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Abstract

In communication theory, discrete-time end-to-end channel models play a fundamental role
in developing advanced transmission and equalization schemes. Most notable, the discrete-
time linear, dispersive channel with additive white Gaussian noise (AWGN) is often used to
model point-to-point transmission scenarios. In the last decades, numerous transmissionmeth-
ods for such linear channels have emerged and are now applied in many digital transmission
standards. With the advent of high-speed CMOS technology, those schemes have also been
adopted in applications for fiber-optical transmission with digital-coherent reception.

Many of the applied techniques (e.g., coded modulation, signal shaping, and equalization)
are still designed for linear channels whereas the fiber-optical channel is inherently nonlin-

ear. A channel model which obtains the (discrete-time) output symbol sequence from a given
(discrete-time) input symbol sequence by an explicit input/output relation is highly desirable
to make further advances in developing strategies optimized for fiber-optical transmission.

In the past two decades, considerable effort was spent developing channel models for fiber-
optical transmission with good trade-offs between computational complexity and numerical
accuracy. Most of the early work is, however, concerned with the phenomenology in the op-
tical domain alone, i.e., both the source and the effect of fiber nonlinearity is studied in the
continuous-time, optical domain not considering the transmitter and/or receiver front-ends.
Here, one promising strategy is, e.g., based on the so-called perturbative approach where non-
linear effects are considered as small perturbations to the optical signal. By now, the optical
community is faced with a vast number of models based on the perturbation premise, each
model with its own assumptions, simplifications, and objectives. The connection between al-
ready existing models using complementary views (e.g., one in time-, the other in frequency-
domain) is often unclear. A detailed and rigorous derivation for some prominent models is still
pending. E.g., the transition from the original continuous-time to the more relevant discrete-
time end-to-end model lacks a comprehensive, system-theoretic analysis.

Hence, in this dissertation, nonlinear fiber propagation is assessed from a systems-theoretic

point of view with applications for communication systems. Based on the theory of nonlin-
ear systems, the present work aims to connect the dots between various, existing channel
models, unifying and comparing the different approaches. To that end, the perturbation ap-
proach in continuous-time is revisited with a special emphasis on the dual representations of
nonlinear systems in time and frequency. From that, a discrete-time end-to-end fiber-optical
channel model is derived which includes the transmit-side pulse shaping, the receive-side
matched filtering, and T -spaced sampling. As before, two complementary representations of
the now time-discretized end-to-end model are present—one in (discrete) time domain, the
other in 1/T -periodic continuous-frequency domain. The time-domain formulation coincides
with the well-known pulse-collision picture. The novel frequency-domain picture incorporates
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the sampling operation via an aliased and hence 1/T -periodic formulation of the nonlinear
system. This gives rise to an alternative perspective on the end-to-end input/output relation
between the spectrum of the discrete-time transmit symbol sequence and the spectrum of
the receive symbol sequence. Both views can be extended from a regular, i.e., solely additive
model, to a combined regular-logarithmic model to take the multiplicative nature of certain
distortions into consideration. A novel algorithmic implementation of the discrete and pe-
riodic frequency-domain model is presented. The derived end-to-end model requires only a
single computational step and shows good agreement in the mean-squared error sense com-
pared to the oversampled and inherently sequential split-step Fourier method.
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1

1. Introduction and Outline

Modeling nonlinear fiber propagation spans over a variety of disciplines, ranging from ap-

plied math, over physics, to nonlinear system theory, and (optical) communication theory. As

a result, large portions of the existing theory on this topic is scattered over numerous, often

disconnected publications. There are only a few attempts that try to string together the dif-

ferent views into a single, cohesive picture. Instead, the connection between already existing

models is often left unclear.

One of the main objectives of this thesis is to establish a unifying picture of the numerous

models for fiber-optical transmission. What made this task particularly difficult is the lack of a

common notation in use—people dealing with fiber nonlinearities have a strong background in

physics, and their notation is often different to the notation used in the field of communication

theory. Additionally, within the community that is concerned with modeling nonlinear fiber

transmission, the notation may also vary significantly over different groups and over time,

considering that the field is more than 30 years old. We decided to adopt the notation com-

monly practiced at my alma mater. This made it necessary to (re-) write large sections of the

basic theory on fiber-optic transmission using the notational framework from [Hub92,Fis02].

We tried to keep the number of relevant equations at a minimum, while making this thesis as

self-contained and complete as possible.

After reading this text, the reader will have a good understanding on perturbative models

for nonlinear fiber transmission. The reader will establish a notion of the description for such

nonlinear systems in both time and frequency domain, and apply this to both intra-channel

and inter-channel effects. A particular focus is put on modeling the end-to-end relation be-

tween discrete-time transmit and receiver symbols. For some exemplary system scenarios,

different implementations of the derived models will be compared to the split-step Fourier

method. Despite the many assumptions and simplifications to arrive at the (relatively) simple

models, the obtained results are remarkably accurate. The greater benefit of this work lies

in the potential application in a variety of related fields such as model learning, performance

monitoring, or nonlinear compensation.



2 1. Introduction and Outline

1.1 State of the Art

In this section, we aim to give an overview on existing channel models for fiber-optical trans-

mission systems. The diagram in Figure 1.1 gives a pictorial representation of the different

classes of channel models and how they are related. Each block represents a certain model

class; it contains a reference to a selected publication from the literature that represents that

class. In anticipation of the following chapters, a set of central equations is already given

which the reader may revisit when studying the respective sections1. We separate between

the analytical approach, aka. ansatz, to a model class (top pane) and its numerical realization,

i.e., the algorithmic implementation of the former (bottom pane).

Analytical Channel Model Within the top pane, we have the following situation: the ana-

lytic approach is either formulated in continuous or in discrete time, depending on the do-

main of the communication signal. Due to physical properties of the communication signal,

the continuous-time domain is evidently relevant in the optical domain (e.g., considering the

waveform of the electro-magnetic field of light), but also in the analog/electrical domain (e.g.,

considering the electric voltage/current at the analog transmitter and receiver components).

In contrast, the discrete-time approach is present when a symbol sequence is transmitted with

a rate of Rs
def
= 1/T (where T is the duration of the modulation interval) and received over

an (optical) communication channel. We then speak of a T -spaced discrete-time, end-to-end

channel model. Discrete-time channel models play a fundamental role in the field of informa-

tion theory, e.g., Shannon’s noisy-channel coding theorem [Sha48] only applies to discrete-

time channels.

The above continuous-time and discrete-time approaches differ in a fundamental aspect, as

detailed in the following. Since all communication signals are bandlimited when transmitted

over a linear channel, analog communication signals can be processed in discrete-time domain

without loss of information when obeying the Nyquist-Shannon sampling theorem. Since

the bandwidth of a single communication signal is typically larger than the symbol rate Rs,

the sampling frequency has to be larger than 1/T , so-called oversampling. A continuous-

time, linear channel and its oversampled, discrete-time surrogate become equivalent from an

information-theoretic point of view when obeying the sampling theorem. However, in any

digital receiver for T -spaced pulse-amplitude modulation, T -spaced sampling and further T -

spaced discrete-time signal processing are performed. Thus, for communication signals the

sampling theorem is in general not fulfilled. In fact, aliasing of frequency components is an

essential part in recovering the data. Hence, all discrete-time end-to-end channel models have

to incorporate this sampling step in order to fully capture the effects.

When a communication signal is transmitted over a nonlinear channel the situation de-

pends on the class of nonlinear system representing that channel. Some of the above con-

siderations from linear channels can be generalized to the class of nonlinear systems which

are time-invariant and have no (temporal) feedback (aka. non-recursive or open-loop systems).

Those systems, if stable, can bemathematically expressed by aVolterra series [Sch80], reviewed

1We will also already make some (limited) use of the notational framework which will only be formally
introduced in the course of this work.
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Ñ
0

∝
∑

ν

∑

µ
∈
M

3

|A
l
ia
s
{
H

ν
[µ

]}
|2

M
=

{
0
,1

,.
..

,M
−

1
}

Ts-spaced(over-)sampling T-spacedsampling

F
ig
u
re

1.
1:
O
ve
rv
ie
w
a
n
d
cl
a
ss
if
ic
a
ti
o
n
o
f
fi
b
er
-o
p
ti
ca
l
ch
a
n
n
el
m
o
d
el
s
a
n
d
th
ei
r
a
lg
o
ri
th
m
ic
im

p
le
m
en
ta
ti
o
n
.
S
ee
,e
.g
.,
F
ig
u
re

3.
2
o
r
4.
1
fo
r
va
ri
a
b
le
d
ef
in
it
io
n
s.



4 1. Introduction and Outline

in Section 2.1.3.2. In general, however, a continuous-time, nonlinear channel and its sampled

derivative are no longer equivalent from an information-theoretic perspective.

Algorithmic Implementation For the reasons described in the preceding paragraph, we will

draw a distinction between a continuous-time (nonlinear) channel and its discrete-time coun-

terpart. The sampled representation of a (general) nonlinear channel is often just an approx-

imation of the original model. Heuristic modifications can be implemented to improve the

match between the sampled representation and the original model. Therefore, in the bottom

pane of Figure 1.1, we collect common numerical realizations of the above analytical chan-

nel models. Here, discretization is typically performed not only in time domain but also in

the transform domain (i.e., frequency domain for most practical cases) to allow for efficient

algorithmic implementations.

Manakov Equation In fiber-optical transmission the nonlinear channel is described by two

coupled nonlinear Schrödinger equations—the so-termedManakov equation [Men89], see Fig-

ure 1.1 (top pane, left). The Manakov equation is a nonlinear, partial differential equation

which is nonlinear in the (continuous-time) unknown function2 u(z, t) ∈ C
2, the commu-

nication signal3. It represents the optical field envelope of the electromagnetic field in two

polarizations at position z and time t, see Section 3.1. The rate of change of the signal u(z, t)

in the spatial direction z is proportional to the nonlinear term ‖u(z, t)‖2
u(z, t). From a sys-

tems perspective, this may be visualized as a closed-loop system (over the spatial domain), i.e.,

one with the nonlinear expression in the feedback path. In this case, the communication sig-

nal u(z, t) may no longer be strictly bandlimited in a Nyquist-Shannon sense. This is because

nonlinear transmission may generate nonlinear mixing products outside the communication

signal’s initial bandwidth, so-called spectral broadening [Agr06, Ch. 4]. Those mixing products

may again interact nonlinearly to broaden the spectrum even further in a recursive manner.

For that reason, a universal definition of bandwidth does not exist for the continuous-time,

nonlinear fiber channel [Agr17]. Yet, the Nyquist-Shannon sampling theorem can only be ap-

plied to strictly bandlimited signals. This poses one of the central problems in determining

the channel capacity of the fiber channel.

Sampled Manakov Equation When evaluating and implementing the Manakov equation,

e.g., for numerical simulations, high oversampling is required to account for the effect of spec-

tral broadening. However, compared to linear channels, the sampled, discrete-time surrogate

channel (i.e., the sampled Manakov equation) is in general not equivalent to the continuous-

time, nonlinear channel—independent of the oversampling ratio T/Ts (where Ts is the dura-

tion of the sampling period). Some of the information is lost, and, hence, the continuous- and

discrete-time model are no longer equivalent. A practical solution is to set the oversampling to

a value much larger than required for, e.g., linear channels, to keep the numerical error small

with respect to the continuous-time channel.

2In calculus, the unknown function u is called the dependent variable and the variables it depends of, i.e., space
z and time t, are called independent variables.

3For simplicity, we only consider the noiseless part of the communication signal and also neglect any wide-
band noise in the evolution equation.
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The de-facto standard method for simulating (i.e., approximating) continuous-time fiber-

optical transmission is the split-step Fourier method (SSFM) [SHZM03], see Figure 1.1 (bottom

pane, left). The SSFM performs sampling of both the temporal domain t at integer multiples

k of the sampling period Ts, and the spatial domain z at integer multiples i of the step-size

Zs. Additionally, the discretized optical field envelope u[i, k]
def
= u(iZs, kTs) is processed se-

quentially in z when evaluating the spatial recurrence relation (i.e., difference equation) of the

sampledManakov equation, iterating between a linear and a nonlinear step4. The linear step is

represented by a linear, discrete-time systemwhich is responsible for signal scaling (to account

for gain/loss variations) and for signal dispersion (to account for the system memory induced

mainly by chromatic dispersion). The nonlinear step is represented by a memoryless discrete-

time system which causes a rotation of the signal phase proportional to ‖u[i, k]‖2. The details

of SSFM are reviewed in Section 3.3.6. In addition to time-discretization, discretization in fre-

quency ω = 2πf at integer multiples µ of the spectral resolution 2π/T0 is performed, as it

enables the use of efficient filter operations in the linear step. Discretization in both domains

results in periodic sequences in both time and frequency domain. For instance, the fundamen-

tal period T0 of the time-periodic signal must be chosen sufficiently large to reduce the effect

of cyclic artifacts when the system has large memory, i.e., the number of simulated samples

within the fundamental period Ms = T0/Ts must be large compared to the (discrete-time)

channel memory. Vice-versa, the sampling frequency 1/Ts is typically chosen (at least) three

times the Nyquist frequency of the optical communication signal. The reason for this choice

will become clear when considering the Volterra series to approximate the Manakov equation,

see below.

To improve the accuracy of the SSFM, a variation of the implementation is the symmetrized

SSFM with adaptive step-size [SHZM03]. Here, the nonlinear step is sandwiched between two

linear steps, each accounting for half the differential system memory. Additionally, the spatial

domain is not sampled uniformly, but instead, the step-size Zs(z) is a function of the position

z and adapted according to the (in general non-uniform) power profile to reduce the relative

error or to reduce the required number of spatial steps without a decrease in accuracy.

Optical End-to-End RP Method Starting again from the Manakov equation, an approximate

solution to the continuous-time optical end-to-end channel (top pane in Figure 1.1) can be

obtained following the perturbation theory [Zwi98,VSB02].

In short, perturbation theory performs a power series expansion of an unknown function

in the parameter ǫwith small value ǫ≪ 1. The first term, i.e., the zeroth-order solution, must be

a solvable system, while successive terms (i.e., the perturbative terms) in the series expansion

typically become smaller with increasing order. If the power series converges asymptotically

to the exact solution, the perturbation problem is called a regular perturbation (RP) problem.

Applied to the Manakov equation, the unknown function is again the optical field envelope

u(z, t), the small parameter ǫ is a proportionality coefficient to the nonlinear term (later intro-

duced as the nonlinearity coefficient), and the zeroth-order solution is uLIN(z, t) which solves

4The spatial, recursive recurrence relation is “unrolled” over z, and the linear and nonlinear step together
form the joint differential step between two discrete positions i and i+ 1.
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the corresponding end-to-end system comprising only linear effects. The main approximation

using the first-order RP method is that the optical field envelope u(z, t), subject to nonlinear

distortions, can be understood as the sum of the linearly propagating signal uLIN(z, t) and an

additive perturbation signal∆u(z, t) representing the nonlinear distortions accumulated from

the input of the transmission link up to position z.

The solution to the linear signal uLIN(z, t) is straightforward. The solution to the per-

turbation signal ∆u(z, t) is more involved. Mathematically, it can also be described under

the equivalent framework of Volterra series—either in time domain [MCS00b] or in frequency

domain [PBP97]. In the first-order RP approximation, the only source of a nonlinear pertur-

bation is the linear signal uLIN(z, t). Second and higher-order solutions can be obtained in a

recursive manner by taking the first and higher-order solutions as source term. Due to the

increasing numerical complexity, typically, only the first-order solution is considered. Then,

the first-order solution, i.e., the perturbation signal ∆u(z, t) itself, does not interact again in a

nonlinear fashion to generate second- or higher-order nonlinear distortions—no nonlinear re-

cursion is present. This is in contrast to the Manakov equation and the SSFM derived thereof.

While the Manakov equation is inherently recursive in z, sequential processing is adequate,

e.g., when implementing the SSFM. Instead, when considering a truncated RP solution, this

constraint is relaxed, and the sequential view turns into a parallel view over the spatial do-

main, where each local perturbation is generated independently of other local perturbations

(see, e.g., the parallel fiber model in [VSB02, Sec. IV] or Figure 4.2). Similar to the Manakov

equation, the optical end-to-end RP method does not impose any constraints on the transmit-

ter or receiver front-ends (including, e.g., pulse-shape or matched filter) by acting directly on

the optical field envelope.

The RP method in frequency domain can be naturally derived by expressing the Manakov

equation in frequency domain. It had its first appearance in the pioneering work of [PBP97]

under the framework of a Volterra series. In [VSB02], the equivalence between the frequency-

domain nth-order RP solution and the (truncated) frequency-domain (2n+1)th-order Volterra

series, aka. Volterra series transfer function (VSTF), was shown. The equivalence is also true

for the time-domain solution of the RP method and the time-domain Volterra series. For that

reason, we will use the terms RP method and Volterra series synonymously in this text. In-

dependently of the work above mostly concerned with the approach in frequency domain,

the time-domain analysis was first introduced in a series of publications in the early 2000s

by A. Mecozzi et al. [MCS00a, MCS00b, MCS+01]. The method was applied to transmission

schemes that were practical at that time (e.g., dispersion-managed transmission, intensity-

modulation, direct-detection, and Gaussian pulse-shapes). The details of the theory and its

derivation were published more recently in [Mec11].

The terminology used in the optical communications community today, see, e.g., [CGK+17],

still deceptively implies that models based on the RP method and on Volterra theory relate

to two different solutions. Therein, the RP method often refers to a time-domain approach,

and VSTF refers to a frequency-domain approach. The connection between the time- and

frequency-domain view was already pointed out in the literature, e.g., in [Wei06, BSO08] us-

ing the theory from dispersion-managed nonlinear Schrödinger equation (NLSE) [GT96,AB98,
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AH02a,AH02b] originally designed for soliton transmission.

Sampled RP Method In order to obtain numerical results from the derived RP methods, a

sampled representation of the continuous-time optical end-to-end RP solution (i.e., a discrete-

time Volterra series, see bottom pane in Figure 1.1) is required. In contrast to the Manakov

equation, see discussion above, the truncated, continuous-time RPmodel can be sampled with-

out loss of information. This is true under the assumption that the input signal is strictly

bandlimited and that the Volterra system has finite order and finite memory [BC85]. Then,

the Nyquist sampling theorem can be applied to the output of the Volterra system. For our

application, the spectral support of the system’s output depends on the spectral width of the

(bandlimited) linear communication signal uLIN(z, t) (i.e., including all wavelength channels)

and on the order of the RPmethod. E.g., the first-order RPmethod is equivalent to a third-order

nonlinear system (i.e., mathematically expressed by a third-order Volterra operator) and hence

requires a sampling rate of (at least) three times the Nyquist frequency of uLIN(z, t) [PBP97].

This is due to the fact that nonlinear mixing products originating from the linear signal spec-

trum must fall within three times the Nyquist region given a third-order nonlinear system.

Since the system is not recursive over z, no (out-of-band) higher-order mixing products are

generated.

In later years, the methodology of the above optical end-to-end models was applied in the

context of fiber nonlinearity compensation. Here, methods for fiber nonlinearity compensation

(NLC) in (discrete) frequency domain can be directly derived from the frequency-domain RP

formulation. Commonly, such a functional block is embedded into the receiver-side digital

signal processing (DSP) just after the analog-to-digital conversion and before matched filter-

ing [LLH+12,GP13,BCRC16], i.e., still in the oversampled domain of the receiver DSP. A similar

approach was also applied for fiber NLC using a time-domain variant of the RP method imple-

mented at the transmitter side as a pre-distortion algorithm [TDY+11] or at the receiver side

prior to linear equalization [GAMP15].

Already in the early 2000s, the authors of both [XBP02] and [VSB02] published an en-

hanced version of the RP method (aka. eRP or modified VSTF [XBP01, GRTP11], see bottom

pane in Figure 1.1) where the time-invariant (i.e., average) nonlinear phase rotation is explicitly

carried out as a unitary rotation, see also [SB15]. This modification greatly improved the accu-

racy of the numerical results using a frequency-domain, first-order RP solution. For the same

reason, the authors of [FDT+12, TZF+14] proposed a so-termed additive-multiplicative (A-M)

model where a subset of time-domain perturbations (also corresponding to the average non-

linear phase rotation) were implemented as a multiplicative distortion. In [FS05,SF12,SFP13], a

logarithmic perturbation (LP) model was derived which is exact in the limit of zero-dispersion

links. On the other hand in dispersion-uncompensated (DU) links (which is the default in

current optical networks), as pointed out in [SB13], the LP method yields a log-normal distri-

bution of the nonlinear distortion which is inconsistent with observations from simulations

and experiments.

Baseband End-to-End RP Method Going back to the original continuous-time, optical end-

to-end RP method in Figure 1.1 (top pane), we introduce an intermediate model—the baseband
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formulation of the former—in the derivation of the discrete-time end-to-end RP method. The

reason for this is as follows: the optical transmit signal at the input of the transmission sys-

tem is constituted by a number of wavelength channels with channel index ν = 1, 2, . . . , Nch

by means of wavelength-division multiplexing (WDM), see Section 3.2. Using a baseband

formulation of the RP method, the end-to-end relation is now established between the per-

WDM-channel baseband transmit signals sν(t) and the joint receive signal r(t) before channel

selection and matched filtering. This allows to separate the received baseband perturbation

signal ∆s(t) in the spectral support of a probe channel (i.e., a channel under test) into contri-

butions originating from self-channel interference (SCI), cross-channel interference (XCI), and

multi-channel interference (MCI). Here, SCI relates to the portion of the perturbation ∆s(t)

which the probe channel inflicts on itself, whereas XCI and MCI relate to the portion of ∆s(t)

that depends on the nonlinear interaction between the probe channel and one or more other

wavelength channels with channel separation ∆ων .

This baseband view and, in particular, the separation of the perturbation signal according

to its origin is also, in part, already considered in some of the published works associated to

the optical end-to-end RP method.

Discrete-Time End-to-End RP Method In the seminal paper by A. Mecozzi and R.-J. Essi-

ambre [ME12] the former work on continuous-time RP methods was extended by including

the transmit pulse-shape, the matched filter, and T -spaced sampling after ideal coherent detec-

tion. This work constitutes the first true T -spaced discrete-time end-to-end formulation using

a time-domain approach (see Figure 1.1, top pane). It provides a first-order approximation

of the per-modulation-interval equivalent end-to-end input/output relation assuming a multi

wavelength channel, i.e., a WDM, scenario. One central result is the integral formulation of

the (Volterra) kernel5 in time domain. The complementing view in periodic frequency domain

which takes the aliasing of frequency components properly into account was unknown at the

time and is part of the present work [FFF20], see discussion in Section 1.2.

The transition to the discrete-time algorithmic implementation (see Figure 1.1, bottom

pane) is straightforward considering the time-domain view. Discretization in frequency do-

main requires proper processing using the overlap-save method to address cyclic effects in

time domain, also part of the present work.

Based on [ME12], R. Dar et al. [DFMS13,DFMS14,DFMS16,DFM+15] derived the so-called

pulse-collision picture of the nonlinear fiber-optical channel. Here, the properties of XCI were

properly associatedwith certain types of so-called pulse collisions in time domain. In particular,

the importance of separating additive and multiplicative distortions, similar to the enhanced

RP method or the A-M model, was discussed. A similar approach to the discrete frequency-

domain model is part of the present work [FFF20].

The work from [ME12] and the follow-up work on the pulse-collision picture spawned a

renewed interest in perturbation-based fiber NLC. In contrast to prior implementations (also

perturbation-based, but in frequency domain under the label of VSTF, see, e.g., [LLH+12]),

5The term kernel is conceptually used as an extension of an impulse response or transfer function to nonlinear
systems described by a Volterra series.
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the present approach allows carrying out compensation algorithms on the transmit or re-

ceive symbol sequence rather than on an oversampled representation thereof. For this rea-

son, the functional NLC block can now be placed at the transmitter side before pulse-shaping

or at the receiver side after matched-filtering in the T -spaced domain of the DSP. The de-

rived NLC methods are based on variants of the time-domain RP solution, see also [MCS00a]

and [TDY+11], and have been demonstrated by various groups in slightly different flavors,

cf. [GCKY13, ONO+14, GCK+14, ZRB+14]. All of them consider, however, only a subset of

time-domain kernel coefficients6 due to an assumption sometimes termed temporal matching

constraint, see [ME12, Eq. (84)]. In [FES+18], we present an improved method taking into

account the full set of time-domain kernel coefficients.

Gaussian-Noise Model Another major class of channel models is known as Gaussian-noise

(GN) model [SKP93,PCC+11] which belongs to the space of stochasticmodels (see Figure 1.1 top

pane, right). GN-models are widely applied as network planning tools, e.g., for provisioning of

resources in a loaded network. For that, GN-models estimate the link-delivered signal quality

of a specific probe channel in a point-to-point transmission which is determined by the joint

impact of noise (e.g., from optical amplification) and nonlinear distortions. For simplicity, both

effects are combined into a single metric, e.g., combined into a received signal-to-interference

ratio including noise and distortions7. Estimation of the nonlinear distortion’s power (or vari-

ance) is thus at the core of all GN-models. The underlying theory is based on the first-order

RP solution of the continuous-time baseband end-to-end channel.

In terms of a fiber-optical channel model, the GN-model is essentially just a linear, memo-

ryless channel8 with an additive random variable (RV) n(t) and a probability density function

(PDF) associated to it. The random variable n(t) represents the combination of additive white

Gaussian noise (AWGN) and deterministic nonlinear distortions. For that purpose, the main

simplification of the GN-model is that nonlinear distortions have, similar to the AWGN as-

sumption, a Gaussian distribution and can be considered white. Then, the power spectral

density (PSD) Φnn(ω) associated with n(t) is constant over all frequencies ω with equal value

N0 per equivalent complex baseband (ECB) domain. The magnitude of N0 is by assumption

proportional to the sum of the link-delivered noise power and the power of the perturbation

signal ∆s(t). The objective of GN-models is hence to (efficiently) evaluate the expectation

E{ ‖∆s(t)‖2 } of the perturbation signal.

Notably, the GN-model is derived on the basis of the continuous-time RP solution—not

taking T -spaced sampling into account. This is, however, achieved by what we refer to as

discrete-time GN-model which is part of the present work, see discussion in the following

Section 1.2.

Sampled GN-Model Similar as for the continuous-time RP methods, the underlying channel

model is formulated in continuous-time (and frequency), while the algorithmic implementa-

6This subset of kernel coefficients is often labeled by the variable Cm,n in the literature cited above.
7In the community, this metric is often termed nonlinear optical signal-to-noise ratio (OSNR) [PJ17, Sec. II A]

to imply that nonlinear distortions are included in the ratio.
8Both the (noiseless) Manakov equation and the derived RP methods provide a deterministic relation between

the transmit and receive communication signal (aka. waveform channel model).
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tion is performed on a sampled representation thereof, see, e.g., [PBC+12].

The expectation E{ ‖∆s(t)‖2 } can be approximated by summing over the squared mag-

nitude of the sampled frequency-domain kernel Hν [µ]
def
= Sample1/T0{Hν(ω) }. The kernel

Hν(ω) is the third-order Volterra kernel which describes the nonlinear interaction between

the probe channel and the νth wavelength channel in baseband description9. In practice, the

sample operation is more likely performed on the periodic kernel Hν(ejωTs) representing the

oversampled system, e.g., a two-fold oversampled system description (and the deduced inte-

gration bounds) is often considered to properly capture the signal pulse-shape. The triple

integration is either performed by straightforward numerical integration [PBC+12] or more

efficiently by Monte-Carlo integration [DFMS14]. The details on the sampled GN-model will

be discussed in Section 5.1.1.

A comprehensive book chapter which provides a good overview on the current state of

the art on both time-domain perturbative models and the related GN-models has recently been

published in [BDS+20].

1.2 The Present Work

The preceding section provided an overview on the current state of the art on fiber-optical

channel models summarized by the block diagram in Figure 1.1. The present work contributes

to the existing theory, specifically, to the classes of channel models which are highlighted by a

colored frame (—) in Figure 1.1. Beyond that, this work aims to connect the existing classes of

channel models in a unified and structured manner. In the following, we summarize the main

innovations.

Discrete-Time End-to-End RP Method The existing view on T -spaced end-to-end channel

models for optical transmission systems is complemented by an equivalent frequency-domain

description of the first-order RP method. The frequency-domain system formulation is inher-

ently related to the discrete-time formulation from [ME12] by a discrete-time Fourier transform

(DTFT). Following basic system-theoretic principles, this frequency-domain system descrip-

tion is necessarily 1/T -periodic due to the time discretization with symbol spacing T . This is

fundamentally different from prior frequency-domain RPmethods, e.g. [PBP97,VSB02], which

are based on the continuous-time end-to-end system description, see above.

The fundamental requirement on the complementary frequency-domain system descrip-

tion of a T -spaced channel is as follows: frequency components that appear—due to aliasing—

at the sampled output of the continuous-time model when probed with a communication sig-

nal10 must also be produced by the discrete-time Volterra system by an equivalent (frequency-

domain) kernel. This property was first exploited in [Fra96] for a discrete-time Volterra system

with oversampling. In the present case, the discrete-time (third-order) Volterra system is real-

ized by aliasing the frequency-domain kernel of the continuous-time system (which has spec-

tral support that spans over a three-dimensional frequency basis) into its Nyquist region (per

9For notational simplicity, we neglect MCI which is typically included in GN-models.
10The continuous-time communication signal is also 1/T -periodic in frequency domain, but is weighted by

the shape of the transfer function of the transmit-pulse.
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dimension of the spectral support). In doing so, a frequency-domain RP solution is obtained

which relates the periodic spectrum of the transmit symbol sequence to the periodic spectrum

of the receive symbol sequence, i.e., after (linear) channel matched filtering and aliasing to fre-

quencies within the Nyquist interval. Remarkably, the frequency matching which is a result of

the general four-wave mixing (FWM) process in the continuous-time optical domain11 is now

realized in the 1/T -periodic frequency domain where the fourth frequency is modulo reduced

into the Nyquist interval, see Section 5.1.

Beyond the contribution to the basic theory, we present algorithmic implementations of

the discrete-time Volterra system in discrete frequency domain. Similar to the implementations

of the continuous-time model, see, e.g., the enhanced RP method, a subset of the perturbative

contributions can be considered as multiplicative (including both a common phase and po-

larization rotation) and may also be implemented as such in 1/T -periodic, discrete frequency

domain. This motivates the extension of the original regular perturbation model in frequency

domain to a combined regular-logarithmic, similar to the pulse-collision model in time domain.

We believe that both the existing time-domain end-to-end channel model according to

the pulse collision picture, and the novel 1/T -periodic frequency-domain end-to-end model

have potential application in a variety of fields. Among those is the application as a forward

channel model for the optimization of detection schemes that operate on a per-symbol basis,

e.g., recovery of phase distortions or determination of symbol likelihood values. Similarly, in

a backward-propagation-sense, both models can find application in fiber nonlinearity compen-

sation which requires real-time processing using fixed-point arithmetic, i.e., implementation

and computational complexity is of particular interest. In both forward and reverse applica-

tions, the kernel coefficients can be pre-calculated or pre-trained, whereas for the latter case,

i.e., for fiber nonlinearity compensation, additionally adaptation of the kernel coefficients is

required. Those application-driven considerations will, however, not be covered within the

present work.

Discrete-Time GN-Model The discrete-time GN-model extends the conventional GN-model

by taking the T -spaced sampling of the continuous-time communication signal into account.

In this regard, the objective of the discrete-time GN-model is to evaluate the expectation

E{ ‖∆a[k]‖2 }, i.e., the amount of perturbative distortion to the transmit symbols. This quan-

tity has, in fact, much more relevance for the overall system performance compared to the

result of the conventional GN-model as it measures the amount of distortion that is present at

the symbol decision (or soft metric calculation) on the receive-side. Only for the special case

of a root-raised cosine (RRC) pulse-shape with zero roll-off, the discrete-time and the conven-

tional GN-model will produce the same result12. The discrete-time GN-model follows the same

conceptual idea as the conventional one but takes the aliased third-order Volterra kernel as a

basis for estimating the magnitude of the nonlinear distortion.

11Frequency matching (here, of third order) is generally a property of nonlinear systems described by a (third-
order) Volterra operator.

12After matched filtering with respect to the transmit RRC shape with zero roll-off, no spectral support of the
communication signal is present outside the Nyquist interval, and, hence, no aliasing occurs.
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Chapter 2

Communication Basics

Chapter 4

Continuous-Time Perturbation Theory

Chapter 5

Discrete-Time Perturbation Theory

Chapter 3

Optical Transmission

Figure 1.2: Structure of the dissertation.

The proposed discrete-time GN-model may supplement existing GN-models, where the

communication signal’s pulse-shape may not be neglected.

1.3 Outline of the Dissertation

The structure of the thesis is outlined in Figure 1.2 in a bottom-up representation. The foun-

dational chapters cover the basic theory on communication systems and fiber-optical trans-

mission. Building upon that, first, the continuous-time perturbation theory for nonlinear fiber

propagation, and then, based thereon, the discrete-time perturbation theory of the respective

end-to-end communication system is derived.

Specifically, in Chapter 2, the notation is briefly introduced and the theory of linear and

nonlinear time-invariant systems is reviewed. For the latter, we study the theory of Volterra

series to model nonlinear systems with memory. In the second part of Chapter 2, the general

concepts in point-to-point communication systems are established, exemplified for transmis-

sion over a complex-valued 2×2 multiple-input/multiple-output (MIMO) channel as common

in coherent fiber optical transmission. For such a linear channel, the discrete-time T -spaced

end-to-end model is reviewed, including both the time- and frequency-domain formulation.

In Chapter 3, the fundamentals of fiber-optic transmission are examined. We introduce the

equivalent complex baseband model for signals and systems in the optical domain. The base-

band model is used to express signal evolution on the basis of a nonlinear partial differential

equation (PDE)—theManakov equation. First, only the linear part of the Manakov equation is

considered to assess the two most relevant linear transmission effects: chromatic dispersion

and attenuation (including gain from optical amplification). We assess the system impact of

chromatic dispersion in aWDM transmission scenario and how it determines the systemmem-

ory of a single wavelength channel and the (temporal) interaction length between wavelength

channels. Then, the optical Kerr effect, the primary nonlinear transmission effect, is included

into the picture. We briefly recap how the Manakov equation is implemented for numerical

simulation using the split-step method.

Having established the theoretical foundation in first two Chapters, we proceed with the
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regular perturbation method for the continuous-time domain in Chapter 4. Starting from the

Manakov equation, the derivation of the optical end-to-end first-order RP solution is per-

formed. The relevant system parameters, i.e., memory and strength, of the nonlinear response

are identified which lead to design rules for potential applications. Further, we highlight the

relation between the time and frequency representation and point out the connection to other

well-known channel models. As an intermediate step to the discrete-time end-to-end relation,

we also introduce the (analog) baseband end-to-end model, which describes the nonlinear in-

teraction based on the baseband communication signals in WDM setting.

In Chapter 5, the theory of the RP method is translated to the discrete-time domain. The

theoretical considerations are complemented by numerical simulations which are in accor-

dance with results obtained by the SSFM. Here, the mean-squared error (MSE) between the

T -spaced output sequences of the RPmethod and the SSFM is assessed to determine the match

between the models.

Chapter 6 presents some conclusions and an outlook.

A significant part of Chapter 4 and 5, which is at the center of this work, has been pub-

lished as a pre-print on arXiv [FFF20], and presented in part at workshops and conferences

on optical communication. Some of the numeric implementations of the derived models have

been applied in fiber-optic system experiments in the context of fiber-nonlinearity mitiga-

tion [FME+17, FES+18], which is not part of the present work.
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2. Foundations and Basic Concepts

This chapter briefly introduces the notation and basic concepts that will be used throughout

this work. The chapter is divided into two parts.

The first part starts by establishing the most fundamental conventions on the notation. It

is then followed by Section 2.1.1 with a brief revision of discrete- and continuous-time signals

including a comment on how signals are normalized in this work. The next Section 2.1.2

defines all the relevant integral transforms in a convenient, multi-dimensional fashion. This

will turn out to be useful in Section 2.1.3 which recaps the fundamentals of linear and nonlinear

time-invariant systems. Nonlinear, time-invariant systems can be represented by a sum of

multi-dimensional convolutions, known as Volterra series, in time or equivalently in frequency

domain. The Volterra kernels in both domains (i.e., a generalized form of impulse response

and transfer function for nonlinear systems) are interrelated by multi-dimensional integral

transforms. A third-order nonlinear systems, i.e., one with cubic nonlinearity is discussed

in more detail as it is closely connected to the nonlinear process present during fiber-optical

propagation. The theory is supplemented by two basic examples of a third-order Hammerstein

and Wiener system.

In the second part in Section 2.2, the general system model is introduced. The basic con-

cepts and nomenclature of point-to-point transmission are assessed. This is done on the back-

ground of fiber-optical transmission where a complex-valued 2× 2 MIMO channel is present.

The whole cascade of transmitter, channel, and receiver is discussed using a simplified setting.

Here, only a noisy, non-dispersive channel is considered, while the next chapter addresses the

fundamentals of fiber-optic transmission in greater detail. Both the continuous- and discrete-

time end-to-endmodel for the case of a noisy, non-dispersive channel are established. A formal

definition of the signal-to-noise ratio is provided and the Shannon capacity is introduced.
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2.1 Notation and Basic Definitions

Non-bold italic letters, like x, are scalar variables, whereas non-bold Roman letters refer to

constants, e.g., the speed of light is denoted by

c = 299792458 m/s. (2.1)

Number Sets A number set or finite field is typeset in blackboard typeface, e.g., the set of real

numbers is R, and the set of non-negative real numbers is R≥0. The set of complex numbers

C is an extension of R with elements defined as

z = x+ j y ∈ C , (2.2)

with the imaginary number j
def
=
√
−1, and the Cartesian components x = Re{z} ∈ R (aka. real

part, or inphase component), and y = Im{z} ∈ R (aka. imaginary part, or quadrature compo-

nent). A complex number can also be expressed in Polar coordinates via its magnitude

r = |z| def
=
√

Re2{z}+ Im2{z}, (2.3)

and its phase (or angle)

ϕ = arg{z} def
= tan−1(y/x), (2.4)

to be combined in the Polar representation of complex numbers

z = r ej ϕ. (2.5)

Complex conjugation reverses the sign of the imaginary part, or equivalently the sign of the

angle, and is denoted by

z∗ = Re{z} − j Im{z} = r e−j ϕ. (2.6)

The set of integers Z is a subset of the real numbers

Z = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}, (2.7)

and the set of natural numbers is a subset of the integers obtained by taking all nonnegative

elements

N = Z≥0 = { 0, 1, 2, . . . ,∞} = { 0 } ∩ N>0. (2.8)

Elements from the binary Galois field F2 and derived variables thereof are written in Frak-

tur font. E.g., the two elements of F2 are { 0, 1 }, and a variable form that field is q ∈ F2, where

operations (defined on such variables) have algebraic properties associated with F2.

Other (non-special) sets are denoted with calligraphic letters, e.g., A will later denote the

set of data symbols, i.e., the symbol alphabet or signal constellation.
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Vectors and Matrices Bold letters, such as x, indicate vectors or matrices (capital letters are

reserved for variables in the transform domain, see next section). The difference between a

vector and a matrix should be clear from the context. If not stated otherwise, a (complex)

vector x of dimension N is a column vector and reads

x =









x1

x2
...
xN









= [x1, x2, . . . , xN ]T = [x∗
1, x

∗
2, . . . , x

∗
N ]H ∈ C

N , (2.9)

where (·)T denotes transposition and (·)H denotes Hermitian transposition.

Similarly, boldface letters can also representmatrices, e.g., a (complex)matrix of dimension

N ×M reads

x =









x1,1 x1,2 · · · x1,M

x2,1 x2,2 x2,M
...

...
xN,1 xN,2 · · · xN,M









=
[

xn,m

]

∈ C
N×M , n = 1, . . . , N , m = 1, . . . ,M ,

(2.10)

with entries xn,m. The same notation applies to vectors and matrices of different fields.

We define the matrix exponential of square matrices x ∈ C
N×N as a power series

exp(x) = ex def
=

∞∑

k=0

1

k!
xk, (2.11)

where x0 = I ∈ C
N×N . If the matrix x is diagonal with elements xn,n on the main diagonal

and zeros otherwise, then the matrix exponential is obtained by exponentiating each element

on the main diagonal exn,n for n = 1, . . . , N . As a result, for a diagonalizable matrix x, we

have

x = udu−1, (2.12)

and d ∈ C
N×N is diagonal, then

ex = uedu−1. (2.13)

In optical communication, vectorial variables often appear, e.g., within the so-called Jones

or Stokes formalism, both formally introduced in Appendix A.1. To indicate variables from

Jones or Stokes space we introduce the following notation.

A Jones variable x ∈ C
2 is a pair of complex numbers represented as a two-dimensional

vector, where each dimension relates to one of the two polarizations of light, denoted as x- and

y-polarization. To emphasis this association on occasion, we may subindex the components

of x as follows

x =

[

x1

x2

]

=

[

xx

xy

]

∈ C
2. (2.14)

A Stokes variable ~x ∈ R
3 is a 3-tuple of real numbers represented as a three-dimensional

vector, where each dimension relates to one of the three polarization states, i.e., linearly-

polarized, 45◦-polarized, and circularly-polarized light. We will use decorated bold letters

~x to denote vectors in Stokes space.
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2.1.1 Discrete- and Continuous-Time Signals

A (complex-valued) function x(t) ∈ C which depends on the real-valued time variable t ∈ R,

given in seconds (s), is called continuous-time signal. The support of a (time-domain) function

is defined as the set of all elements t ∈ R for which x(t) is non-zero, i.e.,

supp(x)
def
= { t ∈ R | x(t) 6= 0 } . (2.15)

A (complex-valued)N -dimensional continuous-time signal x(t1, t2, . . . , tN) ∈ C is a func-

tion of N time variables tn ∈ R with n = 1, . . . , N . We will write

x(t)
def
= x(t1, t2, . . . , tN), (2.16)

with t = [t1, t2, . . . , tN ]T ∈ R
N for short. The reader should be able to deduce the dimension-

ality of the vector from the context of the equation.

Additionally, a space-dependent signal x(z, t) depends on the location (or position) z ∈ R

given inmeter (m), usually relative to the position of the transmitter. In point-to-point optical

communications, the variable z describes the (one-dimensional) path along the fiber, measured

from the transmitter at z = 0 to the receiver at z = L ∈ R>0, i.e., in practical cases it only

takes values in the interval z ∈ [0, L].

A discrete-time sequence is obtained by sampling a continuous-time signal at intervals of,

e.g., the (temporal) spacing T . We define the discrete-time signal

x[k]
def
= x(kT ), (2.17)

with the discrete-time (index) variable k ∈ Z. We use round parenthesis ( · ) to denote func-

tions defined over continuous variables and square brackets [ · ] to denote functions defined

over discrete variables. If the whole (finite- or infinite-length) sequence is treated, we will use

the angled bracket notation 〈x[k] 〉, whereas x[k] is a single element of that sequence indexed

at position k.

The support of a sequence is defined as the set of all elements k ∈ Z for which x[k] is

non-zero, i.e.,

supp(x)
def
= { k ∈ Z | x[k] 6= 0 } . (2.18)

The energy of a continuous- and discrete-time signal are defined as [PS08]

Ex
def
=
∫

R

|x(t)|2 dt, Ex
def
=
∑

k∈Z

|x[k]|2. (2.19)

Signal Normalization Continuous-time signals are associatedwithmeaningful physical units,

e.g., the electrical field can be measured in units of volts per meter (V/m). In the mathematical

treatment of those physical signals, units are often considered inconvenient. Consequently,

a normalization is often performed to create dimensionless (in the sense of unitless) mathe-

matical quantities which have the same orientation as the original physical object (see, e.g.,

discussion in [Fis02, P. 11] or [Kam08, P. 230]).
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In the context of optical transmission, the propagation of the real optical field is typically

modeled in complex Jones space over a quantityu(z, t) = [ux(z, t), uy(z, t)]
T ∈ C

2 called opti-

cal field envelope, see the disccusion in Section A.1. The optical field envelope is the equivalent

complex baseband (ECB) representation [Fis02] of the real optical signal, see Section 3.1. It has

the same orientation as the associated electrical field, where the two vector elements ux(z, t)

and uy(z, t) correspond to the two polarizations of the optical field.

In the literature, we encounter various conventions on how the optical field envelope is

normalized. A common strategy is to normalize u(z, t) such that uH(z, t)u(z, t) equals the

instantaneous (and local) power given in watts (W), cf. [Agr06, Eq. (2.3.28)].

In this work, instead, any continuous-time signal, like u(z, t), is generally treated as di-

mensionless quantity. This considerably simplifies the notation when we move between the

various signal domains, e.g., form discrete-time to continuous-time or from analog-electrical

to analog-optical domain (and vice-versa). To this end, uH(z, t)u(z, t) is normalized to be di-

mensionless. Consequently, the nonlinearity coefficient γ(z), see Section 3.3, commonly given

in W−1m−1 must also be normalized to have units of m−1 to be consistent with our signal

definition. We will touch on this notational convention again in the relevant Sections where

the above mentioned quantities will be formally introduced.
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2.1.2 Integral Transforms

The Fourier transform and related integral transforms play a central role in the theory of

signals and systems.

It turns out that, in the context of fiber-optic transmission (and for nonlinear systems

in general), some relations between a transformation pair (e.g., time and frequency domain)

appear in higher dimensions. Accordingly, all integral transforms are introduced for signals

in N dimensions. In particular, the Fourier transform is introduced given a function x(t) ∈ C

which may depend on the N -dimensional variable t ∈ R
N over which the transformation is

performed. For the case N = 1, the following definitions will be equivalent to the commonly

known one-dimensional transformations. Then, all subindices, e.g., as in t1, are dropped for

better readability.

All (continuous-) frequency domain variables are expressed in terms of the angular fre-

quency ω = 2πf ∈ R
N with each frequency variable fn ∈ R, n = 1, . . . , N , measured in

Hertz (Hz).

2.1.2.1 The Fourier Transform

We use lower-case letters for time-domain signals such as x(t), and upper-case letters for

frequency-domain signals such as X(ω). The upper-case notation in frequency domain may

collide with the notation often used in the context of information-theoretic elements, where an

upper-case letter will indicate a random variable (RV), and its realization is written in lower-

case letters. The reader should be able to follow the text and understand the respective termi-

nology from the present context of the text.

In the present work the so-called engineering notation of the Fourier transform with a

negative sign in the complex exponential in the forward, i.e., time-to-frequency direction is

used1.

The N -dimensional Fourier transform of a continuous-time signal x(t) = x(t1, t2, . . . , tN)

depending on the N -dimensional time vector t = [t1, t2, . . . , tN ]T ∈ R
N is defined as [OW83,

Ch. 4]

X(ω) = F{x(t) } def
=
∫

RN

x(t) e−jω·t dNt (2.20)
t

❞

x(t) = F−1{X(ω) } =
1

(2π)N

∫

RN

X(ω) e jω·t dNω. (2.21)

Here, X(ω) is a function of (continuous-) angular frequencies ω = [ω1, ω2, . . . , ωN ]T ∈ R
N .

1This has an immediate effect on the solution of the electro-magnetic wave equation (cf. Helmholtz equation

in [Agr06, Eq. (2.1.18)]), and therefore also for the NLSE. In the optical community, there is no fixed convention
with respect to the sign notation, e.g., some texts are written with the physicists’ (e.g., [Agr06, Eq. (2.1.12)],
[Agr10, Eq. (2.2.8)] or [ME12]) and others with the engineering (e.g., [Kam13], [Eng15, Eq. (A.4)]) notation in
mind. Consequently, the derivations shown in the remaining chapters may differ marginally from some of the
original sources.
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In the exponential we made use of the dot product of vectors in R
N given by

ω · t
def
= ω1t1 + ω2t2 + · · ·+ ωN tN . (2.22)

The integral is an N -fold integral over RN and the integration boundaries are at −∞ and∞
in each dimension. Note, since x(t) is per-definition unitless, its Fourier-transform X(ω) has

units secondsN (sN ). For the differential, we use the shorthand notation

dNt
def
= dt1dt2 . . . dtN . (2.23)

We may also write the correspondence as x(t) ❞ tX(ω) for short, where the transforma-

tion applies to the whole function, not just a single value. We may also indicate a change of

variables by, e.g.,X(ω) = Fω↔τ{x(τ ) }, if the transformation pair is defined w.r.t. to another

argument.

If instead the transformation is carried out over multiple vector components of the func-

tion x(t) = [x1(t), x2(t), . . . , xL(t)]T ∈ C
L, then each vector component is transformed

independently with X(ω) = [X1(ω), X2(ω), . . . , XL(ω)]T ∈ C
L s.t. xl(t) ❞ tXl(ω) with

l = 1, . . . , L.

We define the Dirac delta function (aka. Dirac impulse) implicitly using its Fourier trans-

form

F{ δ(t) } =
∫

R

δ(t)e−jωt dt = e−jω0 = 1 ∀ω, (2.24)

and the Heaviside step function (aka. unit step) via the Dirac impulse as

ε(t)
def
=
∫ t

−∞
δ(τ) dτ =

{

1 , t > 0
0 , t < 0

. (2.25)

2.1.2.2 The Discrete-Time Fourier Transform

TheN -dimensional discrete-time Fourier transform (DTFT) of a discrete-time sequence 〈x[k] 〉
with k = [k1, k2, . . . , kN ]T ∈ Z

N is defined as [OW83, Ch. 5]

X(ejωT ) = F̂{x[k] } def
=

∑

k∈ZN

x[k] e−jω·k T (2.26)
t

❞

x[k] = F̂−1{X(ejωT ) } =
(
T

2π

)N ∫

TN
X(ejωT ) e jω·k T dNω. (2.27)

where T is the (time-constant, temporal) spacing between two elements of the time-domain

sequence. In this thesis, the variable T will be equivalent with the duration of the symbol

interval of the modulated signal.

The notation
∑

k∈ZN is short for
∑∞

k1=−∞

∑∞
k2=−∞ · · ·

∑∞
kN =−∞. Given that the sample

duration is T , it directly follows that the spectrum of the associated discrete-time sequence is

periodic with 1/T . This is indicated by the notationX(ejωT ) which takes the 1/T -periodic ex-

ponential as an argument. The set of frequencies within the fundamental period (aka. Nyquist

interval) of the spectrum is defined as

T
def
= {ω ∈ R | −ωNyq ≤ ω < ωNyq }, (2.28)
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with the Nyquist (angular) frequency ωNyq
def
= 2πfNyq = 2π/(2T ).

The periodic spectrumX(ejωT ) is sometimes also termed periodic continuation of the ape-

riodic spectrum X(ω). The former one is obtained by aliasing all spectral components of the

latter into the Nyquist interval. We define the aliasing operator as

X(ejωT ) = AliasωNyq
{X(ω) } def

=
1

TN

∑

m∈ZN

X(ω − 2ωNyq m) (2.29)

t

❞

x[k] = SampleT{x(t) } def
= x(kT ), (2.30)

corresponding to a sampling operation in time domain with t = kT and k ∈ Z
N .

2.1.2.3 The Discrete Fourier Transform

TheN -dimensional discrete Fourier transform (DFT) of a finite-length discrete-time sequence

〈x[k] 〉 (M samples per dimension) is defined as

X[µ] = DFT{x[k] } def
=

∑

k∈MN

x[k] e−j 2π
M

µ·k (2.31)
t

❞

x[k] = DFT
−1{X[µ] } =

1

MN

∑

µ∈MN

X[µ] e j 2π
M

µ·k, (2.32)

where we use the reduced number set defined as

M
def
= { 0, 1, . . . ,M − 1 } = Z modM. (2.33)

Both integer indices k and µ are from the finite set MN , whereM coincides with the length

of the sequence.

We may also write x[k] ❞ tX[µ] for short where the correspondence always relates the

whole sequence of discrete-time and discrete-frequency domain elements.

2.1.2.4 The z-Transform and Laplace-Transform

The N -dimensional z-transform of a discrete-time sequence 〈x[k] 〉 is defined as

X(z) = Z{x[k] } def
=

∑

k∈ZN

x[k] z−k1
1 z−k2

2 . . . z−kN
N =

∑

k∈ZN

x[k] z·(−k), (2.34)

where k ∈ Z
N is the N -dimensional integer time index and z = [z1, z2, . . . , zN ]T ∈ C

N is an

N -dimensional complex number. Here, we use the generalization of the vector dot product to

the vector dot exponential defined as

z
·(−k) def

= z−k1
1 z−k2

2 . . . z−kN
N . (2.35)

The z-Transform is related to the DTFT by evaluating the variable z at its unit circle (or unit

hypersphere in N dimensions), i.e., by evaluating z = e jωT .
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For continuous-time variables, the N -dimensional Laplace transform is defined accord-

ingly as

XL (s) = L {x(t) } def
=
∫

RN
x(t) e−s·t dNt, (2.36)

with s
def
= σ + j ω ∈ C

N and real-valued components σ ∈ R
N and ω ∈ R

N . The Laplace-

transform is related to the Fourier transform by evaluating the variable s only at its imaginary

part (i.e., setting the real part σ to zero).
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2.1.3 Linear- and Nonlinear Time-Invariant Systems

This section provides a short review of linear- and nonlinear time-invariant systems. We

discuss the most relevant system properties and give basic examples of nonlinear systems.

A continuous-time system translates a continuous-time input signal x(t) ∈ C to an output

signal y(t) ∈ C via the transformation y(t) = S{x(t) }. Here, S{ · } must be understood as

an operator acting on the whole input function, and returning the complete output function,

not just the function evaluated at a particular instant of time.

A time-invariant system is given if an arbitrary delay t0 ∈ R of the input signal translates

to the same delay at the output. Given the relation y(t) = S{x(t) }, we find
y(t− t0) = S{x(t− t0) }, t0 ∈ R . (2.37)

2.1.3.1 Linear Time-invariant Systems

The input/output relation of a stable, non-recursive (continuous-time) linear time-invariant

(LTI) system can be mathematical expressed by the convolution of the input signal x(t) with

the (linear) impulse response of the system h(t)
def
= S{ δ(t) } ∈ C, where δ(t) denotes the Dirac

impulse. It is given by

y(t) = S{x(t) } = x(t) ∗ h(t)
def
=
∫

R

x(τ)h(t− τ)dτ =
∫

R

x(t− τ)h(τ)dτ (2.38)
❞

t

Y (ω) = S{X(ω) } = X(ω)H(ω) , (2.39)

and equivalently, in frequency domain by multiplying the Fourier-transform (aka. spectrum)

of the input signalX(ω) = F{x(t) }with the system transfer functionH(ω)
def
= F{h(t) } ∈ C

to obtain the Fourier-transform of the output signal Y (ω).

An LTI system is bounded-input bounded-output (BIBO) stable, if for any bounded input

the system response is also bounded

|x(t)| < xmax <∞ ⇒ |y(t)| < ymax <∞, t ∈ R . (2.40)

A necessary and sufficient condition for stable LTI systems with bounded input is
∫

R

|h(t)| dt <∞ , (2.41)

i.e., the impulse response must be a transient function.

For the output signal y(t) to have the same units as the input signal x(t), the continuous-

time impulse response h(t) must have units s−1, and hence H(ω) is unitless.

The same considerations also hold for discrete-time LTI systems, where we find the relation

y[k] = S{x[k] } = x[k] ∗ h[k]
def
=
∑

κ∈Z

x[κ]h[k − κ] =
∑

κ∈Z

x[k − κ]h[κ] (2.42)
❞

t

Y (ejωT ) = S{X(ejωT ) } = X(ejωT )H(ejωT ) = X(z)H(z)
∣
∣
∣
z=ejωT

, (2.43)

with the discrete-time transfer function (aka. system function) H(z)
def
= Z{h[k] }. Both, the

discrete-time impulse response h[k] and the transfer function H(z) are unitless.
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2.1.3.2 Nonlinear Time-invariant Systems

The input/output relation of a wide class of nonlinear time-invariant (NTI) systems can be

represented using a Volterra series expansion — a sum of multi-dimensional convolutions. The

Volterra series expansion can be considered as a Taylor series expansion for nonlinear systems

with memory, whereas the usual Taylor series only applies to systems with instantaneous (i.e.,

memoryless) input/output relations.

The infinite (i.e., non-truncated) Volterra series representing a continuous-time, nonlinear

system S{ · } without feedback (i.e., no recursion) is given by the relation [Sch80]

y(t) = S{x(t) } = h0 +
∫

R

x(t− τ1)h1(τ1) dτ1 (2.44)

+
∫

R2
x(t− τ1)x(t− τ2)h2(τ1, τ2) dτ1dτ2 (2.45)

+
∫

R3
x(t− τ1)x(t− τ2)x(t− τ3)h3(τ1, τ2, τ3) dτ1dτ2dτ3 (2.46)

+ . . .

= h0 +
∞∑

n=1

yn(t) , (2.47)

where each summand yn(t) corresponds to an nth-order convolution comprising a product of

(time-delayed) input signals x(t)weighted by a so-termed Volterra kernel hn(τ )—a generalized

impulse response of order n. The summand yn(t) = Hn{x(t) } is called nth-order Volterra

operator and its standard form is given by

yn(t) = Hn{x(t) } def
=
∫

Rn
hn(τ )

n∏

j=1

x(t− τj) dnτ , (2.48)

where the kernel hn(τ ) = hn(τ1, τ2, . . . , τn) ∈ C is a function R
n 7→ C depending on the

order n ∈ N>0. We note, that the nth-order Volterra kernel hn(τ ) has units s−n.

The Volterra operator is sometimes also given in its alternative representation as

Hn{x(t) } =
∫

Rn
hn(t− t)

n∏

j=1

x(tj) dn
t , (2.49)

with τ = t − t, i.e., τj = t − tj,∀ j. In particular, for n = 1 this recovers the two ways the

convolution is expressed in (2.38).

In many practical cases, the infinite-length series in (2.47) is truncated to only a subset of

summation terms. E.g., most relevant for nonlinear fiber communication are the Volterra terms

y1(t) andy3(t)—the linear part equivalent to an LTI system, and the third-order nonlinear part.

Symmetry A Volterra kernel is symmetric, if hn(τ ) is invariant under any reordering of the

vector τ , i.e., we have [Sch80, Eq. (5.2-4)]

hn(τ ) = hn(πi(τ ) ), ∀i , (2.50)

where the functionπi(·) performs the i ∈ { 1, 2, . . . , n!−1 } (non-trivial) permutationsw.r.t. the

vector indices, e.g., for a symmetric second-order kernel we have h2(τ1, τ2) = h2(τ2, τ1).
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Causality A Volterra system is causal, if [Sch80, Eq. (5.5-2)]

hn(τ ) = hn(τ1, τ2, . . . , τn) = 0, for any τj < 0, j = 1, 2, . . . , n . (2.51)

Stability The series in (2.47) does not necessarily converge for all classes of nonlinear systems

and input signals x(t). If the series does converge for any given input x(t), we say that the

system is stable.

In most practical cases, we consider only a truncated Volterra series. Then, the question

of stability is shifted to the stability of the Volterra operators Hn{x(t) } under consideration.
Similar to LTI systems, a Volterra operator is BIBO stable, if for any bounded input the operator

response is also bounded

|x(t)| < xmax <∞ ⇒ |yn(t)| < yn,max <∞, t ∈ R, ∀n . (2.52)

A sufficient (but not necessary) condition for the stability of Volterra operators is the straight-

forward extension of (2.41) to [Sch80, Eq. (5.6-3)]
∫

Rn
|hn(τ )| dnτ <∞, ∀n . (2.53)

Note, that there are Volterra operators which are stable but not transient, i.e., do not satisfy

(2.53). The condition is also necessary for the Fourier transform of hn(τ ) to exist, see below.

Volterra Series in Transform Domain Taking the Fourier transform of the system response

y(t) leads to the Volterra series representation in continuous-frequency domain, aka. Volterra

series transfer function (VSTF). It relates the Fourier-transform at the input X(ω) to the

Fourier-transform at the output Y (ω) of the nonlinear system via [Sch80, Ch. 6]

Y (ω) = h0 δ(ω) +X(ω)H1(ω) (2.54)

+
1

2π

∫

R

X(ω1)X(ω − ω1)H2(ω1, ω − ω1) dω1 (2.55)

+
1

(2π)2

∫

R2
X(ω1)X(ω2)X(ω − ω1 − ω2)H3(ω1, ω2, ω − ω1 − ω2) dω1dω2

(2.56)

+ . . .

= h0 δ(ω) +
∞∑

n=1

Yn(ω) , (2.57)

where, due to the linearity of the Fourier transform, each series term, i.e., each Volterra oper-

ator is related by a 1D Fourier transform yn(t) ❞ tYn(ω). The general form of Yn(ω) is given

by [Sch80, Ch. 6]

Yn(ω)
def
=

1

(2π)n−1

∫

Rn−1
Hn(ω)

n∏

j=1

X(ωj) dn−1ω , (2.58)

with the frequency-domain Volterra kernel (i.e., a generalized transfer function of order n)

Hn(ω) = Hn(ω1, ω2, . . . , ωn) ∈ C. Here, the last component of ω (depending on the order n)

is defined as

ωn
def
= ω − ω1 − · · · − ωn−1, with ω1 = ω, for n = 1 . (2.59)
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x(t)

u(2)(t)x(t)

u(3)(t)x(t)

y(B)(t)

H
(1)
LTI(ω1)H

(2)
LTI(ω2)H

(3)
LTI(ω3)H

(4)
LTI(ω1 + ω2 + ω3)

≡

H
(B)
3 (ω) = H

(B)
3 (ω1, ω2, ω3)

u(1)(t)

H
(2)
LTI(ω)

H
(3)
LTI(ω)

H
(4)
LTI(ω)

H
(1)
LTI(ω)

∫

R2 dω1dω2

Figure 2.1: Block diagram of a basic third-order Volterra systemwith three (different) linear, dispersive systems at

the input with transfer functionH
(i)
LTI(ω), and i = 1, 2, 3, and a single linear, dispersive system at the output with

transfer functionH
(4)
LTI(ω). The equivalent block diagram at the bo�om highlights the Volterra view in frequency

domain implementing a two-fold convolution of the input transform with the Volterra kernel H
(B)
3 (ω).

In fiber-optical transmission, this relation with n = 3 will translate to the frequency matching

constraint for four-wave mixing, see Section 3.3.5.

The Volterra kernel in time and frequency domain are related by an n-dimensional Fourier

transform [Sch80, Eq. (6.1-4)]

Hn(ω) = Fω↔τ{hn(τ ) } . (2.60)

From a symmetric time-domain kernel, a symmetric frequency-domain kernel follows [Sch80,

P. 118]

hn(τ ) = hn(πi(τ )), ∀i ⇒ Hn(ω) = Hn(πi(ω)), ∀i , (2.61)

with i ∈ { 1, 2, . . . n!−1 }. For a real-valued time-domain kernel, the frequency-domain kernel

is conjugate symmetric with

hn(τ ) ∈ R ⇒ Hn(ω) = H∗
n(−ω) . (2.62)

Basic Nonlinear Systems We consider a basic third-order Volterra system [Sch80, Fig. 6.4-1]

which is of interest to nonlinear fiber propagation. The block diagram is shown in Figure 2.1.

It consists of a nonlinear, memoryless systemwith cubic input/output relation, sandwiched

between four (potentially) different LTI systems characterized by h
(i)
LTI(t) ❞ tH

(i)
LTI(ω) with i =

1, 2, 3, 4.

Following the third-order Volterra approach, see above, the output of the basic third-order
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y(M×B)(t)x(t)

H
(1,2)
LTI (ω)

H
(1,3)
LTI (ω)

H
(1,4)
LTI (ω)

H
(1,1)
LTI (ω)

H
(M,1)
LTI (ω)

H
(M,2)
LTI (ω)

H
(M,3)
LTI (ω)

H
(M,4)
LTI (ω)

Figure 2.2: Block diagram ofM basic third-order Volterra systems in parallel.

system is given by a closed-form expression in both time and frequency domain

y(B)(t) =
∫

R3
x(t− τ1)x(t− τ2)x(t− τ3)h

(B)
3 (τ1, τ2, τ3) dτ1dτ2dτ3 (2.63)

❞

t

Y (B)(ω) =
1

(2π)2

∫

R2
X(ω1)X(ω2)X(ω − ω1 − ω2

︸ ︷︷ ︸

ω3

)H
(B)
3 (ω1, ω2, ω − ω1 − ω2

︸ ︷︷ ︸

ω3

) dω1dω2 ,

(2.64)

with the (frequency-matching) constraint ω = ω1 + ω2 + ω3 from (2.59).

The time- and frequency-domain third-order kernel can be given explicitly by [Sch80,

Eq. (4.4-3), (6.4-2)]

h
(B)
3 (τ ) =

∫

R

h(1)
LTI(τ1 − σ)h(2)

LTI(τ2 − σ)h(3)
LTI(τ3 − σ)h(4)

LTI(σ) dσ (2.65)

❞

t Fτ↔ω

H
(B)
3 (ω) = H(1)

LTI(ω1)H
(2)
LTI(ω2)H

(3)
LTI(ω3)H

(4)
LTI(ω1 + ω2 + ω3

︸ ︷︷ ︸

ω

) . (2.66)

Note, that the system functionH
(4)
LTI(·) with argument (ω1 + ω2 + ω3) is the one following the
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triple multiplier, i.e., at the output of the combined system, whereas the system functions at

the input have arguments involving either ω1, ω2, or ω3 alone.

One can also deduce, that both time- and frequency-domain kernel become symmetric, if

the input LTI systems are identical, i.e., we have

h(1)
LTI(t) = h(2)

LTI(t) = h(3)
LTI(t) ⇒ h

(B)
3 (τ ) = h

(B)
3 (πi(τ )), ∀i . (2.67)

We now consider a third-order Volterra system consisting ofM basic systems connected

in parallel. The block diagram of such a general third-order Volterra system is shown in Figure

2.2. The output y(M×B)(t) is simply the sum of the output of each basic system. Consequently,

the kernel of the parallel system is the sum of theM basic third-order kernels [Sch80, Eq. (4.4-

10)]

h
(M×B)
3 (τ ) =

M∑

m=1

∫

R

h(m,1)
LTI (τ1 − σ)h(m,2)

LTI (τ2 − σ)h(m,3)
LTI (τ3 − σ)h(m,4)

LTI (σ) dσ (2.68)

❞

t Fτ↔ω

H
(M×B)
3 (ω) =

M∑

m=1

H(m,1)
LTI (ω1)H

(m,2)
LTI (ω2)H

(m,3)
LTI (ω3)H

(m,4)
LTI (ω1 + ω2 + ω3

︸ ︷︷ ︸

ω

) . (2.69)

This view will later become relevant when the so-termed parallel fiber model is considered.

In that case, the summation in (2.68)–(2.69) over a discrete number of parallel systems will

asymptotically turn into an integral over a continuous variable, i.e., infinitely many parallel

systems.

Examples of Third-order Volterra Systems In the following, we discuss two examples of a

basic third-order nonlinear system. To that end, we introduce two simple realizations of a

nonlinear system—the Hammerstein and theWiener system, shown in Figure 2.3.

x(t)

u(t)

w(t) y(H)(t)

y(W)(t)x(t)

nonlinear, memoryless

HLTI(ω)

HLTI(ω)

linear, dispersivenonlinear, memoryless

linear, dispersive

Hammerstein system

Wiener system

Figure 2.3: Block diagram of a Hammerstein (top) and Wiener system (bo�om). A Hammerstein system is

a nonlinear, memoryless mapping at the input, in series with a linear, dispersive system characterized by its

transfer function HLTI(ω). The Wiener system is a reverse-concatenated Hammerstein system.

The Hammerstein system is a concatenation of a nonlinear, memoryless transfer charac-

teristic and a linear, dispersive system. The Wiener system reverses the concatenation so that
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the linear system is at the input and the nonlinear part at the system output. Both systems

can be combined, e.g., the Hammerstein-Wiener system consists of a linear, dispersive system

sandwiched between two nonlinear, memoryless systems.
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Example 2.1: A simple 3rd-order Hammerstein system

We consider the following pair of nonlinear differential equations [Boy85, Ch. 1]

d

dt
u(t) = −u(t) + x3(t)

y(H)(t) = u(t) ,

which relates the system input x(t) to the system output y(H)(t) of the third-order Hammerstein

system including an intermediate variable u(t). We assume a causal signal x(t) with x(t) = 0
for t ≤ 0.
A block diagram of the system is shown in Figure 2.4. It consists of the cubic function

w(t) = x3(t) ,

at the input and an LTI system at the output with transfer function

HLTI(ω) = HLTI, L (s)
∣
∣
s=jω

=
1

1 + s

∣
∣
∣
∣
s=jω

=
1

1 + jω
s

❝

hLTI(t) = ε(t) e−t .

Here, HLTI(ω) is a first-order low pass with a single pole at s∞ = −1.

w(t) y(t)

x(t)

x(t)

y(t)

≡

w(t)

−

x(t)

x(t)
1

1+jω
(·)3

∫

Figure 2.4: Block diagram of the third-order Hammerstein system from Example 2.1. The top shows

the block diagram representation of the nonlinear mapping (·)3 and the LTI system characterized

by its transfer function HLTI(ω). The bo�om shows the equivalent representation using elementary

building blocks.

In time domain, we obtain the solution of the differential equations by using the method of

integrating factors for t > 0 as

y(H)(t) =

∫ ∞

0
e−τx3(t− τ) dτ

=

∫

R3
ε(τ1)ε(τ2)ε(τ3)δ(τ1 − τ2)δ(τ2 − τ3) e−τ1 x(t− τ1)x(t− τ2)x(t− τ3) d3τ ,
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where the Heaviside step function ε(t) and the Dirac impulse δ(t) are used to bring the right-

hand side into a form similar to the third-order time-domain Volterra representation in (2.45).

Comparing the result with (2.45), we find the 3rd-order Volterra kernel as

h
(H)
3 (τ ) = h

(H)
3 (τ1, τ2, τ3) = ε(τ1)ε(τ2)ε(τ3)δ(τ1 − τ2)δ(τ2 − τ3) e−τ1

= hLTI(τ1) δ(τ1 − τ2)δ(τ2 − τ3) ,

which has support only for τ1 = τ2, τ2 = τ3, and τ1, τ2, τ3 ≥ 0, and is hence causal.

Alternatively, the kernel can also be obtained using the general solution from (2.65) resulting in

h
(H)
3 (τ ) =

∫

R

h
(1)
LTI(τ1 − σ)h

(2)
LTI(τ2 − σ)h

(3)
LTI(τ3 − σ)h

(4)
LTI(σ) dσ

=

∫

R

δ(τ1 − σ)δ(τ2 − σ)δ(τ3 − σ) ε(σ)e−σ dσ

= hLTI(τ1) δ(τ1 − τ2)δ(τ2 − τ3) ,

with h
(1)
LTI(t) = h

(2)
LTI(t) = h

(3)
LTI(t) = δ(t) and h

(4)
LTI(t) = ε(t) e−t.

We use the Fourier relation between time- and frequency-domain kernels from (2.60) to obtain

the 3rd-order Volterra kernel in frequency domain as

H
(H)
3 (ω) = H

(H)
3 (ω1, ω2, ω3) = Fω↔τ{h(H)

3 (τ ) } =
1

1 + j(ω1 + ω2 + ω3)
,

by taking a 3D-Fourier transform.

Similarly, the same result can also be obtained using the general solution in frequency domain

from (2.66) to arrive at

H
(H)
3 (ω) = H

(1)
LTI(ω1)H

(2)
LTI(ω2)H

(3)
LTI(ω3)H

(4)
LTI(ω1 + ω2 + ω3)

=
1

1 + j(ω1 + ω2 + ω3)
,

with H
(1)
LTI(ω) = H

(2)
LTI(ω) = H

(3)
LTI(ω) = 1 and H

(4)
LTI(ω) = 1

1+jω .

Next, we substitute ω3 using the frequency constraint ω3 = ω − ω1 − ω2 to arrive at

H
(H)
3 (ω1, ω2, ω − ω1 − ω2) =

1

1 + jω
,

We can now give the final result of the frequency-domain input/output relation as

Y (H)(ω) =
1

(2π)2

∫

R2
X(ω1)X(ω2)X(ω − ω1 − ω2)H

(H)
3 (ω1, ω2, ω − ω1 − ω2) d2ω

=
1

1 + jω

1

(2π)2

∫

R2
X(ω1)X(ω2)X(ω − ω1 − ω2) d2ω

=
1

1 + jω
(X(ω) ∗X(ω) ∗X(ω)) .

Note, that the third-order Hammerstein kernel is symmetric, and since it does not depend on

ω1 and ω2, the kernel multiplication and the two-fold convolution are separable.
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Example 2.2: A simple 3rd-order Wiener system

For the Wiener system, we consider the following set of differential equations

d

dt
u(t) = −u(t) + x(t)

y(W)(t) = u3(t) .

where the order of the nonlinearity (·)3 and the LTI system with impulse response hLTI(t) is

exchanged w.r.t. the Hammerstein system from our last example. Again, with a causal signal

x(t) and x(0) = 0, the solution is given by

y(W)(t) =

(∫ ∞

0
e−τx(t− τ) dτ

)3

=

∫

R3
ε(τ1)ε(τ2)ε(τ3)e−(τ1+τ2+τ3)x(t− τ1)x(t− τ2)x(t− τ3) d3τ ,

where the right-hand side is wri�en in a form similar to (2.45). The Volterra kernel in time

domain directly follows as

h
(W)
3 (τ ) = ε(τ1)ε(τ2)ε(τ3)e−(τ1+τ2+τ3) = hLTI(τ1)hLTI(τ2)hLTI(τ3) .

Alternatively, the kernel is derived using (2.65) to find

h
(W)
3 (τ ) =

∫

R

h
(1)
LTI(τ1 − σ)h

(2)
LTI(τ2 − σ)h

(3)
LTI(τ3 − σ)h

(4)
LTI(σ) dσ

=

∫

R

ε(τ1 − σ)e−(τ1−σ)ε(τ2 − σ)e−(τ2−σ)ε(τ3 − σ)e−(τ3−σ) δ(σ) dσ

= hLTI(τ1)hLTI(τ2)hLTI(τ3) ,

with h
(1)
LTI(t) = h

(2)
LTI(t) = h

(3)
LTI(t) = ε(t)e−t and h

(4)
LTI(t) = δ(t). In contrast to the Hammerstein

system, the Wiener kernel has support for any τ1, τ2, τ3 ≥ 0, and is also causal.

A 3D-Fourier transform gives the 3rd-order Volterra kernel in continuous-frequency as

H
(W)
3 (ω) = Fω↔τ{h(W)

3 (τ ) } =
1

(1 + jω1) (1 + jω2) (1 + jω3)
.

or using again the general formula from (2.66) to find

H
(W)
3 (ω) = H

(1)
LTI(ω1)H

(2)
LTI(ω2)H

(3)
LTI(ω3)H

(4)
LTI(ω1 + ω2 + ω3)

=
1

(1 + jω1) (1 + jω2) (1 + jω3)
,

with H
(1)
LTI(ω) = H

(2)
LTI(ω) = H

(3)
LTI(ω) = 1

1+jω and H
(4)
LTI(ω) = 1.

The frequency matching constraint ω3 = ω − ω1 − ω2 is used again to rewrite the kernel

H
(W)
3 (ω1, ω2, ω − ω1 − ω2) =

1

1 + jω1

1

1 + jω2

1

1 + j(ω − ω1 − ω2)
,
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We obtain the final frequency-domain input/output relation of the third-order Wiener system

with

Y (W)(ω) =
1

(2π)2

∫

R2
X(ω1)X(ω2)X(ω − ω1 − ω2)H

(W)
2 (ω1, ω2, ω − ω1 − ω2) d2ω

=

(
X(ω)

1 + jω

)

∗
(
X(ω)

1 + jω

)

∗
(
X(ω)

1 + jω

)

= U(ω) ∗ U(ω) ∗ U(ω) ,

where we used that the frequency-domain kernel itself is symmetric and factorable, i.e., we have

H
(W)
3 (ω) = H

(W)
3 (ω1, ω2, ω3) = HLTI(ω1)HLTI(ω2)HLTI(ω3) ,

and the same is also true for the time-domain kernel

h
(W)
3 (τ ) = h

(W)
3 (τ1, τ2, τ3) = hLTI(τ1)hLTI(τ2)hLTI(τ3) .
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2.2 The Linear System Model

In this work we consider point-to-point coherent optical transmission over two planes of po-

larization in a single-mode fiber. To this end, the analog transmit and receive signals, s(t)

and r(t), are modeled in the two-dimensional (2D) complex plane C
2, commonly known in

optics as the Jones space [Jon41], to account for the two states of polarization. A generic block

diagram of such a point-to-point communication system is shown in Figure 2.5.

The transmission system is fed with equiprobable source bits. The binary source generates

uniform i.i.d. information bits q[κ] ∈ F2 at each discrete-time index κ ∈ Z. The rate at which

the source generates information bits is called information rate and is defined as the inverse

temporal interval between two successive information bits; hence, the data (information bit)

rate is defined asRT
def
= 1/Tb. The transmitter translates the discrete-time source sequence into

a modulated continuous-time transmit signal s(t) ∈ C
2, later associated with the two polariza-

tions of the optical signal. After transmission over the channel, the receive signal r(t) ∈ C
2

is processed by the receiver to obtain the recovered bit sequence q̂[k] ∈ F2. Typically, the re-

ceiver employs techniques from signal equalization and error-correction coding (i.e., channel

coding) to recover the exact source bit sequence.

In the course of this work, we will establish a framework to determine the distortions orig-

inating from nonlinear interaction of the optical signal with itself (i.e., signal-signal nonlinear

interference (NLI)2) while propagating along the fiber (channel). However, signal equalization

as part of a state-of-the-art digital coherent receiver [Sav10] (e.g., polarization demultiplexing,

channel estimation and equalization, carrier- and phase recovery, etc.) as well as error cor-

rection coding (i.e., forward error correction (FEC)) will not be considered explicitly. Instead,

we assume ideal channel state information (CSI) such that polarization demultiplexing and

linear equalization can be incorporated into the end-to-end channel description as part of the

end-to-end system description.

In the remainder of this chapter we discuss the relevant building blocks of the transmitter

and receiver front-end necessary to establish a linear point-to-point communication system.

We will particularly highlight the transitions between the discrete-time and continuous-time

domain and discuss how aliasing of frequency components is typically modeled in discrete-

time end-to-end models for linear channels. Most of the consideration and the notational

framework for linear channels can also be found in the text book [Fis02, Ch. 2].

2.2.1 Transmi�er Front-end

In the optical community, the term front-end is often associated with the electrical (and/or

optical) interface at the transmitter or receiver, e.g., the digital-to-analog converter (DAC)

and analog-to-digital converter (ADC) (possibly, plus additional optical components). In the

present work, the front-end characterizes the continuous-time (i.e., analog) part of the trans-

2The denomination distortion, disturbance, and interference will be used synonymously. In the literature, the
term nonlinear interference noise is also used since the source of the nonlinear interference is often another out-
of-band modulated signal, i.e., non-accessible and hence random to the channel of interest.
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r(t) q̂[κ]q[κ] s(t)
Source Transmitter Channel Receiver Destination

transmit signal receive signal recovered sequence

discrete-time continuous-time discrete-time

source sequence

Figure 2.5: Block diagram of a point-to-point communication system. The transmi�er and receiver constitute

the interface between the discrete- and continuous-time domain.

mitter and receiver. In practice, the analog front-end (using our terminology) is typically real-

ized as a composition of the real physical interface and some oversampled digital processing to

obtain a desired target transfer characteristic. Accordingly, we prefer to conceptually incorpo-

rate some of the building blocks, often realized as part of the DSP chain (such as pulse-shaping

and/or matched filtering), as part of the continuous-time domain, since this significantly sim-

plifies the notation3. Similarly, we would consider, e.g., the low-pass characteristic of the DAC

or ADC as part of the transmission channel.

In Figure 2.6, a block diagram of an uncoded (i.e., without error correction coding) com-

munication system is shown. In coherent optical transmission, two (independent) planes of

polarization are present, each with inphase and quadrature component in the ECB. Then,

transmission over two polarizations (x and y) with (polarization-) diversity reception results in

a complex-valued 2× 2 MIMO transmission which is typically used for multiplexing. Within

the modulated bandwidth of a single transmitter/receiver pair, we can consider the optical

end-to-end MIMO channel as frequency-flat if we neglect the effects of bandlimiting devices

(e.g., switching elements in a routed network). The topic of polarization demultiplexing and

equalization of, e.g., polarization-mode dispersion (PMD) (i.e., equalization of the dispersive

MIMO channel) is discussed in numerous research papers (c.f. [Sav10] for a comprehensive

overview). We will not give an exhaustive description of it, but will rather concentrate on ba-

sic concepts. Hence, for the intent of this work, aspects related to linear equalization and tim-

ing synchronization are already incorporated into the optical channel as suited linear transfer

characteristics. E.g., see the following chapter, the average group delay of the probe channel

will be canceled from the propagation equation using the concept of a retarded time frame in

the equivalent complex baseband. This is equivalent to a linear phase response, which can

also be applied as part of the receiver DSP.

For coherent optical transmission the natural choice of real signal dimensions D (i.e., the

dimensionality of the signal space) is four because each polarization offers two independent

degrees of freedom, cf. [Kam13, P. 831]. The evolution of the optical field is typically described

using a complex-valued baseband representation via a set of coupled differential equations—

the so-called Manakov equation, cf. Section 3.3. Therefore, we treat data symbols as a pair

of complex-valued symbols corresponding to the polarizations x and y. If channel coding

is present, the signal space depends on the coded-modulation strategy and is possible dif-

3When obeying the sampling theorem, both discrete- and continuous-time representations are equivalent
when considering linear systems.
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Figure 2.6: Block diagram of an uncoded, complex-valued 2× 2 MIMO communication system in the equivalent

complex baseband (ECB) representation. In the transmi�er, binary source symbols q[k] ∈ F2 are mapped (M)

to the data symbols a[k] taken from the signal constellation A. Then, the data symbols are modulated via

the transmit pulse HT(ω) to the ECB transmit signal s(t) ∈ C
2. On the receive-side, the cascade is passed

in reverse order. The receive signal r(t) ∈ C
2 is demodulated using the (matched filter) receiver frond-end

HR(ω) = T
ET
·H∗

T(ω) and sampled at t = kT to obtain the discrete-time receive symbols y[k]. Residual inter-

symbol interference induced by the channel is equalized by the discrete-time part F (z) ∈ C
2×2. The processed

receive symbols are de-mapped (i.e., inverse mapping) to recover an estimate of the source sequence q̂[k].

ferent from the one used to describe signal evolution. Throughout the thesis, we use four-

dimensional (4D) modulation formats (D = 4). Important digital modulation formats in the

2D signal space (D = 2) such as quadrature amplitude modulation (QAM) will be included as

special cases if we consider independentmodulation in two polarizations, namely polarization-

division multiplex (PDM).

Bit-to-Symbol Mapping The binary source sequence 〈 q[k] 〉 is partitioned into binary tuples
of length Rm, such that

q[k] = [ q1[k], q2[k], . . . , qRm [k] ]T ∈ {0, 1}Rm , (2.70)

where k ∈ Z is the discrete-time index of the data symbols a[k]. Here, Rm is called the rate

of the modulation and will be equivalent to the number of bits per transmitted data symbol

(neglecting channel coding and assuming that the size of the symbol set is a power of two).

Each Rm-tuple is associated with one of the possible data symbols a = [a1, a2]
T = [ax, ay]

T ∈
A ⊂ C

2, i.e., with one of the constellation points. In other words, the binary Rm-tuples are

mapped to the data symbols a ∈ A by a bijective mapping ruleM : q 7→ a.

The size of the data symbol set isM
def
= |A| = 2Rm and we can write the alphabet as set

A def
= {a1, . . . ,aM} ⊂ C

2 . (2.71)

The symbol set is zero mean if not stated otherwise, that is E{a } !
= 0, and we deliberately

normalize, without loss of generality, the variance of the symbol set to unity

σ2
a

def
= E{ ‖a− E{a }‖2 } = E{ ‖a‖2 } !

= 1 , (2.72)

where expectation is denoted by E{ · } and the Euclidean vector norm is ‖a‖2 = axa
∗
x + aya

∗
y .

If we consider WDM, cf. Section 3.2, we denote the data symbols of interfering wavelength

channels4 by bν [k] where the integer subscript ν ∈ { 1, 2, . . . , Nch } is the wavelength channel

number, and Nch is the number of wavelength channels.

4The term channel can refer to the physical (fiber) channel, i.e., the transmission medium, or in the con-
text of WDM transmission to a wavelength channel, i.e., the transmitter/receiver pair at different center wave-
lengths/frequencies.
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If signal shaping [Fis02] is not present and 〈 q[k] 〉 is i.i.d. uniform, all data symbols occur

with the same probability Pr{am } = 1/M, ∀ m and (2.72) simplifies to

σ2
a =

1

M

M∑

m=1

‖am‖2 !
= 1 , (2.73)

where the variance of the sequence 〈a[k] 〉 is equal to the variance of the constellation A.

Example 2.3: PDM 16-ary QAM

Transmission of PDM 16-ary QAM with a 4D cardinality M = 256 is considered. The two

polarizations are transmi�ed independently, i.e., tuples of Rm = log2(M) = 8 bits are mapped

into two 16-QAM sets using a binary-reflected Gray labeling (BRGL) rule for each set [SA15,

Fig. 2.14 (b)].
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Figure 2.7: Two-dimensional projections of the data symbols a = [ax, ay]T ∈ A with PDM 16-ary

QAM and Gray-labeling per polarization. The variance of the signal constellation σ2
a is normalized

to unity variance, no shaping assumed.

In Figure 2.7, the two-dimensional projections of the data symbols are shown. The symbols in

the x-polarizations are addressed by [q1, q2, q3, q4]T, and the symbols in the y-polarization are

addressed independently by [q5, q6, q7, q8]T. Since no shaping is considered, we see that the

variance of the signal constellation is σ2
a = 1 (the circle in Figure 2.7 has radius 1/

√
2).

Modulation The discrete-time data symbolsa[k] are converted to the continuous-time trans-

mit signal s(t) by means of pulse-shaping constituting the digital-to-analog (D/A) transition.

The (linear) properties of the real, physical converter may conceptually be included in the

pulse-shape. We can express the transmit signal s(t) = [s1(t), s2(t)]
T = [sx(t), sy(t)]

T ∈ C
2

as a function of the data symbols with [Fis02, (2.1.1)]

s(t) = T ·
∑

k∈Z

a[k]hT(t− kT ) , (2.74)

where s(t) is a superposition of a time-shifted (with symbol period T ) basic pulses hT(t)

weighted by the data symbols.
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Since hT(t) has units s−1 (cf. Section 2.1.3), the pre-factor T is required to preserve a di-

mensionless signal in the continuous-time domain (cf. [Fis02, P. 11] or [Kam08, P. 230]). For the

transmit (and respectively for the receive filter) we may also use the dimensionless entity—the

basic pulse shape, given as

gT(t)
def
= T · hT(t) . (2.75)

In a WDM scenario, the transmitter of interest (i.e., the probe channel) transmits at the

symbol rate Rs
def
= 1/T . To keep the derivations in the following chapters tractable, all other

wavelength channels transmit at the same symbol rate as the probe channel5.

The pulse energy ET is given by [Fis02, Eq. (2.2.22)]

ET =
∫ ∞

−∞
|T · hT(t)|2dt =

1

2π

∫ ∞

−∞
|T ·HT(ω)|2dω . (2.76)

The pulse energy ET has the unit seconds due to the normalization, see above.

Using the symbol energy Es
def
= σ2

aET, the average signal power P (later equivalent to the

optical signal power in two polarizations) calculates to [Fis02, Eq. (4.1.1)]

P
def
=

1

T

∫ T

0
E{ ‖s(t)‖2 } dt =

σ2
a

T
ET =

Es

T
. (2.77)

Here, we use the cyclo-stationary property of s(t) and average the expectation over a single

symbol period. Since, see above, the variance of the data symbols σ2
a is fixed to 1, the transmit

power P is directly adjusted via the pulse energy ET. The corresponding quantities related to

one of the other wavelength channels is indicated by the subscript ν.

We assume that the transmit pulse has
√
Nyquist property. In frequency domain, the trans-

mit pulse shape gT(t) ❞ tGT(ω) has Nyquist property if the squaredmagnitude of the periodic

continuation
∑

m∈Z |GT(ω − 2πm
T

)|2 sums up to a constant for all ω ∈ R [Fis02, Eq. (2.2.4)].

This can be expressed in both frequency and time domain as

∑

m∈Z

|T ·HT(ω − 2πm

T
)|2 =

∑

m∈Z

|GT(ω − 2πm

T
)|2 !

= 2π ETT = const. (2.78)

t

❞

ϕgg(λT )
def
= gT(t) ∗ g∗

T(−t)|t=λT

!
= ET δ[λ] , λ ∈ Z. (2.79)

In time domain, the
√
Nyquist property of gT(t) translates to the (first) Nyquist criterion ap-

plied to the autocorrelation ϕgg(λT ) of the pulse gT(t). That is, the autocorrelation ϕgg(t),

evaluated at integer multiples λ ∈ Z of the symbol period T , equals the Dirac sequence δ[λ],

i.e., it is always zero unless λ = 0.

The root-raised cosine (RRC) shape fulfills the properties in (2.78), (2.79) and can be ob-

tained from the raised cosine (RC) by HRRC(ω) =
√

HRC(ω) with [PS08, P. 608]

HRC(ω) = ce ·







1, 0 ≤ |ω| ≤ (1−ρ)π
T

1
2

(

1 + cos
(

T
2ρ

(|ω| − 1−ρ
2T

)
))

, (1−ρ)π
T
≤ ω ≤ (1+ρ)π

T

0, |ω| > (1+ρ)π
T

, (2.80)

5The considerations in the following are not restricted to the assumption of equal symbol rates over all wave-
length channels; the derived results can generalized.
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Figure 2.8: Transmit pulse shape for the (normalized) RRC pulse shape in time and frequency domain with

roll-off factor ρ = { 0, 0.2, 0.5, 1 }.

where 0 ≤ ρ ≤ 1 is the roll-off factor, which can be used to adjust the bandwidth of the probe

signal. The leading constant ce is a normalization constant that can be varied to adjust the

pulse energy ET (or later the optical launch power).

The signal bandwidth is defined as the width of the spectral support of the communication

signal, i.e., the transmission band

B def
= {ω

∣
∣
∣HT(ω) 6= 0 }, (2.81)

which yields for RC and RRC pulse shapes

B
def
= Rs(1 + ρ). (2.82)

Accordingly, in the next chapter, the bandwidth B will be equivalent to the bandwidth of the

carrier-modulated signal at the beginning of the transmission link in the optical domain.

In Figure 2.8, the RRC pulse hRRC(t) ❞ tHRRC(ω) is shown for a number of different roll-

off factors. A small roll-off factor comes at the expense of stronger overshoots during the

symbol transition and thus a continuous-time signal with higher peak-to-average power ratio.

On the other hand, in the frequency domain, it is apparent that a small roll-off factor increases

the spectral efficiency (also bandwidth efficiency), defined as

Γ
def
=
RT

B
uncoded

=
Rm

1 + ρ

[

bit/s

Hz

]

, (2.83)

where the (gross) data rate RT is equal to RmRs for transmission without error-correction

coding and signal shaping.

In Figure 2.9, we show the autocorrelation function ϕgg(t) and the periodic continuation

corresponding to the RRC shape gT(t) = T · hRRC(t) with roll-off factor ρ = 0.2, cf. (2.78),

(2.79). This property will become relevant in the deviation of the discrete-time end-to-end

channel model in the subsequent chapters.

2.2.2 2× 2 MIMO AWGN Channel

If only linear effects are considered during fiber-optic transmission, cf. Section 3.3.3, it is suf-

ficient to describe the channel via a complex-valued 2 × 2 transfer matrix [Kar14]. This sys-

tem description results in the so-called Jones calculus which allows to express any physical
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Figure 2.9: The autocorrelation function ϕgg(t) (le�) and the squared magnitude |GT(ω)|2 (right) of the basic

pulse with RRC shape and roll-off factor ρ = 0.2. The autocorrelation function meets the first Nyquist criterion
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Figure 2.10: Block diagram of the complex-valued 2 × 2 inter-symbol interference transmission model and the

derived discrete-time end-to-end channel, adapted from [Fis02, Fig. 2.3].

transformation of the electromagnetic field. The more general system description using the

real-valued 4 × 4 signal space is a useful extension to the Jones calculus, e.g., for DSP, but is

in principle not required to model fiber-optic transmission. A short introduction to the Jones

formalism is given in the Appendix A.1.

In Figure 2.10, we show the block diagram of the complex-valued 2 × 2 linear, dispersive

channel with AWGN at the channel output. The two complex components of the transmit

signal s(t) are transmitted over the channel characterized by its complex-valued 2×2 channel

impulse response and transfer function, interrelated by a Fourier transform according to

hC(t) =

[

hC,xx(t) hC,xy(t)
hC,yx(t) hC,yy(t)

]

∈ C
2×2 (2.84)

❞

t

HC(ω) =

[

HC,xx(ω) HC,xy(ω)
HC,yx(ω) HC,yy(ω)

]

∈ C
2×2. (2.85)

We neglect any effects of polarization dependent loss (PDL), and assume that the complex-

valued channel matrix is unitary within the transmission band of the signal, i.e., the channel
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transfer function must satisfy [Kar14]

H−1
C (ω)

!
= HH

C(ω) ⇐⇒ |det (HC(ω)) | !
= 1, ∀ ω ∈ B . (2.86)

We can understand the distortions introduced by the channel matrix as dispersive causing,

e.g., inter-symbol interference (ISI), and as complex-valued rotations in C
2, later termed po-

larization rotations. One instance of a channel matrix is given by chromatic dispersion, cf. Sec-

tion 3.3.2, which effects both polarizations equally (hC,xx(t) = hC,yy(t)) and induces no po-

larization cross-talk (hC,xy(t) = hC,yx(t) = 0), i.e., the channel matrix reduces to a scalar.

Both dispersion- and polarization-related effects are typically compensated using receiver-

side equalization methods, see [Sav10] for an overview.

The transmit signal is inflicted with stationary, complex-valued, Gaussian noise in each

of the two components n(t) = [n1(t), n2(t)]T at the channel output. We define the noise

correlation matrix ϕnn(τ) as

ϕnn(τ) = E{n(t+ τ) nH(t) } AWGN
= N0 δ(τ) I (2.87)

❞

t

Φnn(ω) = Fτ↔ω{E{n(t+ τ) nH(t) } } AWGN
= N0I = const., ∀ ω , (2.88)

which is interrelated to the average power spectral density (PSD) of the noise Φnn(ω) via the

Fourier transform. We assume that the noise is independent of the transmit signal and white

within and between the two complex components. Using the AWGN assumption we find that

the noise PSD is constant in frequency. This results in a constant valueN0 on themain diagonal

(i.e., same noise power in both polarizations) of the PSD matrix Φnn(ω) and a zero value for

the x/y cross-terms.

In analogy to the conventional complex-valued AWGN systemmodel, we denote the noise

PSD per complex dimension by the constant N0 and, conversely, the noise PSD per real di-

mension (i.e., per quadrature) is N0/2. The total noise PSD in two components (i.e., four real

dimensions) is equal to the trace of Φnn(ω) and equals 2N0 using the AWGN assumption.

The receive signal r(t) can hence be written as

r(t) = hC(t) ∗ s(t) + n(t) (2.89)
❞

t

R(ω) = HC(ω) S(ω) + N (ω) . (2.90)

The objective of the receiver is then to detect the received signal and recover the transmitted

information sequence 〈 q 〉.

2.2.3 Receiver Front-end

For the moment, we will neglect the effects of signal dispersion and polarization rotation, in-

troduced by the channel matrix, and only consider the ISI–free AWGN channel. We assume
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that the transmit pulse-shape gT(t) has
√
Nyquist property. Then, the receiver filter that max-

imizes the signal-to-noise ratio (SNR) after detection is the matched filter w.r.t. the transmit

pulse given as [Fis02]

h
(MF)
R (t)

def
=

T

ET

h∗
T(−t) (2.91)

❞

t

H
(MF)
R (ω) =

T

ET

H∗
T(ω) . (2.92)

The leading factor T
ET

is a scaling factor to re-normalize the received sequence after sam-

pling to the variance of the transmit sequence σ2
a. Assuming an ISI–free channel, the trans-

mit/receive filter cascade has an overall Nyquist impulse response.

Using the matched-filter receiver front-end and taking the (unitary) channel matrix H(ω)

into account, the linear end-to-end channel cascade is defined as

H(ω)
def
= T ·HT(ω) HC(ω)H

(MF)
R (ω) . (2.93)

We arrive at the discrete-time end-to-end transfer function between the transmit sequence

and receive sequence written as [Fis02, (2.1.7a)]

H(ejωT ) = AliasωNyq
{H(ω) } =

1

T

∑

m∈Z

H(ω − 2πm

T
) (2.94)

=
1

T

∑

m∈Z

T ·HT

(

ω − 2πm

T

)

HC

(

ω − 2πm

T

)

H
(MF)
R

(

ω − 2πm

T

)

(2.95)

=
T

ET

∑

m∈Z

HT

(

ω − 2πm

T

)

HC

(

ω − 2πm

T

)

H∗
T

(

ω − 2πm

T

)

, (2.96)

whereH(ejωT ) = H(z)|z=ejωT is the periodic continuation of the end-to-end channel cascade.

In Figure 2.10, the block diagram of the discrete-time end-to-end equivalent is shown,

including the channel matrix H(z) and the discrete-time noise equivalent n[k]. The noise

PSD matrix of the discrete-time sequence 〈n[k] 〉 is [Fis02, (2.1.7b)]

Φnn(ejωT ) =
1

T

∑

m∈Z

Φnn

(

ω − 2πm

T

) ∣
∣
∣
∣H

(MF)
R

(

ω − 2πm

T

)∣
∣
∣
∣

2

(2.97)

=
N0

T
I
∑

m∈Z

∣
∣
∣
∣H

(MF)
R

(

ω − 2πm

T

)∣
∣
∣
∣

2

(2.98)

=
N0

ET

I , (2.99)

where we used that the noise PSD is white, i.e., Φ(ω) = N0I, and that the receive filter

(matched to the transmit basic pulse) also fulfills the
√
Nyquist property in (2.78).

Under the white noise assumption, the (dimensionless) noise variance of the discrete-time

Gaussian process in four dimensions then reads [Fis02, 2.2.6]

σ2
n =

T

2π

∫

T

trace
(

Φnn(ejωT )
)

dω = trace
(
N0

ET

I

)

= 2
N0

ET

, (2.100)
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where—by assumption—the variance per real dimension is σ2
n,d = σ2

n/4.

We can now give a formal definition of the SNR in 4D with

SNR
def
=

Es

2N0

=
σ2

a

σ2
n

, (2.101)

as the ratio between the signal energy in 4D and 2N0, which translates to the ratio between

the 4D variance of the transmit and the noise sequence. For completeness, we also give the

definition of the SNR per real dimension as

SNRd
def
=

Es,d

N0/2
=
σ2

a,d

σ2
n,d

, (2.102)

which is the relevant metric for real-valued transmission. Here, we used the corresponding

quantities per real dimension, i.e., symbol energy per real-dimension Es,d and variance per

real-dimension.

The Shannon capacity (or Shannon limit) is the upper bound of the transmission rate over

the AWGN channel at which error-free communication is possible—achieved for Gaussian-

distributed input.

The Shannon capacity in bits per real dimension (b/1D) is given as [Sha48]

C[b/1D] =
1

2
· log2 (1 + SNRd) =

1

2
· log2

(

1 +
Es,d

N0/2

)

=
1

2
· log2

(

1 +
σ2

a,d

σ2
n,d

)

. (2.103)

In analogy, we define the capacity over the complex-valued 2× 2 AWGN channel (in bits per

four dimensions) as

C[b/4D] = 2 · log2 (1 + SNR) = 2 · log2

(

1 +
Es

2N0

)

= 2 · log2

(

1 +
σ2

a

σ2
n

)

. (2.104)

In Figure 2.11, the Shannon capacity per four dimensions is shown togetherwith the constellation-

constrained capacity for PDM { 4, 16, 64 }-ary QAM, i.e., the upper limit of achievable infor-

mation rate given the respective QAM format at the channel input.
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Figure 2.11: Shannon capacity (solid) and constellation-constrained capacities (dashed) of PDM { 4, 16, 64 }-ary
QAM over the complex-valued 2×2 AWGN channel. The capacity C is given in bit per (4D) symbol and the SNR

in dB is expressed via the ratio of the (4D) symbol energy Es over the (one-sided) noise power spectral density

N0 (le�). The same quantities are also shown over the ratio between the energy per information bit Eb and N0

in dB for uncoded transmission.
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3. Principles of Fiber-Optic Transmission

This chapter concerns with the principal effects of fiber-optic transmission.

It first reviews the concept of the optical field envelope in Section 3.1. The optical field

envelope is the equivalent in optical communication to the complex baseband signal. Themain

approximations and assumptions to arrive at the baseband signal and system description are

briefly reviewed.

In Section 3.2, we extend the signal model to frequency-multiplexed signals which is

historically termed wavelength-division multiplexing (WDM) in the optical communications

community.

In the last Section, the signal evolution equation, i.e., the Manakov equation and some

fundamental transmission effects are reviewed. This includes chromatic dispersion, signal at-

tenuation and (common) amplification schemes, and the nonlinear Kerr effect.

This chapter forms the basis for the topics dealing with the perturbation-based channel

models developed in the following two chapters.

3.1 The Optical Field Envelope

The two-dimensional complex vector u(z, t) = [ux(z, t), uy(z, t)]
T ∈ C

2 in Jones space [Jon41]

is associated with the transverse electric field component of a plane electro-magnetic wave

propagating in z-direction. The two components of the Jones vector ux(z, t) and uy(z, t) rep-

resent the x- and y-components, i.e., the two polarizations of the electric field. In practice, the

electric field is modeled as a continuous-time stochastic process, where u(z, t) is a particular

realization of that process with dependency on the time variable t and spatial direction z.

Similar to radio-frequency transmission, the quantity u(z, t) ∈ C
2 is in fact the equivalent

complex baseband (ECB) representation of the real-valued electric field. In the optics com-

munity, u(z, t) is denoted optical field envelope and its relation to the real optical field in the

passband domain is given by

uo(z, t) =
√

2 Re{u(z, t) ejω0t−jβ(z,ω0)z} ∈ R
2 , (3.1)
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with the center frequency (of the signaling regime of interest) ω0 = 2πf0. The center fre-

quency ω0 typically coincides with the carrier frequency of the probe signal (i.e., the signal or

channel of interest) which is in the order of 184 THz to 237 THz in optical telecommunication.

Example 3.1: RRC baseband and passband pulse subject to chromatic dispersion

A preliminary example of the optical field ux,o(z, t) ∈ R and the optical field envelope ux(z, t) ∈
C in one polarization subject to chromatic dispersion is sketched in Figure 3.1.
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Figure 3.1: Illustration of the optical field envelope (in one polarization) ux(z, t) and the real-valued

optical field ux,o(z, t) at the carrier frequencyω0 ≫ 2πB (in the drawing, the oscillation of the carrier

frequency ω0 is heavily understated, and orders of magnitude higher in practice). The envelope of a

single RRC pulse with roll-off factor ρ = 0.2 is shown at z = 0 at the input of a transmission link

(le�). A�er propagation (right), the initial pulse is dispersed, here shown at z = 4LD where LD is

the so-called dispersion length, see Section 3.3.2. Only second-order dispersion assumed, group delay

canceled by the retarded time-frame, and constant phase rotation is β(4LD, ω0) = 0.

The initial baseband pulse at z = 0 is real-valued and has an RRC shape with roll-off factor

ρ = 0.2. The baseband signal is modulated to the (high-frequency) optical passband signal at

carrier frequency ω0 ≫ 2πB, with the signal bandwidth B. A�er transmission at z = 4LD (a

formal definition of the so-called dispersion length LD will be given in Section 3.3.2), the optical

pulse is dispersed, i.e., the pulse is temporally broadened w.r.t. its initial shape. In the anomalous

dispersion regime (i.e., at the typical telecommunication wavelength), high-frequency compo-

nents of an optical pulse travel faster (to the temporal front of the pulse) than low-frequency

components of the same pulse. This can be seen in Figure 3.1 (right) recognizing that the pass-

band signal (gray trace) has higher frequency components in the temporal front, and lower

frequency components in the temporal back.

The main difference to the classical ECB representation, cf., e.g., [PS08, Fis02], is the ad-

ditional term appearing in the complex exponential which depends on the so-termed (space-

and frequency-dependent) common propagation constant β(z, ω), where the term “common”

relates to the x- and y-component of the electric field. Just like ω0/(2π) measures the number

of oscillation of the electric field per unit time, β(z, ω0)/(2π) measures the number of field

oscillations per unit length in z-direction. By only considering the optical field envelope, i.e.,

by using the (generalized) ECB representation, this (trivial) phase rotation at arbitrary (fixed)

position z0 is removed.

The frequency-dependency of the propagation constant β(z, ω) is the source for the disper-



3.1. The Optical Field Envelope 49

sive nature of light—the predominant, linear distortion in optical communication. An in-depth

discussion on chromatic dispersion will be provided in Section 3.3.2.

In writing (3.1), we already made use of a number of common assumptions which go be-

yond the conventional ECB representation. The required transformations on the optical signal

and the corresponding systems to model optical field propagation over a single-mode fiber can

be found inmany popular textbooks on that topic (see, e.g., [Agr02,Sei09,Agr10,Kam13,KD14]).

We briefly summarize these assumptions in the following paragraphs.

Plane Wave Approximation The plane wave approximation allows us to consider only the

longitudinal z-dependence of the optical field (no transversal field components into the x-

and y-direction, cf. [Men89]). The z-direction is the direction of propagation along the fiber,

depicted as a straight line/link from the transmitter at z = 0 to the receiver at z = L.

Slowly Varying Amplitude Approximation The slowly varying amplitude approximation, cf.

[Agr10, Eq. (2.4.5)], assumes that the envelope u(z, t) changes only slowly in time compared

to the order of the carrier period 1/f0. In other words, the spectrum of the signal is narrow-

banded (compared to the carrier frequency) and we have BWDM ≪ f0, where BWDM is the full

spectral bandwidth of the signal under consideration (including co-propagating wavelength

channels, see Section 3.2 on WDM). E.g., at the typical communication wavelength λ0 = c/f0

of 1550 nm, the ratio between the bandwidth B = Rs(1 + ρ) of a single wavelength channel

and the carrier frequency f0 = 193.4 THz is in the order of 1/2500 for Rs = 64 GBd and

ρ = 0.2. Hence, even when hundreds of such wavelength channels are included in the same

ECB signal, the approximation is still valid.

�asi-monochromatic Approximation The quasi-monochromatic approximation, cf. [Agr10,

Eq. (2.4.4)], extends the former to the space- and frequency-dependent common propagation

constant β(z, ω), which is expanded into a Taylor series in the vicinity of the center frequency

ω0. The real optical field uo(z, t) can then be separated into its (temporal and spatial) carrier

ejω0t−jβ(z,ω0)z and the envelope u(z, t). The evolution of the optical field is solely described

by considering its envelope. Then, the evolution equation in the baseband description (i.e.,

the system description which will be used in this work) is solely determined by the Taylor

coefficients of β(z, ω) developed at ω0.

The Taylor series expansion of the propagation constant β(z, ω) w.r.t. ω (in the passband

domain) reads

β(z, ω) = β0(z) + β1(z)(ω − ω0) +
1

2
β2(z)(ω − ω0)

2 +
1

6
β3(z)(ω − ω0)

3 + . . . , (3.2)

with the partial derivatives represented by the coefficients [Agr10, Eq. (2.4.4)]

βn(z)
def
=
∂nβ(z, ω)

∂ωn

∣
∣
∣
∣
∣
ω=ω0

, n ∈ N . (3.3)

We also introduce the following notation to denote path-average Taylor coefficients

β̄n
def
=

1

L

∫ L

0
βn(z) dz . (3.4)



50 3. Principles of Fiber-Optic Transmission

which will turn out to be practical when describing path-average quantities in the following

sections.

The zeroth-order coefficient is given by

β0(z) = β(z, ω0) , (3.5)

which measures the number of oscillation per unit length into the longitudinal direction. This

(frequency-independent) oscillation in z-direction by e−jβ(z,ω0)z is removed from the optical

field envelope u(z, t) (i.e., the optical baseband signal) following the ansatz in (3.1).

The first-order Taylor coefficient reads

β1(z) =
∂β(z, ω)

∂ω

∣
∣
∣
∣
∣
ω=ω0

, (3.6)

and has units s/m. The (path-average) first-order coefficient relates inversely to the (path-

average) group velocity at the center frequency ω0 given by [Agr10, Eq. (2.3.1)]

vg(ω0)
def
=

1

β̄1

. (3.7)

As a result, a spectral component at ω0 propagates from the fiber input at z = 0 to the output

at z = L within L/vg(ω0) seconds.

The second-order Taylor coefficient is

β2(z) =
∂2β(z, ω)

∂ω2

∣
∣
∣
∣
∣
ω=ω0

, (3.8)

and quantifies the dependency of the group-velocity on the frequency deviation from ω0.

This dependency gives rise to chromatic dispersion, and the Taylor coefficient is hence termed

group velocity dispersion (GVD) parameter. The (path-average) GVD parameter β̄2 has a zero-

crossing for typical standard single-mode fibers (SSMFs) at the zero dispersion wavelength

λZD ≈ 1276 nm. The transmission regime for shorter wavelengths is termed normal dis-

persion regime with β̄2 > 0, and the transmission regime for longer wavelengths (i.e., also

at typical communication wavelengths) is termed anomalous dispersion regime with β̄2 < 0,

cf. [Agr10, P. 41].

The GVD parameter β2(z) has units of s2/m or s/Hz/m, however, for historical reasons

chromatic dispersion is often quantified in terms of wavelength separation instead of fre-

quency separation from ω0. The corresponding (path-average) dispersion parameter in terms

of wavelength is [Agr10, Eq. (2.3.5)]

D̄GVD = −2πc

λ2
0

β̄2 . (3.9)

A typical value for the GVD parameter is β̄2 = −21.4 ps2/km at λ0 = 1550 nm, which in turn

corresponds to D̄GVD = 16.8 ps/nm/km.
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The third-order Taylor coefficient reads

β3(z) =
∂3β(z, ω)

∂ω3

∣
∣
∣
∣
∣
ω=ω0

, (3.10)

and is known as the dispersion-slope parameter. Higher order terms of the Taylor expansion are

usually negligible and dispersion-slope only becomes relevant when β2(z) approaches zero,

i.e., close to the zero-dispersion wavelength. The implications of dispersion in fiber transmis-

sion systems will be discussed in detail in Section 3.3.

Example 3.2: Taylor series expansion of β(z, ω)

Transmission in the so-called C-band (conventional operation regime of erbium-doped fiber

amplifiers (EDFAs)) spans awavelength range from 1530 to 1565 nm, i.e., a transmissionwindow

of 35 nm, which is equivalent to a total bandwidth of 4.375 THz. This supports a total of

Nch = 87 wavelength channels each having a 50 GHz slot. The center frequency is f0 ≈
193.4 THz (λ0 = 1550 nm) and the ratio between the total bandwidth and the carrier frequency

is approximately 1/50, i.e., the signal is still narrow-banded compared to its carrier frequency. In

that frequency region, β(z, ω) can be well approximated with only two Taylor coefficients β1(z)
and β2(z). The third Taylor coefficient β3(z) becomes only relevant if the center wavelength

λ0 = c/ω0 is close to the zero dispersion wavelength λZD ≈ 1276 nm where β2(z)→ 0.

Retarded Time Frame Tomake the mathematical treatment of the z- and t-dependent optical

field envelopeu(z, t) in the upcoming sectionsmore tractable, the accumulated (path-average)

timing delay z/vg(ω0) of the optical field at the center frequency ω0 is canceled out by con-

sidering signal evolution in the so-termed retarded time frame.

The retarded time frame is defined as [Agr10, Eq. (2.4.8)]

t
def
= t′ − z/vg(ω0) , (3.11)

where t′ is the original, un-retarded time base of the real optical field. The retarded time frame

can be imagined as a reference time frame that moves at the path-average group velocity

vg(ω0) of the probe channel with increasing z (we assume that the probe channel is centered

atω0). At fixed z, e.g., at the receiver with z = L, the end-to-end retardation of the probe signal

can be modeled (if required) as a linear contribution of the overall system’s phase response.

As a consequence, the average group delay of the probe signal is removed from the propa-

gation equation. This has, e.g., already been used in Figure 3.1 where no group delay is present

after propagation, i.e., the dispersed pulse at z = 4LD is still centered around t/T = 0. Simi-

larly, the (linear) impulse response of the optical end-to-end systemwill be centered at t/T = 0

since the (average) timing delay has been removed from the propagation equation, see Section

3.3.

All wavelength channels other than the probe channel experience a residual timing delay

after transmission relative to t/T = 0 due to chromatic dispersion, see Section 3.3.2.
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Example 3.3: Group delay

A pulse centered at ω0 = 2π · 193.4 THz (i.e., λ0 ≈ 1550 nm) propagating over a SSMF (e.g.,

according to the ITU recommendation G.652) with refractive index of 1.4682 at ω0 has a (path-

average) group velocity of

vg(ω0) =
1

β̄1

≈ c

1.4682
≈ 204.190 m/µs ,

and is delayed by β̄1L ≈ 489.73 µs for L = 100 km. This average group delay at ω0 is canceled

in the signal’s baseband description by considering the retarded time frame.

If a second pulse centered at a different frequency ω0 + ∆ω is launched over the same fiber,

it is delayed by a different amount if vg(ω0) 6= vg(ω0 + ∆ω), i.e., if any of the higher order

dispersion coefficients βn(z) is different form zero. This frequency-dependent delay is modeled

in baseband by considering higher-order dispersion coefficients.

E.g., in a SSMF according to G.652, the refractive index at 228 THz (i.e., 1310 nm) is 1.4677.
A pulse centered at this frequency is instead delayed by 489.57 µs. In the ECB model using

the retarded time frame, only the relative delay between the two pulses is considered. E.g., the

second pulse at the relatively higher frequency will be delayed w.r.t. the first pulse at ω0 by

τ ≈ −0.16 µs.

Local Birefringence Coordinate Transformation Transmission of a dual-polarized signal over

a fiber is subject to birefringence, i.e., the local refractive index of the fiber core may vary for

the x- and the y-polarization. This is caused by the anisotropy of the core material or, e.g.,

mechanical stress applied to the fiber.

To ease the analysis, we treat the optical field envelope u(z, t) as a transformed signal

representation where the influence of the local, frequency-independent birefringence is can-

celed from the propagation equation using a suited (z-dependent) coordinate transformation,

see, e.g., [MM06, Sec. B]. In doing so, only differential polarization rotations (what will be

introduced as first- and higher-order polarization-mode dispersion in the next section) are still

present.

The details of this coordinate transformation are discussed in the Appendix A.1.
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3.2 Wavelength-Division Multiplexing

One of the main constraints of fiber-optical transmission systems is the bandwidth of elec-

tronic devices which is orders of magnitude smaller than the available bandwidth of optical

fibers. It is hence routine to use wavelength-division multiplexing (WDM), where a number

of so-called wavelength channels are transmitted simultaneously over the same fiber. Each

wavelength signal is modulated on an individual laser operated at a certain wavelength (or

respectively at a certain frequency) such that neighboring signals do not share the same fre-

quency band when transmitted jointly over the same fiber medium.

We assume, that each wavelength channel comprises essentially the same transmit and

receive frond-end as discussed in Section 2.2 on the linear, point-to-point system model. We

continue to use the same nomenclature also for the following considerations, but add the

optical domain as part of the transmission channel.

The nonlinear property of the fiber-optical transmission medium is the source of nonlin-

ear interference within and between different wavelength channels, so-called signal-to-signal

nonlinear interference. To ease the analysis, the accumulated nonlinear distortion on a single

selected wavelength channel in the neighborhood of other wavelength channels is considered.

The channel under consideration is called probe channel, while co-propagating wavelength

channels are called interfering channel.

When modeling transmission of a WDM signal comprising multiple wavelength channels,

both signal and system description is done using the ECB domain introduced in the previous

section. The individual wavelength ECB signals are conceptionally combined into a single,

comb-shaped communication signal which is then used to model the joint transmission of all

wavelength signals at once.

Figure 3.2 shows the block diagram of a coherent optical transmission system exemplifying

the digital, analog, and optical domains of a probe wavelength channel in the neighborhood of

other wavelength channels. Both the digital and analog domain remain the same as compared
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Figure 3.2: Equivalent complex baseband model of a point-to-point fiber-optical transmission system [FFF20].

The individual wavelength channels have a transmit and receive front-end similar to the previous chapter. At the

beginning of the optical transmission link, the optical probe signal uρ(0, t) is combined with the co-propagating

wavelength signals uν(0, t) to be transmi�ed jointly over the transmission link. The link consists of Nsp spans,

each a cascade of fiber of length Lsp and optical amplifier (OA). On the receive-side at z = L, the probe signal
is selected via a suited channel selection filter, and post-processed in the analog and digital domain.
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to Section 2.2. We now focus on the optical domain.

The probe signal in the optical domain uρ(z, t) is denoted by a subscript

ρ ∈ { 1, 2, . . . , Nch } , (3.12)

whereas interferer signals uν(z, t) are labeled by the channel index ν with

ν ∈ { 1, 2, . . . , Nch | ν 6= ρ } , (3.13)

where Nch is the total number of wavelength channels considered.

The electrical-to-optical (E/O) conversion is assumed to be ideal. This corresponds to a

lossless and frequency-flat dual-polarization (DP) inphase-quadrature (IQ) converter such that

the analog baseband signal is ideally mixed to its respective carrier frequency. Again, the

linear characteristics of the converter can be modeled as part of the analog frond-end of the

individual wavelength channels, if necessary.
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Figure 3.3: Modulation of the probe’s electrical transmit signal sρ(t) to the optical field envelope uρ(0, t) via
ideal (i.e., lossless and frequency-flat) DP-IQ conversion and mixing to the target carrier frequency. The probe’s

optical transmit signal is ideally combined with the modulated optical signals of the remaining Nch−1 wave-

length channels to obtain the WDM signal u(0, t). The joint operation is denoted as WDM in the equivalent

block diagram.

The transmitter front-end of the WDM communication signal is shown in Figure 3.3. The

two elements of the analog transmit signal sν(t) are converted to the modulated optical signals

in the x- and y-polarization. The optical field envelope uν(z, t) of each wavelength channel is

uν(0, t) = sν(t) exp(j∆ωνt) , (3.14)

modulated at ∆ων relative to the center frequency such that the (passband) carrier frequency

is ων = ω0 + ∆ων . The carrier frequency of the probe channel ωρ typically coincides with ω0
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such that ∆ωρ = 0 and uρ(0, t) = sρ(t). This also implies that the group delay of the probe

channel is already canceled from the propagation equation.

In this simplified view, all co-propagating wavelength channels are co-polarized and share

the same common phase at the input of the link. An additional phase term and birefringent

element can be used in (3.14) to invoke a random initial phase and polarization state for each

wavelength channel. Beyond that, laser phase noise (PN), both on the transmit and receive

end, is not considered at this point to focus only on deterministic effects; that is, nonlinear

signal-to-signal interference in the following chapter.

TheNch wavelength signals uν(0, t) at z = 0 are combined by an ideal optical multiplexer

to a single WDM signal. The optical field envelope of the signal comb is given by

u(0, t) =
Nch∑

ν=1

uν(0, t) =
Nch∑

ν=1

sν(t) exp(j∆ωνt) (3.15)

❞

t

U(0, ω) =
Nch∑

ν=1

U ν(0, ω) =
Nch∑

ν=1

Sν(ω − ∆ων) , (3.16)

with the Fourier pairs sν(t) ❞ tSν(ω) and u(0, t) ❞ tU (0, ω). Since ∆ωρ = 0, we can write

the optical field also as

u(0, t) = WDM{ sν(t) } def
= sρ(t) +

∑

ν 6=ρ

sν(t) exp(j∆ωνt) . (3.17)

In analogy to the spectral support of a single wavelength channel in its baseband Bν , see (2.81),

we define the WDM transmission band as

BWDM

def
= {ω

∣
∣
∣HT,ν(ω − ∆ων) 6= 0, ∀ ν } . (3.18)

The total bandwidth of the WDM signal BWDM is defined as the width of the closed interval

[ωmin
WDM, ω

max
WDM] = {ω ∈ BWDM

∣
∣
∣ωmin

WDM ≤ ω ≤ ωmax
WDM } , (3.19)

i.e., we have

BWDM

def
= ωmax

WDM − ωmin
WDM . (3.20)
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3.3 The Fundamental Evolution Equation

The propagation of the optical baseband signal u(z, t) is governed by theManakov equation. It

is a coupled set of partial differential equations in time domainwhich combines the dominating

effects governing the propagation of the optical signal—chromatic dispersion, signal power (or

equivalently field amplitude) variation, and the nonlinear Kerr interaction.

The (noiseless) Manakov equation reads [MM06, Eq. (64)]

∂

∂z
u(z, t) = j

β2(z)

2

∂2

∂t2
u(z, t)

︸ ︷︷ ︸

chromatic dispersion

+
g(z)− α(z)

2
u(z, t)

︸ ︷︷ ︸

signal gain/loss

− jγ(z)
8

9
‖u(z, t)‖2

u(z, t)
︸ ︷︷ ︸

optical Kerr effect

. (3.21)

The Manakov equation is formulated in the ECB as introduced in the previous section, i.e., the

coefficients β0(z) and the β1(z), as well as the zero-order birefringence ∆β0(z) have already

been removed from the evolution of the optical field envelope. We also neglect the dispersion

slope β3(z), and drop the PMD term ∆β1(z) and higher-order terms. To that end, the non-

linearity coefficient γ(z) is weighted by the factor 8/9 to account for the reduced effective

nonlinear strength due to birefringence and PMD-induced polarization mixing, see e.g., the

discussion in [MM06, Sec. B]. We also neglect the time- (and frequency-) dependency of the

attenuation, gain, and nonlinearity coefficient. At last, a (distributed, i.e., z-dependent) noise

termn(z, t) is also not considered in theManakov equation as wewill focus on signal-to-signal

nonlinear interference.

As before, we define the path-average coefficients as

ᾱ
def
=

1

L

∫ L

0
α(ζ) dζ , γ̄

def
=

1

L

∫ L

0
γ(ζ) dζ . β̄2

def
=

1

L

∫ L

0
β2(ζ) dζ . (3.22)

In the following, we will discuss the individual terms and the involved quantities of the Man-

akov equation in more detail.

3.3.1 Power Profile and Amplification Noise

Despite the low attenuation of optical fibers, optical amplification (OA) is required to facilitate

reliable communication over hundreds of kilometers. E.g., a typical value for the path-average

attenuation coefficient1 is 10 log10(e
ᾱ) = 0.2 dB/km, i.e., the signal power P is reduced over

one span of lengthLsp = 80 km by the amount of 10 log10(e
−ᾱLsp) = 16 dB. In deployedmetro

or long-haul transmission systems, the optical signal is typically amplified every 50–100 km.

At the same time, signal amplification adds optical amplification noise to the signal which

is the basic limit on the performance of optical transmission systems (in the linear transmission

regime). Apparently, in the context of nonlinear signal propagation the power profile of the

transmission link plays a key role, because nonlinear interactions occur essentially in the fiber

segment where the signal power is high.

1Fiber attenuation is typically specified in terms of a (relative) power loss (in logarithmic scale) per distance,
i.e., here in units of dB/km. In the literature, e.g., in [Pog12], the attenuation coefficient α(z) is sometimes also
defined as field attenuation coefficient where the factor 1/2 in the gain/loss term of (3.21) is not present.
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We assume that thermal and shot noise is negligible compared to amplified spontaneous

emission (ASE) noise [Agr02, Ch. (6.1.3)], which is a reasonable assumption if we consider, e.g.,

an optically pre-amplified receiver (i.e., an optical receiver front-end which is preceded by an

optical amplifier to boost the optical signal power before coherent reception). It is important

to note, that due to coherent reception the statistics of noise phenomena in the optical domain

are fully preserved, meaning a noise process with a circularly symmetric complex Gaussian

distribution in the optical domain maintains its characteristics in the analog electrical domain.

Neglecting all terms in the Manakov equation from (3.21) except for the amplification and

attenuation (i.e., gain and loss) term, we yield

∂

∂z
u(z, t) =

g(z)− α(z)

2
u(z, t) . (3.23)

To describe the power evolution of the signal, we introduce the normalized power profile P(z)

as a function that satisfies the equation [JK13, Eq. (7)] [Agr10, Eq. (7.1.7)]

dP(z)

dz
= (g(z)− α(z))P(z) , (3.24)

with boundary condition P(0) = P(L) = 1, i.e., the last optical amplifier resets the signal

power to the transmit power2. The z-dependence of α(z) allows for varying attenuation co-

efficients over, e.g., different fiber segments or spans. We may also define the logarithmic

gain/loss profile as

G(z)
def
= ln (P(z)) =

∫ z

0
(g(ζ)− α(ζ)) dζ . (3.25)

The last expression in (3.25) is obtained by solving (3.24) for P(z) = eG(z). The boundary

conditions on P(z) immediately give the boundary condition G(0) = G(L) = 0.

The PDE in (3.23) is solved by

U (z, ω) = U (0, ω) exp

(

G(z)

2

)

, (3.26)

i.e., the optical field at position z is simply obtained by an appropriate scaling of the input

optical signal.

The effective length Leff of a transmission link of length L evaluates to

Leff
def
=
∫ L

0
P(ζ) dζ , (3.27)

where Leff equals the length of a fictitious lossless fiber with the same integrated power (i.e.,

causing the same nonlinear impact) as the total fiber link with power/gain profile P(z). We

also define the effective length of a single span as

Leff,sp
def
=
∫ Lsp

0
e−ᾱζ dζ (3.28)

=
1− e−ᾱLsp

ᾱ
, (3.29)

2This is a convenient, but not required assumption for the formulation of end-to-end channel models.
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eᾱLsp

z [km] −→

P
(z

)
−

→

lumped

ideally distributed

0 80 160 240 320 400

−4

−3

−2

−1

0
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Figure 3.4: The gain/loss profile P(z) (le�) and the logarithmic gain/loss profile G(z) (right) of a lumped

and distributed optical amplification scheme for a 5 × 80 km link with path-invariant a�enuation coefficient

10 log10(eᾱ) = 0.2 dB/km, and neglecting signal gain depletion.

with path-average attenuation coefficient ᾱ. For a link with homogeneous spans and end-of-

span amplification we have Leff = NspLeff,sp.

For a fictitious single-span link of infinite length and path-invariant attenuation, we find

that the effective length approaches its asymptotic length defined as

Leff,a
def
= lim

Lsp→∞
Leff,sp =

1

ᾱ
. (3.30)

For a lossless fiber span or for a very short fiber segment, we find that the effective length

is (by definition) equivalent to the span length, i.e.,

lim
ᾱ→0

Leff,sp = lim
Lsp→0

Leff,sp = Lsp . (3.31)

The quantities abovewill become relevant in the followingChapterswhen assesing the strength

and temporal scale of some (first-order) perturbative terms.

Lumped Amplification In the absence of any distributed amplification the normalized power

profileP(z) decreases exponentially between the lumped amplifier stages, see (3.26). A lumped

fiber amplifier gain can be modeled by a δ-function in the local gain coefficient g(z) at the

position of each amplification stage along the link. Figure 3.4 shows the lumped amplification

scheme for a homogeneous 5× 80 km link with end-of-span amplification.

Fiber amplifiers can be driven in either constant output power or constant gain mode. In

the constant power mode, the effective signal power is decreased gradually over a cascade of

amplifiers since at every amplifier stage ASE noise is added to the signal. The additional noise

itself is amplified at the subsequent amplifier stage. If the output power at each lumped fiber

amplifier is kept constant, then the signal experiences a reduced gain due to the amount of

ASE added in the previous stage. This phenomenon is called signal-gain depletion, cf. [GD91]

[Gha17, Sec. II B.]. On the other hand, in constant gain mode, the overall power, i.e., the

joint signal and noise power, in the system increases over the number of amplifier stages. We

will neglect the effects of signal-gain depletion and only consider so-termed transparent spans

where noise does not reduce the effective signal gain. Alternatively, the effective loss of signal
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power can be incorporated into the model by introducing a so-called droop exponent into the

power profile P(z), cf. [BAL+20].

Assuming end-of-span amplification and a path-invariant attenuation coefficient with av-

erage value ᾱ, the signal attenuation is fully compensated by a (power) gain eᾱLsp at the end

of each span resulting in a gain profile g(z) with

g(z) =
Nsp∑

i=1

Gi δ(z − zi) (3.32)

= ᾱLsp

Nsp∑

i=1

δ(z − iLsp) , (3.33)

where (3.33) follows for homogeneous spans with equally-spaced amplifier stages at zi = iLsp

and equal (logarithmic) power gain Gi = ᾱLsp with i = 1, 2, . . . , Nsp.

Amplification Noise Optical amplification inflicts the signal with ASE noise at each point

along the link where an optical amplifier is placed. This can be represented in the Manakov

equation by a (local) noise term n(z, t) = [nx(z, t), ny(z, t)]
T, where the noise is assumed, in

accordance with the previous chapter, to be a zero-mean and complex circular Gaussian3 in

each polarization and spatially independent for each amplifier position.

Beside signal-to-signal nonlinear interference, signal-to-noise nonlinear interference is par-

ticularly relevant for systems with in-line dispersion compensation, but is beyond the scope

of this work. We will consider only noiseless transmission of the signal and emulate, if nec-

essary, the in-line ASE noise due to fiber amplifiers by a lumped noise source located at the

end of the transmission link at z = L. The noise power of the equivalent noise source at the

receiver is equal to the power of the accumulated noise of the individual sources. In doing so,

signal-to-noise nonlinear interference is not considered.

The local noise autocorrelation function (ACF) of the lumped fiber amplifier at position zi

is defined as [Agr10, Eq. (7.1.5)]

ϕnn(zi, τ)
def
= E{n(zi, t+ τ) nH(zi, t) } (3.34)

= nsp,i (eGi − 1)ℏω0 δ(τ) I , (3.35)

with the timing offset τ ∈ R in seconds. Here, (3.35) follows for white noise with indepen-

dent components in the x- and y-polarization centered at the passband frequency ω0. The

Planck constant is defined as ℏ
def
= h

2π
and nsp,i denotes the spontaneous emission factor [Agr10,

Sec. 7.2.3] of the ith optical amplifier.

Similar to (2.88), the Fourier transform of the noise ACF w.r.t. τ gives the local noise PSD

Φnn(zi, ω) = nsp,i (eGi − 1)~ω0 I = const., ∀ω . (3.36)

The noise PSD is (by assumption) constant, i.e., white over all frequencies (in the vicinity

of ω0, where the Taylor expansion and hence the Manakov equation is valid) and equally

3Note, that the transformation to the retarded time frame by t = t′ − β̄1z, or unitary transformation to the
local birefringence coordinate system do not affect the Gaussianity or whiteness of the process and the following
considerations still hold.
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distributed over both polarizations. This noise model is justified because we assume that the

OA bandwidth is much larger than the bandwidth of a single wavelength channel and also

beyond the processing capabilities of any practical receiver. Note, however, that the noise

PSD depends on the center frequency ω0 which coincides with the carrier frequency of the

ECB model, and is strictly speaking not white over the full WDM bandwidth.

The noise PSD accumulated over a cascade of independent, lumped amplifier stages is

given by

Φnn(ω) =
Nsp∑

i=1

Φnn(zi, ω) (3.37)

= Nspnsp (eG − 1)ℏω0 I (3.38)

= NASE I = const., ∀ω , (3.39)

where again (3.39) follows for homogeneous spans with equal logarithmic gain G = Gi and

spontaneous emission factor nsp = nsp,i ∀i. Here, we also implicitly defined the PSD constant

NASE for ASE noise (per polarization).

Given the previous assumptions to arrive at (3.39), the optical signal-to-noise ratio (OSNR)

of the probe signal centered at the carrier ωρ = ω0 is defined as [Kam13, Eq. (2.11)]

OSNR
def
=

Pρ

2NASE Bref

=
Rs

Bref

SNR , (3.40)

which reflects the ratio between the probe’s signal power Pρ and the ASE noise power in both

polarizations within the resolution bandwidth (RBW). The latter is defined by convention as

Bref
def
=

ω2
0

(2π)2 c
(0.1 nm) =

c

λ2
0

(0.1 nm) (3.41)

≈ 12.5 GHz
∣
∣
∣
λ0=1550 nm

, (3.42)

such that the ASE noise is always measured in a spectral bandwidth equivalent to 0.1 nm.

The relation between OSNR and SNR in (3.40) follows for a matched filter receiver, as

discussed in Section 2.2.3, with N0 = NASE.

In Example 3.4, a simple approximation to estimate the received OSNR for a homogeneous

link is given.
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Example 3.4: OSNR approximation

At the telecommunication wavelength of λ0 = 1550 nm, we can approximate the OSNR given

in dB at the end of a homogeneous transmission link as [ZNK97, (2.8)]

10 log10(OSNR) ≈ 58 + 10 log10(Pρ)− 10 log10(ΓEDFA)− 10 log10(eᾱLsp)− 10 log10(Nsp) ,

where we used that the shot noise limit at ω0 = 2πc/λ0 within the RBW of 12.5 GHz is

10 log10(ℏω0Bref) ≈ −58 dBm
∣
∣
λ0=1550 nm

.

We also assume that the amplifier gain eG = eᾱLsp ≫ 1 and approximate the noise figure of an

EDFA with

ΓEDFA ≈ 2nsp ≥ 2 ,

i.e., the amplifier noise figure is at least 10 log10(2) = 3 dB.

For an optical input power of 10 log10(Pρ) = 0 dBm, an EDFAnoise figure of 10 log10(ΓEDFA) =
6 dB, a total loss between two amplifier stages of 10 log10(eᾱLsp) = 20 dB andNsp = 10 spans,

one arrives at 10 log10(OSNR) = 22 dB.

3.3.2 Chromatic Dispersion Profile

To derive the transfer function of chromatic dispersion (CD) we drop all terms in the Manakov

equation (3.21) that are not related to CD to obtain

∂

∂z
u(z, t) = j

β2(z)

2

∂2

∂t2
u(z, t) (3.43)

❞

t

∂

∂z
U (z, ω) = −j

β2(z)

2
ω2U(z, ω) , (3.44)

with the correspondence ∂n

∂tn
❞ t(jω)n.

The result in (3.44) is a linear, homogeneous, first-order differential equation and can be

solved using the method of integrating factor [RE10, P. 449]. It yields

U (z, ω) = U (0, ω) exp

(

−jω2B(z)

2

)

, (3.45)

where the accumulated dispersion B(z) is a function that satisfies [JK13, Eq. (8)]

dB(z)

dz
= β2(z) . (3.46)

Here,B(z) can be used to express a z-dependency in the dispersion profile, e.g., lumped in-line

dispersion compensation or distinct fiber properties across a multi-span link. We obtain

B(z) =
∫ z

0
β2(ζ)dζ + B0 , (3.47)
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Figure 3.5: Chromatic dispersion transfer function in the equivalent complex baseband (le�) and impulse re-

sponse (right) for Rs = 64 GBd, RRC pulse shape with roll-off ρ = 0.1, β̄2 = −21 ps2/km and L = 100 km.

Due to the phase unwrap of the transfer function (right) the phase remains constant for frequencies outside the

spectral support of the communication signal.

where B0
def
= B(0) is the amount of pre-dispersion (in units of squared seconds, typically given

in ps2) at the beginning of the transmission line. Electronic pre-dispersion, as a means of

pre-compensation, is a common method to mitigate distortions due to nonlinear interactions.

If we assume that the GVD parameter is invariant under z with path-average value β̄2, and

we discard pre-dispersion, i.e., B0 = 0, than we have the simple relation B(z) = β̄2z.

We define the transfer function and impulse response of CD as

HCD(z, ω)
def
= exp

(

−jω2B(z)

2

)

(3.48)

❞

t

hCD(z, t) =
1√
2π

1
√

jB(z)
exp

(

jt2
1

2B(z)

)

. (3.49)

The transfer function HCD(z, ω) is an all-pass, i.e., |HCD(z, ω)| = 1.

The phase response, arg{HCD(z, ω) }, is shown in Figure 3.5 for the system parameters

β̄2 = −21 ps2/km, Rs = 64 GBd and L = 100 km. From the unwrapped phase response

(jumps between consecutive phase angles greater than±π are corrected by adding appropriate
multiples of ±2π) the quadratic dependency of arg{HCD(z, ω) } w.r.t. the angular frequency
ω is observed. The cascade of HCD(z, ω) and the transmit pulse shape HT(ω) = HRRC(ω) is

also shown which is the relevant part of the response for intra-channel effects of CD on the

probe channel in the baseband description.

The impulse response hCD(z, t) is complex valued, since HCD(z, ω) does not satisfy the

symmetry condition of an odd phase. Moreover, from (3.49) it is apparent that hCD(z, t) has

an infinite impulse response. The real part Re{hCD(z, t)} is shown in Figure 3.5 (right). The

joint impulse response of the cascade hCD(z, t) ∗ hRRC(t) is also shown. The width of the

joint impulse response for this specific example spans approximately 64 symbol periods. In

the next paragraph, we will see that the length of the (intra-channel) CD impulse response

(and equivalently the CD compensation filter given a straightforward DSP implementation)

scales linearly in the transmission distance z and quadratical in the symbol rate Rs.
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hCD(z, t) over the transmission distance L (for β̄2 = −21 ps2/km and RRC pulse-shape with B = (1 + ρ)Rs

and ρ = 0.2). The red marker • coincides with the example in Figure 3.5.

Intra-channel Dispersion Response By introducing the retarded time in (3.11), the group de-

lay at the center frequency ω0, i.e., the β1(z)-term in the Manakov equation is removed. How-

ever, all other frequencies experience a residual group delay relative to the reference frequency

(or in baseband, relative to the zero-frequency) due to GVD. In this paragraph, we investigate

the effect of GVD on a single wavelength channel.

To quantify the relative delay between two spectral components at ω0 and ω0 + υ accu-

mulated over a transmission length L, we can use the Taylor expansion of the path-average

propagation constant β̄(ω) = 1
L

∫ L
0 β(ζ, ω)dζ . Since we focus on the intra-channel effect of

CD, we assume that the frequency deviation υ is within the spectral support of the probe

channel, i.e., υ ∈ B. By definition we find the magnitude of the accumulated differential

propagation delay [KD14, Eq. (2.193)]

τD(z, υ)
def
= abs

(

z

vg(ω0 + υ)
− z

vg(ω0)

)

(3.50)

= abs

(

z
∂β̄(ω)

∂ω

∣
∣
∣
∣
∣
ω=ω0+υ

− z
∂β̄(ω)

∂ω

∣
∣
∣
∣
∣
ω=ω0

)

(3.51)

= abs

(

z υ
∂2β̄(ω)

∂ω2

∣
∣
∣
∣
∣
ω=ω0

)

= z|υβ̄2| . (3.52)

Note, the reference frequency ω0 equals zero in the ECB representation and coincides with the

center frequency of the probe channel ωρ. The accumulated temporal walk-off between two

spectral components at ω0 and ω0 + υ in terms of the local GVD coefficient is given by

τD(z, υ) =
∣
∣
∣
∣υ
∫ z

0
β2(ζ) dζ

∣
∣
∣
∣ . (3.53)

We can now approximate the temporal length of the intra-channel CD impulse response at

z = L and υ = 2πB, i.e., the delay spread of the frequency components within the probe’s

spectral support B at the receiver by [IK07, Eq. (30)] [Spi10, Eq. (9)]

τD(L, 2πB) = 2π|β̄2|BL = 2π|β̄2|Rs(1 + ρ)L , (3.54)
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∆ων/(2π) (right) in logarithmic scale for β̄2 = −21 ps2/km. The dispersion length LD for a single wavelength
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64 GBd wavelength channels with RRC pulse-shape and ρ = 0, and Nyquist channel separation of ∆ω/(2π) =
64 GHz (starting point of the red curve, right).

where the maximum frequency separation within the probe channel corresponds to the spec-

tral bandwidth of the probe B = Rs(1 + ρ). Normalized to the symbol period, the temporal

width of the impulse response scales with [Spi10, Eq. (9)]

τD(L, 2πB)

T
= 2π|β̄2|R2

s (1 + ρ)L , (3.55)

which is also the approximate number of overlapping (intra-channel) basic pulses. In Figure

3.5, the normalized temporal extend τD(L, 2πB)/T of about 64 symbol durations is shown by

the dashed arrow. Figure 3.7 shows the dependency of τD(L, 2πB)/T on the symbol rate Rs

and the transmission distance L in logarithmic scale.

We introduce the path-average dispersion length

LD
def
=

1

2π|β̄2|R2
s

, (3.56)

which denotes the distance after which two spectral components spaced B = Rs Hertz apart,

experience a differential group delay of T = 1/Rs due to CD. Note, that in contrast to many

textbooks (e.g., [Agr10, Eq. (9.1.10)] or [KL02, Eq. (6.18)]) we include the scaling factor 1/(2π).

This allows us to re-write the length of the impulse response from (3.55) as

τD(L, 2πB)

T
= (1 + ρ)

L

LD

. (3.57)

The dispersion length LD is also often used as a normalization constant to obtain a Manakov

equation with dimensionless variables, cf. [Agr10, Eq. (9.1.11)]. In Figure 3.7, the dependency

of the dispersion length w.r.t. the symbol rate Rs is shown for β̄2 = −21 ps2/km.
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Example 3.5: Intra-channel dispersion a�er multiples of LD

Figure 3.8 and 3.9 show how the probe’s optical transmit signal is dispersed a�er propagating

multiples of the dispersion length LD.

In this simplified se�ing, we only consider the x-polarization modulated with symbols from the

setA = { 0, 1 }, i.e., on-off keying. The basic pulse hT,ρ(t) has an RRC shape with roll-off factor

ρ = 0.2.
The optical baseband transmit signal of the probe at z = 0 is given by

ux(0, t) = sx(t) = T ·
∑

k∈Z

ax[k]hT,ρ(t− kT ) .

The optical signal subject to (3.44) is dispersed a�er propagation, mathematically expressed by

the convolution of the transmit signal with the impulse response hCD(z, t), i.e.,

ux(z, t) = hCD(z, t) ∗ ux(0, t)

=

∫

R

hCD(z, τ)ux(0, t− τ) dτ

= T ·
∑

k∈Z

ax[k]

∫

R

hCD(z, τ)hT,ρ(t− τ − kT ) dτ

=
∑

k∈Z

ax[k]T · hCD(z, t− kT ) ∗ hT,ρ(t− kT )
︸ ︷︷ ︸

g̃T,ρ(z,t−kT )

,

where the order of summation and integration can be exchanged to obtain the now z-dependent,
dispersed transmit pulse g̃T,ρ(z, t). The optical signal ux(z, t) can be interpreted as a weighted

sum of the transmit symbols ax[k] and shi�ed (by integer multiples of T ) dispersed basic pulse

g̃T,ρ(z, t) depending on the transmission distance z. This view will become relevant in under-

standing the so-termed pulse collision picture in the following chapter.

The dispersed signal is shown at z = { 2, 3, 4, 16 }LD. The width of the effective transmit pulse

scales approximately with z/LD.

Inter-channel Walk-off Similar to in-band (i.e., within the bandwidth of the probe signal)

dispersive effects due to CD in the previous paragraph, the out-of-band effect is studied, that

is, howCD affects propagation of multiple wavelength channels (see also Example 3.3). Similar

to (3.53), we define the accumulated temporal walk-off between the probe channel and a co-

propagating wavelength channel as

τwo(z,∆ων)
def
= ∆ωνB(z) , (3.58)

where ∆ων = ων − ωρ is equivalent to the channel spacing between the wavelength channel

and the probe. From (3.58) it is obvious that τwo(z,∆ων) can take positive or negative val-

ues, e.g., in case of anomalous dispersion where β̄2 < 0 and assuming a frequency separation

between a wavelength channel and the probe∆ων > 0 (to higher frequencies), we have a rela-

tive group delay τwo < 0. We conclude that in the anomalous dispersion regime, a wavelength

channel with positive frequency offset (or smaller wavelength) w.r.t. the probe channel has a

reduced latency, and vice-versa a wavelength channel with negative frequency offset has an

increased latency w.r.t. the probe.
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∑

k can be exchanged.



3.3. The Fundamental Evolution Equation 67

The (retarded) time of the νth wavelength channel relative to the probe channel (i.e., rela-

tive to the Taylor expansion of β(z, ω) at ω0) is given by

tν = t− τwo(z,∆ων) = t− ∆ωνB(z) , (3.59)

which provides another view on the channel walk-off. The νth wavelength channel has hence

a z-dependent time base at which the group delay is already canceled from the propagation

equation.

Yet another view on the relative retardation between wavelength channels can be obtained

by taking the inverse Fourier transform of the CD transfer function shifted to the baseband of

the νth interferer, i.e., by the negative channel separation −∆ων . We obtain

HCD(z, ω + ∆ων) = exp

(

−j(ω + ∆ων)2B(z)

2

)

(3.60)

t

❞

hCD(z, t) e−j∆ωνt = hCD(z, t− ∆ωνB(z)) e−jB(z)∆ω2
ν , (3.61)

wherewe can recover the additional retardation by τwo(z,∆ων) = ∆ωνB(z) in the argument of

themodified chromatic dispersion impulse response. We follow that an interferingwavelength

channel at relative frequency offset ∆ων is subject to the (un-shifted) chromatic dispersion

impulse response hCD(z, t), is additionally retarded by τwo = ∆ωνB(z), and phase rotated by

the (time-independent) factor e−jB(z)∆ω2
ν .

We can now introduce thewalk-off lengthLwo,ν whichmeasures the distance awavelength

channel at frequency ων must co-propagate with the probe channel at ωρ = ω0 to walk-off by

one symbol period (i.e., by T = 1/Rs, assuming the same symbol rate in both wavelength

channels),

Lwo,ν
def
=

1

|∆ων β̄2|Rs

. (3.62)

The walk-off length Lwo,ν versus channel spacing ∆ων is shown in Figure 3.7 for different

symbol rates Rs.
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Example 3.6: Inter-channel walk-off at multiples of Lwo

The walk-off between the probe signal ux,ρ(z, t) and a co-propagating wavelength signal

ux,1(z, t) is visualized in Figure 3.10 and 3.11.

Similar as in Example 3.5, the probe signal and the co-propagating wavelength signal are visu-

alized in their respective ECB representation. We assume that both signals are modulated with

symbol rate Rs and RRC pulse-shape with roll-off factor ρ = 0.2. To model the joint propaga-

tion, the co-propagating wavelength signal is mixed to its carrier frequency ∆ω1 = 2π · 1.2Rs

relative to the probe at

ux,1(0, t) = sx,1(t) exp(j∆ω1t) = T ·
∑

k∈Z

bx,1[k]hT,1(t− kT ) exp(j∆ω1t) .

The dispersed signal ux,1(z, t) with relative frequency offset ∆ω1 can be expressed as

ux,1(z, t) = hCD(z, t) ∗ ux,1(0, t)

=

∫

R

hCD(z, τ)ux,1(0, t− τ) dτ

= T ·
∑

k∈Z

bx,1[k]

∫

R

hCD(z, τ)hT,1(t− τ − kT ) exp(j∆ω1(t− τ)) dτ

=
∑

k∈Z

bx,1[k]T exp(−jB(z)∆ω2
1) · hCD(z, t− kT − ∆ω1B(z)) ∗ hT,1(t− kT )

︸ ︷︷ ︸

g̃T,1(z,t−kT )

× exp(j∆ω1t) ,

where we use (3.61) to explicitly express the temporal retardation within the argument of the

CD impulse response.

Similarly as in the previous example, we obtain the z-dependent, dispersed (baseband) transmit

pulse of the interferer g̃T,1(z, t), i.e., compared to the previous example, the interferer is affected

by a delayed basic pulse, and the time-independent exponential e−jB(z)∆ω2
1 .

Assuming B(z) = β̄2z, both probe and interferer signals are dispersed at z = 4Lwo,1, and

relatively delayed with respect to each other by

∆ω1B(4Lwo,1) = ∆ω1β̄2 4Lwo,1 = 4T .

E.g., for Rs = 64 GBd and β̄2 = −21 ps2/km, the walk-off length calculates to

Lwo,1 = 1.54 km .

Hence, in Figure 3.11, the temporal walk-off between the two signals a�er 4Lwo,1 is equivalent

to 4 symbol periods. Due to the anomalous dispersion (β̄2 < 0) and the positive frequency offset
(∆ω1 > 0), the signal u1(z, t) has a reduced latency, i.e., travels faster over the dispersive fiber.

The group-delay free time base of the co-propagating wavelength signal t1 (see top horizontal

axis) is shi�ed by 4T with respect to the time base of the probe signal t, see (3.59).
The intra-channel effect of the CD response on the interferer is exactly the same as for the

probe signal, i.e., the fundamental pulses, shown in blue, are subject to the same amount of

pulse spread (since we neglect the dispersion slope β̄3) but are relatively delayed with respect

to each other. This view is also in agreement with (3.60)–(3.61).
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Figure 3.10: Optical field envelope of the probe ux,ρ(0, t) and a co-propagating wavelength signal ux,1(0, t) =
sx,1(t) exp(j∆ω1t) at z = 0. Both signals are shown in their respective ECB, i.e., before multiplexing. The probe

channel is modulated with ax[k] at the reference frequency ωρ = ω0, the interfering wavelength channel is

modulated with bx,1[k] and will be mixed relative to the probe with frequency separation ∆ω1 = 2π · 1.2Rs in

baseband. In both cases, the basic pulse hT(t) has an RRC shape with roll-off ρ = 0.2.
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Figure 3.11: Dispersed optical field envelope and dispersed basic pulses a�er z = 4Lwo,1. The ratio z/Lwo,1

is a measure of the temporal walk-off between the probe channel and the interfering wavelength channel, and

quantifies the number of traversed pulses. Vice-versa, the (normalized) reference time frame of the interfering

wavelength channel t1/T is retarded by ∆ω1/T
∫ z

0
β2(ζ)dζ = z/Lwo,1 w.r.t. the time frame of the probe t/T .
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3.3.3 Linear Channel Transfer Function

We can now define the impulse response and transfer function of the linear channel—that is,

when the fiber nonlinearity coefficient is zero, i.e., γ = 0 in (3.21). To that end, we define

the optical field envelope uLIN(z, t) ❞ tULIN(z, ω) that propagates solely according to linear

effects with the boundary condition uLIN(0, t) = u(0, t) at the input of the transmission link.

The linear channel transfer function and impulse response is then given by

HC(z, ω)
def
= exp

(

G(z)− jω2B(z)

2

)

(3.63)

t

❞

hC(z, t) =
1√
2π

1
√

jB(z)
exp

(

G(z) + jt2/B(z)

2

)

, (3.64)

which represents the joint effect of chromatic dispersion and the gain/loss variation along the

link.

We may also calculate the useful inverse of the channel transfer function and impulse

response as

H−1
C (z, ω) = exp(−G(z)) H∗

C(z, ω) (3.65)
t

❞

F−1{H−1
C (z, ω) } =

1

2π|B(z)|h
−1
C (z, t) , (3.66)

where we use
√

jB(z)
√

−jB(z) = |B(z)| with B(z) ∈ R. In analogy we find

h∗
C(z, t) = h∗

C(z,−t) ❞ tH∗
C(z, ω) = H∗

C(z,−ω) , (3.67)

which will be used in the next chapter in the context of the first-order perturbation method.

3.3.4 Optimum Receive Filter for the Linear Fiber Channel

Now, that we defined the linear channel impulse response and transfer function, the optical

receiver front-end matched to the linear fiber-optical channel is derived.

Again, we assume ideal optical-to-electrical (O/E) and analog-to-digital (A/D) conversion.

The received continuous-time, optical signal u(L, t) is first matched filtered w.r.t. the linear

channel response and transmit pulse, and then sampled at the symbol period T to obtain

the discrete-time receive symbols y[k]. The receiver front-end is shown in Figure 3.12. It

compensates for any residual link loss and performs perfect CD compensation. Note, that

the analog front-end is usually realized using an oversampled digital representation. E.g.,

CD compensation is typically performed in the (oversampled) domain of receiver DSP. Here,

we prefer to conceptually incorporate it in the continuous-time domain since it significantly

simplifies derivation of the channel model.
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Figure 3.12: Receiver front-end matched to the linear optical channel transfer functionHC(L, ω) and the trans-

mit basic pulse of the probe HT,ρ(ω). Matching to the channel transfer function at z = L corresponds

to the compensation of residual accumulated chromatic dispersion, i.e., |HC(L, ω)| = 1 and H∗
C(L, ω) =

H∗
CD(L, ω) = H−1

CD(L, ω). The pre-factor T/ET,ρ re-normalizes the (noiseless part of the) received sequence

y[k] to the variance of the signal constellation σ2
a .

In accordance with the definition of the linear receiver front-end defined in (2.91)–(2.92),

the transfer function of the entire cascade of the receiver front-end is given by

HR(ω)
def
=

T

ET,ρ

H∗
C(L, ω)H∗

T,ρ(ω) =
1

ET,ρ

GR(ω) (3.68)

t

❞

hR(t) =
T

ET,ρ

h∗
C(L,−t) ∗ h∗

T,ρ(−t) =
1

ET,ρ

gR(t) , (3.69)

with the (dimensionless) receiver pulse shape gR(t) ❞ tGR(ω). Due to P(L) = 1 and the

pre-factor T/ET,ρ, the noiseless part of the received signal is scaled to the variance of the

constellation σ2
a. Since we only consider T -spaced sampling any fractional sampling phase-

offset or timing synchronization4 is already incorporated as suited delay in the receive filter

hR(t), s.t. the transmitted and received sequence of the probe are perfectly aligned in time.

3.3.5 Fiber Nonlinearity

The nonlinear effect considered in this thesis is the optical Kerr effect [Agr06, Ch. 6]. The Kerr

effect is directly related to the real part of the material polarization (cf. [Agr06, Ch. 1.3, and

Ch. 10]) and results in a local refractive index change depending on the intensity of the electric

field in the fiber. On the other hand, the imaginary part of the material polarization is related

to stimulated Raman scattering, not considered in this work.

The Kerr effect is reflected by the last term in the Manakov equation (3.21). The expression

depends on the product

‖u(z, t)‖2
u(z, t) = (|ux(z, t)|2 + |uy(z, t)|2) u(z, t) , (3.70)

and on the nonlinear coefficient

γ(z) =
ω0n2(z)

cAeff(z)
, (3.71)

with the Kerr coefficient n2(z) (typically 3 × 10−20 m2/W for silica fibers), and the effec-

tive fiber area Aeff(z). A typical value for the (path-average) nonlinear coefficient is γ̄ ≈
4In particular, the group delay L/vg(ω0) of the probe signal and any constant common phase rotation β0(L)

has already been canceled from the propagation equation in the baseband model.
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1.1 W−1km−1 for SSMF. Note, that due to the normalization of the signal, the nonlinearity co-

efficient has strictly speaking units of m−1 to be rigorous within the framework of our signal

definition, see discussion in Section 2.1.

The optical Kerr effect leads to a number of nonlinear effects, which were first classi-

fied in the framework of dispersion-managed transmission systems. In dispersion managed

transmission, the signal’s pulse shape is either maintained or (periodically) recovered during

transmission by means of dispersion-shifted or dispersion-compensating fibers. This leads to

highly deterministic nonlinear distortions giving rise to the (traditional, phenomenal) taxon-

omy of nonlinear effects, namely: self-phase modulation (SPM) [Agr06, Ch. 4], cross-phase

modulation (XPM) [Agr06, Ch. 7], cross-polarization modulation (XPolM), and classical four-

wave mixing (FWM) [Agr06, Ch. 10].

In the present work, we focus on (dispersion-) uncompensated (i.e., unmanaged) trans-

mission where the original transmit pulse is constantly changing during propagation due to

chromatic dispersion. In this situation, the nonlinear effects, see above, do not manifest them-

selves as clear phase distortions (i.e., phase modulation) after reception. Instead, depending

on the considered system scenario, those nonlinear effects can also have features similar to

additive noise with Gaussian-like distortions. We hence adopt the taxonomy introduced by

Poggiolini et al. [Pog12, Sec. VI]. Herein, three different cases of nonlinear (signal-to-signal)

distortions are distinguished by its origin rather than its manifestation:

self-channel interference (SCI), i.e., interference caused by the (probe) wavelength chan-

nel itself,

cross-channel interference (XCI), i.e., interference between the probe channel and a sin-

gle interfering wavelength channel (aka. degenerate cross-channel interference), and

multi-channel interference (MCI), i.e., interference between the probe channel and two

or three other interfering wavelength channels (aka. non-degenerate cross-channel in-

terference).

To provide a brief mathematical description of the three categories, we consider only the

nonlinear term in the Manakov equation without dispersion and attenuation. This approxi-

mation is, e.g., valid for very short fiber segments of length z ≪ LD and z ≪ Leff,a where the

dispersion- and loss-related terms can be dropped. The Manakov equation reduces to

∂

∂z
u(z, t) = −jγ(z)

8

9
‖u(z, t)‖2

u(z, t) . (3.72)

If we assume that the nonlinear coefficient does not depend on z, e.g., we only consider the

path-average γ̄, then the simple solution is obtained by

u(z, t) = u(0, t) exp
(

−jγ̄
8

9
‖u(0, t)‖2 z

)

, (3.73)

i.e., for the non-dispersive and attenuation-free setting, the signal at z = L is given by the input

signal u(0, t) rotated by a fixed value in phase depending on the signal intensity ‖u(0, t)‖2 at
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the input and the length of the link L. In this context, we define the (ν-dependent) nonlinear

length [Agr06, Eq. (4.1.2)] as

LNL,ν
def
=

1

γ̄Pν

. (3.74)

wherePν =
σ2

b,ν

T
ET,ν , see (2.77), is the optical launch power of the ν

th wavelength channel. The

nonlinear length LNL,ν is equivalent to the propagation distance at which the (time-average)

phase rotation amounts to 8/9 rad assuming only a single wavelength channel with launch

power Pν .

We continue to expand the nonlinear source term on the right-hand side of (3.72) into

expressions that result in self-, cross-, and multi-channel interference. It is defined as

w(z, t)
def
= ‖u(z, t)‖2

u(z, t) = uH(z, t)u(z, t) u(z, t) . (3.75)

The source term w(z, t) can be expanded at z = 0 using (3.14)–(3.15) to arrive at

w(0, t) =
Nch∑

ν2=1

uH
ν2

(0, t)
Nch∑

ν1=1

uν1(0, t)
Nch∑

ν3=1

uν3(0, t) (3.76)

=
Nch∑

ν2=1

sH
ν2

(t) exp(−j∆ων2t)
Nch∑

ν1=1

sν1(t) exp(j∆ων1t)
Nch∑

ν3=1

sν3(t) exp(j∆ων3t) . (3.77)

The expansion at any other z is not exact due to z-dependency of the nonlinear termw(z, t) ac-

cording to (3.72), but generally the following considerations and the taxonomy derived thereof

still hold.

We are now interested in the nonlinear distortion generated in the support of the probe

channel. To that end, the following frequency constraint on the relative offsets in (3.77) must

be met

∆ωρ
!

= ∆ων1 − ∆ων2 + ∆ων3 , (3.78)

where, per assumption, the probe wavelength channel is located at∆ωρ = 0 in the ECBmodel.

The relevant source term (which has support in the probe’s spectral domain) can now be sorted

into groups by degeneracy,

w(0, t)
∣
∣
∣
supp(W )⊂Bρ

= ‖uρ(0, t)‖2
uρ(0, t)

︸ ︷︷ ︸

SCI
ν1=ν2=ν3=ρ

+
∑

ν 6=ρ

‖uν(0, t)‖2
uρ(0, t)

︸ ︷︷ ︸

XCI
ν1=ν2=ν, ν3=ρ

(3.79)

+
∑

ν 6=ρ

uν(0, t)uH
ν (0, t)uρ(0, t)

︸ ︷︷ ︸

XCI
ν1=ρ, ν2=ν3=ν

+
∑∑

ν2,ν3 6=ρ
ν1=ν2+ν3−ρ

∑

uH
ν2

(0, t)uν1(0, t)uν3(0, t)

︸ ︷︷ ︸

MCI

,

where we used uH
ν (z, t)uρ(z, t)uν(z, t) = uν(z, t)uH

ν (z, t)uρ(z, t). Here, we also assumed

(without loss of generality) that the wavelength channels are arranged on a regular frequency

grid, i.e., spaced at integer multiples of a common channel separation∆ω. Any other nonlinear
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contributions which do not manifest themselves within the bandwidth of the probe channel

Bρ are neglected in the expansion above.

The first term on the right-hand side of (3.79) is the source for SCI (aka. SPM using the

traditional taxonomy), and has a doubly-degenerate form (ν1 = ν2 = ν3 = ρ) since only the

probe channel itself contributes to the nonlinear interaction.

The second and third term on the right-hand side of (3.79) are both contributions due to

XCI and can be combined using (A.40) to rearrange

uν(z, t)uH
ν (z, t) =

1

2

(

‖uν(z, t)‖2
I + ~uν(z, t) · ~σ

)

, (3.80)

where we make use of a common notation in optical communication using the dot product of

a Stokes vector and Pauli vector to denote Hermitian matrices in C
2×2. The unfamiliar reader

may consult Appendix A.1 for an introduction on the Jones and Stokes formalism. We can use

(3.80) to obtain

w(0, t)
∣
∣
∣
supp(W )⊂Bρ

= ‖uρ(0, t)‖2
uρ(0, t)

︸ ︷︷ ︸

SCI
ν1=ν2=ν3=ρ

+
∑

ν 6=ρ

(
3

2
‖uν(0, t)‖2

I +
1

2
~uν(0, t) · ~σ

)

uρ(0, t)

︸ ︷︷ ︸

XCI
ν1=ν2=ν, ν3=ρ

+
∑∑

ν2,ν3 6=ρ
ν1=ν2+ν3−ρ

∑

uH
ν2

(0, t)uν1(0, t)uν3(0, t)

︸ ︷︷ ︸

MCI

, (3.81)

where the XCI contribution is single-degenerate (ν1 = ν2, ν3 = ρ). The first term in the paren-

thesis is, in traditional taxonomy, associated with XPM common in both x- and y-polarization.

If the co-propagating wavelength channels are not co-polarized but instead randomly polar-

ized w.r.t. the probe channel, the XPM term is in fact the average over all relative polarization

states of the probe and interfering channels. Similar to SPM, XPM induces a (both temporally

and spatially) local phase modulation of the optical signal u(z, t), see the propagation equa-

tion (3.72). These (local) phase distortions will be transformed into a mixture of phase and

amplitude distortions by chromatic dispersion.

The second term in the parenthesis is associated with XPolM (i.e., nonlinearly induced

birefringence) and relative, polarization-dependent XPM.

The last term on the right-hand side relates to MCI. We will see that typically MCI is

negligible for most relevant system scenarios using current technology. Whether MCI can be

neglected depends (to first order) on the channel separation, as the so-called FWM efficiency

decreases rapidly when the contributing wavelength channels are spaced far abart, see next

chapter.

3.3.6 The Sampled Manakov Equation

The split-step Fourier method (SSFM) [SHZM03] is a numerical (approximate) solution to the

Manakov equation and the de-facto standard method to perform numerical simulations for
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Figure 3.13: Split-step Fourier method for solving the end-to-end optical channel. In the block diagram, a trans-

mission link is considered with lumped end-of-span amplification compensating for the exact span loss via the

amplifier (power) gain eG = eᾱLsp . The Manakov equation is solved numerically using an oversampled repre-

sentation of u[i, k] in small steps of Zs where linear propagation viaHC,∆[i, µ] and the nonlinear phase rotation
are performed sequentially.

optical transmission systems. The algorithmic implementation is depicted as a block diagram

in Figure 3.13. Here, the transmission link is divided into fiber spans (due to the amplification

scheme selected in this example), and each span itself is divided into small fiber sections of

length Zs, known as the step size of the split-step algorithm. This is essentially equivalent to

sampling the optical field envelope in the spatial domain at integer multiples of Zs (aka. con-

stant step-size method [SHZM03]). Within each section the linear and the nonlinear effects are

treated separately (and sequentially). Accordingly, the SSFM is also termed sampled NLSE, or

alternatively, sampled Manakov equation in case of two polarization modes.

The numerical calculations are carried out on an oversampled representation (in both time

and space) of the ECB signal

u[i, k]
def
= u(iZs, kTs) , (3.82)

with i ∈ N and k ∈ Z. The (temporal) sampling frequency ωs
def
= 2πfs = 2π/Ts is typi-

cally chosen much higher than the bandwidth BWDM, see (3.20), of the optical field envelope.

Since the nonlinear Kerr effect is (to first approximation) a third-order nonlinear system, the

sampling frequency is commonly chosen three times the Nyquist frequency of the optical field

envelope [PBP97], i.e., ωs = 3/2BWDM, assuming that the spectral support of the field envelope

is centered around zero. Then, (first-order) nonlinear mixing products fall outside the original

signal band BWDM without cyclic wrapping in frequency domain.

To efficiently carry out the numerical calculations of the linear propagation step, see

(3.63)–(3.64), the frequency-domain representation of (3.82) is also discretized. This allows

to solve the linear step in (discrete-) frequency domain by performing a point-wise multipli-

cation of the DFT transform u[i, k] ❞ tU [i, µ] with the sampled (differential) linear transfer

function. We define the (differential) linear transfer function between two consecutive dis-
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crete, spatial points (i.e., steps) as

HC,∆[i, µ]
def
= HC((i+ 1)Zs, µ/T0)/HC(iZs, µ/T0) , (3.83)

where T0 is the period of the signal (aka. time window, or fundamental period of the sequence

in time domain) withMs = T0/Ts samples per period. In the subsequent step, the (differential)

nonlinear phase rotation, see (3.73), is applied by a (point-wise) multiplication in (discrete-)

time domain with the phasor

exp (−jφNL,Zs [i, k])
def
= exp

(

−jγ̄
8

9
‖u[i, k]‖2 Zs

)

. (3.84)

The discretization in both time and frequency results in a T0-periodic sequence in time, and a

1/Ts-periodic sequence in frequency.

The numerical simulations performed in Chapter 5 are implemented via the symmetric

SSFM [SHZM03] with adaptive step size Zs(z), i.e., instead of uniform spatial sampling, the

step size depends on z, particularly on the power profile P(z) such that the differential non-

linear phase-rotation per step (3.84) does not exceed a certain maximum value. By adjusting

the step-size, we require that the nonlinear phase rotation per step is, e.g., no larger than

φNL,Zs [i, k] = γ̄
8

9
‖u[i, k]‖2 Zs

!
< φmax

NL,Zs
. (3.85)

The numerical system simulations performed in Chapter 5 are carried out with the setting

φmax
NL,Zs

= 3.5× 10−4 rad which will result in accurate solutions for the considered scenarios.
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4. The Continuous-Time Perturbation

Approach

The principle philosophy of fiber-optical channel models based on the perturbation method

is to assume that nonlinear distortions are weak compared to its source, i.e., the propagating

signal. With weak we mean that the power of the nonlinear distortion is considerably smaller

than the power of the signal (sometimes called pseudo-linear transmission regime). Starting

from this premise the well-known RP ansatz for the continuous-time, optical end-to-end chan-

nel is written as [VB02, Eq. (14)] [Wei06, Eq. (3)] [JK13, Eq. (2)]

u(z, t) = uLIN(z, t) + ∆u(z, t) (4.1)
❞

t

U (z, ω) = ULIN(z, ω) + ∆U (z, ω) , (4.2)

where uLIN(z, t) ❞ tULIN(z, ω) is the signal propagating according to only linear effects, i.e.,

according to (3.63), (3.64). In this context, the nonlinear distortion

∆u(z, t) ❞ t∆U (z, ω) ∈ C
2 ,

aka. the perturbation is generated locally according to nonlinear signal-signal interaction and

is then propagated linearly and independently of the signal uLIN(z, t) to the end of the optical

channel at z = L. We assume that the optical perturbation at z = 0 is zero, i.e., ∆u(0, t) = 0.

The received signalu(L, t) is then given as the sum of the solution for the linearly propagating

signal and the perturbation representing the accumulated nonlinear effects, i.e.,

u(L, t) = u(0, t) ∗ hC(L, t) + ∆u(L, t) (4.3)
❞

t

U (L, ω) = U(0, ω)HC(L, ω) + ∆U (L, ω) . (4.4)
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u(0, t)

∆u(L, t)

Figure 4.1: Block diagram and terminology used for the corresponding end-to-end perturbation models. The op-

tical end-to-end perturbation is denoted by ∆u(L, t), the (analog) baseband end-to-end perturbation is denoted

by ∆s(t), and the discrete-time end-to-end perturbation is denoted by ∆a[k].

Likewise, end-to-end relations can be also formulated for the baseband end-to-end channel,

and the discrete-time end-to-end channel, see, e.g., Figure 1.1. The associated block diagram

and terminology used throughout this thesis is highlighted in Figure 4.1.

The ultimate objective of the current and the following chapter is to develop the input/output

relation of the equivalent discrete-time end-to-end channel in the form of

y[k] = a[k] + ∆a[k] (4.5)
❞

t

Y (ejωT ) = A(ejωT ) + ∆A(ejωT ) , (4.6)

where the total perturbation is concentrated in a single discrete-time term∆a[k] ❞ t∆A(ejωT ).

To that end, we start with the theory of first-order perturbation developed for the continuous-

time, optical end-to-end relation (i.e., the inner equivalent block diagram in Figure 4.1) and suc-

cessively embed the required functional blocks from the analog and discrete-time domain. In

this chapter, we focus on the continuous-time end-to-end description, i.e., from the baseband

transmit signal of the probe (with subscript ρ) and its interferers sν(t) to the received signal

r(t). The nonlinear impulse response and the nonlinear transfer function hNL(τ ) ❞ tHNL(ω)

are introduced and their relation to the third-order Volterra kernel are discussed. The map

strength ST,ρ ∝ Leff/LD (or equivalently the ν-dependent ST,ν ∝ Leff/Lwo,ν) will be shown to

be a measure of the temporal extent, i.e., the memory of the nonlinear interaction (relative to

the probe’s symbol rate).
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4.1 The First-Order Regular Solution in Frequency Domain

Inserting the ansatz from (4.2) into the Manakov equation (3.21) we obtain

∂

∂z
(uLIN(z, t) + ∆u(z, t)) = j

β2(z)

2

∂2

∂t2
(uLIN(z, t) + ∆u(z, t)) (4.7)

+
g(z)− α(z)

2
(uLIN(z, t) + ∆u(z, t))

− jγ(z)
8

9

(

‖uLIN(z, t) + ∆u(z, t)‖2 (uLIN(z, t) + ∆u(z, t))
)

,

where the expansion of the nonlinear source term results in
(

‖uLIN(z, t) + ∆u(z, t)‖2 (uLIN(z, t) + ∆u(z, t))
)

= ‖uLIN(z, t)‖2
uLIN(z, t) (4.8)

+ 2Re{uH
LIN(z, t)∆u(z, t)}uLIN(z, t)

+ ‖∆u(z, t)‖2
uLIN(z, t)

+ ‖uLIN(z, t)‖2
∆u(z, t)

+ 2Re{uH
LIN(z, t)∆u(z, t)}∆u(z, t)

+ ‖∆u(z, t)‖2
∆u(z, t) .

The main approximation of the perturbation approach is to neglect all cross-products be-

tween the signal uLIN(z, t) and the perturbation ∆u(z, t) or the perturbation with itself, such

that only the leading nonlinear term ‖uLIN(z, t)‖2
uLIN(z, t) is considered. This allows us to

split (4.7) into the following set of differential equations

∂

∂z
uLIN(z, t)− j

β2(z)

2

∂2

∂t2
uLIN(z, t)− g(z)− α(z)

2
uLIN(z, t) = 0 , (4.9)

and

∂

∂z
∆u(z, t)− j

β2(z)

2

∂2

∂t2
∆u(z, t)− g(z)− α(z)

2
∆u(z, t) = −jγ(z)

8

9
‖uLIN(z, t)‖2

uLIN(z, t) .

(4.10)

The first equation is a linear, homogeneous second-order PDE and describes the evolution of

the linear optical field envelope. The second equation is of the same form, but has an additional

inhomogeneous term on the right-hand side of the equation, i.e., the linearly propagating field

acts as the source of the local perturbation in the optical domain.

The solution of the first PDE in (4.9) has been derived in Section 3.3.3 using the linear

channel impulse response and transfer function hC(z, t) ❞ tHC(z, ω) representing the joint

effects of chromatic dispersion and the gain/loss variation along the link. We will use the

solution uLIN(z, t) on the right-hand side of (4.10).

The solution to the second PDE in (4.10) is obtained by first performing a signal trans-

formation on the optical perturbation such that the gain/loss profile is instead represented

by a re-scaled nonlinear source term. To that end, we define the (path-) normalized optical

perturbation ∆ũ(z, t) to have constant average power over z with

∆ũ(z, t)
def
= ∆u(z, t)/

√

P(z) , (4.11)
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where P(z) = exp(G(z)) is the normalized power profile defined in (3.24)–(3.25). The same

normalization strategy is, e.g., also pursued to obtain the power-normalized nonlinear Schrö-

dinger equation (or equivalently the normalized Manakov equation), see [Agr06].

Starting from (4.10), the chain rule of calculus applied to ∆u(z, t) =
√

P(z)∆ũ(z, t), using

(4.11), yields

∂

∂z

(√

P(z) ∆ũ(z, t)
)

=
g(z)− α(z)

2

√

P(z) ∆ũ(z, t) +
√

P(z)
∂

∂z
∆ũ(z, t) , (4.12)

where we use the derivative of the power profile from (3.24). The expression can be substituted

in (4.10) and both sides are divided by
√

P(z) = e
G(z)

2 to arrive at1

∂

∂z
∆ũ(z, t)− j

β2(z)

2

∂2

∂t2
∆ũ(z, t) = −jγ(z)

8

9

1
√

P(z)
‖uLIN(z, t)‖2

uLIN(z, t) , (4.13)

where the gain/loss profile P(z) now effectively scales the strength of the nonlinear source

term on the right-hand side. For ease of notation, we assume that the local z-variation in

γ(z) can be equivalently expressed in a variation of either a local gain g(z) or the local fiber

attenuation coefficient α(z). Hence, we only consider the path-average nonlinear coefficient

γ̄ from (3.22) and capture the z-dependency of γ(z) via P(z) in the following.

Fourier transforming equation (4.13), we obtain a first-order, linear, inhomogeneous ordi-

nary differential equation

∂

∂z
∆Ũ (z, ω) + jω2β2(z)

2
∆Ũ (z, ω) = −jγ̄

8

9
e−

G(z)
2 F{‖uLIN(z, t)‖2

uLIN(z, t) } , (4.14)

where we used the symbolic correspondence ∂2

∂t2
❞ t −ω2.

The method of the integrating factor [RE10, P. 449] can be applied to solve the equation

(4.14) where the integrating factor is equal to

exp
(

jω2 1

2

∫ z

0
β2(ζ)dζ

)

= exp

(

jω2B(z)

2

)

. (4.15)

We obtain the solution [ME12, Eq. (31)], [Joh12, Eq. (17)]

∆Ũ (z, ω) = −jγ̄
8

9
e−jω2 B(z)

2

∫ z

0
e+jω2 B(ζ)

2 e−
G(ζ)

2 F{‖uLIN(ζ, t)‖2
uLIN(ζ, t) } dζ (4.16)

= −jγ̄
8

9
HCD(z, ω)

∫ z

0
H−1

C (ζ, ω) F{‖uLIN(ζ, t)‖2
uLIN(ζ, t) } dζ , (4.17)

where we used the chromatic dispersion transfer function HCD(z, ω) from (3.48), and the in-

verse of the linear channel transfer function HC(z, ω) from (3.63).

A pictorial explanation of the equation is given in Figure 4.2 (cf. also the parallel fiber model

in [VSB02, Sec. IV]). The optical signal at the input of the first fiber span uLIN(0, t) propagates

linearly to the (arbitrary, fixed) location dζ where the local perturbation is generated according

1The procedure via the normalized optical perturbation is equivalent to themethod of integrating factor [RE10,
P. 449], which exploits the product and chain rule similarly.
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Figure 4.2: The parallel fiber-optical channel model [VSB02] derived from first-order regular perturbation. The

local perturbations from the parallel branches are summed over ζ each associated with a unique local position

along the transmission link. In the limit dζ → 0, the summation becomes an integral as in (4.17).

to the double product of the local, linearly propagating signal, i.e., ‖uLIN(dζ, t)‖2
uLIN(dζ, t).

The generated perturbation is then propagated back to the fiber input at z = 0 via the inverse

linear transfer function H−1
C (dζ, ω) and then summed with all remaining perturbations from

locations other than dζ . The sum over all local perturbations is then jointly propagated to

the end of the transmission link at z = L by the dispersion transfer function HCD(L, ω). In

the limit dζ → 0, the branching and summation over the z-dimension in Figure 4.2 becomes

continuous. By definition, we have P(L) = 1, and it follows that ∆u(L, t) = ∆ũ(L, t).

The authors of [VSB02] call this channel model derived from first-order RP a parallel fiber

model, since, in contrast to the sequential SSFM, once a local perturbation is generated, it does

no longer interact nonlinearly during transmission. When second- (or higher-) order terms

are included into the RP approach, then local perturbations may act as nonlinear source, see

right-hand side of (4.8), for higher-order perturbations. In the limit, i.e., when the order of

the perturbation approach goes to infinity, the RP solution approaches the SSFM solution (for

which the step-size ∆z → 0), see also discussion in [VSB02, Sec. IV]. The term regular in RP

implies that the asymptotic solution approaches the true solution of the nonlinear system.

Note, that the accumulated chromatic dispersion is generally compensated by the receiver

(front-end) using bulk electronic dispersion compensation such that the system net dispersion

after the receiver front-end is zero, see Section 3.3.4. Then, the effective perturbation after

reception, i.e., after the channel matched filter, is the perturbation propagated back to the

fiber input at z = 0. We can hence cancel the dispersion operator HCD(L, ω) at the channel

output in Figure 4.2 and only consider the system relevant end-to-end model (i.e., including

receiver-side chromatic dispersion compensation).

We now continue to modify the right-hand side of (4.17) by carrying out the Fourier trans-

form F{ · } to obtain

‖uLIN(z, t)‖2
uLIN(z, t) = ( |uLIN,x(z, t)|2 + |uLIN,y(z, t)|2 ) uLIN(z, t)

❞

t (4.18)
(

ULIN,x(z, ω) ∗ U∗
LIN,x(z,−ω) + ULIN,y(z, ω) ∗ U∗

LIN,y(z,−ω)
)

∗ULIN(z, ω) ,

using uLIN(z, t) = [uLIN,x(z, t), uLIN,y(z, t)]
T. We may write the relation using the short-hand



82 4. The Continuous-Time Perturbation Approach

notation uH
LIN(z, t)uLIN(z, t)uLIN(z, t) ❞ tUH

LIN(z,−ω) ∗ULIN(z, ω) ∗ULIN(z, ω), see below.

We find that the (double) product of the time-domain optical signal turns into a (double)

convolution in frequency domain. The definition of the convolution, see (2.38), is used to

exemplarily show the result for the first (of the four) convolution cross products

ULIN,x(ω) ∗ U∗
LIN,x(−ω) ∗ ULIN,x(ω) =

(∫

R

ULIN,x(ω1)U
∗
LIN,x(ω1 − ω)dω1

)

∗ ULIN,x(ω) (4.19)

=
∫

R2
ULIN,x(ω1)U

∗
LIN,x(ω1 − ω′

2)ULIN,x(ω − ω′
2) dω1dω

′
2

=
∫

R2
ULIN,x(ω1)U

∗
LIN,x(ω2)ULIN,x(ω − ω0 + ω2) d2ω

=
∫

R2
ULIN,x(ω + υ1)U

∗
LIN,x(ω + υ1 + υ2)ULIN,x(ω + υ2) d2υ ,

where we omit the z-dependency of the optical signal for short notation. Similar expressions

are obtained for the three remaining x/y-cross products. In the literature, onemay find also find

variations of the form in (4.19) depending on the exact definition of the convolution integral.

τ2

t3

τ2

t2

τ1

t1 t

ux(z, t)

t

(a) Time domain

υ2

ω3

υ2

ω2

υ1

ω1ω

Ux(z, ω)

ω

(b) Frequency domain

Figure 4.3: Definitions of the auxiliary (i.e., helper) time and frequency variables. Note, that both τ1, τ2 and υ1,

υ2 can take any value, positive and negative, in R. The gray curve drawn le� and right is a fictitious signal to

indicate the spectral support in time- and frequency domain.

We typically use the common (absolute) frequency variables [ω1, ω2, ω3]
T and the common

(relative to ω) auxiliary frequency variables [υ1, υ2]T related by definition as

ω1
def
= ω + υ1 (4.20)

ω2
def
= ω + υ1 + υ2 (4.21)

ω3
def
= ω − ω1 + ω2 = ω + υ2 , (4.22)

to express the optical signal U(z, ·). Figure 4.3 summarizes the definitions of the time- and

frequency variables that are used throughout this text.

We can now write the optical perturbation U (z, ω) at z = Lwith
√

P(L) = 1 using again
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the concise vectorial notation to obtain [VSB02, Eq. (9)]

∆U (L, ω) =− jγ̄
8

9

1

(2π)2
HCD(L, ω)

∫ L

0
H−1

C (ζ, ω)

×
∫

R2
ULIN(ζ, ω3

︸︷︷︸

ω3=ω−ω1+ω2

)UH
LIN(ζ, ω2)ULIN(ζ, ω1) d2ω dζ . (4.23)

The integral over R2 in (4.23) can be equivalently performed w.r.t. [ω1, ω2]T or [υ1, υ2]
T. We

recall from (3.63) that the linearly propagating optical signal ULIN(ζ, ω) can be expressed as

the product of the linear transfer function HC(ζ, ω) and the optical signal at the input of the

transmission ULIN(0, ω) ≡ U (0, ω).

C
2

U LIN(ζ, ω3)UH
LIN(ζ, ω2)U LIN(ζ, ω1)

HCD(L, ω)

∆U(L, ω)

C
2

∆U(ζ, ω)

∆U(0, ω)

HC(ζ, ω1)H∗
C(ζ, ω2)HC(ζ, ω3)

U(0, ω3)UH(0, ω2)U(0, ω1)

C
2

H−1
C (ζ, ω)

−jγ̄ 8
9

∫ L

0
dζ

∫

R2 dω1dω2

Figure 4.4: Frequency-domain representation of the parallel fiber-optical channel model. The two-fold product

in time domain turns into a two-fold convolution in frequency domain over the auxiliary frequency variables

[ω1, ω2]T. In contrast to Fig. 4.2, the integration over both frequency and space is not explicitly illustrated by

the branches.

In Figure 4.4, we show the block diagram related to (4.23). The two-fold product of opti-

cal signals at the input of the fiber U (0, ω3)UH(0, ω2)U (0, ω1) is weighted with the respective

two-fold product of linear channel transfer functions associated with position ζ and frequency

[ω1, ω2, ω3]T. The third frequency ω3 is constrained with respect to the FWM selection rule

according to (4.22) such that the mixing between the optical signals generates the local per-

turbation at frequency ω = ω3 + ω1 − ω2. The local perturbation at ω is hence obtained by

integrating over all possible pairs of [ω1, ω2]T. The result, i.e., the local perturbation due to all

FWM combinations, is then propagated back to the fiber input at z = 0 via the inverse linear

transfer function H−1
C (ζ, ω). The total (path-) accumulated perturbation is attained via inte-

gration of ∆U (ζ, ω) over all positions ζ , i.e., via summing the local perturbations generated

along the transmission link from z = 0 to z = L. The final dispersion operator HCD(L, ω)

transforms the accumulated perturbation to the receiver at z = L.

The linear transfer function from (3.63) is substituted into (4.23) and the order of integra-

tion is exchanged. We yield [VSB02, Eq. (12)] [Mec11, Eq. (6.9)]

∆U (L, ω) =− jγ̄
8

9

1

(2π)2
HCD(L, ω)

∫

R2

∫ L

0
H−1

C (ζ, ω)HC(ζ, ω3)H∗
C(ζ, ω2)HC(ζ, ω1)

×U(0, ω3
︸︷︷︸

ω3=ω−ω1+ω2

)UH(0, ω2)U(0, ω1) dζ d2ω (4.24)

=− jγ̄
8

9

1

(2π)2
HCD(L, ω)

∫

R2
U(0, ω3)UH(0, ω2)U(0, ω1)

×
∫ L

0
H−1

C (ζ, ω)HC(ζ, ω3)H∗
C(ζ, ω2)HC(ζ, ω1)

︸ ︷︷ ︸

exp(G(ζ)−j
B(ζ)

2
(−ω2+ω2

3−ω2
2+ω2

1))

dζ d2ω , (4.25)
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HNL(ω) = HNL(ω1, ω2, ω3)

HC(ζ, ω1)H∗
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∫
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Figure 4.5: Frequency-domain representation of the parallel fiber-optical channel model where the inner inte-

gral over the spatial variable ζ reflects the (path-) accumulated phasor (due to the linear propagation) for any

[ω1, ω2, ω3]T tuple which is subsumed in the so-called nonlinear transfer function HNL(ω2 − ω3, ω2 − ω1). The
outer (double) integral sums the accumulated phasors for all [ω1, ω2]T pairs.

where we can apply the useful equivalence

υ1υ2 = (ω1 − ω
︸ ︷︷ ︸

(ω2−ω3)

)(ω2 − ω1) =
1

2
(ω2 − ω2

1 + ω2
2 − (ω − ω1 + ω2

︸ ︷︷ ︸

ω3

)2) , (4.26)

to arrive at the solution to the first-order RP method in frequency domain [VSB02, Eq. (12)],

[LHP+05, Eq. (2)], [Wei06, Eq. (4)], [LLH+12, Eq. (24)–(27)]

∆U (L, ω) =− jγ̄
8

9
Leff

1

(2π)2
HCD(L, ω)

∫

R2
U (0, ω + υ2)U

H(0, ω + υ1 + υ2)U (0, ω + υ1)

× 1

Leff

∫ L

0
exp (G(ζ) + jυ1υ2B(ζ) ) dζ

︸ ︷︷ ︸

HNL(υ)=HNL(υ1,υ2)

d2υ (4.27)

=− jγ̄
8

9
Leff

1

(2π)2
HCD(L, ω)

∫

R2
U (0, ω − ω1 + ω2

︸ ︷︷ ︸

ω3

)UH(0, ω2)U(0, ω1)

× 1

Leff

∫ L

0
exp (G(ζ) + j(ω2 − ω3)(ω2 − ω1)B(ζ) ) dζ

︸ ︷︷ ︸

HNL(ω)=HNL(ω1,ω2,ω3)

d2ω . (4.28)

Equations (4.27)–(4.28) constitute the central result of the continuous-time first-order RP

method in frequency domain. It is remarkable, that, in this form, the integrand can be fac-

tored into a term that only depends on the optical signal at the input of the transmission

system U (0, ω), and a term that only depends on the characteristics of the transmission link,

i.e., the gain/loss and dispersion profile of the link. The latter is commonly referred to as non-

linear transfer function and either defined as a function of difference frequencies HNL(υ) =

HNL(υ1, υ2), see (4.27), or as a function of absolute frequencies HNL(ω) = HNL(ω1, ω2, ω3),

see (4.28). Section 4.1 provides an in-depth discussion on the characteristics of the nonlinear

transfer function.

Relation to the Third-Order Volterra Operator It is instructive to relate the solution of the

perturbation approach in (4.27)–(4.28) to the theory of Volterra series as introduced in Section

2.1.3.2. The first application of VSTF for solving the nonlinear Schrödinger equation were pub-

lished in [PBP97, XBP01]. In [VSB02], Vannucci et al. shows that the first-order perturbation

approach is equivalent to the third-order Volterra operator. This can be intuitively under-

stood considering the following: Figure 4.6 shows the basic (third-order) nonlinear system
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u(0, t)

uH
LIN(ζ, t)uH(0, t)

uLIN(ζ, t)u(0, t)

∆u(ζ, t)

HC(ζ, ω1)H
∗
C(ζ, ω2)HC(ζ, ω3)H

−1
C (ζ, ω1 − ω2 + ω3)

≡

H
(B)
NL (ζ,ω) = H

(B)
NL (ζ, ω1, ω2, ω3)

uLIN(ζ, t)

H∗
C(ζ,−ω)

HC(ζ, ω)

H−1
C (ζ, ω)

HC(ζ, ω)

∫

R2 dω1dω2

Figure 4.6: Block diagram of the basic third-order Volterra system (compare with Figure 2.1) constituting a single

(spatial) branch of the parallel fiber model from Figure 4.2.

corresponding to a single (spatial) branch related to position ζ of the parallel fiber model from

Figure 4.2. Here, the optical signal u(ζ, t) and its Hermitian conjugate uH(ζ, t) are explicitly

drawn in a direct correspondence to the basic third-order Volterra system in Figure 2.1. Us-

ing the relation from (2.66), one can immediately derive the frequency-domain, third-order

Volterra kernel of this particular (ζ-dependent) basic system as

H
(B)
NL (ζ,ω) = H

(B)
NL (ζ, ω1, ω2, ω3) = HC(ζ, ω1)

︸ ︷︷ ︸

H
(1)
LTI(ω1)

H∗
C(ζ, ω2)

︸ ︷︷ ︸

H
(2)
LTI(ω2)

HC(ζ, ω3)

︸ ︷︷ ︸

H
(3)
LTI(ω3)

H−1
C (ζ, ω1 − ω2 + ω3

︸ ︷︷ ︸

ω

)

︸ ︷︷ ︸

H
(4)
LTI(ω)

,

(4.29)

where the Hermitian conjugation induces the sign swap of ω2 compared to (2.66). The kernel

is apparently partially symmetric, i.e.,

H
(B)
NL (ζ, ω1, ω2, ω3) = H

(B)
NL (ζ, ω3, ω2, ω1) , (4.30)

due to the equivalence H
(1)
LTI(ω) = H

(3)
LTI(ω) = HC(ζ, ω).

We can now use the theory of parallel concatenated Volterra systems, see (2.69), to obtain

the (normalized) nonlinear transfer function as the integral over all spatial positions 0 ≤ ζ ≤ L

in the limit dζ → 0, and obtain

HNL(ω) =
1

Leff

∫ L

0
H

(B)
NL (ζ,ω) dζ

=
1

Leff

∫ L

0
HC(ζ, ω1)H∗

C(ζ, ω2)HC(ζ, ω3)H−1
C (ζ, ω1 − ω2 + ω3

︸ ︷︷ ︸

ω

) dζ , (4.31)
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where we used the effective length of the link Leff to normalize the nonlinear transfer function

to HNL(0) = 1. The same result can be found in the derivation of the first-order perturbation

method, e.g., (4.24)–(4.25).

TheNonlinear Transfer-Function Wenow formally define the (normalized) nonlinear transfer

function in terms of absolute frequencies as2

HNL(ω) = HNL(ω1, ω2, ω3)

def
=

1

Leff

∫ L

0
HC(ζ, ω1)H∗

C(ζ, ω2)HC(ζ, ω3)H−1
C (ζ, ω1 − ω2 + ω3) dζ (4.32)

=
1

Leff

∫ L

0
exp (G(ζ) + j(ω2 − ω3)(ω2 − ω1)B(ζ) ) dζ , (4.33)

such that the transfer function is normalized and dimensionless, i.e., with (3.27) with have

HNL(0) =
1

Leff

∫ L

0
exp (G(ζ)) dζ = 1 . (4.34)

The form of (4.32) is in direct correspondence with the definition of the Volterra operator in

its standard form, see (2.58), which explicitly recovers the dependence on the linear transfer

functionHC(ζ, ω) evaluated at the four involved frequencies and then path-averaged over the

transmission link, cf. Figure 4.6.

It is noteworthy, that the nonlinear transfer function contains all the relevant information

about the transmission link characterized by the dispersion profile B(z) (including CD pre-

compensation B0, cf. (3.47)) and the gain/loss profile P(z).

Equivalently, the nonlinear transfer function can also be defined in terms of relative fre-

quencies (aka. difference frequencies) as

HNL(υ) = HNL(υ1, υ2)
def
=

1

Leff

∫ L

0
exp (G(ζ) + jυ1υ2B(ζ) ) dζ , (4.35)

which reduces the dimension of its domain dom(HNL) by one due to the simple relation υ1 =

ω2 − ω3 and υ2 = ω2 − ω1 such that

HNL(υ1, υ2) = HNL(ω2 − ω3, ω2 − ω1) , (4.36)

and the change of variables creates symmetry w.r.t. [υ1, υ2]
T, i.e., HNL(υ1, υ2) = HNL(υ2, υ1).

The form in (4.35) already appears in, e.g., (4.27) and will be mainly used in the following,

since, as will be shown below, it relates via a 2D Fourier transform to the corresponding kernel

hNL(τ ) = hNL(τ1, τ2) of the third-order time-domain Volterra operator.

Similar to above, HNL(υ1, υ2) depends in fact on the product of (relative) frequencies

ξ
def
= υ1υ2 = (ω2 − ω3)(ω2 − ω1) (4.37)

2We will define the function HNL(·), where, depending on the (number of) arguments, one of the following
definitions in (4.33), (4.35), or (4.38) is to be used.
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which again reduces the dimension of dom(HNL) to finally one, and we define [Wei06, Eq. (5)]

HNL(ξ)
def
=

1

Leff

∫ L

0
exp (G(ζ) + j ξB(ζ) ) dζ . (4.38)

The form in (4.38) is related via a one-dimensional (1D) Fourier transform w.r.t. ξ to the

so-called power-weighted dispersion distribution [Wei06], which was used to, e.g., optimize

dispersion-managed systems. Equation (4.38) is also well-suited to visualize the nonlinear

transfer function w.r.t. the scalar variable ξ, or to investigate the poles and zeros of the non-

linear transfer function, as the image of HNL(·), i.e., set of all output values, is apparently the

same for all three variants (4.32), (4.35), and (4.38).

The nonlinear transfer function can be interpreted as a measure of the so-termed phase

matching condition. The phase mismatch due to dispersion, i.e., the difference in the propa-

gation constant, see (3.3), between the four involved frequencies of the nonlinear mixing, is

given by [Agr10, Eq. (6.3.19)]

β(z, ω)− β(z, ω1) + β(z, ω2)− β(z, ω3) = (ω2 − ω2
1 + ω2

2 − (ω − ω1 + ω2
︸ ︷︷ ︸

ω3

)2)
β2(z)

2

= (ω1 − ω)(ω2 − ω1)β2(z) = υ1υ2 β2(z) , (4.39)

where on the right-hand side of (4.39) only the second-order Taylor coefficient β2(z) is consid-

ered. This phase matching condition is present in the argument of the exponential in (4.35) in

terms of accumulated dispersion υ1υ2 B(z). Phase matching is obtained when the nonlinear

transfer function is maximized; compare Figure 4.7. Simply speaking, the mixing is good, i.e.,

|HNL(υ)| → 1, if the involved frequency components propagate pair-wise at approximately

the same (relative) velocity over a section of the link with relatively high signal power, i.e.,

G(z)→ 0. This is achieved for low chromatic dispersion β2(z), i.e., close to the zero-dispersion

wavelength where β2(z) → 0, or either for υ1 → 0 or υ2 → 0, which relates to the pair-

wise propagation of the two frequency components, cf. Figure 4.3. The squared magnitude

|HNL(υ)|2 is also called the FWM efficiency [Agr10, (6.3.18)].

The spectral width of the nonlinear transfer function |HNL(ξ)| in relation to the probe’s

spectral extend, see (2.82), is a measure of intra-channel (i.e., SCI) nonlinear effects [FBP09,

Fis09]. Recall, e.g., from Figure 3.5 (right) and (3.57), that the length of the CD impulse response

(normalized to the symbol period) scales with (1 + ρ)L/LD. Hence, the ratio (1 + ρ)Leff/LD

is proportional to the number of overlapping pulses due to dispersion (within the probe chan-

nel) which interact nonlinearly over the link (i.e., where the signal power is effectively high).

It will turn out that the width of the nonlinear transfer function (over ξ/(2πRs)
2) scales in-

versely with the number of overlapping pulses within Leff . This was first reported by Louchet

et al. [LHP+05] where the perception of a nonlinear diffusion bandwidth (i.e., a bandwidth

proportional to ᾱ/β̄2 of an equivalent single-span model)3 was developed.

3The notion of diffusion stems form an analogy with a diffusion process in which the diffusion length (here,
equivalent to the nonlinear diffusion bandwidth) is a measure of how far a concentration propagates, i.e. here, a
measure of the nonlinear interaction range of a given spectral component [Lou06, P. 33].
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Example 4.1: The single-span nonlinear transfer function

We consider the nonlinear transfer function HNL(υ) of a single span with typical fiber param-

eters (cf. ITU recommendation G.652) and end-of-span, lumped amplification. Figure 4.7 shows

the squared-magnitude |HNL(υ)|2 in logarithmic scale.

υ
1 /(2πR

s ) −→ υ2/(2πRs) −→

10
lo

g
1

0
|H

N
L

,s
p
(υ

1
, υ

2
)|2
−→

−1

0

1 −1 −0.5 0 0.5 1

−40

−20

0

Figure 4.7: Squared-magnitude in logarithmic scale of the single-span nonlinear transfer function for

β̄2 = −21 ps2/km,B0 = 0 ps2, 10 log10 eᾱ = 0.2 dB/km andL = Lsp = 100 km over the difference

frequencies υ1 and υ2 normalized to Rs = 64 GBd [FFF20]. The red line denotes HNL,,sp(ξ) which
only depends on the scalar ξ = υ1υ2. (Part for υ1 > υ2 not shown).

For this example, we set the dispersion profile to

B(z) = β̄2z ,

i.e., unmanaged/no inline dispersion compensation with β̄2 = −21 ps2/km, and the (logarith-

mic) power profile to

G(z) = −ᾱz + ᾱLsp δ(z − Lsp) ,

with 10 log10 eᾱ = 0.2 dB/km and L = Lsp = 100 km. For visualization, the difference

frequencies [υ1, υ2]T are normalized by the probe’s symbol rate 2πRs = 2π · 64 GBd to relate

the spectral width ofHNL(υ) to the spectral width of the channel under consideration (or, more

precisely, to the spectral width of the probe’s Nyquist interval).

It can be observed that HNL(υ1, υ2) has features of a hyperbolic function in two dimensions

(cf. the projected contour) as it depends on the product ξ = υ1υ2, see also discussion in [Pog12,

VIII. A]. The bold red line drawn into the diagonal cross section in Figure 4.7 corresponds to

HNL(ξ/(2πRs)
2) over the (normalized) scalar variable ξ = υ1υ2.

This insight has led to the definition of the map strength [AHB01, SBO07, BSO08]. The

map strength S is a measure of the temporal extend (i.e., the induced memory) of the system’s

response due to intra-channel nonlinear effects (assuming no in-line dispersion compensation).

It is defined as

S
def
= β̄2Leff/(2π) , (4.40)

and has units s2 (squared seconds). Accordingly, the map strength normalized to the probe’s
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symbol rate Rs = 1/T is defined as

ST,ρ
def
= (2πRs)

2 S = 2πR2
s β̄2Leff = sign(β̄2)Leff/LD , (4.41)

which immediately recovers the ratio Leff/LD, see (3.27), (3.56), and, hence, inversely relates

to the spectral width of the (normalized) nonlinear transfer function HNL(ξ/(2πRs)
2), see

discussion below.

Example 4.2: The spectral width of the nonlinear transfer function
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Figure 4.8: Squared-magnitude in logarithmic scale of the single-span nonlinear transfer function for

β̄2 = −21 ps2/km, B0 = 0 ps2, 10 log10 eᾱ = 0.2 dB/km and L = Lsp = 100 km over ξ = υ1υ2.

The normalization by (2πRs)
2 relates HNL(ξ) to the probe’s spectral width [FFF20].

In Figure 4.8, the nonlinear transfer function |HNL(ξ)|2 is shown in logarithmic scale over the

variable ξ/(2π)2 in units of Hz2 (squared Hertz), and over the normalized variable ξ/(2πRs)
2.

The corresponding segment of HNL(ξ) is color-coded for the following set of symbol rates

Rs = { 4, 8, 16, 32, 64, 128 } GBd .

Apart from the symbol rate Rs used in the normalization of the axis, the same link param-

eters are used as in Example 4.1. We observe that the nonlinear transfer function has the

form an equivalent low-pass filter w.r.t. ξ, with a weak ripple superimposed. The width of

|HNL(ξ/(2πRs)
2)|2 is proportional to 1/ST,ρ ∝ LD/Leff ∝ R−2

s , i.e., doubling Rs reduces the

spectral width by a factor of 4.
The trace withRs = 64 GBd is identical to Figure 4.7. For this case, span length, the dispersion

length, and the effective length take the following values

L = Lsp = 100 km , LD = 1.85 km , Leff = 21.50 km ,

e.g., also see the red marker in Figure 3.7 (le�). The normalized map strength takes the value

ST,ρ = −11.62 .

The number of overlapping basic pulses subject to chromatic dispersion over the effective length

(1 + ρ)Leff/LD = (1 + ρ)|ST,ρ| is approximately 14 given ρ = 0.2. This is in the same order of

the system’s intra-channel nonlinear memory given the selected parameters.
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Closed-Form Single-Span Solutions Closed-form analytical solutions to the nonlinear trans-

fer function in (4.35) can be obtained for single-span or homogeneous multi-span systems.

Considering only a single span and average link parameters (i.e., no z-dependency of the

link parameters α(z), g(z), β2(z)), the power and dispersion profile reduce to the simple ex-

pressions already given in Example 4.1. Then, the single-span nonlinear transfer function

HNL,sp(υ1, υ2) can be written in closed-form by

HNL,sp(υ1, υ2) =
1

Leff

∫ Lsp

0
exp

(

−ᾱζ + jυ1υ2β̄2ζ
)

dζ (4.42)

=
1

Leff

1− exp
(

−ᾱLsp + jυ1υ2β̄2Lsp

)

ᾱ− jυ1υ2β̄2

, (4.43)

where Leff is the effective length of a single-span, i.e., Leff = Leff,sp, as defined in (3.29).

Asymptotic Limits — Lossless Transmission It is instructive to study the asymptotic limits of

HNL,sp(υ1, υ2). We first study the case of lossless transmission with G(z) = 0 (equivalently

realized by a lossless fiber with α(z) → 0, or by ideal distributed amplification with g(z) =

α(z)). We define the nonlinear transfer function of a lossless single-span link as [AH02a, (6)]

Hα→0
NL,sp(υ1, υ2)

def
= lim

ᾱ→0
HNL,sp(υ1, υ2) =

1

Lsp

1− exp
(

jυ1υ2β̄2Lsp

)

−jυ1υ2β̄2

(4.44)

= exp
(

jυ1υ2β̄2
Lsp

2

)

si
(

υ1υ2β̄2
Lsp

2

)

, (4.45)

where we used that Lsp = limα→0 Leff,sp from (3.31). Similarly, the map strength S, as given in

(4.40), in the limit of a lossless transmission is defined as the zero-attenuation map strength

S0
def
= lim

α→0
S = β̄2Lsp/(2π) (4.46)

ST,0
def
= (2πRs)

2 lim
α→0

S = 2πR2
s β̄2Lsp = sign(β̄2)Lsp/LD . (4.47)

Since the (normalized) map strength is ameasure of the number of nonlinear interacting pulses

over the effective length, in the limit of lossless transmission it simply becomes the ratio of

the span length and the dispersion length. The map strength S0 fully characterizes the nonlin-

ear transfer function for lossless transmission, and we obtain the concise expression [AHB01,

Eq. (3)]

Hα→0
NL,sp(υ1, υ2) = exp (jπυ1υ2 S0) sinc (υ1υ2 S0) (4.48)

=
sin(2πS0 υ1υ2)

2πS0 υ1υ2

+ j
1

2πS0 υ1υ2

− j
cos(2πS0 υ1υ2)

2πS0 υ1υ2

(4.49)

=
sin(2πS0 υ1υ2)

2πS0 υ1υ2

+ j
sin2(πS0 υ1υ2)

πS0 υ1υ2

, (4.50)

where we use the definition sinc(x) = si(πx) = sin(πx)/(πx).

The nonlinear transfer function can become a purely real-valued function if the exponen-

tial pre-factor in (4.45), (4.48) vanishes. This can be achieved if dispersion pre-compensation is
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taken into account withB0 = −β̄2
Lsp

2
= −πS0, i.e., the dispersion profileB(z) is symmetrized

when the signal is pre-dispersed with half the accumulated net dispersion, cf. sqrt-sqrt equal-

ization of linear dispersive channel [Fis02]. For (homogeneous) multi-span transmission the

value is multiplied by the number of spansNsp which is equivalent to the straight-line rule—an

approximate rule to symmetrize the dispersion profile [FABH02,BSO08,BSB08].

In the context of soliton transmission, the nonlinear kernel Hα→0
NL,sp(υ1, υ2) with a sym-

metrized dispersion profile has already been derived through the nonlocal dispersion-managed

NLSE in early publications by Ablowitz and coworkers in [AB98,AHB01,AH02a]. An equiva-

lent expression has been obtained by a similar approach—the path-averaged propagationmodel—

by Turitsyn and coworkers [GT96,TTMF00,TFS+00].

Asymptotic Limits — Infinite Span-length Given a transmission link with a single, asymp-

totically long fiber (i.e., Lsp →∞) or equivalently for Lsp ≫ Leff,a, the single-span nonlinear

transfer function can be approximated to be independent of the lengthLsp, and only dependent

on the asymptotic length Leff,a, as defined in (3.30).

The nonlinear transfer function is then obtained as [LHP+05, (9)] [SBO07, (31)] [BSO08,

(8)] [FBP09, (7)]

H
Lsp→∞
NL,sp (υ1, υ2)

def
= lim

Lsp→∞
HNL,sp(υ1, υ2) =

1

Leff,a

∫ ∞

0
exp(−ᾱζ + jυ1υ2β̄2ζ)dζ (4.51)

=
1

1− jυ1υ2β̄2Leff,a

, (4.52)

where we use Leff,a
def
= limLsp→∞ Leff = 1/ᾱ. We can again take the limit Lsp → ∞ for the

map strength S and define the asymptotic map strength as

Sa
def
= lim

Lsp→∞
S = β̄2Leff,a/(2π) (4.53)

ST,a
def
= (2πRs)

2 lim
Lsp→∞

S = sign(β̄2)Leff,a/LD , (4.54)

to rewrite equation (4.52) as a function of the (asymptotic) map strength, i.e.,

H
Lsp→∞
NL,sp (υ1, υ2) =

1

1− j2πυ1υ2Sa

, (4.55)

The expression in (4.55) is equivalent to a first-order low-pass w.r.t. ξ. It has a (two-sided) 3-dB

bandwidth, i.e., a full-width half maximum, of |2/(2πSa)| cf. [LHP+05,FBP09]. The width over

the normalized frequency axis ξ/(2πRs)
2 is |2/(2πST,a)|, cf. Example 4.3.
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Example 4.3: Asymptotic limits of the nonlinear transfer function

In Figure 4.9, the magnitude (in logarithmic scale) and the real- and imaginary part (in linear

scale) of the single-span nonlinear transfer function HNL,sp(ξ) are shown over ξ/(2πRs)
2 ex-

emplarily for Rs = 32 GBd.
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Figure 4.9: Squared-magnitude in logarithmic scale (le�) and real- and imaginary-part in linear scale

(right) of the single-span nonlinear transfer function for β2 = −21 ps2/km,B0 = 0 ps2, 10 log10 eᾱ =
0.2 dB/km, Rs = 32 GBd, and Lsp = 50 km over ξ/(2πRs)

2 = υ1υ2/(2πRs)
2. The asymptotic

limits of HNL,sp(ξ) for α → 0 and Lsp → ∞ are also shown. Here, LD = 7.4 km and Leff,a =
21.71 km.

We find the following length scales

L = Lsp = 50 km , LD = 7.40 km , Leff = 19.54 km Leff,a = 21.71 km ,

given 10 log10 eᾱ = 0.2 dB/km and β̄2 = −21 ps2/km.

Additionally, the asymptotic limits of the nonlinear transfer functionHα→0
NL,sp(ξ) andH

Lsp→∞
NL,sp (ξ)

are also shown. The related map strengths compute to

ST,ρ = −2.64 , ST,0 = −6.76 = − 1

0.148
, ST,a = −2.93 ≈ − 1

π · 0.10
.

For this set of system parameters an interesting feature of the nonlinear transfer function can

be observed. It can be seen that HNL,sp(ξ) is not monotonically decreasing with ξ, i.e., there
are values of ξ = υ1υ2 where the nonlinear coupling accumulates worse even though the phase

matching proportional to ξ in (4.39) is be�er. In particular, those dips occur at integer multiples

of
1

|ST,0|
=
LD

Lsp
= 0.148 .

Those dips are identical with the zeros of the corresponding sinc-shaped transfer function

Hα→0
NL,sp(ξ). As a consequence, in spite of lossless transmission (i.e., strong nonlinear interac-

tion), there are combinations of υ1 and υ2 for which the nonlinear distortion accumulates to

zero over the span length Lsp, e.g.,

(2π · 8 GHz)(2π · 18.94 GHz)

(2πRs)2
= 0.148, or

(2π · 12.31 GHz)(2π · 12.31 GHz)

(2πRs)2
= 0.148 .

On the other hand, the single-span nonlinear transfer function H
Lsp→∞
NL,sp (ξ) has the charac-

teristics of a first-order low-pass and the full-width half maximum, given in normalized units
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ξ/(2πRs)
2, computes to

1

π|ST,a|
=

2LD

2πLeff,a
= 0.10 .

In Figure 4.10, the corresponding Nyquist plot of the nonlinear transfer function HNL,sp(ξ) is
shown. Here, the gray curve shows the sca�er plot of HNL,sp(ξ) in Cartesian coordinates (i.e.,

z = L is fixed, while ξ = υ1υ2 is varied), while the color-coded traces show the accumulation of

the nonlinear perturbation over ζ at a particular point ξ = υ1υ2 (i.e., ξ is fixed, and z is varied
form 0 to L). The colored bullet markers indicate the point z = Lsp and all lie on the gray

curve. E.g., the zero-crossings ofHα→0
NL,sp(ξ) are clearly visible—the first one occurring at around

ξ0 = (2π · 12.31 GHz)2, see above. The sca�er plot of H
Lsp→∞
NL,sp (ξ) forms a perfect circle in the

Cartesian space.
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Figure 4.10: Nyquist plot or locus curve ofHNL,sp(ξ) and its asymptotic limits (α→ 0 and Lsp →∞)

with the system parameters as in Example 4.3 and Figure 4.9. Additionally, the case for a homo-

geneous multi-span system with Nsp = 3 is shown, also see Figure 4.11. The grey curve shows

the nonlinear transfer function in Cartesian coordinates, while the color-coded traces show how the

value of HNL(ξ) at a particular point ξ = υ1υ2 accumulates via the integral over ζ in (4.42). The

bullet markers indicate the location z = NspLsp = L.
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Homogeneous Multi-Span Solution In accordance with the parallel channel model, see Fig-

ure 4.2, the perturbation generated at one local position ζ0 is independent (and hence uncor-

related) of the perturbation generated at any other position ζ 6= ζ0. In the framework of the

first-order RP method, this assumption clearly extends to perturbations generated in different

spans.

Under the assumption that all spans are identical (i.e., have the same dispersion profile

B(z), power profile G(z), and have the same length Lsp), the perturbation generated in differ-

ent spans differs only in the amount of accumulated dispersion, i.e., first the required accumu-

lated dispersion for the linear source term uLIN(z, t) to propagate to the respective span, and

then for the local perturbation to propagate back to the input of the transmission link. This is

expressed by an additional phase factor (accounting for the accumulated dispersion) added to

the nonlinear transfer function of a single span.

This observation enables to factor the integral in (4.35) into a term representing the ef-

fects of a single span HNL,sp(υ1, υ2), and a second term representing the sum of all phase

contributions. Again, assuming only path-average span parameters as in (4.42), we express

the nonlinear transfer function of the whole link as the product of the single-span transfer

function and the sum of all phasors

HNL(υ1, υ2) = HNL,sp(υ1, υ2)
(

1 + ejυ1υ2β̄2Lsp + ej2υ1υ2β̄2Lsp + . . .+ ej(Nsp−1)υ1υ2β̄2Lsp

)

,

(4.56)

where the sum of phasors is a truncated geometric series and can be given as closed-form

analytic expression. This leads to the definition of the phased-array factor [LHP+05, Eqn. (6)]

[PBC+12, Eqn. (92)] as

HPAF(υ1, υ2)
def
=

Nsp−1
∑

n=0

exp(jnυ1υ2β̄2Lsp) (4.57)

=
1− exp(jυ1υ2β̄2NspLsp)

1− exp(jυ1υ2β̄2Lsp)
(4.58)

= exp(jπυ1υ2S0(Nsp − 1))
sin(πυ1υ2 S0Nsp)

sin(πυ1υ2 S0)
. (4.59)

In Figure 4.11, we follow up on the Example 4.3, where HNL(ξ) and HPAF(ξ) are shown for

Nsp = 3 and Nsp = 4 given the same single-span system parameters. The phase-array factor

is a periodic function w.r.t. ξ = υ1υ2 with a period of 1/|S0| and has Nsp − 1 zeros (again

w.r.t. ξ) over a single period. The number of sidelobes (within the considered frequency axis

in Figure 4.11) increases linearly with the span number. At the same time, the spectral width of

both the main- and the sidelobes is decreasing. The resulting steep slopes within the transfer

function will impose severe constraints on the required frequency resolution if the multi-span

transfer function should be sampled and numerical evaluated.

In Figure 4.10, the corresponding scatter plot for Nsp = 3 of the multi-span example is

also shown. The high dynamic range of the multi-span transfer function is also visible in the

scatter diagram.
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Figure 4.11: Magnitude in logarithmic scale of themulti-span nonlinear transfer function for β2 = −21 ps2/km,

B0 = 0 ps2, 10 log10 eα = 0.2 dB/km, Rs = 32 GBd, Lsp = 50 km, Nsp = 3, and L = 150 km (le�) and

Nsp = 4, and L = 200 km (right) over ξ/(2πRs)
2. Additionally, the single-span transfer function HNL,sp(ξ)

and the phase array factor HPAF(ξ) are shown.

4.2 The First-Order Regular Solution in Time Domain

To derive the (analog) baseband end-to-end channel model and its time-domain equivalent, see

Figure 4.1, the channel matched filterH∗
C(L, ω) is subsequently applied to bothU LIN(L, ω) and

∆U (L, ω) from (4.27). Note, that the following equivalence holds

H∗
C(L, ω) ≡ H∗

CD(L, ω) , (4.60)

due to the receive-side normalization with G(L) = 0, see also (3.63) and (3.48).

The perturbation ∆S(ω), i.e., the perturbation in the analog domain following our termi-

nology, is hence obtained by

∆S(ω) = H∗
C(L, ω)∆U (L, ω) , (4.61)

which cancels out the leading termHCD(L, ω) in (4.27) since |HCD(L, ω)|2 = |HC(L, ω)|2 = 1.

We find the expression of the electrical perturbation in both frequency and time domain as

∆S(ω) = −jγ̄
8

9
Leff

1

(2π)2

∫

R2
U (0, ω + υ2

︸ ︷︷ ︸

ω3=ω−ω1+ω2

)UH(0, ω + υ1 + υ2
︸ ︷︷ ︸

ω2

)U(0, ω + υ1
︸ ︷︷ ︸

ω1

)HNL(υ1, υ2) d2υ

(4.62)
t

❞

∆s(t) = −jγ̄
8

9
Leff

∫

R2
u(0, t− τ1

︸ ︷︷ ︸

t1

)uH(0, t− τ1 − τ2
︸ ︷︷ ︸

t2

)u(0, t− τ2
︸ ︷︷ ︸

t3=t−t1+t2

)hNL(τ1, τ2) d2τ , (4.63)

which recovers the time-domain representation of the third-order Volterra operator, see, e.g.,

(2.63)–(2.64). The Fourier transform ∆s(t) ❞ t∆S(ω) is carried out explicitly in Appendix

A.2.

The frequency matching with ω3
def
= ω − ω1 + ω2 is translated to a temporal matching4

t3
def
= t− t1 + t2, i.e., the selection rules of FWM apply both in time and frequency, cf. [AH00].

4Not to be confused with the phase matching condition in (4.35), (4.39).
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In symmetry with (4.20)–(4.22), we define the absolute and relative time variables as

t1
def
= t− τ1 (4.64)

t2
def
= t− τ1 − τ2 (4.65)

t3
def
= t− t1 + t2 = t− τ2, (4.66)

see also Figure 4.3 (a).

The time-domain perturbation ∆s(t) has the same form as its frequency-domain coun-

terpart, i.e., the integrand is constituted by the respective time-domain representations of the

optical signal at the input u(0, t) weighted with the time-domain kernel hNL(τ1, τ2), which we

will call the nonlinear impulse response of the continuous-time end-to-end channel, see Section

4.2.

In contrast to the standard form of the third-order Volterra operator in (2.48), the integral

in (4.63) is only two-fold and the time-domain kernel has only two degrees of freedom τ =

[τ1, τ2]
T instead of three (cf. [AH02a,Wei06]). This is induced by the temporal matching, see

above, alternatively expressed as τ3 = τ1 + τ2 using the notation of the Volterra theory. In the

Appendix A.3, we present an alternative derivation of the time-domain perturbation ∆s(t)

based on the time-domain Volterra theory. Therein, we show how the temporal matching

constraint causes the three-fold integral from the Volterra ansatz to collapse into a two-fold

integral, and at the same time reduces the dimension of the kernel’s domain dom(hNL) from

three to two. Importantly, the time- and frequency-domain kernel expressed in relative time

and frequency are now related via a 2D Fourier transform [BSO08, Eq. (6)]

HNL(υ) = Fυ↔τ{hNL(τ ) } , (4.67)

see also Appendix A.2 for the full proof.

The Nonlinear Impulse Response The time-domain kernel hNL(τ1, τ2) can be given by, e.g.,

carrying out the inverse 2D Fourier transform (cf. [AH02a, Appx.] and [BSO08, Eq. (6)]) or by

following the time-domain derivation in Appendix A.3. It is explicitly given as

hNL(τ ) = F−1
υ↔τ{HNL(υ) } =

1

Leff

∫ L

0

1

2π|B(ζ)| exp

(

G(ζ)− j
τ1τ2

B(ζ)

)

dζ , (4.68)

with the tuples τ = [τ1, τ2]
T and υ = [υ1, υ2]T. The time-domain kernel maintains its hy-

perbolic form and symmetry as it is a function of the product τ1τ2. Figure 4.12 shows the

corresponding single-span time-domain kernel hNL,sp(τ1, τ2) from Example 4.1. Here, the ker-

nel itself has a singularity at τ1τ2 = 0 due to the singularity of the integrand at ζ = 0.

Similar as in (4.32), we can also express hNL(τ ) in terms of absolute time variables, i.e.,

hNL(t) = hNL(t1, t2, t3) =
1

Leff

∫ L

0

1

2π|B(ζ)| exp

(

G(ζ)− j
(t3 − t2)(t1 − t2)

B(ζ)

)

dζ (4.69)

=
1

Leff

∫ L

0
hC(ζ, t1)h

∗
C(ζ, t2)hC(ζ, t3)h−1

C (ζ, t1 − t2 + t3
︸ ︷︷ ︸

t

) dζ .

(4.70)
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Figure 4.12: Magnitude in linear scale of the single-span nonlinear impulse response for β̄2 = −21 ps2/km,

B0 = 0 ps2, 10 log10 eᾱ = 0.2 dB/km and L = Lsp = 100 km over the time differences τ1 and τ2 normalized

to Rs = 64 GBd. The red line denotes hNL,sp(ψ) which only depends on the scalar ψ = τ1τ2. (Part for

τ1 > τ2 not shown). The time-domain kernel hNL,sp(τ1, τ2) is also the inverse 2D Fourier transform of the

kernel HNL,sp(υ1, υ2) in frequency domain from Figure 4.7.
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Figure 4.13: Squared-magnitude in linear scale of the single-span nonlinear impulse response hNL(ψ) for β̄2 =
−21 ps2/km, B0 = 0 ps2, 10 log10 eᾱ = 0.2 dB/km and Lsp = 100 km over ψ = τ1τ2. The normalization with

R2
s = 1/T 2 relates hNL(ψ) to the probe’s temporal width, i.e., symbol duration.

where we recover5 the explicit dependency on the linear channel impulse response hC(z, t).

Here we use again the equivalence from (4.26) applied to the time variables

τ1τ2 = (t− t1)(t1 − t2) = (t3 − t2)(t− t3) =
1

2
(t2 − t2

1 + t2
2 − (t− t1 + t2

︸ ︷︷ ︸

t3

)2) . (4.71)

Note the duality to (4.32), where in both representations the nonlinear transfer function can be

understood as the path-average (cf. [GT96]) over an expression related to the linear channel re-

sponse hC(z, t) ❞ tHC(z, ω). Other than the general basic third-order system in (2.65)–(2.66),

the inner temporal convolution is not explicitly carried out due to the temporal matching con-

straint t3 = t− t1 + t2, see Appendix A.3 for details.

In Figure 4.13, we show the time-domain kernel using the same parameters as in Exam-

ple 4.2 over the scalar variable

ψ
def
= τ1τ2 , (4.72)

5We used the simple relations
√

j
√

j
∗

= 1 and
√

B(ζ)
√

B(ζ)
∗

= |B(ζ)|.
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Figure 4.14: Squared-magnitude in logarithmic scale (le�) and real- and imaginary-part in linear scale (right)

of the single-span nonlinear impulse response hNL,sp(ψ) for β̄2 = −21 ps2/km, B0 = 0 ps2, 10 log10 eᾱ =
0.2 dB/km, Rs = 32 GBd, and Lsp = 50 km over ψ/T 2 = τ1τ2/T

2. The asymptotic limits of hNL,sp(ψ) for
α → 0 and Lsp → ∞ are also shown. See also the corresponding nonlinear transfer function HNL,sp(ξ) in

Figure 4.9.

with and without normalization to the symbol rate Rs = 1/T . The red traces (i.e., Rs =

64 GBd) in Figure 4.12 and Figure 4.13 are identical. The nonlinear memory (i.e., the tem-

poral width of the nonlinear impulse response relative to the symbol rate of the probe) is

proportional to the map strength ST,ρ ∝ R2
s , i.e., doubling Rs increases the temporal width of

|hNL(ψ/T 2)| by a factor of 4, see Figure 4.13 (right).

Asymptotic Limits — Lossless Transmission We now consider the asymptotic limit of the

single-span time-domain kernel hNL,sp(τ ) for lossless transmission, i.e., α(z)→ 0. We assume

again only path-average span parameters and follow from (4.68) that [AH02a]

hα→0
NL,sp(τ1, τ2) =

1

2π|β̄2|Lsp

∫ Lsp

0

1

ζ
exp

(

−j
τ1τ2

β̄2ζ

)

dζ , (4.73)

which can be given by the analytic expression [AH02a]

hα→0
NL,sp(τ1, τ2) =

1

2π|β̄2|Lsp

E1

(

−j
τ1τ2

β̄2Lsp

)

(4.74)

=
1

(2π)2|S0|
E1

(

−j
τ1τ2

2π S0

)

(4.75)

=
1

2π|β̄2|Lsp

(

Ci

(

− τ1τ2

β̄2Lsp

)

+ jSi

(

− τ1τ2

β̄2Lsp

)

− j
π

2

)

, (4.76)

where E1(·) is the exponential integral function6, and Ci(·) and Si(·) are the cosine and sine

integral functions (cf. also Nielsen spiral).

Figure 4.14 follows up on Example 4.3 and shows the single-span nonlinear impulse re-

sponse including its asymptotic limits. Additionally, in Figure 4.15, the related Nyquist plots

are shown. E.g., the first zero of Ci(·) is at 0.6165, and the first zero of Si(·) − π/2 is at

1.9264. Those zero-crossing can also be seen in Figure 4.14 and 4.15, where, e.g., for the kernel

6Here, we assume E1(jx) with x > 0, i.e., in the anomalous dispersion regime with β̄2 < 0 and τ1τ2 > 0.
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hα→0
NL,sp(ψ), the first zero-crossing of the real part occurs at 0.6165 |ST,0|/(2π)—again show-

ing how the temporal width of the nonlinear impulse response scales with the map strength

ST . The authors of [AB98] and [AHB01] show that, by symmetrizing the dispersion profile

with B0 = −β̄2
Lsp

2
= −πS0, both frequency- and time-domain kernels become real-valued

functions (up to a constant term) with

Hα→0
NL,sym(υ1, υ2) = sinc (υ1υ2 2 S0) (4.77)

t

❞

hα→0
NL,sym(τ1, τ2) =

1

(2π)2|S0|

(

Ci
(

− τ1τ2

2πS0

)

− j
π

2

)

, (4.78)

where the 2D Fourier transform is performed w.r.t. τ ↔ υ.

Asymptotic Limits — Infinite Span-length The single-span nonlinear transfer function in the

limit Lsp →∞ can only be given by the integral expression

h
Lsp→∞
NL,sp (τ1, τ2) =

1

2π|β̄2|Leff,a

∫ ∞

0

1

ζ
exp

(

−ᾱζ − j
τ1τ2

β̄2ζ

)

dζ , (4.79)

which is solved numerically for the examples in Figure 4.14 and Figure 4.15.
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Figure 4.15: Nyquist plot or locus curve of hNL,sp(ψ) and its asymptotic limits (α → 0 and Lsp → ∞) with the

system parameters as in Example 4.3 and Figure 4.10. The grey curve shows the nonlinear impulse response

in Cartesian coordinates, while the color-coded traces show how the value of hNL,sp(ψ) at a particular point

ψ = τ1τ2 accumulates via the integral over ζ in (4.68). The bullet markers indicate the location ζ = Lsp.
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4.3 The (Analog) Baseband End-to-End Channel

We now continue to express the perturbation ∆s(t) ❞ t∆S(ω) as a function of the electri-

cal baseband transmit signals sν(t) ❞ tSν(ω). The general idea is to expand the optical field

envelope of the WDM signal u(0, t) ❞ tU (0, ω), similarly as in (3.77), and in turn, shift the

nonlinear transfer function by the respective channel separation ∆ων to align with the base-

band signals, see below.

We are again interested in the perturbation that is imposed on the probe channel, i.e., the

frequency-domain expression in (4.62) is evaluated for all ω ∈ Bρ in (4.62). Similar as in (3.79),

we will dissect the total perturbation ∆s(t) ❞ t∆S(ω) into contributions originating from

SCI and XCI, whereas MCI will be neglected.

The reason for the latter is as follows. We notice from Figure 4.8 and Figure 4.11 that,

given Rs (and consequently the channel spacing between different wavelength channels) is

sufficiently large, the FWM efficiency |HNL(ξ/(2πRs)
2)|2 may become negligibly small for

ξ ≫ (2πRs)
2. In other words, the phase matching condition in (4.39), proportional to ξ = υ1υ2,

is not properly met if both υ1 and υ2 are larger than 2πRs. Conversely, if the nonlinear transfer

function (normalized to the probe’s symbol rate) is narrow-band, then we can factor the inte-

grand in (4.62), (4.63) into an SCI and XCI term, i.e., mixing terms that originate either from

within the probe channel (both υ1 < 2πRs and υ2 < 2πRs) or from within the probe channel

and a single interfering wavelength channel (either υ1 < 2πRs or υ2 < 2πRs). Mixing terms

originating from MCI are only relevant if Rs (and hence the channel separation ∆ων) or the

dispersion coefficient β2(z) is small7. We hence neglect any FWM terms involving more than

two wavelength channels.

Considering only mixing terms falling into the spectral support of the probe channel ω ∈
Bρ, we can expand the triple product in (4.62) as

U (0, ω3
︸︷︷︸

ω−ω1+ω2

)UH(0, ω2)U(0, ω1)
∣
∣
∣
ω∈Bρ

= U ρ(0, ω3)UH
ρ (0, ω2)U ρ(0, ω1)

︸ ︷︷ ︸

SCI

+
∑

ν 6=ρ

(

U ν(0, ω3)UH
ν (0, ω2)U ρ(0, ω1) + U ρ(0, ω3)UH

ν (0, ω2)U ν(0, ω1)
)

︸ ︷︷ ︸

XCI

, (4.80)

where the XCI term has two contributions—the first results from an interaction where ω3

and ω2 are from the νth interfering wavelength channel and ω and ω1 are within the probe’s

support (see lower blue region in Figure 4.16 (left)). The second involves an interaction where

ω2 and ω1 are from the interfering wavelength channel, and ω, ω3 are from the probe channel

(see blue region on the right in Figure 4.16 (left)).

We can exploit the symmetry8 of the nonlinear transfer functionHNL(υ1, υ2) = HNL(υ2, υ1)

to simplify the XCI expression in (4.80). We obtain the integrand of the Volterra operator in

7E.g., for a channel spacing smaller than 25 GHz and typical β̄2 = −21 ps2/km [FBP09, Fis09].
8Note, that the symmetry of the nonlinear transfer function is broken if dispersion slope β3(z) 6= 0 is con-

sidered [AFAK+18].
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Figure 4.16: Squared-magnitude of the un-shi�ed (le�) and shi�ed (right) nonlinear transfer function

HNL(υ1, υ2) in logarithmic scale. On the le� side, the shaded vertical, horizontal, and diagonal regions in red

show the spectral support of U(0, ω1), U(0, ω3), and U(0, ω2) for ω = 0 (i.e., ω2 = υ1 + υ2) given two wave-

length channels at ∆ωρ and ∆ω1 with bandwidth Bρ and B1 = 0.5Bρ. The intersections of those regions (blue

areas) are the integration domains that contribute to the XCI terms in (4.80). On the right side, the nonlinear

transfer function is aligned with the baseband signals. The shaded regions in red show the spectral support of

Sν(ω1), Sρ(ω3), and Sν(ω2) for ω = 0. Only a single blue shaded area remains and must be considered as XCI

contribution in (4.81).

(4.62) using the definition of the baseband signal of each wavelength channel9

U (0, ω3)U
H(0, ω2)U (0, ω1)HNL(ω2 − ω3, ω2 − ω1)

∣
∣
∣
ω∈Bρ

(4.81)

= Sρ(ω1)S
H
ρ (ω2)Sρ(ω3)HNL(ω2 − ω1, ω2 − ω3)

+
∑

ν 6=ρ

(

Sν(ω1)S
H
ν (ω2) + SH

ν (ω2)Sν(ω1)I
)

Sρ(ω3)HNL(ω2 − ω3
︸ ︷︷ ︸

υ1

+∆ων , ω2 − ω1
︸ ︷︷ ︸

υ2

) ,

which now corresponds to the case that ω3 always lays in the support of the probe10, i.e.,

ω3 ∈ Bρ. The signals of the interfering wavelength channels are now represented in their

respective ECB, see (3.15)–(3.16). In turn, the nonlinear transfer functionHNL(υ1 +∆ων , υ2) is

now shifted according to the relative frequency offset∆ων to align properly with the baseband

signal of the interferer, see Figure 4.16 (right).

The shifted argument of the nonlinear transfer function (given in terms of relative fre-

quencies [υ1, υ2]
T) can be rewritten according to (4.26) as

(υ1 + ∆ων)υ2 =
1

2
( ω2
︸︷︷︸

∈Bρ

−(ω1+∆ων
︸ ︷︷ ︸

∈Bν

)2 + (ω2+∆ων
︸ ︷︷ ︸

∈Bν

)2 − (ω − (ω1−∆ων) + (ω2+∆ων)
︸ ︷︷ ︸

ω3∈Bρ

)2) ,

(4.82)

9Since UH
ν Uν is a scalar, we have UρUH

ν Uν = UH
ν UνUρ. The 2×2 identity matrix I is required to factor

the XCI expression in a ν- and ρ-dependent term.
10An alternative formulation with ω1 in the support of the probe is obtained by exchanging the subscripts of

ω1 and ω3 in frequency domain and t1 and t3 in time domain.
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∆s(ζ, t)sH
ν (t)

sν(t)

sρ(t)

HC(ζ, ω)

H−1
C (ζ, ω)H∗

C(ζ,−ω − ∆ων)

HC(ζ, ω + ∆ων)

hC(ζ, t− ∆ωνB(ζ))

h∗
C(ζ, t− ∆ωνB(ζ))

hC(ζ, t)

1
2π|B(ζ)|h

−1
C (ζ, t)

Figure 4.17: Block diagram of the basic third-order Volterra system (compare with Figure 2.1 and Figure 4.6)

constituting a single spatial branch of the parallel fiber model shi�ed to the baseband of the νth wavelength

channel. The input signals are given by the analog baseband signals of the probe sρ(t) and interferer sν(t). The
linear channel transfer function acting on the interferer must be shi�ed in frequency by the relative channel

separation ∆ων . This corresponds to a retardation of the impulse response hC(ζ, t) in time by the walk-off

τwo = ∆ωνB(ζ) depending on the local amount of accumulated dispersion, see (3.60)–(3.61) and Figure 3.11,

where dispersion slope β3(z) is neglected.

i.e., the shifted (and now ν-dependent) nonlinear transfer function is either expressed in rela-

tive frequencies and defined as

HNL,ν(υ)
def
= HNL(υ1 + ∆ων , υ2) , (4.83)

or in terms of absolute frequencies, as in (4.32)–(4.33), by

HNL,ν(ω)
def
= HNL(ω1 + ∆ων , ω2 + ∆ων , ω3) =

1

Leff

∫ L

0
HC(ζ, ω1 + ∆ων)H∗

C(ζ, ω2 + ∆ων)

×HC(ζ, ω3)H−1
C (ζ, ω1 − ω2 + ω3) dζ . (4.84)

The corresponding block diagram of the basic third-order Volterra system of a single spatial

branch is shown in Figure 4.17. Here, the input signals to the nonlinear system are given by

the analog baseband signals sρ(t) and sν(t). The relative frequency offset between the two

wavelength channels results in a frequency shift by ∆ων of the linear channel transfer func-

tionHC(ζ, ω) acting on the interfering wavelength channel. A frequency shift of the channel

transfer function corresponds to a retardation in time of the channel impulse response11 by the

temporal channel walk-off τwo(z,∆ων) defined in (3.58). The temporal walk-off scales linearly

with the channel separation∆ων and the accumulated chromatic dispersionB(z), and so does

the memory of the nonlinear system described by the kernel HNL,ν(ω).

We define the ν-dependent (normalized) map strength to measure inter-channel (i.e., XCI)

nonlinear memory using the definition of the walk-off length Lwo,ν from (3.62) as

ST,ν
def
= ∆ων(2πRs) S = ∆ωνRsβ̄2Leff = sign(β̄2∆ων)Leff/Lwo,ν , ν 6= ρ . (4.85)

11Here, dispersion slope β3(z) is neglected. This approximation is valid for 2πBWDMβ̄3 < β̄2, e.g., BWDM <
20 THz for typical fiber parameter as in G.652 [AFAK+18]. If dispersion slope is present, a ν-dependent GVD
parameter can be used to approximate the dispersion slope to first-order.
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where the temporal walk-off between the probe and the νth interfering wavelength channels

is the relevant length scale. Here, the ratio Leff/Lwo,ν is equivalent to the number of traversed

pulses over the effective length (i.e., where nonlinear interaction is most relevant) between

the probe and the νth wavelength channel, see, e.g., Figure 3.11 with z = Leff .

The expansion of the time-domain integrand from (4.63) can be done similarly as for the

frequency-domain integrand. We have

u(0, t− τ1)u
H(0, t− τ1 − τ2)u(0, t− τ2)hNL(τ1, τ2)

∣
∣
∣
supp(∆S)⊂Bρ

(4.86)

= sρ(t− τ1)s
H
ρ (t− τ1 − τ2)sρ(t− τ2)hNL,ρ(τ1, τ2) (4.87)

+
∑

ν 6=ρ

(

sν(t− τ1)s
H
ν (t− τ1 − τ2) + sH

ν (t− τ1 − τ2)sν(t− τ1)I
)

sρ(t− τ2)hNL,ν(τ1, τ2) ,

where we use the now ν-dependent nonlinear impulse response given by

hNL,ν(τ ) = hNL(τ1, τ2) exp(−j∆ωντ2) . (4.88)

which is related by a 2D inverse Fourier transform to the shifted nonlinear transfer function

from (4.83), i.e.,

HNL,ν(υ) = F[υ1,υ2]T↔[τ2,τ1]T{hNL,ν(τ ) } . (4.89)

In symmetry with (4.84) and (4.70), the ν-dependent nonlinear impulse response can also be

given as a function of t = [t1, t2, t3]
T by

hNL,ν(t) =
1

Leff

∫ L

0

1

2π|B(ζ)|hC(ζ, t1 − ∆ωνB(ζ))h∗
C(ζ, t2 − ∆ωνB(ζ))

× hC(ζ, t3)h
−1
C (ζ, t1 − t2 + t3

︸ ︷︷ ︸

t

) dζ . (4.90)

where the temporal matching with t3 = t− t1 + t2 is still present.

In summary, the analog baseband end-to-end relation of the continuous-time third-order

nonlinear system can be given in both frequency and time domain by

∆S(ω)
∣
∣
∣
ω∈Bρ

= ∆SSCI(ω) + ∆SXCI(ω) (4.91)

= −jγ̄
8

9
Leff

1

(2π)2

∫

R2
Sρ(ω1)S

H
ρ (ω2)Sρ(ω3)HNL,ρ(ω) d2ω (4.92)

− jγ̄
8

9
Leff

1

(2π)2

∑

ν 6=ρ

∫

R2

(

Sν(ω1)S
H
ν (ω2) + SH

ν (ω2)Sν(ω1)I
)

× Sρ(ω3)HNL,ν(ω) d2ω
t

❞

∆s(t)
∣
∣
∣
supp(∆S)⊂Bρ

= ∆sSCI(t) + ∆sXCI(t) (4.93)

= −jγ̄
8

9
Leff

∫

R2
sρ(t1)s

H
ρ (t2)sρ(t3)hNL,ρ(t) d2

t (4.94)

− jγ̄
8

9
Leff

∑

ν 6=ρ

∫

R2

(

sν(t1)s
H
ν (t2) + sH

ν (t2)sν(t1)I
)

sρ(t3)hNL,ν(t) d2
t .
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At this point, considering (4.62) and (4.81), we formulated the relation between the pertur-

bation at the probe ∆S(ω) after chromatic dispersion compensation and the transmit spectra

of the probe Sρ(ω) and the interferers Sν(ω) in their respective baseband. The remaining

operation to arrive at a discrete-time end-to-end relation will be discussed in the following

chapter.
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5. The Discrete-Time Perturbation Approach

Within the preceding chapter we have looked at the continuous-time end-to-end relation be-

tween the transmit signals and the perturbation imposed on the probe signal. In the present

chapter, we take the solution from (4.92)–(4.94) to derive the discrete-time end-to-end relation

anticipated in (4.5)–(4.6). Our analysis in the previous chapter revealed that the perturbation

can be split into its self-channel interference (SCI) and cross-channel interference (XCI) con-

tribution. Applied to the discrete-time ansatz we have

∆a[k] = ∆aSCI[k] + ∆aXCI[k] (5.1)
❞

t

∆A(ejωT ) = ∆ASCI(ejωT ) + ∆AXCI(ejωT ) , (5.2)

which will be used in the following to ease the derivation. Due to the underlying regular

perturbationmethod (truncated after the first-order term), the perturbation signal in (5.1)–(5.2)

is purely additive w.r.t. the transmit sequence a[k].

The time-domain formulation of the T -spaced discrete-time end-to-end channel was al-

ready developed in [ME12] with a focus on cross-channel nonlinear interference, see discussion

in Section 1.1. The corresponding frequency-domain view connecting the 1/T -periodic spec-

trum of the transmit and receive symbol sequences via an adequate frequency-domain Volterra

kernel is one of the key results of the present work, see Section 1.2. The fundamental require-

ment for such a discrete-time Volterra system in frequency domain is that frequency compo-

nents that appear—due to aliasing—at the sampled output of the continuous-time system, must

also be produced by the discrete-time system which only operates within the Nyquist interval.

In the nonlinear transmission regime, a subset of the distortions can be attributed to pure

phase and polarization rotations. Large multiplicative distortions can, however, not be mod-

eled well using only the first-order terms in the series expansion of the perturbation approach.

This in turn motivates the extension of the original regular perturbation approach to a com-

bined so-called regular-logarithmic approach taking the multiplicative nature of certain dis-

tortions properly into account. In the context of the discrete-time RP method, the above con-
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siderations resulted in enhanced numerical implementations of the RP method including the

so-called pulse collision picture, see Section 1.1. The same considerations can also be applied

to discrete-time Volterra systems in 1/T -periodic frequency-domain. The result of that, pub-

lished in [FFF20], is no longer equivalent to, e.g., the pulse collision picture (since multiplica-

tion does not commute in time and frequency domain), but performs equally well in terms of

accuracy.

The last section of this chapter concerns with the numerical validation of the derived mod-

els. An algorithmic implementation using the sampled and periodic spectrum of the transmit

sequence and the frequency-domain kernel is presented.

5.1 The First-Order Regular Solution

We start with the solution of the electrical end-to-end model from (4.92) and (4.94). The

matched filter corresponding to the transmit filter of the probe signal h∗
T,ρ(−t) ❞ tH∗

T,ρ(ω) is

applied to the sum of the linearly propagating transmit signal s(t) ❞ tS(ω) and the pertur-

bation ∆s(t) ❞ t∆S(ω), see Figure 4.1. We assume that the matched filter is ideally aligned

with the transmit filter (or pulse) of the probe signal. The end-to-end filter cascade from the

perspective of the probe signal

T ·HT,ρ(ω)HC(L, ω)H∗
C(L, ω)H∗

T,ρ(ω) , (5.3)

forms an overall Nyquist response cancelling out inter-symbol interference on the perturbation-

free part of the receive signal1. The matched filter is typically realized using an oversampled

representation ofH∗
C(L, ω)H∗

T,ρ(ω) in the receiver-side DSP. In a second step, T -spaced sam-

pling, see (2.30), translates the continuous-time receive signal to the discrete-time domain

recovering the original transmit sequence a[k] superimposed with the sampled perturbation

∆a[k]. Any additional noise source is neglected at this point.

In the following, we will only consider the additive perturbation∆aSCI[k] originating from

SCI (justified due to the linearity of the prior operations), and then generalize to XCI. The

sampling operation, see (2.30), in time domain (corresponding to the aliasing operation, see

(2.29), in frequency domain) acting on the continuous-time perturbation (after the matched

filter) results in

∆ASCI(ejωT ) =
T

ET

AliasωNyq
{∆SSCI(ω) ·H∗

T,ρ(ω) } (5.4)

t

❞

∆aSCI[k] =
T

ET

SampleT{∆sSCI(t) ∗ h∗
T,ρ(−t) } , (5.5)

i.e., in frequency domain any signal components outside the Nyquist interval will be folded

into the Nyquist interval T, (2.28), which results in the frequency-continuous, and now 1/T -

periodic spectrum ∆ASCI(ejωT ).

1In practice, this condition is only approximately fulfilled by the receiver-side DSP which tries to optimize
between ISI compensation and noise amplification.
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The remaining objective is to relate the received discrete-time perturbation to its discrete-

time transmit sequence and spectrum of the probe a[k] ❞ tA(ejωT ), and to that of the νth

interferer bν [k] ❞ tBν(ejωT ). The general idea is outlined in Figure 5.1, exemplarily for the

SCI contribution. The block diagram from Figure 4.2 ismodified such that the transmit pulseT ·
HT,ν(ω), here, for ν = ρ, and the receive-side matched filter HR(ω) = T

ET,ρ
H∗

C(L, ω)HT,ρ(ω)

are incorporated into the parallel, spatial branches. The block HCD(L, ω) at the output of

Figure 4.2 cancels with H∗
C(L, ω), as part of the matched filter, since

H∗
C(L, ω)HCD(L, ω) = exp (G(L)/2) = 1, ∀ω , (5.6)

with G(L) = 0 by assumption in (3.25) and (3.63).

To that end, the dimensionless, dispersed and attenuated transmit pulse GT,ν(z, ω) is de-

fined as the concatenation of the transmit pulse shape and the linear channel transfer function.

We define2

GT,ν(z, ω)
def
= T ·HT,ν(ω)HC(z, ω + ∆ων) (5.7)
t

❞

gT,ν(z, t) = T · exp(−jB(z)∆ω2
ν)
∫ ∞

−∞
hT,ν(τ)hC(z, t− τ − ∆ωνB(z)) dτ , (5.8)

taking into account the transmit pulse shape (including the launch power via Pν =
σ2

b,ν

T
ET,ν)

and the relative channel offset ∆ων of the νth wavelength channel. The definition in (5.7)–

(5.8) is in line with Example 3.5 and Example 3.6, where we use the path-normalized (i.e.,

un-attenuated) pulse g̃T,ν(z, t). In Figure 5.1, the block diagram is drawn for the case of SCI,

where, with ν = ρ, the relative channel offset ∆ων vanishes in the linear channel transfer

function HC(z, ω).

Vice-versa, we have the adversary, z-dependent receive shape GR(z, ω) which is defined

as the concatenation of the channel inverse and the matched filter w.r.t. the transmit pulse

shape of the probe. It follows

GR(z, ω)
def
= T ·H∗

T,ρ(ω)H−1
C (z, ω) = exp(−G(z)) G∗

T,ρ(z, ω) (5.9)
t

❞

gR(z, t) = T
∫ ∞

−∞

1

2π|B(z)|h
∗
T,ρ(τ)h−1

C (z, t+ τ)dτ = exp(−G(z)) g∗
T,ρ(z,−t) , (5.10)

where the receive filterGR(z, ω) is alwaysmatched to the dispersed transmit pulse of the probe

GT,ρ(z, ω), hence, omitting the additional ρ-subscript.

2Note, that in the original paper [DFMS16] and its predecessor [ME12] only the time-domain derivation of the
theory is provided. Therein, the z-dependent transmit/receive pulses are defined as the concatenation of hT(t)
with the impulse response of the chromatic dispersion hCD(z, t), whereas we use the linear channel transfer
function hC(z, t) which is in the context of the Volterra theory presented in Section 2.1.3.2 and Appendix A.4 the
more natural notation. Beyond that, the authors of [DFMS16] use a different normalization of their signals and
systems, and present their derivations only in a reduced degree of detail.
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GT,ρ(dζ, ω)
1

ET,ρ
GR(dζ, ω)

kT

uLIN,ρ(L−dζ, t)

uLIN,ρ(2dζ, t)

HC(dζ, ω)
uLIN,ρ(dζ, t)

T · HT,ρ(ω)
a[k]

C
2

GT,ρ(2dζ, ω)

GT,ρ(L−dζ, ω)

( ‖·‖2 · ) H−1
C (dζ, ω)

1
ET,ρ

GR(2dζ, ω)

1
ET,ρ

GR(L−dζ, ω)

∆a[k]

( ‖·‖2 · )

( ‖·‖2 · )

C
2

−jγ̄ 8
9

T
ET,ρ

H∗
T,ρ(ω)

Figure 5.1: The modified parallel fiber-optical channel model, see also Figure 4.2, exemplarily for the SCI contri-

bution. The transmit pulseHT,ρ(ω) and the receive-sidematched filterH∗
T,ρ(ω) are part of the parallel branches

and combined with the linear channel transfer functionHC(ζ, ω) to the z-dependent transmit and receive pulses

GT,ρ(ζ, ω) and GR(ζ, ω).

Using the definitions of GT,ν(z, ω) and GR(z, ω), the third-order kernel of the end-to-

end nonlinear system follows directly from the analysis in the last chapter, cf., e.g., (4.29)–

(4.31) and (4.84). We define the normalized nonlinear end-to-end transfer function Hν(ω) =

Hν(ω1, ω2, ω3) as [DFMS15, Eq. (12)] [DW17, Eq. (14)]

Hν(ω)
def
=

1

Leff

T

ET,νET,ρ

∫ L

0
GT,ν(ζ, ω1)G

∗
T,ν(ζ, ω2)GT,ρ(ζ, ω3)GR(ζ, ω1 − ω2 + ω3) dζ (5.11)

=
T

ET,ν

T ·HT,ν(ω1) T ·H∗
T,ν(ω2) T ·HT,ρ(ω3)

T

ET,ρ

H∗
T,ρ(ω1 − ω2 + ω3)HNL,ν(ω) ,

where we use the pre-factor T/ET,ν = 1/Pν to normalize the end-to-end transfer function,

see below. The nonlinear end-to-end transfer function characterizes the nonlinear cross-talk

from the νth wavelength channel to the probe channel taking the transmit and receive filter

into account. In particular, Hρ(ω), i.e., with ν = ρ, describes SCI and Hν(ω) with ν 6= ρ

describes XCI.

An alternative block diagram of the intra-channel end-to-end relation with emphasis on

the frequency-domain view is shown at the top of Figure 5.2. The block diagram is in direct

analogy to Figure 4.5. The nonlinear transfer functionHρ(ω) relates the periodic spectrum of

the transmit symbol sequence to the received signal before sampling. The nonlinear end-to-end

transfer function in (5.11) depends on the characteristics of the transmission link, comprised by

the (shifted) nonlinear transfer functionHNL,ν(ω) from (4.84), taking the frequency offset∆ων

between probe and interferer into account, and the characteristics of transmit pulsesHT,ρ(ω)

and HT,ν(ω) (assuming the matched filter receiver front-end).

We now consolidate the T -spaced sampling operation with the prior analysis by consid-

ering the periodic continuation, i.e., the aliased discrete-time equivalent of Hν(ω), see (2.29).

It is given by

Hν(ejωT ) =
1

T 3

∑

m∈Z3

Hν(ω − 2πm

T
) , (5.12)

where the three-fold aliasing is done along each frequency dimension with ω = [ω1, ω2, ω3]
T

and m = [m1,m2,m3]
T ∈ Z

3.
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Hρ(ω) = Hρ(ω1, ω2, ω3)

kT

Hρ(ejωT ) = Alias{Hρ(ω) }

−j 8
9

Leff

LNL,ρ

C
2kT

GT,ρ(ζ, ω1)G∗
T,ρ(ζ, ω2)GT,ρ(ζ, ω3)

A(ejω1T )AH(ejω2T )A(ejω3T )

C
2

1
ET,ρ

GR(ζ, ω)

−j 8
9

Leff

LNL,ρ

∆ASCI(ejωT )

∫

R2 dω1dω2
1

PρLeff

∫ L

0
dζ

∫

T2 dω1dω2

Figure 5.2: A block diagram representation of the frequency-domain continuous-time (single-channel, i.e., ν = ρ)

perturbation model (top), and the deduced discrete-time end-to-end equivalent where T -spaced sampling is

included via the aliased kernel representation and integration bounds that coincide with the Nyquist interval

(bo�om) [FFF20]. The end-to-end relation on top is the extension of Figure 4.5 including the transmit and receive

filter of the probe via GT,ρ(ζ, ω) and GR(ζ, ω).

The normalization3 by T/ET,ν = 1/Pν in (5.11) is done such that Hρ(e
j0T ) = 1 and di-

mensionless. Conversely, the inverse ET,ν/T = Pν is combined with the (path-average) non-

linearity coefficient γ̄ to the (inverse) nonlinear length 1/LNL,ν from (3.74) and included in the

multiplicative factor −8
9

Leff

LNL,ν
in the block diagram. We define the (ν-dependent) nonlinear

phase shift as

φNL,ν
def
=

8

9

Leff

LNL,ν

, (5.13)

which depends via LNL,ν linearly on the launch power Pν and essentially acts as a scaling

factor of the nonlinear distortion’s magnitude.

Figure 5.2 (bottom) shows the deduced discrete-time end-to-end model which now in-

cludes T -spaced sampling via the aliased frequency-domain kernelHρ(e
jωT ). The two-fold in-

tegration over [ω1, ω2]
T is now performed over the Nyquist intervalT2 instead ofR2. This rep-

resentation is in analogy with linear, dispersive channels as, e.g., in Figure 2.10 with z = ejωT

[Fis02, Fig. 2.3].

In summary, we can now relate the sampled perturbation∆a[k] ❞ t∆A(ejωT ) to the trans-

mit sequence (here, again exemplarily for the SCI contribution) both in discrete-time and 1/T -

3Note, that by definition the optical launch power Pν of the νth wavelength channel is related to the pulse
energy of HT,ν(ω) in (2.76), (2.77).
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periodic frequency by

∆ASCI(ejωT ) = −j
8

9

Leff

LNL,ρ
︸ ︷︷ ︸

φNL,ρ

T 2

(2π)2

∫

T2
A(ejω1T )AH(ejω2T )A(ejω3T

︸ ︷︷ ︸

ω3=modT{ ω−ω1+ω2 } ∈T

)Hρ(e
jωT ) d2ω (5.14)

t

❞

∆aSCI[k] = −j
8

9

Leff

LNL,ρ

∑

κ∈Z3

a[k − κ1]a
H[k − κ2]a[k − κ3]hρ[κ] . (5.15)

The integration in (5.14) is two-fold over [ω1, ω2]
T ∈ T

2 while the time-domain summation

in (5.15) is over three independent integer variables κ = [κ1, κ2, κ3]
T ∈ Z

3. This is a conse-

quence of the time-frequency relation between convolution and element-wise multiplication,

also compare with the continuous-time third-order Volterra operator in (2.63)–(2.64).

The temporal matching t3
def
= t− t1 + t2, present for the optical or analog baseband end-to-

end relation in (4.63), (4.94), is now canceled in (5.15) due to the convolution with the matched

filter h∗
T(−t), i.e., κ3 does not depend on κ1 and κ2 in (5.15).

Note, that the frequency variable ω3 in (5.14) still complies with the frequency matching

ω3 = ω − ω1 + ω2 where the sum on the right-hand side may lie outside the Nyquist interval

T. Due to the 1/T -periodicity of the spectrum A(ejωT ) and kernel Hρ(e
jωT ), any frequency

component outside T is effectively folded back into the Nyquist interval by addition of integer

multiples of 2ωNyq. We define the related modulo function as

modT{ω } def
= ω − 2πRs · ⌈ω/(2πRs)⌋ , (5.16)

which reduces any frequency point ω ∈ R to the fundamental Nyquist region T using the

rounding operation ⌈·⌋. This is used to calculate the reduced frequency

ω3 = modT{ω − ω1 + ω2 } ∈ T , (5.17)

which can be interpreted as the FWM constraint (4.22) in the 1/T -periodic frequency domain.



5.1. The First-Order Regular Solution 113

Example 5.1: Obtaining the 1/T -periodic frequency-domain kernel
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Figure 5.3: Contour plot of a 2D cut (ω3 = 0) of the 3D (single-channel, i.e., ν = ρ) frequency-

domain kernel Hρ(ω) (le�) [FFF20]. The parameters are the same as in Figure 4.7, and the basic

pulse has RRC shape with roll-off factor ρ = 0.2. The non-aliased kernel on the le� exhibits the

well-known polygon-shape, compare, e.g., with [CBCJ14, Fig. 4] or [JA14, Fig. 2]. The projection of

the Nyquist cube T
3 into two dimensions is highlighted by the red boundaries. The discrete-time

end-to-end nonlinear transfer function Hρ(ejωT ) (right) is obtained by aliasing the kernel Hρ(ω)
into the Nyquist cube over all three dimensions [ω1, ω2, ω3]T. The three color-coded regions indicate

where the spectral components outside the Nyquist region appear a�er the aliasing operation. As

the notation implies, Hρ(ejωT ) has a 1/T -periodic structure into all three dimensions—shown here

by the transparent continuations in the ω1-ω2-plane.

In Figure 5.3, the contour plot of a 2D cut (i.e., a 2D slice with fixed ω3) from Hρ(ω) before

aliasing, and the corresponding 2D cut from Hρ(ejωT ) a�er aliasing to the Nyquist interval is

shown. The same link parameters are used as in Example 4.1. The non-aliased kernel Hρ(ω)
on the le�-side exhibits the well-known polygon-shape of the SCI contribution for ω3 = 0,
compare, e.g., with the integration islands displayed in Figure 4.16 (le�) for the probe channel,

or [CBCJ14, Fig. 4] and [JA14, Fig. 2]. The portion of spectral support outside the Nyquist region

depends on the roll-off factor, given an RRC transmit shape with matched filter receiver, and

may extend to ωi/(2πRs) = ±1 in all three dimensions i = 1, 2, 3. In this example, a roll-off

factor of ρ = 0.2 is chosen.

The aliased kernel on the right-side is obtained by the operation defined in (5.12) and can be

visually understood as folding, see (5.16), the frequency components from outside the Nyquist

interval into the Nyquist interval (indicated by the red square in Figure 5.3). For illustration,

the color-coded regions display some selected locations of the spectral components before and

a�er aliasing.

The folded spectrum Hρ(ejωT ) has a 1/T -periodic structure in all three dimensions

[ω1, ω2, ω3]T, indicated in Figure 5.3 by the transparent continuations. Here, only the cutω3 = 0
is shown, but the periodicity also extends to the third dimension ω3. This is visualized in Figure

5.4 on the following page where 2D cuts of the same kernelHρ(ejωT ) for varying ω3 are shown.

In particular, the cuts at the positive and negative Nyquist frequency ω3/(2πRs) = 0.5 and

ω3/(2πRs) = −0.5 are identical.

The kernel Hρ(ejωT ) is real-valued on the main-diagonal ω1 = ω2, see (5.24), and has unity

magnitude except for the regions affected by aliasing, e.g., the yellow patch in Figure 5.4. The

kernel exhibits a similar signature for the case ω2 = ω3, see Figure 5.4, which is a particular

property of the intra-channel kernel with ν = ρ. The gradient of kernel depends mainly on the

symbol rate Rs (for a fixed dispersion coefficient β̄2), see Figure 4.8, and is directly related to

the temporal width of the time-domain kernel, see Example 5.2.
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Figure 5.4: Contour plot of the 2D cut of the frequency-domain kernel 10 log10(|Hρ(ejωT )|2) for

varying ω3. The cut with ω3/(2πRs) = 0 coincides with the fundamental Nyquist region T
2 in

Figure 5.3 (right). Due to the periodicity into the ω3-direction the cut for ω3/(2πRs) = −0.5 and

ω3/(2πRs) = 0.5, i.e., the positive and negative Nyquist frequency in ω3, are identical.



5.1. The First-Order Regular Solution 115

The corresponding result to (5.15) for the discrete-time, inter-channel end-to-end relation

was published in the seminal paper by A. Mecozzi and R.-J. Essiambre in [ME12, Eq. (61), (62)]

and later used in [DFMS13, Eq. (6), (7)]. A recent review of the time-domain perturbative

model is part of the book chapter in [BDS+20, Sec. 9.5]. The derivation provided in the liter-

ature [ME12] is based on reasoning connected to the time-domain perturbation theory. The

counterpart in frequency domain has not been considered before.

Based on the previous results in (4.92)–(4.94) and the considerations on the intra-channel

model, see above, the XCI complement to (5.14)–(5.15) follows as

∆AXCI(ejωT ) = −j
∑

ν 6=ρ

8

9

Leff

LNL,ν

T 2

(2π)2

∫

T2

(

Bν(ejω1T )BH
ν (ejω2T ) + BH

ν (ejω2T )Bν(ejω1T )I
)

×A(ejω3T )Hν(ejωT ) d2ω (5.18)
t

❞

∆aXCI[k] = −j
∑

ν 6=ρ

8

9

Leff

LNL,ν

∑

κ∈Z3

(

bν [k − κ1]b
H
ν [k − κ2] + bH

ν [k − κ2]bν [k − κ1]I
)

× a[k − κ3]hν [κ] . (5.19)

The time-domain description of the T -spaced channel model in (5.19) is equivalent to the pulse-

collision picture (cf. [DFMS16, Eq. (3-4)] and [Dar16, Eq. (3-4)]). Compared to the derivation

provided in [ME12], we arrive at the same result in (5.19) following a derivation in frequency-

domain. A detailed, alternative derivation for the end-to-end relation in (5.19) is presented

in Appendix A.4. Here, we take advantage of the theory on the time-domain Volterra se-

ries developed in Section 2.1.3.2. Due to the equivalence between the Volterra and perturba-

tion theory [VSB02], we again arrive at the same result in (5.19) under a somewhat different

premise. Some exemplary time- and frequency-domain, intra- and inter-channel kernels hν [κ]

and Hν(ejωT ) are discussed in Example 5.1 and Example 5.2.

The time-domain and aliased frequency-domain kernel are related by a three-dimensional

(3D) DTFT according to

hν [κ] = F̂−1
κ↔ω{ Hν(ejωT ) } , (5.20)

where the time-domain kernel hν [κ] = hν [κ1, κ2, κ3] can be equivalently derived using the

Volterra theory from (2.65), see Appendix A.4, to obtain

hν [κ] =
1

Leff

T

ET,νET,ρ

∫ L

0

∫ ∞

−∞
gT,ν(ζ, κ1T − σ)g∗

T,ν(ζ, κ2T − σ) (5.21)

× gT,ρ(ζ, κ3T − σ)gR(ζ,σ) dσdζ

=
1

Leff

T

ET,νET,ρ

∫ L

0
exp(−G(ζ))

∫ ∞

−∞
gT,ν(ζ, κ1T − σ)g∗

T,ν(ζ, κ2T − σ) (5.22)

× gT,ρ(ζ, κ3T − σ)g∗
T,ρ(ζ,σ) dσdζ .

Here, the additional integral, compared to the Volterra theory in (2.65), over ζ accounts for

the parallel, spatial branches, of which one is shown in Figure 5.5. The time-domain kernel is

effectively sampled at τ = κT , hence the aliasing operation in (5.12). As in frequency domain,
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bH
ν [k]

kT

a[k]

bν [k]

∆aXCI

ν (ζ, kT )

G∗
T,ν(ζ, ω)

GT,ρ(ζ, ω)

1
ET,ρ

GR(ζ, ω)

gT,ν(ζ, t)

g∗
T,ν(ζ, t)

gT,ρ(ζ, t)

1
ET,ρ

gR(ζ, t)

GT,ν(ζ, ω)

Figure 5.5: Block diagram of the basic third-order Volterra system (compare with Figure 2.1, Figure 4.6, and

Figure 4.17) constituting a single spatial branch of the discrete-time end-to-end model of the νth wavelength

channel. The input signals are given by the discrete-time transmit sequences of the probe a[k] and interferer

bν [k]. The linear system acting on the interferer gT,ν(ζ, t) ❝ sGT,ν(ζ, ω) already takes the relative channel

separation ∆ων into account. This corresponds to a retardation of the dipsersed basic pulse in time by the

walk-off τwo = ∆ωνB(ζ) depending on the local amount of accumulated dispersion, see, e.g., Example 3.6.

the kernel hν [κ] is normalized using the same pre-factor 1
Leff

T
ET,ν

. Note, that the exponen-

tial exp(−jB(z)∆ω2
ν) present in gT,ν(z, t) is canceled considering the product gT,ν(ζ, κ1T −

σ)g∗
T,ν(ζ, κ2T − σ) in (5.21).

Kernel Symmetry We now review the kernel properties of the aliased frequency-domain ker-

nel which can be deduced from (5.11), (5.12) and, e.g., based on the symmetric properties of the

basic third-order system shown in Figure 5.5 (top), where we assume the matched filter re-

ceiver front-end. We have

Hν(ejωT ) ∈ R, if ω2 = ω1 ⇔ ω3 = ω (5.23)

Hρ(e
jωT ) ∈ R, if ω2 = ω1 ⇔ ω3 = ω (5.24)

∨ ω2 = ω3 ⇔ ω1 = ω ,

where the two (doubly-degenerate4) cases ω2 = ω1 and ω2 = ω3 (for ν = ρ) result in a purely

real-valued kernel5. The first degenerate case with ω1 = ω2 corresponds to the diagonal of the

Nyquist region in Figure 5.3, shown here for ω3 = 0, and in Figure 5.4. For the special case

that the transmit pulses hT,ρ(t) and hT,ν(t) have RRC shape with roll-off factor ρ = 0 (i.e.,

no spectral support outside the Nyquist region), we find that the folded kernel always takes

the value 1 on the diagonal—independent of ω3. In general, the elements on the diagonal are

always real-valued and close to the value 1 (i.e., quasi frequency-flat on the ω1-ω2-diagonal),

and the flatness depends on the amount of spectral support which is folded into the Nyquist

region, cf. the yellow region in Figure 5.3. This approximation will be used later to simplify

the expression for the average phase- and polarization rotation, see next section.

4Out of the four interacting frequencies ω, ω1, ω2, ω3, two come as identical pairs due to (5.17).
5This corresponds to classical inter- and intra-channel XPM, i.e., with pure phase modulation, see analysis in

the following section
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We also find the following symmetry properties of the intra-channel kernel

Hρ(e
j [ω1,ω2,ω3]TT ) = Hρ(e

j [ω3,ω2,ω1]TT ) (5.25)

Hρ(e
j [ω1,ω2,ω3]TT ) = Hρ(e

j [−ω1,−ω2,−ω3]TT ) , (5.26)

and we can conclude form (5.25) that the cut of the kernel shown in Figure 5.3 is equivalent to

the cut with ω1 = 0, shown in the ω3-ω2-plane instead. Similarly, in Figure 5.4, ω1 and ω3 can

be swapped without changing the picture.

We continue to review the kernel properties in discrete-time domain. Here, the properties

directly follow from (5.22), and the symmetry properties of the basic third-order system shown

in Figure 5.5 (bottom). We have

hν [κ1, κ2, 0] ∈ R, if κ2 = κ1 (5.27)

hν [κ1, κ2, 0] = h∗
ν [κ2, κ1, 0] ∈ C if κ2 6= κ1 , (5.28)

where the case in (5.27) is doubly-degenerate (i.e., κ1 = κ2 and κ3 = 0 leads to two match-

ing pulses in (5.22), which is later termed two-pulse collision), and the kernel is real-valued6.

For the second case (5.28), the kernel is generally complex-valued but conjugate-symmetric

w.r.t. permutation of [κ1, κ2]
T. Due to the double sum over all [κ1, κ2]

T (with the constraint

κ1 6= κ2 and κ3 = 0, later termed three-pulse collision) in (5.19) the overall perturbation from

this subset of [κ1, κ2]T ∈ Z
2 is still real-valued.

Additionally, for intra-channel contributions (ν = ρ) we find the following symmetry

properties of the kernel

hρ[κ1, κ2, κ3] = hρ[κ3, κ2, κ1] (5.29)

hρ[κ1, κ2, κ3] = hρ[−κ1,−κ2,−κ3] , (5.30)

and we identify a second degenerate case corresponding to (5.27)–(5.28) but with κ1 = 0 for

the intra-channel case, cf., e.g., the symmetric form of (5.15) w.r.t. κ1 and κ3.

6The transmit pulse-shapes hT,ρ(t) and hT,ν(t) are assumed to be a real-valued (root) raised-cosine, and the
receiver uses the matched filter front-end.
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Example 5.2: Time- and frequency-domain, intra- and inter-channel kernels

This example follows up on Example 5.1. Here, we show a frequency-domain kernel that de-

scribes the nonlinear cross-talk between a single interfering wavelength channel (with channel

index ν) and the probe channel (with channel index ρ). In this se�ing, we assume the same

system parameters as in Example 4.1. Additionally, the interferer has the same symbol rate

Rs = 64 GBd and RRC pulse-shape with ρ = 0.2 as the probe channel and is spaced at a

relative channel offset of ∆ων/(2π) = 80 GHz.
The contour plot in logarithmic scale of the aliased kernel Hν(ejωT ) is shown in Figure 5.6.

Again, we can observe the periodic structure of the kernel within the 3D spectral support. Simi-

lar to the intra-channel, frequency-domain kernel in Figure 5.4, the main diagonal with ω1 = ω2

is real-valued, see (5.23), however, the second degenerate case with ω2 = ω3 is missing. The ker-

nel gradient is much steeper compared to the intra-channel kernel, suggesting that the corre-

sponding time-domain kernel has a greater temporal extent (i.e., the system is more dispersive).

With increasing channel separation the gradient will increase accordingly. This can be seen, e.g.,

in Figure 4.16, as the integration bounds of the shi�ed nonlinear transfer functionHNL(υ1, υ2)
move into regions of stronger slopes with increasing channel separation.

Next, we discuss the corresponding time-domain kernels related to Figure 5.4 and Figure 5.6. The

time-domain kernel hν [κ] can be computed either via a two-fold integral over the spatial and

temporal domain ζ and σ, see (5.21)–(5.22), or via a 3D inverse DTFT, see the correspondence

in (5.20). Performing the numerical integration in either of the two former methods requires

proper sampling of the integrand. E.g., for the DTFT method, we effectively used a DFT with

512 equidistant samples per dimension to carry out the transform. This choice results in a good

match w.r.t. the two-fold integral over ζ and σ using small step-sizes ∆ζ ≪ L and ∆σ ≪ T ,
and finite integration bounds. Note, that using a DFT will inherently lead to cyclic artifacts if

the number of samples M per dimension is too small for the system memory specific to the

kernel. E.g., going to higher channel offsets ∆ων/(2π) ≫ Rs and large L ≫ LD will make the

DFT method computationally challenging.

Considering Figure 5.7 and Figure 5.8, the time-domain kernels hρ[κ] and hν [κ] also have a

symmetric structure, see (5.27)–(5.30), and are relatively sparse compared to the frequency-

domain kernels, i.e., much of the nonlinear interaction is captured by relatively few kernel

coefficients. E.g., many of the perturbation-based methods for intra-channel fiber nonlinear-

ity compensation in time domain only use the 2D cut with κ2 = κ1 + κ3 in Figure 5.7, see,

e.g., [GCK+14,ONO+14,ZRB+14]. In [FES+18], an improved approach is presented which takes

all of the 2D cuts into account leading to be�er performance/complexity trade-offs.

We recap from Example 4.2 that the normalized map strength for Rs = 64 GBd and ρ = 0.2
calculates to (1 + ρ)|ST,ρ| ≈ 14 which is in the same order as the interaction length of the

intra-channel, time-domain kernel hρ[κ] in Figure 5.7. Similarly, the interaction length of the

inter-channel, time-domain kernel hν [κ] can be approximated bya

(1 + ρ)(|ST,ρ|+ |ST,ν |) = (1 + ρ)Rs (2πRs + |∆ων |)|β̄2|Leff ≈ 32 ,

i.e., the combined effect of intra-channel, nonlinear memory and inter-channel walk-off over

the effective length Leff .

aNote, that when comparing Figure 5.7 and Figure 5.8, the coefficients are normalized by their respective
center coefficient with a relative ratio of 10 log10(hρ[0]2/hν [0]2) ≈ 10 dB.
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Figure 5.6: Contour plot of the 2D cuts of the frequency-domain kernel 10 log10(|Hν(ejωT )|2) of the
νth interferer with relative channel offset∆ων/(2π) = 80 GHz. We assume the same link parameters

as in Figure 5.4, i.e., β̄2 = −21 ps2/km, B0 = 0 ps2, 10 log10 eᾱ = 0.2 dB/km and L = Lsp =
100 km, see also Example 4.1. The interferer has the same symbol rate, Rs = 64 GBd, and transmit

shape, RRC with roll-off ρ = 0.2, as the probe.
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Figure 5.7: Contour plot of the 2D cut of the time-domain kernel 10 log10(|hρ[κ]|2) normalized to the

energy of the center coefficient |hρ[0]|2 ≈ 20 for varying κ2. The same link and signal parameters

are used as in Figure 5.4, i.e., the time-domain kernel hρ[κ] can be obtained by a 3D inverse DTFT

of Hρ(ejωT ). In the literature, o�en only the cut with κ2 = κ1 + κ3 is shown, i.e., the case that

corresponds to the temporal matching constraint (which is not present anymore for the discrete-

time end-to-end model).
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Figure 5.8: Contour plot of the 2D cut of the time-domain kernel 10 log10(|hν [κ]|2) of the νth

interferer with relative channel offset ∆ων/(2π) = 80 GHz, normalized to the center coefficient

|hν(0)|2 ≈ 2. Note, that compared to Figure 5.7 the κ1-κ3-axes scaling has changed. The time-

domain kernel hν [κ] can be obtained by a 3D inverse DTFT ofHν(ejωT ) from Figure 5.6. The channel

walk-off of about 15 symbol periods between the probe and the interferer translates into a significant

temporal spread of the nonlinear response.
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5.1.1 Kernel Energy and Relation to the GN-Model

Parseval’s theorem applied to (5.20) yields the energy of the time- and frequency-domain co-

efficients of the discrete-time, third-order Volterra system

Eh,ν
def
=
∑

κ∈Z3

|hν [κ]|2 =
(
T

2π

)3 ∫

T3
|Hν(ejωT )|2 d3ω

def
= EH,ν , (5.31)

where the right-hand side of (5.31) is closely related to the GN-model [Pog12], see discussion

in Section 1.1. In contrast to (5.31), the conventional GN-model performs the integration over

the un-aliased kernel |Hν(ω)|2 instead, i.e.,

E
(GN)
H,ν

def
=
(
T

2π

)3 ∫

R3
|Hν(ω)|2 d3ω , (5.32)

where the integration is performed over [ω1, ω2, ω3]
T ∈ R

3. In doing so, the GN-model calcu-

lates the strength of the nonlinear perturbation before T -spaced sampling, on the basis of the

continuous-time end-to-end model (see, e.g., the comprehensive derivation of the GN-model

in [PBC+12], or the more recent review in the textbook [BDS+20]). When implemented for nu-

merical evaluation, the GN-model from equation (5.32) is essentially discretized, i.e., sampled

in frequency domain, and summed over the contribution from each wavelength channel7, see

the Sampled GN-model in Figure 1.1 (bottom). This sampling operation in frequency domain is

an implicit result of the signal model assumed in the derivation of the GN-model, where the

PSD of a communication signal U(ω) is modeled as the sum of equidistant Dirac functions

δ(ω) shifted by some fixed delta in frequency, see [PBC+12, Eq. (13)] or [BDS+20, Eq. (9.9)].

The GN-model equation in its conventional form, see [Pog12, Eq. (1)], is often only evalu-

ated at a single frequency ω = ω1 − ω2 + ω3, typically at the center-frequency of the probe.

This reduces the triple integral in (5.32) to a double integral over [ω1, ω2]T ∈ R
2 where ω3

must comply to the FWM constraint (4.22). Beyond that, the common pre-factor (8
9

Leff

LNL,ν
)2,

not shown in (5.32), is included in the standard GN-model equation as it acts as a scaling

factor to the power/variance of the nonlinear distortion.

There is a multitude of variations and approximations of the GN-model. A common ap-

proximation is done by, e.g., limiting the integration bounds in (5.32) to the spectral support of

the respective wavelength channel, cf. the integration islands in Figure 5.4 or [CBCJ14, Fig. 4].

More details on some common approximations can be found in, e.g., [PJ17,BDS+20].

The energies computed from theDiscrete-Time GN-model, see (5.31) and Figure 1.1 (bottom),

are in general not equivalent to the conventional GN-model, since the latter takes the squared

magnitude before aliasing the kernel to the Nyquist interval, while the operations are reversed

for the former Discrete-Time GN-model. The deviation between the two models depends on

the pulse shapes of the involved wavelength channels, in particular, on the spectral support

outside the Nyquist interval. Both models obtain the same result for, e.g., RRC pulses with

roll-off factor ρ = 0. Then, the spectral support outside the Nyquist interval is zero, assuming

7To account for all SCI and XCI contributions in (5.32) summation over all ν is required—the GN/EGN-model
in its standard form also includes MCI.



5.1. The First-Order Regular Solution 123

Algorithm 1: REG-PERT-FD for the SCI contribution

1 aλ[k] = overlapSaveSplit(〈a[k] 〉,M,K)
2 k, µ, µ1, µ2 ∈ { 0, 1, . . . ,M − 1 }
3 Hρ[µ1, µ2, µ3] = Hρ[µ] = Hρ(e

j 2π
M

µ)
4 forall λ do

5 Aλ[µ] = DFT{aλ[k] }
6 forall µ do

7 µ3 = modM(µ− µ1 + µ2)

8 ∆ASCI

λ [µ] = −j
φNL,ρ

M2

∑

µ1,µ2
Aλ[µ1]A

H
λ [µ2]Aλ[µ3]Hρ[µ1, µ2, µ3]

9 Y PERT

λ [µ] = Aλ[µ] + ∆ASCI

λ [µ]

10 end

11 yPERT
λ [k] = DFT

−1{Y PERT

λ [µ] }
12 end

13 〈yPERT[k]〉 =overlapSaveAppend(yPERT
λ [k],M,K)

the matched filter on the receive-side, and no aliasing of frequency components occurs due to

T -spaced sampling. This also facilitates the connection between the GN-model and the time-

domain perturbation models [ME12,DFMS16]. Due to Parseval’s theorem the kernel energies

in time-domain (i.e., the results formerly obtained by the time-domain perturbation models)

are identical to the kernel energies in frequency-domain when the aliased frequency-domain

kernel in (5.31) is considered.

5.1.2 Discrete-Frequency Algorithmic Implementation

The algorithmic implementation of the time-domain model from (5.15) and (5.19) is straight-

forward as far as the kernel coefficients are present. Here, we present an algorithmic imple-

mentation of the end-to-end model in 1/T -periodic frequency domain from (5.14) and (5.18),

which requires discretization in frequency domain. To that end, the algorithm is exemplarily

derived for intra-channel (i.e., SCI) contributions corresponding to the continuous-frequency

relation in (5.14), and shown at the bottom of Figure 5.2.

In order to realize the frequency-domain processing, the periodic spectrum of the transmit

sequence A(ejωT ) and the frequency-domain kernel Hρ(e
jωT ) are discretized, i.e., sampled in

the transform domain. Then, the (point-wise) multiplication in frequency-domain results in a

cyclic convolution in time domain, and we have to resort to block-wise processing using, e.g.,

the overlap-and-save method [Shy92].

Algorithm 1 realizes the regular perturbation (REG-PERT) procedure in 1/T -periodic dis-

crete frequency domain (FD). Here, the overlap-save algorithm is used to split the sequence

〈a[k] 〉 into overlapping blocks aλ[k] ❞ tAλ[µ] of sizeM enumerated by the subindex λ ∈ N.

The block size is equal to the size of the DFT8 and the overlap between successive blocks isK .

8The one-dimensional DFT is performed on each vector component of aλ[k] and always relates the whole

blocks of lengthM .
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The aliased frequency-domain kernel is discretized to obtain the coefficients

Hρ[µ1, µ2, µ3] = Hρ[µ]
def
= Hρ(e

j 2π
M

µ) (5.33)

whereM is the number of discrete-frequency samples per dimension9.

The time- and frequency-domain picture of the regular perturbation approach are equiva-

lent due to theDTFT in (5.14), (5.15) which interrelates both representations. Algorithm 1 repre-

sents a practical realization in discrete-frequency which produces the same (numerical) results

as the discrete-time model as long asM andK are chosen sufficiently large for a given system

scenario. Accordingly, the number of (frequency) samplesM per 1/T -cycle (and per dimen-

sion) is critical as discretization in one domain produces aliasing (and hence periodicity) in the

other domain, i.e., here, the nonlinear impulse response obtained by hρ[κ] = DFT
−1{Hρ[µ] }

has potential cyclic artifacts ifM is chosen too small. E.g., in Figure 5.4 to 5.8, one can expect

that the required number of samplesM (i.e., the required frequency resolution) for the inter-

channel kernel Hν(ejωT ) is higher than for the intra-channel kernel Hρ(e
jωT ) as the gradient

of the kernel takes higher values for Hν(ejωT ). See, e.g., the ω1-ω2-diagonal in Figure 5.4 and

5.6 which drops off significantly faster to the edges for the inter-channel kernel compared to

the intra-channel kernel. In time domain, this is reflected by an impulse response hν [κ] with

an increased temporal extent compared to hρ[κ].

The discrete-frequency indices µ1 and µ2 are elements of the set

M = { 0, 1, . . . ,M − 1 } , (5.34)

whereas µ3 must be (modulo) reduced, cf. Line 7, to the same number set. This is due to the

frequency matching constraint in (4.22). Due to the periodicity of both the discrete spectrum

Aλ[µ] and the kernel Hρ[µ], the frequency index µ3 is folded back into the Nyquist interval

just like the modulo reduction in (5.17) for the continuous-frequency case.

Line 8 of the algorithm realizes Equation (5.14) where the (double) sum is performed over

all µ1, µ2 ∈ M. After frequency-domain processing the blocks of perturbed receive symbols

Y PERT

λ [µ] t ❞yPERT
λ [k] are transformed back to time domain where theM −K desired output

symbols of each block are appended to obtain the perturbed sequence 〈yPERT[k] 〉.
The number of coefficients can be controlled by pruning the kernel, similar to techniques

already applied to oversampled VSTF models [GP13].

In terms of computational efficiency a frequency-domain implementation can be superior

to the time-domain implementation, in particular, for cases where the number of nonlinear

interacting pulses is large. This is typically the case if the system memory is large, i.e., for

large map strengths ST,ρ or ST,ν , or large relative frequency offsets ∆ων , or pulse shapes hT(t)

that extend over multiple symbol durations, e.g., a RRC shape with small roll-off factor ρ.

Then, the number of coefficients of the time-domain kernel hν [κ] exceeding a relevant energy

level grows very rapidly leading to a large number of multiplications and summations. Vice-

versa, we can conclude from Figure 4.8 and Figure 5.3 that for increasing system memory, the

9Note, that the frequency discretization of the kernel must not necessarily coincide with the transformation
lengthM . Also, not all dimensions must be discretized with the same number of samplesM .
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energy of the kernel coefficients is confined in a smaller volume within the Nyquist cube, i.e.,

more coefficients can be pruned. This is in analogy with linear systems, where a large-memory

system is represented by a narrow-banded transfer function. Moreover, the frequency-domain

picture comprises only a double sum per frequency index µ instead of a triple sum for each

k in the time-domain model—this is again in analogy with linear systems where time-domain

convolution is dual to frequency-domain point-wise multiplication.

A thorough complexity analysis is, however, beyond the scope of this work, as it heavily

depends on the specific application and system scenario in mind. Section 5.3 will hence focus

on the validity and accuracy of the proposed model—deliberately using a very low pruning

level of the coefficients to provide a benchmark performance of the discussed schemes. To that

end, Section 5.3 will compare the regular discrete-time and -frequency model to the reference

channel model implemented via the SSFM.

In the next section, the regular model is extended to a combined regular-logarithmic model

where a subset of the perturbations are considered as multiplicative, i.e., perturbations that

cause a rotation in phase or in the state of polarization (SOP), see Appendix A.1.

5.2 The First-Order Regular-Logarithmic Solution

It was already noted in [XBP02] that the (first-order) regular VSTF approach (or the equivalent

RP method) in (4.1)–(4.2) reveals an energy-divergence problem if the optical launch power Pν

is too high—or more precisely if the nonlinear phase shift φNL,ν is too large.

This issue was first addressed in the early 2000s for the analog baseband end-to-end RP

solutions [XBP01,VSB02] and years later revived in the context of intra-channel fiber nonlin-

earity mitigation. In [VSB02, Sec. VI], the RP method is derived in a reference system rotated

by the time-invariant nonlinear phase, called enhanced regular perturbation (eRP) method. It

was shown in [VSB02,SB13,SB15], that the eRPmodel provides a significant improvement over

pure RP models. A similar correction formula was proposed for VSTF methods in [XBP02].

In [FS05,SF12,SFP13], a LP model is derived which is exact in the limit of zero-dispersion links.

On the other hand in DU links, as pointed out in [SB13], the LPmethod yields a log-normal dis-

tribution of the nonlinear distortion which is inconsistent with observations from simulations

and experiments.

In the additive-multiplicative (A-M)model derived in [FDT+12,TZF+14], it turned out that a

certain subset of symbol combinations in the time-domain RP model deterministically creates

a perturbation oriented into the −j-direction from the transmit symbol a[k]. Similarly, in

the pulse-collision picture [DFMS13,DFMS14,DFMS16] a subset of degenerate10 cross-channel

pulse collisions were properly associated to distortions exhibiting a multiplicative nature. In

the same series of contributions, these subsets of degenerate distortions were first termed

two- and three-pulse collisions, i.e., symbol combinations κ ∈ Z
3 in (5.19) with κ3 = 0 in our

terminology. While the pulse collision picture covers mainly cross-channel effects, we will

extend the discussion on separating additive and multiplicative terms also to intra-channel

10In the sense that not all four interacting pulses are distinct.
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effects.

It is through using a first-order RP approach that a pure phase rotation is not modeled

well. It is approximated only by the first two terms of the exponents Taylor series, i.e.,

exp(−jφ) ≈ 1− jφ . (5.35)

While multiplication with exp(−jφ) is an energy conserving transformation (i.e., the norm is

invariant under phase rotation), the RP approximation is not energy conserving (cf. also the

discussion in [TDY+11, Sec. II B.] and [DFMS16, Sec. VIII]). In the context of optical transmis-

sion, already a trivial (time-invariant) common phase rotation due to nonlinear interaction is

not well modeled by the RP method. E.g., using the discrete-time RP ansatz from (4.5) under a

time-invariant rotation φ, we find

y[k] = a[k] exp(−jφ) ≈ a[k]− jφa[k] , (5.36)

i.e., the (additive) perturbation∆a[k] depends directly on the transmit symbol a[k], is oriented

into the −j-direction from the transmit symbol a[k] (i.e., in a 90◦ clock-wise rotation), and

scaled by the scalar factorφ. The same argument can bemade for polarization rotations inC2×2,

see Appendix A.1. The first-order approximation of a (time-invariant) polarization rotation

results in

y[k] = a[k] exp(−j~s · ~σ) ≈ a[k]− j(~s · ~σ) a[k] . (5.37)

where exp(·) denotes thematrix exponential from (2.11). We use the common notation ~s · ~σ ∈
C

2×2 from (A.39) to express Hermitian 2× 2 matrices.

Comparing −jφa[k] from (5.36) to the result for the intra-channel perturbation ∆aSCI[k]

in (5.15), we may identify certain conditions (depending on the selection of κ = [κ1, κ2, κ3]
T

and the properties of the kernel hρ[κ]) for which ∆aSCI[k] is deterministically proportional to

−ja[k] as in (5.36). The same analysis can be done for inter-channel perturbations aXCI[k], for

polarization rotations as in (5.37), and for the ansatz in frequency domain (4.6).

The strategy in what follows is to explicitly implement those cases, see above, by a multi-

plication via the exponent exp(·), and to exclude them from the additive term. The content and

much of the terminology in the next section is based on the pulse-collision picture [DFMS16].

We add to the discussion also a time-domain description of intra-channel XPolM, and extend

the approach in the following section to the derived frequency-domain view of the discrete-

time model.

5.2.1 Regular-Logarithmic Model in Time Domain

In the following, the original RP solution is modified such that perturbations originating from

certain (degenerate) mixing products are associated with a multiplicative perturbation. Sim-

ilar to [SFM09, TZF+14, DFMS16], we extend the previous RP model to a combined regular-
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logarithmic model. It takes the general form of11

y[k] = exp (jφ[k] + j~s[k] · ~σ) (a[k] + ∆a[k]) . (5.38)

In addition to the regular, additive perturbation∆a[k]we now also consider a phase rotation by

exp(jφ[k]), where φ[k] is a diagonal matrix in R
2×2, and a rotation in the state of polarization

by exp(j~s[k] · ~σ), where ~s[k] · ~σ is Hermitian in C
2×2.

All perturbative terms combine both SCI and XCI effects, i.e., the additive perturbation

∆a[k] ∈ C
2 in (5.38) is the sum of SCI and XCI contributions. The time-dependent phase

rotation is given by exp(jφ[k]) with the diagonal matrix φ[k] ∈ R
2×2 defined as

φ[k]
def
= φSCI[k] I + φXCI[k] I , (5.39)

i.e., we define a common phase term for both polarizations originating from intra- and inter-

channel effects.

The combined effect of intra- and inter-channel XPolM is expressed by the Pauli matrix

expansion~s[k] ·~σ ∈ C
2×2 using (A.39), with the notation adopted from [GK00] and [WBSP09].

The expansion defines a unitary rotation in Jones space of the perturbed vector a[k] + ∆a[k]

around the time-dependent Stokes vector~s[k] and is explained in more detail in the subsequent

paragraphs.

SCI Contribution To discuss the SCI contribution we first introduce the following symbol

sets, motivated by the symmetries of the time-domain kernel hρ[κ] in (5.27)–(5.30). We define

KSCI = { [κ1, κ2, κ3]
T ∈ Z

3 | |hρ[κ]/hρ[0]|2 > Γ SCI } (5.40)

K 1

φ
def
= {KSCI | κ1 = 0 ∧ κ2 6= 0 ∧ κ3 6= 0 } (5.41)

K 3

φ
def
= {KSCI | κ3 = 0 ∧ κ2 6= 0 ∧ κ1 6= 0 } (5.42)

KSCI

φ
def
= K 1

φ ∪ K 3

φ ∪ {κ = 0 } (5.43)

KSCI

∆

def
= KSCI \ KSCI

φ , (5.44)

where (5.40) defines the base set including all possible symbol combinations that exceed a

certain energy (clipping) level Γ SCI normalized to the energy of the center tap at κ = 0. In

(5.41), (5.42) the joint set of degenerate two- and three-pulse collisions for SCI are defined

which follow directly from the kernel properties in (5.27), (5.28) for κ3 = 0, and (5.29), (5.30)

for κ1 = 0. The set of indices for multiplicative distortions KSCI
φ in (5.43) also includes the

singular case κ = 0. Then, the additive set is simply the complementary set of KSCI
φ w.r.t. the

base set KSCI.

We start with the additive perturbation from the previous section in (5.15) which now reads

∆aSCI[k] = −jφNL,ρ

∑

KSCI
∆

a[k − κ1]a
H[k − κ2]a[k − κ3]hρ[κ], (5.45)

11Note, that the order, in which the additive and multiplicative perturbation is applied, matters. We chose the
same order as in the original additive-multiplicative (A-M) model from [TZF+14], but we have no proof that this
is the optimal order of how to combine the two operations.
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where the triple sum is now restricted to the set KSCI
∆ excluding all combinations which result

in a multiplicative distortion, cf. (5.44).

To calculate the common phase φSCI[k] and the intra-channel Stokes rotation vector~s SCI[k]

we first analyze the expressiona[k−κ1]a
H[k−κ2]a[k−κ3] from the original equation in (5.15).

For the setK 1

φ with κ1 = 0 the triple product factors into the respective transmit symbol a[k]

and a scalar value aH[k− κ2]a[k− κ3]. After multiplication with hρ[0, κ2, κ3] and summation

of all κ ∈ K 1

φ the perturbation is strictly imaginary-valued, cf. symmetry properties in (5.29),

(5.30).

On the other hand, for K 3

φ with κ3 = 0 we have to rearrange the triple product using the

matrix expansion from (A.40) to factor the expression accordingly as12

aaHa =
1

2

(

aHa I + (aH~σa) · ~σ
)

a , (5.46)

where a is an element of the discrete-time transmit symbol sequence 〈a[k] 〉. The first term
aHa I contributes to a common phase rotation, whereas the second term (aH~σa) ·~σ ∈ C

2×2 is

a traceless andHermitianmatrix such that exp(j(aH~σa)·~σ) is a unitary polarization rotation13.

The multiplicative perturbation exp(jφSCI[k]) with φSCI[k] ∈ R is then given by

φSCI[k] =− φNL,ρ

∑

K
1

φ

aH[k − κ2]a[k − κ3]hρ[0, κ2, κ3]

− 1

2
φNL,ρ

∑

K
3

φ

aH[k − κ2]a[k − κ1]hρ[κ1, κ2, 0]

− φNL,ρ ‖a[k]‖2 hρ[0] (5.47)

=− 3

2
φNL,ρ

∑

K
3

φ

aH[k − κ2]a[k − κ1]hρ[κ1, κ2, 0]

− φNL,ρ ‖a[k]‖2 hρ[0] , (5.48)

where we used hρ[0, κ2, κ3] = hρ[κ1, κ2, 0] from (5.29). Given a wide-sense stationary transmit

sequence 〈a[k] 〉, the induced nonlinear phase shift has a time-average value φ̄SCI, around

which the instantaneous phase φSCI[k] may fluctuate (cf. also [SB15]).

The instantaneous rotation of the SOP due to the expression exp(j~s SCI[k] · ~σ) ∈ C
2×2

causes intra-channel XPolM [MM12]. It is given by

~s SCI[k] · ~σ = −1

2
φNL,ρ

∑

K
3

φ

(

2 a[k − κ1]a
H[k − κ2]

− aH[k − κ2]a[k − κ1]I
)

hρ[κ1, κ2, 0] , (5.49)

where we made use of the relation in (A.33), (A.40) to rewrite the second summand on the

right-hand side of (5.46) as

(aH~σa) · ~σ = 2aaH − aHaI . (5.50)

12Multiplication with hρ[κ] and summation over κ ∈ KSCI

φ are implied.
13Since the Pauli expansion ~u · ~σ in (A.39) is Hermitian, the expression exp(j ~u · ~σ) is unitary.



5.2. The First-Order Regular-Logarithmic Solution 129

The physical meaning of the transformation described in (5.49) is as follows: The perturbed

transmit vector (a[k] +∆a[k]) in (5.38) is transformed into the polarization eigenstate ~s SCI[k]

(i.e., into the basis defined by the eigenvectors of ~s SCI[k] · ~σ). There, both vector components

receive equal but opposite phase shifts and the result is transformed back to the x/y-basis of the

transmit vector. In Stokes space, the operation can be understood as a precession of (~a[k] +

∆~a[k]) around the Stokes vector ~s SCI[k] by an angle equal to its length
∥
∥
∥~s SCI[k]

∥
∥
∥, see, e.g.,

Example A.1. The intra-channel Stokes vector ~s SCI[k] depends via the nonlinear kernel hρ[κ]

on the transmit symbols within the neighborhood of a[k], i.e., depending on the memory ST,ρ

of the nonlinear interaction. Similar to the nonlinear phase shift—for a wide-sense stationary

input sequence—the Stokes vector ~s SCI[k] has a time-constant average value around which it

fluctuates over time.

XCI Contribution The same methodology is now applied to cross-channel effects. The sym-

bol set definitions for XCI follow from the considerations in the previous section. We find

KXCI

ν = { [κ1, κ2, κ3]
T ∈ Z

3 | |hν [κ]/hν [0]|2 > Γ XCI

ν } (5.51)

KXCI

φ,ν
def
= {KXCI

ν | κ3 = 0 ∧ κ2 6= 0 ∧ κ1 6= 0 }
∪ {κ = 0 } (5.52)

KXCI

∆,ν
def
= KXCI

ν \ KXCI

φ,ν , (5.53)

where the subscript ν indicates the channel number of the respective interfering channel.

For KXCI
φ,ν , only the degenerate case κ3 = 0 has to be considered due to the kernel properties

of hν [κ1, κ2, 0] in (5.27), (5.28). Similar to (5.46), the expression bbH + bHb I from (5.19) is

rearranged to obtain

3

2

[

bxb
∗
x +byb

∗
y 0

0 byb
∗
y +bxb

∗
x

]

︸ ︷︷ ︸

bHb I

+
1

2

[

bxb
∗
x−byb

∗
y 2bxb

∗
y

2byb
∗
x byb

∗
y−bxb

∗
x

]

︸ ︷︷ ︸

2 bbH−bHb I = (bH~σb)·~σ

, (5.54)

where the argument and subscript ν is omitted for concise notation. The multiplicative cross-

channel contribution is again split into a common phase shift in both polarizations, i.e., the

first summand in (5.54), and an equal but opposite phase shift in the basis given by the instan-

taneous Stokes vector of the νth interferer, i.e., the second summand in (5.54).

We define the total, common phase shift due to cross-channel interference as

φXCI[k] = −
∑

ν 6=ρ

3

2
φNL,ν

∑

KXCI
φ,ν

bH
ν [k − κ1]bν [k − κ2] hν [κ1, κ2, 0] , (5.55)

which depends on the sum over all interfering channels and the sum of bH
ν bν over [κ1, κ2]

T.

The effective, instantaneous cross-channel Stokes vector ~sXCI[k] is given by

~s XCI[k] · ~σ = −
∑

ν 6=ρ

1

2
φNL,ν

∑

KXCI
φ,ν

(

2 bν [k − κ1]b
H
ν [k − κ2]

− bH
ν [k − κ2]bν [k − κ1]I

)

hν [κ1, κ2, 0] . (5.56)

Note, that the expressions in (5.55), (5.56) include both contributions from two- and three pulse

collisions (cf. [DFMS16, Eq. (10)–(13)]).
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Energy of Coefficients in Discrete-Time Domain The energy of the kernel coefficients is de-

fined for the subsets given in (5.40)–(5.44). We find for the different symbol sets

ESCI

h
def
=
∑

KSCI

|hρ[κ]|2 (5.57)

ESCI

h,∆
def
=
∑

KSCI
∆

|hρ[κ]|2 (5.58)

ESCI

h,φ
def
=
∑

KSCI
φ

|hρ[κ]|2 , (5.59)

with the clipping factor Γ SCI in (5.40) equal to zero. The energy for cross-channel effects is

defined accordingly with the sets from (5.51)–(5.53). Since the subsets for additive and multi-

plicative effects are always disjoint we have ESCI
h = ESCI

h,∆ + ESCI
h,φ .

5.2.2 Regular-Logarithmic Model in Frequency Domain

The frequency-domain model is now modified such that certain contributions will be associ-

ated with multiplicative distortions. Despite the multiplicative nature of phase and polariza-

tion rotations, time-invariant rotations, e.g., the time-average phase rotation φ̄ = φ̄SCI + φ̄XCI,

can be straightforwardly incorporated into the frequency-domain model as they are both

treated as constant pre-factors in the time- and frequency-domain representation. We will

see in the next section that this already leads to significantly improved (numerical) results

compared to the regular model. Note that, in contrast to the regular models, the regular-

logarithmic model in time and frequency are no longer equivalent. The two approaches have

a similar form, compare with (5.38), but lead to different results.

The general form of the combined regular-logarithmic model in frequency is given by

Y (ejωT ) = exp
(

jφ̄ + j~S · ~σ
) (

A(ejωT ) + ∆A(ejωT )
)

, (5.60)

where the phase- and polarization-term take on a frequency-invariant value, i.e., independent

of ejωT (indicated here by the lack of argument for φ̄ and ~S). Following the same terminology

as before, we introduce the average multiplicative perturbation of the common phase term

φ̄
def
= φ̄SCI

I + φ̄XCI
I , (5.61)

as the sum of the intra-channel contribution φ̄SCI ∈ R and the inter-channel contribution

φ̄XCI ∈ R. Similarly, for the average polarization rotation we have

~S · ~σ def
= ~S

SCI · ~σ + ~S
XCI · ~σ , (5.62)

where ~S · ~σ is again Hermitian and traceless.

SCI Contribution The two degenerate frequency conditions in (5.24) are used in the expres-

sion (5.14) to obtain the average, intra-channel phase rotation. To that end, the triple product
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Algorithm 2: REGLOG-PERT-FD for the SCI contribution

1 aλ[k] = overlapSaveSplit(〈a[k] 〉,M,K)
2 k, µ, µ1, µ2 ∈ { 0, 1, . . . ,M − 1 }
3 Hρ[µ1, µ2, µ3] = Hρ[µ] = Hρ(e

j 2π
M

µ)
4 forall λ do

5 Aλ[µ] = DFT{aλ[k] }
6 φ̄SCI

λ = −3
2

φNL,ρ

M2

∑

µ ‖Aλ[µ]‖2

7 ~S
SCI

λ · ~σ = −1
2

φNL,ρ

M2

∑

µ 2Aλ[µ]AH
λ [µ]− ‖Aλ[µ]‖2

I

8 forall µ do

9 µ3 = modM(µ− µ1 + µ2)

10 U = { [µ1, µ2]
T | µ2 6= µ1 ∧ µ2 6= µ3 }

11 ∆ASCI

λ [µ] = −j
φNL,ρ

M2

∑

U Aλ[µ1]A
H
λ [µ2]Aλ[µ3]Hρ[µ1, µ2, µ3]

12 Y PERT

λ [µ] = exp(jφ̄SCI
λ I + j~S

SCI

λ · ~σ)(Aλ[µ] + ∆ASCI

λ [µ])

13 end

14 yPERT
λ [k] = DFT

−1{Y PERT

λ [µ] }
15 end

16 〈yPERT[k]〉 =overlapSaveAppend(yPERT
λ [k],M,K)

AAHA in (5.14) is rearranged similar to (5.46). First, the general frequency-dependent expres-

sion is given by

φSCI(ejωT )=− φNL,ρ
T

(2π)2

∫

T

∥
∥
∥A(ejω2T )

∥
∥
∥

2
Hρ(e

j[ω,ω2,ω2]TT ) dω2

− 1

2
φNL,ρ

T

(2π)2

∫

T

∥
∥
∥A(ejω1T )

∥
∥
∥

2
Hρ(e

j[ω1,ω1,ω]TT ) dω1 , (5.63)

where the first term on the right-hand side in (5.63) corresponds to the degeneracy ω2 = ω3 ⇔
ω1 = ω and the second term corresponds to ω2 = ω1 ⇔ ω3 = ω. We simplify the expression

using the RRC ρ = 0 approximation (i.e., the kernelHρ(e
jωT ) on theω2-ω3-diagonal andω1-ω2-

diagonal is equal to 1) and the symmetry property in (5.25) to obtain the average, intra-channel

phase distortion

φ̄SCI =− 3

2
φNL,ρ

T

(2π)2

∫

T

∥
∥
∥A(ejωT )

∥
∥
∥

2
dω , (5.64)

which does no longer depend on the power or dispersion profile of the transmission link (given

a fixed Leff ).

Similarly, the average intra-channel XPolM contribution can be simplified to

~S
SCI · ~σ = −1

2
φNL,ρ

T

(2π)2

∫

T

(

2 A(ejωT )AH(ejωT )−AH(ejωT )A(ejωT )I
)

dω . (5.65)

In Algorithm 2 the required modifications to the regular perturbation model (REG-PERT)

are highlighted to arrive at the regular-logarithmic perturbation model (REGLOG-PERT)—again
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exemplarily for the SCI contribution. Lines 6, 7 of Algorithm 2 translate (5.64), (5.65) to the

discrete-frequency domain where the integral over all ω ∈ T becomes a sum over all µ of the

λth processing block. The average values, here, are always associated to the average values of

the λth block. In Lines 10, 11, the double sum to obtain∆ASCI

λ [µ] is restricted to all combinations

U of the discrete frequency pair [µ1, µ2]
T excluding the degenerate cases corresponding to

(5.24). The perturbed receive vector Y PERT

λ [µ] is then calculated according to (5.60) before it

is transformed back to the discrete-time domain.

XCI Contribution The cross-channel contributions follow from the considerations in the pre-

vious sections, and we obtain for the degenerate case in (5.23) the total, average XCI phase

rotation

φ̄XCI = −
∑

ν 6=ρ

3

2
φNL,ν

T

(2π)2

∫

T

∥
∥
∥Bν(ejωT )

∥
∥
∥

2
dω , (5.66)

and analogously for the total, average XCI Stokes vector we find

~S
XCI · ~σ = −

∑

ν 6=ρ

1

2
φNL,ν

T

(2π)2

∫

T

(

2 Bν(ejωT )BH
ν (ejωT )

−BH
ν (ejωT )Bν(ejωT )I

)

dω . (5.67)

Algorithm 3 implements the cross-channel perturbation model in 1/T -periodic frequency do-

main. In contrast to the SCI implementation, see Line 10 in Algorithm 2, the double sum is

now performed over the set U which excludes the case µ2 = µ1, see Line 12 in Algorithm 3,

corresponding to the degenerate case (5.23).

Energy of Coefficients in Discrete-Frequency Domain With the notation of the discrete-

frequency kernel from (5.33) we have according to Parseval’s theorem in (5.31) the following

definitions

ESCI

H
def
=

1

M3

∑

USCI

|Hρ[µ]|2 (5.68)

ESCI

H,∆
def
=

1

M3

∑

USCI
∆

|Hρ[µ]|2 (5.69)

ESCI

H,φ
def
=

1

M3

∑

USCI
φ

|Hρ[µ]|2 ρ=0≈ 2

M
, (5.70)

with the sets according to (5.24)

USCI = {µ = [µ1, µ2, µ3]
T ∈ { 0, 1, . . . ,M − 1 }3 } (5.71)

USCI

∆ = {USCI | µ2 6= µ1 ∧ µ2 6= µ3 } (5.72)

USCI

φ = {USCI | µ2 = µ1 ∨ µ2 = µ3 }. (5.73)

Note, that we have again ESCI
H = ESCI

H,∆ + ESCI
H,φ and due to Parseval’s theorem ESCI

h = ESCI
H

forM → ∞. The cardinalities of the sets are |USCI| = M3, |USCI
φ | = 2M2 −M and |USCI

∆ | =

|USCI| − |USCI
φ |. With the RRC pulse-shape and ρ = 0 we find again that Hρ(µ) = 1 with

µ ∈ USCI
φ , and with that the kernel energy is simplified to ESCI

H,φ = (2M − 1)/M2 ≈ 2/M .

The cross-channel sets are defined according to (5.23) with only a single degeneracy.
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Algorithm 3: REGLOG-PERT-FD for the XCI contribution of the νth wavelength channel

1 aλ[k] = overlapSaveSplit(〈a[k] 〉,M,K)
2 bλ[k] = overlapSaveSplit(〈 bν [k] 〉,M,K)
3 k, µ, µ1, µ2 ∈ { 0, 1, . . . ,M − 1 }
4 Hν [µ1, µ2, µ3] = Hν [µ] = Hν(ej 2π

M
µ)

5 forall λ do

6 Aλ[µ] = DFT{aλ[k] }
7 Bλ[µ] = DFT{ bλ[k] }
8 φ̄XCI

λ = −3
2

φNL,ν

M2

∑

µ ‖Bλ[µ]‖2

9 ~S
XCI

λ · ~σ = −1
2

φNL,ν

M2

∑

µ 2Bλ[µ]BH
λ [µ]− ‖Bλ[µ]‖2

I

10 forall µ do

11 µ3 = modM(µ− µ1 + µ2)

12 U = { [µ1, µ2]
T | µ2 6= µ1 }

13 ∆AXCI

λ [µ] =

−j
φNL,ν

M2

∑

U(Bλ[µ1]B
H
λ [µ2] + BH

λ [µ2]Bλ[µ1]I)Aλ[µ3]Hν [µ1, µ2, µ3]

14 Y PERT

λ [µ] = exp(jφ̄XCI
λ I + j~S

XCI

λ · ~σ)(Aλ[µ] + ∆AXCI

λ [µ])

15 end

16 yPERT
λ [k] = DFT

−1{Y PERT

λ [µ] }
17 end

18 〈yPERT[k]〉 =overlapSaveAppend(yPERT
λ [k],M,K)

5.3 Numerical Results

This section complements the theoretical considerations of the previous sections by numerical

simulations. To this end, we compare the simulated received symbol sequence 〈y[k] 〉 obtained
by the perturbation-based (PERT) end-to-end channel models to the sequence obtained by nu-

merical evaluation via the SSFM (in the following indicated by the superscript SSFM).

Methodology The evaluated metric is the normalized MSE between the two T -spaced output

sequences for a given input symbol sequence 〈a[k] 〉, i.e., we have

σ2
e

def
= E{ ‖ySSFM − yPERT‖2 }, (5.74)

where the expectation takes the form of a statistical average of the received sequence over the

discrete time index k. The MSE is already normalized due to the fixed variance σ2
a = 1 of the

symbol alphabet and the receiver-side re-normalization in (3.69), such that the perturbation-

free part of the received sequence has (approximately14) the same fixed variance as the transmit

sequence.

The simulation parameters are summarized in Table 5.1. A total number of NSYM = 216

transmit symbols 〈a[k] 〉 are randomly drawn from a PDM 64-ary QAM symbol alphabet A
14In the numerical simulation via SSFM signal depletion takes place due to an energy transfer from signal to

NLI. For simplicity and reproducibility of the results, this additional signal energy loss is not accounted for by
additional receiver-side re-normalization.
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Table 5.1: Simulation Parameters

a, b ∈ A PDM 64-QAM

M 4096 (≡ 64-QAM per polarization)

hT,ρ(t), hT,ν(t) hRRC(t) with roll-off factor ρ

γ̄ 1.1 W−1km−1

β̄2 −21 ps2/km

B0 0 ps2

B(z) β̄2z

10 log10 eᾱ 0 dB/km 0.2 dB/km

Lsp 21.71 km 100 km

G(z) 0 −ᾱz + ᾱLsp

∑Nsp

i=1 δ(z − iLsp)

NSYM 216

M max ( 2⌈log2 ST,ν ⌉+2 , 64 )

10 log10 Γ −60 dB

with (4D) cardinality M = |A| = 4096, i.e., 64-QAM per polarization. The transmit pulse

shape of the probe hT,ρ(t) and interferer hT,ν(t) have an RRC shape with roll-off factor ρ, and

energies ET,ρ and ET,ν to vary the optical launch power15 Pρ and Pν .

Two different optical amplification schemes are considered: ideal distributed Raman am-

plification (i.e., lossless transmission) and transparent end-of-span lumped amplification (i.e.,

lumped amplification where the effect of signal-gain depletion [Gha17, Sec. II B.] is neglected

in the derivation of the perturbation model). For lumped amplification we consider homoge-

neous spans of SSMF with path-invariant attenuation coefficient 10 log10 eᾱ = 0.2 dB/km and

a span length ofLsp = 100 km. In case of lossless transmissionwe have 10 log10 eᾱ = 0 dB/km

and span lengthLsp = 21.71 km corresponding to the asymptotic effective lengthLeff,a
def
= 1/ᾱ

of a fictitious fiber with infinite length and attenuation 10 log10 eᾱ = 0.2 dB/km. In doing so,

the nonlinear phase shift φNL,ν from (5.13) remains approximately constant for both scenarios,

and the numerical results remain comparable.

The dispersion profileB(z) = β̄2z conformswithmodern DU links, i.e., without optical in-

line dispersion compensation and bulk compensation at the receiver-side (typically performed

in the digital domain). Dispersion pre-compensation at the transmit-side can be incorporated

via B0 but is not considered here. The dispersion coefficient is β̄2 = −21 ps2/km and the

nonlinearity coefficient is γ̄ = 1.1 W−1km−1, both invariant over z and ω. Additive noise due

to ASE and laser PN are neglected since we only focus on deterministic signal-to-signal NLI.

The numerical reference simulation is a full-vectorial field simulation implemented via

the symmetric split-step Fourier method, see Section 3.3.6. The maximum nonlinear phase-

rotation per step is φmax
NL,∆z = 3.5 × 10−4 rad. The simulation bandwidth is BSIM = 8Rs

for single-channel and 16Rs for dual-channel transmission. All filter operations in the SSFM

15As of yet, signals were always treated as dimensionless entities, but by convention we will still associate the
optical launch power P with units ofWatt [W] and the nonlinearity coefficient γ with [1/(Wm)], hence, e.g., the
normalization in the x-axis of Figure 5.9.
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(a) REG-PERT-TD, single-channel, single-span, lossless fiber
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(b) REGLOG-PERT-TD, single-channel, single-span, lossless fiber

Figure 5.9: Contour plot of the normalized mean-square error σ2
e = E{ ‖ySSFM − yPERT‖2 } in dB between the

perturbation-based (PERT) end-to-end model and the split-step Fourier method (SSFM) [FFF20]. The results are

shown w.r.t. the symbol rate Rs and the optical launch power of the probe Pρ in dBm. Parameters as in Table

5.1 with roll-off factor ρ = 0.2, Nsp = 1, 10 log10 eᾱ = 0 dB/km and Lsp = 21.71 km. In (a) the regular (REG)

time-domain (TD) model is carried out as in (5.15) and in (b) the regular-logarithmic (REGLOG) model is carried

out as in (5.38).

reference simulation (i.e., pulse-shaping, linear step in the SSFM, linear channel matched filter)

are performed at the full simulation bandwidth via fast convolution and regarding periodic

boundary conditions.

Discussion of the Results In Figure 5.9 (a), we start our evaluation with the most simple

scenario, i.e., single-channel, single-span, and lossless transmission. The MSE is shown in

logarithmic scale 10 log10(σ
2
e ) in dB over the symbol rate Rs and the launch power of the

probe 10 log10(Pρ/mW) in dBm. The results are obtained from the regular (REG) perturbation-

based (PERT) end-to-end channel model in discrete time-domain (TD), corresponding to (5.15).

For the given effective length Leff and dispersion parameter β̄2, the range of the symbol rate

between 1 GBd and 100 GBd corresponds to a map strength ST,ρ between 0.003 and 28.7.

This amounts to virtually no memory of the intra-channel nonlinear interaction for small

symbol rates (hence only very few coefficients hρ[κ] exceeding the minimum energy level

of 10 log10 Γ
SCI = −60 dB) to a very broad intra-channel nonlinear memory for high symbol

rates (with coefficients hρ[κ] covering a large number of symbols). Likewise, the launch power

of the probe Pρ spans a nonlinear phase shift φNL,ρ from 0.02 to 0.34 rad. We can observe a

gradual increase in σ2
e of about 5 dB per 1.5 dBm launch power in the nonlinear transmission

regime. We deliberately consider a MSE 10 log10 σ
2
e > −30 dB as a poor match between the

perturbation-based model and the full-field simulation, i.e., here for Pρ larger than 9 dBm

(≡ 0.168 rad ≈ 10◦ in terms of average nonlinear phase shift φNL,ρ) independent of Rs.

In Figure 5.9 (b) the same system scenario is considered but instead of the regular model,

now, the regular-logarithmic (REGLOG) model is employed according to (5.38). The gradual in-

crease in σ2
e with increasing Pρ is now considerably relaxed to about 5 dB per 2.5 dBm launch

power. The region of poor model match with 10 log10 σ
2
e > −30 dB is now only approached

for launch powers larger than 12 dBm. We can also observe that σ2
e improves with increasing

symbol rate Rs, in particular for rates Rs > 40 GBd. This is explained by the fact that the
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Figure 5.10: Energy of the kernel coefficients in time domain Eh (a) and in frequency domain EH (b) over the

symbol rate Rs [FFF20]. The kernel coefficients are obtained from the regular-logarithmic (REGLOG) model for

a single-channel (ρ = 0.2) over a standard single-mode fiber (10 log10 eᾱ = 0.2 dB/km and Lsp = 100 km)

or a lossless fiber (10 log10 eᾱ = 0 dB/km and Lsp = 21.71 km). The subscript ∆ denotes the subset of all

coefficients associated with additive perturbations and the subscript φ denotes the subset of all coefficients

with multiplicative perturbations.

kernel energy ESCI
h in (5.57) depends on the symbol rate Rs such that σ2

e is reduced for higher

symbol rates.

Figure 5.10 (a) shows the energy of the (time-domain) kernel coefficients ESCI
h over Rs for

a single-span SSMF with Lsp = 100 km and for a lossless fiber with Lsp = 21.71 km. Gener-

ally, we see that ESCI
h is constant for smallRs and then curves into a transition region towards

smaller energies for increasingRs. For transmission over SSMF this transition region is shifted

to smaller Rs, e.g., E
SCI
h drops from 0.7 to 0.6 around 33 GBd for lossless transmission and at

around 20 GBd for transmission over SSMF. We also present the kernel energies ESCI
h,∆ asso-

ciated with additive perturbations, and ESCI
h,φ associated with multiplicative perturbations. For

this single-span scenario, most of the energy is concentrated inESCI
h,φ , i.e., corresponding to the

degenerate symbol combinations with κ1 = 0 or κ3 = 0 defined in (5.41)–(5.43). Interestingly,

while the total energy ESCI
h decreases monotonically with Rs, the additive contribution E

SCI
h,∆

increases in the transition region and then decreases again for large Rs. This behavior is also

visible in the results presented in Figure 5.9 (a) and (b).

Figure 5.10 (b) shows the energy of the kernel coefficientsESCI
H of the frequency-domain ap-

proach for the same system scenario as in (a). The total energies are the same, i.e.,ESCI
h = ESCI

H

(cf. Parseval’s theorem), however, the majority of the energy is now contained in the regu-

lar (additive) subset of coefficients. The energy of the degenerate, i.e., multiplicative, subset

of coefficients ESCI
H,φ depends on the frequency discretization (which coincides here with the

transformation lengthM ) and is approximately 2/M . The exact value (2M − 1)/M2 would

be achieved for ρ = 0. For Rs > 75.1 GBd we have ST,ρ > 16 and it can be seen that ESCI
H,φ

drops from 1/32 to 1/64 and ESCI
H,∆ jumps up by an equal amount because M increases from

64 to 128 (cf. the set of simulation parameters in Table 5.1). The REGLOG frequency-domain

model is hence predominantly a regular model, where only the average multiplicative effects

are truly treated as such.
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(a) REG-PERT-FD, single-channel, single-span, lossless fiber
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(b) REGLOG-PERT-FD, single-channel, single-span, lossless fiber

Figure 5.11: Contour plot of the normalized mean-square error σ2
e in dB [FFF20]. The results are shown w.r.t. the

symbol rate Rs and the optical launch power of the probe Pρ in dBm. Parameters as in Table 5.1 with roll-off

factor ρ = 0.2, Nsp = 1, 10 log10 eᾱ = 0 dB/km and Lsp = 21.71 km. In (a) the regular (REG) frequency-

domain (FD) model is carried out as in Algorithm 1 and in (b) the regular-logarithmic (REGLOG) model is carried

out as in Algorithm 2.

In Figure 5.11 (a) and (b), the respective results on σ2
e using the discrete frequency-domain

(FD) model according to Algorithm 1 and 2 are shown. We can confirm our previous state-

ment that the regular perturbation model in time and frequency are equivalent considering

that the results shown in Figure 5.9 (a) and Figure 5.11 (a) are (virtually) the same. We also

observe that the REGLOG-FD performs very similar to the corresponding TD model despite the

fact that only average terms are considered as multiplicative distortions. We conclude that—in

the considered system scenario—REGLOG models benefit from the fact that the average phase

and polarization rotations are properly represented compared to pure REG models. The time-

variant phase and polarization rotations that fluctuate around the average can to some extent

also be represented by an additive perturbation without significant loss in performance. This

observation is in line with the eRP method introduced in [VSB02, Sec. VI]. In the eRP view, the

perturbation expansion is performed in a “SPM-rotated reference system” [SB13, SB15] where

the time-average phase rotation is a priori included or a posteriori removed from the regular

solution, cf. [SB13, Eq. (33)].

Figure 5.12 (a) shows σ2
e for a single-channel over standard single-mode fiber (Lsp =

100 km and 10 log10 eᾱ = 0.2 dB/km) and lumped end-of-span amplification. In the full-field

simulation, the lumped amplifier is operated in constant-gainmode compensating for the exact

span-loss of 20 dB. The results over a single-span in Figure 5.12 (a) are very similar in the low

symbol rate regime compared to the lossless case in Figure 5.9 (b). For Rs larger than 20 GBd,

the MSE starts to decrease at a higher rate compared to the lossless case. This is in line with

the energy of the kernel coefficients ESCI
h for the standard fiber shown in Figure 5.10 (a).

In Figure 5.12 (b), σ2
e is shown over the roll-off factor ρ and the number of spans Nsp for a

fixed symbol rate of Rs = 64 GBd and a fixed launch power of 10 log10(Pρ/mW) = 3 dBm.

The black cross in Figure 5.12 (a) and (b) indicates the point with a common set of parameters.

We can see a dependency on the roll-off factor ρ which is due to a dependency of ESCI
h on ρ

(not shown here). With increasing ρ the kernel energy ESCI
h decreases and hence does σ2

e , too.
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Figure 5.12: Contour plot of the normalized mean-square error σ2
e in dB [FFF20]. The results are obtained from

the regular-logarithmic (REGLOG) time-domain (TD) model over a standard single-mode fiber (10 log10 eᾱ =
0.2 dB/km and Lsp = 100 km) with end-of-span lumped amplification. In (a) the symbol rate Rs and the

optical launch power Pρ are varied for single-span (Nsp = 1) transmission and fixed roll-off factor (ρ = 0.2).
In (b) the roll-off factor ρ and number of spans Nsp are varied with fixed symbol rate (Rs = 64 GBd) and fixed

launch power (10 log10(Pρ/mW) = 3 dBm). The black marker indicates the joint reference point with the same

absolute value of σ2
e = −51.4 dB but different gradient over the sweep parameter.

The scaling laws of σ2
e with Nsp are complemented in Figure 5.13 (a) by the energy of the

kernel coefficients ESCI
h for the same system scenario as in Figure 5.12 (b) (with ρ = 0.2). It is

interesting to see that (for this particular system scenario) ESCI
h,∆ and ESCI

h,φ intersect atNsp = 2.

We can conclude that after the second span more energy is comprised within the additive sub-

set of coefficients than in the multiplicative one. With increasingNsp the relative contribution

of ESCI
h,∆ to the total energy ESCI

h is increasing. Note, while ESCI
h is actually monotonically de-

creasing with Nsp, the common pre-factor φNL,ρ has to be factored in as it effectively scales

the nonlinear distortion. Since for heterogeneous spans we have φNL,ρ ∝ Leff ∝ Nsp, the same

traces are shown scaled byN2
sp to illustrate how the energy of the total distortion accumulates

with increasing transmission length. In this respect, similar results can be obtained from the

presented channel model as from the GN/extended Gaussian-noise (EGN)-model (given proper

scaling with φ2
NL,ρ instead of justN

2
sp, and similarly taking all other wavelength channels into

account).

In particular, the model correctly predicts the strength of the nonlinear distortion when

the roll-off factor is larger than zero. Then, aliasing of frequency components from nonlinear

distortions is properly included; the GN/EGN-model does not take the aliasing into account.

Additionally, qualitative statements can be derived, e.g., whether the nonlinear distortion

is predominantly additive or multiplicative. From the energy spread of the kernel coefficients

one can also deduce the time scale over which nonlinear distortions are still correlated.

Figure 5.14 shows the σ2
e for dual-channel transmission using either the REGLOG time-

domain (a) or frequency-domain model (b). The transmit symbols of the interferer 〈 b[k] 〉
are drawn from the same symbol set A, i.e., 64-QAM per polarization. For both wavelength

channels, the symbol rate is fixed to Rs = 64 GBd and the roll-off factor of the RRC shape

is ρ = 0.2. The transmit power of the probe is set to 10 log10(Pρ/mW) = 0 dBm while the

transmit power of the interferer Pν with channel number ν = 1 is varied together with the
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Figure 5.13: In (a), the energy of the kernel coefficients (black lines, bullet markers, le� y-axis) in time domain

Eh is shown over Nsp spans of standard single-mode fiber (10 log10 eᾱ = 0.2 dB/km and Lsp = 100 km,

ρ = 0.2) [FFF20]. Additionally, the kernel energies are shown scaled with N2
sp ∝ φ2

NL,ρ (gray lines, cross

markers, right y-axis) to indicate the general growth of nonlinear distortions with increasing Nsp (similar to

the GN-model). In (b), kernel energies Eh are shown for cross-channel interference (XCI) imposed by a single

wavelength channel spaced at∆ω1/(2π) GHz over a single span of lossless fiber. Both probe and interferer have

Rs = 64 GBd and ρ = 0.2.

relative frequency offset∆ω1/(2π) ranging from 76.8 GHz (i.e., no guard interval with (1+ρ)×
64 GHz) to 200 GHz. In the numerical simulation via SSFM we use an ideal channel combiner

and both wavelength channels co-propagate at the full simulation bandwidth BSIM = 16Rs.

In case of the end-to-end channel model both contributions from intra- and inter-channel

distortions are combined into a single perturbative term (cf. (5.38) and (5.60)). The baseline

error σ2
e is therefore approximately−55 dB considering the respective case withRs = 64 GBd

and Pρ = 0 dBm in Figure 5.9 (b). It is seen that the time- and frequency-domain model

perform very similar.

The dependency on the channel spacing∆ω1 is explained considering Figure 5.13 (b). Here,

the energy of the cross-channel coefficients h1[κ] is shown over ∆ω1. Generally, with increas-

ing∆ω1,E
XCI
h decreases and additionally the relative contribution of the degeneracy at κ3 = 0,

i.e., ESCI
h,φ , is growing. Ultimately, the main distortion caused by an interferer spaced far away

from the probe channel is a distortion in phase and state of polarization.
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(b) REGLOG-PERT-FD, dual-channel, single-span, lossless fiber

Figure 5.14: Contour plot of the normalized mean-square error σ2
e in dB. The results are obtained from two co-

propagating wavelength channels with PDM 64-QAM and a symbol rate of 64 GBd and roll-off factor ρ = 0.2
[FFF20]. The launch power of the probe is fixed at 10 log10(Pρ/mW) = 0 dBm while the power of the interferer

P1 and the relative frequency offset ∆ω1 are varied. In (a) the regular-logarithmic (REGLOG) time-domain (TD)

model for both SCI and XCI is carried out as in (5.38) and in (b) the REGLOG frequency-domain (FD) model is

carried out as in Algorithm 2 and (5.60) for both SCI and XCI.
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6. Concluding Remarks

In this thesis, a comprehensive analysis of end-to-end channel models for fiber-optic trans-

mission based on a perturbation approach is presented. The existing view on continuous-

and discrete-time end-to-end channel models is described in a unified framework. A novel

frequency-domain perspective that incorporates the time-discretization via an aliased kernel

in frequency domain is presented. The relation between the time- and frequency-domain rep-

resentation for continuous- and discrete-time Volterra systems is elucidated and we show that

the kernel coefficients in both views are related by multi-dimensional (continuous or discrete-

time) Fourier transforms. The energy of the un-aliased kernel can be directly related to the

conventional GN-model. The energy of the aliased kernel also takes the T -spaced sampling

in the receiver into account, here referred to as Discrete-Time GN-model.

While the pulse collision picture addresses the importance of separating additive and mul-

tiplicative terms, particularly, for inter-channel nonlinear interactions, a generalization to in-

tra-channel nonlinear interactions is presented. An intra-channel phase distortion term and

an intra-channel XPolM term are introduced and both correspond to a subset of degenerate

intra-channel pulse collisions. In analogy to implementations of time-domain RP method, the

implementation of the frequency-domain model is modified to also treat certain degenerate

mixing products as multiplicative distortions. As a result, we have established a complete

formulation of strictly regular (i.e., additive) models, and regular-logarithmic (i.e., mixed ad-

ditive and multiplicative) models—both in time and in frequency domain, both for intra- and

inter-channel nonlinear interference.

Derived from the frequency-domain description, a novel class of algorithms is proposed

which effectively computes the end-to-end relation between transmit and receive sequences

over discrete frequencies from theNyquist interval. One potential application of the frequency-

domain model can be in fiber nonlinearity compensation. Here, the model can be applied in

a reverse manner at the transmitter side before pulse-shaping or on the receiver side after

matched filtering. Moreover, while the time-domain implementation requires a triple sum-

mation per time-instance, the frequency-domain implementation involves only a double sum-

mation per frequency index. Similar as for linear systems, this characteristic may allow for
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an efficient implementation using the fast Fourier transform when the time-domain kernel

comprises many coefficients.

The derived algorithms were compared to the (oversampled and inherently sequential)

split-step Fourier method based on the mean-squared error between both output sequences.

We show that, in particular, the regular-logarithmic models have good agreement with the

split-step Fourier method over a wide range of system parameters. The presented results are

further supported by a qualitative analysis involving the kernel energies to quantify the rela-

tive contributions of either additive or multiplicative distortions.

We can identify three relevant system parameters that characterize the nonlinear response:

Firstly, the map strength ST,ρ (or equivalently the ν-dependent ST,ν) which is a measure of the

temporal extent, i.e., the memory of the nonlinear interaction. Secondly, the (ν-dependent)

nonlinear phase shift φNL,ν that depends via LNL,ν linearly on the launch power Pν and essen-

tially acts as a scaling factor to the nonlinear distortion ∆a[k]. Finally, the total kernel energy

Eh,ν which characterizes the strength of the nonlinear interaction—independent of the launch

power.

Future work may address a thorough complexity analysis of the presented models which

has relevance for the application in efficient channel models or compensation algorithms.
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A. Appendix

A.1 The Jones and Stokes Formalism

This appendix deals with the basics of the Jones and Stokes formalism which will be used to

describe the evolution of the optical signal and the signal’s state of polarization. We recap

the (special) notation often used in the optical community to describe phase- and polarization

rotations. The general concepts are mainly adapted from [GK00] and [Win09] and modified

to integrate well with our notation. In particular, the notation developed in this appendix will

be used to describe polarization rotations induced by nonlinear signal-to-signal interactions.

The spatial evolution of the optical baseband signal u(z, t) over a linear channel can gen-

erally be described by the linear, homogeneous, PDE in frequency domain given by [VB02,

Eq. (6)]
∂

∂z
U (z, ω) = −j T (z, ω)U (z, ω) , (A.1)

with the Fourier pairu(z, t) ❞ tU (z, ω) and the transmissionmatrixT (z, ω) ∈ C
2×2 describ-

ing the optical transmission medium1.

For lossless transmission, we require that the transmission matrix T (z, ω) does not alter

the squared Euclidean norm of the signal, i.e., the energy of the signal must be preserved. In

this case, signal evolution is simply modeled by unitary rotations in Jones space (i.e., phase and

polarization rotations). As a consequence, the evolution equation in (A.1) must preserve the

squared norm of the optical field envelope. Mathematically, this is obtained by imposing the

following constraint to the propagation equation

∂

∂z
‖U (z, ω)‖2 !

= 0 , (A.2)

where we use the product rule of calculus ∂
∂z

uHu = ( ∂
∂z

uH)u + uH( ∂
∂z

u), and the property

(T U)H = UHT H of the Hermitian conjugate to obtain

j UH(z, ω)
(

T H(z, ω)− T (z, ω)
)

U (z, ω) = 0 . (A.3)

1The matrix components of T (z, ω) have units m−1. We will relate T (z, ω) to the common propagation

constant β(z, ω) and the birefringence parameter ∆β(z, ω) which has not been formally introduced at this point.
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The result in (A.3) implies that

T (z, ω)
!

= T H(z, ω) , (A.4)

i.e., the transmission matrix must hence be Hermitian for lossless transmission.

In this context, we introduce the set of Pauli matrices which is given by [GK00, Appx. A]

σ0
def
=

[

1 0
0 1

]

, σ1
def
=

[

1 0
0 −1

]

, σ2
def
=

[

0 1
1 0

]

, σ3
def
=

[

0 −j
j 0

]

, (A.5)

where each of the Pauli matrices is Hermitian.

The Pauli matrices form an orthogonal basis of the complex-valued 2 × 2 vector space

C
2×2, i.e., any complex-valued matrix can be represented as the linear combination of the

Pauli matrices with complex coefficients. Particularly, any Hermitian matrix can be expanded

in terms of Pauli matrices with only real-valued coefficients.

The Pauli matrices σi with i = 1, 2, 3 are traceless and have a negative one determinant,

i.e., trace(σi) = 0 and det(σi) = −1. The zeroth order Pauli matrix σ0 = I has trace(σ0) = 2

and det(σ0) = 1, and will later be associated with a common (phase) rotation of both Jones

vector components—unaltering the relative orientation (i.e., the polarization) of the two vector

components.

The algebra generated by the Pauli matrices can be isomorphically expressed by the quater-

nion-valued algebra2, cf. [KP04]. It is well-known, that quaternions are well suited for calcula-

tion of rotations in 3D real-valued space. Here, the coefficients of a pure quaternion (one where

the real part is equal to zero) have a direct correspondence to the Stokes parameters [Sto51] (as-

sociated with σ1, σ2, σ3) of the birefringence vector which defines the polarization rotation

axis.

We will now use the Pauli matrix formalism applied to Hermitian matrices in C
2×2 to

model polarization rotations, as common in optical communication [GK00]. For notational

convenience it is often good practice (in the physics and optics community) to arrange the

Pauli matrices into the, so-termed, Pauli vector (sometimes also spin vector) which is defined

as

~σ
def
= [σ1,σ2,σ3]

T ∈ C
2×2 ⊗ R

3 , (A.6)

where each of the three “vector components” is a 2×2 Pauli matrix. Strictly speaking, the Pauli

vector is not a vector in the original sense but rather an operator which spans C2×2 ⊗ R
3 in

tensor space, such that a mapping (R3) · (C2×2 ⊗ R
3) 7→ C

2×2 is induced by the dot product.

This is explained in the following.

Using the Pauli vector notation, we can express anyHermitian transmissionmatrixT (z, ω)

as a linear combination of Pauli matrices3 [AW05, Eq. (3.116)]

T (z, ω) = T0(z, ω)σ0 + T1(z, ω)σ1 + T2(z, ω)σ2 + T3(z, ω)σ3 (A.7)

= T0(z, ω)I + ~T (z, ω) · ~σ , (A.8)

2In particular, the Pauli matrices jσ1, jσ2, jσ3 (i.e., multiplied by the imaginary unit to make them skew-
Hermitian) can be mapped (after reordering) to the imaginary units i, j, k of the Hamilton quaternions [CS99]

3In analogy, a Hamilton quaternion has also four real-valued coefficients, just like the expansion in (A.8).
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with four real-valued coefficients Ti(z, ω) ∈ R with i = 0, 1, 2, 3, which fully parameterize

the (lossless) transmission medium. The second term on the right-hand side of (A.8) is termed

Pauli matrix decomposition. Here, the dot product should be interpreted as a point-wise mul-

tiplication of the three-element vector

~T (z, ω)
def
= [T1(z, ω), T2(z, ω), T3(z, ω)]T ∈ R

3 , (A.9)

with the Pauli vector ~σ from (A.6). The vector ~T (z, ω) is typically referred to as local and

frequency-dependent birefringence vector [VB02, Eq. (6)] represented in Stokes space.

The three unit basis vectors in Stokes space are defined as

~S1
def
= [1, 0, 0]T, ~S2

def
= [0, 1, 0]T, ~S3

def
= [0, 0, 1]T , (A.10)

where we use roman typesetting.

Using the expansion in (A.8), the transmission matrix T (z, ω) can be rewritten in terms

of Stokes parameters ~T (z, ω) and T0(z, ω) to obtain the explicit expression [GK00, Eq. (A.8)]

T (z, ω) =

[

T0(z, ω) + T1(z, ω) T2(z, ω)− jT3(z, ω)
T2(z, ω) + jT3(z, ω) T0(z, ω)− T1(z, ω)

]

∈ C
2×2 . (A.11)

In optical communication, the parameter T0(z, ω) will be associated to the local- and

frequency-dependent common propagation constant

β(z, ω)
def
= T0(z, ω) ∈ R , (A.12)

which has no dependency on the polarization state (or more precisely, it characterizes the av-

erage propagation constant in both polarization states after transformation to the local bire-

fringence coordinate system, and considering that T (z, ω) is a random process w.r.t. z and ω).

We now focus on polarization-dependent effects.

The norm of the birefringence vector ‖~T (z, ω)‖ is related to the local and frequency-

dependent birefringence parameter by

∆β(z, ω) = β+(z, ω)− β−(z, ω)
def
= ‖~T (z, ω)‖ = det(~T (z, ω) · ~σ)

1
2 ∈ R , (A.13)

which quantifies the difference in the propagation constant between a locally fast (denoted

by the + subscript) and slow (denoted by the − subscript) propagating polarization state

(aka. eigenmode or eigenstate).

Similar to the common propagation constant β(z, ω), the birefringence parameter∆β(z, ω)

can be developed into a Taylor series w.r.t. ω by4

∆β(z, ω) = ∆β0(z)
︸ ︷︷ ︸

local birefringence

+ ∆β1(z)ω
︸ ︷︷ ︸

local first-order PMD

+ . . . , (A.14)

4We assume that the local birefringence eigenstate has the same orientation as the frequency-dependent PMD
eigenstate, which is justified according to [Men99, P. 12].



146 A. Appendix

with the Taylor coefficients

∆βn(z)
def
=
∂n∆β(z, ω)

∂ωn

∣
∣
∣
ω=0

, n ∈ N . (A.15)

Note, that the Taylor series expansion is performed in the ECB around ω = 0 since theU(z, ω)

is already the baseband signal.

The frequency-independent contribution (i.e., zeroth-order term in the Taylor series) of

∆β(z, ω) w.r.t. ω is associated with the local birefringence. The first-order term (i.e., linear

frequency-dependency in the Taylor series) is related to the local first-order polarization-mode

dispersion (PMD). In the following, we will see that the first-order PMD term which depends

only linearly on ω will result in a differential group delay (DGD) between the two polarization

eigenstates. The local birefringence coordinate transformation, discussed in Section 3.1, aims to

remove the zeroth-order term ∆β0(z) from the propagation equation such that only first- and

higher-order PMD terms are considered in the baseband model.

If the Stokes vector ~T (z, ω) = [T1(z, ω), T2(z, ω), T3(z, ω)]T is normalized to unit length

such that ‖~T (z, ω)‖ !
= 1, it is termed state of polarization (SOP). We use the tilde to refer to

normalized Stokes vectors, i.e., the associated SOP of the birefringence vector ~T (z, ω) is given

as

T̃ (z, ω) = [T̃1(z, ω), T̃2(z, ω), T̃3(z, ω)]T
def
= ~T (z, ω)/‖~T (z, ω)‖ ∈ R

3 , (A.16)

such that ‖T̃ ‖ = det(T̃ · ~σ)
1
2 =

√

T̃ 2
1 + T̃ 2

2 + T̃ 2
3 = 1. An SOP is often visualized as a point

on a three-dimensional sphere, the so-called Poincaré sphere, spanned by the three unit Stokes

vectors in (A.10).

The expanded Jones matrix w.r.t. the normalized Stokes vector T̃ (z, ω) · ~σ defines the

local orientation of the fast and slow polarization states (aka. eigenmode structure) along the

transmission link. Due to the normalization, the birefringence matrix T̃ (z, ω) · ~σ is unitary. In

turn, the birefringence parameter ∆β(z, ω)
def
= ‖~T (z, ω)‖ quantifies the local amount of phase

mismatch accumulated per unit length between the fast and slow polarization axis.

The general, Hermitian transmission matrix in Jones space is now expressed in terms of

propagation constant, birefringence parameter, and (normalized) birefringence matrix via

T (z, ω) = β(z, ω)I + ∆β(z, ω) T̃ (z, ω) · ~σ ∈ C
2×2 . (A.17)

Solution for Lumped Elements in Jones Space To simplify the analysis, we now assume dis-

crete optical elements with homogeneous properties in spatial direction.

If we assume T (z, ω) to be invariant under z, denoted by T [1](ω) to express a single short

fiber segment5, then the PDE in (A.1) simplifies to

∂

∂z
U (z, ω) = −j T [1](ω)U(z, ω) , (A.18)

5A bracketed sub- or superscript index denotes a (labeled/numbered) discrete fiber segment invariant under
z. The superscript is used for scalar variables to avoid confusion with vector elements or Taylor coefficients.
Notation borrowed from [Win09].
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which can be solved using the matrix exponential from (2.11) as [GK00, Eq. (A.12)]

U (z, ω) = exp(−j T [1](ω) z) U (0, ω) (A.19)

= exp(−j β[1](ω) I z)
︸ ︷︷ ︸

polarization-independent
phase rotation

exp(−j∆β[1](ω) T̃ [1](ω) · ~σ z)
︸ ︷︷ ︸

polarization-dependent
phase rotation

U (0, ω) , (A.20)

where U (0, ω) is the optical signal at the input of the short fiber segment. The linear channel

transfer function of a homogeneous fiber segment of length z is defined as

H [1](z, ω)
def
= exp(−j T [1](ω) z) ∈ C

2×2 . (A.21)

Since T [1](ω) is by assumption Hermitian, we find that H [1](z, ω) is unitary [AW05, Sec. 3.4].

The birefringence matrix exp(−j∆β[1](ω)T̃ [1](ω) · ~σz) belongs to the group of special 6

unitary transformations, SU(2), and is isomorphic to the unit quaternion-valued algebra [KP04,

Hal15], i.e., quaternion-valued rotations with unit magnitude (aka. versors) maintaining the

norm during the transformation.

The retardation angle θ[1](z, ω) of a single piece-wise constant fiber segment of length z is

defined as

θ[1](z, ω)

2
def
= ‖~T [1](ω)‖ z def

= ∆β[1](ω) z = ∆β
[1]
0

︸ ︷︷ ︸

lumped birefringence

z + ∆β
[1]
1 ω

︸ ︷︷ ︸

lumped first-order PMD

z + . . . , (A.22)

which measures the (frequency-dependent) differential phase shift applied to the signal in the

eigenstate of the birefringent element, see below. Here, the terminology lumped is used to

highlight that this type of birefringence and PMD is caused by a lumped (i.e., discrete) optical

element rather than a z-continuousmedium. The transition to a continuousmedium is done by

cascading lumped fiber segments and letting the length of each segment become infinitesimal

small, see discussion on the general solution below.

We can now use an extension of Euler’s formula7 [VB02, Eq. (1)] [Kar14, Eq. (8)] to give an

explicit expression for the polarization rotation matrix in Jones space as

exp

(

−j
θ[1](z, ω)

2
T̃ [1](ω) · ~σ

)

= cos

(

θ[1](z, ω)

2

)

I− j sin

(

θ[1](z, ω)

2

)

T̃ [1](ω) · ~σ .

(A.23)

Since the birefringence matrix T̃ [1](ω) · ~σ is Hermitian, it can also be diagonalized using the

similarity transform V H = V −1 with

− j
θ[1](z, ω)

2
T̃ [1](ω) · ~σ = V [1](ω)




−j θ[1](z,ω)

2
0

0 j θ[1](z,ω)
2



V H
[1](ω) , (A.24)

6The set of all unitary transformations {M ∈ C
2×2 |M−1 = MH } is given by the group U(2), the subset

with determinant det(M) = +1 is called special unitary group SU(2).
7An equivalent expression of Euler’s formula can also be given for quaternions.
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where the eigenvalues±j θ[1](z, ω)/2 are the elements of the diagonal matrix, and the columns

of V [1](ω) are the corresponding eigenvectors. We can alternatively recover the rotation ma-

trix decomposed in terms of eigenvectors using the relation from (2.13) for diagonalizable

matrices. We find

exp

(

−j
θ[1](z, ω)

2
T̃ [1](ω) · ~σ

)

= V [1](ω)




exp

(

−j θ[1](z,ω)
2

)

0

0 exp
(

j θ[1](z,ω)
2

)



V H
[1](ω) ,

(A.25)

with the unitary matrix describing the eigenmode structure of the birefringent element

V [1](ω)
def
=

1
√

2 + 2T̃
[1]
1 (ω)

[

1 + T̃
[1]
1 (ω) T̃

[1]
2 (ω)− jT̃

[1]
3 (ω)

T̃
[1]
2 (ω) + jT̃

[1]
3 (ω) 1 + T̃

[1]
1 (ω)

]

, (A.26)

where we used (A.11) with det(V [1](ω))
!

= 1.

The physical understanding of (A.25) is as follows. The optical field envelope U (0, ω) is

transformed from the x-y polarization state into the polarization eigenstate defined by T̃ [1](ω)

using the similarity transform V H
[1](ω) = V −1

[1] (ω). There, both polarization states experience

equal but opposite phase shifts by±θ[1](z, ω)/2, after which the signal is transformed back into

the original x-y polarization state by V [1](ω). The imposed differential phase shift θ[1](z, ω)

and the eigenmode structure V [1](ω) are in general frequency-dependent.

If only the zeroth-order term in the Taylor expansion of ∆β[1](ω) is considered (e.g., a

birefringent device like awaveplate) and V [1](ω) is invariant under ω, then the channel matrix

becomes periodic in z under the condition θ[1](L
[1]
b , ω)/2 = ∆β

[1]
0 L

[1]
b

!
= 2π ∀ω, where we

define the beat length of a lumped, birefringent element as

L
[1]
b

def
=

2π

∆β
[1]
0

. (A.27)

The beat lengthL
[1]
b measures the distance after which the signal U (z, ω) arrives at its original

polarization state after traveling in a z-invariant, frequency-flat birefringent fiber segment

with birefringence parameter ∆β
[1]
0 .

If instead the first-order PMD term is considered, i.e., θ[1](z, ω)/2 = ∆β
[1]
1 ωz, a linear

phase response proportional to the length of the segment z is applied on the diagonal matrix

in (A.25). The linear phase response with opposite signs in frequency domain corresponds to

a differential group delay in time domain between the polarization eigenstates. Hence, if first

or higher-order terms are considered in the Taylor expansion of ∆β[1](ω), the polarization

eigenstates of a (single, discrete) fiber segment will disperse, which is known as polarization-

mode dispersion due to the frequency-dependency of the birefringent material.

A different type of PMD is caused by the longitudinal variation of the birefringence pa-

rameter. E.g., a cascade of discrete, birefringent segments with a random orientation of the

polarization eigenstates and (only) linear frequency-dependence of the birefringence param-

eter, will also result in dispersion of the polarization states.
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General Solution in Jones Space If T (z, ω) depends on z, i.e., it can not be treated as a dis-

crete element, the solution to the PDE in (A.1) is not straightforward. This is apparent since

concatenated piece-wise constant transformations T [i](ω) with i = 1, 2, 3, . . . do not com-

mute (cf. discussion in [GK00, Sec. 7] and [Win09, Sec. 2.2.2]). The solution can only be given

by the symbolic expression [Fey51]

U (z, ω) = exp
(

−j
∫ z

0
T (ζ, ω) dζ

)

U (0, ω) , (A.28)

where the dependence of T (z, ω) on the spatial parameter z also indicates the order of the

operators, here T (ζ, ω), under the integral [Fey51,Kor02].

We define the local birefringence coordinate transformation as

HBIR(z)
def
= exp

(

−j
∫ z

0
∆β0(ζ) T̃ (ζ, 0) · ~σ dζ

)

, (A.29)

which includes only the zeroth-order term in the Taylor expansion of ∆β(z, ω). To model the

optical field envelope U (z, ω) in the ECB domain, the transformation HH
BIR(z) is applied to

the original signal in order to remove the (rapid) motion of the signal’s polarization state due

to pure (i.e., zeroth-order) birefringence. We say that the ECB signal is modeled in the local

birefringence coordinate system. The transformation does not alter the characteristics of, e.g.,

the optical noise process or the nonlinear signal-to-signal interference.

Similarly, also higher-order terms, e.g., PMD can be removed from the (linear) propagation

equation by an appropriate transformation of the coordinates. Then, the nonlinear source term

in the PDE must be scaled properly, see, e.g., [MM06, Sec. II B].

System State of Polarization We summarize that, similar to the previous chapter, the base-

band signal at the input U (0, ω) ∈ C
2 is transformed using the (now z-dependent) channel

matrix H(z, ω) ∈ C
2×2 when propagating over a linear channel. If not stated otherwise,

we assume that the transform H(z, ω) maintains the norm of the signal, i.e., it is a unitary

transformation with H−1(z, ω) = HH(z, ω).

The channel matrix is fully parameterized using the four independent real-valued coeffi-

cients

T0(z, ω) ∈ R, ~T (z, ω) = [T1(z, ω), T2(z, ω), T3(z, ω)]T ∈ R
3 . (A.30)

Here, the first coefficient T0(z, ω) is equivalent to the propagation constant β(z, ω) and de-

scribes a common, frequency-dependent phase rotation imposed on both vector components

in Jones space. The latter one is the Stokes vector ~T (z, ω) which defines the orientation of a

(local) eigenstate in Jones space via the Pauli matrix decomposition of the normalized vector

T̃ (z, ω) (i.e., the system’s state of polarization). The magnitude of the differential phase rota-

tion θ(z, ω) is given by the birefringence parameter ∆β(z, ω) = ‖~T (z, ω)‖ and the length of

the birefringent element z.

In the ECB model, we use the Taylor expansion of the propagation constant to remove the

zeroth and first-order common phase β0(z) and β1(z), as well as the zero
th-order differential

phase ∆β0(z) from the propagation equation by a suited transformation of the coordinate

system.
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Signal State of Polarization Up to now, only the system was associated with a state of po-

larization. In order to develop a better understanding of polarization rotations, we will now

introduce the notion of the signal’s state of polarization.

The optical signal in Jones space u(z, t) = [ux(z, t), uy(z, t)]
T can also be parameterized

via Stokes parameters. The associated signal polarization describes the partition of the sig-

nal’s energy (or equivalently intensity) in the x- and y-component and the phase difference

between the two vector components8. The information about the common (i.e., mean) phase

of the two vector components is lost in the Stokes space representation. The notion of po-

larization originates from observable states, i.e., measurable intensities [Sto51], proportional to

the squared magnitude of the electric field in the x- and y-component. The set of coefficients

parametrizing the signal polarization are collected in the signal’s Stokes vector

~u(z, t) = [u1(z, t), u2(z, t), u3(z, t)]T ∈ R
3 (A.31)

❞

t

~U (z, ω) = [U1(z, ω), U2(z, ω), U3(z, ω)]T ∈ R
3 . (A.32)

The relation between Jones and Stokes space can be established by the concise (symbolic)

expression [Fan54]

~u = uH~σu , (A.33)

to denote the element-wise operation ui = uHσiu for all Stokes vector components i = 1, 2, 3.

Here and in the following, the spatial and temporal dependency ~u(z, t) is implied. The same

analysis also applies to the frequency-domain Stokes vector ~U (z, ω).

Using (A.33), we recover with the zeroth order Pauli matrix σ0 the squared norm ‖u‖2 and

define the zeroth order Stokes parameter of the signal as

u0
def
= uHσ0u = ‖u‖2 = |ux|2 + |uy|2 = uxu

∗
x + uyu

∗
y ∈ R . (A.34)

The remaining Stokes parameters are given accordingly. The first Stokes parameter is given

by

u1
def
= uHσ1u = uH

[

1 0
0 −1

]

u = |ux|2 − |uy|2 = uxu
∗
x − uyu

∗
y ∈ R , (A.35)

being a measure of whether the signal energy is concentrated more in the x- or in the y-

polarization. The second Stokes parameter is given by

u2
def
= uHσ2u = uH

[

0 1
1 0

]

u = uxu
∗
y + u∗

xuy = 2 Re{uxu
∗
y} ∈ R , (A.36)

being a measure of +45◦- over −45◦-polarized light, and the third Stokes parameter

u3
def
= uHσ3u = uH

[

0 −j
j 0

]

u = j(uxu
∗
y − u∗

xuy) = −2 Im{uxu
∗
y} ∈ R , (A.37)

8The (time-resolved) Stokes parameter ~u(z, t)will be defined to be local and instantaneous, i.e., as a function of
z and t, in direct correspondence with the Jones vector u(z, t), i.e., without any averaging/expectation. Similarly,

the (frequency-resolved) signal Stokes parameter ~U(z, ω) are given in terms of z and ω.



A.1. The Jones and Stokes Formalism 151

being a measure of right over left circularly-polarized light. We will again denote normalized

Stokes parameters by the tilde, i.e.,

ũ = [ũ1, ũ2, ũ3]T ⇐⇒ u0 = ‖~u‖ = ‖u‖2 = 1 . (A.38)

The Stokes vector ~u can also be expanded to obtain the equivalent Jonesmatrix description

using the dot product with the Pauli vector. Then, the complex-valued 2×2 matrix is obtained

using the reciprocal relation w.r.t. (A.33) by

~u · ~σ = u1σ1 +u2σ2 +u3σ3 =

[

u1 u2 − ju3

u2 + ju3 −u1

]

=

[

uxu
∗
x−uyu

∗
y 2uxu

∗
y

2u∗
xuy uyu

∗
y−uxu

∗
x

]

. (A.39)

In Section 3.3.5, we discuss a nonlinear process that causes a polarization rotation induced by

the state of the signal itself. We will, e.g., recover expressions similar to (A.39) in the Manakov

equation leading to rotations of the signal Stokes vector evaluated, e.g., at frequency ~U(z, ω0)

around the signals Stokes vector at another frequency at, e.g., ~U (z, ω1).

We also have the useful equality [GK00, Eq. (3.9)] [Fan54]

uuH =
1

2

(

uHu I + ~u · ~σ
)

=

[

uxu
∗
x uxu

∗
y

u∗
xuy uyu

∗
y

]

, (A.40)

to relate thematrixuuH (aka. coherencymatrix [Kar14, Eq. (52)]) to the signal intensity ‖u‖2 =

uHu and the Stokes parameters ~u.

Polarization Rotations in Stokes Space Birefringence and PMD in Jones space can be best

understood by the eigenvalue decomposition of the rotation matrix in (A.25), where a differ-

ential phase shift is applied to the signal rotated to the eigenstate of the birefringent optical

element. In Stokes space, those effects have a direct geometrical interpretation, see below.

We will again use the simplified case of a lossless and discrete, optical element with ho-

mogeneous, spatial properties. In this case, the propagation equation takes the form

∂

∂z
U (z, ω) = −j T [1](ω) U (z, ω) (A.41)

= −j
θ[1](z, ω)

2
T̃ [1](ω) · ~σ U (z, ω) , (A.42)

where we use the Pauli matrix decomposition of the rotation matrix T [1](ω).

We will now use the relation ~u = uH~σu from (A.33) to translate the propagation equation

of the signal in Jones space to the propagation equation of the corresponding Stokes vector.

The evolution of the Stokes vector is described by

∂

∂z
~U (z, ω) = UH(z, ω) j

(

T H
[1](ω)~σ − ~σT [1](ω)

)

U (z, ω) (A.43)

= UH(z, ω) j
θ[1](z, ω)

2

(

(T̃ [1](ω) · ~σ) ~σ − ~σ(T̃ [1](ω) · ~σ)
)

U (z, ω) , (A.44)

where we use the product rule of calculus ∂
∂z
~u = ( ∂

∂z
uH)~σu + uH~σ( ∂

∂z
u), and the two prop-

erties (T U )H = UHT H and T H = T of the Hermitian conjugate.
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We now define the cross-product operator9 [GK00, Eq. (4.8)]

T̃ ×
def
=






0 −T̃3 T̃2

T̃3 0 −T̃1

−T̃2 T̃1 0




 =

[

T̃×n,m

]

∈ R
3×3, n = 1, 2, 3, m = 1, 2, 3 , (A.45)

where the components T̃i with i = 1, 2, 3 are the elements of the normalized birefringence

vector T̃ = ~T /‖~T ‖. This allows us to formulate the spin vector rules [GK00, Eqs. (A.3), (A.4),

and (A.13)] as

~σ(T̃ · ~σ) = T̃ I + j T̃ × ~σ (A.46)

(T̃ · ~σ)~σ = T̃ I− j T̃ × ~σ (A.47)

UH (T̃ × ~σ) U = T̃ × ~U , (A.48)

which are required to relate the rotations in complex-valued Jones space to rotations in real-

valued Stokes space (both with three degrees of freedom). The spin vector rules are again sym-

bolic expressions which are interpreted element-wise w.r.t. the Pauli vector ~σ = [σ1,σ2,σ3]
T.

E.g., the spin vector rule in (A.46) can be read as

σi(T̃1σ1 + T̃2σ2 + T̃3σ3) = T̃i I + j (T̃×i,1 σ1 + T̃×i,2 σ2 + T̃×i,3 σ3) , (A.49)

with i = 1, 2, 3. Here, the operator T̃ × induces a tensor multiplication (R3×3)(C2×2⊗R
3) 7→

C
2×2⊗R3 where each component of the resulting object is given by a sum of the Pauli matrices

weighted with the elements of the cross-product operator.

Using the spin vector rules, the Stokes space propagation equation of the signal SOP can

be written as [GK00, Eq. (6.8)]

∂

∂z
~U (z, ω) = θ[1](z, ω) T̃ [1](ω)× ~U(z, ω) , (A.50)

and integration over z yields

~U (z, ω) = exp
(

θ[1](z, ω) T̃ [1](ω)×
)

~U (0, ω) . (A.51)

where exp(·) denotes the matrix exponential from (2.11). The geometrical interpretation of the

latter is as follows. The Stokes vector of the signal at the input ~U (0, ω) and the unit length

Stokes vector T̃ [1](ω) are both pictured as vectors in Stokes space. In particular, a unit length

(i.e., normalized) Stokes vector is a point on the Poincaré sphere. The evolution of the signal’s

Stokes vector is described by a rotation on a circle around the birefringence vector T̃ [1](ω),

while the arc length of the rotation is given by the angle θ[1](z, ω). An illustrative example is

given in the following.

9The notation T̃ × of the real-valued 3× 3 operator is common in optics and kept here to be consistent with
the literature.
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Example A.1: Birefringence in Jones and Stokes space

In this academic example, we consider a discrete optical element with homogeneous properties

in the z-direction. In particular, we will consider a birefringent device, a so-termed half-wave

plate, which induces a differential phase shi� of θ[1](z0, ω) = π to the input signal U(0, ω) a�er
it has been rotated to its eigenbasis characterized by the Stokes vector ~T [1](ω).
We start with the Stokes vector of the half waveplate, arbitrarily set to

~T [1](ω) = [T
[1]
1 (ω), T

[1]
2 (ω), T

[1]
3 (ω)] = [1, 2, 3]T ∈ R

3, ∀ω ,

which is frequency-flat for all ω, i.e., we only consider lumped birefringence without any first-

or higher-order PMD terms (e.g., compare with (A.22)). The coefficients T
[1]
i (ω) with i = 1, 2, 3

have units m−1. We also assume that the propagation constant is equal to zero, i.e., T
[1]
0 (ω) =

β[1](ω) = 0. The spatial extent of the half-wave plate is fixed to z1 = 0.42 m, which is required

to accumulate the differential phase shi� of π, see below.

The norm of ~T [1] calculates to ‖~T [1]‖ = ∆β
[1]
0 =

√
12 + 22 + 32 m−1 =

√
14 m−1. We calculate

the normalized Stokes parameter, i.e., the SOP, characterizing the orientation of the half-wave

plate as

T̃ [1](ω) = [T̃
[1]
1 (ω), T̃

[1]
2 (ω), T̃

[1]
3 (ω)] = [0.27, 0.54, 0.80]T ∈ R

3, ∀ω .

The optical field envelope at the input z = 0 is arbitrarily set to

U(0, ω) = [1 + exp(−jπ/3), exp(jπ/3)]T δ(ω − ω1) ∈ C
2 ,

corresponding to a continuous wave (CW) with frequency ω1 = 2πf1 modeled in the ECB. The

SOP of the optical field envelope at the input is obtained via (A.33) as

Ũ(0, ω) = [Ũ1(0, ω), Ũ2(0, ω), Ũ3(0, ω)] = [0.50, 0, 0.87]T δ(ω − ω1) ∈ R
3 ,

where the polarization state of the signal is in a mixed state containing x-polarized light (into

the +~S1 direction) and right-circular polarized light (into the +~S3 direction). Both the SOP of

the birefringent half-wave plate and the SOP of the input signal are depicted on the Poincaré

sphere shown in Fig. A.1.

Using (A.22), we calculate the retardation angle to

θ[1](z1, ω) = 2‖~T [1](ω)‖ z1 ≈ π, ∀ω ,

which gives the π phase shi� inherent to the half-wave plate.

The channel matrix represents the transmission characteristic of the half-wave plate (ignoring

a�enuation and dispersion). It computes to

H [1](z1, ω) = exp

(

−j
θ[1](z1, ω)

2
T̃ [1](ω) · ~σ

)

= cos

(

θ[1](z1, ω)

2

)

I− j sin

(

θ[1](z1, ω)

2

)

T̃ [1](ω) · ~σ

=

[

−0.27j −0.80− 0.54j
0.80− 0.54j 0.27j

]

.
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T̃ [1](ω)

Ũ(0, ω)

Ũ(z1, ω)

θ[1](z1, ω)

Θ
Θ

~S1

~S2

~S3

Figure A.1: Rotation of the input signal’s state of polarization Ũ(0, ω) around the birefringent optical
element defined by the Stokes vector T̃ [1](ω). The evolution traces out a circle on the Poincaré sphere

with arc length equal to the retardation angle θ[1](z1, ω) ≈ π. In Jones space, this angle is equivalent

to the differential phase applied to the signal rotated to the eigenstate of the polarizer, here, a half-

wave plate due to the π phase shi�. In this particular case, the signal is misaligned w.r.t. the half-wave

plate by an angle of Θ ≈ 34.1◦.

Using the singular value decomposition from (A.25), we can also express the channel matrix as

V [1](ω)




exp

(

−j θ[1](z1,ω)
2

)

0

0 exp
(

+j θ[1](z1,ω)
2

)



V H
[1](ω)

=

[

0.80 −0.34+0.50j
0.34+0.50j 0.80

] [

e−jπ/2 0

0 e+jπ/2

] [

0.80 0.34−0.50j
−0.34−0.50j 0.80

]

,

where the eigenvalues, i.e., phase shi�s with opposite signs are the components of the diagonal

matrix. The first column of the similarity transform V [1](ω) describes the eigenstate of the half-
wave plate in Jones space aligned with the slow axis (i.e., corresponding to the first eigenvalue),

while the second column describes the orthogonal eigenstate aligned with the fast axis of the

wave plate.

The signal’s Stokes parameter at the output calculates to

Ũ(z1, ω) = H [1](z1, ω)Ũ(0, ω) = [−0.06, 0.89, 0.46]T δ(ω − ω1) ,

which is also shown in Fig. A.1. It can be seen that the Stokes vector of the input signal Ũ(0, ω)
evolves on a circle in a right-hand rotation around T̃ [1](ω). While propagation through the

half-wave plate the differential phase shi� θ[1](z, ω) accumulates until at z1 a phase shi� of π
is present.
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The misalignment angle between the Stokes vector of the signal and the birefringent element

is computed as

Θ(ω) = acos(T̃ [1](ω) · Ũ(0, ω)) = acos(T̃ [1](ω) · Ũ(z1, ω)) ≈ 34.1◦ δ(ω − ω1) .

Using the Stokes formalism, the rotation of the signal SOP around T̃ [1](ω) can also be directly

performed in the 3D real-valued Stokes space. The cross-product operator from (A.45) is given

by

T̃ [1](ω)× =






0 −0.80 0.54
0.80 0 −0.27
−0.54 0.27 0




 , ∀ω ,

and the Stokes vector of the output signal follows by

Ũ(z1, ω) = exp
(

θ[1](z1, ω) T̃ [1](ω)×
)

Ũ(0, ω)

=






−0.86 0.29 0.43
0.29 −0.43 0.86
0.43 0.86 0.29











0.5
0

0.87




 δ(ω − ω1) =






−0.06
0.89
0.46




 δ(ω − ω1) ,

where the same result is obtained as before using the Jones formalism.
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A.2 Proof of the Fourier Relation in (4.62), (4.63)

In this appendix we compute the Fourier transform of ∆s(t) in (4.63) similar to Ablowitz et

al. in [AH02a, Appx.].

We start our derivation by expressing the optical field envelope u(0, t) by its inverse

Fourier transform of U(0, ω) to obtain10

∆s(t) =− jγ̄
8

9
Leff

∫

R2
hNL(τ1, τ2) (A.52)

× u(0, t+ τ1)u
H(0, t+ τ1 + τ2)u(t+ τ2) d2τ

=− jγ̄
8

9
Leff

1

(2π)3

∫∫ +∞

−∞
dτ1dτ2 hNL(τ1, τ2)

×
∫ ∞

−∞
dω3 U (0, ω3) exp(jω3τ1)

×
∫ ∞

−∞
dω2 UH(0, ω2) exp(−jω2(τ1 + τ2))

×
∫ ∞

−∞
dω1 U (0, ω1) exp(jω1τ2)

× exp(j(ω3 − ω2 + ω1)t) .

The Fourier transform of the former expression yields

∆S(ω) =− jγ̄
8

9
Leff

1

(2π)3

∫∫∫ +∞

−∞
dt dτ1dτ2 hNL(τ1, τ2)

×
∫ ∞

−∞
dω3 U (0, ω3) exp(jω3τ1)

×
∫ ∞

−∞
dω2 UH(0, ω2) exp(−jω2(τ1 + τ2))

×
∫ ∞

−∞
dω1 U (0, ω1) exp(jω1τ2)

× exp(j(ω3 − ω2 + ω1 − ω)t) . (A.53)

We now use the identity
∫∞

−∞ exp(j(ω3−ω2 +ω1−ω)t) dt = 2π δ(ω3−ω2 +ω1−ω) which a

manifestation of the frequency matching constraint in (4.22). Applying the sifting property of

the dirac function
∫

R

f(y)δ(x− y) dy = f(x), we obtain

∆S(ω) =− jγ̄
8

9
Leff

1

(2π)2

∫∫ +∞

−∞
dτ1dτ2 hNL(τ1, τ2)

×U (0, ω − ω1 + ω2) exp(j(ω − ω1 + ω2)τ1)

×
∫ ∞

−∞
dω2 UH(0, ω2) exp(−jω2(τ1 + τ2))

×
∫ ∞

−∞
dω1 U (0, ω1) exp(jω1τ2) . (A.54)

10Here, we switch to the prefix notation
∫

dx f(x) commonly used in physics.
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After re-arranging the order of integration, we have

∆S(ω) =− jγ̄
8

9
Leff

1

(2π)2

∫∫ +∞

−∞
dω1dω2 (A.55)

×U(0, ω − ω1 + ω2)U
H(0, ω2)U (0, ω1)

×
∫∫ ∞

−∞
dτ1dτ2 hNL(τ1, τ2) exp(jω1τ2)

× exp(−jω2(τ1 + τ2)) exp(j(ω − ω1 + ω2)τ1) .

And finally a change of variables with υ1 = ω1 − ω and υ2 = ω2 − ω1 yields

∆S(ω) =− jγ̄
8

9
Leff

1

(2π)2

∫∫ +∞

−∞
dυ1dυ2 (A.56)

×U (0, ω + υ2)U
H(0, ω + υ1 + υ2)U (0, ω + υ1)

×
∫∫ ∞

−∞
dτ1dτ2 hNL(τ1, τ2) exp(−jυ1τ1 − jυ2τ2)

︸ ︷︷ ︸

HNL(υ1,υ2)=F{ hNL(τ1,τ2) }

,

which is equivalent to the expression in (4.62). �
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A.3 Alternative Derivation of the (Analog) Baseband End-to-

End RP Method

In this appendix, we provide the solution to the received baseband perturbation∆s(t) in (4.63)

using an alternative derivation based on the Volterra theory in time domain, see Section 2.1.3.2.

We start from the parallel fiber model shown in Figure A.2 which is a modified version

of the known representation in Figure 4.2. Here, we assumed that the receiver performs

chromatic dispersion compensation using the channel matched filter H∗
C(L, ω) according to

the optical receiver frond-end such that the received perturbation in baseband is given by

∆S(ω) = H∗
C(L, ω)∆U (L, ω).

The parallel fiber model can be understood as a nonlinear system where the output ∆s(t)

is given as the sum (in the limit ζ → 0, as the integral) of independent parallel branches, each

a realization of a basic third-order nonlinear system11 [Sch80, Fig. 4.4-1]. We will first derive the

transfer characteristic of the basic third-order system which relates the optical signal at the

input u(0, t) to the perturbation u(ζ, t) associated with the position ζ along the link, i.e., one

particular branch realization. In a second step, the solution of a single basic block is generalized

to the continuum over all parallel branches.

We start with the output of the basic third-order system ∆u(ζ, t), i.e., the perturbation in

the optical domain generated by the local nonlinear interaction
(

‖uLIN(ζ, t)‖2
uLIN(ζ, t)

)

. A

block diagram of the basic third-order system is shown in Figure A.3. We can express∆u(ζ, t)

as the output of the linear system using the relationH−1
C (ζ, ω) t ❞ 1

2π|B(ζ)|
h−1

C (ζ, t) from (3.66).

We use the auxiliary variable σ to express the convolution as

∆u(ζ, t) = F−1{H−1
C (ζ, ω) } ∗

(

‖uLIN(ζ, t)‖2
uLIN(ζ, t)

)

(A.57)

=
∫ ∞

−∞

1

2π|B(ζ)|h
−1
C (ζ,σ) uLIN(ζ, t− σ)uH

LIN(ζ, t− σ)uLIN(ζ, t− σ) dσ .

In the next step, the local signals at ζ are expressed as the input signals convolved with the

11Here, we use the terminology frequently used in Volterra theory. The third-order Volterra kernel corresponds
to the first-order regular perturbation approach, cf. [VB02]

HC(L−dζ, ω)

Basic Third-order System

−jγ̄ 8
9

C
2

( ‖·‖2 · )

( ‖·‖2 · )

∆s(t)

H−1
C (L−dζ, ω)

H−1
C (2dζ, ω)

H−1
C (dζ, ω)HC(dζ, ω)

u(0, t)

C
2

HC(2dζ, ω)

∆u(L−dζ, t)

uLIN(dζ, t)

uLIN(2dζ, t)

uLIN(L−dζ, t)

( ‖·‖2 · )

Figure A.2: The parallel fiber model consisting of basic third-order systems in each of the parallel branches. In the

limit, the sum over all branches (associated to a position ζ along the link) converges to the continuous integral.
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uH
LIN

(ζ, t)uH(0, t)

HC(ζ, ω)
uLIN(ζ, t)u(0, t)

H∗
C(ζ,−ω)

∆u(ζ, t)

HC(ζ, ω)
uLIN(ζ, t)

H−1
C (ζ, ω)

u(0, t)

Figure A.3: Block diagram of a basic third-order system—a memory-less 3rd-order nonlinearity, sandwiched be-

tween two linear, dispersive systems (here, the nonlinear function (‖·‖2 ·) in between the linear channel response
and its inverse).

channel impulse response using the auxiliary variables t1, t2, t3 for each of the inputs, cf. Fig-

ure A.3. We find

∆u(ζ, t) =
∫ ∞

−∞
dσ

1

2π|B(ζ)|h
−1
C (ζ,σ) (A.58)

×
∫ ∞

−∞
hC(ζ, t1)u(0, t− σ− t1) dt1

×
∫ ∞

−∞
h∗

C(ζ, t3)u
H(0, t− σ− t3) dt3

×
∫ ∞

−∞
hC(ζ, t2)u(0, t− σ− t2) dt2 ,

where we used (x ∗ y)∗ = x∗ ∗ y∗ and h∗
C(z, t) ❞ tH∗

C(z,−ω). Then, we use the following

substitution of variables

σ + t1 = τ1, dt1 = dτ1 (A.59)

σ + t2 = τ2, dt2 = dτ2 (A.60)

σ + t3 = τ3, dt3 = dτ3 , (A.61)

and obtain using hC(z, t) = hC(z,−t) the following intermediate result

∆u(ζ, t) =
∫ ∞

−∞
dσ

1

2π|B(ζ)|h
−1
C (ζ,σ) (A.62)

×
∫ ∞

−∞
hC(ζ, τ1 − σ)u(0, t− τ1) dτ1

×
∫ ∞

−∞
h∗

C(ζ, τ3 − σ)uH(0, t− τ3) dτ3

×
∫ ∞

−∞
hC(ζ, τ2 − σ)u(0, t− τ2) dτ2 .

The order of integration is re-arranged to isolate all terms independent of t, and we obtain the

following representation of the third-order Volterra system

∆u(ζ, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dτ1dτ2dτ3 u(0, t− τ1)u

H(0, t− τ3)u(0, t− τ2) (A.63)

×
∫ ∞

−∞
hC(ζ, τ1 − σ)h∗

C(ζ, τ3 − σ)hC(ζ, τ2 − σ)
1

2π|B(ζ)|h
−1
C (ζ,σ) dσ

︸ ︷︷ ︸

h3(τ1,τ2,τ3)

.
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In the Volterra theory, the term h3(τ ) = h3(τ1, τ2, τ3) is the (time-invariant) basic third-order

Volterra kernel from (2.65). We recover the direct dependence of the kernel on the four involved

LTI systems according to Figure 2.1 and Figure A.3.

We will now show that h3(τ1, τ2, τ3) is equal to the time-domain kernel hNL(τ1, τ2) and we

derive the temporal matching constraint τ3 = τ1+τ2. We use the definition of the linear channel

impulse response hC(z, t) from (3.64) in the expression of the third-order kernel h3(τ1, τ2, τ3)

to arrive at
∫ ∞

−∞

1

2π|B(ζ)|h
−1
C (ζ,σ)hC(ζ, τ1 − σ)h∗

C(ζ, τ3 − σ)hC(ζ, τ2 − σ) dσ (A.64)

=
∫ ∞

−∞

1

(2π|B(ζ)|)2
exp

(

G(ζ) + j
1

2B(ζ)

(

−σ2 + (τ1 − σ)2 − (τ3 − σ)2 + (τ2 − σ)2
)
)

dσ

=
∫ ∞

−∞

1

(2π|B(ζ)|)2
exp

(

G(ζ) + j
1

2B(ζ)

(

τ 2
1 − 2τ1σ− τ 2

3 + 2τ3σ + τ 2
2 − 2τ2σ

)
)

dσ

=
1

(2π|B(ζ)|)2
exp

(

G(ζ) + j
1

2B(ζ)

(

τ 2
1 − τ 2

3 + τ 2
2

)
)

×
∫ ∞

−∞
exp

(

j
1

B(ζ)
(−τ1σ + τ3σ− τ2σ)

)

dσ,

where we used
√

j = (1/
√

j)∗ and
√

B(ζ) ·
(√

B(ζ)
)∗

= |B(ζ)|.
Next, we use the identity of the dirac impulse together with the scaling and shifting prop-

erty of the transform to rewrite the integral over σ as
∫ ∞

−∞
exp

(

j
1

B(ζ)
(τ3 − τ1 − τ2)σ

)

dσ = 2π δ

(

1

B(ζ)
(τ3 − τ1 − τ2)

)

(A.65)

= 2π|B(ζ)| δ(τ3 − τ1 − τ2) .

Then, we use the sifting property
∫

R

f(y)δ(x − y)dy = f(x) of the dirac impulse to rewrite

h3(τ1, τ2, τ3) in terms of two variables τ1 and τ2. At the same time, the outer integral in (A.63)

over τ3 collapses and we remain with a double integral over τ1 and τ2.

We find the 2D Volterra kernel belonging to the third-order basic system as

h3(τ1, τ2) =
1

2π|B(ζ)| exp

(

G(ζ) + j
1

2B(ζ)

(

τ 2
1 − τ 2

3 + τ 2
2

)
)

δ(τ3 − τ1 − τ2) (A.66)

=
1

2π|B(ζ)| exp

(

G(ζ) + j
1

2B(ζ)

(

τ 2
1 − (τ1 + τ2)

2 + τ 2
2

)
)

=
1

2π|B(ζ)| exp

(

G(ζ)− j
τ1τ2

B(ζ)

)

,

which is a symmetric kernel in τ1 and τ2. Hence, the input/output relation of the basic system

can be expressed as

∆u(ζ, t) =
∫ ∞

−∞

∫ ∞

−∞
dτ1dτ2 u(0, t− τ1)u

H(0, t− τ1 − τ2)u(0, t− τ2) (A.67)

× 1

2π|B(ζ)| exp

(

G(ζ)− j
τ1τ2

B(ζ)

)

.
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In [Sch80], it is shown that the sum ofM parallel basic third-order systems h
(m)
3 (τ1, τ2, τ3)

withm ∈ { 1, 2, . . . ,M } can be expressed via a general third-order kernel as

h3(τ1, τ2, τ3) =
M∑

m=1

h
(m)
3 (τ1, τ2, τ3) . (A.68)

In our case, the sum over all (continuous) positions ζ along the link converges to an integral

as ζ → 0 and we recover the (normalized) nonlinear impulse response

hNL(τ1, τ2) =
1

Leff

∫ L

0

1

2π|B(ζ)| exp

(

G(ζ)− j
τ1τ2

B(ζ)

)

dζ , (A.69)

where we used the effective length Leff as a normalization constant. Including the constant

multiplier −jγ̄ 8
9
, cf. Figure A.2, we recover the end-to-end relation

∆s(t) = −jγ̄
8

9
Leff

∫

R2
u(0, t− τ1)u

H(0, t− τ1 − τ2)u(0, t− τ2)hNL(τ1, τ2) d2τ , (A.70)

which is equivalent to (4.63). �
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A.4 Alternative Derivation of the Discrete-Time End-to-End RP

Method

In this appendix, we provide a time-domain derivation of the pulse-collision picture analogous

to the derivation in A.3, i.e., using the theory on time-domain Volterra series from Section

2.1.3.2. We first start with a derivation of the self-channel interference (SCI) term, and continue

in the second part with the cross-channel interference (XCI) term.

Intra-channel Ansatz In Figure A.4, the modified parallel fiber model is shown to establish

the end-to-end relation of the transmit sequence and received perturbation (exemplarily for

SCI effects, i.e., the nonlinear perturbation is generated by the linearly propagating probe

signal alone). The perturbation ansatz for SCI effects is based on the Manakov equation in

(3.81) considering only the probe signal uρ(z, t) in the source term w(z, t), see (3.75).

The generation of the local nonlinear interference is nested between the now z-dependent

dispersed and attenuated transmit pulseGT,ν(z, ω) and receive-pulseGR(z, ω) from (5.7), (5.9),

see Figure A.4. This can be understood as the parallel fiber model used in the previous section,

cf. Figure A.2, however now, the transmitter and receiver frond-end are included into each of

the parallel branches using the linear property of the modulation and demodulation operation.

Also, for ease of notation, sampling at interval T is moved to the parallel branches and we

denote, by abuse of notation, the sampled discrete-time perturbation at ζ as ∆aSCI(ζ, kT ).

1
ET,ρ

GR(L−dζ, ω)

kT

kT

kT

∆aSCI(dζ, kT )uLIN,ρ(L−dζ, t)

uLIN,ρ(2dζ, t)

1
ET,ρ

GR(dζ, ω)

T · HT,ρ(ω)
a[k]

C
2

GT,ρ(2dζ, ω)

GT,ρ(L−dζ, ω)

uLIN,ρ(dζ, t)
( ‖·‖2 · ) H−1

C (dζ, ω)

1
ET,ρ

GR(2dζ, ω)

Basic Third-order System

∆aSCI[k]

( ‖·‖2 · )

( ‖·‖2 · )

C
2

−jγ̄ 8
9

T
ET,ρ

H∗
T(ω)HC(dζ, ω)

GT,ρ(dζ, ω)

Figure A.4: The discrete-time end-to-end parallel fiber model consisting of basic third-order systems in each of

the parallel branches. Here, the local generation of nonlinear interference is nested between the transmit pulse

GT,ν(ζ, ω) with ν = ρ and receive-pulse GR(ζ, ω) associated with position ζ .

Note, that we can write the receive filter GR(z, ω) expressed via the complex conjugate

of the transmit pulse GT,ρ(z, ω) where we used that 1
2π|B(z)|

h−1
C (z, t) = exp(−G(z)) h∗

C(z, t).

The pre-factor 1/ET,ρ in the receiver frond-end is a scaling operation to set the (noiseless part

of the) receive sequence to unity variance of the transmit sequence σ2
a, i.e., to undo the scaling

of the signal u(0, t) to a designated transmit power Pρ.

The basic third-order system for SCI effects is shown in Figure A.5. We start with the

output of the basic third-order system ∆aSCI(ζ, kT ), i.e., the sampled perturbation generated

in the optical domain by the local nonlinear interaction
(

‖uLIN,ρ(ζ, t)‖2
uLIN,ρ(ζ, t)

)

.
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aH[k]

GT,ρ(ζ, ω)
uLIN,ρ(ζ, t)a[k]

∆aSCI(ζ, kT )uH
LIN,ρ(ζ, t)

kT

GT,ρ(ζ, ω)
uLIN,ρ(ζ, t)

1
ET,ρ

GR(ζ, ω)

a[k]

G∗
T,ρ(ζ,−ω)

Figure A.5: Block diagram of the basic third-order system corresponding to a single spatial branch at position ζ
of the intra-channel end-to-end system.

We can express ∆aSCI(ζ, kT ) as the output of the sampler and the linear systemGR(ζ, ω).

As in the previous derivations, we use the auxiliary variable σ to express the convolution. We

yield

∆aSCI(ζ, t)
∣
∣
∣
∣
t=kT

=
1

ET,ρ

e−G(ζ) F−1{G∗
T,ρ(ζ, ω) } ∗

(

‖uLIN,ρ(ζ, t)‖2
uLIN,ρ(ζ, t)

)
∣
∣
∣
∣
t=kT

(A.71)

=
1

ET,ρ

e−G(ζ)
∫ ∞

−∞
g∗

T,ρ(ζ,σ)

× uLIN,ρ(ζ, t− σ)uH
LIN,ρ(ζ, t− σ)uLIN,ρ(ζ, t− σ) dσ

∣
∣
∣
∣
t=kT

.

In the next step, the local signals at ζ are expressed as the input sequence a[k] convolved with

the channel impulse response using the auxiliary variables κ1, κ2, κ3 for each of the inputs,

cf. Figure A.3. We find

∆aSCI(ζ, kT ) =
1

ET,ρ

e−G(ζ)
∫ ∞

−∞
dσ g∗

T,ρ(ζ,σ) (A.72)

×
∑

κ1∈Z

a[κ1] gT,ρ(ζ, kT − σ− κ1T )

×
∑

κ2∈Z

aH[κ2] g
∗
T,ρ(ζ, kT − σ− κ2T )

×
∑

κ3∈Z

a[κ3] gT,ρ(ζ, kT − σ− κ3T ) .

Then, we use the substitution of variables

κ1 = k − κ1 (A.73)

κ2 = k − κ2 (A.74)

κ3 = k − κ3 , (A.75)
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and obtain the following result

∆aSCI(ζ, kT ) =
1

ET,ρ

e−G(ζ)
∫ ∞

−∞
dσ g∗

T,ρ(ζ,σ) (A.76)

×
∑

κ1∈Z

a[k − κ1] gT,ρ(ζ, κ1T − σ)

×
∑

κ2∈Z

aH[k − κ2] g
∗
T,ρ(ζ, κ2T − σ)

×
∑

κ3∈Z

a[k − κ3] gT,ρ(ζ, κ3T − σ).

The order of integration is re-arranged to isolate all terms independent of k, and we obtain

the following representation of the third-order Volterra system

∆aSCI(ζ, kT ) =
∑

κ1∈Z

∑

κ2∈Z

∑

κ3∈Z

a[k − κ1]a
H[k − κ2]a[k − κ3] (A.77)

× 1

ET,ρ

e−G(ζ)
∫ ∞

−∞
gT,ρ(ζ, κ1T − σ)g∗

T,ρ(ζ, κ2T − σ)gT,ρ(ζ, κ3T − σ)g∗
T,ρ(ζ,σ) dσ

︸ ︷︷ ︸

hρ,3[κ1,κ2,κ3]

.

The term hρ,3[κ1, κ2, κ3] is the discrete-time Volterra kernel of the (intra-channel) basic third-

order system [Sch80].

The sum over all (continuous) positions ζ along the link converges to an integral as ζ → 0

and we recover the normalized, intra-channel nonlinear impulse response

hρ[κ] =
1

PρLeff

∫ L

0

e−G(ζ)

ET,ρ

∫ ∞

−∞
gT,ρ(ζ, κ1T − σ)g∗

T,ρ(ζ, κ2T − σ) (A.78)

× gT(ζ, κ3T − σ)g∗
T,ρ(ζ,σ) dσdζ ,

where we use the pre-factor PρLeff as a normalization constant. Including the constant multi-

plier −jγ̄ 8
9
, cf. Figure A.4, and using LNL,ρ = 1/(γ̄Pρ), we recover the end-to-end relation

∆aSCI[k] = −j
8

9

Leff

LNL,ρ

∑

κ∈Z3

a[k − κ1]a
H[k − κ2]a[k − κ3]hρ[κ], (A.79)

which is equivalent to (5.15). �

Inter-channel Ansatz The corresponding proof for inter-channel effects, i.e., cross-channel

interference (XCI), is similar as before. The relevant source term for the inter-channel per-

turbation ansatz is given by considering all XCI terms in (3.81). For this proof, we will only

consider the first XPM term in (3.81) and the extension of the proof to the second XPM and

XPolM term is straightforward.

The basic third-order system for SCI effects is shown in Figure A.6. We assume a path-

constant chromatic dispersion coefficient along the link, i.e., β2(z) = β̄2. We use the retarded

time of the νth interferer defined in (3.59) as

tν = t− τwo(z,∆ων) = t− ∆ων β̄2z, (A.80)
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bH
ν [k]

GT,ρ(ζ, ω)
uLIN,ρ(ζ, t)a[k]

∆aXCI

ν (ζ, kT )uH
LIN,ν(ζ, tν)

kT

GT,ν(ζ, ω)
uLIN,ν(ζ, tν)

1
ET,ρ

GR(ζ, ω)

bν [k]

G∗
T,ν(ζ,−ω)

Figure A.6: Block diagram of the basic third-order system corresponding to a single spatial branch at position ζ
of the inter-channel end-to-end system.

given for the constant dispersion coefficient β̄2.

We can now rewrite (A.72) to express the XCI perturbation of the basic third-order system

as

∆aXCI

ν (ζ, kT ) =
1

ET,ρ

e−G(ζ)
∫ ∞

−∞
g∗

T,ρ(ζ,σ) ‖uLIN,ν(ζ, tν − σ)‖2
uLIN,ρ(ζ, t− σ)dσ

∣
∣
∣
∣
t=kT

=
1

ET,ρ

e−G(ζ)
∫ ∞

−∞
dσ g∗

T,ρ(ζ,σ)

×
∑

κ1∈Z

bH
ν [κ2] gT,ν(ζ, kT − σ− κ2T )

×
∑

κ2∈Z

bν [κ1] g
∗
T,ν(ζ, kT − σ− κ1T )

×
∑

κ3∈Z

a[κ3] gT,ρ(ζ, kT − σ− κ3T ) , (A.81)

where the dispersed transmit pulse gT,ν(ζ, t) already includes the time-retardation given by

the walk-off τwo(z,∆ων), see definition in (5.8).

Following the same steps as for SCI effects, we find after integrating the kernel over all

local positions ζ as

hν [κ] =
1

PνLeff

∫ L

0

e−G(ζ)

ET,ρ

∫ ∞

−∞
gT,ν(ζ, κ1T − σ)g∗

T,ν(ζ, κ2T − σ) (A.82)

× gT,ρ(ζ, κ3T − σ)g∗
T,ρ(ζ,σ) dσdζ ,

where we made again use of the normalization pre-factor PνLeff . The result recovers (5.21)

using gR(ζ, t) = exp(−G(ζ))g∗
T,ρ(ζ, t) similar as in the original source [DFMS16, (4)].

Taking into account the second XPM and XPolM term in (3.81), we have the

∆aXCI

ν [k] = −j
8

9

Leff

LNL,ν

∑

κ∈Z3

(

bν [k − κ1]b
H
ν [k − κ2] + bH

ν [k − κ2]bν [k − κ1]I
)

a[k − κ3]hν [κ] .

(A.83)

which is equivalent to a single contribution ν in (5.19). �
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B. Notation

B.1 Abbreviations

Acronym Meaning

1D one-dimensional

2D two-dimensional

3D three-dimensional

4D four-dimensional

A/D analog-to-digital

ACF autocorrelation function

ADC analog-to-digital converter

ASE amplified spontaneous emission

ASK amplitude-shift keying

AWGN additive white Gaussian noise

BER bit error ratio

BIBO bounded-input bounded-output

BICM bit-interleaved coded modulation

BRGC binary-reflected Gray code

BRGL binary-reflected Gray labeling

CDF cumulative distribution function

CSI channel state information

CD chromatic dispersion

CM coded modulation
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Acronym Meaning

CW continuous wave

D/A digital-to-analog

DAC digital-to-analog converter

DEC decoder

DFT discrete Fourier transform

DGD differential group delay

DP dual-polarization

DSP digital signal processing

DTFT discrete-time Fourier transform

DU dispersion-uncompensated

E/O electrical-to-optical

ECB equivalent complex baseband

EDFA erbium-doped fiber amplifier

EGN extended Gaussian-noise

ENC encoder

eRP enhanced regular perturbation

FEC forward error correction

FFT fast Fourier transform

FIR finite impulse response

FWM four-wave mixing

GN Gaussian-noise

GVD group velocity dispersion

IDRA ideal distributed Raman amplification

IIR infinite impulse response

LTI linear time-invariant

PAF phase array factor

PDL polarization dependent loss

IQ inphase-quadrature

ISI inter-symbol interference

LDPC low-density parity-check

LLR log likelihood ratio

LMS least mean square
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Acronym Meaning

LO local-oscillator

LP logarithmic perturbation

MCI multi-channel interference

MIMO multiple-input/multiple-output

MSE mean-squared error

NLIN nonlinear interference noise

NLC nonlinearity compensation

NLI nonlinear interference

NLPN nonlinear phase noise

NLSE nonlinear Schrödinger equation

NTI nonlinear time-invariant

O/E optical-to-electrical

OA optical amplification

ODE ordinary differential equation

OSNR optical signal-to-noise ratio

PAM pulse-amplitude modulation

PDE partial differential equation

PDF probability density function

PDM polarization-division multiplex

PMD polarization-mode dispersion

PMF probability mass function

PN phase noise

PRBS pseudo random bit sequence

PSD power spectral density

PWDD power-weighted dispersion distribution

QAM quadrature amplitude modulation

QPSK qarternary phase-shift keying

RBW resolution bandwidth

RC raised cosine

RP regular perturbation

RLP regular-logarithmic perturbation

RRC root-raised cosine
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Acronym Meaning

RV random variable

SCI self-channel interference

SER symbol error ratio

SNR signal-to-noise ratio

SOP state of polarization

SPM self-phase modulation

SP set partitioning

SSFM split-step Fourier method

SSMF standard single-mode fiber

VSTF Volterra series transfer function

WDM wavelength-division multiplexing

XCI cross-channel interference

XPM cross-phase modulation

XPolM cross-polarization modulation

iXPM intra-channel cross-phase modulation
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B.2 Mathematical Operators

Operator Meaning

E{·} expectation

(·)∗ complex conjugation

(·)T transposition of a matrix/vector

(·)H conjugate transposition of matrix/vector

(·)−1 inverse

| · | absolute value of a scalar

‖x‖p p-norm of a vector x

(for p = 2, subscript is omitted)

〈·〉 sequence
def
= equal per definition

x(t) ∗ y(t) linear convolution

arg{ · } ∈ (−π, π] argument of a complex variable

X(ω) = F{x(t) } Fourier transform

x(t) = F−1{X(ω) } inverse Fourier transform

∂n
xf(x, y) nth partial derivative of f(x, y) w.r.t. x

dnx
def
= dx1dx2 . . . dxn multi-dimensional differential

Re{·} real part of a complex variable

Im{·} imaginary part of a complex variable
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B.3 Mathematical Symbols

Variables, vectors, matrices and sets.

Variable Unit Meaning

a[k] ∈ C discrete-time data symbol

a[k] ∈ C
2 column vector of discrete-time data symbols

∆a[k] column vector of discrete-time (additive) perturbation

A(ejωT ) frequency-domain data symbol

A set of data symbols, i.e., signal constellation

α(z) m−1 attenuation coefficient

ᾱ m−1 path-average attenuation coefficient

M set of bijective mappings

BER bit error ratio

Bν Hz spectral bandwidth of the νth wavelength signal

BWDM Hz spectral bandwidth of the full WDM signal

BSIM Hz simulation bandwidth

β(z, ω) m−1 space- and frequency-dependent propagation constant

βn(z) snm−1 nth partial derivative of ∂n
ωβ(z, ω) in the vicinity of ω0

β̄2 s2m−1 path-average dispersion coefficient

B(z) s2 dispersion profile, B(z) =
∫ z

0 β2(ζ)dζ

c m/s speed of light, c = 299792458 m/s

C Shannon capacity

C code (set of codewords)

D dimensionality of the symbol alphabet, i.e., A ⊂ R
D

δ(t) s−1 Dirac function (in continuous time)

e Euler number

Eb s energy per information bit

Es s energy per (4D) channel symbol

ET s energy of the basic pulse gT(t)

f ∈ R Hz continuous frequency

fx(x) probability density function of a random variable x

g(z) m−1 gain coefficient

gT(t) transmit filter impulse shape
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Variable Unit Meaning

G(z) normalized logarithmic power profile

γ(z) m−1 fiber nonlinearity coefficient (normalized by 1-Watt)

h Js Planck’s constant, h = 6.62606896× 10−34 Js

h(t) s−1 continuous-time impulse repsonse

H(ω) transfer function

hT(t) s−1 transmit filter impulse response

hR(t) s−1 receive filter impulse response

hC(z, t) s−1 linear channel impulse response

hCD(z, t) s−1 chromatic dispersion impulse response

hNL(τ1, τ2) s−2 (continuous-time) nonlinear impulse repsonse

HNL(υ1, υ2) nonlinear transfer function

Hν(ejωT ) frequency-periodic nonlinear transfer function

j imaginary unit

k ∈ Z index of discrete-time data symbols

k ∈ Z
n n-dimensional column vector of discrete-time indices

κ ∈ Z (difference) index of discrete-time data symbols

κ ∈ Z
n n-dimensional column vector of difference indices

K set of difference indices κ

L m total transmission length of the link

Lsp m span length

Leff m effective length of the transmission link

Leff,a m asymptotic effective length

LNL m nonlinear length

LD m dispersion length

Lwo,ν m walk-off length, w.r.t. the νth co-propagating channel

λ = c/f m wavelength

λ0 m center wavelength

m number of signal points, cardinality of A
M length of DFT processing blocks

µ discrete frequency index µ ∈ { 0, . . . ,M − 1 }
µ column vector of discrete frequency indices

U set of discrete frequency indices µ
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Variable Unit Meaning

n(t) noise sample

N0 (one-sided) noise power spectral density (ECB signal)

Nsp number of spans

Nch number of wavelength channels

ν wavelength channel index

ρ channel index of the probe channel, s.t. ωρ = ω0

ω = 2πf Hz angular frequency

ω ∈ R
n Hzn n-dimensional angular frequency vector

ω0 Hz center frequency of the signaling regime of interest

ω1, ω2, ω3 Hz auxiliary frequency variable with ω3
def
= ω − ω1 + ω2

∆ων Hz frequency offset of the νth interferer w.r.t. ω0

ωNyq Hz Nyquist frequency

Pν signal power (per wavelength channel ν)

P(z) normalized power profile, i.e., P(0) = P(L) = 1

φNL,ν rad nonlinear phase shift (per wavelength channel ν)

q[k] binary source symbols (uncoded)

q[k] row vector of binary source symbols

q̂[k] estimate on binary source symbol

q̂[k] row vector of estimates q̂

Q2 Q2-factor, i.e., Q2 def
= 20 log10(

√
2erfc−1(2 BER))

r(t) ∈ C electrical receive signal

r(t) ∈ C
2 column vector of electrical receive signal

R(ω) s frequency-domain electrical receive signal

Rs s−1 symbol rate

Rm number of bits per data symbol, i.e., rate of modulation

RC code rate

ρ roll-off factor of the transmit pulse shape

s(t) ∈ C electrical transmit signal

s(t) ∈ C
2 column vector of electrical transmit signal

S(ω) s frequency-domain electrical transmit signal

Sρ s2 map strength w.r.t the probe channel

ST,ρ dimensionless map strength normalized by (2πRs)
2
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Variable Unit Meaning

ST,ν dimensionless map strength w.r.t νth wavelength channel

σx variance of random variable x

σ2
a variance of the (4D) discrete data symbols

σ2
n variance of the (4D) noise process

σ1, σ2, σ3 Pauli matrices

~σ Pauli vector

t ∈ R s continuous time (relative to the probe’s time base)

t ∈ R
n sn n-dimensional continuous time vector

t1, t2, t3 s auxiliary time variables with t3
def
= t− t1 + t2

τ1, τ2 s time difference variable with τ1
def
= t− t1, τ2

def
= t1 − t2

T time duration for channel symbols

Tb time duration for information bit/binary source symbol

u(z, t) ∈ C optical receive signal

U(z, ω) s frequency-domain optical signal

u(z, t) column vector of optical signal ux and uy in Jones space

uLIN(z, t) linearly propagating optical signal

~u(z, t) column vector of optical signal in Stokes space

vg(ω0) m/s group velocity at ω0

υ1, υ2 Hz frequency difference with υ1
def
= ω1 − ω, υ2

def
= ω2 − ω1

ξ Hz2 frequency difference product ξ
def
= υ1υ2

y[k] discrete-time receive symbol

y[k] column vector of receive symbols

z ∈ R m spatial position in direction of propagation
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