2.169d),

(
sI − S>f

)
q̌f,i(s) = R>f m̌f,i(s) (2.173)

follows. In order to express (2.173) in terms of µ̌i(s), apply the substitution µ(τ)→
µi(τ) as well as mf (z, τ)→ mf,i(z, τ) and a formal Laplace transform in (2.93a) to
obtain

m̌f,i(s) = X̌(s)µ̌i(s) (2.174)

where X̌(s) =
∑∞
j=0Xjs

j . With (2.174) in (2.173), the latter is expressed in terms
of µ̌i(s), which reads as

(
sI − S>f

)
q̌f,i(s) = R>f X̌(s)µ̌i(s). (2.175)

By introducing the common parametrizing variable ϕ̌i(s) ∈ Cny , i = 1, . . . , nf , with

µ̌i(s) = det
(
sI − S>f

)
ϕ̌i(s), (2.176)
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(2.175) can be solved for

q̌f,i(s) = adj
(
sI − S>f

)
R>f X̌(s)ϕ̌i(s), (2.177)

when using adj(sI − S>f )(sI − S>f ) = I det(sI − S>f ). In order to derive a simple
time correspondence for q̌f,i(s), utilize

adj
(
sI − S>f

)
=
nvf−1∑

j=0
Sjs

j (2.178)

with Sj ∈ Rnvf×nvf and the Cauchy product to rewrite the operator (2.177) as the
formal power series

adj
(
sI − S>f

)
R>f X̌(s) =

∞∑

j=0
Wjs

j (2.179)

with Wj ∈ Rnvf×ny , j ∈ N0. Then, insert (2.179) in (2.177) to obtain

q̌f,i(s) =
∞∑

j=0
Wjs

jϕ̌i(s), i = 1, . . . , nf . (2.180)

To parametrize µ̌i(s) with the new parametrizing variable ϕ̌i(s), use

det
(
sI − S>f

)
=

nvf∑

j=0
ajs

j (2.181)

where aj ∈ R and anvf = 1. Hence, (2.176) reads as

µ̌i(s) =
nvf∑

j=0
ajs

jϕ̌i(s), i = 1, . . . , nf . (2.182)

Also the integral kernels m̌i(z, s), q̌i(s) and ňi(s) can be expressed in terms of ϕ(τ),
by inserting (2.182) in (2.172), which yields

m̌i(z, s) =
∞∑

j=0
V̄j(z)sjϕ̌i(s) (2.183a)

q̌i(s) =
∞∑

j=0
Ūjs

jϕ̌i(s) (2.183b)
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ňi(s) =
∞∑

j=0
$̄js

jϕ̌i(s) (2.183c)

where the coefficients V̄i(z) ∈ Rnf×ny , Ūi ∈ Rnve×ny and $̄i ∈ R can be computed
with the Cauchy product. Using the formal correspondence sjϕ̌i(s) s cdjτϕi(τ)
in (2.180) and (2.183), the differential expressions for the system variables of the
fault diagnosis kernel equations are obtained, which are summarized in the following
lemma.

Lemma 2.6 (Formal differential expressions for the fault diagnosis integral
kernels). Let Wj , V̄j(z), Ūj and $̄j , j ∈ N0, be given by the formal power
series (2.180) and (2.183). Then, the system variables qf,i(τ), mi(z, τ), qi(τ)
and ni(τ) can be parametrized by the formal differential expressions

qf,i(τ) =
∞∑

j=0
Wjdjτϕi(τ) (2.184a)

mi(z, τ) =
∞∑

j=0
V̄j(z)djτϕi(τ) (2.184b)

qi(τ) =
∞∑

j=0
Ūjdjτϕi(τ) (2.184c)

ni(τ) =
∞∑

j=0
$̄jdjτϕi(τ) (2.184d)

in terms of the parametrizing variable ϕi(τ) and its derivatives.

Note that for the design of the residual generator and the computation of the
threshold, also the integral kernels mu,i(τ), mf,i(τ) and md̄,i(τ) are required. These
can be computed by inserting the time domain correspondence of (2.182)

µi(τ) =
nvf∑

j=0
ajdjτϕi(τ), (2.185)

in (2.93) after the substitution µ(τ) → µi(τ), mu(τ) → mu,i(τ), mf (τ) → mf,i(τ)
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and md̄(τ)→ md̄,i(τ) to obtain

mu,i(τ) =
∞∑

j=0
X̄u,jdjτϕi(τ) (2.186a)

mf,i(τ) =
∞∑

j=0
X̄f,jdjτϕi(τ) (2.186b)

md̄,i(τ) =
∞∑

j=0
X̄d̄,jdjτϕi(τ) (2.186c)

with X̄u,j ∈ Rnu×ny , X̄f,j ∈ Rnf×ny and X̄d̄,j ∈ Rnd̄×ny .

2.4.3.3 Reference trajectory planning

With the differential expressions (2.184) the system variables mi(z, τ), qi(τ), qf,i(τ)
and ni(τ) of the kernel equations (2.169) can be parameterized by ϕi(τ) and its
derivatives. Thus, the fault diagnosis kernel equations (2.169) subject to (2.170) can
be solved by the planning of a suitable reference trajectory ϕ?i (τ) ∈ Rny assigned to
ϕi(τ). In contrast to the planning of a reference trajectory for the fault detection case,
the planning of the reference trajectory is more involved because of the nonvanishing
IC (2.170c). However, exploiting the cascade structure of (2.169) (see Figure 2.13),
the ODE-PDE subsystem (2.169a)–(2.169c) and the ODE subsystem (2.169d) can be
taken into account sequentially. To be specific, trajectory planning for the ODE-PDE
subsystem (2.169a)–(2.169c) can be embedded into a setpoint change by imposing
the additional requirement

∂nAτ mi(z, τ)|τ∈{0,T} = 0, z ∈ [0, 1] (2.187a)
dτqi(τ)|τ∈{0,T} = 0. (2.187b)

Thus, the solution for this subsystem can be traced backed to a simple algebraic
interpolation problem for the reference trajectory µ?i (τ) assigned to µi(τ). Taking
the resulting requirements on µ?i (τ) into account, the planning of the reference
trajectory ϕ?i (τ) can be traced back to the solution of a feedforward control problem
of an ODE with additional constraints.

In a first step, the ODE-PDE subsystem (2.169a)–(2.169c) subject to (2.170a)–
(2.170b) and (2.187) is regarded. The differential expressions for this subsystem are
given by (2.172), in terms of the parametrizing variable µi(τ). For each i = 1, . . . , nf ,
it is equal to (2.72) subject to (2.73) and (2.74). Hence, the results from Section
2.3.4.3 apply to derive requirements on a reference trajectory µ?i (τ) assigned to µi(τ),
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where the usual substitutions µ(τ)→ µi(τ), m(z, τ)→ mi(z, τ), q(τ)→ qi(τ) and
n(τ) → ni(τ) are used. To be specific, if µ?i ∈ (Gα(I))ny , 1 < α < 1/% holds with
% as order of the formal power series (2.172), which can be determined by results
of Lemma 2.4, then the locally uniform absolute convergence of the series (2.172)
is ensured in view of Theorem 2.3. Moreover, it can be verified by (2.172) that
the initial-end conditions (2.170a) and (2.170b) of this ODE-PDE subsystem are
satisfied if

djτµ?i (τ)|τ∈{0,T} = 0, i = 1, . . . , nf , j ∈ N0 (2.188)

holds. The parametrizing variable µi(τ) of the ODE-PDE subsystem (2.169a)–
(2.169c) and the parametrizing variable ϕ(τ) for the fault diagnosis kernel equations
(see Lemma 2.6), are related by (2.185). Thus, in view of the cascade structure
(see Figure 2.13), ϕ?i (τ) must be planned so that the resulting µ?i (τ) from (2.185)
satisfies the stated requirements. Additionally, ϕ?i (τ) must be planned so that the
resulting qf,i(τ) from (2.184a) realizes the transition described by (2.170c). For the
latter, insert (2.184a) in (2.170c) to obtain

∞∑

j=0
Wjdjτϕ?i (τ)|τ=0 = −R>f ei,nf (2.189a)

∞∑

j=0
Wjdjτϕ?i (τ)|τ=T = 0 (2.189b)

for i = 1, . . . , nf . Because of the nonvanishing right-hand side in (2.189a), a trivial
choice djτϕ?i (τ)|τ=0 = 0, j ∈ N0, is not possible. A systematic approach for the
planning of ϕ?i (τ) results from regarding (2.185) as the ODE

dnvfτ ϕ?i (τ) = −
nvf−1∑

j=0
ajdjτϕ?i (τ) + µ?i (τ), τ ∈ (0, T ) (2.190)

where µ?i (τ) is considered as the fictional input to be determined. Thus, ϕ?i (τ) can be
computed as a solution of a feedforward control problem for the ODE (2.190) subject
to the additional constraints that µ?i (τ) must satisfy (2.188) and µ?i ∈ (Gα(I))ny ,
1 < α < 1/% must hold. For a systematic solution, rewrite (2.190) in the form of a
state-space system

ξ̇i(τ) = Aϕξi(τ) +Bϕµ
?
i (τ), τ ∈ (0, T ) (2.191a)

ϕ?i (τ) = Cϕξi(τ), τ ∈ I (2.191b)
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with the state

ξi(τ) =




ξi,1(τ)
ξi,2(τ)
...

ξi,nvf (τ)


 =




ϕ?i (τ)
dτϕ?i (τ)

...

dnvf−1
τ ϕ?i (τ)


 ∈ Rnξ , i = 1, . . . , nf , (2.192)

where ξi,j(τ) = dj−1
τ ϕ?i (τ) ∈ Rny , j = 1, . . . , nvf , and nξ = nynvf . The matrices in

(2.191) are Aϕ = Ac ⊗ Iny with identity matrix Iny ∈ Rny×ny and

Ac =




0 1 . . . 0
...

. . .

0 0 . . . 1
−a0 −a1 . . . −anvf−1


 , (2.193)

Bϕ = envf ,nvf ⊗ Iny as well as Cϕ = e>1,nvf ⊗ Iny . Hence, ϕ?i (τ) results from the
planning of µ?i (τ) realizing a suitable transition for (2.191). For this finite-time
transition, the initial and end conditions ξi(0) = ξ0

i ∈ Rnξ and ξi(T ) = ξTi ∈ Rnξ
of (2.191) must be compatible with the initial and end conditions djτϕ?i (τ)|τ∈{0,T},
j = 0, . . . , nvf − 1, (see (2.192)), i.e., (2.189) must be expressed in terms of ξ0

i

respectively ξTi . To this end, the time derivatives of (2.191b) are taken into account
in view of (2.191a), yielding

djτϕ?i (τ) = CϕA
j
ϕξ(τ) + Cϕ

j−1∑

k=0
Aj−k−1
ϕ Bϕdkτµ?i (τ), i = 1, . . . , nf , j ∈ N0, (2.194)

which is proven in Appendix A.3 by induction. Evaluating (2.194) at τ ∈ {0, T}
leads to

djτϕ?i (τ)|τ=0 = CϕA
j
ϕξ

0
i (2.195a)

djτϕ?i (τ)|τ=T = CϕA
j
ϕξ

T
i (2.195b)

in view of (2.188). As a result, the required initial and end conditions (2.189) can
be expressed in terms of ξ0

i and ξTi by inserting (2.195) in (2.189), which yields

Υξ0
i = −R>f ei,nf (2.196a)

ΥξTi = 0, (2.196b)
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with

Υ =
∞∑

j=0
WjCϕA

j
ϕ. (2.197)

In the Corollary A.1 in Appendix A.4, it is shown that the series in (2.197) is
absolutely convergent so that Υ ∈ Rnvf×nξ exists. Consequently, imposing

ξTi = 0 (2.198)

satisfies (2.196b). If

rankΥ = rank
[
Υ −R>f ei,nf

]
(2.199)

holds, the linear system of equations (2.196a) has a solution

ξ0
i = −Υ†R>f ei,nf −

(
I −Υ†Υ

)
ξ∗i , (2.200)

where Υ† is the Moore-Penrose generalized inverse of Υ (for details see, e.g., [11,
Prop. 6.1.7]) and ξ∗i ∈ Rnξ is a degree of freedom that will be considered later.
According to (2.200) and (2.198), the reference trajectory ϕ?i (τ) results from the
planning of a µ?i (τ) realizing the transition

ξi(0) = ξ0
i → ξi(T ) = 0 (2.201)

for the ODE system (2.191) under the additional constraints (2.188) and µ?i ∈
(Gα(I))ny , 1 < α < 1/%. In general, the transition problem (2.201) for the system
(2.191) can be solved by the approach described in [16, Chapter 6.2, Eq. (6.7)],
which is based on the Controllability Gramian. However, to consider the additional
constraints on µ?i (τ), a modification of this approach is required. To this end,
introduce the weighted Controllability Gramian

Wϑ =
T∫

0

Φϕ(T, τ)BϕB>ϕΦ>ϕ (T, τ)ϑ(τ)dτ (2.202)

where Φϕ(τ1, τ2) = eAϕ(τ1−τ2), (τ1, τ2) ∈ I2 is the state transition matrix for (2.191a)
(see, e.g., [16, Section 4.1]) and ϑ(τ) ∈ R is a degree of freedom used to satisfy the
additional constraints. With (2.202), a reference trajectory µ?i (τ), which leads to a
ξi(τ) satisfying (2.201) results from

µ?i (τ) = −B>ϕΦ>ϕ (T, τ)W−1
ϑ Φϕ(T, 0)ξ0

i ϑ(τ). (2.203)

The existence of the inverse of Wϑ is shown in the following lemma.
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Lemma 2.7. Let ϑ(τ) > 0 hold for τ ∈ (0, T ). Then, W−1
ϑ exists.

Proof. It follows from the differential parametrizations (2.185) and (2.192) for µ?i (τ)
and ξi(τ) as well as the output equation (2.191b) and dimµ?i (τ) = dimϕ?i (τ), that
ϕ?i (τ) is a flat output for (2.191a), which implies controllability of (Aϕ, Bϕ) (see,
e.g., [82, Sec. 3.2.2]). Thus, the Controllability Gramian

Wc =
T∫

0

Φϕ(T, τ)BϕB>ϕΦ>ϕ (T, τ)dτ, (2.204)

is positive definite (see [11, Theorem 12.6.18]), i.e.,

c>Wcc =
T∫

0

‖B>ϕΦ>ϕ (T, τ)c‖22dτ > 0 (2.205)

holds for c ∈ Rnξ , c 6= 0, since ‖B>ϕΦ>ϕ (T, τ)c‖22 is nonnegative and not identical to
zero on τ ∈ (0, T ), where ‖·‖2 represents the Euclidean norm. Consequently, for
ϑ(τ) > 0, τ ∈ (0, T ),

c>Wϑc =
T∫

0

‖B>ϕΦ>ϕ (T, τ)c‖22ϑ(τ)dτ > 0, c ∈ Rnξ , c 6= 0, (2.206)

holds, since ‖B>ϕΦ>ϕ (T, τ)c‖22ϑ(τ) is nonnegative and not identical to zero on τ ∈
(0, T ). As a result, Wϑ is positive definite if ϑ(τ) > 0, τ ∈ (0, T ), which proves
Lemma 2.7. �

In order to show that (2.203) leads to a solution of (2.191a) satisfying the initial
and end condition (2.201), consider the general solution

ξi(τ) = Φϕ(τ, 0)ξ0
i +

τ∫

0

Φϕ(τ, ζ)Bϕµ?i (ζ)dζ (2.207)
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of the LTI system (2.191a) (see, e.g., [16]). Inserting (2.203) in (2.207) yields

ξi(τ) = Φϕ(τ, 0)ξ0
i −

τ∫

0

Φϕ(τ, ζ)BϕB>ϕΦ>ϕ (T, ζ)ϑ(ζ)dζW−1
ϑ Φϕ(T, 0)ξ0

i . (2.208)

Thus, the IC ξi(0) = ξ0
i is verified by evaluation of (2.208) at τ = 0, since Φϕ(0, 0) = I.

Use (2.202) in (2.208) to verify also the end condition ξi(T ) = ξTi = 0 (see (2.201)).

The remaining requirement (2.188) on µ?i (τ) is satisfied by imposing

djτϑ(τ)|τ∈{0,T} = 0, j ∈ N0. (2.209)

With (2.209), the feedforward control problem for the ODE (2.190) subject to (2.201)
so that µ?i (τ) satisfies (2.188) and µ?i ∈ (Gα(I))ny , 1 < α < 1/% holds has been solved.
Consequently, a solution for the fault diagnosis kernel equations (2.169) and (2.170)
has been derived, which is summarized in the following Lemma.

Lemma 2.8 (Solution for the fault diagnosis kernel equations). Let ϑ ∈ Gα(I)
satisfy (2.209) and 1 < α < 1/% with % given by (2.102) in Lemma 2.4 hold. If
(2.199) holds, then there exists a C∞-solution for the fault diagnosis kernel
equations (2.169) and (2.170).

Proof. To make use of the differential expressions (2.184) for the computation of the
integral kernels mi(z, τ), qi(τ) and qf,i(τ), the reference trajectory ϕ?i (τ) must be
chosen so that the series in (2.184) are absolute convergent. The latter is achieved
in view of [93, Satz 5.4], if ϕ?i ∈ (Gα(I))ny , 1 < α < 1/% with 0 < % < 1 holds,
where % is the order of the power series in (2.183) (see Lemma 2.4). To verify
ϕ?i ∈ (Gα(I))ny , at first the corresponding µ?i (τ) given by (2.203) is regarded, since
ϕ?i (τ) depends on µ?i (τ) (see (2.194)). In (2.203), the time dependent term Φ>ϕ (T, τ)
is an analytic function in I, i.e., Φ>ϕ (T, ·) ∈ (G1(I))nξ×nξ holds (see [72, Section
1.4.]). Moreover, ϑ(τ) satisfies ϑ ∈ (Gα(I))nξ by definition. Since G1(I) ⊂ Gα(I)
and Gα(I) is a vector space and a ring with respect to the arithmetic product of
functions (see [72, Proposition 1.4.5]), µ?i ∈ (Gα(I))ny follows. Then, in view of
(2.207), it follows from [72, Proposition 1.4.5], that ξi(τ) is also a Gevrey function of
order α and thus ϕ? ∈ (Gα(I))ny holds in the light of (2.191b). Hence, the series
in (2.184) are absolutely convergent for 1 < α < 1/%, where % can be determined
by results of Lemma 2.4. To be specific, by using ϕ?i (τ) resulting from (2.191b) as
parametrizing variable in the differential expressions in (2.184), the resulting integral
kernels m?

i (z, τ), q?i (τ) and q?f,i(τ) are a solution of the ODE-PDE system (2.169). If
ϑ(τ) satisfies (2.209), then the initial and end conditions (2.170a) as well as (2.170b)
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hold in view of (2.172) and (2.203). Moreover, if (2.199) holds, then ξ0
i can be

determined by (2.200), so that the initial and end condition given in (2.170c) hold
in view of (2.189) and (2.195)–(2.197). Thus, a C∞-solution for the fault diagnosis
kernel equations has been constructed. �

A suitable choice for ϑ(τ) is, e.g., the Gevrey function given in (2.97), since it satisfies
the initial and end conditions (2.209) as well as ϑ(τ) > 0, τ ∈ (0, T ). The existence
of a solution for the fault diagnosis kernel equations implies the identifiability of the
fault, which is summarized in the following theorem.

Theorem 2.9 (Identifiability condition)
Assume that the disturbance d̃(t) is described by (2.15), d̄(t) ≡ 0 holds and
the fault f(t) is described by (2.143). If

rankΥ = rank
[
Υ −R>f ei,nf

]
(2.210)

(see (2.199)) with Υ given in (2.197) is satisfied for i ∈ {1, . . . , nf}, then for
the system (2.1) the fault fi(t) is identifiable by (2.154) (see Theorem 2.5).

Proof. The proof of this theorem is based on the solvability of the fault diagnosis
kernel equations. According to Lemma 2.8, the kernel equations (2.169) and (2.170)
have a C∞-solution if (2.199) holds and ϑ(τ) is chosen so that it satisfies ϑ ∈ Gα(I),
1 < α < 1/%, as well as (2.209). Hence, the required kernels N(τ) and Mu(τ) for the
fault diagnosis residual generator (2.157) can be computed and thus the fault f(t)
can be identified in view of Theorem 2.5. �

For the case d̄(t) 6≡ 0, also fault detection, isolation and estimation (see Theorems
2.6, 2.7 and 2.8) are ensured if (2.199) holds.

The condition (2.199) depends on Rf and Υ. Since, Rf is a property of the signal
model of the fault (see (2.143b)) and the matrices defining Υ are only dependent on
system parameters (see (2.197) and preceding definitions of the matrices), (2.199)
is only dependent on parameters of the system (2.1) and the signal models (2.15)
as well as (2.143). Hence, (2.199) is a system property and can be checked a priori.
However, since (2.199) is dependent on the proposed approach for the computation
of a suitable reference trajectory ϕ?i (τ), it is a sufficient condition.

The degree of freedom ξ∗i introduced in (2.200) can be used to make the resulting
residual generator less sensitive to d̄(t). As a measure for the sensitivity of the
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residual signal with respect to d̄(t), the threshold fB,i given in (2.163) is used. In
order to express fB,i in terms of ξ∗i , at first m?

d̄,i
(τ) is regarded. Use the substitution

md̄(τ)→ m?
d̄,i

(τ) as well as µ(τ)→ µ?i (τ) in (2.93c) and insert (2.203) with (2.200)
to obtain

m?
d̄,i

(τ) = θ0,i(τ) + θ1(τ)ξ∗i (2.211)

where

θ0,i(τ) =
∞∑

j=0
Xd̄,jB

>
ϕ djτ

(
Φ>ϕ (T, τ)ϑ(τ)

)
W−1
ϑ Φϕ(T, 0)Υ†Rfei,nf (2.212a)

θ1(τ) =
∞∑

j=0
Xd̄,jB

>
ϕ djτ

(
Φ>ϕ (T, τ)ϑ(τ)

)
W−1
ϑ Φϕ(T, 0)

(
I −Υ†Υ

)
. (2.212b)

Thus, fB,i can be expressed in terms of ξ∗i , by inserting (2.211) in (2.163), which
leads to

fB,i =
T∫

0

|θ0,i(τ) + θ1(τ)ξ∗i |>dτδ. (2.213)

Hence, ξ∗i should be chosen so that

fB,i = min
ξ∗
i
∈Rnξ

T∫

0

|θ0,i(τ) + θ1(τ)ξ∗i |>dτδ (2.214)

results. In general, (2.214) must be solved numerically. However, since fault identi-
fiability is ensured for any ξ∗i ∈ Rnξ if the requirements in Theorem 2.9 hold, also
suboptimal results for (2.214) might be sufficient for the sensitivity of the residual
generator with respect to the bounded disturbances.

2.4.4 Fault diagnosis for an Euler-Bernoulli beam

The fault diagnosis results are demonstrated with a simulation example for a can-
tilever beam with a tip load. The simulation and fault diagnosis is implemented in
MATLAB utilizing the toolbox [109], which simplifies the implementation of the
time and space dependent matrices and operators. The source code is available
under [108].

To allow a comparison of the fault detection and fault diagnosis results, this example
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system for the fault diagnosis is similar to the fault detection example system
introduced in Section 2.3.5. However, the fault signals for the fault diagnosis must
be solutions of the signal models (2.143). Thus, the fault scenarios were adapted
accordingly. Apart from that, the example systems are consistent. The system
description of the beam for the demonstration of the fault diagnosis reads as

µb(z)∂2
t v(z, t) + ρ(z)∂tv(z, t) + ∂2

z (λb(z)∂2
zv(z, t))

= b1(z)u1(t) + g1(d̃1(t) + d̄1(t)) + e1(z)f1(t), (z, t) ∈ (0, 1)× R+, (2.215a)

subject to the BCs

v(0, t) = ∂zv(0, t) = 0, t > 0 (2.215b)
∂2
zv(1, t) = −JE∂2

t ∂zv(1, t) + g2d̄2(t), t > 0 (2.215c)
∂3
zv(1, t) = mE∂

2
t v(1, t) + b2(u2(t) + f2(t)), t > 0 (2.215d)

and the available measurements are

y(t) =




c1v(1, t) + d̄3(t)
c2∂zv(1, t) + d̄4(t) + f3(t)∫ 1

0 c3(z)∂2
zv(z, t)dz + d̄5(t) + f4(t)


 ∈ R3, t ≥ 0. (2.215e)

The system parameters are described in Section 2.3.5 and the corresponding numerical
values are specified in Table 2.1. In order to bring the system (2.215) in the required
form (2.1) for the fault diagnosis, x(z, t) as in (2.132) is introduced. Except the fault
input matrices E1(z), E3, E4, which are E1(z) = e1(z)

λb(z)e1,4e
>
1,4, E3 = − b2

mE
e3,4 e

>
2,4

and

E4 =




0 0 0 0
0 0 1 0
0 0 0 1


 , (2.216)

the same system matrices as described in Section 2.3.5 result. The disturbances are
the same as in Section 2.3.5, i.e., d̃1(t) has a sinusoidal signal form described by the
signal model (2.15) with the matrices (2.131) and d̄i(t), i = 1, . . . , 5, are bounded
disturbances with the same bounds as specified in Section 2.3.5.

The faults fi(t) occur successively at unknown time instants ti > T , which implies
fi(t) = 0 for t < ti. The fault f1(t) is assumed to be piecewise constant, i.e., it is a
solution of the signal model given by Sf1 = 0, rf1 = 1, with the state vf,1(t) ∈ R
and the IC v0

f,1 = 0 for 0 ≤ t < t1 as well as the unknown IC vf,1(t1) = v1
f,1 for

t ≥ t1. The faults f2(t) and f4(t) have sinusoidal forms fi(t) = f0
i sin(ωit + φf,i),

i = 2, 4, with the unknown parameters f0
i , φf,i ∈ R and known parameter ω2 = 8

as well as ω4 = 1. These fault signals are modeled by the solution of a state space
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system described by

Sf,i =
[

0 −ωi
ωi 0

]
, r>f,i =

[
0 1

]
, i = 2, 4, (2.217)

with the state vf,i(t) ∈ R2 and IC vf,i(0) = 0 for 0 ≤ t < ti as well as the unknown
IC vf,i(ti) = vif,i for t ≥ ti, i = 2, 4. The fault f3(t) is ramplike, i.e., f3(t) = f0

3 + f1
3 t

for t ≥ t3 with unknown coefficients f0
3 , f

1
3 ∈ R. Thus, f3(t) is described by a signal

model specified by

Sf,3 =
[
0 1
0 0

]
, r>f,3 =

[
1 0

]
(2.218)

with the state vf,3(t) ∈ R2, the IC vf,3(0) = 0 for 0 ≤ t < t3 and the unknown IC
vf,3(t3) = v3

f,3 for t ≥ t3. The matrices of the common signal model for all faults
are given by Sf = diag(Sf,1, . . . , Sf,4) and Rf = diag(r>f,1, . . . , r>f,4). Note that this
setup requires the identification of four faults that are decoupled from d̃(t) using
only three measurements

For the implementation of the residual generator (2.157), the coefficient matrices of
the differential expressions (2.186) and (2.184d) must be computed, which requires the
matrices Φi(z, ζ), ΨL,i(z) and ΨC,i(z). The latter are determined by the algorithm
proposed in Appendix A.5, where the needed transition matrix Φ̄(z, ζ) (see (A.31))
is derived from the numerical solution of its defining ODE (A.27) and the integrals
in (A.31) are evaluated by means of a compound trapezoidal rule. Subsequently,
the identifiability condition (2.199) can be verified by computing the singular values
σ̄(Υ) of Υ given in (2.197), which are

σ̄(Υ) ∈
{

22.1, 21.9, 13.7, 13.7, 1.54, 1.04, 0.123
}
× 1012. (2.219)

According to [11, Theorem 5.6.3.], (2.219) shows that Υ has full row rank, i.e.,
rankΥ = 7 and thus (2.199) holds for all i = 1, . . . , nf . Consequently, the approach
described in Section 2.4.3.3 can be used for the planning of ϕ?i (τ). According to
Ǎ∗(z, s) given in (2.141) and Lemma 2.4, Φ̌(z, ζ, s), Ψ̌L(z, s) and Ψ̌C(z, s) are formal
power series of order % = 1/2. Thus, by choosing ϑ(τ) (see (2.203)) as the Gevrey
function (2.97) with 1 < α < 2 ensures a solution of the fault diagnosis kernel
equations according to Lemma 2.8, since it satisfies ϑ(τ) > 0, τ ∈ (0, T ) and (2.188).

To make the residual generator less sensitive with respect to the influence of d̄(t), the
available degree of freedom ξ∗i (see (2.200)) has to be determined as the argument
solving (2.214). The latter is solved numerically with the fminsearch function from
MATLAB, which uses the Nelder–Mead method to find at least a local minimum.
For this example, it appeared convenient to choose the initial point of the numerical
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optimization so that Sd̄ = ‖Wd̄md̄,i‖2I,2 is minimized, where ‖·‖I,2 denotes the L2-
norm on the domain I andWd̄ = diag

(
δ1, . . . , δnd̄

)
is used. Since minξ∗

i
∈Rnξ Sd̄ yields

an unconstrained quadratic program in terms of ξ∗i (see (2.211)), it can be solved, e.g,
by the result [11, Fact 8.14.15]. With ξ∗i determined, ξ0

i can be computed by (2.200)
and thus µ?i (τ) by (2.203). To obtain ϕ?i (τ) and its derivatives, (2.194) can be used
which depends on djτµ?i (τ) and thus on djτ (Φ>ϕ (T, τ)ϑ(τ)), j ∈ N0. The latter can be
computed using the product rule and symbolic computations of ∂jτΦ>ϕ (T, τ) as well
as djτϑ(τ). With this, the reference trajectory ϕ?i (τ) results from evaluating (2.194).
The required integral kernels ni(τ) and mu,i(τ) as components of the fault diagnosis
residual generator (2.155) can be computed with the differential expressions (2.184d)
and (2.186a). For their evaluation, the series in (2.184d) and (2.186a) are truncated
when the relative increment of the last term is less than 10−9, which is achieved
after ns = 12 terms.

Suitable α and T must be determined to obtain acceptable thresholds fB,i and
detection delays for the fault estimation. As a measure for the detection delays
of the residual generator, the normalized detection delay ∆f,i is utilized. The
latter is the first time instant where a threshold fB,i, i = 1, . . . , nf , is exceeded by
|〈Mf , hf,i(t)〉I|, hf,i(t) ∈ Rnf , t ≥ 0. At this, Mf (τ) = [mf,i(τ) · · · mf,nf (τ) ] is
used, where mf,i(τ) is given by (2.186b) and the test signal hf,i(t) is chosen as

e>j,nfhf,i(t) =
{
fj(t) : i = j

0 : otherwise,
i, j = 1, . . . , nf , (2.220)

with fj(t) = r>f,jvf,j(t), j = 1, . . . , nf , as the solution of the corresponding signal
model given by Sf,j and rf,j subject to the ICs

vf,1(0) = 10, vf,2(0) =
[
100
0

]
, vf,3(0) =

[
3
1

]
, vf,4(0) =

[
50
0

]
. (2.221)

The results for fB,i and ∆f,i computed for several α and T are shown in Figure
2.14. According to these results, α should be close to the upper bound 2, since this
reduces the threshold values as well as the detection delays. A small threshold value
offers both, the detection of faults with small magnitude (see results of Theorem
2.6) and the fault estimation with small estimation errors (see results of Theorem
2.8). For the choice of T , a compromise has to be made. The fault detection delay
shown in Figure 2.14b indicates that a small T leads to an earlier detection. Another
reason for a small T , is that the fault isolation and identification are only possible
after ti + T , i ∈ N0, (see results of Theorem 2.5). Nevertheless, according to the
results in Figure 2.14a, this would increase the thresholds. Consequently, T must be
chosen in dependence on the magnitudes of faults that are required to be detected
and permissible fault detection, isolation and identification delays. In the following,
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(a) Fault detection threshold fB,i, i = 1, . . . , 4, (see (2.163)) in dependence on the moving
horizon length T for different Gevrey orders α.

2 3 4
0

0.5

1

1.5

T

∆
f

,1
(T

)

2 3 4
0

0.5

1

1.5

T

∆
f

,2
(T

)

2 3 4
0

0.5

1

1.5

T

∆
f

,3
(T

)

2 3 4
0

0.5

1

1.5

T

∆
f

,4
(T

)

α = 1.600 α = 1.733 α = 1.866 α = 1.999

(b) Normalized fault detection delay ∆f,i, i = 1, . . . , 4, in dependence on the moving
horizon length T for different Gevrey orders α.

Figure 2.14: Parameter study results to investigate the influence of the
Gevrey order α and the moving horizon length T on the thresh-
old fB,i, i = 1, . . . , 4, (see (2.163)) and the normalized detection
delay ∆f,i of the fault diagnosis residual generator.
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α = 1.9999 and T = 1.75 is chosen, yielding the thresholds fB,1 = 3.40, fB,2 = 7.27,
fB,3 = 1.69 and fB,4 = 0.88 as well as integral kernels N(τ) and Mu(τ) shown in
Figure 2.15, which are used for the following fault diagnosis.

The simulation of the faulty beam is performed in MATLAB using a finite-dimensional
model determined by the Galerkin approximation described in [79] resulting in a
finite-dimensional state space system of order 56, which is simulated with the
MATLAB lsim command using a step size of 5× 10−3. The fault diagnosis residual
generator (2.157) is implemented as FIR filters using the compound midpoint rule for
the time-discretization of the integral expressions. In the sense of a quasi-continuous
implementation, the same step size is used for the discretization of the integral
expressions as is used for the simulation. This leads to FIR filters of order 351. At
first, the fault identification case, i.e., d̄(t) ≡ 0 is regarded. For this the input signals,
shown in Figure 2.9 and the fault signals shown in Figure 2.16, which result from
the ICs

v1
f,1 = 10, v2

f,2 =
[
14
0

]
, v3

f,3 =
[

0
−0.50

]
, v4

f,4 =
[
1.10
0.40

]
(2.222)

are used for the simulation of the beam. The simulation results in Figure 2.16
show that the residual signal is excited by the unknown ICs of the system and the
signal model of the disturbance d̃(t) in the initialization interval 0 ≤ t ≤ T only.
Subsequently, all residual signals f̂i(t) are zero until the first fault f1(t) occurs at t1.
At t1, the changing IC of the signal model of the fault f1(t) leads to an excitation of
all residual signals in t ∈ (t1, t1 +T ). The same applies to the occurrence of the other
faults, which shows the coupling of the residual signals in the intervals (ti, ti + T ),
i = 1, . . . , 4. Nevertheless, without an explicit consideration in the residual generator
design, the coupling of the residual signals is not very strong and even negligible for
f̂1(t) with respect to fi(t), i = 3, 4, since the occurrence of f3(t) and f4(t) does not
or only very little excite the residual signal f̂1(t). However, for t ∈ Ij = [tj +T, tj+1),
f̂(t) = f(t) can be verified.

In a second simulation, fault diagnosis is investigated subject to the influence of the
bounded disturbance d̄(t). This includes the fault detection, isolation and estimation.
Thereby, the bounded disturbance d̄(t) is chosen as the signal shown in Figure 2.9b.
Otherwise, the same input u(t), disturbance d̃(t) as well as fault f(t) are taken as the
signals shown in Figure 2.9a. Using the same integral kernels as computed for the
fault identification case, the results in Figure 2.17 are obtained. Until the occurrence
of f1(t) at t1 = 6, all residual signals are bounded by the threshold values. The fault
f1(t) is detected at t̂1 = 6.34 because the residual signal f̂1(t) exceeds the threshold
value fB,1 (see Theorem 2.6). In accordance with the result of Theorem 2.7, for
t ∈ (t1 + T, t2), only f̂1(t) exceeds the threshold value fB,1 and f̂i(t), i = 2, 3, 4,
remain bounded by fB,i. Thus, f1(t) is isolated at t◦1 = 8.09 and estimated for
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(a) The components nij(τ), i = 1, 2, 3, j = 1, . . . , 4, of the integral kernel N(τ).
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Figure 2.15: The components of the integral kernels N(τ) and Mu(τ) com-
puted with moving horizon length T = 1.75 and ϑ(τ) as Gevrey
function (2.97) of order α = 1.9999.
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Figure 2.16: Fault isolation and identification results f̂i(t), i = 1, . . . , 4,
( ) for the fault fi(t) ( ) without bounded disturbance,
i.e., d̄(t) ≡ 0, the initialization interval 0 ≤ t < T ( ) and the
transient intervals ti < t < ti + T ( ) after the occurrence of a
fault.
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Figure 2.17: Fault diagnosis residual signal f̂i(t), i = 1, . . . , 4, ( ) in the
presence of the bounded disturbance d̄(t) depicted in Figure
2.9b for the fault fi(t) ( ), the thresholds ±fB,i ( ), the
bounds of the fault estimation error f(t) ± fB,i ( ), the
initialization interval 0 ≤ t < T ( ), the detection ( ) of a fault
fi(t) at time t̂i, the isolation delay interval t̂i ≤ t < t̂i + T ( )
and the isolation ( ) at time t◦i , which is also the beginning of
the fault estimation.
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t ∈ (t̂1 + T, t2) by f̂1(t) (see Theorem 2.8). A second fault is detected by the exceed
of fB,2 at t̂2 = 12.98. Since for t◦2 = t̂2 + T , f̂i(t◦2) > fB,i, i = 1, 2, holds, f̂i(t),
i = 3, 4, are bounded by fB,i and f1(t) has been isolated before, the second fault
must be f2(t). Similarly, f3(t), is detected at t̂3 = 21.13 and isolated at t◦3 = 22.88.
At t̂4 = 24.45, a fourth fault is detected. However, the fault f4(t) can be isolated and
thus also estimated not before t◦4 = 27.91, because of the signal form of f4(t), the
residual signal f̂4(t) at first remains within the bounds ±fB,4 until t◦4. The results
show, that the signals of all faults can be estimated with known estimation error.

2.4.5 Concluding remarks

In this section, the fault diagnosis for parabolic and biharmonic ODE-PDE systems
subject to disturbances is presented for additive actuator, process and sensor faults.
If the fault and the disturbance have a signal form that can be described by a finite-
dimensional signal model, fault detection, isolation and identification is achieved.
When an additional unknown but bounded disturbance is present, fault detection,
isolation and estimation with bounded estimation error is possible. The fault
diagnosis residual generator is derived by the application of integral transforms,
whereas the integral kernels must be a solution of an initial-end value problem for
an ODE-PDE system. The latter is solved using flatness-based trajectory planning
methods, whereas a new approach for the reference trajectory planning is introduced
utilizing the cascade structure of the system. This yields a fault identifiability
condition that depends solely on system properties and can be checked a priori.
Within the simulation example, the remaining degrees of freedom in the residual
generator design are discussed and the theoretical results are demonstrated.

The simulation results show that some residual signals have no coupling in the
transient interval. Since this has the advantage, that an earlier fault isolation and
a more precise estimation is possible as well if further faults occur, the design of
residual generators that are explicitly decoupled in the transient interval should be
investigated in future work. Moreover, the dependence of the threshold values on T
shown in Figure 2.14a indicates that the fault diagnosis could be further improved
by not selecting the same detection window length T for all residual generators, but
rather by adjusting it to the associated fault.
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Chapter 3

Heterodirectional hyperbolic
ODE-PDE systems

When the dynamics of a technical system is based on wave propagation, transport
processes or time-delays, it can be modeled by a hyperbolic PDE. If such a technical
system has dynamic boundary conditions or is otherwise coupled to a process that
can be modeled with lumped parameters, then a hyperbolic ODE-PDE system is
obtained. Many of these models can be represented by heterodirectional hyperbolic
ODE-PDE systems, which consist of ODEs coupled with transport PDEs. The latter
propagate in both the negative and positive direction of the spatial coordinate. This
system class includes, e.g., models for coupled string networks (see [59, Section 6.2]),
networks of open channels and transmission lines (see [10, Section 1]). Since more
and more advanced control methods become available for this system class (see, e.g.,
[10]), systematic fault diagnosis methods are necessary for a safe operation of the
resulting control systems.
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3.1 System description

Consider the faulty general linear heterodirectional hyperbolic ODE-PDE system

∂zx(z, t) = Γ(z)∂tx(z, t) +A(z)x(z, t) +A0(z)x−(0, t) +
z∫

0

D(z, ζ)x(ζ, t)dζ

+H1(z)w(t) +B1(z)u(t) + E1(z)f(t) +G1(z)d(t) (3.1a)
x+(0, t) = K0x

−(0, t) +H2w(t) +B2u(t) + E2f(t) +G2d(t), t > 0 (3.1b)
x−(1, t) = K1x

+(1, t) +B3u(t) + E3f(t) +G3d(t), t > 0 (3.1c)
ẇ(t) = Fw(t) + L2x

−(0, t) +B4u(t) + E4f(t) +G4d(t), t > 0 (3.1d)
y(t) = C0x

−(0, t) + C1w(t) + E5f(t) +G5d(t), t ≥ 0 (3.1e)

with (3.1a) defined on (z, t) ∈ (0, 1)× R+, the distributed system variable x(z, t) =
col (x−(z, t), x+(z, t)) ∈ Rnx , the lumped state w(t) ∈ Rnw , the input u(t) ∈ Rnu ,
the output y(t) ∈ Rn− , the fault f(t) ∈ Rnf and the disturbance d(t) ∈ Rnd . From
these signals, only the input u(t) and the measurement y(t) are assumed to be known.
The system consists of nx coupled transport PDEs (3.1a) and an ODE (3.1d). The
transport behavior of the distributed system variable x(z, t) in (3.1a) is specified by
Γ(z) = diag(γ1(z), . . . , γnx(z)) ∈ Rnx×nx where γi ∈ C1[0, 1], γi(z) 6= 0, z ∈ [0, 1],
i = 1, . . . , nx, is assumed. Different from the usual representation for general linear
heterodirectional hyperbolic ODE-PDE systems (see, e.g., [40]), the PDE (3.1a) is
solved for ∂zx(z, t). Consequently, the distributed nonvanishing transport velocities
are given by λi(z) = 1

γi(z) , i = 1, . . . , nx. Without loss of generality, it is assumed
that x(z, t) is ordered, so that the transport velocities λi(z) are sorted in descending
order, i.e.,

λ− ≥ λ1(z) > λ2(z) > · · · > λn−(z) ≥ λ− > 0 (3.2a)
0 ≥ λ+ > λn−+1(z) > λn−+2(z) > · · · > λnx(z) ≥ λ+ (3.2b)

with positive and negative constants λ−, λ− ∈ R+ and λ+, λ+ ∈ R−. Thus, x(z, t)
has n− components

x−(z, t) = J−x(z, t) ∈ Rn− (3.3a)

propagating in negative direction of the spatial coordinate and n+ = nx − n−
components

x+(z, t) = J+x(z, t) ∈ Rn+ (3.3b)
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propagating in positive direction of the spatial coordinate, with

J− =
[
I 0

]
∈ Rn−×nx (3.3c)

J+ =
[
0 I

]
∈ Rn+×nx . (3.3d)

Note that (3.3) implies

x(z, t) = J>+x
+(z, t) + J>−x

−(z, t). (3.4)

Consequently, the PDE subsystem (3.1a)–(3.1c) is a system of n− and n+ transport
PDEs propagating in opposite directions and is thus according to, e.g., [40], a
heterodirectional hyperbolic system. Furthermore, the entries of A(z) = [aij(z)] ∈
Rnx×nx satisfy aij ∈ C1[0, 1], i, j = 1, . . . , nx, and aii(z) = 0, z ∈ [0, 1], ∀i =
1, . . . , nx. The latter means no loss of generality, as this form can always be achieved
by a change of coordinates (see, e.g., [41, Section 3] and the example in Section
3.2.4). The remaining matrices for the local and the integral term in (3.1a) are A0 ∈
(C1[0, 1])nx×n+ as well as D ∈ (C1([0, 1]2))nx×nx . In (3.1b) and (3.1c), the coupling
is specified by K0 ∈ Rn+×n− and K1 ∈ Rn−×n+ . The dynamics of the ODE (3.1d)
is characterized by F ∈ Rnw×nw , the coupling of the ODE subsystem (3.1d) with the
PDE subsystem (3.1a)–(3.1c) is described via L2 ∈ Rnw×n− , H1 ∈ (L2(0, 1))nx×nw
as well as H2 ∈ Rn+×nw and the effect of w(t) on the output y(t) via C1 ∈ Rn−×nw .
The influence of the input u(t), the fault f(t) and the disturbance d(t) on (3.1) are
defined by B1 ∈ (L2(0, 1))nx×nu , E1 ∈ (L2(0, 1))nx×nf , G1 ∈ (L2(0, 1))nx×nd and
the real valued matrices Bi, i = 2, 3, 4, Ej as well as Gj , j = 2, 3, 4, 5, of appropriate
dimensions. The output matrix C0 ∈ Rn−×n− satisfies

rankC0 = n−. (3.5)

All system matrices are assumed to be known. The ICs x(z, 0) ∈ Rnx , z ∈ [0, 1] of
(3.1a) and w(0) ∈ Rnw of (3.1d) are unknown but assumed to be compatible with
the BCs (3.1b) and (3.1c), so that (3.1) is well-posed (see, e.g., [10]).

Note that many physical systems of interest can be described by (3.1) (see, e.g., [10,
19, 59]). In particular, coupled wave equations, which occur in many applications
(see, e.g., [47, 68, 76, 87–89]), can be mapped into the form (3.1) by introducing
Riemann coordinates as it is shown in the following example.
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Example 3.1.
Consider the faulty wave equation

∂2
t v(z, t) = c2∂2

zv(z, t) + g>1 (z)d(t), (z, t) ∈ (0, 1)× R+ (3.6a)
ρ0∂

2
t v(0, t) = ∂zv(0, t) + g>2 d(t), t > 0 (3.6b)
∂zv(1, t) = u(t) + f1(t), t > 0 (3.6c)

y(t) = ∂zv(0, t) + f2(t), t ≥ 0 (3.6d)

with the distributed variable v(z, t) ∈ R, the IC v(z, 0) = v0 ∈ R, the input u(t) ∈ R,
the measurement y(t) ∈ R, the disturbance d(t) ∈ R2 and the faults f1(t), f2(t) ∈ R.
The parameters c, ρ0 ∈ R+ and g1 ∈ (C[0, 1])2, g2 ∈ R2 are known. To bring (3.6)
into the required form (3.1), introduce the Riemann coordinates

x−(z, t) = ∂tv(z, t) + c∂zv(z, t) (3.7a)
x+(z, t) = ∂tv(z, t)− c∂zv(z, t) (3.7b)

(see, e.g., [19, Section 7.3]). The inverse of this transformation is given by

∂tv(z, t) = 1
2
(
x−(z, t) + x+(z, t)

)
(3.8a)

∂zv(z, t) = 1
2c
(
x−(z, t)− x+(z, t)

)
. (3.8b)

By taking the derivative of (3.7) with respect to time, i.e.,

∂tx
−(z, t) = ∂2

t v(z, t) + c∂t∂zv(z, t) (3.9a)
∂tx

+(z, t) = ∂2
t v(z, t)− c∂t∂zv(z, t), (3.9b)

and the derivative with respect to space, i.e.,

∂zx
−(z, t) = ∂z∂tv(z, t) + c∂2

zv(z, t) (3.10a)
∂zx

+(z, t) = ∂z∂tv(z, t)− c∂2
zv(z, t), (3.10b)

the wave equation (3.6a) can be mapped into the form

∂tx(z, t) =
[
c 0
0 −c

]
∂zx(z, t) +

[
g1(z)
g1(z)

]
d1(t) (3.11a)

by inserting (3.6a) in (3.9) and replacing the terms ∂z∂tv(z, t) with the expressions
given in (3.10). Finally, solve (3.11a) with respect to ∂zx(z, t), which yields the het-
erodirectional PDE in the form of (3.1a) specified by the matrices Γ = diag

( 1
c ,−

1
c

)

and G1(z) = col
(
g>1 (z), g>1 (z)

)
. To map (3.6b) into the required form (3.1b),
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introduce the ODE state w(t) = ∂tv(0, t), which yields the ODE

ẇ(t) = 1
ρ0
∂zv(0, t) + 1

ρ0
g>2 d(t). (3.12)

Insert (3.8a) in w(t) = ∂tv(0, t) to obtain

x+(0, t) = −x−(0, t) + 2w(t) (3.13)

and thus the nonzero matrices in (3.1b) read as K0 = −1 as well as H2 = 2. For the
BC at z = 1, insert (3.8b) in (3.6c), which yields

x−(1, t) = x+(1, t) + 1
2cu(t) + 1

2cf1(t). (3.14)

By introducing f(t) = col (f1(t), f2(t)), the nonzero matrices in (3.1c) read asK1 = 1,
B3 = 1

2c and E3 = [ 1
2c 0 ]. To map the ODE (3.12) into the required form, insert

(3.14) solved for x+(1, t) in (3.8b) and the result in (3.12), which leads to

ẇ(t) = − 1
cρ0

w(t) + 1
cρ0

x−(0, t) + 1
ρ0
g>2 d(t) (3.15)

in the required form of (3.1d). Finally, (3.6d) is mapped into the form (3.1e) by
evaluating (3.8b) at z = 0 and inserting (3.13), which yields

y(t) = 1
c
x−(0, t)− 1

c
w(t) + E5f(t) (3.16)

with E5 = [ 0 e2 ]. /

More details about this transformation can be found in [19, Section 7.3] or, e.g.,
[24], in which the introduction of Riemann coordinates is shown for a more complex
wave-ode equation or in the example in Section 3.2.4. The local term A0(z)x−(0, t)
is, e.g., considered in the backstepping controller design literature for first-order
hyperbolic PDEs (see, e.g., [52, Section 9.1] or [14]) occurs also in a linearized model
of a plug flow reactor described in [96]. Moreover, this term also occurs, if the
non-actuated BC of a wave equation is not of Dirichlet type and a backstepping
transformation is used before mapping the wave equation into a system of first order
hyperbolic PDEs. Note that the restriction of the output y(t) to the form (3.1e) and
the restricted coupling of the distributed system variable x(z, t) into the ODE (see
(3.1d)) are not a general limitation of the proposed fault diagnosis method. Both
restrictions are only made to facilitate the solution of the kernel equations by a
backstepping transformation, which yields explicit expressions to compute a solution
of the kernel equations. Despite these limitations, as mentioned before, models of
relevant applications can be represented by (3.1). Moreover, note that in dependence
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of the input matrices B2 and B3, for systems with a non-dynamic BC at z = 1,
collocated system setups can already be considered. If more general measurements
and ODE-PDE couplings have to be taken into account, then a fault diagnosis or
detection residual generator can still be derived by a similar derivation as shown in
the following. However, the solution of the kernel equations may require to use, e.g.,
the trajectory planning method described in [93, Section 7]. The abstract system
description in the form (3.1) yields a systematic approach to fault detection for
a large class of systems. For a simpler introduction to the proposed method, the
interested reader is referred to [103]. In this paper, a comparable approach for a
vibrating string is derived directly from the wave equation.

As shown in the following, the special form of (3.1a) solved for ∂zx(z, t) is well suited
to solve the considered fault detection and diagnosis problems. With the setup (3.1)
additive actuator, process and sensor faults as described in Section 2.2 can be taken
into account. For the fault detection, also multiplicative faults can be considered
by rewriting them as additive faults, as shown in Section 2.2. According to (2.13),
the disturbance d(t) is assumed to be composed of the absolutely bounded part
d̄(t), which satisfies (2.14) and the component d̃(t) is assumed to be described by a
solution of the signal model (2.15).

3.2 Fault detection

For systems of the form (3.1), the fault detection problem is solved by using a
residual generator as described in Section 2.3.1. Similar to Section 2.3.2 and Section
2.3.3, the residual generator is derived by the application of integral transformations.
These are used to determine an input-output expression in Section 3.2.1 from which
the fault detection residual generator for heterodirectional hyperbolic ODE-PDE
systems (3.1) is derived in Section 3.2.2. After solving the resulting kernel equations
in Section 3.2.3, the theoretical results are applied to a simulation of a real-world
motivated application example in Section 3.2.4.

3.2.1 Determination of the input-output expression

Consider the integral transformation for the PDE (3.1a)

M[h](t) = 〈m,h(t)〉Ω,I, h(z, t) ∈ Rnx , (3.17a)
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for the ODE (3.1d)

Qw[h](t) = 〈qw, h(t)〉I, h(t) ∈ Rnw , (3.17b)

for the signal model (2.15)

Qd[h](t) = 〈qd, h(t)〉I, h(t) ∈ Rnvd (3.17c)

and for the output equation (3.1e)

N [h](t) = 〈n, h(t)〉I, h(t) ∈ Rn− (3.17d)

with the integral kernels m(z, τ) ∈ Rnx , qw(τ) ∈ Rnw , qd(τ) ∈ Rnvd and n(τ) ∈ Rn−
on z ∈ Ω = [0, 1] and τ ∈ I = [0, T ]. In contrast to the integral transformations
(2.18) used for parabolic and biharmonic PDE systems, the length of the moving
horizon T has to satisfy 0 < T0 < T . The lower bound T0 results from the transport
behavior of the heterodirectional hyperbolic PDE system (3.1a) and it depends on
the longest transportation time in the positive and negative spatial direction

τ̃− = τ̃n− (3.18a)
τ̃+ = |τ̃n−+1|, (3.18b)

where

τ̃i =
1∫

0

γi(z)dz, i = 1, . . . , nx (3.19)

is used. To be specific, T0 is given by T0 = τ̃+ + τ̃−.

The integral kernels m(z, τ), qw(τ), qd(τ) and n(τ) of the transformations (3.17) are
determined similarly to the approach shown in Section 2.3.2 so that the input-output
expression

〈mf , f(t)〉I = 〈n, y(t)〉I + 〈mu, u(t)〉I + 〈md̄, d̄(t)〉I (3.20)

depending only on f(t), y(t), u(t) and d̄(t) results. The integral kernels mf (τ),
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mu(τ) and md̄(τ) used in (3.20) are defined by

mf (τ) = −〈E1,m(τ)〉Ω − E>2 m+(0, τ) + E>3 m
−(1, τ)

− E>4 qw(τ) + E>5 n(τ) (3.21a)
mu(τ) = 〈B1,m(τ)〉Ω +B>2 m

+(0, τ)−B>3 m−(1, τ) +B>4 qw(τ) (3.21b)
md̄(τ) = Ḡ>

(
〈G1,m(τ)〉Ω +G>2 m

+(0, τ)−G>3 m−(1, τ)
+G>4 qw(τ)−G>5 n(τ)

)
, (3.21c)

where m+(z, τ) = J+m(z, τ), m−(z, τ) = J−m(z, τ) and 〈·,m(τ)〉Ω denotes the
integration with respect to z on Ω. For (3.20) and (3.21) to hold, the integral
kernels m(z, τ), qw(τ) and qd(τ) must satisfy the fault detection kernel equations
for heterodirectional hyperbolic ODE-PDE systems, which are summarized in the
following lemma.
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Lemma 3.1 (Fault detection kernel equations for heterodirectional hyperbolic
ODE-PDE systems). Let d̃(t) be described by (2.15) and the integral kernels
m(z, τ), qw(τ) and qd(τ) satisfy the fault detection kernel equations

∂zm(z, τ) = −Γ(z)∂τm(z, τ)−A>(z)m(z, τ)−D∗[m(τ)](z) (3.22a)
m−(0, τ) = −K>0 m+(0, τ)− 〈A0,m(τ)〉Ω − L>2 qw(τ) + C>0 n(τ) (3.22b)
m+(1, τ) = −K>1 m−(1, τ) (3.22c)

q̇w(τ) = F>qw(τ) + 〈H1,m(τ)〉Ω +H>2 m
+(0, τ)− C>1 n(τ) (3.22d)

q̇d(τ) = S>d qd(τ) +R>d G̃
> (〈G1,m(τ)〉Ω +G>2 m

+(0, τ)
−G>3 m−(1, τ) +G>4 qw(τ)−G>5 n(τ)

)
, (3.22e)

subject to the initial and end conditions

m(z, τ)|τ∈{0,T} = 0, z ∈ Ω (3.23a)
qw(τ)|τ∈{0,T} = 0 (3.23b)
qd(τ)|τ∈{0,T} = 0, (3.23c)

with (3.22a) defined on (z, τ) ∈ (0, 1) × (0, T ), (3.22b)–(3.22e) defined on
τ ∈ (0, T ) and D∗[m(τ)](z) in (3.22a) is specified by

D∗[m(τ)](z) =
1∫

z

D>(ζ, z)m(ζ, τ)dζ, (z, τ) ∈ (0, 1)× (0, T ). (3.24)

Then, the input-output expression (3.20) holds.

The derivation of (3.20) and (3.21) in view of (3.22) and (3.23) is shown in Appendix
A.7 and follows the same reasoning as in the case of parabolic and biharmonic ODE-
PDE systems (see Section 2.3.2). At first, the integral transformations (3.17) are
applied to the corresponding system equation in (3.1). Subsequently, the operators
and matrices are shifted to the integral kernels. By eliminating all terms that contain
unknown system variables except the disturbance d̄(t), the kernel equations (3.22)
subject to (3.23) are derived and (3.20) is established.
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3.2.2 Residual generator

At first, consider the case d̄(t) ≡ 0. With the same argument as for the derivation of
Theorem 2.1, the fault detection residual generator for heterodirectional hyperbolic
ODE-PDE systems is introduced in the following theorem.

Theorem 3.1 (Residual generator)
Assume that d̃(t) is described by a solution of (2.15), d̄(t) ≡ 0 holds and
let f(t) satisfy f(t) = 0, t < T , as well as 〈mf , f(t)〉I 6≡ 0 for f(t) 6≡ 0. If
the integral kernels m(z, τ), qw(τ), qd(τ) and n(τ) are solutions of the kernel
equations (3.22) and (3.23) as well as mf (τ) given in (3.21a) satisfies (2.54),
then

r(t) = 〈n, y(t)〉I + 〈mu, u(t)〉I, t ≥ T (3.25)

is a residual generator for the system (3.1). A fault is detected if r(t) 6≡ 0,
t ≥ T , occurs.

The proof of this theorem follows the reasoning in the proof of Theorem 2.1.

For the case d̄(t) 6≡ 0, the influence of d̄(t) on the residual r(t) can be estimated
after inserting (3.25) in (3.20). Then, the fault detection threshold rB is given by
(2.60) as the upper bound for the absolute value of the residual error in (2.56). By
the same reasoning as for Theorem 2.2, the fault detection for heterodirectional
hyperbolic ODE-PDE systems subject to a bounded disturbance d̄(t) is obtained
and summarized in the following theorem.

Theorem 3.2 (Fault detection)
Assume that d̃(t) is described by a solution of (2.15) and let f(t) satisfy
f(t) = 0, t < T , as well as 〈mf , f(t)〉I 6≡ 0 for f(t) 6≡ 0. Let the integral
kernels m(z, τ), qw(τ), qd(τ) and n(τ) satisfy (3.22) subject to (3.23) and
mf (τ) given by (3.21a) satisfy (2.54). Then, for the system (3.1) a fault is
detected if the threshold rB is exceeded by the residual signal r(t) for t ≥ T ,
i.e.,

|r(t)| > rB , t ≥ T, (3.26)

with rB and r(t) given in (2.60) respectively (3.25).
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The proof of this theorem is similar to the proof of Theorem 2.2.

3.2.3 Solution of the fault detection kernel equations

With (3.22) and (3.23), the fault detection kernel equation consists of a heterodi-
rectional hyperbolic ODE-PDE system subject to initial and end conditions. In
(3.22), n(τ) is freely assignable and is thus interpreted as an input. Consequently,
the solution of the fault detection kernel equations amounts to solve a feedforward
control problem. To be specific, the input n(τ) must be determined such that
it drives the integral kernels m(z, τ), qw(τ) and qd(τ) from the initial to the end
point given in (3.23) in finite time. Similar to the solution of the kernel equations
corresponding to the parabolic or biharmonic ODE-PDE systems (see Section 2.3.4),
this trajectory planning problem can be solved by using results from the flatness-
based trajectory planning. With the introduction of a parametrizing variable ϕ(τ),
the integral kernels m(z, τ), qw(τ), qd(τ) and n(τ) can be expressed in terms of a
differential expression. Thus, the kernel equations two-point initial-boundary-value
problem can be also traced back to an algebraic interpolation problem for a reference
trajectory of the parametrizing variable. In contrast to the case with parabolic
or biharmonic PDEs in Section 2.3.4.2, the differential expressions for hyperbolic
ODE-PDE systems involve derivatives of the parametrizing variable ϕ(τ) only up
to a finite order but distributed delays and predictions of the latter. Note that for
the solution of the kernel equations specified in Lemma 3.1, it is not required to
verify that the parametrizing variable is indeed a flat output. However, it must
be shown that a solution for the specific transition (3.23) could be parametrized
in terms of ϕ(τ), which is considered in Section 3.2.3.4. In general, results from
[93, Section 7] can be used to introduce such a parametrizing variable and compute
the differential expressions by the method of characteristics and a fixpoint iteration.
However, for systems of the form (3.22), the derivation of the differential expressions
can be significantly facilitated by making use of a backstepping transformation which
is, e.g., described in [41]. This transformation is used to map the ODE-PDE system
of the integral kernel equations (3.22) into a target system with PDE-ODE cascade
structure for which the differential expressions can be explicitly specified. Based
on these expressions, an easily evaluable fault detectability condition is derived.
Moreover, because of the target systems cascade structure, a subsequent trajectory
planning for the PDE and the ODE subsystem becomes possible. Hence, the transi-
tion problem for the PDE subsystem is significantly facilitated, since the initial and
end conditions for the PDE subsystem can be embedded into a setpoint. Thus, the
solution of the kernel equations (3.22) and (3.23) can be traced back to a nontrivial
setpoint change for the PDE subsystem in combination with a transition problem for
an ODE subsystem. Therefore, the derivation of the differential expressions using a
backstepping transformation is described below.
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3.2.3.1 Backstepping transformation

The following backstepping transformation is based on a result from [41], where
heterodirectional ODE-PDE systems of the form (3.1) are considered. However,
because of the use of the formal adjoint in the derivation of the residual generator,
a kernel equation with transport PDEs that propagate in reversed direction of the
spatial coordinate compared to [41] and an input n(τ) on the opposite BC is obtained.
Thus, a spatial reversal z̄ = 1− z is applied to (3.22), which restores the propagation
direction of the transport processes and the position of the boundary input so that
the assumed form in [41] is derived. The resulting system variables defined for z̄ are
denoted by adding an overline, e.g., Γ̄(z̄) = Γ(1− z̄) with the diagonal components
γ̄i(z̄) = γi(1− z̄), i = 1, . . . , nx. Furthermore, use

∫ z̄
0 D̄
>(ζ, z̄)m̄(ζ, τ)dζ for the term

D∗[m(τ)](z). With this spatial reversal,

∂zm̄(z̄, τ) = Γ̄(z̄)∂τm̄(z̄, τ) + Ā>(z̄)m̄(z̄, τ) +
z̄∫

0

D̄>(ζ, z̄)m̄(ζ, τ)dζ (3.27a)

m̄+(0, τ) = −K>1 m̄−(0, τ) (3.27b)

m̄−(1, τ) = −K>0 m̄+(1, τ)−
1∫

0

Ā>0 (ζ)m̄(ζ, τ)dζ − L>2 Jwq(τ) + C>0 n(τ) (3.27c)

q̇(τ) = F̄ q(τ) +
1∫

0

B̄1(ζ)m̄(ζ, τ)dζ + B̄2m̄
−(0, τ) + B̄3m̄

+(1, τ)

+ B̄4n(τ) (3.27d)

is obtained, where (3.27a) is defined on (z̄, τ) ∈ (0, 1) × (0, T ), (3.27b)–(3.27d)
are defined on τ ∈ (0, T ), q(τ) = col (qw(τ), qd(τ)) ∈ Rnq , nq = nw + nvd and
Jw = [ I 0 ] ∈ Rnw×nq so that qw(τ) = Jwq(τ). The matrices in (3.27d) result from
aggregating (3.22d) and (3.22e) and read as

F̄ =
[

F> 0
R>d G̃

>G>4 S>d

]
, B̄1(z̄) =

[
H̄>1 (z̄)

R>d G̃
>Ḡ>1 (z̄)

]
, B̄2 =

[
0

−R>d G̃>G>3

]
,

B̄3 =
[

H>2
R>d G̃

>G>2

]
, B̄4 =

[
−C>1

−R>d G̃>G>5

]
. (3.28)

The initial and end conditions following from (3.23) are

m̄(z̄, τ)|τ∈{0,T} = 0, z̄ ∈ Ω (3.29a)
q(τ)|τ∈{0,T} = 0. (3.29b)
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For notational convenience, the substitution z̄ → z is used in the following.

With the spatial reversal, results from [41] can be used to map (3.27) into a system
of cascade structure. To this end, the invertible backstepping transformation

m̃(z, τ) = m̄(z, τ)−
z∫

0

K̄(z, ζ)m̄(ζ, τ)dζ = T [m̄(τ)](z) (3.30)

with the backstepping kernel K̄(z, ζ) ∈ Rnx×nx is utilized. The corresponding inverse
backstepping transformation

m̄(z, τ) = m̃(z, τ) +
z∫

0

K̄I(z, ζ)m̃(ζ, τ)dζ = T −1[m̃(τ)](z) (3.31)

with K̄I(z, ζ) ∈ Rnx×nx (see [41, Section 2.3]) can be computed based on the
reciprocity relation as shown in [25]. For a general introduction to the backstepping
transformation see the textbook [52]. The backstepping kernel K̄(z, ζ) in (3.30) is
determined to map (3.27) into the target system

∂zm̃(z, τ) = Γ̄(z)∂τm̃(z, τ) + P̃0(z)m̃−(0, τ), (z, τ) ∈ (0, 1)× (0, T ) (3.32a)
m̃+(0, τ) = −K>1 m̃−(0, τ), τ ∈ (0, T ) (3.32b)
m̃−(1, τ) = ñ(τ), τ ∈ (0, T ) (3.32c)

q̇(τ) = F̃ q(τ) +
1∫

0

B̃1(ζ)m̃(ζ, τ)dζ + B̄2m̃
−(0, τ) + B̃3m̃(1, τ) (3.32d)

with (3.32d) defined on τ ∈ (0, T ). The matrices in (3.32d) result from utilizing
the inverse backstepping transformation (3.31). To be specific, (3.27c) is solved for
n(τ) and the result is inserted in (3.27d). Note that the required matrix (C>0 )−1

exists because of (3.5). After inserting (3.31) in (3.27d) and changing the order of
integration, (3.32d) follows with the matrices

F̃ = F̄ + B̄4
(
C>0
)−1

L>2 Jw (3.33a)

B̃1(z) = B̄1(z) +
1∫

z

B̄1(ζ)K̄I(ζ, z)dζ + B̄3J+K̄I(1, z)

+ B̄4
(
C>0
)−1 ((Ā>0 (z) + J− +K>0 J+)K̄I(1, z) +

1∫

z

Ā>0 (ζ)K̄I(ζ, z)dζ
)

(3.33b)
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B̄2 = B̄2 (3.33c)

B̃3 = B̄3J+ + B̄4
(
C>0
)−1 (J− +K>0 J+). (3.33d)

To preserve an input for the target system (3.32), the new boundary input ñ(τ) ∈ Rn−
in (3.32c) is introduced instead of choosing a homogeneous BC as in [41]. To this
end, insert (3.30) in (3.32c) and utilize (3.27c) to obtain

ñ(τ) = C>0 n(τ)−K>0 m̄+(1, τ)− L>2 Jwq(τ)

−
1∫

0

(
Ā>0 (ζ) + J−K̄(1, ζ)

)
m̄(ζ, τ)dζ. (3.34)

The matrices P̃0(z) ∈ Rnx×n− in (3.32a) will be specified in detail below (see (3.35b)).

To map (3.27) into the target system (3.32), solve (3.32a) for ∂τm̃(z, τ). The latter is
set equal to the derivative of (3.30) with respect to τ in which the resulting ∂τm̄(z, τ)
in the integral term is replaced by the PDE (3.27a) solved for ∂τm̄(z, τ). After the
application of integration by parts, a change of the order of integration, the usage of
m̄(0, τ) = J>+ m̄

+(0, τ) + J>− m̄
−(0, τ) and (3.27b), the backstepping kernel equations

Λ(z)∂zK̄(z, ζ) + ∂ζ(K̄(z, ζ)Λ(ζ)) = −K̄(z, ζ)Λ(z)Ā>(z) + Λ(z)D̄>(ζ, z)

−
z∫

ζ

K̄(z, ζ̄)Λ(ζ̄)D̄>(ζ, ζ̄)dζ̄ (3.35a)

K̄(z, 0)Λ(0)(J>− − J>+K>1 ) = −Λ(z)P̃0(z) (3.35b)
Λ(z)K̄(z, z)− K̄(z, z)Λ(z) = Λ(z)Ā>(z), (3.35c)

are derived by a comparison of coefficients (see, e.g., [41]). The PDE (3.35a) is
defined on 0 < ζ < z < 1 and Λ(z) = Γ̄−1(z) exists due to (3.2). The matrix P̃0(z)
in (3.35b) has the form

P̃0(z) =
[
P̃1(z)
P̃2(z)

]
, (3.36a)

and is composed of P̃2(z) ∈ Rn+×n− as well as the strictly lower triangular matrix
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P̃1(z) ∈ Rn−×n− , i.e.,

P̃1(z) =




0 . . . . . . 0

p̃1,2 1(z) . . .
. . .

...
...

. . .
. . .

...
p̃1,n− 1(z) . . . p̃1,n− n−−1(z) 0



. (3.36b)

The zero entries of the upper triangular part in (3.36b), are BCs for the PDE (3.35a)
of the backstepping kernel equations in view of (3.35b). Moreover, the resulting
form of P̃0(z) yields a cascade structure of the transport processes in the target
system (3.32), which was used in [41] to achieve the stability of the target system.
Although this is not necessary for the derivation of the differential expressions, it is
retained for consistency with [41]. Note that in order to ensure the well-posedness of
(3.35), artificial BCs must be added, which is described in detail in [41, Section 2.2].
Then, both the components of P̃2(z) and the strictly lower triangular part of P̃1(z)
result from the solution of the backstepping kernel equations (3.35) and are thus
given by (3.35b). The backstepping kernel equations (3.35) have been investigated
in [41, Section 2.2] without the integral term. Since, the latter term does not change
the result in [41], it can be shown by [41, Theorem A.1.] that (3.35) has a piecewise
C1-solution.

Since the ODE-PDE system (3.32) is a cascade of the PDE subsystem (3.32a)–(3.32c)
and the ODE subsystem (3.32d), the differential expression for the PDE subsystem
can be determined independently of the ODE subsystem. Moreover, the in-domain
couplings Ā>(z)m̄(z) and D̄>(ζ, z)m̄(ζ) appearing in (3.27a) are removed by the
backstepping transformation. Thus, the resulting PDE subsystem is a cascade of
the transport processes in negative and positive direction of the spatial coordinate,
as depicted in Figure 3.1. This inherent cascade structure significantly simplifies
the determination of a differential expression in terms of the parametrizing variable
m̃−(0, τ) for the PDE subsystem (3.32a)–(3.32c). Note that because of the strictly
lower triangular form of the coupling matrix P̃1(z) (see (3.36a)) of the boundary
value m̃−(0, τ) into the distributed variable m̃−(z, τ), also the transport process in
negative transport direction exhibits a cascade structure.

3.2.3.2 Differential expression for the PDE subsystem

To derive the corresponding differential expressions for the PDE subsystem, it is conve-
nient to use the formal Laplace transform, i.e., the correspondence h(z, τ) c sȟ(z, s) ∈
Cν for h(z, τ) ∈ Rν is used. For a rigorous mathematical justification of the following
see, e.g., [75, 95].
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z = 0 z = 1
z

m̃−(1, τ)m̃−(z, τ)m̃−(0, τ)

P̃1(z)

m̃+(0, τ) m̃+(z, τ) m̃+(1, τ)

P̃2(z)
−K>1

ñ(τ)

PDE subsystem

q̇(τ) = F̃ q(τ) +
∫ 1

0 B̃1(ζ)m̃(ζ, τ)dζB̄2m̃−(0, τ) + B̃3m̃(1, τ)

ODE subsystem

m̃−(0, τ) m̃(1, τ)m̃(z, τ)

Figure 3.1: Cascade structure of the target system (3.32) with the PDE sub-
system (3.32a)–(3.32c) and the ODE subsystem (3.32d), whereas
also the inherent cascade structure of the transport processes in
negative and positive spatial direction of the PDE subsystem is
illustrated.
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Apply the Laplace transform to (3.32a) and (3.32b) to obtain the initial value
problem

∂z ˇ̃m(z, s) = sΓ̄(z) ˇ̃m(z, s) + P̃0(z) ˇ̃m−(0, s), z ∈ (0, 1), s ∈ C (3.37a)
ˇ̃m(0, s) = V ˇ̃m−(0, s), s ∈ C, (3.37b)

where V = (J>− − J>+K>1 ) in view of ˇ̃m(0, s) = J>− ˇ̃m−(0, s) + J>+ ˇ̃m+(0, s) is used.
By regarding (3.37a) as an ODE with respect to z, its general solution is given by

ˇ̃m(z, s) = Φ̌(z, 0, s)V ˇ̃m−(0, s) +
z∫

0

Φ̌(z, ζ, s)P̃0(ζ)dζ ˇ̃m−(0, s) (3.38)

with the state transition matrix Φ̌ : Ω2 × C→ Cnx×nx satisfying

∂zΦ̌(z, ζ, s) = sΓ̄(z)Φ̌(z, ζ, s), Φ̌(ζ, ζ, s) = I, (z, ζ, s) ∈ Ω2 × C (3.39)

(see [75, Assumption 1]). Due to the diagonal form of Γ̄(z), the latter can be explicitly
determined as

Φ̌(z, ζ, s) = diag (exp (sτ̄1(z, ζ)) , . . . , exp (sτ̄nx(z, ζ))) (3.40a)

with

τ̄i(z, ζ) =
z∫

ζ

γ̄i(σ)dσ, (z, ζ) ∈ Ω2, i = 1, . . . , nx, (3.40b)

where γ̄i(z) are the diagonal components of Γ̄(z). Thus, in view of (3.32c) and
(3.38), the kernels ˇ̃m(z, s) and ˇ̃n(s) can be represented by

ˇ̃m(z, s) = Ψ̌(z, s) ˇ̃m−(0, s), z ∈ Ω (3.41a)
ˇ̃n(s) = J−Ψ̌(1, s) ˇ̃m−(0, s) (3.41b)

with

Ψ̌(z, s) = Φ̌(z, 0, s)V +
z∫

0

Φ̌(z, ζ, s)P̃0(ζ)dζ. (3.42)

To make use of the previous formal computations, (3.41) must be mapped into the
time domain. Consider (3.42) rowwise, i.e., Ψ̌>i (z, s) = e>i,nxΨ̌(z, s), i = 1, . . . , nx,
in (3.42). Due to the diagonal form of Φ̌>(z, ζ, s) (see (3.40a)), its ith row is
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e>i,nxΦ̌(z, ζ, s) = e>i,nxexp (sτ̄i(z, ζ)), which yields

Ψ̌>i (z, s) = e>i,nxV exp (sτ̄i(z, 0)) +
z∫

0

e>i,nx P̃0(ζ)exp (sτ̄i(z, ζ)) dζ. (3.43)

By utilizing the correspondences ȟ(s) s ch(τ) ∈ Rn− and ȟ(s)exp (sτ̄i(z, ζ)) s c
h(τ + τ̄i(z, ζ)) for ȟ(s) ∈ Cn− , the time domain representation of Ψ̌>i (z, s)ȟ(s) reads
as

Ψ>i [h](z, τ) = e>i,nxV h(τ + τ̄i(z, 0)) +
z∫

0

e>i,nx P̃0(ζ)h(τ + τ̄i(z, ζ))dζ (3.44)

in view of (3.43). Thus, the time domain correspondence for Ψ̌(z, s)ȟ(s) is given by

Ψ[h](z, τ) = col
(
Ψ>1 [h](z, τ), . . . ,Ψ>nx [h](z, τ)

)
(3.45)

and finally

m̃(z, τ) = Ψ
[
m̃−(0)

]
(z, τ) (3.46a)

ñ(τ) = J−Ψ
[
m̃−(0)

]
(1, τ) (3.46b)

result as the time domain correspondence of (3.41). In the light of (3.46), m̃(z, τ)
and ñ(τ) can be parameterized in terms of m̃−(0, τ), which is the parametrizing
variable for the PDE subsystem. In contrast to the formal differential expressions
in the form of series that result for parabolic or biharmonic systems (see Section
2.3.4.2), distributed delays and predictions (see (3.44)) have to be evaluated. Based
on (3.46), the differential expression for the cascade system (3.32) can readily be
constructed.

3.2.3.3 Differential expression for the cascade system

Applying the formal Laplace transform h(τ) c sȟ(s) and dτh(τ) c ssȟ(s) to
(3.32d) yields

(
sI − F̃

)
q̌(s) =

1∫

0

B̃1(ζ) ˇ̃m(ζ, s)dζ + B̄2 ˇ̃m−(0, s) + B̃3 ˇ̃m(1, s), (3.47)
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where (3.41a) can be inserted to obtain

(
sI − F̃

)
q̌(s) =




1∫

0

B̃1(ζ)Ψ̌(ζ, s)dζ + B̄2 + B̃3Ψ̌(1, s)


 ˇ̃m−(0, s). (3.48)

In view of adj(sI − F̃ )(sI − F̃ ) = det(sI − F̃ )I, both q̌(s) and ˇ̃m−(0, s) can be
expressed by

q̌(s) = adj
(
sI − F̃

)
( 1∫

0

B̃1(ζ)Ψ̌(ζ, s)dζ + B̄2 + B̃3Ψ̌(1, s)
)
ϕ̌(s) (3.49a)

ˇ̃m−(0, s) = det
(
sI − F̃

)
ϕ̌(s) (3.49b)

in terms of the parametrizing variable ϕ̌(s) ∈ Cn− . To determine the time domain
correspondences for q̌(s), use

adj(sI − F̃ ) =
nq−1∑

i=0
F̃is

i (3.50)

with F̃i ∈ Rnq×nq and siΨ̌(z, s)ȟ(s) s cΨ[diτh](z, τ), which yields the differential
expression

q(τ) =
nq−1∑

i=0
F̃i

( 1∫

0

B̃1(ζ)Ψ
[
diτϕ

]
(ζ, τ)dζ + B̄2diτϕ(τ) + B̃3Ψ

[
diτϕ

]
(1, τ)

)
(3.51)

in terms of derivatives as well as distributed delays and predictions of the parametriz-
ing variable ϕ(τ). It remains to parametrize m̃(z, τ) and ñ(τ) in terms of ϕ(τ), its
derivatives and distributed time-shifts thereof. Use

det
(
sI − F̃

)
=

nq∑

i=0
ais

i (3.52)

with ai ∈ R and anq = 1 in (3.49b) to obtain the differential parametrization

m̃−(0, τ) =
nq∑

i=0
aidiτϕ(τ). (3.53)

Consequently, the differential expressions for m̃(z, τ) and ñ(τ) follow from inserting
(3.53) in (3.46). Thus, the differential expressions for the fault detection kernel
equation are summarized in the following lemma.
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Lemma 3.2 (Differential expressions for the fault detection kernel equations).
Let Ψ[·](z, τ) be given by (3.45) and ai be defined by (3.52). Then, the
integral kernels q(τ), m̃(z, τ) and ñ(τ) can be parametrized by the differential
expressions

q(τ) =
nq−1∑

i=0
F̃i

( 1∫

0

B̃1(ζ)Ψ
[
diτϕ

]
(ζ, τ)dζ + B̄2diτϕ(τ) + B̃3Ψ

[
diτϕ

]
(1, τ)

)

(3.54a)

m̃(z, τ) =
nq∑

i=0
aiΨ

[
diτϕ

]
(z, τ) (3.54b)

ñ(τ) = J−

nq∑

i=0
aiΨ

[
diτϕ

]
(1, τ) (3.54c)

in terms of the parametrizing variable ϕ(τ).

With (3.54), m̃(z, τ) ñ(τ) and q(τ) can be expressed by distributed delays and
predictions as well as derivatives up to the order nq of ϕ(τ). Therefore, (3.54) can
be used as a differential expression for the ODE-PDE system of the fault detection
kernel equations (3.32) in backstepping coordinates. In contrast to the formal
differential parametrizations for parabolic or biharmonic systems (see Lemma 2.3),
only a finite number of derivatives of the parametrizing variable ϕ(τ) is required
and no convergence conditions need to be considered in the planning of a reference
trajectory ϕ?(τ). Conversely, the distributed delays and predictions result in a lower
bound for the transition time.

Note that for a solution of the kernel equations, the flatness of the target system
(3.32) is not necessarily required, since only the specific transition (3.29) must be
parametrized. In contrast, however, to derive the integral kernels for a residual
generator (see Theorem 3.25), it must be ensured that the additional constraint
(2.54) can be satisfied. Thus, a condition is introduced in the following to ensure
that a solution of the kernel equations given in Lemma 3.1 can be parameterized in
terms of ϕ(τ) by the differential expressions specified in Lemma 3.2.

3.2.3.4 Fault detectability condition

Based on the differential expressions (3.54) a solution of (3.32) can be determined
by the planning of a reference trajectory ϕ?(τ) assigned to ϕ(τ). The reference
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trajectories m̃?(z, τ) and q?(τ) assigned to the integral kernels m̃(z, τ) and q(τ) must
satisfy the initial and end condition (3.29b) as well as

m̃(z, τ)|τ∈{0,T} = 0, z ∈ Ω. (3.55)

The latter results from mapping (3.29a) into backstepping coordinates via (3.30)
and is the initial and end condition for the distributed system variable m̃(z, τ) of
the ODE-PDE system (3.32) in backstepping coordinates. Additionally, ϕ?(τ) must
be determined so that the resulting reference trajectory m?

f (τ) assigned to mf (τ)
given by (3.21a) satisfies the general detectability condition (2.54). To verify if such
a reference trajectory ϕ?(τ) exists, the requirements for the integral kernels, i.e., the
initial and end conditions (3.55) and (3.29b) as well as the additional constraint (2.54)
are reformulated into requirements on the reference trajectory ϕ?(τ) by utilizing the
differential expressions (3.54). To this end, the initial and end conditions (3.55) are
embedded into setpoints, so that a nontrivial setpoint change for the PDE subsystem
can be planned and a general transition of the ODE subsystem.

To take (3.55) into account, consider (3.54b) rowwise, which yields

e>j,nxm̃
?(z, τ) =

nq∑

i=0
aie
>
j,nx

(
V diτϕ?(τ + τ̄j(z, 0)) +

z∫

0

P̃0(ζ)diτϕ?(τ + τ̄j(z, ζ))dζ
)

(3.56)

for j = 1, . . . , nx, in view of (3.44) and the substitutions ϕ(τ)→ ϕ?(τ) and m̃(z, τ)→
m̃?(z, τ). Consequently, (3.55) holds if ϕ?(τ) satisfies ϕ? ∈ (Cnq−1[−τ̃−, T + τ̃+])n−
with dnqτ ϕ?(τ), τ ∈ [−τ̃−, T + τ̃+] existing and

ϕ?(τ + τ̄j(z, ζ))|τ∈{0,T} = 0, 0 ≤ ζ ≤ z ≤ 1, j = 1, . . . , nx. (3.57)

The latter embeds (3.55) into setpoints and can be achieved by imposing

ϕ?(τ) =





0 : τ ∈ I1 = [−τ̃−, τ̃+]
ϕ̃(τ) : τ ∈ I2 = (τ̃+, T − τ̃−)
0 : τ ∈ I3 = [T − τ̃−, T + τ̃+],

(3.58)

where τ̃+ and τ̃− are the largest prediction and delay times resulting from the
longest transportation time τ̃n− in the negative spatial direction and the longest
transportation time |τ̃n−+1| in the positive spatial direction (see (3.2), (3.18) and
(3.19)). In (3.58), ϕ̃(τ) ∈ Rn− is a degree of freedom that must satisfy ϕ̃ ∈
(Cnq−1(τ̃+, T − τ̃−))n− with dnqτ ϕ̃(τ) existing and

diτ ϕ̃(τ)|τ∈{τ̃+,T−τ̃−} = 0, i = 0, . . . , nq − 1, (3.59)
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to ensure ϕ? ∈ (Cnq−1(I))n− with dnqτ ϕ?(τ) existing and fulfilling (3.57). To achieve
ϕ?(τ) 6≡ 0, the condition T − τ̃− > τ̃+ can be inferred directly from (3.58), i.e., the
length of the moving horizon T is lower bounded by T > T0 with

T0 = τ̃+ + τ̃−. (3.60)

Under the condition (3.58), it follows from (3.54a), that also q?(τ) satisfies the
required initial and end conditions (3.29b). Thus, ϕ̃(τ), respectively ϕ?(τ) in the
light of (3.58), can be determined by an algebraic interpolation problem without
the recourse of solving a differential equation, which presented in detail in Section
3.2.3.5.

Nevertheless, the existence of reference trajectories that satisfy the detectability
condition (2.54) remains to be verified. To this end, express mf (τ) given in (3.21a)
in terms of ϕ(τ), which can be achieved by representing (3.21a) in backstepping
coordinates m̃(z, τ) and q(τ). Use the spatial reversal z̄ = 1− z in (3.21a) to obtain

mf (τ) = −〈Ē1, m̄(τ)〉Ω − E>2 m̄+(1, τ) + E>3 m̄
−(0, τ)− E>4 qw(τ) + E>5 n(τ). (3.61)

Subsequently, solve (3.27c) for n(τ), insert the result in (3.61) and substitute m̄(z, τ)
in the derived expression by the inverse backstepping transformation (3.31) to obtain

mf (τ) =
1∫

0

Ẽ1(z)m̃(z, τ)dz + E>3 m̃
−(0, τ) + Ẽ3m̃(1, τ) + Ẽ4q(τ), (3.62)

with the matrices

Ẽ1(z) = E>5
(
C>0
)−1

Ā>0 (z)− Ē>1 (z) +
(
E>5

(
C>0
)−1 (

J>− + J>+K0
)

− E>2 J+

)
K̄I(1, z) +

1∫

z

(E>5
(
C>0
)−1

Ā>0 (ζ)− E>1 (ζ))K̄I(ζ, z)dζ (3.63a)

Ẽ3 = −E>2 J+ + E>5
(
C>0
)−1 (

J− +K>0 J+
)

(3.63b)

Ẽ4 = −E>4 Jw + E>5
(
C>0
)−1

L>2 Jw. (3.63c)

Then, m̃(z, τ) and q(τ) can be replaced by (3.54b) and (3.54a), so that (3.63) reads
as

mf (τ) =
nq∑

i=0




1∫

0

Xf
1,i(z)Ψ[diτϕ](z, τ)dz +Xf

2,idiτϕ(τ) +Xf
3,iΨ[diτϕ](1, τ)


 (3.64)
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with

Xf
1,i(z) = Ẽ1(z)ai + Ẽ4F̃iB̃1(z) (3.65a)

Xf
2,i = E>3 ai + Ẽ4F̃iB̄2 (3.65b)

Xf
3,i = Ẽ3ai + Ẽ4F̃iB̃3 (3.65c)

where F̃nq = 0 is used (see (3.50)). Because of the distributed delays and pre-
dictions in Ψ[·](z, τ), the consideration of the fault detectability condition (2.54)
is involved in the time domain. However, by using the Laplace correspondence
Ψ[diτh](z, τ) c ssiΨ̌(z, s)ȟ(s), (2.54) can be investigated independently of a specific
reference trajectory ϕ?(τ) for ϕ(τ). Hence, apply the formal Laplace transform to
(3.64) to obtain

m̌f (s) = X̌(s)ϕ̌(s) (3.66)

with

X̌(s) =
nq∑

i=0




1∫

0

Xf
1,i(z)Ψ̌(z, s)dz +Xf

2,i +Xf
3,iΨ̌(1, s)


 si ∈ Cnf×n− (3.67)

in view of the Ψ[diτh](z, τ) c ssiΨ̌(z, s)ȟ(s). Based on (3.66), the fault detectability
condition for heterodirectional hyperbolic ODE-PDE systems can be stated in the
following theorem.

Theorem 3.3 (Fault detectability)
If

e>i,nf X̌(s) 6≡ 0>, i ∈ {1, . . . , nf} (3.68)

holds with X̌(s) given in (3.67), then the fault fi(t) = e>i,nf f(t) is detectable
in the sense of Definition 1 for the system (3.1).

Proof. The prove of the fault detectability is based on the existence of a residual
generator specified in Theorem 3.1, which requires that the integral kernels m(z, τ),
qw(τ), qd(τ) and n(τ) are solutions of the kernel equations (3.22) and (3.23) as well
as mf (τ) given in (3.21a) satisfies (2.54). Because of the bounded invertibility of the
backstepping transformation (3.30) (see, e.g., [41]), the imposed requirements on the
integral kernels m(z, τ), qw(τ), qd(τ) and n(τ) are satisfied if the integral kernels in
backstepping coordinates m̃(τ), q(τ) and ñ(τ) are solutions of the ODE-PDE system
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(3.32) subject to the initial and end conditions (3.29b) and (3.55) as well as mf (τ).

If the reference trajectory ϕ?(τ) takes into account the initial and end values (3.57)
as well as ϕ? ∈ (Cnq−1[−τ̃−, T + τ̃+])n− with dnqτ ϕ?(τ) existing, then the reference
trajectories m̃?(z, τ), q?(τ) and ñ?(τ) derived from the differential expressions (3.54)
are piecewise C-solutions of the fault detection kernel equations in backstepping
coordinates (3.32) subject to (3.29b) and (3.55). Moreover, for T > T0, with T0
given in (3.60), (3.58) implies that there exists a ϕ?(τ) 6≡ 0 so that the resulting
integral kernels are solutions of the kernel equations. It follows from the uniqueness
of the Laplace transform (see, e.g., [92, Theorem 6.3]), that ϕ?(τ) 6≡ 0 implies
ϕ̌?(s) 6≡ 0. Since ϕ̌?(s) and X̌(s) are analytic functions (see, e.g., [92, Theorem
5a]) and (3.68) ensures e>i,nf X̌(s) 6≡ 0>, there exists a e>i,nf m̌

?
f (s) 6≡ 0> in view of

(3.66) and the substitutions ϕ̌(s)→ ϕ̌?(s) as well as m̌f (s)→ m̌?
f (s). According to

the uniqueness of the Laplace transform, e>i,nf m̌
?
f (s) 6≡ 0> implies e>i,nfm

?
f (τ) 6≡ 0>,

i.e., the detectability condition (2.54) can be satisfied. Thus, for the faults fi(t),
i = 1, . . . , nf , for which (3.68) holds, a residual generator exists in accordance with
Theorem 3.3. In view of Definition 1, this implies the detectability of the faults. �

Note that Theorem 3.3 implies also that if the system is subject to d̄(t) 6≡ 0 satisfying
(2.14), then the fault fi(t) is detectable by results of Theorem 3.2.

The condition (3.68) depends on X̌(s) given in (3.67) and is dependent on the terms
Xf
j,i, j = 1, 2, 3, and i = 0, . . . , nq, described in (3.65). According to the derivation

of the matrices in the terms in (3.65), X̌(s) only depends on system parameters.
Hence, (3.68) is a property of the system that can be checked a priori. Moreover,
in view of (3.62), mf (τ) can be regarded as an output of the target system (3.32).
Thus, the fault detectability condition (2.54) can be satisfied if there is an input
ñ(τ) of (3.32) which affects mf (τ).

3.2.3.5 Systematic approach for the planning of the reference trajectory

The results of Section 3.2.3.4 show that if (3.68) holds, the reference trajectory
ϕ?(τ) can be determined by a simple solution of an algebraic interpolation problem.
However, for a successful fault detection, it is also necessary that the residual
generator has a balanced response to the excitation of faults of different magnitudes
and is insensitive to disturbances. In the following, these objectives are used to
compute the reference trajectory ϕ?(τ).
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For the reference trajectory planning of ϕ?(τ) in view of (3.58), impose

ϕ̃(τ) =
nϕ∑

i=1
θi(τ)ηi, τ ∈ I2 (3.69)

with known linear independent functions θi ∈ Cnq−1(I2) and dnqτ θi(τ) existing as
well as the coefficients ηi ∈ Rny to be determined. From (3.69),

ϕ?(τ) = θ(τ)η, τ ∈ [−τ̃−, T + τ̃+] (3.70)

with

θ(τ) =





0 : τ ∈ I1 = [−τ̃−, τ̃+]
θ̃(τ) : τ ∈ I2 = (τ̃+, T − τ̃−)
0 : τ ∈ I3 = [T − τ̃−, T + τ̃+],

(3.71)

follows, where θ̃(τ) = [θ1(τ) · · · θnϕ(τ)] ⊗ Iny and η = col
(
η1, . . . , ηnϕ

)
are intro-

duced. To ensure (3.59) impose that η is a solution of

Θ̄η = 0, (3.72)

with Θ̄ = col
(
Θ̄1, Θ̄2

)
∈ R2nynq×nynϕ and

e>i,nq Θ̄1 = di−1
τ θ̃(τ)

∣∣
τ=τ̃+ , e>i,nq Θ̄2 = di−1

τ θ̃(τ)
∣∣
τ=T−τ̃− , (3.73)

for i = 1, . . . , nq. However, a nontrivial reference trajectory ϕ?(τ) 6≡ 0 for (3.72)
must be determined, which is possible only if the null space of Θ̄ denoted by K(Θ̄) is
nonempty, i.e., dimK(Θ̄) > 0 holds. This requirement can be achieved by choosing
a sufficient number nϕ of linear independent functions θi(τ). To make this more
specific, an example for polynomial θ̃(τ) is given in the following.

Example 3.2 (Polynomial basis functions for θ̃(τ)).
Impose the monomials θi(τ) = (τ−τ̃+)i−1

(i−1)! for θi(τ) in (3.69). Then, the computation
of Θ̄ shows that rank Θ̄ = 2nynq holds for nϕ > 2nq and thus dimK(Θ̄) = nynϕ −
rank Θ̄ = ny(nϕ − 2nq) > 0 is ensured. /

If dimK(Θ̄) = n̄Θ > 0 holds, then a right annihilator Θ̄⊥ ∈ Rnynϕ×n̄Θ exists, which
satisfies Θ̄Θ̄⊥ = 0. It can be computed by selecting the linear independent rows of
I− Θ̄†Θ̄, where Θ̄† is the Moore-Penrose generalized inverse of Θ̄. Thus, a nontrivial
solution, i.e., η 6= 0, can be computed by

η = Θ̄⊥η∗ (3.74)
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with η∗ ∈ Rn̄Θ and η∗ 6∈ K(Θ̄⊥). Because of (3.72), any coefficient vector η
determined by (3.74) ensures (3.59) and thus the resulting reference trajectory ϕ?(τ)
determined by (3.70) ensures (3.57) and satisfies ϕ? ∈ (Cnq−1[−τ̃−, T + τ̃+])n− with
dnqτ ϕ?(τ) existing. Moreover, the degrees of freedom η∗ can be used to ensure the
detectability condition (2.54) and to make the residual generator less sensitive with
respect to the bounded disturbance d̄(t).

In Section 2.3.4.4 it was shown how to derive a residual generator with a prescribed
stationary gain. For the case that the required condition (2.113) is not satisfied,
an extension of the approach in Section 2.3.4.4 is proposed. Instead of prescribing
the response to constant faults as shown in Section 2.3.4.4, the response of the
residual generator to specific time-varying fault signals will be regarded in the sequel.
Consider the design form of the residual generator (3.25)

r(t) =
T∫

0

m>f (τ)f(t− τ)dτ (3.75)

(see (2.51)) in terms of the fault f(t). Let f?(t) ∈ Rnf , t ∈ [0, T ] be an expected
signal for the fault f(t). Then, the response of (3.75) at time t = T to the ith
component f?i (t) of f?(t), i.e.,

r̄i =
T∫

0

m>f (τ)ei,nf f?i (T − τ)dτ, i = 1, . . . , nf , (3.76)

serves as a measure for the influence of the expected fault signal f?i (t) on the residual
signal r(t). To be specific, the detectability condition (2.54) can be satisfied if the
expected fault signals f?i (t) are such that

r̄i 6= 0, i = 1, . . . , nf , (3.77)

can be achieved. Summarizing (3.76) for i = 1, . . . , nf ,

r̄ =
T∫

0

F ?(τ)mf (τ)dτ (3.78)

with r̄ = col
(
r̄1, . . . , r̄nf

)
and F ?(τ) = diag(f?1 (T − τ), . . . , f?nf (T − τ)) results. To

determine η∗ so that r̄ given by (3.78) satisfies (3.77), insert (3.70) in (3.64) after
substituting ϕ(τ)→ ϕ?(τ) and mf (τ)→ m?

f (τ) to obtain

m?
f (τ) = Θf (τ)η∗ (3.79)
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with

Θf (τ) =
nq∑

i=0




1∫

0

Xf
1,i(z)Ψ[diτΘ](z, τ)dz +Xf

2,idiτΘ(τ) +Xf
3,iΨ[diτΘ](1, τ)


 Θ̄⊥

(3.80)

in view of (3.74). By using (3.79) in (3.78), the linear system of equations

r̄ = Θ̄fη
∗ (3.81)

with

Θ̄f =
T∫

0

F ?(τ)Θf (τ)dτ, (3.82)

is derived for the determination of η∗. For r̄ ∈ R(Θ̄f ), where R(Θ̄f ) is the range of
Θ̄f , (3.81) has the solution

η∗ = Θ̄†f r̄ + (I − Θ̄†f Θ̄f )r̄∗. (3.83)

Consequently, choosing r̄ ∈ R(Θ̄f ) which satisfies also (3.77), it is ensured that
the resulting m?

f (τ) from (3.79) with η∗ given by (3.83) satisfies the detectability
condition (2.54). A suitable r̄ exists, if F ?(τ) is such that the resulting Θ̄f from
(3.82) holds

e>i,nf Θ̄f 6= 0. (3.84)

Moreover, if rank (I − Θ̄†f Θ̄f ) > 0 holds, then the degrees of freedom r̄∗ ∈ Rn̄Θ can
be used to make the residual generator less sensitive with respect to the unknown
but bounded disturbance d̄(t). Consider the threshold value rB as a measure for the
influence of d̄(t) on r(t). To express rB in dependence of r̄∗, at first express m?

d̄
(τ)

in terms of ϕ?(τ) (see (2.60)). As shown in Appendix A.8,

m?
d̄
(τ) = Θd̄(τ)η∗ (3.85)

can be derived by a similar derivation as used for (3.79). Then, insert (3.83) in
(3.85) to obtain

m?
d̄
(τ) = Θ̄0(τ) + Θ̄1(τ)r̄∗ (3.86)
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with

Θ̄0(τ) = Θd̄(τ)Θ̄†f r̄ (3.87a)

Θ̄1(τ) = Θd̄(τ)(I − Θ̄†f Θ̄f ). (3.87b)

Thus, the threshold value can be computed by

rB =
T∫

0

∣∣θ̄0(τ) + θ̄1(τ)r̄∗
∣∣> dτδ, (3.88)

whereas r̄∗ should be determined by

rB = min
r̄∗∈K(Θ̄f )

T∫

0

|θ̄0(τ) + θ̄1(τ)r̄∗|>dτδ. (3.89)

With r̄∗ resulting from (3.89) and a suitable r̄ that satisfies (3.77), a reference
trajectory ϕ?(τ) can be computed with (3.70) such that the integral kernels following
from (3.54) satisfy the requirements for a residual generator given in Theorem 3.1. In
addition, the residual signal r(t) is made less sensitive to the unknown but bounded
disturbances d̄(t) and can be balanced with respect to the expected fault signals
f?(t).

3.2.4 Fault detection for a cable with a payload immersed in
water

To demonstrate the previously presented fault detection approach, it is applied to
a model of a cable with an attached payload immersed in water of constant flow.
This real-world motivated example system is illustrated in Figure 3.2. Such models
are used, e.g., to describe the positioning of a payload at the seabed with deep-sea
construction vessels (see, e.g., [13, 87]). The upper end of the cable is attached to
a crane on the deep-sea construction vessel and at the lower end the equipment to
be positioned is attached. The mathematical modeling of the cable with payload
using the extended Hamilton’s principle and a linearization of the nonlinear model
leads to two coupled wave equations describing the motion of the deflection of the
cable and an ODE for the dynamics of the payload. For details see [13, 87] and the
references therein. In contrast to the scenario regarded in [87], the length of the
cable is considered to be constant, but faults and further disturbances have been
added. The following simulations are implemented for MATLAB 2020a and are
available in [108].
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Figure 3.2: Schematic of the cable with an attached payload immersed
in water of constant flow F0, with actuators at z = 1 and
measurement at z = 0 subject to multiple disturbances d̃(t), d̄(t)
and faults f(t) as described by (3.90).

Before the proposed fault detection approach can be applied to the considered model,
it must be at first rewritten into the form (3.1). After a normalization of the spatial
domain to length 1, the cable deflection in lateral and longitudinal direction v1(z, t)
and v2(z, t) (see Figure 3.2) is described by

∂2
t v1(z, t) = κ1(z)∂2

zv1(z, t) + κ2(z)∂zv1(z, t) + κ3(z)∂zv2(z, t)
+ κ4(z)∂tv1(z, t) + d̄1(t) + e1(z)f1(t) (3.90a)

∂2
t v2(z, t) = κ5(z)∂2

zv2(z, t) + κ6(z)∂zv1(z, t) + κ7(z)∂tv2(z, t)
+ d̄1(t) + d̃(t) (3.90b)

defined on (z, t) ∈ (0, 1)× R+. The consideration of the attached payload leads to
the dynamic BC at z = 0

v̈1(0, t) = κ8v̇1(0, t) + κ9∂zv1(0, t) + κ10∂zv2(0, t), t > 0 (3.90c)
v̈2(0, t) = κ11v̇2(0, t) + κ12∂zv2(0, t) + κ13∂zv1(0, t), t > 0. (3.90d)

At the upper boundary, i.e., z = 1, the cable is actuated by the forces ui(t) ∈ R,
i = 1, 2, so that the corresponding BC becomes

∂zv1(1, t) = b1(1 + e2∆f2(t))u1(t), t > 0 (3.90e)
∂zv2(1, t) = b2u2(t) + e3f3(t), t > 0. (3.90f)

As measurement y(t) = col (y1(t), y2(t)) ∈ R2 the strain ∂zv2(0, t) and the pivot
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angle ∂zv1(0, t) at the lower end of the cable z = 0 are available, which are given by

y1(t) = (1 + ∆f4(t))∂zv1(0, t) + d̄2(t), t ≥ 0 (3.90g)
y2(t) = ∂zv2(0, t) + f5(t) + d̄3(t), t ≥ 0. (3.90h)

Note that the outputs (3.90g) and (3.90h) differ from those in [87] to simplify
the following transformations of the coupled wave equation system (3.90) into a
heterodirectional hyperbolic ODE-PDE system of the form (3.1).

Other differences to [87] are the added faults fi(t), i = 1, . . . , 5, and disturbances
d̃(t) as well as d̄j(t), j = 1, 2, 3. The disturbance d̃(t) ∈ R is acting in-domain with
the signal form d̃(t) = d0

1 sin(5t+ φd), whereas the particular signal is specified by
the unknown parameters d0

1, φd ∈ R. Hence, d̃(t) can be described by the signal
model (2.15) with the known matrices

Sd =
[
0 −5
5 0

]
, Rd =

[
0 1

]
, (3.91)

the state vd(t) ∈ R2 and the unknown IC vd(0) = v0
d ∈ R2. The further disturbances

d̄i(t) ∈ R, i = 1, 2, 3, are absolutely bounded by |d̄i(t)| ≤ δi with known upper
bound δ = col (0.03, 0.01, 0.02). A fault f1(t) ∈ R is affecting the deflection of the
cable in lateral direction via the spatial characteristic e1(z) = 1, which is thus an
additive process fault. Additionally, both actuators ui(t), i = 1, 2, can be faulty.
The actuator related to u1(t) is subject to a multiplicative actuator fault described
by e2 = 10.00× 103 and ∆f2(t) ∈ R, which is rewritten as the additive fault
f2(t) = u1(t)∆f2(t) so that (3.90e) becomes

∂zv1(1, t) = b1u1(t) + b1e2f2(t), t > 0. (3.92)

The actuator related to u2(t) is affected by the additive actuator fault f3(t) ∈ R with
e3 = 0.37. Also the measurements are assumed to be potentially faulty, where y1(t) is
subject to the multiplicative sensor fault described by ∆f4(t) ∈ R. This multiplicative
fault is rewritten in the form of an additive sensor fault f4(t) = ∆f4(t)∂zv1(0, t), so
that (3.90g) can also be described by

y1(t) = ∂zv1(0, t) + f4(t) + d̄2(t), t ≥ 0. (3.93)

The measurement y2(t) is subject to the additive sensor fault f5(t) ∈ R. According
to the modeling in [87], the system parameters κi(z), i = 1, ..., 18, and bi, i = 1, 2,
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Table 3.1: Normalized model parameters for the cable with a payload taken
from [87].

Parameter Value Parameter Value
Lc 1.21× 103 Ac 470× 10−6

Ec 70.30× 109 mc 8.95
ML 8.00× 103 Vp 5
ga 9.80 Vs 2
ρw 1.02× 103 cu 500× 10−3

cv 300× 10−3 ch 500× 10−3

cw 300× 10−3 θc 1.40
Mc 2.88× 103 ρc 8.47

are specified in dependence of physical parameters and are given by

κ1(z) =
3
2EcAcφ

2
c(z) + Tc(z)
mcL2

c

, κ2(z) =
1
LEcAc

dzεc(z)
Lc

+ ρga

mcLc
(3.94a)

κ3(z) = −EcAcdzφc(z)
mcL2

c

, κ4 = cv
mc

(3.94b)

κ5 = EcAc
mcL2

c

, κ6(z) = −EcAcdzφc(z)
mcL2

c

(3.94c)

κ7 = − cu
mc

, κ8 = − cw
ML

(3.94d)

κ9 = EcAcφ
2
c(0)

2MLL
, κ10 = −EcAcφc(0)

MLL
(3.94e)

κ11 = − ch
ML

, κ12 = EcAc
MLL

(3.94f)

κ13 = −EcAcφc(0)
2MLL

, b1 = L

EcAc(εc(1) + 1
2φ

2
c(1)) + Tc(1)

(3.94g)

b2 = L

EcAc
, φc(z) = arctan

(
F0

ρgaLcz +Mcga

)
− θc (3.94h)

Tc(z) = ρcgaLz +Mga, F0 = ρw
2 V 2

s . (3.94i)

The values of the physical parameters in (3.94) are assembled in Table 3.1.

To rewrite the system (3.90) into a first order system of PDEs, the Riemann
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coordinates

v̆1(z, t) = ∂tv1(z, t) +
√
κ1(z)∂zv1(z, t) (3.95a)

v̆2(z, t) = ∂tv2(z, t) +
√
κ5(z)∂zv2(z, t) (3.95b)

v̆3(z, t) = ∂tv2(z, t)−
√
κ5(z)∂zv2(z, t) (3.95c)

v̆4(z, t) = ∂tv1(z, t)−
√
κ1(z)∂zv1(z, t) (3.95d)

are introduced (see, e.g., [19, Section 7.3]). By following the calculations in [87], the
wave equations (3.90a) and (3.90b) are mapped into

∂tv̆(z, t) = Λ(z)∂z v̆(z, t) + Ă(z)v̆(z) + Ĕ1(z)f(t) + Ğc,1(z)d(t) (3.96)

with Λ(z) = diag
(√

κ1(z),√κ5,−
√
κ5,−

√
κ1(z)

)
and

e>1,4Ă(z) = e>4,4Ă(z) =
[
s1(z) + κ4

2
κ3(z)
2κ5

−κ3(z)
2√κ5

κ4
2 − s1(z)

]
(3.97a)

e>2,4Ă(z) = e>3,4Ă(z) =
[

κ6(z)
2
√
κ1(z)

κ7
2

κ7
2 − κ6(z)

2
√
κ1(z)

]
(3.97b)

s1(z) =
κ2(z)− 1

2dzκ1(z)
2
√
κ1(z)

(3.97c)

e>1,4Ĕ1(z) = e>4,4Ĕ1 =
[
1 0 0 0 0

]
(3.97d)

e>2,4Ĕ1(z) = e>3,4Ĕ1(z) = 0 (3.97e)
e>1,4Ğc,1(z) = e>4,4Ğc,1(z) =

[
0 1 0 0

]
(3.97f)

e>2,4Ğc,1(z) = e>3,4Ğc,1(z) =
[
1 1 0 0

]
. (3.97g)

In (3.96), the faults are summarized to f(t) = col (f1(t), . . . , f5(t)) and the distur-
bances to d(t) = col

(
d̃(t), d̄1(t), d̄2(t), d̄3(t)

)
. Note that with min

√
κ1(z) = 2.58

and √κ5 = 1.59, the transport velocities λi(z), i = 1, . . . , 4, as the diagonal entries
of Λ(z) are already sorted in descending order according to (3.2) because of the
matched choice of the Riemann coordinates (3.95) in contrast to [87]. Because of
κ1(z) > κ5 > 0, J− = [ I2 0 ] and J+ = [ 0 I2 ] follow with the identity matrix
I2 ∈ R2×2 according to (3.2) and (3.3). Regarding the dynamic BCs at z = 0, the
ODE state

w(t) = col (v̇1(0, t), v̇2(0, t)) (3.98)

is introduced so that the boundary dynamics are governed by

ẇ(t) = Fw(t) + L̆2v̆
−(0, t) (3.99)
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with

F =



κ8 − κ9√

κ1(0)
− κ10√

κ5

− κ12√
κ1(0)

κ11 − κ13√
κ5


 , L̆2 =




κ9√
κ1(0)

κ10√
κ5

κ12√
κ1(0)

κ13√
κ5


 . (3.100)

In contrast to [87], the ODE state (3.98) shows that a second order ODE system is
sufficient to describe the boundary dynamics for the considered setup. In view of
(3.99), the BCs at z = 0 can be expressed by

v̆+(0, t) = Q̆0v̆
−(0, t) + H̆2w(t) (3.101)

and the corresponding matrices in (3.101) are

Q̆0 =
[

0 −1
−1 0

]
and H̆2 =

[
0 2
2 0

]
. (3.102)

At z = 1, the BC is

v̆−(1, t) = Q̆1v̆
+(1, t) + B̆3u(t) + Ĕ3f(t), (3.103)

with u(t) = col (u1(t), u2(t)) and the matrices in (3.103) are

Q̆1 =
[
0 1
1 0

]
, B̆3 =

[
2
√
κ1(1)b1 0

0 2√κ5b2

]
(3.104a)

Ĕ3 =
[
0 2

√
κ1(1)e2 0 0 0

0 0 2√κ5e3 0 0

]
. (3.104b)

Finally, also the output equations (3.90g) and (3.90h) can be expressed in Riemann
coordinates by

y(t) = C̆0v̆
−(0, t) + C1w(t) + E5f(t) +G5d(t) (3.105)

with the matrices C̆0 = diag
(

1
2
√
κ1(0)

, 1
2√κ5

)
, C1 = −C̆0,

E5 =
[
0 0 0 1 0
0 0 0 0 1

]
and G5 =

[
0 0 1 0
0 0 0 1

]
. (3.106)

To rewrite (3.96) in the required form (3.1), solve (3.96) for ∂z v̆(z, t) by multiplying
(3.96) with Γ(z) = Λ−1(z). The inverse of Λ(z) exists because λi(z) 6= 0, i = 1, . . . , 4,
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holds. However, in the resulting PDE

∂z v̆(z, t) = Γ(z)∂tv̆(z, t) + Γ(z)Ă(z)v̆(z) + Γ(z)Ĕ1(z)f(t)
+ Γ(z)Ğc,1(z)d(t), (z, t) ∈ (0, 1)× R+, (3.107)

the main diagonal entries of the matrix Γ(z)Ă(z) in (3.107) are not zero as it is
required for (3.1) (see (3.97a) and (3.97b)). To obtain a PDE (3.1a) with the matrix
A(z) satisfying e>i,4A(z)ei,4 = aii(z) = 0, i = 1, . . . , 4, the transform

x(z, t) = W̆ (z)v̆(z, t), (3.108)

with W̆ (z) = diag (w̆1(z), . . . , w̆4(z)) and

w̆i(z) = e−
∫ z

0
ăii(ζ)
λi(ζ)

dζ
, z ∈ [0, 1], i = 1, . . . , 4, (3.109)

proposed, e.g., in [41, Section 3], is used. In (3.109), ăii(z) ∈ R, i = 1, . . . , 4, are
the main diagonal entries of Ă(z). Since W̆ (z) is diagonal and w̆i(z) > 0, z ∈ [0, 1],
i = 1, . . . , 4, holds, W̆−1(z) exists and thus (3.108) is invertible for z ∈ [0, 1].
With (3.108) applied to (3.107), (3.99), (3.101), (3.103) and (3.105), the governing
equations for the model of the cable with a payload immersed in water are finally
obtained in the required form (3.1). The matrices of the system (3.1), that have not
been introduced before, read as

A(z) =
(
∂zW̆ (z) + W̆ (z)Γ(z)Ă(z)

)
W̆−1(z) (3.110a)

E1(z) = W̆ (z)Γ(z)Ĕ1(z), G1(z) = W̆ (z)Γ(z)Ğ1(z) (3.110b)
Q0 = W̆+(0)Q̆0W̆

−1
− (0), H2 = W̆+(0)H̆2 (3.110c)

Q1 = W̆−(1)Q̆1W̆
−1
+ (1), B3 = W̆−(1)B̆3 (3.110d)

E3 = W̆−(1)Ĕ3, C0 = C̆0W̆
−1
− (0) (3.110e)

wherein W̆+(z) = J+W̆ (z)J>+ and W̆−(z) = J−W̆ (z)J>− are used.

To design the fault detection residual generator for the model of the cable with a
payload, the fault detection kernel equations (3.22) subject to (3.23) must be solved.
For the proposed approach in Section 3.2.3, at first the backstepping kernel equations
(3.35) must be solved to compute the backstepping kernel K̄(z, ζ). To this end, the
boundary value problem (3.35) is converted into integral equations with the method
of characteristics, which can be solved with the method of successive approximation
(see, e.g., [40, Section VI.B.]). To be specific, the integral equations are solved along
301 characteristic lines on a discrete grid of 301 points. The successive approximation
is stopped when the maximum pointwise difference between two iterations is less than
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1× 10−6, which requires 7 steps. With the resulting backstepping kernel K̄(z, ζ) on
an equidistant spaced grid for z and ζ with 3012 points, the matrices for the fault
detection kernel equations in backstepping coordinates (3.32) and also the coefficient
matrices Xf

j,i, j = 1, . . . , 3, and i = 1, . . . , nq, for the differential parametrization of
mf (τ) (see (3.64) and (3.65)) can be computed. Since the resulting X̌(s) given in
(3.67) and shown in Figure 3.3 satisfies (3.68), the detectability of the faults fi(t),
i = 1, . . . , 5, in view of Theorem 3.3 is verified.

To determine a suitable reference trajectory ϕ?(τ) in view of (3.70) for the parametriza-
tion of the integral kernels m?(z, τ), q?(τ) and n?(τ), the monomials θi(τ) =
(τ−τ̃+)i−1

(i−1)! , i = 1, . . . , nϕ, are convenient. As shown in Example 3.2, rank Θ̄ =
2nynq = 16 results, so that for nϕ > 8, a nontrivial reference trajectory ϕ?(τ) can
be determined. Thus, nϕ = 10 is chosen. However, suitable f?i (t) for (3.78) must be
chosen to derive a Θ̄f given in (3.82) so that (3.84) holds. Numerical evaluations of
(3.82) have shown that f?i (t) = 1

2 t
2, i = 1, . . . , 5, leads to suitable results so that a

r̄ =
[
0.389 1.04 −0.371 2.57 −1.54

]
∈ R(Θ̄f ) satisfying (3.77) can be chosen.

Thus, the coefficients η in (3.70) can be determined by (3.74), where η∗ follows from
(3.83) with r̄∗ as a solution of (3.89). The latter is solved numerically with the
fminsearch function from MATLAB and zero as initial point.

The threshold value rB and the normalized detection delay ∆f are computed for a
polynomial basis function θ̃(τ) of order nϕ = 10 and several values of the remaining
design parameter T > T0. The normalized detection delay ∆f denotes the first
time instant where the threshold rB is exceeded by |〈mf , hf (τ)〉I|, hf (t) = col( 1

r̄1
,

. . ., 1
r̄nf

) with r̄i = e>i,nf r̄. For the lower bound of T , T0 = 1.26 is obtained, which
is computed with the longest transportation time in positive and negative spatial
direction τ̃− = τ̃+ = 0.63 given by (3.18) and (3.19). The result in Figure 3.4
shows that a compromise is required for the moving horizon length T , since the
threshold rB decreases and the detection delay ∆f increases with increasing T . Thus,
T = 6 and nϕ = 10 is chosen, yielding the threshold rB = 55.10× 10−3 as well as
the integral kernels n(τ) and mu(τ) shown in Figure 3.5, which are computed on
a grid with the step size 0.02. Note that a higher order for the polynomial θ̃(τ),
i.e., nϕ > 10 has only minor effects on the threshold value rB and the normalized
detection delay ∆f but increases the numerical errors significantly.

The simulation of the faulty cable is performed in MATLAB using a finite-dimensional
model for (3.90) determined by the spectral method. To be specific, the spatial
derivatives in (3.90a) and (3.90b) are approximated by Chebyshev differentiation
matrices of order 51 (see, e.g, in [86, Section 6]). Based on the resulting finite-
dimensional model, (3.90) can be rewritten into a state space system of order 202,
which is simulated in MATLAB using the lsim function. Since the input signal u(t)
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Figure 3.3: The magnitudes of the absolute values of the components X̌kl(s),
k = 1, . . . , 5, and l = 1, 2, of X̌(s) for s = jω in dB, except
X̌22(jω) = 0 and X̌31(jω) = 0.
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Figure 3.4: Fault detection threshold rB (see 2.60) and normalized detection
delay ∆f for a polynomial basis function θ̃(τ) of order nϕ = 10
and different moving horizon lengths T .
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Figure 3.5: Integral kernels n(τ) and mu(τ) of the input and output filters of
the residual generator (2.50) computed with the moving horizon
length T = 6 and polynomial θ̃(τ) of order nϕ = 10.
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(a) Input signal u(t) used in the simulation.
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Figure 3.6: Excitation signals u(t), d̃(t) and d̄(t) used for the simulation of
the faulty cable with a payload immersed in water.

and output signal y(t) from such a simulation are only available at equally spaced
discrete-time samples, the integral expressions of the residual generator (3.25) are
approximated by FIR filters to be applicable in discrete-time. Using the compound
midpoint rule and a step size of 0.02, FIR filters of order 301 are obtained, which
are evaluated in MATLAB by using the filter function.

In a first simulation, the results for the fault detection residual generator in Theorem
3.2.2 are verified, i.e., the case d̄(t) ≡ 0 is regarded. For a suitable excitation
of the cable, the input signal u(t) is described by bump functions occurring at
random time instants with an amplitude randomly taking values between ±10 000
as shown in Figure 3.6a. The sinusoidal disturbance d̃(t) is the solution of the signal
model (3.91) with the IC v0

d = col (5, 0) and is depicted in Figure 3.6b. The faults
fi(t), i = 1, . . . , 5, occur successively and are only present in the time intervals
t ∈ Iif = [ti, ti + 20], where t1 = 15, ti = ti−1 + 40, i = 2, . . . , 5. At this, ∆fi(t),
t ∈ Iif , i = 2, 4, and f5(t) are constant values, whereas fi(t), t ∈ Iif , i = 1, 3, are
continuous signals taking values randomly from a uniform distribution between
±0.70 respectively ±2. The resulting fault signals used for the simulation are shown
in Figure 3.7. The simulation is preformed with zero ICs and the step size 1× 10−3

in time. Imposing u(t) = 0 and y(t) = 0 for t < 0 and sampling the input signal
u(t) and output signal y(t) with the same step size as it is used for the FIR filters,
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Figure 3.7: Fault scenarios for the fault detection with successively occurring
additive process fault f1(t), the additive fault signal f2(t) result-
ing from the multiplicative actuator fault ∆f2(t), the additive
actuator fault f3(t), the additive fault signal f4(t) resulting from
the multiplicative sensor fault ∆f4(t) and the constant additive
sensor fault f5(t).
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Figure 3.8: Residual signal r(t) ( ) for the detection of the faults fi(t),
i = 1, . . . , 5, from Figure 3.7 present in ( ) and the initialization
interval t < T ( ) assuming d̄(t) ≡ 0.

the residual signal r(t) shown in Figure 3.8 is obtained from the evaluation of the
FIR filter representation of the residual generator (3.25). After the initialization
interval 0 ≤ t < T and T after a fault was present, the residual signal r(t) in Figure
3.8 remains zero as required. When a fault occurs at ti, i = 1, . . . , 5, the residual
signal r(t) is excited, i.e., r(t) 6≡ 0 holds for t ∈ Iif , which indicates the presence of
a fault fi(t) and verifies the results of Theorem 3.1. Note that the response of the
residual signal to the occurrence of f5(t) at t5 shows that this fault is only weakly
detectable since the residual signal r(t) is affected by the occurrence of the fault but
returns to zero although the fault f5(t) is sill present (see Figure 3.7).

To demonstrate the fault detection influenced by a bounded disturbance d̄(t), the
signals d̄i(t) shown in Figure 3.6c are chosen such that the residual signal r(t) will be
close to the threshold value rB at some time instants. With these disturbances d̄(t)
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Figure 3.9: Residual signal r(t) ( ) and the threshold value ±rB ( )
for the detection of the faults fi(t), i = 1, . . . , 5, from Figure 3.7,
the presence of the faults indicated by ( ), the fault detection
( ) at t̂i and the initialization interval t < T ( ) in the presence
of a disturbance d̄(t) shown in Figure 3.6c.

Table 3.2: Detection delays of the fault detection for the cable immersed in
water with a payload subject to the bounded disturbance d̄(t).

i 1 2 3 4 5

∆̂i 1.26 5.18 4.02 1.26 0.84

and the input signal u(t), disturbance d̃(t) as well as the faults fi(t), i = 1, . . . , 5,
shown in Figure 3.6a, 3.6b respectively Figure 3.7, a second simulation for the faulty
cable is performed. Evaluating the FIR filter representation of the residual generator
3.1 with the input u(t) and output signal y(t) derived from this simulation, the
residual signal r(t) shown in Figure 3.9 is obtained. It shows that the residual signal
r(t) is bounded by the threshold valued ±rB according to Theorem 3.2 after the
initialization interval until the first fault occurs, i.e., T ≤ t < ti, and in the intervals
between the occurrence of two faults, i.e., ti + 20 + T < t < ti+1. If a fault occurs,
the residual signal r(t) is excited and exceeds the threshold value shortly after the
occurrence of the fault. The first time instant when the threshold is exceeded is
denoted by t̂i and the detection delays ∆̂i = t̂i − ti given in Table 3.2 indicate that
the detection delay depends on the fault input location, since both faults f2(t) and
f3(t) that act on the opposite boundary than the measurement have the longest
detection delays. The specially chosen signal of the disturbance d̄(t) shows that the
threshold value rB is not conservative but can be reached by the residual signal r(t)
if no fault is present for such disturbance signals. Similar to the previous simulation
results (see Figure 3.8), r(t) shown in Figure 3.9 is only affected by the occurrence
of the constant fault f5(t) and then returns below the threshold. Thus, the weak
detectability is also relevant for the case d̄(t) 6≡ 0. However, the time-varying faults
f1(t), i = 1, . . . , 4, affect the residual signal as long as they are present. Thus, the
detection of the occurrence of all faults fi(t), i = 1, . . . , 5, is possible despite the
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cable is additionally excited by the control input u(t), the modeled disturbance d̃(t)
as well as the unknown but bounded disturbance d̄(t).

3.3 Fault diagnosis

To solve the fault diagnosis problem, the approach presented in Section 2.4 is trans-
ferred to the heterodirectional hyperbolic ODE-PDE systems. For the considered
fault diagnosis problem the same assumptions given in Section 2.4.1 on the distur-
bances d̃(t) and d̄(t) as well as on the fault f(t) are imposed. To be specific, the
fault signal f(t) and the disturbance d̃(t) are assumed to be described by a solution
of the signal model (2.143) respectively (2.15). Hence, additive actuator, sensor and
process faults can be taken into account for a large class of fault signals and the
fault diagnosis can be decoupled from frequently occurring disturbance signals. The
disturbance d̄(t) is assumed to be bounded according to (2.14). For the case d̄(t) ≡ 0,
the fault diagnosis problem considers the fault detection, isolation and identification.
If a bounded but unknown disturbance d̄(t) is present, i.e., d̄(t) 6≡ 0, then the fault
detection, isolation and estimation are achieved.

3.3.1 Fault diagnosis equation

For the fault diagnosis of a heterodirectional hyperbolic ODE-PDE system (3.1)
that is subject to a fault f(t) ∈ Rnf , a residual generator is introduced that
provides a residual signal f̂(t) ∈ Rnf with the components f̂i(t) ∈ R for each
fault fi(t) = e>i,nf f(t). The residual generator is designed so that the residual
signal f̂i(t) reconstructs the fault signal fi(t) in finite time. Based on the input-
output expression (3.20) a residual generator is derived for each fault fi(t), i.e.,
nf integral kernels are introduced by the substitutions m(z, τ) → mi(z, τ) ∈ Rnx ,
n(τ)→ ni(τ) ∈ Rn− , qw(τ)→ qw,i(τ) ∈ Rnw , qd(τ)→ qd,i(τ) ∈ Rnvd , i = 1, . . . , nf .
The index i indicates that the integral kernels mi(z, τ), ni(τ), qw,i(τ) and qd,i(τ)
correspond to the residual signal f̂i(t). In addition, by using the substitutions
mf (τ) → mf,i(τ) ∈ Rnf , mu(τ) → mu,i(τ) ∈ Rnu and md̄(τ) → md̄,i(τ) ∈ Rnd̄ in
(3.21), the input-output expression (3.20) becomes

〈mf,i, f(t)〉I = 〈ni, y(t)〉I + 〈mu,i, u(t)〉I + 〈md̄,i, d̄(t)〉I (3.111)

if the integral kernels mi(z, τ), ni(τ), qw,i(τ) and qd,i(τ) are solutions of the kernel
equations (3.22) subject to (3.23) for i = 1, . . . , nf .
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For the case d̄(t) ≡ 0, the application of the transformation (2.148) and derivation
as shown in (2.149)–(2.154) leads to the fault diagnosis residual generator candidate
(2.157). In view of (3.22) and (3.23) as well as because of (2.151) and (2.153), the
integral kernels must be solutions of the fault diagnosis kernel equations, which are
summarized in the following lemma.

Lemma 3.3 (Fault diagnosis kernel equations). Let d̃(t) be described by
(2.15), the fault f(t) be described by (2.143) and the integral kernels mi(z, τ),
qw,i(τ), qd,i(τ), qf,i(τ) and ni(τ) be a solution of the fault diagnosis kernel
equations

∂zmi(z, τ) = −Γ(z)∂τmi(z, τ)−A>(z)mi(z, τ)−D∗[mi(τ)](z) (3.112a)
m−i (0, τ) = −K>0 m+

i (0, τ)− 〈A0,mi(τ)〉Ω − L>2 qw,i(τ)+C>0 ni(τ) (3.112b)
m+
i (1, τ) = −K>1 m−i (1, τ) (3.112c)
q̇w,i(τ) = F>qw,i(τ) + 〈H1,mi(τ)〉Ω +H>2 m

+
i (0, τ)−C>1 ni(τ) (3.112d)

q̇d,i(τ) = S>d qd,i(τ) +R>d G̃
> (〈G1,mi(τ)〉Ω +G>2 m

+
i (0, τ)

−G>3 m−i (1, τ) +G>4 qw,i(τ)−G>5 ni(τ)
)

(3.112e)
q̇f,i(τ) = S>f qf,i(τ) +R>f

(
−〈E1,mi(τ)〉Ω − E>2 m+

i (0, τ)
+E>3 m−i (1, τ)− E>4 qw,i(τ) + E>5 ni(τ)

)
(3.112f)

subject to the initial and end conditions

mi(z, 0) = 0, mi(z, T ) = 0, z ∈ Ω (3.113a)
qw,i(0) = 0, qw,i(T ) = 0 (3.113b)
qd,i(0) = 0, qd,i(T ) = 0 (3.113c)
qf,i(0) = −R>f ei,nf , qf,i(T ) = 0 (3.113d)

for i = 1, . . . , nf , where (3.112a) is defined on (z, τ) ∈ (0, 1) × (0, T ) and
(3.112b)–(3.112f) are defined on τ ∈ (0, T ). Then, (2.157) is a residual
generator for the heterodirectional hyperbolic ODE-PDE system.

By the same reasoning as for Theorem 2.5, the fault diagnosis for the case d̄(t) ≡ 0
can be established in the following theorem.
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Theorem 3.4 (Fault diagnosis residual generator)
Assume that d̄(t) ≡ 0 holds, d̃(t) is described by a solution of the signal
model (2.15) and f(t) is described by a piecewise defined solution of the
signal model (2.143). If the integral kernels mi(z, τ), qw,i(τ), qd,i(τ), qf,i(τ)
and ni(τ), i = 1, . . . , nf , satisfy (3.112) and (3.113), then (2.157) is a residual
generator for the heterodirectional hyperbolic ODE-PDE system (3.1) with
the residual signal f̂i(t) given in (2.157). A fault f(t) is detected by f̂(t) 6≡ 0,
t ≥ T . Moreover, the fault f(t) occurring at tj , j ∈ N0, is identified by f̂(t)
for t ∈ Ij = [tj + T, tj+1).

Because of f(t) = f̂(t), t ∈ Ij , the strong fault detectability in the sense of Definition
2 is achieved by the fault diagnosis residual generator (2.157). For t = tj + T ,
the fault occurring at tj is identified in finite time, which also includes the fault
isolation. Thus, f̂(t) provides not only strong fault detection, but also fault isolation
and identification. Nevertheless, (2.157) is called a residual generator, but the
corresponding residual signal is distinguished from the fault detection residual r(t)
by the new symbol f̂(t).

If an unknown but bounded disturbance is present, i.e., d̄(t) 6≡ 0, then a threshold
must be introduced to ensure the fault detection and isolation. As shown in (2.158)–
(2.164), the fault estimation error f̄i(t) caused by the disturbance d̄(t) is bounded
by |f̄i(t)| ≤ fB,i (see (2.164)) with the threshold value fB,i given in (2.163). Thus,
using the same reasoning as for Theorem 2.6, the strong fault detection can be
derived for the heterodirectional hyperbolic ODE-PDE system (3.1), which is stated
in the following theorem.

Theorem 3.5 (Strong fault detection)
Assume that d̃(t) is described by a solution of the signal model (2.15), d̄(t)
satisfies (2.14) and f(t) is described by a piecewise defined solution of the
signal model (2.143). Let the integral kernels mi(z, τ), qw,i(τ), qd,i(τ), qf,i(τ)
and ni(τ), i = 1, . . . , nf , satisfy (3.112) and (3.113). If a threshold fB,i,
i = 1, . . . , nf , given in (2.163) is exceeded by some component f̂i(t) of f̂(t)
in (2.157), i.e.,

∃i ∈ {1, . . . , nf} so that |f̂i(t)| > fB,i, t ≥ T, (3.114)

then a fault f(t) is detected for the system (3.1).

Since f̂i(t) = f̃i(t) holds for t ∈ Ij , with the fault estimate f̃(t) given in (2.159), the
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strong fault detection in sense of Definition 2 is achieved. The first time instance t̂j ,
j ∈ N0, a threshold value fB,i is exceeded by f̂i(t) (see (2.165)), is called the fault
detection time.

After the transient interval, i.e., t ≥ tj + T , where tj is the occurrence time of the
fault fi(t), the residual signals f̂k(t), k 6= i, return to zero or the estimations of
their corresponding faults. Thus, the exceed of a threshold |f̂i(t)| > fB,i, t ≥ tj + T ,
indicates that the ith fault is present, i.e., fault isolation is achieved. However, since
only t̂j > tj is known, the fault can be isolated for t ≥ t̂j + T , which is the result of
the next theorem.

Theorem 3.6 (Fault isolation)
Assume that d̃(t) is described by a solution of the signal model (2.15), d̄(t)
satisfies (2.14) and f(t) is described by a piecewise defined solution of the
signal model (2.143). Let the integral kernels mi(z, τ), qi(τ), ni(τ) and
qf,i(τ), i = 1, . . . , nf , satisfy the kernel equations (3.112) and (3.113). If the
threshold fB,i given in (2.163), is exceeded by the ith component f̂i(t) of f̂(t)
in (2.157), i.e.,

|f̂i(t)| > fB,i, t ≥ t̂j + T, (3.115)

then the fault fi(t), i ∈ {1, . . . , nf}, occurring at tj , j ∈ N0, is detected for
the system (3.1).

Moreover, for t ∈ Ij , f̂i(t) = f̃i(t) holds. Thus, it follows from (2.161), that the fault
signal fi(t) is bounded by

f̂i(t)− fB,i ≤ fi(t) ≤ f̂i(t) + fB,i, t ∈ Ij . (3.116)

Consequently, the faults can be estimated, which is stated in the next theorem.
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Theorem 3.7 (Fault estimation)
Assume that d̃(t) is described by a solution of the signal model (2.15), d̄(t)
satisfies (2.14) and f(t) is described by a piecewise defined solution of the
signal model (2.143). Let the integral kernels mi(z, τ), qi(τ), ni(τ) and
qf,i(τ), i = 1, . . . , nf , satisfy the kernel equations (3.112) and (3.113). Then,
for system (3.1) the estimate of a fault fi(t), i ∈ {1, . . . , nf}, occurring at tj ,
j ∈ N0, is bounded by

fi(t)− fB,i ≤ f̂i(t) ≤ fi(t) + fB,i, t ∈ [t̂j + T, tj+1) (3.117)

with f̂i(t) as ith component of f̂(t) in (2.157) and fB,i given by (2.163).

The proofs of the Theorems 2.6, 2.7 and 2.8 follow from (2.161) and the estimate
(2.164), since f̂(t) = f̃(t), t ∈ Ij .

3.3.2 Solution of the fault diagnosis kernel equations

The kernel equations for the fault diagnosis (see Lemma 3.3) are a heterodirectional
hyperbolic ODE-PDE system (3.112) with nf distinct initial and end conditions
(3.113) as well as a freely assignable input ni(τ). Thus, the computation of the
ith integral kernels mi(z, τ), qw,i(τ), qd,i(τ) and qf,i(τ) amounts to determine a
suitable control input ni(τ), i = 1, . . . , nf , that drives the ODE-PDE system in
(3.112) in finite time from the ith IC to the end point, both given in (3.113). This
two-point initial-boundary-value problem can be solved by using results from the
flatness-based trajectory planning. To be specific, a parametrizing variable ϕi(τ)
is introduce so that the system variables mi(z, τ), qw,i(τ), qd,i(τ), qf,i(τ) and ni(τ)
can be expressed by differential expressions. The latter allows the reformulation of
the two-point initial-boundary-value problem into an interpolation problem for a
reference trajectory ϕ?(τ) assigned to this parametrizing variable. With the resulting
reference trajectory ϕ?(τ) from the solution of this interpolation problem, the required
integral kernels mi(z, τ), qw,i(τ), qd,i(τ), qf,i(τ) and ni(τ) can be computed by the
evaluation of the differential expressions. As already introduced in Section 3.2.3,
the determination of the required differential expressions is significantly facilitated
by utilizing a backstepping transformation to map the ODE-PDE system in (3.112)
into an ODE-PDE cascade system. For the latter, the differential expressions can be
explicitly specified.



134 Heterodirectional hyperbolic ODE-PDE systems

3.3.2.1 Backstepping transformation

In order to reformulate the ODE-PDE system (3.112) so that the transport directions
correspond to the system description in [41], use the spatial reversal z̄ = 1− z, where
the resulting quantities in the new coordinate z̄ are denoted by an overline similar
to Section 3.2.3.1. The resulting system reads as

∂zm̄i(z̄, τ) = Γ̄(z̄)∂τm̄i(z̄, τ) + Ā>(z̄)m̄i(z̄, τ) +
z̄∫

0

D̄>(ζ, z̄)m̄i(ζ, τ)dζ (3.118a)

m̄+
i (0, τ) = −K>1 m̄−i (0, τ) (3.118b)

m̄−i (1, τ) = −K>0 m̄+
i (1, τ)−

1∫

0

Ā>0 (ζ)m̄i(ζ, τ)dζ − L>2 Jwqi(τ) + C>0 ni(τ)(3.118c)

q̇i(τ) = F̄ qi(τ) +
1∫

0

B̄1(ζ)m̄i(ζ, τ)dζ + B̄2m̄
−
i (0, τ) + B̄3m̄

+
i (1, τ)

+ B̄4ni(τ) (3.118d)

where (3.118a) is defined on (z̄, τ) ∈ (0, 1)× (0, T ) and (3.27b)–(3.27d) on τ ∈ (0, T ).
In contrast to (3.27d), the ODE state is qi(τ) = col (qw,i(τ), qd,i(τ), qf,i(τ)) ∈ Rnq ,
nq = nw + nvd + nvf and Jw = [ I 0 ] ∈ Rnw×nq so that qw,i(τ) = Jwqi(τ) holds.
The matrices in (3.118d) result from aggregating (3.112d)–(3.112f) to

F̄ =




F> 0 0
R>d G̃

>G>4 S>d 0
−R>f E>4 0 S>f


 , B̄1(z̄) =




H̄>1 (z̄)
R>d G̃

>Ḡ>1 (z̄)
−R>f Ē>1


 , B̄2 =




0
−R>d G̃>G>3
R>f E

>
3


 ,

B̄3 =




H>2
R>d G̃

>G>2
−R>f E>2


 , B̄4 =




−C>1
−R>d G̃>G>5
R>f E

>
5


 . (3.119)

In accordance with (3.113), the initial and end conditions for (3.118) are

m̄i(z̄, 0) = 0, m̄i(z̄, T ) = 0, z̄ ∈ Ω (3.120a)
qi(0) = q0

i , qi(T ) = 0 (3.120b)



3.3 Fault diagnosis 135

with the inhomogeneous IC

q0
i =




0
0

−R>f ei,nf


 . (3.121)

For convenience of notation, the substitution z̄ → z is used.

By utilizing the invertible backstepping transformation m̃i(z, τ) = T [m̄i(τ)](z) (see
(3.30)), the PDE subsystem (3.118a)–(3.118c) is mapped into the target system

∂zm̃i(z, τ) = Γ̄(z)∂τm̃i(z, τ) + P̃0(z)m̃−i (0, τ), (z, τ) ∈ (0, 1)× (0, T ) (3.122a)
m̃+
i (0, τ) = −K>1 m̃−i (0, τ), τ ∈ (0, T ) (3.122b)

m̃−i (1, τ) = ñi(τ), τ ∈ (0, T ) (3.122c)

q̇i(τ) = F̃ qi(τ) +
1∫

0

B̃1(ζ)m̃i(ζ, τ)dζ + B̄2m̃
−
i (0, τ) + B̃3m̃i(1, τ) (3.122d)

where (3.122d) is defined on τ ∈ (0, T ). The backstepping kernel K̄(z, ζ) is the
solution of (3.35) and the new input ñi(τ) is given by

ñi(τ) = C>ni(τ)−K>0 m̄+
i (1, τ)− L>2 Jwqi(τ)

−
1∫

0

(
Ā>0 (ζ) + J−K̄(1, ζ)

)
m̄i(ζ, τ)dζ. (3.123)

The matrices F̃ and B̃i, i = 1, 2, 3, in (3.122d) result from the application of the
inverse backstepping transformation m̄i(z, τ) = T −1[m̃i(τ)](z) (see (3.31)) and are
specified in (3.33). Note that for F̄ and B̄i, i = 1, . . . , 4, the matrices defined in
(3.119) are used.

3.3.2.2 Differential expression for the target system

Since the fault diagnosis target system (3.122) has the same structure as the fault
detection target system (3.32), the differential expressions

m̃i(z, τ) = Ψ
[
m̃−i (0)

]
(z, τ) (3.124a)

ñi(τ) = J−Ψ
[
m̃−i (0)

]
(1, τ) (3.124b)
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in terms of m̃−i (0, τ) are derived from the same derivation as described in Section
3.2.3.2, whereas Ψ[·](z, τ) in (3.124) is specified by (3.44). Following the derivation
in Section 3.2.3.3 a common parametrizing variable ϕi(τ) ∈ Rn− , i = 1, . . . , nf , for
the PDE and the ODE subsystems can be introduced by

m̃−i (0, τ) =
nq∑

j=0
ajdjτϕi(τ), i = 1, . . . , nf . (3.125)

Thus, the differential expressions for the ODE-PDE system (3.122) are derived and
stated in the following lemma.

Lemma 3.4 (Differential expressions for the fault diagnosis kernel equations).
Let Ψ[·](z, τ) be given by (3.45) and ai be defined by (3.52). Then, the integral
kernels m̃i(z, τ), qi(τ) and ñi(τ) can be parametrized by the differential
expressions

m̃i(z, τ) =
nq∑

j=0
ajΨ

[
djτϕi

]
(z, τ) (3.126a)

qi(τ) =
nq−1∑

j=0

( 1∫

0

F̃jB̃1(ζ)Ψ
[
djτϕi

]
(ζ, τ)dζ

+ F̃jB̄2djτϕi(τ) + F̃jB̃3Ψ
[
djτϕi

]
(1, τ)

)
(3.126b)

ñi(τ) = J−

nq∑

j=0
ajΨ

[
djτϕi

]
(1, τ) (3.126c)

in terms of the parametrizing variable ϕi(τ).

In (3.126), the coefficients aj , j = 0, . . . , nq, and the coefficient matrices F̃j , j =
0, . . . , nq − 1, are defined in (3.52) respectively (3.50), when F̃ given in (3.122d) is
used.

It must be remarked, that the formal Laplace transform dτq(τ) c ssq̌(s) is used in
the derivation of (3.126c), despite the nonhomogeneous ICs q(0) 6= 0. However the
resulting differential expressions (3.126) can be justified by a similar verification as
shown in Appendix A.2.
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3.3.2.3 Reference trajectory planning

To express also the initial and end points of the fault diagnosis kernel equations in
the backstepping coordinates, (3.120a) is mapped into

m̃i(z, τ)|τ∈{0,T} = 0, z ∈ Ω (3.127)

using (3.30). Then, the kernels m̃i(z, τ) and qi(τ) have to be a solution of the
two-point initial-boundary-value problem (3.122) subject to (3.120b) and (3.127).
In view of the differential expressions (3.126), the initial and end conditions (3.120b)
and (3.127) lead to requirements for the parametrizing variable ϕi(τ). Thus, by
the planning of a suitable reference trajectory ϕ?i (τ) ∈ Rn− for ϕi(τ) that satisfies
these requirements, the kernel equations can be solved. In the light of (3.126),
the reference trajectory must satisfy ϕ?i ∈ (Cnq−1[−τ̃−, T + τ̃+])n− with dnqτ ϕ?i (τ)
existing.

For a systematic realization of the finite-time transition, the initial and end conditions
for the PDE and the ODE states are successively taken into account. At first (3.124a)
is used to formulate the conditions on a reference trajectory m̃−?i (0, τ) for m̃−i (0, τ)
so that m̃i(z, τ) satisfies (3.127). To this end, consider (3.124a) rowwise, which
yields

e>j,nxm̃
?
i (z, τ) = e>j,nxV m̃

−?
i (0, τ + τ̄j(z, 0)) +

z∫

0

e>j,nx P̃0(ζ)m̃−?i (0, τ + τ̄j(z, ζ))dζ

(3.128)

in view of (3.44). Consequently, (3.127) holds if m̃−?i (0, τ), i = 1, . . . , nf , satisfies

m̃−?i (0, τ + τ̄i(z, ζ))|τ∈{0,T} = 0 (3.129)

for j = 1, . . . , nx, on 0 ≤ ζ ≤ z ≤ 1. In view of the largest predicition time τ̃+

and delay time τ̃− (see (3.18) and (3.19)), it follows from (3.129) that the initial
and end conditions (3.127) are embedded into setpoints for the PDE subsystem
corresponding to m̃i(z, τ), i.e., m̃−?i (0, τ) is piecewise defined by

m̃−?i (0, τ) =





0 : τ ∈ I1 = [−τ̃−, τ̃+]
µi(τ) : τ ∈ I2 = (τ̃+, T − τ̃−)
0 : τ ∈ I3 = [T − τ̃−, T + τ̃+],

(3.130)

where µi(τ) ∈ Rn− is a degree of freedom that is considered later. From Figure 3.10,
the condition T − τ̃− > τ̃+ is directly inferred, i.e., the length of the moving horizon
is lower bounded by (3.60).
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0 T

µi(τ)

−τ̃− τ̃+ T − τ̃− T + τ̃+

I1 I2 I3 τ

m̃−?
i (0, τ)

ξ0
i ξi(τ̃+) ξi(T − τ̃−) ξi(T + τ̃+)

nq∑

j=0

ajdjτϕ?i (τ) = 0

ξ̇i(τ) = Aϕξi(τ)

nq∑

j=0

ajdjτϕ?i (τ) = µi(τ)

ξ̇i(τ) = Aϕξi(τ) +Bϕµi(τ)

nq∑

j=0

ajdjτϕ?i (τ) = 0

ξ̇i(τ) = Aϕξi(τ)

m̃i(z, 0) = 0
qi(0) = q0

i

m̃i(z, T ) = 0
qi(T ) = 0

Figure 3.10: Visualization of the reference trajectory planning for µi(τ) and
ξi(τ) on the three time periods I1, I2 and I3.

However, since the IC q0
i is inhomogeneous, the trivial condition (3.57) used in

Section 3.2.3.4 cannot be used anymore. Thus, to determine ϕ?i (τ), regard (3.125)
as an ODE for ϕ?i (τ) with m̃−?i (0, τ) as input. In view of (3.130), ϕ?i (τ) is piecewise
defined and must be a solution of a homogeneous ODE on I1 and I3, which is
illustrated in Figure 3.10. On I2, ϕ?i (τ) is governed by the ODE (3.125) with
input µi(τ) (see (3.130)). Hence, ϕ?i (τ) on I1 is uniquely determined by the ICs
djτϕ?i (τ)|τ=−τ̃− , j = 0, . . . , nq − 1. On I2, ϕ?i (τ) is given by the ICs djτϕ?i (τ)|τ=τ̃+ ,
j = 0, . . . , nq − 1, and the input µi(τ). For τ ∈ I3, ϕ?i (τ) results from the ICs
djτϕ?i (τ)|τ=T−τ̃− , j = 0, . . . , nq − 1. Thus, the ICs for djτϕ?i (τ) at τ = −τ̃− and
τ = T − τ̃− have to be determined so that ϕ?i (τ) ensures the initial and end condition
(3.120b) for qi(τ) by evaluating (3.126b) at τ = 0 and τ = T . Then, the input
µi(τ) must be determined so that the resulting ϕ?i (τ) connects the derived ϕ?i (τ̃+)
and ϕ?i (T − τ̃−) as well as satisfies ϕ?i ∈ (Cnq−1[−τ̃−, T + τ̃+])n− with dnqτ ϕ?i (τ)
existing in view of (3.125). To be specific, the derivatives of the reference trajectory
djτϕ?i (τ), j = 0, . . . , nq − 1, must be consistent at the interfaces τ̃+ and T − τ̃−
of the piecewise defined time domain. This planning of a suitable ϕ?i (τ) can be
systematically achieved by introducing the state

ξi(τ) =




ξi,1(τ)
ξi,2(τ)
...

ξi,nvf (τ)


 =




ϕ?i (τ)
dτϕ?i (τ)

...

dnq−1
τ ϕ?i (τ)


 ∈ Rnξ , i = 1, . . . , nf , (3.131)
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with nξ = n−nq for (3.125), where ξi,j(τ) = dj−1
τ ϕ?i (τ) ∈ Rn− , j = 1, . . . , nq. This

yields

ξ̇i(τ) = Aϕξi(τ) +Bϕm̃
−?
i (0, τ), τ ∈ (−τ̃−, T + τ̃+] (3.132a)

ϕ?i (τ) = Cϕξi(τ), τ ∈ [−τ̃−, T + τ̃+] (3.132b)

for i = 1, . . . , nf , with the matrices Aϕ = Ac ⊗ In− ,

Ac =




0 1 . . . 0
...

. . .

0 0 . . . 1
−a0 −a1 . . . −anvf−1


 , (3.133)

Bϕ = envf ,nvf ⊗ In− and Cϕ = e>1,nvf ⊗ In− . Then, in view of (3.131), use

djτϕ?i (τ) = Ujξi(τ) (3.134)

with Uj = e>j+1,nq ⊗ In− for i = 1, . . . , nf , and j = 0, . . . , nq − 1, to express the
reference trajectory q?i (τ) for q(τ) given in (3.126b) by

q?i (τ) =
nq−1∑

j=0

( 1∫

0

F̃jB̃1(ζ)Ψ [Ujξi] (ζ, τ)dζ + F̃jB̄2Ujξi(τ) + F̃jB̃3Ψ [Ujξi] (1, τ)
)
.

(3.135)

According to (3.130) three cases have to be considered to determine m̃−?i (0, τ), which
are illustrated in Figure 3.10. On the first interval, i.e., τ ∈ I1, (3.132) is autonomous.
Thus, ξi(τ) is uniquely defined on τ ∈ I1 by the IC ξi(−τ̃−) = ξ0

i . The latter must
be determined so that qi(τ) resulting from (3.135) satisfies the IC in (3.120b). To
this end, use

ξi(τ) = Φϕ(τ,−τ̃−)ξ0
i , τ ∈ I1, (3.136)

with Φϕ(τ, τ0) = exp (Aϕ(τ − τ0)) in (3.135) and evaluate the result at τ = 0, which
yields

q?i (0) =
nq−1∑

j=0

( 1∫

0

F̃jB̃1(ζ)Ψ
[
UjΦϕ(·,−τ̃−)ξ0

i

]
(ζ, 0)dζ

+ F̃jB̄2UjΦϕ(0,−τ̃−)ξ0
i + F̃jB̃3Ψ

[
UjΦϕ(·,−τ̃−)ξ0

i

]
(1, 0)

)
. (3.137)
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Utilzing Ψ
[
UjΦϕ(·,−τ̃−)ξ0

i

]
(ζ, 0) = Ψ [UjΦϕ(·,−τ̃−)] (ζ, 0)ξ0

i in (3.137), the result

q0
i = Υξ0

i (3.138)

follows with

Υ =
nq−1∑

j=0

( 1∫

0

F̃jB̃1(ζ)Ψ
[
UjΦϕ(·,−τ̃−)

]
(ζ, 0)dζ

+ F̃jB̄2UjΦϕ(0,−τ̃−) + F̃jB̃3Ψ
[
UjΦϕ(·,−τ̃−)

]
(1, 0)

)
. (3.139)

If

rankΥ = rank
[
Υ q0

i

]
, i = 1, . . . , nf , (3.140)

holds, then (3.138) has a solution

ξ0
i = Υ†q0

i + (I −Υ†Υ)ξ∗i (3.141)

where Υ† is the Moore-Penrose generalized inverse of Υ (for details see, e.g., [11,
Prop. 6.1.7]) and ξ∗i ∈ Rnξ is a degree of freedom that will be considered later.

On the third interval, i.e., τ ∈ I3, (3.132) is also autonomous due to µi(τ) = 0, τ ∈ I3
and thus ξi(τ), τ ∈ I3 is specified by ξi(T − τ̃−) = ξ1

i ∈ Rnξ . Obviously, the end
condition in (3.120b) is satisfied for the IC ξ1

i = 0, which implies

ξi(τ) = 0, τ ∈ I3 (3.142)

in the light of (3.130) and (3.135).

On the remaining interval I2, ξi(τ) has to satisfy the imposed initial and end
conditions

ξi(τ̃+) = Φϕ(τ̃+,−τ̃−)ξ0
i (3.143a)

ξi(T − τ̃−) = 0, (3.143b)

which are implied by (3.136) and (3.142). Provided (Aϕ, Bϕ) is controllable, there
exists an input µi(τ) on τ ∈ I2 for (3.132) such that (3.143) holds. This input takes
the form

µi(τ) = −B>ϕΦ>ϕ (τ̃+, τ)W−1
ϕ ξi(τ̃+), τ ∈ I2, (3.144)
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(see [16, Section 6.2]) in which

Wϕ =
T−τ̃−∫

τ̃+

Φϕ(τ̃+, τ)BϕB>ϕΦ>ϕ (τ̃+, τ)dτ (3.145)

is the Controllability Gramian (see, e.g., [16, Theorem 6.1]). The required inverse
of Wϕ for (3.144) exists if (Aϕ, Bϕ) is controllable. In view of (3.125), (3.131),
dimϕ?i (τ) = dimµ?i (τ) and (3.132b), ϕ?i (τ) in (3.132b) is a flat output for (3.132a).
This flatness property implies the controllability of (Aϕ, Bϕ) (see, e.g., [82, Sec.
3.2.2]). Thus, by inserting (3.144) in the solution

ξi(τ) = Φϕ(τ, τ̃+)


ξi(τ̃+) +

τ∫

τ̃+

Φϕ(τ̃+, ζ)Bϕµi(ζ)dζ


 , τ ∈ I2, (3.146)

of (3.132a) on I2, the result

ξi(τ) = Φϕ(τ, τ̃+)
(
I −

τ∫

τ̃+

Φϕ(τ̃+, ζ)BϕB>ϕΦ>ϕ (τ̃+, ζ)dζW−1
ϕ (τ̃+, T − τ−)

)
ξi(τ̃+)

(3.147)

for τ ∈ I2 is obtained. With (3.147) the initial and end conditions (3.143) can be
verified in view of (3.145).

Consequently, a constructive approach for the solution of the fault diagnosis kernel
equations (3.112) subject to (3.113) has been found. Furthermore, it leads to the
easy verifiable condition (3.140). The results of this section are summarized in the
following theorem.

Theorem 3.8 (Identifiability condition)
Let (3.140) hold and assume T > T0. Then, the fault fi(t), i = 1, . . . , nf , is
identifiable by (2.157).

Proof. The proof of this theorem is based on the solvability of the kernel equations.
If T > T0 and (3.140) hold for i = 1, . . . , nf , then the fault diagnosis kernels in
backstepping coordinates (3.122) have a piecewise C-solution satisfying the initial
and end conditions (3.120b) and (3.127). It can be concluded from the invertible
backstepping transformation and invertible spatial reversal, that this solution satisfies
also the fault diagnosis kernel equations (3.112) and (3.113). Hence, the required
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kernels ni(τ) and mu,i(τ), i = 1, . . . , nf , for the fault identification equation (2.157)
and the integral kernel md̄,i(τ) required for the computation of the threshold fB,i
(see (2.163)) for the fault detection, isolation and estimation can be computed. Thus,
the residual generator (2.157) exists in accordance with Theorem 3.4 and the fault
fi(t) can be diagnosed. �

The condition (3.140) depends on q0
i and Υ. In view of (3.120b), q0

i depends only on
Rf , which is a property of the fault signal model. The matrix Υ is given in (3.139)
from which it can be seen, that it only depends on system parameters and the signal
models for the fault and the disturbance. Hence, (3.140) is a property of the system
(3.1), the disturbance signal model (2.15) and the signal model (2.143) of the fault
to be identified. Note that if (3.140) holds, then also fault detection, isolation and
estimation are ensured (see Theorems 3.5, 3.6 and 3.7).

Finally, the remaining degrees of freedom ξ∗i in (3.141) can be used to make the
residual generator less sensitive to the bounded disturbance d̄(t). Consider fB,i given
in (2.163) as a measure for the sensitivity of the residual generator with respect to
d̄(t). In view of (2.163), md̄,i(τ) is expressed in terms of ξ∗i , for which the result
(A.63) is used. With the substitutions m?

d̄
(τ) → m?

d̄,i
(τ) and ϕ?(τ) → ϕ?i (τ) in

(A.63),

m?
d̄,i

(τ) = Ψd̄ [ξi] (τ) (3.148)

is obtained where

Ψd̄ [ξi] (τ) =
nq∑

j=0

1∫

0

X d̄
1,jΨ[Ujξi](z, τ)dz +X d̄

2,jUjξi(τ) +X d̄
3,jΨ[Ujξi](1, τ) (3.149)

results from inserting (3.134) in (A.63). To obtain m?
d̄,i

(τ) in terms of ξ0
i , introduce

ξi(τ) = θξ(τ)ξ0
i (3.150)

with

θξ(τ) =





Φϕ(τ,−τ̃−)ξ0
i : τ ∈ I1

Φξ(τ)ξ0
i : τ ∈ I2

0 : τ ∈ I3

(3.151)
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in the light of (3.136), (3.142) and

Φξ(τ) = Φϕ(τ, τ̃+)
(
I −

τ∫

τ̃+

Φϕ(τ̃+, ζ)BϕB>ϕΦ>ϕ (τ̃+, ζ)dζW−1
ϕ (τ̃+, T − τ−)

)

· Φϕ(τ̃+,−τ̃−)ξ0
i , τ ∈ I2. (3.152)

The latter results from inserting (3.143a) in (3.147). Thus,

m?
d̄,i

(τ) = Ψd̄ [θξ] (τ)ξ0
i (3.153)

follows from (3.150) and (3.151). Finally, (3.153) can be rewritten in the form (2.211)
by utilizing (3.141) in (3.153), which yields

θ0,i(τ) = Ψd̄ [θξ] (τ)Υ†q0
i (3.154a)

θ1(τ) = Ψd̄ [θξ] (τ)
(
I −Υ†Υ

)
. (3.154b)

With (3.154), the threshold fB,i can be computed by (2.213) and ξ∗i should be chosen
as the solution of the minimization problem (2.214).

3.3.3 Fault diagnosis for the cable immersed in water

In the following, the described fault diagnosis approach for heterodirectional hyper-
bolic ODE-PDE systems is demonstrated with a simulation of a real-world motivated
application example. The simulations are performed in MATLAB 2020a and the
code is available at [108]. The example system is a cable with a payload immersed
in water with constant flow and is motivated by a real-world system (see [87]). A
similar model has already been used for the fault detection in Section 3.2.4. However,
to make the fault diagnosis method applicable, the fault setup is adapted so that
only additive faults are considered, which are described by the signal model (2.143).
The equations of motion for the deflection of the cable in transversal and longitudinal
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direction read as

∂2
t v1(z, t) = κ1(z)∂2

zv1(z, t) + κ2(z)∂zv1(z, t) + κ3(z)∂zv2(z, t)
+ κ4(z)∂tv1(z, t) + d̄1(t) + e1(z)f1(t) (3.155a)

∂2
t v2(z, t) = κ5(z)∂2

zv2(z, t) + κ6(z)∂zv1(z, t) + κ7(z)∂tv2(z, t)
+ d̄1(t) + d̃(t) (3.155b)

v̈1(0, t) = κ8v̇1(0, t) + κ9∂zv1(0, t) + κ10∂zv2(0, t), t > 0 (3.155c)
v̈2(0, t) = κ11v̇2(0, t) + κ12∂zv2(0, t) + κ13∂zv1(0, t), t > 0 (3.155d)

∂zv1(1, t) = b1u1(t), t > 0 (3.155e)
∂zv2(1, t) = b2u2(t) + e3f2(t), t > 0 (3.155f)

y1(t) = ∂zv1(0, t) + d̄2(t), t ≥ 0 (3.155g)
y2(t) = ∂zv2(0, t) + f3(t) + d̄3(t), t ≥ 0 (3.155h)

with (3.155a) and (3.155b) defined on (z, τ) ∈ (0, 1)× R+. In (3.155), vi(z, t) ∈ R,
i = 1, 2, are the lateral and longitudinal deflection of the cable (see Figure 3.2),
the dynamics of the attached payload is described with the dynamic BCs (3.155c)
and (3.155d) at z = 0, the actuated BCs are (3.155e) as well as (3.155f) and the
components yi(t), i = 1, 2, of the measurement y(t) are given by (3.155g) and
(3.155h). The disturbance d̃(t) is assumed to be a solution of the finite-dimensional
signal model (2.15) specified by the matrices (3.91) and the unknown but bounded
disturbances d̄i(t), i = 1, 2, 3, are absolutely bounded by |d̄i(t)| ≤ δi with known
upper bound δ = col (0.03, 0.01, 0.02). The considered faults fi(t), i = 1, 2, 3, are
a process fault f1(t), an actuator fault f2(t) and a sensor fault f3(t). All faults
are assumed to be of sinusoidal form fi(t) = f0

i sin(ωit+ φf,i), i = 1, 2, 3, with the
unknown parameters f0

i , φf,i ∈ R and known parameter ω1 = 2, ω2 = 0.5 as well as
ω3 = 1. The signal models for the sinusoidal fault signals fi(t) are

v̇f,i(t) = Sf,ivf,i(t), t > 0 (3.156a)
fi(t) = r>f,ivf,i, t ≥ 0 (3.156b)

with the states vf,i(t) ∈ R2, i = 1, 2, 3, and the matrices

Sf,i =
[

0 −ωi
ωi 0

]
, r>f,i =

[
0 1

]
, i = 1, 2, 3. (3.156c)

It is assumed that the fault fi(t) is zero until it occurs at ti > 0, i.e., for t < ti,
fi(t) = 0 holds. Thus, the fault signal fi(t) is piecewise described by the solution
of the signal model (3.156) and the ICs vf,i(0) = 0 on the domain 0 < t < ti. For
t > ti, the fault signal fi(t) is specified by the unknown ICs vf,i(ti) = vif,i ∈ R2,
vif,i 6= 0. The matrices (3.156c) for i = 1, 2, 3, can be aggregated to the common
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signal model (2.143) with Sf = diag (Sf,1, Sf,2, Sf,3) and Rf = diag(r>f,1, r>f,2, r>f,3).
Consequently, the fault diagnosis problem amounts to the identification of three
faults f1(t), f2(t) and f3(t) in the presence of the disturbance d̃(t), while only two
measurements y1(t) and y2(t) are available.

According to Section 3.2.4, system (3.155) can be rewritten as a heterodirectional
hyperbolic ODE-PDE system (3.1) by introducing the Riemann coordinates (3.95)
and applying the Hopf-Cole-type transformation (3.108). Except the fault input
matrices Ĕ1 = e4,1e

>
3,1+e4,4e

>
3,1, Ĕ3 = 2√κ5e3e2,2e

>
3,2 and E5 = e2,3e

>
3,3, the required

matrices for the system in the form (3.1) are already specified in Section 3.2.4.

To compute a solution for the fault diagnosis kernel equations (3.112) subject to
(3.113), at first the backstepping kernel K̄(z, ζ) must be determined as the solution of
the backstepping kernel equations (3.35). To this end, the boundary-value problem
(3.35) is solved as described in Section 3.2.4. With the resulting ODE-PDE system of
the fault diagnosis kernel equations in backstepping coordinates (3.32), all matrices
for the evaluation of the fault identifiability condition (3.140) can be computed. The
singular values

σ̄(Υ) ∈ {864, 814, 107, 67.3, 32.5, 19.7, 3.11, 1.79, 0.151, 0.0313} (3.157)

of Υ ∈ R10×20, show that rankΥ = 10 holds and thus that the identifiability of all
three faults is verified in view of Theorem 3.8. Hence, the required IC ξ0

i can be
computed with (3.141). By solving (2.214) with the MATLAB function fminsearch,
where the initial point for the numerical optimization is zero, the reference trajectory
ϕ?i (τ) can be determined as the solution of the auxiliary ODE system (3.132). With
ϕ?i (τ), the integral kernel q?(τ) results from the parametrizing expressions (3.126b).
Note that for the integral kernels m̃(z, τ) and ñ(τ), it is convenient to use the
differential expressions (3.124) in dependence of m̃−?i (0, τ), which can be computed
by (3.144) in view of (3.130). The required kernels ni(τ) and mu,i(τ) for the residual
generator (2.157) can be derived from solving (3.123) for ni(τ) respectively by (3.21b)
and the usual substitutions.

From the evaluation of (3.19), the longest transportation time in positive and
negative spatial direction τ̃− = τ̃+ = 0.63 follow, which yields T0 = 1.26 as lower
bound for T . To chose a suitable moving horizon length T > T0, the threshold
values fB,i and normalized detection delays ∆f,i are taken into account. The
latter is the first time instant where a threshold fB,i, i = 1, 2, 3, is exceeded by
|〈Mf , hf,i(t)〉I|, hf,i(t) ∈ Rnf , t ≥ 0. For the integral kernelMf (τ) in this expression,
Mf (τ) = [mf,1(τ) mf,2(τ) mf,3(τ) ] is used with mf,i(τ) given by (3.21a) and the
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substitution mf (τ)→ mf,i(τ). The test signal hf,i(t) is

e>j,nfhf,i(t) =
{
fj(t) : i = j

0 : otherwise,
i, j = 1, . . . , nf , (3.158)

with fj(t) = r>f,jvf,j(t), j = 1, 2, 3, as the solution of the corresponding signal model
given by Sf,j and rf,j subject to the ICs vf,1(0) = col (5, 2), vf,2(0) = col (5, 2)
and vf,3(0) = col (1, 1). According to the results shown in Figure 3.11 for different
T , a trade-off is required since an increase in T reduces the threshold values fB,i
but increases the normalized detection delay ∆f,i. For the following simulation
results T = 8.14 is chosen yielding the threshold values fB,1 = 0.32, fB,2 = 0.29 and
fB,2 = 0.29 as well as the integral kernels N(τ) and Mu(τ) depicted in Figure 3.12.
To motivate the use of (2.214) for the reference trajectory planning, the threshold
values are computed with ξ∗0 = 0 for a comparison, i.e., without the use of the
remaining degrees of freedom. The resulting thresholds f̄B = col (26.56, 8.10, 1.57)
with ξ∗0 = 0 demonstrate the effect of the available degrees of freedom to design a
residual generator that is less sensitive with respect to the unknown but bounded
disturbance d̄(t).

For the simulation of the faulty cable with a payload immersed in water with constant
flow, a finite-dimensional state-space model of order 202 is derived for (3.155) by
using the spectral method with Chebyshev differentiation matrices of order 51 as
described in [86]. Since the control input signal u(t) and the measurement signal
y(t) for the following simulation are only available at equally spaced discrete-time
samples, the integral expressions in the residual generator (2.157) are approximated
by FIR filters. By using the step size 0.01 for the discrete-time sampling, FIR filters
of order 815 result.

To verify the fault diagnosis results in Theorem 3.4 for the case d̄(t) ≡ 0, a simulation
of the faulty cable with a payload immersed in water is performed in MATLAB. For
this simulation an equally spaced discrete-time grid with step size 1× 10−3, zero
ICs, the input signal u(t) shown in Figure 3.6a, the disturbance d̃(t) shown in Figure
3.6b, d̄(t) ≡ 0 and the fault signals shown in Figure 3.13, which result from the ICs

vf,1(t1) =
[
0.50

0

]
, vf,2(t2) =

[
0.50

0

]
, vf,3(t3) =

[
0.15

0

]
(3.159)

and t1 = 20, t2 = 50, t3 = 80, are used. By evaluating the FIR filter representation
of the residual generator (2.157) in discrete-time, imposing u(t) = 0 and y(t) = 0
for t < 0 as well as sampling the input u(t) and the output from the simulation
y(t) on a time grid with step size 0.01, the residual signal f̂(t) shown Figure 3.13 is
derived. After the initialization interval 0 ≤ t ≤ T all residual signals f̂i(t) are zero
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Figure 3.11: Fault detection threshold fB,i, i = 1, 2, 3, and normalized
detection delay ∆f,i for different moving horizon lengths T .
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Figure 3.12: The components of the integral kernels N(τ) and Mu(τ) of the
residual generator (2.157) computed with T = 8.14.
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Figure 3.13: Fault isolation and identification results f̂i(t), i = 1, 2, 3, ( )
for the fault fi(t) ( ) without bounded disturbance, i.e.,
d̄(t) ≡ 0, the initialization interval 0 ≤ t < T ( ) and the
transient intervals ti < t < ti + T ( ) after the occurrence of a
fault.
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Figure 3.14: Extract of the components d̄i(t), i = 1, 2, 3, of the bounded
disturbance d̄(t) on 0 ≤ t ≤ 24.42 used for the fault estimation
simulation.

until the first fault f1(t) occurs at t1 = 20, which excites all three residual signals
f̂i(t), i = 1, 2, 3. For t1 + T < t < t2, the fault f1(t) is identified in finite time by
the residual signal f̂1(t) and both f̂i(t), i = 2, 3, are again zero. Similar results are
obtained for the identification of fault f2(t) and f3(t).

The fault diagnosis subject to the bounded disturbance d̄(t) is verified by a second
simulation, whereas the disturbance d̄(t) shown in Figure 3.14 is explicitly chosen
so that the residual signals f̂i(t) will be close to the threshold values at some time
instants. With this disturbance d̄(t), the input signal u(t) shown in Figure 3.6a, the
disturbance d̃(t) shown in Figure 3.6b and the same faults as used for the previous
simulation, a simulation for (3.155) is performed. By using the integral kernels
shown in Figure 3.12 and the corresponding FIR filters, the residual signals f̂i(t)
presented in Figure 3.15 result. According to Theorem 3.5, the fault f1(t) is detected
at t̂1 = 23.55, since the threshold fB,2 is exceeded by the corresponding residual
signal f̂B,2(t). The determination of which fault occurred is possible at t◦i = 31.70. It
follows from Theorem 3.6 that the previously detected fault has to be f1(t), since the
residual signals f̂i(t), i = 2, 3, remain below their threshold values for t1 +T ≤ t ≤ t2.
At t̂2 = 53.77, the threshold value fB,2 is exceeded by f̂2(t), which indicates the
occurrence of a second fault. By f̂2(t) > fB,2 at t◦2 = 63.81, the second fault must
be f2(t). Finally, f3(t) is detected at t̂3 = 84.27 and verified by the isolation at
t◦3 = 93.20. After the isolation of a fault, the residual signal f̂i(t) is an estimate for
the corresponding fault fi(t), since the estimation error is upper bounded by (3.117)
as stated in Theorem 3.7.
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Figure 3.15: Fault diagnosis residual signal f̂i(t), i = 1, 2, 3, ( ) in the
presence of the bounded disturbance d̄(t) depicted in Figure
3.14 for the fault fi(t) ( ), the thresholds ±fB,i ( ), the
bounds of the fault estimation error f(t) ± fB,i ( ), the
initialization interval 0 ≤ t < T ( ), the detection ( ) of a fault
fi(t) at time t̂i, the isolation delay interval t̂i ≤ t < t̂i + T ( )
and the isolation ( ) at time t◦i , which is also the beginning of
the fault estimation.
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3.4 Concluding remarks

In this section, it was shown that the fault detection and diagnosis approach de-
veloped for parabolic and biharmonic systems in Section 2 can also be applied to
heterodirectional hyperbolic ODE-PDE systems. Whereas the derivation of the
residual generators for the fault detection and diagnosis follows the same reasoning
as for the parabolic and biharmonic ODE-PDE systems, the solution of the kernel
equations requires a different approach because of the coupled ODE-PDE system and
the distributed delays and predictions of the hyperbolic PDE subsystem. By utilizing
a backstepping transformation to map the kernel equations into a target system
of cascade structure, a systematic solution for the kernel equations was presented.
Note that the use of the backstepping transformation introduces limitations in the
possible measurements in the considered system class, since it requires an output
equation of the form (3.1e). However, the latter was chosen to simplify the solution
of the kernel equations and to derive simple conditions to verify the detectability
(see Theorem 3.3) and the identifiability (see Theorem 3.8). By the application of
the proposed fault detection and diagnosis approach to a simulation of a cable with
payload immersed in water, the effectiveness of the fault detection and diagnosis
scheme is demonstrated.
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Chapter 4

Concluding remarks and outlook

In the previous Chapters 2 and 3 a fault detection and diagnosis approach was
presented, which is based on integral transformations and does not require a system
approximation. The separate derivation of the solutions of the fault detection and
diagnosis problems for parabolic and biharmonic ODE-PDE systems in Chapter 2
and heterodirectional hyperbolic ODE-PDE systems in Chapter 3 is only due to
different system representations, but the general approach is the same. Therefore,
this thesis introduces a unified framework for the fault detection and diagnosis for a
large system class.

Note that the solution of the kernel equations with flatness-based methods provides
an interesting link between the fault diagnosis and flatness-based trajectory planning.
Moreover, it is promising for future works to extend the approach also to further sys-
tem classes, e.g., lumped-parameter and distributed-parameter time-variant systems
or also DPS with higher-dimensional spatial domain. To solve the corresponding
kernel equations, the flatness-based trajectory planning approaches presented in [62]
should be applicable.

Although the consideration of disturbances with known signal form and unknown
but bounded disturbances is a first step towards the application of the proposed
approach to real-world fault diagnosis problems, further investigations are required.
In particular, the influence of model uncertainties should be considered to quantify
their effect on the fault diagnosis in order to incorporate them in the threshold
value of the residual signal. Moreover, also the consideration of different types of
disturbances, e.g., stochastic disturbances or L2-bounded disturbances in future work
will increase the flexibility of the proposed fault detection and diagnosis approaches.
According to the assumptions on the disturbances, the sensitivity optimization of
the residual generator has to be adapted. A further interesting point for future work
is the systematic investigation of the time discretization of the integral expressions
in the residual generators. The quasi-continuous implementation of the residual
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generator integral expressions in the presented simulation examples leads to FIR
filters of high order. However, the results in [48], where similar integral expressions
are used for the derivative estimation, suggest that the order of the FIR filters
can be considerably reduced. This order reduction can be achieved by a more
sophisticated approximation scheme of the integral expression but preserves the
simplicity of the FIR filters. For low order approximations of the integral expressions,
the approximation error of the time discretization should be considered explicitly
in form of a threshold value to make the fault detection and diagnosis results even
more reliable.

The simulation results for the fault detection in Section 2.3.5 and Section 3.2.4
show that the fault detection is possible by using only one residual signal. This
scalar residual signal is obtained from a residual generator with low computational
complexity, but it does not allow fault isolation. Thus, an interesting extension of
the proposed fault detection residual generator would be the introduction of a vector
valued residual signal, which allows the fault isolation without assumptions on the
signal form of the faults.
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Appendix A

Proofs, definitions and derivations

A.1 Properties of formal power series

The following definition of formal power series of order % is from [75, Definition 1].

Definition 4 (Formal power series of order % [75, Definition 1]). A
formal power series

∑∞
i=0 cis

i, ci, s ∈ C is of order % > 0 if for all %̃ > % and
all Z ∈ R+ the sequence (ciZi(i!)

1
%̃ ) is absolutely bounded.

From this, it follows that for each %̃ > % and Z ∈ R+ an upper bound

c%,Z = sup
i∈N
|ci|Zi(i!)

1
%̃ (A.1)

with c%,Z ∈ R+ exists, so that

|ci| ≤ c%,Z(i!)−
1
%̃Z−i (A.2)

holds.

The following lemma is taken from [93, 5.3 Hilfssatz], where the proof can be found.
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Lemma A.1 ([93, 5.3 Hilfssatz]). A formal power series of order % with term
wise sum

ĉ(s) = â(s) + b̂(s) =
∞∑

i=0
cis

i, ci = ai + bi (A.3)

and the Cauchy product for multiplication

d̂(s) = â(s)b̂(s) =
∞∑

i=0
dis

i, di =
i∑

j=0
ajbj−i (A.4)

form a commutative ring.

It follows from Lemma A.1, that if â(s) and b̂(s) are formal power series of order %,
also ĉ(s) and d̂(s) are formal power series of order %.

A.2 Confirmation of formal Laplace transform in
(2.173)

In Section 2.4.3.2 the formal Laplace transform q̇f,i(τ) c ssq̌f,i(s) is used. Since
the IC of qf,i(0) = −R>f ei,nf is not zero (see (2.170c)) and is not a steady state of
the corresponding system (2.169d), it should be considered in the Laplace transform.
However, this makes the calculations far more cumbersome and it is shown in the
sequel that the differential expressions derived in Section 2.4.3.2 do not depend on
the neglected ICs.

Insert (2.93a) in (2.169d), consider the time reversal τ̄ = T − τ and introduce
q̄f,i(τ̄) = qf,i(τ) and µ̄i(τ̄) = µi(τ), so that

− ˙̄qf,i(τ̄) = S>f q̄f,i(τ̄) +R>f

∞∑

j=0
Xj(−1)jdjτ µ̄i(τ̄), τ̄ ∈ (0, T ) (A.5)

results with the IC q̄f,i(0) = 0 following from (2.170c). Applying the Laplace
transform ˙̄qf,i(τ̄) c sˇ̄qf,i(s) and using ˇ̄X(s) =

∑∞
j=0Xj(−1)jsj , yields

(
−sI − S>f

) ˇ̄qf,i(s) = R>f
ˇ̄X(s)ˇ̄µi(s). (A.6)
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Introduce the parametrizing variable ˇ̄ϕi(s), by establishing the expressions

ˇ̄qf,i(s) = adj
(
−sI − S>f

)
R>f

ˇ̄X(s) ˇ̄ϕi(s) (A.7a)
ˇ̄µi(s) = det

(
−sI − S>f

) ˇ̄ϕi(s). (A.7b)

With the substitution s = −s̄,

det(s̄I − S>f ) =
nvf∑

i=0
ais̄

i (A.8)

follows in view of (2.181) and a re-substitution s = −s̄, yields

det
(
−sI − S>f

)
=

nvf∑

i=0
(−1)iaisi. (A.9)

Insert (A.9) in (A.7b) and apply the Laplace correspondence ˇ̄ϕi(s) s cϕ̄i(τ̄), to
obtain

µ̄i(τ̄) =
nvf∑

j=0
(−1)iaidiτ̄ ϕ̄i(τ̄). (A.10)

The time reversal τ = T − τ̄ , shows that (A.10) is equivalent to (2.185) as it is
derived in Section 2.4.3.2. To verify the differential expression for qf,i(τ), consider
s̄ = −s in adj(−sI − S>f ) and express ˇ̄X(s) in (A.7a) with X̌(s̄) =

∑∞
i=0Xis̄

i. By
inserting the result in (A.7a)

ˇ̄qf,i(s̄) =
∞∑

j=0
Wj s̄

j ˇ̄ϕi(s̄) (A.11)

is obtained in view of (2.179). After the re-substitution s = −s̄ in (A.11), the time
domain correspondences

q̄f,i(τ̄) =
∞∑

j=0
Wj(−1)jdjτ̄ ϕ̄i(τ̄) (A.12)

follows. Finally, the time reversal τ = T−τ̄ yields (2.184a). Thus, the computation in
reverse time with homogeneous ICs leads to the same result as the formal calculation,
which verifies that the expressions (2.180) and (2.182) are independent of the ICs.
Consequently, the formal application of the Laplace transform can be used to compute
the differential expressions.
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A.3 Derivation of (2.194)

In the following, the expression (2.194) is proven with induction. The initial case
is given directly by (2.191b). The induction step is obtained by taking the time
derivatives of (2.191b) and inserting of (2.191a) for the time derivative of ξi(τ). This
yields the induction step (2.194). Computing this for j + 1,

dj+1
τ ϕ?i (τ) = CϕA

j
ϕdτξ(τ) + Cϕ

j−1∑

k=0
Aj−k−1
ϕ Bϕdk+1

τ µ?i (τ), i = 1, . . . , nf (A.13)

results. Inserting (2.191a) yields

dj+1
τ ϕ?i (τ) = CϕA

j+1
ϕ ξ(τ) + CϕA

j
ϕBϕµ

?
i (τ) + Cϕ

j−1∑

k=0
Aj−k−1
ϕ Bϕdk+1

τ µ?i (τ). (A.14)

Then, summarizing the terms dependent on µ?i (τ) leads to

dj+1
τ ϕ?i (τ) = CϕA

j+1
ϕ dτξ(τ) + Cϕ

j∑

k=0
Aj−kϕ Bϕdkτµ?i (τ), (A.15)

which is equal to dj+1
τ ϕ?i (τ) obtained from (2.194) and completes the inductive step.

A.4 Convergence of the series (2.197)

Corollary A.1. Let the coefficients wklj , k = 1, . . . , nvf , l = 1, . . . , ny of
Wj ∈ Rnvf×ny , j ∈ N0 be a formal power series of order %. Then, the series
defining Υ in (2.197) is absolutely convergent.

Proof. To use the direct comparison test to show the absolute convergence of the
series in (2.197), the upper bound

‖WiCϕA
i
ϕ‖∞ ≤ ‖Cϕ‖1‖Wi‖∞ ‖Aϕ‖i1 (A.16)

for the summands in (2.197) is derived, where ‖H‖∞ = maxi∈{1,...,n},j∈{1,...,m} |hij |
for the components hij ∈ R of H ∈ Rn×m and ‖H‖1 =

∑n
i=1
∑m
j=1 |hij |. At this,

(A.16) results from utilizing that ‖H‖∞ and ‖H‖1 are compatible norms and that
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‖H‖1 is submultiplicative (for both see [11, Proposition 9.3.5]). Since the coefficients
wklj , k = 1, . . . , nvf , l = 1, . . . , ny of Wj are formal power series of order %, (A.2)
gives

‖Wi‖∞ ≤ c%,Z(i!)−
1
%̃Z−i, i ∈ N0 (A.17)

where c%,Z and Z are real valued constants and %̃ > ρ > 0. With (A.17) and
a = ‖Aϕ‖1

Z , (2.197) is dominated by the formal power series

Ῡ = ‖Cϕ‖1c%,Z
∞∑

i=0
(i!)−

1
%̃ ai. (A.18)

The Cauchy-Hadamard theorem states that (A.18) is absolutely convergent, since

lim
i→∞

∣∣∣(i!)− 1
%̃

∣∣∣
1
i = 0 (A.19)

holds, where lim
i→∞

is the limit superior. This can be shown utilizing the estimate
i! ≥ ( ie )ie with the Euler’s number e. The absolute convergence of (A.18) verifies
that (2.197) is absolutely convergent. �

A.5 Recursive algorithm for the computation of
the coefficient matrices in (2.89)

In the following, the presented approach in [75] for the determination of Φi(z, ζ) in
(2.89a) is used to derive explicit expressions for the computation of Φi(z, ζ), ΨC,i(z)
and ΨL,i(z) in (2.89).

Since the operator Φ̌(z, ζ, s) defined as state transition matrix satisfying (2.76) as
well as Ψ̌L(z, s) and Ψ̌C(z, s) given in (2.78) must be independent of m̌(0, s) and
q̌(s) as well as ň(s), they can be determined by

∂zm̌(z, s) = −Ǎ∗(z, s)m̌(z, s) + L̄1(z)q̆ + C>1 (z)n̆ (A.20)

with the IC m̌(0, s) = ω0
0 ∈ Rnx and q̆ = const. ∈ Rnq as well as n̆ = const. ∈ Rny

independent of s. As shown in [75], the solution of (A.20) can be described by

m̌(z, s) =
∞∑

i=0
ωi(z)si. (A.21)
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By inserting (A.21) in (A.20) and taking Ǎ∗(z, s) =
∑nA
i=0A

>
i (z)si into account,

∞∑

i=0
∂zωi(z)si = −

nA∑

j=0

∞∑

k=0
A>j (z)ωk(z)sj+k + L̄1(z)q̆ + C>1 (z)n̆ (A.22)

follows. With a change of the order of the summation, the substitution k → i− j
and convention ωi(z) = 0, i < 0, (A.22) can be rewritten into

∞∑

i=0
∂zωi(z)si = −

∞∑

i=0

nA∑

j=0
A>j (z)ωi−j(z)si + L̄1(z)q̆ + C>1 (z)n̆ (A.23)

(see [75]). A coefficient comparison with respect to s, yields

∂zω0(z) = −A>0 (z)ω0(z) + L̄1(z)q̆ + C>1 (z)n̆ (A.24a)

∂zωi(z) = −
nA∑

j=0
A>j (z)ωi−j(z), i > 0, (A.24b)

with the corresponding ICs ω0(0) = ω0
0 and ωi(0) = 0, i > 0, resulting from

m̌(0, s) = ω0
0 . Consequently, (A.24a) has the general solution

ω0(z) = Φ0(z)ω0
0 + ΨL,0(z)q̆ + ΨC,0(z)n̆ (A.25)

with

Φ0(z) = Φ̄(z, 0) (A.26a)

ΨL,0(z) = −
z∫

0

Φ̄(z, ζ)L̄1(ζ)dζ (A.26b)

ΨC,0(z) = −
z∫

0

Φ̄(z, ζ)C>1 (ζ)dζ (A.26c)

and Φ̄(z, ζ) as state transition matrix of ∂zω0(z) = −A>0 (z)ω0(z) given by the unique
solution of

∂zΦ̄(z, ζ) = −A>0 Φ̄(z, ζ), Φ̄(z, z) = I, (z, ζ) ∈ (0, 1)2 (A.27)

(see, e.g., [16, Definition 4.2]). Rewriting (A.24b) into the form

∂zωi(z) = A>0 (z)ωi(z)−
nA∑

j=1
A>j (z)ωi−j(z), i > 0 (A.28)
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and taking ωi(0) = 0, i > 0 into account, the solution of (A.24b) reads as

ωi(z) = −
z∫

0

Φ̄(z, ζ)
nA∑

j=1
A>j (ζ)ωi−j(ζ)dζ. (A.29)

With induction, it can be shown that (A.29) can be rewritten into the form

ωi(z) = Φi(z)ω0
0 + ΨL,i(z)q̆ + ΨC,i(z)n̆, i > 0 (A.30)

where the introduced matrices are

Φi(z) = −
z∫

0

Φ̄(z, ζ)
nA∑

j=1
A>j (z)Φi−j(ζ)dζ (A.31a)

ΨL,i(z) = −
z∫

0

Φ̄(z, ζ)
nA∑

j=1
A>j (z)ΨL,i−j(ζ)dζ (A.31b)

ΨC,i(z) = −
z∫

0

Φ̄(z, ζ)
nA∑

j=1
A>j (z)ΨC,i−j(ζ)dζ (A.31c)

for i > 0 with the convention Φj(ζ) = 0, ΨL,j(ζ) = 0 and ΨC,j(ζ) = 0 for j < 0. The
initial case i = 1 of the induction follows directly from inserting (A.25) in (A.29) for
i = 1 yielding

ω1(z) = −
z∫

0

Φ̄(z, ζ)A>1 (ζ)(Φ0(ζ)ω0
0 + ΨL,0(ζ)q̆ + ΨC,0(ζ)n̆)dζ, (A.32)

which proves (A.31) for i = 1. To show the induction step, insert (A.30) in (A.29)
to obtain

ωi+1 = −
z∫

0

Φ̄(z, ζ)
nA∑

j=1
A>j (ζ)

(
Φi+1−j(ζ)ω0

0 + ΨL,i+1−j(ζ)q̆ + ΨC,i+1−j(ζ)n̆
)

dζ,

(A.33)

so that (A.31) is verified for i+1, after sorting the terms for ω0
0 , q̆ and n̆. Consequently,

the required coefficient matrices can be computed with (A.26) for i = 0 and the
recursion (A.31) for i > 0.
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A.6 Approximation of the integral expressions as
FIR filters using the compound midpoint rule

As described in Section 2.3.3, the integral expressions of the residual generator can
be interpreted as a convolution of a system variable and an integral kernel. Therefore,
it is reasonable that a discrete-time realization of these integral expressions with
sampled data leads to a convolution sum. An interesting investigation of different
numerical quadrature rules for the determination of the convolution sum can be
found in [50]. Based on these results, the compound midpoint rule is chosen for the
discrete-time realization of the integral expressions in the input and output filters
of the residual generators (2.50) respectively (2.157). Below, this approximation is
shown for a simple integral expression of the form

〈n, y(t)〉I =
T∫

0

n(τ)y(t− τ)dτ, t ≥ T (A.34)

with n(τ) ∈ R and y(t) ∈ R. The compound midpoint rule (see, e.g., [51]) is a
simple but efficient numerical quadrature, which leads to a good approximation of
the integral expression for a sufficient number of sampling points in the moving
horizon It = [t−T, t]. Assume an equidistant sampling of y(t) at the sampling points
tk = kTs, k ∈ N, with the sampling period Ts ∈ R+, which satisfies Ns = T/Ts so
that Ns ∈ N holds. Thus, (A.34) can be represented as a sum of integrals

〈n, y(t)〉I =
Ns−1∑

i=0

(i+1)Ts∫

iTs

n(τ)y(t− τ)dτ, t ≥ T. (A.35)

Assume that Ts is sufficiently small so that the integrand of (A.35) can be assumed
to be constant on a period τ ∈ (iTs, (i+ 1)Ts), i.e.,

n(τ)y(t− τ) ≈ n ((i+ 1/2)Ts) y (t− (i+ 1/2)Ts) , τ ∈ (iTs, (i+ 1)Ts) (A.36)

holds. Hence, the integrals in (A.35) can be computed as the area of the resulting
rectangle, which is given by

(i+1)Ts∫

iTs

n(τ)y(t− τ)dτ ≈ Tsn ((i+ 1/2)Ts) y (t− (i+ 1/2)Ts) (A.37)
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for i = 0, . . . , Ns − 1. Thus, (A.35) can be approximated by

〈n, y(t)〉I ≈ Ts
Ns−1∑

i=0
n ((i+ 1/2)Ts) y (t− (i+ 1/2)Ts) , t ≥ T. (A.38)

To take into account that y(t) is only known at the time steps y(kTs), k ∈ N, (A.38)
must be evaluated at t = (k + 1/2)Ts, which yields

〈n, y ((k + 1/2)Ts)〉I ≈ Ts
Ns−1∑

i=0
n̄iȳk−i, k ≥ Ns (A.39)

with n̄i = n ((i+ 1/2)Ts) and ȳk−i = y ((k − i)Ts). Thus, the compound midpoint
rule approximates the time-continuous integral expression (A.34) by a linear difference
equation with constant coefficients and compensates a half sampling period. In
view of, e.g, [64, Section 2.4.2], the right-hand side in (A.39) exhibits the form of a
FIR filter. The implementation of matrix valued integral kernels and vector valued
signals can be achieved component-wise using the above described approach.

A.7 Derivation of the input-output expression
(3.20)

Apply (3.17a) to (3.1a) resulting in

〈m, ∂zx(t)〉Ω,I = 〈m,Γ∂tx(t)〉Ω,I + 〈m,Ax(t)〉Ω,I + 〈m,A0x
−(0, t)〉Ω,I

+ 〈m,D[x(t)]〉Ω,I + 〈m,H1w(t)〉Ω,I + 〈m,B1u(t)〉Ω,I
+ 〈m,E1f(t)〉Ω,I + 〈m,G1d(t)〉Ω,I (A.40)

with D[x(t)](z) =
∫ z

0 D(z, ζ)x(ζ, t)dζ. In order to eliminate the terms in (A.40)
depending on x(z, t), at first apply integration by parts with respect to z for the
left-hand-side in (A.40), yielding

〈m, ∂zx(t)〉Ω,I = 〈m(1), x(1, t)〉I − 〈m(0), x(0, t)〉I − 〈∂zm,x(t)〉Ω,I. (A.41)

Similarly, for an integration by parts with respect to τ for the first term in the
right-hand-side of (A.40), use ∂tx(z, t− τ) = −∂τx(z, t− τ). This leads to

〈m,Γ∂τx(t)〉Ω,I = 〈Γ>m(T ), x(t− T )〉Ω − 〈Γ>m(0), x(t)〉Ω
− 〈Γ>∂τm,x(t)〉Ω,I. (A.42)
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Consequently, the unknown states x(z, t) and x(z, t− T ) in the initial and end value
terms in (A.42) vanish due to (3.23a). For the integral term in (A.40), changing the
order of integration, i.e.,

∫ 1
0
∫ z

0 m
>(z, τ)D(z, ζ)x(ζ, τ)dζdz =

∫ 1
0

(∫ 1
z
D>(ζ, z)m(ζ, τ)dζ

)>
x(z, τ)dz (A.43)

leads to

〈m,D[x]〉Ω,I = 〈D∗[m], x〉Ω,I, (A.44)

where D∗ (see (3.24)) is the formal adjoint of D. Then, using (A.41), (A.42) with
(3.23a), (A.44) in (A.40) and straightforward manipulations to shift the remaining
matrices to the other arguments yields

〈−∂zm− Γ∂τm−A>m−D∗[m], x(t)〉Ω,I = 〈m(0), x(0, t)〉I − 〈m(1), x(1, t)〉I
+ 〈〈A0,m〉Ω, x−(0, t)〉I + 〈〈H1,m〉Ω, w(t)〉Ω,I + 〈〈B1,m〉Ω, u(t)〉Ω,I
+ 〈〈E1,m〉Ω, f(t)〉Ω,I + 〈〈G1,m〉Ω, d(t)〉Ω,I. (A.45)

Hence, (A.45) becomes independent of x(z, t) if (3.22a) holds. The BCs (3.1b) and
(3.1c) can be utilized to simplify x(0, t) and x(1, t) in (A.45). In view of (3.4) and
the BCs (3.1b) as well as (3.1c) the result

x(0, t) = J>+
(
K0x

−(0, t) +H2w(t) +B2u(t)
+ E2f(t) +G2d(t)

)
+ J>−x

−(0, t) (A.46a)
x(1, t) = J>+x

+(1, t) + J>−
(
K1x

+(1, t) +B3u(t) + E3f(t) +G3d(t)
)

(A.46b)

is obtained. Consequently, the terms with x(0, t) and x(1, t) in (A.45) become

〈m(0), x(0, t)〉I = 〈
(
K>0 J+ + J−

)
m(0), x−(0, t)〉I + 〈H>2 J+m(0), w(t)〉I

+ 〈B>2 J+m(0), u(t)〉I + 〈E>2 J+m(0), f(t)〉I + 〈G>2 J+m(0), d(t)〉I (A.47a)

as well as

〈m(1), x(1, t)〉I = 〈
(
K>1 J− + J+

)
m(1), x+(1, t)〉I + 〈B>3 J−m(1), u(t)〉I

+ 〈E>3 J−m(1), f(t)〉I + 〈G>3 J−m(1), d(t)〉I. (A.47b)
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Using m−(z, τ) = J−m(z, τ) and m+(z, τ) = J+m(z, τ) as well as inserting (3.22a)
and (A.47) in (A.45),

0 = 〈〈A0,m〉Ω +K>0 m
+(0) +m−(0), x−(0, t)〉I − 〈K>1 m−(1) +m+(1), x+(1, t)〉I

+ 〈〈H1,m〉Ω +H>2 m
+(0), w(t)〉Ω,I

+ 〈〈B1,m〉Ω +B>2 m
+(0)−B>3 m−(1), u(t)〉I

+ 〈〈E1,m〉Ω + E>2 m
+(0)− E>3 m−(1), f(t)〉I

+ 〈〈G1,m〉Ω +G>2 m
+(0)−G>3 m−(1), d(t)〉I (A.48)

results.

The result (A.48) still depends on the lumped state w(t). In order to eliminate it,
apply the transformation (3.17b) to (3.1d) and use the substitution ∂tw(t − τ) =
−∂τw(t− τ). This yields

−〈qw, ∂τw(t)〉I = 〈F>qw, w(t)〉I + 〈L>2 qw, x−(0, t)〉I + 〈B>4 qw, u(t)〉I
+ 〈E>4 qw, f(t)〉I + 〈G>4 qw, d(t)〉I. (A.49)

For the left-hand side in (A.49), integration by parts leads to

〈qw, ∂τw(t)〉I = −〈q̇w, w(t)〉I (A.50)

with q̇w(τ) = ∂τqw(τ) if qw(τ) satisfies (3.23b). Then, taking (A.50) in (A.49) into
account,

〈q̇w − F>qw, w(t)〉I = 〈L>2 qw, x−(0, t)〉I + 〈B>4 qw, u(t)〉I
+ 〈E>4 qw, f(t)〉I + 〈G>4 qw, d(t)〉I (A.51)

results. In view of (3.22b), the first term on the right-hand side in (A.48) becomes

〈〈A0,m〉Ω +K>0 m
+(0) +m−(0), x−(0, t)〉I

= −〈L>2 qw, x−(0, t)〉I + 〈C>0 n, x−(0, t)〉I. (A.52)

To incorporate the output equation (3.1e) in (A.52), apply (3.17d) to (3.1e) to obtain

〈C>0 n, x−(0, t)〉I = 〈n, y(t)〉I − 〈E>5 n, f(t)〉I − 〈G>5 n, d(t)〉I − 〈C>1 n,w(t)〉I (A.53)

after shifting the matrices to the integral kernels and solving for the term dependent
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on x−(0, t). By inserting (A.51) and (A.53) in (A.52),

〈〈A0,m〉Ω +K>0 m
+(0) +m−(0), x−(0, t)〉I

= 〈F>qw − q̇w, w(t)〉I + 〈B>4 qw, u(t)〉I + 〈E>4 qw, f(t)〉I + 〈G>4 qw, d(t)〉I
+ 〈n, y(t)〉I − 〈E>5 n, f(t)〉I − 〈G>5 n, d(t)〉I − 〈C>1 n,w(t)〉I (A.54)

With (A.54), (A.48) reads as

0 = 〈n, y(t)〉I − 〈K>1 m−(1) +m+(1), x+(1, t)〉I
+ 〈〈H1,m〉Ω +H>2 m

+(0) + F>qw − q̇w − C>1 n,w(t)〉I
+ 〈〈B1,m〉Ω +B>2 m

+(0)−B>3 m−(1) +B>4 qw, u(t)〉I
+ 〈〈E1,m〉Ω + E>2 m

+(0)− E>3 m−(1) + E>4 qw − E>5 n, f(t)〉I
+ 〈〈G1,m〉Ω +G>2 m

+(0)−G>3 m−(1) +G>4 qw −G>5 n, d(t)〉I, (A.55)

after sorting the terms according to the system variables w(t), u(t), f(t) and d(t).
Hence, (A.55) becomes independent of w(t) if (3.22d) holds (see second line in (A.55))
and independent of x+(1, t) if (3.22c) holds. Subsequently and by consideration of
(3.21a) and (3.21b) in (A.55),

0 = 〈n, y(t)〉I + 〈mu, u(t)〉I − 〈mf , f(t)〉I + 〈md, d(t)〉I (A.56)

follows, in which md(τ) is

md(τ) = 〈G1,m(τ)〉Ω +G>2 m
+(0, τ)−G>3 m−(1, τ) +G>4 qw(τ)−G>5 n(τ). (A.57)

In light of (2.13) and (3.21c),

0 = 〈n, y(t)〉I + 〈mu, u(t)〉I + 〈mf , f(t)〉I + 〈md̄, d̄(t)〉I + 〈G̃>md, d̃(t)〉I (A.58)

is obtained. This can be decoupled from the term dependent on d̃(t) by inserting
(2.15b), yielding

〈G̃>md, d̃(t)〉I = 〈R>d G̃>md, vd(t)〉I. (A.59)

Applying (3.17c) to (2.15a), the substitution v̇d(t−τ) = −dτvd(t−τ) and integration
by parts lead to

〈q̇d − S>d qd, vd(τ)〉I = 0 (A.60)

with q̇d(τ) = dτqd(τ) in view of (3.23c). Thus, 〈G̃>md, d̃(t)〉I = 0 results from
(3.22e) in view of (A.57). Finally (3.20) is obtained.
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A.8 Derivation for (3.85)

To derive Θd̄(τ) in (3.85), the spatial reversal z̄ = 1 − z is applied to (3.21c) and
n(τ) following from solving (3.27c) for n(τ) is inserted. Then, by replacing m̄(τ) by
the inverse backstepping transformation (3.31), md̄(τ) can be expressed by

md̄(τ) =
T∫

0

˜̄G1(z)m̃(z, τ)dz + ˜̄G2m̃
−(0, τ) + ˜̄G3m̃(1, τ) + ˜̄G4q(τ) (A.61)

with

˜̄G1(z) = −Ḡ>
(
G>5

(
C>0
)−1

Ā>0 (z)− Ḡ>1 (z) +
(
G>5

(
C>0
)−1 (

J>− + J>+K0
)

−G>2 J+

)
K̄(1, z) +

1∫

z

(G>5
(
C>0
)−1

Ā>0 (ζ)−G>1 (ζ))K̄I(ζ, z)dζ
)

(A.62a)

˜̄G2 = −Ḡ>G>3 (A.62b)
˜̄G3 = Ḡ>

(
G>2 J+ −G>5

(
C>0
)−1 (

J− +K>0 J+
))

(A.62c)
˜̄G4 = Ḡ>

(
G>4 −G>5

(
C>0
)−1

L>2

)
Jw. (A.62d)

By replacing m̃(z, τ), m̃−(0, τ) and q(τ) in (A.61) with (3.54b), (3.53) and (3.54a),

md̄(τ) =
nq∑

i=0

1∫

0

X d̄
1,i(z)Ψ[diτϕ](z, τ)dz +X d̄

2,idiτϕ(τ) +X d̄
3,iΨ[diτϕ](1, τ) (A.63)

is obtained, where the matrices are given by

X d̄
1,i(z) = ˜̄G1(z)ai + ˜̄G4F̃iB̃1(z) (A.64a)

X d̄
2,i = ˜̄G2ai + ˜̄G4F̃iB̄2 (A.64b)

X d̄
3,i = ˜̄G3ai + ˜̄G4F̃iB̃3 (A.64c)
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and F̃nq = 0 is used. Finally, insert (3.70) in (A.63) and subsequently (3.74), which
yields

Θd̄(τ) =
nq∑

i=0




1∫

0

X d̄
1,i(z)Ψ[diτΘ](z, τ)dz +X d̄

2,idiτΘ(τ) +X d̄
3,iΨ[diτΘ](1, τ)


 Θ̄⊥.

(A.65)
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