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1 INTRODUCTION 

1.1 SCHIZOPHRENIA 

The term Schizophrenia etymologically stems from the Greek roots schizein (“to split”) 

and phren (diaphragm) which was believed to be the place of the soul. The term was 

shaped by swiss psychiatrist Eugen Bleuler in 1908 who was first to detach the disease 

from the term dementia praecox which was introduced first as a description of what is 

today known as Schizophrenia by the German psychiatrist Emil Kraepelin in 1893 [217]. It 

has a point prevalence of 4.6 per 1000, a life-time prevalence of 0.7% and manifests itself 

most often in young adulthood accompanied by big personal and societal burdens 

whereas men are slightly more often affected than women [124, 177, 251, 304, 344]. Due 

to current occasion, it is noteworthy that schizophrenia constitutes a significant risk factor 

of dying from Covid-19, only being exceeded by age, but surpassing (pre-)conditions like 

diabetes mellitus and heart failure [329]. Despite new treatment options, schizophrenia 

remains a devastating and prognostically serious psychiatric disorder with few possibili-

ties to predict the outcome of individual patients. From a diagnostic point of view, schizo-

phrenic symptoms are described as heterogeneous but can be generally divided into 

three groups: positive, negative, and cognitive. Positive symptoms are called as such be-

cause they present as characteristics that are non-existent in healthy individuals such as 

psychotic manners like delusions, hallucination, and disorders of thought. Most reported 

manifestations of positive symptoms include hearing voices, persecutory delusions and 

disorganized communication which are commonly known as psychosis. Negative symp-

toms include disordered emotional stability which presents itself through reduced drive 

to engage in activities and diminished emotional expression. Cognitive symptoms consist 

of lessened executive functions, e.g., processing of everyday social interactions, attention 

problems and declining working memory (WM). WM is a core syndrome in schizophrenia 

[267], but it is also impaired in various other psychiatric conditions such as major depres-

sion and bipolar disorder that are characterizes by severe and pharmaco-resistant im-

pairments of WM [308]. In general, WM refers to the capacity to maintain and manipu-

late contents of perception and thought at the forefront of attention over seconds to 
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minutes [21, 22]. Attention and WM are closely intertwined since it is crucial to select the 

relevant information which should be remembered and not to be side-tracked by sur-

rounding distractors [334]. In general, tests in human psychology demand from the sub-

ject to remember a certain number of words, numbers, or other symbols which are pre-

sented in a sample phase (SP) and then maintain the information over a short period of 

time (delay) after which the item must be retrieved in a choice phase (CP). Therefore, one 

can distinguish subcomponents of WM in humans based on the presented stimuli, e.g., 

verbal, or visual-spatial WM. If stimuli are repeatedly presented over multiple trials with 

the same outcome, associations are established as a reference memory (RM) for the given 

task or problem, which in humans can be referred to as mid- to long-term memory [209]. 

Besides WM deficits, schizophrenia is often associated with anxiety disorders [60] and 

their negative effect on morbidity has already been described by Bleuler [49].  

The onset of manifest psychotic symptoms is often preceded by a prodromal state which 

is characterized by negative or nonspecific symptoms, such as depressive episodes, social 

withdrawal, anxiety and educational or occupational failure [303]. This typically occurs in 

the late teens or early twenties and is frequently overlooked and thus falsely classified by 

relatives and friends as a “normal” adolescence crisis. Since schizophrenia is yet an incur-

able disease the need to correctly identify prodromal symptoms is obvious in order to 

develop preventions and early interventions [278, 303, 409, 481]. 

Depending on which symptoms prevail, the disease can be further divided into subtypes 

which are no definite entities but rather merge into each other. The most common sub-

type is the paranoid-hallucinatory type in which psychotic symptoms like delusions and 

hallucinations dominate the clinical picture. Other subtypes include the catatonic type 

(which has been separated from schizophrenia in DSM-V) with psychomotor symptoms 

like hyperkinesia and stupor, the hebephrenic type which occurs in teenage years and is 

characterised by affective and social abnormalities, the residual type after experiencing 

psychotic episodes and personality changes, post-schizophrenic depression and Schizo-

phrenia simplex, which is dominated by negative symptoms. 

This description of the disease – as for most psychiatric diseases – is purely symptom 

based which is due to the fact that scientific insights into the aetiology of these disorders 

followed much later. Even though schizophrenia is often seen as a unique disease entity 

in clinical practice its uniformity is often questioned because of the variability of the 
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symptoms and genetic traits [17, 218, 425]. A clear difference between schizophrenia and 

other mental illnesses is often difficult to determine because psychotic symptoms are not 

exclusive to schizophrenia. Recent studies strengthen more integrated approaches to 

mental diseases in presenting new evidence for genetic relationships between schizo-

phrenia, bipolar disorder and schizoaffective disorders which frequently show indistin-

guishable patterns of the symptoms described above [84, 274, 321]. In this regard, it is 

important to note that, as for other psychiatric disorders, many patients show comorbidi-

ties, i.e., they meet criteria for more than one mental disorder, and also many patients do 

not show the full range of symptoms required by classical diagnostic symptoms leading to 

their exclusion in clinical trials. Although schizophrenia is not a monogenetic disease, 

studies have revealed a strong heritability and a large genome-wide association study 

(GWAS) has identified more than a hundred schizophrenia-associated genomic loci [382]. 

Environmental and social risk factors as well as the gut microbiome also seem to contrib-

ute to the genesis of schizophrenia, which is why schizophrenia should be seen as a com-

plex and multifactorial illness [183, 369, 425]. 

An alternative to the purely symptom-based classification of mental disorders – which is, 

as described above, often insufficient in adequately assigning distinct disease diagnoses 

and tailored treatments – is the Research Domain Criteria (RDoC) project of the National 

Institute of Mental Health (NIMH) [113]. In contrast to classical diagnostic systems such as 

the Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International 

Classification of Diseases (ICD), RDoC does not aim to strictly classify mental disorders 

[113]. It rather uses neurobiological and behavioural scientific results and thus is not sole-

ly based on the combination of presenting symptoms. However, its goal is not to serve as 

a new diagnostic system but rather as a research framework that may inform future ver-

sions of classification systems [113, 114]. RDoC was therefore proposed as a new ap-

proach to investigating mental disorders, i.e., not focusing on clinical syndromes but ra-

ther on fundamental psychological functions. Specifically, RDoC proposes six major do-

mains of human psychological functioning: negative valence, positive valence, cognitive 

systems, systems for social processes, arousal/regulatory systems and sensorimotor sys-

tems [114]. Different units of analysis such as genes, circuits or behaviour can be studied 

to uncover the pathophysiology of parts of these domains. This trans-diagnostic approach 

is backed by findings of a recent study that found considerable genetic overlap between 
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multiple psychiatric illness and directly questions the classical, categorical classification of 

mental disorders [269]. Furthermore, current medication for psychiatric disorders is ef-

fective for a large body of patients, but is rather unprecise, e.g., anti-psychotics can be 

used in schizophrenia, bipolar disorder, and other severe circumstances such as delirium 

and anti-depressants can be used to treat depression, anxiety, and mood disorders [113]. 

This manifoldness reduces the efficacy of psychiatric drugs because pathophysiological 

mechanisms differ in such heterogenous syndromes as classified in the ICD and DSM 

which is why drug development may profit from a more symptom-based and neurobio-

logically informed scrutinization of the diseases [113]. 

1.1.1 Treatment options for schizophrenia 

Current medication for patients with schizophrenia primarily consists of antipsychotic 

drugs which aim to alleviate positive symptoms but mostly fail to improve negative and 

cognitive symptoms. Besides the fact that they often come along with considerable side 

effects, their efficacy – even against psychotic symptoms - is far from optimal which urges 

the necessity of new treatments [279]. Since patients suffering from schizophrenia often 

behave non-adherent towards therapy it is important to keep side-effects as minimal as 

possible and to address negative and cognitive symptoms as well to actually improve the 

patients well-being and everyday functioning which is mostly not achieved with antipsy-

chotic drugs [2, 279].  

The first discovered antipsychotic drug was Chlorpromazine, brought to market in the 

1950s.  Following this, more antipsychotic substances were discovered which are classi-

fied today as either typical or atypical antipsychotics. The former are also known as first-

generation antipsychotics and often show severe extra-pyramidal side-effects like dysto-

nia and parkinsonism. The latter are known as second-generation antipsychotics and 

show little extra-pyramidal symptoms with equivalent or even better therapeutic effects. 

The mechanism of action of antipsychotic drugs is not fully understood but they primarily 

block dopamine D2 receptors. This blockade is likely associated with the extra-pyramidal 

side effects because dopamine D2 receptors are an important component of the nigrostri-

atal pathway. Even though the receptor profile of atypical antipsychotics is not obviously 

distinct from first generation antipsychotics, they do not appear to severely reduce do-

paminergic activity in the nigrostriatal pathway, which may explain the reduced extrapy-
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ramidal side-effects they cause. 

However, these drugs are still associated with adverse effects such as weight gain, meta-

bolic disturbances and cardiometabolic risk factors which often contribute to morbidity 

and mortality in patients [273]. Just recently, the novel drug Lumateperone finished its 

first three phase clinical trials, was approved by the FDA and showed evidence of being 

safe and effective in alleviating positive, negative and cognitive symptoms without most 

of the side effects of usual antipsychotics [108]. The mechanism of action of Lu-

mateperone comprises a combination of strong 5-HT2A antagonism, together with weak-

er serotonin reuptake inhibition, dopamine D2 and D1 receptor antagonism. However, 

results are still to be considered preliminary since long-term studies evaluating the safety 

profile and alleviation in negative and cognitive symptoms might be due to the improve-

ments in positive symptoms [108]. 

1.1.2 Dopamine and the aberrant salience theory in schizophrenia 

Dopamine receptors are G-protein coupled receptors (GPCRs) [39] and are divided into 

two groups: D1-like receptors and D2-like receptors [39]. The D1 family contains D1 and D5 

receptors and the D2 family contains D2, D3 and D4 [39]. The first discovery that dopa-

mine-receptor blockade might play a crucial role for the mechanism of action of antipsy-

chotics [375] and the experimental confirmation that their affinity to dopamine D2 recep-

tors positively correlates with their effective clinical dose in 1975 [393] were the founding 

stones of the dopamine-hypothesis of schizophrenia. These receptors were initially called 

“neuroleptic receptors” and studies in which patients were given psychostimulant drugs 

such as amphetamine, which upregulate dopamine in the CNS, showed that psychosis 

could be intensified [277].  

However, Davis et al. discussed that a state of hyperdopaminergia alone fails to explain all 

facets of the disease [115]. The reasons given for this included the observation that the 

atypical antipsychotic drug Clozapine showed higher efficacy then other antipsychotics 

despite lower affinity to dopamine D2 receptors [115, 234]. Also, unexpectedly, cerebro-

spinal fluid amine metabolites were not elevated in patients compared to normal controls 

[356]. Therefore, rather than being caused by a general state of elevated dopamine re-

lease, schizophrenia was considered to be caused by an unbalanced dopaminergic inner-

vation across the brain. Indeed, especially the frontal cortex shows lower dopamine re-
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lease [362] and lower blood flow in general in patients with schizophrenia [214]. Davis et 

al. hypothesised that a hyperdopaminergic state in the striatum leads to psychotic symp-

toms (and constitutes the effective target  of antipsychotic drugs) whereas hypodopamin-

ergia in frontal cortex results in negative symptoms [115]. This idea was backed up by 

findings that the destruction of dopaminergic synapses in the PFC increased dopamine in 

the striatum of the rat [360]. 

However, as Davis et al. acknowledged, these findings also fell short in fully explaining the 

link between altered dopamine levels and the clinical manifestations of schizophrenia 

[115, 207]. In their review in 2009, Howes and Kapur tackled the emerging question how 

disturbances in a single neurotransmitter lead to such profound deficits in patients [207]. 

According to the multidimensionality and heterogeneity of schizophrenia, Howes and 

Kapur proposed that dopaminergic abnormalities are caused by upstream deviations in 

genetic, developmental and environmental factors [82, 207, 382]. The authors therefore 

conclude that schizophrenia unlikely has one basic cause, but the clinical symptoms are 

rather a composition of different biological alterations [207]. Striatal hyperdopaminergia 

was suggested as a marker for psychosis, but it is not confined to schizophrenia as it was 

observed in patients who suffered from psychotic episodes but were no diagnosed with 

schizophrenia [365]. Striatal hyperdopaminergia is tightly linked to the PFC since lesioning 

dopamine neurons in the PFC led to increased dopamine levels in the striatum and appli-

cation of dopamine agonists to the PFC reduced dopamine in the striatum [207]. Dopa-

mine is known to be crucial in reward signalling and pleasure seeking and a loss of it in 

the PFC could explain symptoms like anhedonia, social withdrawal and loss of interest 

[207]. It is important to notice that Howes and Kapur did not conclude that dopamine is 

the sole cause of psychosis, but rather an observed final common pathway and some 

other brain disturbances might also be involved [207].  

Considering discoveries about dopamine, its crucial role in motivation and reward seeking 

and the ability of amphetamine to initiate psychotic symptoms, M. Spitzer was first to 

argue that dopaminergic and noradrenergic overactivity could be the reason for an in-

creased signal to noise ratio when it comes to assessing everyday-stimuli resulting in un-

proper attribution of significance to ordinary and insignificant things which consequently 

leads to delusional symptoms [414]. S. Kapur and colleagues further elaborated this hy-



Introduction 

7 
 

pothesis and formulated the concept of aberrant salience [207, 235, 236], suggesting that 

abnormally elevated activity of dopamine neurons in the ventral tegmental area (VTA) of 

the dopamine system correlates with aberrant assignment of salience to harmless or oth-

erwise irrelevant stimuli [235, 236]. Notably, dopamine in other areas was also linked to 

attribute the salience of stimuli, namely in mesolimbic, nigrostriatal and mesocortical 

regions [52, 195, 206]. Importantly, however, Kapur argued that acute altered dopamin-

ergic signalling cannot be the sole criterion that leads to positive symptoms, but possibly 

chronically increased dopaminergic signalling [235]. This notion is supported by the ob-

servation that acute administration of amphetamine to healthy humans did not results in 

psychotic symptoms [486], but in medically treated patients with schizophrenia [13, 486]. 

The brain consequently attempts to construct a fitting narrative surrounding its percep-

tion of stimuli which is impossible when a proper assignment of importance is impaired 

and psychotic symptoms might be the consequent reaction of the brain [207, 235, 414]. 

Furthermore, many psychotic symptoms are based on the misconception between the 

patient’s own thoughts and actions and the inability to see them as their own [281]. For 

instance, it was observed that patients may perceive their own sub-vocals as auditory 

hallucinations [179]. This only applies to a fraction of the positive symptoms that patients 

suffering from schizophrenia show which includes, as an example, the observation that 

other people can hear and control one’s own thoughts but fails to explain patient’s lack of 

proper decision-making and attribution of significance. Consequently, patients assign im-

proper significance to a random or arbitrary stimulus and psychotic symptoms such as 

delusions and hallucinations arise over time as an explanation for the importance of the 

stimulus [207, 235, 236]. 

Building on this, a further approach has been discussed to characterise the positive symp-

toms of schizophrenia, namely the Bayesian approach [107, 143]. The Bayes-Theorem is a 

universal method that updates the probability of certain future events based upon new 

evidence about the implications of the present state conditions and is mainly applied in 

mathematical statistics, machine learning (ML), philosophy and engineering, but also 

found its way into describing processes in the brain [38, 252]. In neuroscience, it assumes 

that the brain actively tries to construct explanations for sensory inputs based on the 

weighing of generally known evidence and the persons own prior experiences [252]. Im-

portantly, this makes perception an active process, as originally proposed by Herrmann 
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von Helmholtz based on his studies on visual stimulus processing where he was the first 

to demonstrate that humans are susceptible to optical illusions [196]. The natural and 

autonomous tendency of humans to always trying to make sense of everything happening 

around them – which is comprehensibly impossible – earned the brain the nickname in-

ference and prediction machine [156, 252] and led to the hypothesis that perception is 

merely a “controlled hallucination” [98, 396]. With regards to schizophrenia it is believed 

that the perception machinery is heavily disrupted, because patients with schizophrenia 

have immense difficulties with probabilistic inferences and additionally defend their mis-

led and implausible convictions and fears with greatest efforts [143, 479].  

Accordingly, increased aberrant salience was observed in patients suffering from delu-

sions (despite medication) as well as in prodromal patients (highlighting the possible 

causal relationship between aberrant salience attribution and psychosis), but was re-

duced in effectively medicated patients [370, 371]. Following on from this, Katthagen et 

al. found that patients incorrectly assign predictive value to non-predictive stimuli in a 

task where they had to associate stimuli with certain outcomes and that their abnormal 

salience correlated with increased negative symptoms [238, 239]. As another example for 

aberrant salience attribution, a recent paper showed that patients with schizophrenia 

drastically overestimate immediate, personal experiences compared to information ob-

tained from others, which also might explain social isolation, false beliefs and inappropri-

ate behaviour observed in patients with schizophrenia [402].  

1.1.3 Glutamate in schizophrenia 

Besides the crucial role that dopamine supposedly plays, glutamate was also identified to 

be of high importance in the aetiology of schizophrenia. Glutamate is the most abundant 

neurotransmitter in the mammalian CNS and therefore plays a crucial role in many neural 

processes. Its dysfunction has been linked to several neurodegenerative and neurodevel-

opmental disorders [185]. Glutamatergic receptors are divided into ionotropic and 

metabotropic receptors where ionotropic receptors form an ion channel and are excitato-

ry and metabotropic receptors are signal through G-proteins and therefore may be either 

activating or inhibitory depending on if they couple to Gq or Gi-proteins, respectively. Ion-

otropic glutamate receptors include the N-methyl-D-aspartate receptor (NMDAR), the α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainate re-
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ceptors. Analysis of de novo copy number variations and exome sequencing have estab-

lished a genetic connection between NMDARs and schizophrenia [249, 282, 439], and a 

GWAS linked the NMDAR subunit NR2a and the glutamate ionotropic receptor AMPA 

type subunit 1 (GluA1)  to schizophrenia [367, 382]. AMPA receptors and their relevance 

to schizophrenia are described in more detail in 1.5. Metabotropic glutamate receptors 

(mGluR) are classified into three groups and are named mGluR1-8. mGluRs were found to 

be a potential therapeutic targets in schizophrenia research by their ability to directly 

modulate ionotropic glutamate signalling, including presynaptic glutamate release [105, 

106, 352]. 

Analogous to the dopamine hypothesis of schizophrenia which was formulated because 

of the mechanism of action of antipsychotic drugs, the glutamate hypothesis was original-

ly proposed because of the psychotomimetic effects of the NMDAR antagonist phencycli-

dine (PCP, “angel dust”) [289, 290]. Importantly, PCP mimics schizophrenic symptoms 

without excessive dopaminergic activity [87] and in the presence of dopamine antagonists 

[255]. Later studies confirmed the importance of NMDAR in schizophrenia by showing 

that ketamine administration in patients without schizophrenia leads to schizophrenic 

symptoms [257] and deteriorates symptoms in patients stabilized with antipsychotics 

[261]. These findings led to the assumption that NMDAR agonists might be a new thera-

peutic target which was supported by studies that found that PCP-induced effects can be 

reversed by a mGluR2 agonist in rats [314] and humans [256]. Further clinical studies with 

the drug bitopertin, a reuptake inhibitor of the NMDA co-agonist glycine, and D-Amino 

acid oxidase (DAAO), which is responsible for degrading NMDAR amino acids, yielded par-

tially promising results [64, 263, 352]. Still, cognitive symptoms were alleviated only with 

mixed success which might be explained with insufficient cognitive stimulation from the 

environment of patients with schizophrenia [242]. However, the glycine transporter 1 

inhibitor BI 425809 that boosts the concentration of glycine in the synaptic cleft and 

serves as a co-agonist for NMDA receptors [374], was shown to be safe and efficacious 

and could improve cognition in patients with schizophrenia and is currently in phase three 

clinical trials [142]. 
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1.2 OSCILLATIONS IN THE BRAIN 

Electrophysiology is a fundamental field in medicine and biology ever since Luigi Galvani 

discovered the electric properties of nerves and muscles in the 18th century and Hans 

Berger observed oscillations in the electrical potential above the scalps in humans. Since 

then, research on this topic advanced rapidly and technological progress allows today’s 

scientists to study electrical signals in multiple ways. The fundamental procedure in elec-

trophysiology involves the measurement of voltage changes that arise because of a dif-

ference of the electric potential measured at two different points, e.g., two compart-

ments with different ion concentrations that are separated by the equivalent of a non-

permeable membrane. In neuroscience, one can distinguish between to different ap-

proaches: Intra- and extracellular recordings. Intracellular recording comprises measuring 

differences in electric potentials across the membrane of individual cells. Studies which 

examined the electric properties of neurons by inserting an electrode inside the target 

cell led to the discovery of the action potential – the temporary depolarisation of the 

membrane potentials by about 100 mV [202]. Further developments like the patch-clamp 

technique allow scientists to investigate distinct features of cells such as membrane 

properties, synaptic inputs, and ion channel activity [328]. 

Electric current can also be measured in the extracellular medium surrounding brain cells 

because action potentials and post-synaptic potentials perturb the electric field around 

the respective neuron [208]. Focussing on the brain’s bioelectricity there are the follow-

ing methods for its measurement. Non-invasive approaches) are magnetoencephalog-

raphy (MEG), which records magnetic fields produced by electric current and electroen-

cephalography (EEG), a widely used technique especially in epilepsy patients where mul-

tiple electrodes are placed all around the patient’s scalp. Other methods require craniot-

omy and therefore are rather invasive; this includes electrocorticography (ECoG) which 

can be also called intracranial electroencephalography (iEEG) using grid or stripe elec-

trodes, which are placed on the surface of the cerebral cortex and deliver spatially more 

precise signal analysis than extracranial techniques because the limiting factor of low 

bone conductivity is eliminated. Stereo encephalography (SEEG) / intracerebral electrodes 

are depth electrodes which are able to detect local field potentials (LFP) and, with a suffi-

cient sampling rate, even extracellular action potentials (spikes). Signals obtained from 
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extracellular electrodes can be divided into two frequency ranges: LFPs (mostly <100Hz) 

and spiking activity (multiunit activity (MUA), >300Hz) [70]. It is possible to precisely iden-

tify individual neurons if the electrode is placed in close proximity to a neuron and multi-

ple recording sites record the same neuron activity. If this is not the case, the recording 

mostly consists of the summed activity of multiple cells recorded simultaneously (MUA) 

which can be quantified by thresholding or template-matching (selecting template spike 

shapes and then assign the detected waveforms) [70, 167]. 

LFPs are the sum of all ionic processes surrounding the recording electrode, e.g., trans-

membrane currents from synaptic activity or action potentials [70, 312]. The spectrum of 

the LFP can be further divided into specific frequency ranges. In humans the EEG wave-

form is typically separated into five frequency bands: Delta (δ: 1-4 Hz), Theta (θ: 4-8 Hz), 

Alpha (α: 8-15 Hz), Beta (β: 15-30 Hz) and Gamma (: > 30 Hz). In rodents, however, this 

classification differs slightly so that the α-range is included into the θ-range which is from 

5 to 12 Hz (or from 4-12 Hz). Beta and gamma are considered as high frequency oscilla-

tions and are involved in short- as well as in long-range networks, i.e. in neural communi-

cation within and between brain regions, respectively [445, 476]; delta and theta / alpha 

are considered as low frequency oscillations and usually modulate long-range synchroni-

zation [417].  

Several studies showed that the firing of neurons in the cats visual cortex is correlated 

with the phase and amplitude of the LFP recorded from the same electrode as a response 

to light stimuli which expanded the horizon of electrophysiology by not confining to single 

cell analysis [134, 181, 182]. Building on this work, further studies confirmed the im-

portance of synchronous neural oscillations for communication in the brain [298, 299] 

and in 2005 P. Fries proposed the influential concept of “Communication through Coher-

ence” (CTC) which states that coherent oscillations in interactive brain regions are neces-

sary for proper spiking input and output and therefore essential for long-range communi-

cation [154]. Furthermore, LFPs were increasingly seen as neural activity that can influ-

ence behaviour together with spiking activity, rather than being an epiphenomenal by-

product [487]. However, it is important to note that the analysis of action potentials and 

LFP differ fundamentally with regards to a phenomenon called volume conduction: When 

recording spiking of single neurons one can be sure to only record data from that specific 
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neuron, but, however, when analysing the sum of the extracellular current as for LFP the 

exact source localization proves difficult [135, 197, 230]. Two electrodes – although 

placed in different brain regions - may record the same signal which was conducted pas-

sively as an electrical field from a single source through the tissue. In this case, the data is 

corrupted because both signals will have a phase lag of zero or π resulting in spuriously 

high coherence values that do not reflect actual neural processes. Despite their name, 

LFPs are suspected of not being particularly local and the term is mainly used because of 

its widespread use in the neuroscientific community [230]. Especially in rodent brains it 

was shown that low frequency potentials generated in the hippocampus can be measured 

in neocortical areas [403]. Therefore, it is important to question the reference location 

and the respective methodology with which to analyse the signals, because some were 

proven to be less susceptible to volume conduction (see 1.2.1 and 2.5). 

With reference to schizophrenia, symptoms are thought not to arise solely because of a 

malfunction in a single brain region but rather because of fundamental impairments in 

multiple neural circuits. As a consequence of the numerous pathologic alterations in the 

brain of patients with schizophrenia, the communication between brain regions – as indi-

cated by synchrony of their neural activities - are disrupted [159, 411]. It is important to 

note that up to this date it is not completely clarified to what extent certain oscillatory 

processes in distinct frequency ranges contribute to specific brain diseases such as schiz-

ophrenia and that similar aberrant patterns are observable in multiple diseases [447]. In 

fact, it seems to be more likely that the complex interaction between different frequen-

cies and their rhythmic relationship to neuronal spiking seems to form a solid basis on 

which the brain communicates [69]. Also, most observations of abnormal oscillatory activ-

ity are correlative and causal relationships to behavioural deficits are generally very diffi-

cult to establish. However, surveying all oscillatory abnormalities associated with a given 

disease is a necessary first step. 

Therefore, in the following subchapters, the most commonly used measures of neural 

communication are introduced (1.2.1), and subsequently, key findings regarding abnor-

malities in distinct frequency ranges seen in patients with schizophrenia and animal mod-

els are presented, and their relevance to specific cognitive functions is discussed (1.2.2 - 

1.2.3).  
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1.2.1 Measures of neural communication 

To adequately capture the neural communication between two or more anatomically 

separated networks, researchers developed a variety of different measures (see Table 

1.2.1). Theoretically, an ideal measure would identify all activity by excitatory, inhibitory 

and interneurons in both regions and then extract and quantify equalities and differ-

ences. Yet, this proved to be particularly difficult in behaving mice which is why in most 

cases metrices based on LFPs or spike-LFP synchrony are used. However, LFPs come with 

the natural disadvantage of being the summed input from multiple neural processes. 

Considering that most brain regions are built of diverse cell layers, the precise locations of 

the recording electrodes are crucial and requires prior knowledge of anatomical connec-

tions. For example, it is intuitive to measure informational flow between the somatic lay-

er of one region and the dendritic layer of another region, but it is questionable if the 

reverse conveys any biologically relevant information. Table 1.2.1 contains the most wide-

ly used metrices to assess inter-regional neural communication in rodents, mostly involv-

ing recordings from the hippocampus and PFC [4, 123, 229, 401], but also increasingly 

from the thalamus [56, 349], and the amygdala [394].  

In the following subchapters (1.2.1.1 - 1.2.1.4) and in the methods section (2.5), these 

measures will be described in broader detail. 

1.2.1.1 Non-directed coupling, synchrony 

Oscillations in the brain – like any other oscillation – consist of amplitude, period and 

phase and contain many frequency domains which consequently can be decomposed into 

their components. The conversion from the time domain to the frequency domain is 

achieved by estimating the power spectrum which plots the frequency on the x-axis 

against the power at a given frequency on the y-axis. The power spectrum represents 

merely oscillatory features in brain region A. These characteristics might be also found in 

brain region B, but in order to investigate neural circuits one is also interested in interde-

pendencies between A and B. Hence, one could investigate how the phases of both sig-

nals are related, e.g., if both regions strongly oscillate in the theta-range with a constant 

phase relationship. The phase difference between two signals is essential to understand 

the relation of two oscillations and can be calculated via conjugate multiplication of com-

plex numbers obtained from each power spectrum resulting in a data structure called the 



Introduction 

14 
 

cross-spectrum. The cross spectrum divided by the product of the power spectra of the 

individual signals returns a dimensionless number between 0 and 1 which is commonly 

referred to as coherence. It therefore represents a static phase relationship between two 

signals. As described above, coherence was shown to play an important role in the visual 

cortex [134, 181, 182] and further findings led to the concept of CTC which was proposed 

by P. Fries in 2005 [154]. It declares that long-range communication between different 

regions in the brain is dependent on phase-locked oscillations between them and thus 

proper communication is not possible in the absence of coherence. This statement is sup-

ported by the presumption that oscillations are a basic feature of neurons and play an 

important role not only in facilitating the output of the “sending” region but also in en-

hancing the excitability of the receiving neurons. Consequently, communication between 

brain regions is the most effective if input and output are timed which is believed to be 

coordinated by coherence [6, 154, 155, 476]. 

The biggest point of criticism of the metric of coherence that has been raised is the issue 

of volume conduction. Since coherence consists of a real and an imaginary component, 

Nolte et al. demonstrated in 2004 that using only the imaginary component of coherence 

(ImC) reduces the influence of a volume-conducted signal originating from a common 

source [332]. Further improvement was made by Stam et al. in 2007 by proposing the 

phase lag index (PLI) which was publicised to be more precise in detecting phase synchro-

nization and reducing susceptibility to volume conduction [416]. This was due to the fact 

that the PLI ignores the magnitude of the phase by which one brain region leads or lags 

another brain region and only estimates a consistent, non-zero phase lag [416]. Vinck et 

al. insisted that the PLI lacks accuracy in correctly sensing small changes in phase syn-

chronization which compromises the validity of the results [454]. Therefore, the weighted 

phase-lag index (wPLI) takes the detected phase lead or lag and weighs it by the magni-

tude of the ImC which was proven to eliminate these small noise perturbations [454]. 

Another limitation related to measures of phase synchronization like the ImC, PLI and 

wPLI is sample-size bias, i.e., the observation of spurious non-zero synchrony even in the 

absence of real connections which usually increases with a lower number of samples. To 

solve this issue, Vinck et al. introduced a debiased estimator of the wPLI which is more 

independent from sample size and thus has a higher statistical power than previous 

measures [454]. As the classical coherence metric, wPLI ranges between zero (no syn-
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chrony) and one (total synchrony). The described outdated measures (ImC, PLI, biased 

wPLI) are not applied here and, for the sake of clarity, the debiased wPLI will be referred 

to as wPLI throughout this thesis. 

Besides the already described measures for phase synchronization, other metrics are also 

widely applied such as the phase-locking value (PLV) [260] and pairwise phase consistency 

(PPC) [455]. They either compute a Hilbert, wavelet, or Fourier transform to calculate the 

constancy of the difference between the instantaneous phases of two signals and to 

quantify the distribution of phase differences either by taking the vector average or by 

determining the distribution of phase differences across observations, respectively. While 

PPC and PLV are usually considered as roughly equal, the key benefit of the PPC metric is 

that it is not biased by sample size and therefore more suited for comparing datasets with 

differing sample size as reviewed in [36]. 

1.2.1.2 Directed synchrony based on leads and lags 

The stated measures of phase synchronization are attempts to quantify non-directed con-

nectivity. This means that the quantification of coupling is essentially based on correlation 

analysis, ignores its temporal structure, and assumes no direction of the influence from 

one region to another [36, 157]. However, LFP data contain patterns from which effective 

or directed connectivity can be inferred [157, 158]. This can be achieved by analysing re-

curring pairwise patterns in the time series obtained from any region and by quantifying 

the causal impact that the activity in one region exerts on another region. A computa-

tionally straightforward metric to uncover directionality between two time series is cross-

correlation. That means that correlations are calculated as the LFP-signals are incremen-

tally shifted against one another which could results in a high cross-correlation at a cer-

tain temporal shift (lags). Adhikari et al. developed a method termed amplitude cross-

correlation in which the instantaneous amplitudes of two oscillatory signals filtered in a 

certain frequency range are cross-correlated to determine if one is leading or lagging the 

other [3]. If the lags at which the peak of the amplitude cross-correlation function occur is 

significantly different from 0ms, it is indicated that one region leads or lags the other one 

with a certain consistency (peak of the cross-correlation function), which was hypothe-

sized to represent a directed influence from the leading onto the lagging region. This 
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method helped to detect directed connectivity in the brain related to WM and fear pro-

cessing [56, 280, 423]. 

1.2.1.3 Directed synchrony based on causal influences 

A different measure of directed influence is Granger causality (GC). It infers directed cau-

sation based on the notion that one signal is helpful in predicting the other. It was initially 

proposed by Norbert Wiener in 1956 who stated that in case the information of one of 

two simultaneously measured signals can help predicting the second signal, the first one 

is causal to the second [472]. This in particular makes it a useful complement to estimate 

the distribution of influence in the observed neural networks. This concept was later put 

to practical use by nobel laureate Clive Granger in 1969 to detect information flow be-

tween time series in economics using autoregressive modelling [180]. In parametric GC, 

two separate autoregressive models (ARMs) are calculated and statistically compared: a 

univariate ARM, where the signal is predicted by a weighted combination of its own past 

values, and a bivariate ARM where the signal is additionally predicted by the second sig-

nal. If the inclusion of the bivariate AR leads to a reduction of variance of the autoregres-

sive prediction error, one signal is said to Granger-cause the other [126]. GC can also be 

computed with non-parametric methods where the same information is obtained by first 

calculating the cross-spectral density matrix and then applying Wilson’s spectral matrix 

factorization as input to the GC algorithm [121]. Overall, this approach has been demon-

strated to be equivalent to parametric GC and to uncover the same network characteris-

tics [121]. The mathematical foundations of GC and its application to neuroscience has 

been reviewed extensively in [62, 63, 126, 397]. Related measures that can either be 

based on multivariate ARMs or on non-parametric methods for directionality estimation 

and allow analysis of more than two channels include the directed transfer function (DTF) 

[233] and partial directed coherence (PDC) [19]. These measures are reviewed compre-

hensively in [50]. 

1.2.1.4 Directed cross-frequency coupling and spike-LFP synchrony  

Other indicators of inter-regional communication that partly circumvent volume conduc-

tion and are typically interpreted as causal directed influence include those that measure 

different types of neural activity in the different regions, i.e., a low-frequency LFP oscilla-

tion (typically in the theta-range) in the presumed sending region and a local and high-
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frequency activity at the receiving end. In contrast to the metrics introduced before, his-

torically, such measures were introduced by way of an actual biological discovery of such 

coupling phenomena, rather than by a priori mathematical considerations on how to best 

assess inter-regional communication. For instance, one could quantify the degree to 

which oscillations of distinct frequencies are coupled to each other, a phenomenon called 

cross-frequency coupling (CFC) [81]. Particularly, local phase-amplitude coupling (PAC) - 

the statistical relationship between the phase of a low-frequency and the amplitude of a 

high-frequency component – was repeatedly associated with memory processing in the 

hippocampus of rats [102, 441] and humans [18]; see 1.2.3 for further description of the 

relevance of PAC for WM. However, albeit to a lesser extent, cross-regional PAC between 

the hippocampus and prefrontal cortex (PFC) has also been used and was associated with 

directed information flow and cognitive functions [326, 403, 442, 489]. As high-frequency 

brain oscillations mainly reflect local aspects of information processing whereas low-

frequency brain rhythms are relevant for inter-regional communication, CFC might repre-

sent a mechanism of transferring information from large scale neural networks to local 

processes [81, 287].  

Another very widely used measure is based on the recording of spikes in one (potentially 

the influenced) region alongside the LFP in another (potentially the influencing) region. 

Spikes are generally not considered to be confounded by volume conduction or referenc-

ing (assuming that reference electrodes are placed several hundred microns away from 

the recording site), and they represent a more direct readout of the actual neuronal activ-

ity of a region. For example, phase-locking of neuronal firing to theta-frequency hippo-

campal oscillations was shown in the PFC [229, 400], entorhinal cortex (EC) [148] and the 

amygdala [347]. That means, that it was observed that action potentials in these brain 

regions occurred rhythmically at the same phase of the hippocampal theta rhythm. This 

coupling is known as spike-phase coupling (SPC) and was correlated to performance in 

multiple cognitive tasks [41, 229, 400], and has been used to reveal coupling deficits in 

mouse models related to schizophrenia [123, 401, 434]. 
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Table 1.2.1: Overview of commonly used measures of neural communication 
Adapted from [420], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

Category Acronym Metric Description Reference 

Non-directed 
coupling, syn-
chrony 

- coherence (magnitu-
de) 

Magnitude of the com-
plex cross-spectrum 

[229, 401] 

ImC imaginary part of 
coherence 

Discards the real com-
ponent of the cross-
spectrum 

[332] 

PLI phase-lag index Disregards the magni-
tude of the cross-
spectrum and averages 
the sign of phase differ-
ences 

[416] 

wPLI Weighted phase-lag 
index 

Phase lags are weighed 
by the magnitude of the 
imaginary component of 
the cross-spectrum 

[454] 

PLV phase-locking value Circular resultant vector 
length of the phase dif-
ferences 

[260] 

PPC pairwise phase-
consistency 

Computed based on the 
distribution of phase 
differences 

[455] 

Directed 
(lead/lag, LFP-
based) 

- coherence (phase 
angle) 

Angle of the complex 
cross-spectrum 

[88, 473] 

CC cross-amplitude 
coupling, amplitude 
cross-correlation 

Instantaneous ampli-
tudes of two filtered 
LFPs are cross-correlated 
and the lag at which the 
peak occurred is deter-
mined 

[3] 

Directed (causal 
influence) 

GC Granger causality Quantifies if the past of 
one time series can pre-
dict the future of anoth-
er time series using au-
toregressive modelling 

[62, 63, 126, 397] 

npGC non-parametric 
Granger causality 

Granger Causality based 
on spectral matrix fac-
torization 

[120, 121] 
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PDC partial directed co-
herence 

Normalized metric based 
on GC that measures 
direct influence from 
one time series to an-
other 

[19] 

DTF direct transfer func-
tion 

Adaptation to multiple 
input variables closely 
related to PDC 

[50, 233] 

Directed 
(phase-locking 
of local activity) 

SPC, MRL spike-phase coupling, 
Mean resultant vec-
tor length 

Circular concentration of 
the phase distribution at 
which spikes occurred 

[4, 123, 400, 401] 

PAC, CFC,  

MI 

phase-amplitude 
coupling,  

cross-frequency cou-
pling,  

modulation index 

Modulation of the ampli-
tude of high-frequency 
oscillations in one area 
by the phase of low-
frequency oscillations 
from another area 

[403, 442, 489] 

Directed (lead-
lag, spike-
based) 

- Phase angle of MRL Mean phase at which 
spikes occurred 

[123] 

- Phase-shifted MRL Calculation of the MRL 
based on phases at 
shifted lags 

[400, 401] 

 

1.2.2 High-frequency oscillations and their aberration in schizophrenia 

Gamma oscillations were shown to play an important role in proper communication be-

tween brain regions and were observed during awake and sleep states [74, 75]. The gen-

eration of gamma oscillations is tightly linked to gamma-aminobutyric acid (GABA)-ergic 

parvalbumin (PV) positive interneurons [110, 300]. For example, optogenetic inhibition of 

these neurons could strongly suppress cortical gamma activity [406]. Since GABAergic 

markers, including PV, were found to be reduced in post mortem tissue of patients with 

schizophrenia, it strongly suggests that the GABA network and the gamma rhythm are 

tightly correlated with the pathophysiology of schizophrenia [176]. Also, intact inter-

hemispheric gamma synchrony between prefrontal PV interneurons was recently shown 

to be important for behavioural adaptation during rule-shifting as optogenetic disruption 

of gamma led mice to persevere, highlighting the importance of gamma synchrony for re-

attributing the behavioural attention to novel rules [94].   
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Alterations in gamma oscillations have been related to sensory-processing deficits in 

schizophrenia in multiple studies [305] and were proposed as potential biomarkers for 

the disease [438]. Work by Kwon et al. [259] examined the synchronization of the EEG to 

auditory stimulation at a frequency of 40 Hz and were able to show, for the first time, 

that patients display impairments in entrainment and synchronization of gamma-

frequency oscillations in the auditory cortex. This auditory paradigm is called auditory 

steady-state responses (ASSR) and alterations were replicated and linked to reduced ex-

pression of PV mRNA in GABAergic interneurons not only in the above mentioned brain 

regions, but also in auditory cortices in patients with schizophrenia [189]. Furthermore, 

spontaneous gamma activity was found to be increased during ASSR-stimulation in pa-

tients with schizophrenia [200]. This can be connected to previous findings in animal 

models in which it was already shown that hypofunction of NMDARs led to increased 

spontaneous gamma power in rats administered with NMDAR-antagonists [355] and in 

mice in which NMDARs were ablated in PV cells [86] suggesting that spontaneous gamma 

power could serve as a potential biomarker for NMDA dysfunction in schizophrenia. 

Optogenetic studies endorsed the importance of the interplay between NMDA-receptors, 

PV-interneurons and gamma-oscillations by showing that oscillations in the gamma-range 

where increased during stimulation of PV-interneurons [83], but reduced when PV-

interneurons lacked NMDA-receptors [86]. These findings highlight the possible im-

portance of synchronous gamma oscillations in sensory processing which might be dis-

rupted in patients with schizophrenia. 

Furthermore, patients with schizophrenia showed reduced gamma-band oscillations in an 

auditory oddball (mismatch-negativity) paradigm where participants were confronted 

with frequent standard tones and rare, deviant tones [165]. In a study in which patients 

were confronted with Mooney faces – a series of black and white photographs where 

faces can be detected, a phenomenon known as Gestalt perception – they showed signifi-

cant desynchronization in the gamma and beta band compared to healthy control sub-

jects [446]. These results suggest that dysfunction in sensory processing shown by pa-

tients with schizophrenia are associated with impaired gamma and beta oscillations. Ad-

ditionally, enhanced gamma and beta band activity and synchrony was linked to the posi-

tive symptoms of schizophrenia, especially to auditory hallucinations [270, 412, 413]. It 

was hypothesized that increased oscillatory activity leads to impairment of corollary dis-
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charge, a mechanism for distinguishing between self and externally generated percep-

tions by generating an efferent copy of the motor plan which is supposedly disrupted in 

schizophrenia [146, 447]. 

In rodents, beta and gamma oscillations were tightly linked to WM as the former was 

shown to play a critical role in orchestrating thalamo-prefrontal and hippocampal-

prefrontal connectivity [76, 349] and the latter was correlated to correct memory choices 

in various studies [138, 199, 316, 483]. For a tabular overview of oscillations and their 

correlation with WM in rodent studies please see Table 1.6.1. 

1.2.3 Low-frequency oscillations and their aberration in schizophrenia 

Although abnormalities in high-frequency oscillations are more extensively documented, 

alteration have also been revealed for low-frequency oscillations such as δ, α and θ [283]. 

Theta-band oscillatory activity in the awake state was found to be generated and to be 

most dominant in the hippocampus and its afferents from the medial septum [67, 184, 

449]. Unlike high-frequency oscillations, low-frequency oscillations like theta can travel 

further distances in the brain and therefore connect more distant brain areas [71]. It is 

important to note that theta oscillations in the awake state have been primarily studied in 

rodents where they are associated with voluntary movement [449]. They have been reli-

ably observed in learning tasks [392] and spatial navigation [65] which led to the assump-

tion that theta oscillations are crucial for a variety of rodent behaviour [68, 72]. 

Theta is believed to play an important role in synchronising activities of the hippocampus 

and the PFC in cognitive tasks [229]. In the hippocampus, the firing of place cells, excitato-

ry neurons with spatial receptive fields, is phase-locked to the local theta rhythm (see 

1.2.1.4 and [336]). Findings in rodents underline the importance of theta synchrony be-

tween several brain regions such as the PFC and hippocampus for WM [1, 137, 229, 341, 

410, 433]. In 2010, Sigurdsson et al. investigated theta-band connectivity between the 

PFC and the hippocampus in Df(16)A+/- mice – a model for a microdeletion on human 

chromosome 22 (22q11.2), one of the largest known genetic risk factors for schizophrenia 

– and found significant reductions during memory retrieval compared to healthy control 

animals [401]. 

In contrast to impaired theta activity in WM tasks in rodents, elevated and sustained the-

ta activity is consistently associated with psychotic symptoms in humans [11, 320, 415, 
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490]. This is consistent with the recent finding in a genetic mouse model of schizophrenia 

that increased fronto-temporal theta-coherence was correlated to novelty-induced hy-

peractivity, a potential marker for psychosis in rodents (see 1.4.1) [76]. Both could be re-

stored by viral re-introduction of the respective gene which highlights the close connec-

tion between theta and short-term habituation [76]. Also, novelty resets theta-band con-

nectivity between the ventral hippocampus (vHC) and the mPFC by weakening this con-

nection, however, connectivity is strengthened during subsequent adaptation to the new 

task [348]. In this study, the authors also proved a link to D1 receptors as blocking these 

receptors prevented these adaptations [348] which highlights the importance of novelty 

adaptation in schizophrenia and potentially explains a functional role of elevated theta as 

the cause of failed short-term habituation. 

Likewise, as already introduced in 1.2.1.4 as CFC and mostly quantified as PAC, the phase 

of the theta rhythm was found to be associated with the amplitude of gamma-band oscil-

lations in the brain of rodents [61, 287, 403, 407] and humans [80, 287] which was hy-

pothesised to be a general coding scheme, especially for WM [284, 286, 287]. Lisman and 

Jensen therefore proposed the “Theta-Gamma Neural Code” which implicates that dis-

tinct spatial information is coded in different gamma subcycles of a theta cycle which can 

be observed within or between brain regions [287]. Analogous to this, patients with 

schizophrenia which showed WM deficits, also displayed impaired theta-gamma coupling 

during a WM task [34]. 

Generally, it was observed that low-frequency oscillations in patients with schizophrenia 

display lower task-related increases decreased during cognitively demanding tasks and 

elevated during rest compared to healthy control subjects [318]. Unlike gamma oscilla-

tions, the theta-frequency range itself and its connection to schizophrenia has been less 

explored so far and results do not seem to be completely unambiguous. On the one hand, 

theta-range coherence recorded between neocortical regions using EEG was explicitly 

correlated with auditory hallucinations in a study where patients without auditory hallu-

cinations and healthy controls showed increased theta coherence between frontal and 

temporal electrodes, whereas patients with schizophrenia with auditory hallucinations 

had significantly reduced patterns of theta coherence [147]. On the other hand, increased 

theta-range connectivity was found in resting-state EEG recordings [11, 320, 415, 490]. 
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1.3 BRAIN REGIONS WITH RELEVANCE TO SCHIZOPHRENIA 

The first studies about changes in gross brain anatomy in patients with schizophrenia us-

ing magnetic resonance imaging (MRI) reported an enlarged ventricular system [117], and 

grey matter reductions most prominent in the temporal lobe and in the dorsolateral 

[480]. Additionally, it was shown that brains of patients with schizophrenia display ab-

normalities already before mental symptoms occur, suggesting that  schizophrenia is a 

neurodevelopmental disorders [322, 467]. Since it is hypothesized that schizophrenia is 

not a disease that can be traced back to a deficit in a single brain region, functional con-

nections between the PFC and other brain regions were investigated and patterns of 

strongly altered connectivity  were observed among patients [100]. However, it was re-

cently shown that the same brain abnormalities seen on MRI scans are not equally ob-

servable in all patients with diagnosed schizophrenia, leading the authors to conclude 

that there might be different subtypes of the disease which display different neuroana-

tomical phenotypes [90]. 

Three of the most relevant brain regions, the PFC, the hippocampus, and the thalamus, 

will be discussed in the following since they are of particular bearing for the rest of this 

work. 

1.3.1 The prefrontal cortex  

The PFC is located in the anterior part of the hemispheres and receives major inputs from 

the mediodorsal nucleus of the thalamus (MD). The PFC is ascribed great importance in 

cognitive functions which are a necessity to coordinate a wide variety of behaviours 

[175]. As a first key finding, it was shown that persistent firing of neurons in the dorsolat-

eral PFC (dlPFC) was associated with WM performance in primates [161]. Human neu-

roimaging studies further suggested relevance of the PFC in regulating attention [346] 

and WM [301].  

Regarding the relevance of the PFC in schizophrenia, it was already described in 1.1.2 that 

reduced dopamine in the PFC can lead to symptoms of the disease. Neuropathological 

studies of the brains of patients with schizophrenia revealed the same number of neurons 

but in smaller volume resulting in elevated neuronal density and in reduced neuropil 

which might lead to diminished connectivity [48, 395]. Based on the fact that WM is im-
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paired in patients [469] imaging studies revealed no specific activation of the PFC during 

cognitive tasks in patients with the illness compared to healthy controls [468]. Interest-

ingly, however, the disease onset is characterised by a state of increased PFC connectivity 

revealed by comparing resting-state functional MRI (fMRI) of patients with early-course 

schizophrenia and healthy subjects [15]. 

Even before being aware of these alterations in schizophrenia, the main treatment for 

schizophrenia and other mental diseases associated with deviant behaviour often was 

frontal lobotomy, i.e., the surgical severing of connections in the PFC [150]. This proce-

dure was fortunately abandoned since it left the patients with strongly damaged intelli-

gence, emotion, and social behaviour [150]. Interestingly, one of its critics was American 

mathematician Norbert Wiener who was introduced in 1.2.1.3 and who would later pave 

the way for future discoveries regarding whole brain connectivity with his works on 

communication and causality [62]. 

Since the PFC is considered exclusive in primates because of its outstanding role in cogni-

tion, decision making, speech and linking present experiences to possible future out-

comes [163, 175], it is particularly difficult to transfer animal findings into human brain 

research. Historically, the PFC of primates was defined based on the presence of a cortical 

granular layer IV rostral to the agranular motor areas which differentiates it from non-

primates as they lack a granular layer IV [448]. However, the cytoarchitecture as a sole 

criterium was soon abandoned and replaced by connectivity and functions. For example, 

reciprocal thalamocortical connections, which, for the PFC, are mainly formed with the 

MD (see 1.3.3), are an important tool for classifying cortical areas [288, 373] and are also 

seen in rodents [186, 448]. However, a precise anatomical definition of the PFC in mice is 

still not available resulting in varying delineations and proposed subregions as summa-

rized in [265]. Therefore, the authors conclude that it is important to report the exact 

stereotactic locations in order to avoid miscommunication of scientific findings [265]. 

1.3.2 The hippocampus 

The hippocampus is part of the limbic system in the temporal lobe and because of the 

rotational movement during development shows an S-shaped structure. It receives major 

cortical input from the EC and consists of the dentate gyrus (DG), the cornu ammonis (CA) 

with its subfields CA1-4 and the subiculum. The main excitatory pathway, the classic tri-
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synaptic loop, was described as the following: EC → DG, DG → CA3 and CA3 → CA1. The 

EC serves as the main interface between the hippocampus and the neocortex and for-

wards information along the perforant path to the granule cells in the DG [8]. Axons 

called mossy fibres mainly project to CA3, and axons of CA3, called Schaffer collaterals 

(SC), project to CA1 [8]. The circuitry is completed by a connection from CA1 to the subic-

ulum and back to the EC [474]. Afferent and efferent connections of the hippocampus are 

mainly transmitted through the EC and the subiculum [474]. In addition to the trisynaptic 

path, CA1 also receives monosynaptic glutamatergic input from the EC forming synapses 

in a layer called stratum lacunosum moleculare (SLM) whereas the SC end in the stratum 

radiatum (SR). Besides the known connection from CA3 and EC to CA1, CA2 neurons were 

also shown to be excited by direct EC and SC input and to strongly excite CA1 neurons 

[92]. Also, the subiculum was shown to not be the only output channel of the hippocam-

pus as a functional circuit from CA3 to the dopaminergic neurons of the VTA via the lat-

eral septum was discovered [291] and CA3 was revealed to also receive afferents from 

the medial septum [42]. Further literature on anatomical connections within the hippo-

campus and to other brain regions is extensively reviewed in [37]. 

Regarding functional tasks, early studies showed that bilateral hippocampal lesions lead 

to an impairment in acquiring new, explicit memories (anterograde amnesia) which was 

first documented in the famous patient H.M. [391]. However, general knowledge such as 

vocabulary which was learned well ahead of the hippocampal damage remained intact 

and led to the assumption that these older memories become transferred to the neocor-

tex [391]. Lesioning the EC, DG, CA3 and CA1 emphasized their role in learning and 

memory formation [323, 324, 424, 444] whereas the CA2 subfield was shown to be of 

particular importance regarding social memory [127, 201, 418]. The discovery of place 

cells in rats in 1951 by John O’Keefe shed light into the observation that hippocampal 

damage resulted in spatial memory deficits [335]. Each place cell in the hippocampus has 

its place field and fires when the subject is at a distinct place in a known surrounding, 

which is known as the spatial mapping theory [335, 337]. Besides the function of the hip-

pocampus for spatial, object-related and social associative long-term memory the hippo-

campus is involved in long-term fear memory [247], and (short-term) working memory 

indicating that it contains various circuits for different types of memory [422]. With spe-

cial emphasis on WM, studies linked neuronal activity in the medial temporal lobe (MTL, 
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which includes the hippocampus, EC and the amygdala) in humans [57, 232, 253] and 

hippocampal neuronal activity in monkeys [78, 153, 465] to WM. In rodents, hippocampal 

lesions led reduced hippocampal-prefrontal connectivity an WM performance [66] and 

analyses of (mainly theta- (5-12 Hz) and gamma- (30-50 Hz) band) oscillatory synchrony 

between the hippocampus and the PFC were found to strongly correlate with WM [41, 

213, 229, 400, 401, 410]. Notably, Spellman et al. found that direct projections from the 

vHC to the mPFC and gamma synchrony were associated with successful WM perfor-

mance which could be disrupted by inhibiting the vHC terminals [410].  

Aside from the role in memory, the hippocampus is also a key structure for the processing 

of salience associated with sensory stimuli. This includes a prominent role in regulating 

anxiety [26, 204] and the adjustment of novelty-related salience assignment [29, 76, 128, 

240, 456].  

Abnormalities in the structure and function of the hippocampus in schizophrenia are 

among the most solid and reproduced findings of the neuropathology of the disease. 

These include atrophy and atypical hypermetabolism [54, 275] and upregulated cerebral 

blood flow in the hippocampus [275]. Hippocampal hyperactivity was also found to occur 

at rest [306, 388, 389, 429–431, 443] and was associated with cognitive symptoms of 

schizophrenia such as memory deficits [193, 443]. Additionally, patients with schizophre-

nia showed elevated activation of the hippocampus while they fail to habituate to re-

peated exposure to fearful faces, which illustrates an aberrant representation of salience 

attribution in the hippocampus [204]. Anterior hippocampal hyperactivity could serve as a 

potential biomarker since it often is observable in subjects with high risk for transition to 

overt schizophrenia which later display symptoms of the disease [276, 388]. Regarding 

the underlying pathophysiology of hippocampal hyperactivity, the reduction of non-

pyramidal (GABAergic) neurons and the resulting excitation-inhibition imbalance were 

discussed as possible mechanisms [43, 192, 194, 285]. In addition, hippocampal hyperac-

tivity was linked to the hyperactivation of the dopamine system since elevated blood flow 

in the hippocampus could be normalized by D2-antagonists [306]. 

1.3.3 The thalamus 

The thalamus represents the largest part of the diencephalon and sits nearly in the centre 

of the brain as its medial area constitutes the side wall of the third ventricle. It is com-
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posed of many individual nuclei which in part have separate functions but relate to nu-

merous association fibres. The thalamus’ most prominent feature is its intense reciprocal 

connections to the cerebral cortex which stresses its necessity for cognition and emotion 

processing [398]. The thalamus is widely considered to be a hub for all kinds of stimuli 

and therefore a gating function has been attributed to him [101, 398]. Recalling the im-

portance of sensory processing in the cognitive pathology of schizophrenia it seems plau-

sible to assume abnormalities in patients with schizophrenia. Imaging studies mostly re-

vealed reduced thalamic volume in patients [9, 171]. Particularly the MD, which receives 

most of its input from the PFC, showed reliable abnormalities across studies [170]. 

The MD was first linked to schizophrenia in imaging studies that showed its decreased 

activation during cognitive tasks [12] and its reduced connection to the PFC [311, 478]. 

However, it remains elusive if these electrophysiological findings are the cause of their 

cognitive symptoms because results from lesion studies in rodents yielded controversial 

results so far. For example, one study found that rats with lesioned MDs scored signifi-

cantly worse in a WM task than non-lesioned controls [144], but another study could not 

replicate this finding [44]. Recent studies in humans using fMRI found that decreased MD 

– PFC connectivity is linked to psychosis and might serve as a prognostic marker since 

prodromal patients with strongly decreased MD - PFC connectivity patterns had elevated 

risk of developing schizophrenia in their adulthood [14, 477, 478]. 

To investigate the connectivity between the MD and the PFC, Parnaudeau et al. used a 

chemogenetic approach in mice to selectively and transiently inhibit neurons in the MD in 

mice [349]. They found that inhibiting neurons in the MD led to impairments in cognitive 

flexibility (reversal learning) and a form of WM and reduced task-dependent MD-PFC be-

ta-synchrony [349]. These results imply that the MD and its synchronous activity with the 

PFC in the beta frequency range are important for cognitive function [349]. Based on this 

work, optogenetic studies revealed that inhibiting input neurons from the MD into the 

medial PFC (mPFC) and vice versa input neurons from the mPFC in the MD worsened per-

formance in a spatial WM (SWM) task [56]. Notably, inhibiting connections from the MD 

to the orbitofrontal cortex (OFC) in the same way did not have any impact on the task 

performance which underlines the importance of the MD – mPFC circuit [56]. Interesting-

ly, using temporally limited optogenetic inhibition Bolkan et al. could demonstrate that 
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functional interaction between the MD and the mPFC is dependent on the task phase 

[56]. While input from the MD to the mPFC support the maintenance of SWM during a 

delay period, signals from the mPFC to the MD are important for memory retrieval [56]. 

Moreover, another study using optogenetics showed that MD activation amplifies local 

PFC activity and cortical connectivity and improves performance and  in a sustained atten-

tion task, but activation of the PFC directly resulted in inappropriate connectivity and 

worsened behavioural performance [384]. 

1.4 DO MICE HAVE SCHIZOPHRENIA? 

This chapter discusses if symptoms of psychiatric diseases like schizophrenia as described 

in 1.1 can be translated to or from rodent models. Also, the most commonly used rodent 

behavioural test paradigms are described and linked to schizophrenic symptoms in hu-

mans. 

To begin with, mice most likely do not have schizophrenia analogously to the respective 

disease seen in humans. In any case, since schizophrenia can only be diagnosed from first-

person accounts describing experiences of psychotic symptoms using human language, 

schizophrenia cannot be diagnosed in an animal, by definition. So, the question arises 

what we hope to achieve by studying schizophrenia in supposed mouse models of this 

disease, both for scientific and ethical reasons. Although mice resemble humans in many 

ways, some disparities remain fundamental. Differences in gross anatomy, genes and be-

haviour allow scientists only to speak of models of diseases and not to replicate an entire 

syndrome in an animal. Consequently, it appears folly to speak of a mouse model of a 

multifactorial disease like schizophrenia; it is more accurate to speak of the pursuit of 

understanding how certain genetic mutations or other manipulations increase the risk for 

schizophrenia and how the discovered mechanisms might be a target for medication. In 

accordance with the RDoC project introduced in 1.1, animal models allow researchers to 

precisely test candidate genes, neural circuits, and drugs for specific aspects of the ab-

normal functioning of certain domains of the diseases and evaluate their suitability for 

future treatment options. Therefore, schizophrenia-related research has been centred 

around identifying suitable animal models that express certain endophenotypes of the 
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disease and then trying to understand the physiological basics of the respective model 

[76, 349, 401, 434]. 

1.4.1 Correlates of positive symptoms in mice 

It is not known if or to what extent mice can experience positive symptoms such as delu-

sions and hallucinations. Elevated locomotor activity which includes hyperactivity and 

increased stereotypic movements has been reported in various rodent models of schizo-

phrenia, such as mice with a genetic downregulation of dopamine transporters and there-

fore elevated dopamine levels [164] as well as mice with reduced NMDA receptor expres-

sion [315]. Psychomimetic drugs such as ketamine, PCP and amphetamine increase loco-

motor activity in rodents and this effect can be reverted by the administration of antipsy-

chotic drugs [340]. The suggests a certain predictive validity: the shared responsiveness of 

psychotic symptoms and novelty- or drug-induced hyperlocomotion to antipsychotic 

medication renders the latter as a first-pass rodent correlate of aspects of positive symp-

toms in humans, even though it is insufficient on its own to draw strong conclusions [16]. 

The theory of aberrant salience and the Bayes theorem highlight the importance of cor-

rect stimulus processing in the aetiology of positive symptoms (see 1.1.2). The proper 

processing and integration of sensory stimuli are altered in patients with schizophrenia as 

they display oversensitivity to sensory stimuli and the inability to predict them [59]. One 

measure for this is prepulse inhibition (PPI), i.e., a non-startling prepulse stimulus shortly 

before a startling stimulus attenuates the startle response in healthy subjects as it warns 

and prepares the nervous system. PPI was repeatedly shown to be diminished in patients 

and related mouse models [58, 59, 351]. Another function that is reduced in patients suf-

fering from schizophrenia is the proper processing of acoustic stimuli during auditory 

oddball paradigms [20]  or sensory gating, the processes of filtering out redundant or un-

necessary stimuli throughout information processing [357], which suggest that these pa-

tients have trouble processing auditory stimuli which in return might foster the emer-

gence of psychotic symptoms (see 1.2.2). 

Importantly, a recent study was able to measure hallucination-like perception in mice 

which could be elevated by administration of hallucinogenic drugs like ketamine and was 

tightly linked to the Bayesian theorem of faulty belief-updating in schizophrenia [383]. In 

this study they trained mice to report if they hear a tone signal embedded in a noisy 
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background by poking into one of two choice ports. Mice were trained over a long time 

period in order to avoid false alarms and to correctly adapt them to a reward according to 

their invested time duration. If mice spent a longer time to earn the award after reporting 

a tone signal it was interpreted as high confidence, analogously to humans with schizo-

phrenia which defend their faulty beliefs with greatest efforts as described in 1.1.2. It was 

also found that elevated dopamine in the striatum preceded these hallucination-like per-

ceptions in mice and even could be induced by optogenetic stimulation of mesostriatal 

dopamine projections which in return was rescued by the D2 antagonist haloperidol 

[383]. 

1.4.2 Correlates of negative symptoms in mice 

It is proving challenging to specifically mimic negative symptoms in animals since they are 

not unique for schizophrenia and show overlaps with other neuropsychiatric disorders 

such as depression and anxiety disorders. One measure for negative symptoms is the 

nesting behaviour in rodents. Rodents typically tend to build a nest out of cotton sheets, 

which is impaired in mice which are pre-treated with psychomimetic drugs [387] and in 

some genetic mouse models of schizophrenia [23, 313]. One more characteristic of nega-

tive symptoms of schizophrenia is anhedonia, i.e., the inability to experience pleasure 

during activities that are usually joyful. This is tested in mice assessing the preference for 

sucrose intake whereby mice normally show a strong tendency towards a sweet sucrose 

solution over water [109]. As an example, the NMDAR antagonist MK-801 produces a def-

icit in sucrose preference analogous to the observed blunted affection in humans [77, 

450]. 

As described above, anxiety is often present in patients with schizophrenia, which is why 

it can be tested in mouse models of the disease as an important comorbidity [89]. The 

most used behavioural assay is the elevated plus maze (EPM) in which the tendency to-

wards open versus closed environments is analysed (see2.3.4) [354, 462]. 

Negative symptoms of schizophrenia often also include social withdrawal which often 

occurs before the onset of positive symptoms and serves as a childhood risk factor for 

later schizophrenia [338]. Social functioning can be tested in mice by assessing multiple 

parameters. Sociability can be assessed reciprocally (direct interaction between two mice) 

or non-reciprocally (the test mouse can inspect the other mouse only through a grid). For 

reciprocal sociability, the test mouse is exposed to the novel stimulus mouse in an open-
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field environment and social interactions starting from the test mouse are counted over a 

certain time period. Subsequent to this, one can evaluate social memory by introducing a 

delay period after the sociability test and then starting two consecutive phases in which 

mice are exposed either to the identical or a new stimulus mouse [201]. Non-reciprocal 

sociability is usually tested by putting the test mouse in an apparatus where it is con-

fronted with two equally sized, separated compartments, one occupied with another 

mouse and the other one empty or with an object within [201]. Following this, the pref-

erence to visit a novel rather than an already familiar mouse like their cage mate can be 

assessed measuring social novelty preference [201]. This test was originally developed to 

measure anxiety [139] and revealed abnormal behaviours in mouse models of schizo-

phrenia, for instance in calcineurin knockout (KO) mice [313]. Also, it can be assessed if 

mice remember a mouse that they previously met after a short delay, but which is not 

their cage mate (social short-term memory). Healthy mice rather visit the novel mouse 

because their social memory informs them that they already know the other mouse. 

These tasks are described in broader detail in 2.3.3. 

1.4.3 Cognitive symptoms in mice 

Patients with schizophrenia suffer from a variety of cognitive impairments which include 

WM, attention and information processing and are mainly unaffected by antipsychotic 

treatment [10]. Selective attention, the capability to attend to a particular stimulus or 

activity in the presence of additional distracting stimuli, is severely impaired in patients 

[264]. This is measured in rodent research by several, mostly indirect attention tasks, in-

cluding possibly the 5-choice serial reaction time task (5-CSRTT, which also exists for hu-

mans) [368]. In this task, animals are confronted with a wall with five holes of which one 

is briefly illuminated, and a reward is given for reporting the correct hole by poking it. 

Notably, the 5-CSRTT consequently rather assesses sustained than selective attention, the 

ability to attend to a stimulus or activity over an extended period of time. 

In rodent studies, WM is often tested as a form of SWM. At the present time, the delayed 

non-match to sample (DNMTS) T-maze test of rewarded alternation [339] is a gold stand-

ard test in rodents [116, 244]. Briefly, on a T-shaped maze, animals must remember the 

arm they visited during a sample run and are rewarded for alternating to the previously 

unknown choice arm (win-shift strategy, see 2.3.7). However, it was argued that this prin-
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ciple of rewarded alternation is confounded by the mice’ natural preference to explore 

novel spaces [377]. This is likely to be facilitated by short-term habituation - the decrease 

of attributed salience to repeated stimuli – and especially in schizophrenia this must be 

seen critical since deficits in short-term habituation are present [204, 377]. Importantly, 

healthy mice seem to rather use a passive form of WM since they tend to perform above 

chance level even in their very first trial without being able to have learned the win-shift 

strategy and rewarded alternation [76, 77, 437]. Besides short-term habituation, a variety 

of other cognitive functions such as motivation and attention can confound the perfor-

mance on this task. Therefore, Sanderson and Bannerman stated that the T-maze might 

produce false-negative results in mice with a WM deficit which is, however, obscured by 

their WM-independent solving strategies [377]. As depicted in Table 1.6.1, many neural 

correlates for WM based on the T-maze were found, involving various brain regions. 

Additionally, the T-maze usually comes with low trial numbers, lack of delay-independent 

challenges (e.g., sound, or light distraction) and is generally used as a DNMTS-paradigm, 

because rodents cannot be trained to follow a the delayed match to sample (DMTS) rule 

in this task  because of their natural tendency to explore novel spaces. DMTS paradigms 

have, however, been widely used in the research of human WM, e.g. in autistic patients 

[35], patients with Alzheimer’s and Parkinson’s disease [376] and also schizophrenia 

[271]. A DMTS task usually involves three phases, i.e., the SP, during which the stimulus 

which has to be memorized is presented; a delay phase during which participants must 

maintain information about the stimuli; a CP during which the sample stimulus is pre-

sented together with other stimuli and the participant has to make a verdict about which 

is the sample stimulus. Variations of this sequence could contain different kind of deci-

sions that have to be made about the sample stimulus or stimuli, e.g., participants may be 

asked to tell which of the stimuli was presented first (temporal relationship) or which one 

was previously on top or below (spatial relationship) (see Figure 3.2.13a and [225, 226]).  

In the rodent literature, operant tests have been used to implement DMTS paradigms 

using two retractable levers [129, 405, 484]. One lever is presented during the SP and 

during the CP both levers are presented, whereupon the subject receives a reward when 

pushing the lever from the SP. This approach, however, has a drawback since mice do not 

have to move during each trial which entails the possibility to not engage WM to obtain 
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the reward but to learn to stick to a certain body position [437]. Operant DMTS tasks in 

rodents aiming to overcome these concerns were initially developed for rats [96, 97] and 

later adopted to mice [245, 437]. In the latter, inspired by the 5-CSRTT, animals pass 

through three phases: a SP, during which one hole gets illuminated, a delay phase during 

which the animal has to return to the opposite wall to collect a reward and wait in total 

darkness, and a CP where the animal is rewarded if it pokes into the previously illuminat-

ed hole while another hole is presented as alternative option in a wide variety of configu-

rations (see 2.3.5). In principle, this whole setup can also be used to implement a DNMTS 

paradigm by changing the rule for the CP reward to be delivered when subjects poke into 

the previously non-illuminated hole – however, in practice neither mice nor rats have so 

far been trained successfully in such a DNMTS paradigm. Also, the operant design allows 

for various sorts of challenges such as delayed prolongation, distraction by sound, and 

light, or (although not done so far) variations of the number of stimuli presented in the 

CP. Furthermore, other cognitive capabilities can be assessed, e.g., attention from the 

choice accuracy in the SP and motivation by measuring the reward latency which would 

resemble the analysis done with the 5-CSRTT (see 2.3.5, Table 2.3.1 and [27, 368]). Also, 

mice must rotate around their body axis between task phases strongly reducing the pos-

sibility to encode the correct choice by a specific body position or habitual behaviour ra-

ther than using WM. 

1.5 GRIA1 MOUSE MODEL OF SCHIZOPHRENIA 

GWASs identified variants in the locus of the Gria1 (glutamate receptor, ionotropic, AMPA 

1) gene – which encodes the AMPAR subunit GluA1 – as being associated with a higher 

risk for schizophrenia [367, 382]. AMPARs are postsynaptic heterotetrameric glutamate 

receptors, consisting of a combination of the four subunits GluA1, GluA2, GluA3 and 

GluA4. Those subunits can form seven different subtypes of AMPARs with GluA1A2, 

GluA2A3 and GluA2A4 being the principal subtypes on excitatory neurons [470]. The ho-

momeric GluA4 receptor is the least expressed subunit in the adult brain [491] and plays 

an important role in glutamate signalling in interneurons [353], but not in AMPAR-

mediated signalling in excitatory neurons [317]. Long-term potentiation (LTP) or depres-

sion (LTD) can be induced, inter alia, by NMDARs, whereas the modification, addition, or 

removal of AMPARs is the primary means of the expression of synaptic plasticity at the 
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postsynapse of pyramidal neurons given that they are the also the main mediators of ex-

citatory synaptic transmission [297]. Riedel et al. infused the AMPA antagonist LY326325 

into the hippocampus and observed a reduction in excitatory transmission and deficits in 

spatial memory [366], which suggests AMPAR-mediated LTP as a correlate of learning. 

However, these findings must be met with caution since the observed effects reached by 

pharmacological antagonism do not necessarily equate to the genetic lack of the respec-

tive receptor and might be depending on memory training protocols, as shown for 

NMDARs [24]. 

The most distinguishing feature between the different AMPAR subunits is their C-

terminus and associated function: GluA1 has a long C-terminus and can easily be traf-

ficked to or from the postsynapse which alters synaptic strength [399]; GluA2 and GluA4 

display splicing-dependent variable length of their C-termini and GluA3 generally has a 

short C-terminus which makes them unsuited for mediating synaptic plasticity [491].  

Post-mortem studies revealed decreased expression of GluA1 mRNA and GluA1 in the 

hippocampus of patients with schizophrenia [131, 132, 190]. Importantly, these findings 

do not seem to be induced by prior antipsychotic treatment [133, 343]. Although GluA1 

receptors are found throughout the brain, they show their highest expression in the hip-

pocampus [243]. 

1.5.1 Electrophysiological phenotype of Gria1-/- mice 

The GluA1 subunit was found to be crucial for LTP at hippocampal synapses [408] which is 

believed to be important for learning and memory [51]. Zamanillo et al. found that excita-

tory postsynaptic potentials (EPSP) in Gria1 KO (Gria1-/-) mice are unaltered, suggesting 

that GluA1 is not essential for synaptic transmission or there are compensatory mecha-

nisms [488]. However, further studies revealed a reduced EPSP in Gria1-/- mice [222, 372], 

indicating that the complex contribution of GluA1 to synaptic transmission must be scru-

tinized by applying different methodologies: 

Zamanillo et al. showed that in in vitro recordings the application of 100 Hz tetanic stimu-

lation failed to induce LTP at SC – CA1 pyramidal cell synapses in Gria1-/- mice [488]. This 

protocol results in peak synaptic efficacy rapidly (1-3 minutes). A further study found that 

stimuli that are too weak to induce LTP, but induce short-term potentiation (STP) in 

healthy mice, failed to induce STP in Gria1-/- mice [136]. Romberg et al. observed that hip-
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pocampal LTP contains two components: The long-lasting, GluA1-independent phase and 

a short, rapidly decaying, GluA1-dependent phase [372]. 

Long-term synaptic transmission can also be induced by theta-burst pairing (TBP) and 

leads to quick potentiation that develops over time [203]. Using this protocol, Hoffman et 

al. showed that TBP induced a slower developing, delayed potentiation which did not dif-

fer in Gria1-KOs from wildtype (WT) animals 25 minutes after induction and therefore 

seemed to be GluA1-independent [203]. However, the initial phase (first 25 minutes) of 

TBP was markedly reduced in Gria1-/- mice [203]. These findings have the important impli-

cation that GluA1 seems to be crucial for the early and short-lasting phase of LTP that 

occurs within seconds after induction and might be relevant to attentional processing 

(especially via short-term habituation to sensory stimuli) or other forms of short-term 

memory [29, 136, 203, 372] that involve the hippocampus [456].  

A previous study using in vivo LFP recordings revealed that sustained elevation of hippo-

campal-prefrontal theta-coherence in Gria1-/- mice is correlated with protracted selective 

attention in novel environments [76]. Strikingly, the electrophysiological and the behav-

ioural abnormalities could be restored by viral reintroduction of GluA1 into the CA2/CA3 

subfields of the hippocampus [76]. This underlined the notion that GluA1-containing AM-

PARs in the hippocampus – more specifically the CA3 region – seems to be an important 

regulator of the theta rhythm and the adjustment of novelty-related selective attention 

[76]. This suggested that short-lasting LTP may be a mechanism to regulate selective at-

tention and, hence, salience attribution – as has been hypothesized by Olga Vinogradova 

decades earlier [456]. 

1.5.2 Behavioural phenotype of Gria1-/- mice 

Gria1-/- mice develop phenotypically as their WT littermates, have similar life expectancy 

and show no difference in the structure of synapses and dendrites [488]. They do, how-

ever, display increased learned helplessness and decreased serotonin levels which links 

the Gria1-gene to the negative symptoms of schizophrenia and renders them a possible 

model for schizoaffective disorder [95, 141]. Based on the LTP-deficits described in 1.5.1 

the hypothesis was formulated that Gria1-/- mice might display deficits in learning and 

memory [488]. Accordingly, findings of Gria1-/- related behavioural deficits will be re-

viewed in the following. 
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The first study tested these KO mice in the Morris water maze test [319, 488] where the 

mice have to remember the place of a hidden platform in a water pool. Interestingly, 

Gria1-/- mice did not show significant impairment in this task, suggesting that GluA1-

dependent LTP might not be critical for spatial RM. This contrasts with animals with hip-

pocampal lesions which show impaired performance in a water maze and other tests of 

spatial RM [364, 488]. Studies also revealed deficits of SWM in the T-maze DNMTS task 

(see 2.3.7) [364] and a radial maze task [385]. In the latter, mice were tested in a radial 

maze with six arms from which three arms had a milk reward and the other three did not. 

In paradigm one, mice had to recall these three baited arms and since every arm was 

closed by a door after the mouse entered it, this part of the assay tested RM In paradigm 

two, however, SWM was tested by leaving arms open and allowing the mice to re-enter 

an arm within a trial, which would indicate a violation of the win-shift (rewarded alterna-

tion) rule and hence a WM-deficits [385]. Therefore, this assay represents the most direct 

comparison of WM and RM, possible, and in this study Gria1-/- mice showed selective im-

pairments in WM but intact  RM [385]. By extension, this also demonstrates that the pro-

found SWM deficits of Gria1-KOs are not caused by a more basic impairment in the pro-

cessing of spatial cues. These results led to the assumption that short-term and long-term 

memory are based on different neural processes, hypothesizing that only short-term 

memory is dependent on GluA1. Further studies questioned, however, that the impair-

ment in Gria1-KOs was limited to WM – as a form of short-term memory – or rather a 

more passive form termed short-term habituation. Short-term habituation essentially is a 

form of attentional control whereby less and less attention is paid to stimuli as they be-

come familiar (which may also be regarded as novelty-related salience attribution that 

decreases with familiarity). This was evident in multiple assays of short-term habituation 

[378]. One example is spatial novelty preference which is assessed in a non-rewarded Y-

maze task where mice are allowed to explore one arm of a Y-shaped maze for a few 

minutes after which the previously blocked arm is opened and their tendency to visit the 

new arm is assessed (see 2.3.2). Here, Gria1-/- mice showed no preference to visit the pre-

viously blocked arm of the maze indicating impaired spatial short-term habituation [379]. 

Interestingly, when the interval between exposure to one arm of the Y-maze and revisit-

ing the maze for both arms was extended up to 24 hours, Gria1-/- mice showed even en-

hanced novelty-preference [378]. These discrepancies between short- and long-term ha-
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bituation fit in line with a model proposed by Wagner in 1976 where he presumes that 

short-term and long-term memory processes are independent from one other and even 

compete [461]. According to this theory, Sanderson et al. hypothesised that Gria1-/- mice 

trumped WTs because the accumulation of short-term memories did not interfere with 

long-term memory [378]. 

Confirming this, Gria1-/- mice also showed impaired short-term habituation in a novel ob-

ject recognition task [380]. This task consists of a SP during which mice are confronted 

with two copies of the same object which they are allowed to explore freely and a test 

phase where one familiar copy is replaced by a novel object (see 2.3.8, Figure 3.5.2d and 

[380]). WTs usually recognize the two objects during the SP as familiar and will prefer to 

visit the novel object throughout the test phase whereas Gria1-/- mice show no preference 

towards the novel object reflecting their lack of short-term habituation [380]. However, 

the same study demonstrated the Gria1-/- mice do not suffer from long-term habituation 

deficits as they were shown not to be impaired in a context-dependent object recognition 

task where specific objects are presented to the mice several times in a distinctive con-

text [380]. Consistent with these findings, orienting responses of Gria1-/- mice were 

shown to differ markedly from those of WT mice in the habituation of the orienting re-

sponse to neutral stimuli (HORNS) task where animals were exposed to one certain visual 

stimulus and after a delay of 30 seconds either to the same or to a different visual stimu-

lus [381]. WT mice showed a stimulus-specific habituation, indicated by a significantly 

lower responding rate when the second stimulus was the same as the first stimulus, but 

with a similar responsiveness if the second stimulus was novel [381]. In Gria1-/- mice ori-

enting to the stimulus was enhanced when the second matched the first stimulus, but 

activity was reduced when the second stimulus differed from the first [381]. These results 

show that Gria1-/- mice not only lack short-term habituation, but display a stimulus-

specific sensitization, i.e. a stronger reaction to the second stimulus compared to the first, 

which is the reverse pattern of that seen in healthy control mice [381].  

Results from these habituation and memory studies led to the conclusion that Gria1-/- 

mice seem to have troubles with short-term habituation and WM in non-associative set-

tings, whereby, to date it remains unclear to what extent their alternation deficits are 

actually indicative of a genuine WM impairment or driven by the same short-term habitu-

ation deficit seen in the other tasks [29, 377]. However, when the task is associative, i.e., 
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context-dependent, and persistent behaviour is assessed, they show no difference com-

pared to WT mice or even enhanced learning. This lack of short-time habituation can be 

interpreted as a cause of aberrant salience and puts the Gria1-/- mice in position as a 

model for psychosis in rodents [29]. Supporting this, Wiedholz et al. found that the veloci-

ty of striatal dopamine clearance was delayed in Gria1-/- mice and reduced hyperactivity 

and normal PPI (see below) was found in Gria1-/- mice after administration of a dopamine 

D2 antagonist [471]. However, the actual mechanistic link between GluA1, dopamine reg-

ulation and psychological mechanisms of salience attribution or short-term habituation 

remain to be elucidated. Also, Gria1-/- mice display deficiencies in PPI of the acoustic star-

tle reflex [471], just like patients with schizophrenia [58, 351]. Another prominent feature 

of Gria1-/- mice has been distinct locomotor hyperactivity, which is evident when exposed 

to an unknown territory, but not in a familiar home-cage environment [25, 76, 141, 471]. 

Furthermore, when confronted with a novel environment, Gria1-/- mice show elevated 

theta power in the dorsal hippocampus (dHC) and coherence between the dHC and the 

PFC [76] which is akin to broadly elevated theta-band connectivity seen in EEG-studies in 

patients with schizophrenia [11, 20, 490] and other mouse models of the disease [464]. 

Again, such increased locomotor activity may be the result of a failure to habituate to a 

new setting and novel spatial stimuli as they become familiar [451]. Specifically the dHC 

seems to play a major role in regulating hyperactivity in Gria1-/- mice, since this part of the 

brain is most active during novelty-induced hyperactivity [358] and a chemogenetic ap-

proach of inhibiting neurons in the dHC was able to restore hyperactivity of Gria1-KOs 

without affecting the behaviour of WT mice [5]. These findings were reinforced by a study 

which used a viral approach to rescue Gria1 in the hippocampus and found that these 

rescue mice were less hyperactive and only partly impaired in the Y-maze, but perfor-

mance on the T-maze was also only partially restored [152]. In line with these findings, it 

was found that selective knockdown of GluA1 in the dHC or vHC was not sufficient to 

completely extinguish SWM [151]. The aforementioned study from our lab achieved a 

more specific viral reintroduction only to CA2/CA3 areas in the hippocampus and showed 

that this was sufficient to restore hyperactivity, spatial novelty-preference, and abnormal 

theta coherence, but could only partially restore SWM [76]. It was argued that these find-

ings relate to the idea that CA3 might serve as a comparator to control salience attribu-

tion [76]. Elevated dHC theta oscillations were suggested to be associated with elevated 
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and inflexible attention which is adjusted by GluA1-dependent plasticity in CA3 and/or 

CA2, which in turn, mediates short-time habituation. In that view, the hippocampus might 

act as a novelty sensor spotting discrepancies between incoming and stored information 

which might underlie exploratory behaviour [76, 205, 456]. Notably, GluA1 in other cir-

cuits might also contribute to the same functions. For example, Schmitt et al. found that 

transgenic restoration of GluA1 in excitatory forebrain neurons (including those of the 

hippocampus) could also, at least partially, restore performance on the T-maze in Gria1-/- 

mice [386] and Fuchs et al. discovered that selective ablation of GluA1 in PV-positive in-

terneurons led to deficits in exploratory behaviour during the novel object recognition 

test and mild impairment on the T-maze [160]. 

1.5.3 GluA1 as a possible pharmaceutical target 

Regarding the therapeutic suitability, molecules that activate AMPA-receptors are 

thought to be a possible target for schizophrenia [272]. Research in rodents showed that 

novelty-induced hyperlocomotion in Gria1-/- mice could be normalised by the AMPAR an-

tagonist NBQX, but not the AMPA potentiator CX546 [358]. This seemingly unexpected 

finding could be explained by the finding that novelty is known to increase glutamate in 

the hippocampus which is why NBQX could relieve hyperlocomotion [358]. Also, the 

mGluR2/3 agonist LY354740 was shown to reduce hyperlocomotion in Gria1-/- mice [359]. 

Until now, no substance reached clinical relevance, even though AMPA-receptor modula-

tors (ampakines) were found to be cognitive enhancers [292] and a drug called anirace-

tam is sold in Europe as a prescription drug for Alzheimer’s disease but is not approved by 

the FDA. One study showed that the AMPAR modulator piracetam in combination with 

haloperidol alleviated positive and negative symptoms of patients with schizophrenia 

more than haloperidol and placebo [333]. However, this study was in small scale and 

therefore only yields preliminary results. Additionally, another AMPAR modulator, CX516, 

improved short-term memory in healthy humans [215] but did not improve any symp-

toms of schizophrenia when administered in addition to standard medication [173]. Re-

cently, another ampakine, PF-04958242, was able to attenuate ketamine-induced im-

pairment in verbal learning and memory in healthy subjects [361]. The AMPAR potentia-

tor TAK-137 was recently assessed preclinically in rodents and non-human primates 

where it improved psychostimulant-induced (NMDA-blockade through ketamine and MK-



Introduction 

40 
 

801) hyperlocomotion in rats and mice, social deficits, deficits on the 5-CSRTT and cogni-

tive flexibility in rats and WM both in rats and monkeys [435]. This study suggests that 

treatment with minimally agonistic AMPAR modulators rather than their blunt enhance-

ment could yield beneficial results [435]. 

1.6 AIMS OF THIS THESIS 

1.6.1 Assessment of redundancy between electrophysiological measures of long-range 

neural communication 

The measures described in 1.2.1 and Table 1.2.1 have been widely used for two decades 

to assess inter-regional neural communication in rodents during a variety of cognitive 

tasks and disease-related manipulations, mostly involving recordings from the hippocam-

pus and PFC [4, 123, 229, 401], but also increasingly from the thalamus [349], and the 

amygdala [394]. However, on average only one or two measures of coupling are evaluat-

ed and interpreted as sufficient surrogate to quantify task- or manipulation-related dif-

ferences in actual information exchange between the analysed regions. Besides, these 

measures are usually regarded as equally informative and redundant and therefore, the 

contingency of the attained conclusions on the selection of the coupling measure are typ-

ically not exhaustively assessed. Often, simulated data is used to assess the ability of a 

measure to characterize the complexity of neurophysiological data which is difficult given 

the variability of these data. The implicit assumption that results can be easily translated 

between studies using different measures is not justified given the mathematical and 

partly biological differences between these constructs. Thus, our goal was to assess the 

redundancies and contingencies of such coupling metrics. To this end we recorded data 

during a simple behavioural assay – novelty-induced locomotion and its habituation over 

time – in Gria1-/- mice and their littermate controls. As described in 1.5.1, the Gria1-KO 

model, which models some behavioural deficits relevant to schizophrenia, shows pro-

found and state-dependent aberrations of hippocampal-prefrontal coupling in this task 

[76]. We focused on the most widely used connectivity measures – coherence magnitude 

and phase angle, wPLI, PPC, PLV, cross-amplitude coupling, parametric and non-

parametric GC (npGC), PDC, DTF, cross-regional PAC, SPC and SPC-related directionality 

(Table 1.2.1) – with respect to three “litmus tests” for redundancy: First, detection of KO-

related alterations of coupling across the 10 min test, second, detection of KO-related 
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changes of a measure over time, and third, bivariate within-animal correlation of the ex-

amined measures. Signals obtained from the mPFC, dHC and vHC were used to calculate 

connectivity between these regions. For the most part of the analysis, four commonly 

used frequency bands, delta (, 1-4 Hz), theta (, 5-12 Hz), beta (, 15-30 Hz) and low 

gamma (, 30-48 Hz) are distinguished, whereby the analysis of theta and gamma may be 

regarded as particularly revealing due to the existence of spectral peaks indicating actual 

underlying oscillatory processes. 

As for the choice of examined measures of neural connectivity, the dependence of the 

conclusions on the exact placements of electrodes within the analysed regions and the 

choice of reference are often not evaluated either [36, 135, 230, 231]. We therefore de-

termined the exact placement of the recording electrodes in order to identify possible 

signal differences within each brain region and used to distinct reference locations to de-

tect related dependencies. To this date, this is not routinely done which can be problem-

atic especially when interpreting negative data, i.e., the supposed absence of differences 

in coupling. 

To summarize, the goal of the first part of this work was to analyse redundancies be-

tween widely used functional connectivity measures and to precisely evaluate electrode 

and reference locations, opening the possibility for seemingly contradicting findings and 

inconclusive null results when comparing non-redundant measures, which in return 

should be avoided in further, more complex, analyses. This study was published in [420]. 

1.6.2 Single-trial decoding of working memory in mice and humans based on electro-

physiological measures 

Studies in humans, non-human primates, and rodents [262] have centrally implicated the 

PFC [112, 119, 174, 188, 226, 350, 419, 485], the parietal cortex [226, 228], the MD [162, 

349], and the hippocampus [79, 187, 225, 337, 466, 485] in WM processes. In particular, 

connectivity between these brain structures correlates with performance [309] (see Table 

1.6.1 for an overview on rodent studies), and dysfunctional connectivity may underlie 

WM impairments in schizophrenia [310].  

However, it still remains elusive which kind of neural information transfer actually medi-

ates WM. Several - partially conflicting and remarkably distinct - reports exist on which 
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brain regions, frequency bands [76, 229, 483] and types of inter-regional coupling (or 

metrics to analyse) are essential to WM. Studies in rodents have implicated network oscil-

lations in either the delta [130], theta [229, 401], beta [76, 349], or gamma [138, 316, 

483] frequency, in coupling between such frequency bands (esp. theta-gamma) [433] or 

between oscillations and local spiking of neurons [229, 349, 410, 432, 433], or in interac-

tions between either the ventral [410, 433] or dorsal hippocampus [76, 295, 401] and 

PFC. On a T-maze rewarded-alternation task, both vHC→PFC connectivity [410], and dHC-

PFC coupling via the thalamic nucleus reuniens [295] have been argued to mediate the 

encoding of WM-contents using optogenetic inhibition experiments. In addition to this 

diversity of findings in rodents - which mainly originate from recordings in spatial alterna-

tion tasks (Table 1.6.1) - it remains largely unknown to what extent the discovered associ-

ations generalize across different WM tasks and species.  

Table 1.6.1: Measures of long-range neural connectivity associated with WM in rodents 
Studies that have attempted to identify an electrophysiological WM correlate in form of coupling of activity 
in two brain regions are listed, in so far as the association between WM performance and metric have been 
proven by some analysis, e.g., bivariate correlations, linear regression, or comparison between correct and 
incorrect trials or between SP and CP phases. Studies that merely noted connectivity and WM differences 
due to some manipulations independently were not included. Abbreviations: T, T-maze; H, H-maze; 8, 8-
shaped maze; RA rewarded delayed alternation; SPC, spike-phase-coupling (usually assessed by mean re-
sultant vector length, MRL); CC, cross-correlation of amplitudes to determine temporal leading or lagging of 
oscillation in one region vis-a-vis the other; CFC (PAC) cross-frequency-coupling (phase-amplitude-coupling); 
PDC, partial directed coherence; MUA, multi-unit activity; SUA, single-unit activity; dMEC, dorsal medial EC; 
dCA1/vCA1, dorsal/ventral CA1; dHC/vHC, dorsal/ventral hippocampus; MD, medio-dorsal thalamus; PFC, 
medial prefrontal cortex (usually prelimbic area); Re/Rh, Ncl. reuniens / Ncl. rhomboideus of the midline 
thalamus; VTA, ventral-tegmental area. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

Task Metric Frequency Connection Ref. 

T (RA) Phase synchrony , MUA 

bursts 

dMEC - dCA1 [483] 

T (RA) SPC, coherence  PFC () - MD (spikes or ) [349] 

T (RA) Coherence  PFC - dHC [76] 

T (RA) CFC (PAC) low  −  PFC () - vHC () [188, 433] 

T (RA) SPC , SUA PFC (spikes) - vHC () [410, 432] 

H (RA) SPC, coherence , SUA PFC (spikes, ) - vHC () [229] 

T (RA) SPC, coherence , SUA PFC (spikes, ) - vHC () [188, 341, 

401] 

T (RA) SPC, SPC-based direc-

tionality 

, SUA Delay: MD → PFC, CP: PFC → MD [56] 
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T (RA) CC directionality 

(lead/lag), coherence 

,  PFC - (Re/Rh) - dHC [188] 

8 (RA) PDC ,   vCA1 → PFC, PFC → vCA1 [85] 

T (RA) SPC, coherence  (4 Hz) VTA () - PFC () [130] 

2-lever ope-

rant DNMTS 

SPC , SUA PFC (spikes) - vHC () [213] 

Delayed tacti-

le discrimina-

tion 

SPC, coherence , SUA PFC () → S1(spikes, ) [137] 

 

Moreover, it remains unclear if this variety of reported associations between specific neu-

ral activity and WM performance reflects the complexity of the biological reality, i.e., that, 

indeed, several types of connectivity and connections are engaged in WM, defying the 

desire for mono-causal conceptualizations. Alternatively, it could be caused by differ-

ences between used task paradigms, rodent models, species, or analysis procedures. Sev-

eral factors may explain the current uncertainty regarding the physiological correlate of 

WM. With respect to the state of rodent studies, this includes a pre-dominance of the use 

of the T-maze rewarded-alternation assay (or its derivatives; Table 1.6.1) [377] which also 

entails the difficulty of separating correlates of more basic functions like motivation, spa-

tial processing, and attention from the actual WM component of the task as described in 

1.4.3. Further uncertainty arises from the typical analytical approach of correlating with-

in-subject averages of performance (WM accuracy score) [76, 401, 433], trial type (correct 

vs. incorrect) [410], or trial phase (sample vs. choice phase) [341, 410] with a within-

subject average of a select connectivity measure. Such correlations do not necessitate 

mechanistic causation but could be indirect or even epiphenomenal. Finally, the street-

light effect has recently been highlighted as a rather principal limitation of studies of 

physiological correlates of psychological function [111]. I.e., when only focusing on de-

scriptive analyses of averaged data, many important aspects are often overlooked since 

the obvious brightness entices to only search around the light source. In our context, this 

term denotes the missing of neurophysiological correlates due to a biased selection of 

only few investigated brain regions, connections, or activity parameters. 

Therefore, we aimed to improve on these points in several respects in order to highly 
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reliably identify forms of inter-regional neural communication that are linked to WM in 

mice and humans:  

(a) We comparatively assessed three distinct visual WM tasks in each species. In mice, we 

build on our recent advances in establishing an operant DMTS 5-SCWM assay that fea-

tures intrinsic control variables for stimulus-directed attention and motivation and mini-

mizes the possibility for mediation, in addition to using the T-maze rewarded alternation 

and an operant 2-choice DNMTS task. In humans, we analysed an existing, openly availa-

ble dataset where three distinctive task types were inter-mixed within one session and 

featured a very similar temporal structure [225]. Therefore, in each species, the non-WM 

related differences between the applied tasks are relatively little, which benefits an opti-

mal comparison of the neurophysiological basis of different types of WM. 

(b) In mice, we used a recently developed pyControl-based operant box that allows to 

record neural activity while mice are performing operant tasks and to align all behavioural 

events with electrophysiological recordings [7]. During WM tasks in both species, LFPs 

were simultaneously recorded from four sites (PFC, dHC, vHC, and MD) in rodents, and 

from three sites (PFC, MTL, and OFC) in humans.  

(c) To maximize the connectivity-related information obtained from these multi-site re-

cordings, we extracted a large set of measures of inter-regional neural coupling including 

coherence, wPLI, GC, PDC and theta-gamma PAC – together with measures of local activi-

ty. The results from the study described in 1.6.1 were used as indication to maximize in-

formation by incorporating only largely non-redundant LFP-based coupling metrics [420]. 

Each metric was determined in three or four task phases, four or five frequency bands 

(where sensible), and as both absolute and relative measure (absolute value divided by 

the preceding inter-trial interval (ITI)). This yielded a minimum amount of 720 and 1344 

neural connectivity measures in mice and humans, respectively, in addition to at least 180 

measures of local activity, whose association with WM were analysed.  

(d) Most importantly, we applied ML to predict WM choices on a single-trial basis from 

these high-dimensional patterns of functional connectivity. The use of ML in neuroscience 

is increasing rapidly and expanded to various parts of the field ranging from brain-

computer interfaces, serving as a model of the brain over to identifying predictive varia-

bles [172, 460]. More data-driven approaches have recently been deployed to reduce the 
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streetlight effect and to offer a hypothesis-free approach to analysing complex data [111, 

210, 211, 248]. These studies have applied unsupervised classification procedures to ex-

tract electrophysiological correlates of stress responses [210], depression vulnerability 

[211], and anxiety [111] from connectivity patterns obtained from multi-site LFP-

recordings in mice, collectively termed the electome (electrical functional connectome 

factors/networks). These LFP-patterns containing coherence and phase leads/lags were 

shown to be highly predictive of the respective behavioural outcome. However, these 

approaches cannot easily be applied to analyse brain-wide correlates of high-level cogni-

tion that is assessed in behavioural assays with temporally complex, multi-trial task struc-

ture and pre-determined values of the subject’s choices. We translated the supervised, 

trial-based nature of WM tasks (pre-defining choices as correct or incorrect) into our 

analysis in order to establish a largely unbiased quest for WM correlates within high-

dimensional oscillatory patterns by implementing a supervised decoding analysis to har-

ness the power of prediction to prove the presence of behaviourally relevant information 

in those complex signals [104]. The possibility of trial-by-trial prediction of WM-based 

choices in a rewarded-alternation task from the spiking activity of large ensembles of 

neurons in rodent PFC [410, 419], monkey inferior temporal cortex [475] and human MTL 

[57] has recently been demonstrated. In these attempts however, prediction was done 

with classifiers that were trained specifically for a single animal and session since the pre-

dictor variables are the individual neurons. In contrast, we merged datasets from multiple 

subjects and sessions and used connectivity and activity metrics from multiple sites as 

predictor variables which generally entails high generalisation potential. In this way, we 

were able to subsequently quantify the trial-by-trial predictive power of each electro-

physiological variable in order to identify connectivity patterns associated with WM in 

mice and humans in a largely unbiased manner. Results from this study were published as 

a preprint in [421].  

1.6.3 Assessment of Gria1-/- mice on different paradigms of working memory and identi-

fication of electrophysiological alterations 

Gria1-/- mice simultaneously underwent the same experimental procedure as their WT 

littermates, i.e., they were also implanted with electrodes in the same brain regions in 

order to obtain multi-site recordings and to measure inter-regional neural communication 

and tested on the newly designed operant DMTS, DNMTS and the T-maze. As argued in 
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1.5.2, it remains elusive, if the deficit of Gria1-/- mice on the T-maze truly reflects impaired 

WM or it is a potential by-product of their impaired short-term habituation as the mice 

lose their ability to regard recently visited (more familiar) spaces as less salient. We initial-

ly applied the same analytical pipeline as presented in 1.6.2 and then further extended 

our ML-approach to compare the genotype-related differences of trial-by-trial prediction 

and to possibly identify correlates of impaired WM linked to schizophrenia. 

1.6.4 Selective knockout of Gria1 in the CA2 and CA3 subregion of the hippocampus 

To evaluate the relevance of certain hippocampal cell populations for the behavioural 

phenotype of Gria1-/- mice (see 1.5), we transgenically restricted the Gria1 knockout to 

CA2 (Gria1Amigo2 cohort; see 2.1) or CA3 (Gria1Grik4 cohort). In order to develop adequate 

treatment strategies, it is important to know through which cell types and neural circuits 

GluA1-hypofunctionen leads to psychiatric deficits. It was recently shown that spatial 

short-term habituation in global Gria1-KO mice could be restored by viral re-introduction 

into the CA2/CA3 subfield of the hippocampus [76]. To further elucidate these findings, 

both cohorts underwent the same experiments at roughly the same age to ensure com-

parability. Experiments included the open field test (see 2.3.1), Y-maze (see 2.3.2), EPM 

(see 2.3.4), NOR (see 2.3.8), and tests for social interaction and memory (see 2.3.3). Both 

cohorts were not implanted with recording electrodes and will be referred to as the 

Gria1Grik4 and Gria1Amigo2 cohort throughout this thesis. 
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2 MATERIALS AND METHODS 

2.1 MICE 

All experiments were performed in accordance with the German Animal Rights Law (Ti-

erschutzgesetz) 2013 and were approved by the Federal Ethical Review Committee (Re-

gierungsprädsidium Tübingen) of Baden-Württemberg, Germany (licence number 

TV1399). Mice were bred at the animal facility of Ulm University. Three cohorts of mice 

were used to generate the data in this thesis. The first was a cohort of male and female 

Gria1 KO (Gria1tm1Rsp; MGI:2178057) [488] mice (N = 15, 9 males) and WT littermate con-

trols (N = 12, 8 males) which were bred from heterozygous parents. Homologous recom-

bination and transient expression of Cre recombinase in embryonic stem cells was used to 

delete exon 11, the encoding region of the GluA1 protein [488]. For the other two co-

horts, to enable region- and excitatory cell-type selective Gria1-ablation, mice with a ho-

mozygously floxed Gria1-locus (fGria1, B6N.129-Gria1tm2Rsp/J; also known as GluR-A2lox, 

Jax stock# 019012) were cross-bred with Cre-driver lines in which promoters direct Cre-

expression to excitatory cells of CA2 (Amigo2-Cre, B6.Cg-Tg(Amigo2-cre)1Sieg/J, Jax-

stock# 030215) [201] or CA3 (Grik4-Cre, C57BL/6-Tg(Grik4-cre)G32-4Stl/J, Jax-stock# 

006474) [325]. Mixed male-female cohorts were used and Cre-negative littermate con-

trols with homozygous fGria1-locus were used in all cases. 

Mice were housed in a temperature- and humidity-controlled holding room at Ulm Uni-

versity (Institute for Applied Physiology) on a 13/11-hour light-dark cycle. All experiments 

were conducted during the light-period. Mice were kept in individually ventilated cages 

(IVC, Type II, Tecniplast, Germany) together with their littermates whenever possible. 

IVCs contained saw dust, a cardboard house and sizzle nest (Datesand, UK) whereas the 

cardboard house was removed after mice underwent surgery and was replaced by small-

er pieces of cardboard enabling the mice to hide with minor injury risks. All cages were 

cleaned, and content was exchanged habitually. 

Mice had access to water ad libitum and as soon as no reward-based experiments were 

performed mice were put on a free food schedule consisting of pellet food (Ssniff, Ger-

many). In case of bigger weight discrepancies between animals in the same cage the re-
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spective mouse was transferred to an extra-feeding cage for a couple of hours. Feeding 

practices for surgeries and behavioural experiments can be found in the following chap-

ters. 

2.2 SURGERIES IN GRIA1-/- MICE 

Surgeries for electrode implantation were only conducted in the Gria1 cohort. Mice were 

implanted with electrodes at ca. nine months of age. The days prior to the surgery mice 

were put on a free food schedule and received high-caloric food to get used to the post-

operation food. Before and after surgery mice were weighed to appropriate drug doses 

and monitor their recovery. To prevent aggressive behaviour, entire cages underwent 

surgery the same day or, when this was not possible due to time constraints, operated 

mice were temporally kept in a separate cage. 

Mice were anesthetized with 4-5% isoflurane (Forene® 100 %inhalation solution, AbbVie, 

Germany) with a flow rate of 1 ml/min in an induction chamber. The head was shaved 

and cleaned diligently with Decontaman (Dr. Schumacher, Germany). 0.2 ml of Marcaine® 

(active ingredient Bupivacaine) were injected under the skin at the shaved area to provide 

local anaesthesia. The following substances were applicated subcutaneously at the back: 

Metacam® (active ingredient Meloxicam, Boehringer Ingelheim, Germany), a non-

steroidal anti-inflammatory drug with a dosage of 0.25ml/g; Vetergesic® (active ingredi-

ent Buprenorphine, Champion Alstoe Animal Health, UK) for pain relief and Saline (0.5ml) 

for proper hydration. 

The surgical area was largely cleaned and sterilized before surgery. The mouse was fixat-

ed into a manual stereotaxic frame with ear-bars (World Precision Instruments, USA). 

Body temperature was upheld by a feedback-loop heating blanket (Harvard Apparatus, 

USA) and anaesthesia was maintained by an average of 1.5% isoflurane. The depth of the 

anaesthesia was constantly checked by the surgeon assessing the breathing rate and the 

absence of the hind-paw pedal-reflex. The eyes were covered by Bepanthen (Bayer, Ger-

many) to avoid desiccation. After an anterior-posterior incision was made starting from 

the rear of the head up to the level between the eyes the skull surface was cleaned with 

cotton buds. Bregma was identified and used as the basic position. The three-dimensional 

position of lambda respective to bregma was determined to verify the correct positioning 

of the mouse in the stereotaxic frame. Inclination in the longitudinal axis was measured 
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evaluating the depth of two points on the skull 2 mm behind bregma and 1 mm left and 

right from the longitudinal axis. 

In total six craniotomies were conducted with a Micro Drill (Harvard Apparatus, USA). 

Four of them were used as introduction holes for the recording electrodes listed in Table 

2.2.1 and two were used for ground and reference. For the recording electrodes Teflon-

coated 50 µm tungsten wires (WireTronic, USA) were used; for the ground and reference 

silver wires (Stainless steel, 0.125 mm diameter of the bare wire with a coating thickness 

of 0.025 mm, Advent Research Materials, UK) and metal screws (M1.2x2 SLOT CSK MA-

CHINE SCREW DIN 963 A2 ST/ST, Precision Technology Supplies, UK) were inserted. The 

recording end of the wires were determined by a cut with a serrated scissor to remove 

the insulation. Surgeries were mostly performed by Sampath K. T. Kapanaiah. 

The following coordinates were used: 

Table 2.2.1: Coordinates used for electrode implantation. 
a/p = anterior/posterior, m/l = medial/lateral, d/v = dorsal/ventral; distances in millimetres 

 A/P M/L D/V 

mPFC 1.9 0.3 1.9 / 1.4 

MD - 1.2 0.3 2.7 

vHC - 3.2 3.0 3.9 / 3.4 

dHC - 2.0 1.5 1.4 
 

 

The D/V plain of the mPFC and the vHC contain two coordinates because two electrodes 

were glued together (RS Components super-glue, UK) so that the recording ends of the 

wires have a length difference of 0.5 mm and different placements can be analysed. Dual 

electrodes were used in 26 mice and single electrodes were used in 10 mice. In 21 mice 

the electrodes were implanted in the right hemisphere and in 17 mice in the left hemi-

sphere. Both the ground screw and the reference electrode were placed in the contrala-

teral hemisphere. The coordinates used for the reference electrode and screw were A/P 4 

mm and M/L 1 mm and A/P -5.5 mm and M/L 1 mm for the ground electrode and screw. 

Both were placed above the respective brain region, the cerebellum for the ground and 

the PFC for the reference. The recording electrodes, the reference electrode and screws 

were fixed by Breeze™ self-adhesive Resin Cement and (Pentron, USA) and then con-
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nectorized to a dual row socket (Mill-Max Mfg. Corp., USA) using gold pins (Mill-Max Mfg. 

Corp., USA). 

After surgery mice were injected with a 0.5 ml glucose/saline - solution and received 

Metacam injections for three consecutive days. The post-operation period was one week 

in which the mice were weighed and monitored according to a standardized scoring 

sheet. They received jelly-food and mesh food or oatmeal with Müller® strawberry milk 

and in case of severe weight loss were injected with a glucose/saline solution. 

2.3 BEHAVIOURAL TASKS IN MICE 

After a recovery time after surgery of 3-5 weeks and ad libitum food mice were weighed 

at three consecutive days to determine the average weight. For the operant chamber 

WM tasks and the T-maze experiment, animals were put on food deprivation to sustain 

motivation and to ensure reward-driven behaviour. The weight of the mice was closely 

monitored with target weight of 80-90 % of the before measured average weight. For the 

other behavioural tests, mice had unrestricted access to food supply to ensure only ex-

ploratory-driven behaviour. Unrestricted water supply was ensured at all times and all 

training and experiments were conducted in a ventilated laboratory room. Animals were 

transferred from their holding room to the experiment room at least 30 minutes before 

the start of the task for habituation. The Gria1 cohort underwent the following experi-

ments: Novelty-induced locomotor activity (open field, 2.3.1), EPM (2.3.4), operant DMTS 

5-CSWM (2.3.5) and DNMTS 2-CSWM task (2.3.6) and T-maze (2.3.7). The Gria1Amigo2 and 

Gria1Grik4 cohort were tested on following experiments: Novelty-induced locomotor ac-

tivity (open field, 2.3.1), spatial novelty preference (Y-maze, 2.3.2), social interaction and 

memory (2.3.3), NOR (2.3.8) and EPM (2.3.4). 

2.3.1 Novelty-induced locomotor activity 

For animals of the Gria1 cohort, mice were tethered to obtain electrophysiological data 

and moved from their home cage into a novel differently sized plastic cage (Typ III, Tecni-

plast, Germany) containing fresh sawdust. Mice were given ten minutes to freely explore 

the new environment and were observed with a CCTV camera connected to the behav-

ioural tracking software AnyMaze (San Diego Instruments, USA). To investigate safety and 

anxiety behaviour the experiment cage was divided into a centre, periphery, and transi-
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tion zone. Mice normally tend to avoid the centre and rather stay close to the walls of the 

periphery. Behavioural parameters were analysed as average values and as a function of 

time. Those parameters included the total distance travelled, mean speed, the average 

distance to the border of the cage and the number of rotations. 

Since the Gria1Amigo2 and Gria1Grik4 cohort were not tethered, the protocol was extended 

so that mice had 90 minutes to explore the novel cage. 

2.3.2 Spatial novelty preference 

To assess spatial novelty preference Y-maze experiment was conducted in a transparent, 

three arm 120° angle maze. Mice were given five minutes time in a separate box before 

putting them in the maze. The maze floor was covered with sawdust consisting of clean 

sawdust and sawdust obtained from same-sex mouse cages. 

The experiment is divided into two phases, namely the sample and test phase. During the 

former one arm of the maze is blocked and mice have 5 minutes time to explore the un-

closed arm. The number of times the right / left arm was blocked were equally distributed 

within genotypes. After finishing the sample phase mice were returned to the habituation 

box for an inter trial interval of one minute. To eliminate olfactory hints the sawdust was 

shuffled and redistributed in the maze. During the following test phase, the previously 

closed arm was opened, and mice were again given five minutes time to now visit both 

arms. Animals were tracked using the AnyMaze software. 

2.3.3 Social interaction and memory 

All social interaction tests used adult, but younger mice of the same sex and strain as 

stimulus mice. For reciprocal social interaction, the test mouse was exposed to the novel 

stimulus mouse in a familiar open field (dark but transparent Type III cage; Tecniplast, 

Germany). Interactions were video-monitored and scored in 2 min intervals for 12 min. A 

second 12 min interaction test was conducted at an older age which was followed by two 

consecutive 4 min phases 1 h later during which mice were exposed either to the same or 

a new stimulus mouse (order counterbalanced within subgroup) to assess social memory 

(Figure 3.5.3a) [201].  Additionally, a modified three-chamber task was conducted to as-

sess non-reciprocal social interaction and social short-term memory, similarly as applied 

previously to assess sociability in mice with ablated synapses of CA2 excitatory cells (see 

Figure 3.5.3f) [201]: All mice were habituated to the situation of a stimulus mouse by re-
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maining in half-circular compartments (9 cm radius, perforated metal) at each end of the 

3-chamber box (50 cm long, 20 cm wide, 25 cm high grey PVC walls) for 2x 5 min on the 

prior day and once more 5 min 1-2h before testing on the first test day. In the first test 

session, mice were habituated first to the arena without metal compartments (5 min), 

then to the arena with empty metal compartments (5 min) and were then exposed to a 

cage-mate in one of the empty metal compartments while a mouse-sized piece of black 

foam was introduced to the other (social preference test). The second testing session was 

conducted on the subsequent day and consisted of four phases: 5 min habituation to the 

3-chamber box with metal compartments, 5 min exposure to an unfamiliar stimulus 

mouse in one compartment and the same cage-mate as seen on the previous day in the 

other (position counter-balanced within sub-group; assessing social novelty-preference), 

10 min habituation to the novel mouse from phase 2 (other compartment empty), 5 min 

exposure to the mouse from phase 2  and an unfamiliar stimulus mouse (position coun-

ter-balanced), assessing social short-term memory.  

2.3.4 Elevated plus maze 

The EPM is a widely used behavioural experiment to assess anxiety in rodents [354, 462]. 

It consists of a plus-shaped maze consisting of two open and two closed arms which are 

opposite of each other (see Figure 3.4.1a). The setup is placed 72cm above ground and 

the movements of the mice are taped by a CCTV camera on the ceiling and recorded via 

AnyMaze. Before the experiment mice were habituated to a novel cage for about 5 

minutes and were then placed at the junction of the four arms of the maze facing an open 

arm. Increased entries to the open arms are considered a marker for reduced anxiety. The 

main parameters were the ratio of entries and time spent in the open arms divided by the 

total entries and time spent in all arms excluding the centre area. Spontaneous motor 

activity (total distance travelled, travelling speed, and entries to all arms) was measured 

in order to potentially identify novelty induced hyperactivity.  

2.3.5 Operant DMTS 5-CSWM task 

A 5-Choice-Spatial-Working-Memory test (5-CSWM) was conducted as described in [437]. 

The setup included an inner box consisting of a wall with 5 poke holes on the one side and 

a reward receptacle on the other side and an outer box for insulation (design files are 

openly available at https://github.com/KaetzelLab/Operant-Box-Design-Files). This ar-
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rangement is based on the 5-CSRTT which is commonly used for the assessment of atten-

tion and impulsivity control in rodents [27] and the task protocols were adapted from the 

combined attention and memory task (CAM) for rats [97]. The task was conducted in cus-

tom-designed pyControl-based operant boxes that were optimized for both simultaneous 

electrophysiological recordings and the acquisition of the 5-CSWM task (operant box task-

scripts implementing all task paradigms used in this thesis are available from 

https://github.com/KaetzelLab/Operant-Box-Code; initial operant box setup and task 

programming was performed by Sampath K. T. Kapanaiah) [7]. Before starting training, 

mice were accustomed to the strawberry-milk reward (Müller®, GER) in their home cages 

and were given time accordingly to get used to the experiment box. Also, a fan for proper 

ventilation was constantly turned on. 

Each trial of the task is divided into a SP, a delay-phase (delay) - which is further sub-

divided into a pre-delay and a post-delay by the time point of reward collection - the CP, 

and the ITI. In the default state, the task is conducted in the dark (house-light off) with 

the only illumination deriving from the poke- and receptacle holes in certain task phases. 

The SP is identical to that of the 5-CSRTT, except that premature responses are not pun-

ished: one of the 5 holes in the 5-choice wall is illuminated for a certain stimulus duration 

(SP-SD) and mice need to poke into that hole within the limited hole time (SP-SD plus 1 s) 

in order to obtain a small reward (20 l or, in stages 2 and onwards, 10 l strawberry 

milk) at the receptacle at the opposite end of the wall during the pre-delay time. The re-

ward-collection (receptacle exit) starts the post-delay (2 s in all cases) after which the 

originally presented hole and one randomly assigned other hole is illuminated (thereby 

starting the CP) for a certain SD (CP-SD, 5 s for all protocols shown in Figure 3.2.1). Mice 

have to poke into the same hole as in the SP, realizing a DMTS-rule, in order to obtain a 

large reward (60 l). After a 5 s ITI a new trial starts with the SP. Incorrect pokes or omis-

sions in the SP or CP led to a 5 s time-out period (house-light illuminated; reward omitted) 

and the start of a new trial after an ITI of 5 s. Before training, mice were habituated to the 

operant box, to consuming the strawberry milk (Müller®, Germany) reward from the re-

ceptacle, and to poking into the 5-choice wall to obtain a reward (acquisition of the basic 

operant cycle).  
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Subsequently, training was conducted through multiple stages across which the task be-

came incrementally more difficult due to a shortening of SDs and an increase in the num-

ber of CP-stimulus configurations (see Table 2.3.1). During pre-surgery training – in order 

to compare performance between groups – no performance-based staging was applied, 

but instead all mice were trained on the stage 1 for the same number of 21 days, and 

then transitioned through the remaining three training stages (2-4) with 2-3 d of training 

per stage. Parameters defining the stages are found in Table 2.3.1. Sessions lasted 30 min 

throughout and were conducted on 5 d/week. Training was continued ~4-5 weeks after 

surgery on the baseline stage (4) for 5 weeks to allow the mice to approach asymptotic 

performance. Subsequently, mice were trained further for 3 weeks in a tethered mode, 

with the head stage (see below) mounted on their heads, in a baseline protocol with 

shorter SD in SP (10 s) and CP (5 s; stage 5) to increase the number of obtained trials and 

better standardize the encoding time. Subsequently, mice were taken through three se-

ries of challenge protocols with intermittent training on the baseline stage 5. The same 

challenge was conducted on 2-3 consecutive days in order to obtain sufficient trials for 

later analysis. The three series were (a) pure delay challenges, where the pre-delay was 

extended from 0 to 5 and 10 s, (b) a distraction challenge with an illumination of the 

house-light for 0.5 s starting randomly timed between 0.8-1.3 s of the 2 s post-delay 

phase, and (c) a combined attention (SP) and WM challenge with an SP-SD of 1 s (instead 

of the 2 s of the specific baseline stage 6 of this challenge) and a pre-delay of 5 s, which 

was preceded by a sole attention challenge (1 s SP-SD, 0 s pre-delay). Most of the analysis 

shown uses the data from the final (combined) challenge, although decoding analysis (see 

2.6) was also conducted for the other challenges in order to replicate the analysis and, 

additionally, to assess the capacity of cross-prediction between classifiers from entirely 

different challenge-conditions (Figure 3.2.5). The post-delay remained 2 s, starting with 

the exit from the reward receptacle and spent in darkness, throughout all challenge and 

baseline protocols. 

Note that, on all stages, the post-delay is 2 s, the CP reward is 60 l, the limited hold time 

- that is the time in which a response is registered - exceeds the SD by 1 s, the ITI is 5 s, 

and the time-out time after incorrect responses or omissions is 5 s. The CP configurations 

indicate the two holes of the 5-choice wall that can be illuminated; note that the actual 

configurations when considering the correct hole is double than what is stated (i.e., 2-4 is 
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different from 4-2, which is not listed). Stage 4 served a pre-surgery baseline and post-

surgery training stage without tether. Stage 5 was only conducted with simultaneous re-

cordings (or tether) and served as baseline for all challenge conditions conducted with 

simultaneous recordings, except that – for habituation to shorter stimulus intervals – the 

last challenges (with SP-SD 1 s) had their own baseline as reference, featuring an SP-SD of 

2 s: stage 6. 

Table 2.3.1: 5-CSWM training stages 
  Parameters of training and baseline stages 

Stage SP-SD, s CP-SD, s Pre-delay, s Post-delay, s Reward (l) CP configurations 

1 20 20 0 2 20 1-3, 2-4, 3-5 

2 20 20 0 2 10 1-3, 2-4, 3-5 

3 20 20 0 2 0 1-2, 2-3, 3-4, 4-5 

4 20 20 0 2 10 1-2, 1-3, 1-4, 2-3, 2-4, 2-
5, 3-4, 3-5, 4-5 

5 10 5 0 2 10 1-2, 1-3, 1-4, 2-3, 2-4, 2-
5, 3-4, 3-5, 4-5 

6 2 5 0 2 10 1-2, 1-3, 1-4, 2-3, 2-4, 2-
5, 3-4, 3-5, 4-5  

Parameters of challenge stages 

Delay 5s 10 5 5 2 10 As baseline 

Delay 10s 10 5 10 2 10 As baseline 

Distraction 10 5 0 2 (Distract.) 10 As baseline 

Attention 1 5 0 2 10 As baseline 

Combined 1 5 5 2 10 As baseline 

 

For behavioural assessment, the following parameters were mainly assessed:  

a) Sample phase:  

• % Accuracy: Percentage of pokes into the lit hole versus pokes in not-illuminated 

holes 

• % Correct: Percentage of pokes into the lit hole respective to all other trials 

• # Correct: Number of pokes into the illuminated hole 

• % Omissions: Number of trials without any poke respective to the total amount of 

sample phases 

• Reward latency: time between correct poke and entering of the receptacle 

• Correct latency: time between start of the sample phase and correct response 
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b) Choice phase: 

• % Accuracy lit: Percentage of pokes into the sample hole against the additionally 

lit hole 

• % Accuracy: Percentage of pokes into the sample hole respective to the number of 

pokes into any other hole (lit and not-lit holes) 

• % Correct: Percentage of pokes into the sample hole respective to all other trials 

• # Correct: Number of pokes into the sample hole 

• % Omissions: Number of choice phases without any poke respective to the total 

amount of choice phases 

• Reward latency: time between correct poke and poking the receptacle 

• Correct latency: time between start of the choice phase and correct response 

2.3.6 Operant DNMTS 2-CSWM task 

The operant DNMTS task followed the same principal trial-schedule as the 5-CSWM task 

except for two modifications: the implementation of a non-match-to-position rule (i.e. 

animals are rewarded for choosing the illuminated CP poke-hole that is not the one, that 

they poked in the SP) and a simplified set of choice options using always only holes 2 and 

4 of the 5-choice wall (making it similar to a task developed by Goto & Ito [178]). Mice 

were trained in this task only after the T-maze (2.3.7) in order to ease the switching from 

the prior, opposite task-rule. All mice were trained for 30 training sessions on the 2-

choice DNMTS task, then were tested in two delay challenges, in which the pre-delay was 

extended to 5 and then 10 s (2 d each). A subset was then trained in a 5-choice version of 

the same task (i.e., the DNMTS-version of the 5-CSWM task) for 12 d without and for 3 d 

with head stage mounted, but performance in many mice was not sufficient, and hence 

mice were returned to the 2-choice version and trained for a further 5 d with mounted 

head stage. The other subset moved directly to 5 d of training with mounted head stage. 

Then, recordings were conducted on two days with baseline training and two days each 

for two delay challenges, in which the pre-delay was extended to 5 and then 10 s. Given 

the relatively low performance in the delay challenges, the data from the two baseline 

days was used for further analysis of electrophysiology data. In all protocols, the SP-SD 

was 8 s, the CP-SD was 5 s, the limited hold time exceeded the SD by 1 s, ITI and time-out 

were each 5 s, the post-reward delay was 2 s (spent in darkness), the SP reward was 
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10 l, and the CP reward 60 l. The same parameters were mainly analysed as described 

in 2.3.5. 

2.3.7 Non-matching to sample T-maze test of rewarded alternation 

SWM as rewarded alternation was tested in a red-colour plastic T-maze with transparent 

walls and food wells placed in the end of all three arms. Before testing mice were habitu-

ated to the surroundings and to the condensed milk reward (10% Ja! ®-Kondensmilch, 

diluted 1:1 with drinking water) at first cage-wise and later independently.  

The experiment involved ten trials per day each consisting of a SP and a CP. During the SP 

mice were placed at the beginning of the arm facing the experimenter with one of the 

goal arms blocked. Mice then should run towards the reward in the non-blocked sample 

arm and then return motivated by a smaller reward in the start arm. After a delay period 

of 5 s the previously blocked arm was made accessible by the experimenter and mice 

were given the choice to either visit the familiar, now unrewarded sample arm or the pre-

viously unvisited, rewarded choice arm. It was considered a correct choice when mice 

entered the novel arm and a wrong choice when they visited the sample arm. Trials were 

separated by an ITI of 20 s and the choice arm for each trial was determined pseudo-

randomly. It was made sure that the distribution of both arms was equal and that the 

choice arm was not the same for more than three consecutive trials. 

For the above-described baseline protocol eight testing days were carried out followed by 

four days during which the delay period was prolonged to 30 s. 

2.3.8 Novel object recognition test 

The NOR test of object-related novelty preference was used to assess short-term habitua-

tion (memory) for objects. Mice were habituated to the square open-field (dark-red floor, 

grey PVC walls of 25 cm height, 40 cm length and width) over the two days before testing; 

the first 5 min habituation session was conducted with the cage mates, all subsequent 

ones – one time 5 min on the same day, one time 5 min and one time 10 min on the next 

day, and one time 10 min on the morning of the test day – were conducted with each 

mouse individually. On the test day, mice were habituated to a holding cage for ca. 

20 min and then introduced to the familiar open field in which two copies of the same 

unfamiliar object were placed (sample phase). After 10 min, the subject was removed into 

the holding cage for 2 min so that both objects could be replaced, whereby one was re-
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placed by an identical object and the other one by a novel object. Subsequently, mice 

were introduced to the open field again for the 5 min test phase. Mice were video-

monitored and thereby their interaction with objects scored manually, in addition to 

tracking with AnyMaze. Data from manual scores was used for further analysis. Novelty 

preference was analysed by calculating the time spent in with the novel object divided by 

the sum of the time spent with either object. Additionally, the same preference score was 

calculated based on the number of contacts. 

2.4 HUMAN INTRACRANIAL ELECTROPHYSIOLOGY DATA DURING WORKING MEMORY 

A publicly available open-access dataset of multi-site intracranial recordings during three 

WM tasks [225] was downloaded from http://dx.doi.org/10.6080/K0VX0DQD within the 

framework of the CRCNS.org data sharing program in computational neuroscience initiat-

ed by the University of California, Berkeley [436]. The openly available data in the reposi-

tory is anonymous and was originally acquired for the experiments described in [225] and 

the online dataset was already used for other publications [166, 237]. As stated in [225], 

ethics approvals were submitted. Accordingly, all subjects gave informed written consent 

in accordance with the University of California, Berkeley Institutional Review Board 

(#2010-01-520); Regional Committee for Medical Research Ethics, Region South 

(#2015/175/REK); or Stanford University Medical Centre Institutional Review Board (Pro-

tocol ID 11354, IRB Number 4593, panel 5); and also, in agreement with the Declaration 

of Helsinki [225]. 

It includes data from 10 human adult subjects (mean ± SD [range]: 37 ± 13 [22–69] y; 7 

males) who were implanted with intracranial electrodes to identify epileptic foci for surgi-

cal resection. Electrode placements were in the MTL (i.e., CA1; CA3/DG; subiculum; or 

parahippocampal, perirhinal, or entorhinal area), lateral PFC (inferior, middle, or superior 

frontal area), and OFC (orbitofrontal, frontal polar, or medial prefrontal area). Only sub-

jects with electrodes localized in all three regions were included in the present analyses 

(N = 8). For details on data acquisition and pre-processing, and a detailed description of 

the behavioural experimental setup see [225, 226]. Three different WM tasks were con-

ducted, whereby subjects had to either identify a previously indicated object identity, 

location, or temporal order of two visual stimuli (see Figure 3.2.13a). Trials from all these 
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three tasks were pseudo-randomly mixed from trial to trial in a single test session. Each 

trial started with a 1 s pre-trial fixation interval, after which a screen indicated whether in 

the respective trial would be tested for object identity or spatiotemporal position 

(800ms). Subsequently, the SP started in which two shapes were presented subsequently 

for 200ms each, separated by 200ms. After a subsequent pre-cue delay (900 or 1150ms, 

varied pseudo-randomly), a cue appeared for 800ms that specified which of the two 

shapes would need to be identified in the later CP according to a rule of identity 

(same/different), spatial location (top/bottom) or temporal order (first/second). After a 

post-cue delay (900 or 1150ms, varied pseudo-randomly), the CP started as two shapes 

were presented, of which the participant had to choose the one that was correct accord-

ing to the prior cue. All trials from all patients were merged for subsequent analyses, just 

as was done for the mouse WM data. 

 

Figure 2.4.1: Human data overview 
(a) Display of the structure of the three human WM tasks, according to [225]. (b, c) Placements of elec-
trodes as projected onto the left hemisphere, irrespective of actual hemisphere of each electrode. Adapted 
from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

2.5 ELECTROPHYSIOLOGICAL DATA PROCESSING 

Electrophysiological data was acquired at a sampling rate of 10 or 20 kHz via a 32 – Chan-

nel RHD2132 amplifier board (Intan Technologies, USA) containing a 12-pin Omnetics po-

larized nano connector and a 36-pin Omnetics nano strip connector where the former is 
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connected to a light-weight SPI interface cable (Intan Technologies, USA) and the latter 

with the recording electrodes using a custom-made adaptor. The adaptor was wired so 

that all signals were referenced to the ground-signal obtained from above the contrala-

teral cerebellum, while the signal from the additional frontal reference screw was record-

ed separately (for later offline re-referencing) like the LFP channels, i.e., also referenced 

to ground. Data was transferred to an Open E-Phys acquisition board and the Open E-

Phys acquisition software (Open E-Phys, USA) where a bandpass-filter was applied (0.1 – 

250 Hz), although the unfiltered data was also saved. For GC and MUA analysis the unfil-

tered data was used and further sampled down to 250 Hz for GC [33]. In operant tasks, all 

individual task- and behavioural events were recorded by pyControl [7]. Additionally, all 

events relevant to time-locked electrophysiological analysis of WM task-phases and 

choices (e.g., correct SP and CP responses) were encoded as patterns of transistor-

transistor logic (TTL) signals by pyControl and recorded as timestamps with the electro-

physiological data by the Open-EPhys acquisition software using the 8 analogue inputs of 

the acquisition board and a dedicated BNC-HDMI interface board (Open-EPhys). For the T-

maze task, AnyMaze was used to track the position of the animal in the different subdivi-

sions of the maze, and this positional information was encoded in patterns of TTL-signals 

recorded via an AMi-interface board and a BNC-HDMI interface board as timestamps with 

the electrophysiological signals in the Open-EPhys acquisition software. For WM-tasks, 

trials were excluded from further analyses if the amplitude exceeded the 5th standard 

deviation within each channel for more than 10% of the trial duration. PFC and vHC were 

partially recorded with dual electrodes in some mice (see 2.2). If both electrodes had 

equally good placement (as inferred from lesion sites) all further connectivity analysis was 

performed for both signals. For the open field experiment, the data from each electrode 

was regarded as the unit of observation (N), so that a single mouse could contribute up to 

an N = 4 for vHC-PFC connections and up to an N = 2 for dHC-vHC, PFC-vHC, MD-PFC and 

MD-vHC connections. For WM experiments, results were averaged between electrodes in 

a single mouse in order to keep the trail-based structure. Analogously, for local activity 

measures, each single metric was calculated for every electrode and the resulting value 

was averaged across all electrodes of a given area for each subject. 

For the human dataset, iEEG data were sampled at either 1kHz or 512Hz and were 

resampled offline to 1kHz. As described in [225] raw electrophysiology data were careful-
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ly inspected, epileptiform activity or artefactual signals were excluded, filtered between 1 

and 200Hz, demeaned and 60Hz line noise harmonics were removed using discrete Fouri-

er transform. The number of electrodes per site varied between 1 and 28 per area. There-

fore, for connectivity measures, each single metric was calculated for every possible inter-

regional pair of electrodes and the resulting value was averaged across all combinations 

of a single connections. Analogously, for local activity measures, each single metric was 

calculated for every electrode and the resulting value was averaged across all electrodes 

of a given area for each subject. 

All signal analyses were done in MatLab (MathWorks, USA). Data were exported to 

MatLab and, for all LFP analyses, down-sampled to 1 kHz (or 250Hz for GC analysis) and 

analysed with custom-written scripts. To reduce low frequency drift, signals were first 

detrended using the locdetrend function of the Chronux signal processing toolbox 

(http://chronux.org/, [55]) with 1 s of data and a sliding window of 0.5s. MatLab scripts 

are publicly available at http://doi.org/10.5281/zenodo.4384980  and 

https://github.com/KaetzelLab/LFP_analysis.  

2.5.1 Spectral power and coherence 

Power and coherence spectra were calculated with routines implemented in the chronux 

signal processing toolbox using the multitaper method [55]. Power values were expressed 

as 10*log10 values for all analyses and the range of frequencies was set from 0.1 to 48Hz. 

For the open-field experiment, a bandwidth of 0.2Hz and a total of 220 tapers were used 

to calculate power and coherence over the course of the 10 min exploration time. To ana-

lyse the temporal development of spectral features, power and coherence were also cal-

culated in 10 s bins using a bandwidth of 1Hz and 19 tapers. For WM-experiments (oper-

ant DMTS 5-CSWM, DNMTS 2-CSWM and T-maze), a time-bandwidth product of 9 and 17 

tapers were used to calculate power and coherence during defined time-periods during 

ITI, SP, delay (if applicable) and CP. Time-frequency spectral analyses were performed 

with routines from the FieldTrip toolbox using Morlet wavelets with a width of 3 cycles 

steps of 10ms [342]. Time periods before and after the time frame of interest were pad-

ded with real data to avoid artifacts of too long wavelets at low frequencies. 

http://chronux.org/
https://github.com/KaetzelLab/LFP_analysis
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2.5.2 Weighted phase lag index  

The wPLI was calculated using the routines implemented in the FieldTrip toolbox [342]. 

For the open-field experiment, the 10 min exploration time was cut into non-overlapping 

1 s bins and padded to the next power of two. The complex cross-spectrum was comput-

ed using a Hann taper with a spectral smoothing of 0.5 Hz. For temporal analysis wPLI was 

averaged for each minute of the 10 min period using the same spectral parameters. For 

WM-experiments, the original trials were further divided into 99% overlapping “pseudo 

trials” with a length of 600ms and padded to the next power of two. The complex cross-

spectrum was computed using a Hann taper with a spectral smoothing of 2 Hz. As in 

2.5.1, time-frequency wPLI analysis was performed with routines from the FieldTrip 

toolbox using Morlet wavelets with a width of 3 cycles steps of 10 ms [342] and time pe-

riods before and after the time frame of interest were padded with real data to avoid 

artifacts of too long wavelets at low frequencies. 

2.5.3 Phase-amplitude coupling 

CFC [81] was assessed using the measure of PAC, the statistical relationship between the 

phase of a low-frequency and the amplitude of a high-frequency component, in a cross-

regional analysis [403, 442]. For the open field experiment, the 10 min recording was split 

into 1 min bins during which the PAC was calculated using the Modulation Index (MI, 

[442, 457]). Briefly, time series data is first band-pass filtered in the desired frequency 

range, followed by a Hilbert transform using the MatLab function hilbert which calculates 

the real and imaginary part of the signal to obtain the instantaneous amplitude and phase 

at any given time point. Theta phases were binned into 18 20° intervals and the mean 

gamma amplitude was calculated in each phase bin. The distribution across bins was as-

sessed using the Kullback-Leibler divergence [258] and normalized between 0 and 1. The 

MI is close to zero if the mean gamma amplitude is uniformly distributed over the theta 

phases and close to one if the mean gamma amplitude is exceptionally higher within one 

phase bin [442]. 

For WM-experiments, intra- and inter-regional PAC were determined by calculating the 

modulation of -amplitude by -phase using the phase-locking technique proposed by 

Voytek et al. with routines described in [458, 459]. The suitability of single-trial PAC for 

behavioural decoding has been demonstrated in previous studies [125, 220, 427]. 
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2.5.4 Cross-correlation of instantaneous LFP amplitudes 

To determine whether one signal was leading or lagging the other, amplitude cross-

correlations of instantaneous amplitudes of LFP oscillations between all brain regions 

were performed according to [3]. First, the two signals were bandpass filtered in the re-

spective frequency range; the Hilbert transform was computed using the MatLab function 

hilbert to calculate the instantaneous amplitude and the envelope of the signal; cross-

correlation between the amplitudes of the two signals was calculated with the MatLab 

function xcorr over lags ranging from -100 ms to + 100 ms; the lag at which cross-

correlation peaked was determined [3]. The amplitude of the correlation represents the 

resemblance of both signals, and one signals leads the other by a delay. It quasi corre-

sponds to coherence whereas coherence is in the frequency, but cross-correlation takes 

place in the time domain. 

To determine if the obtained lags significantly differ from zero, a Wilcoxon Signed Rank 

test were performed. Amplitude cross-correlation was only analysed during the open-

field experiment, since single-trial analysis can yield spurious and non-informative results 

[3]. 

2.5.5 Granger causality measures 

Parametric GC was calculated using the multivariate GC (MVGC)-toolbox [32]. GC mainly 

applies to stationary signals which means that the variances are not excessively changing 

over time [63, 168]. Therefore for the open-field experiment, the 10 min period was di-

vided into 1 min bins and the in-built trial averaging function was used to calculate GC in 

non-overlapping 10 s sections to ensure reasonable stationarity [145, 198, 219]. The 

1 min bins were used for the analysis of GC over time and then averaged to obtain a GC 

value for the whole 10 min testing period. Raw LFP data was sampled down to 250 Hz to 

ensure a reasonable model order for autoregressive modelling [31, 32, 397]. The model 

order was obtained using the Bayesian Information Criterion (BIC, [390]) as it was shown 

to provide the best fit to electrophysiological data [32]. The model order was fixed to 27 

across all animals and trials to obtain comparable results [99]. Non-prefiltered data were 

used because empirical analyses have shown that filtering time series data increases the 

ARM order and leads to high variances making it unsuitable for GC analysis [31]. To obtain 

GC values for specific frequency bands we first computed GC up to the Nyquist-frequency 

and then integrated over the desired frequency range [31]. A permutation procedure im-
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plemented in the MVGC-toolbox was performed to test the null hypothesis that values 

obtained by GC estimation occurred by chance [32, 63]. npGC, DTF, and PDC were calcu-

lated using the FieldTrip toolbox [342]. The same temporal configurations were used as 

described above for parametric GC and raw LFP data was sampled down to 250 Hz as 

well. Instead of deriving the noise covariance matrix and transfer function by autoregres-

sive modelling (as done for parametric GC), these were obtained by applying Wilson’s 

spectral matrix factorization to complex Fourier-spectra. This non-parametric approach 

was shown to be better at capturing all spectral features, less error prone because no 

model order had to be chosen and computationally faster [121, 122]. For WM-

experiments, the original trials were further divided into 50% overlapping “pseudo trials” 

with a length of 1 s and padded to the next power of two, differing from power and non-

directed synchrony measures because 99% overlap did not provide substantially different 

results but came with a much higher computational effort. The complex cross-spectrum 

was computed using a Hann taper with a spectral smoothing of 2 Hz. The noise covariance 

matrix and transfer function were obtained by applying Wilson’s spectral matrix factoriza-

tion to complex Fourier-spectra. This non-parametric approach was shown to be better at 

capturing all spectral features, less error prone because no model order had to be chosen, 

computationally faster than applying autoregressive modelling [120, 121], and to deliver 

virtually same results when used on our LFP data [420]. Time-frequency representations 

of npGC and PDC were obtained by Morlet wavelets using the same configurations as 

described above for non-directed measures. 

2.5.6 Spike-phase coupling 

MUA was extracted by high pass filtering the raw signal above 800 Hz and applying a 

threshold at 3.5 standard deviations from the mean. Spikes were excluded if the thresh-

old exceeding was longer than 2 ms and if spikes occurred within 1 ms. LFP of the second 

brain region was filtered between 5 and 12 Hz using the MatLab function eegfilt from the 

EEGLAB-toolbox [118]. To account for speed-dependent waveform asymmetry in the the-

ta oscillation, the theta phase was defined by linear interpolation between consecutive 

troughs within each cycle [73, 302, 400]. Only periods in which the theta amplitude was 

above 0.25 standard deviations of its mean were included to ensure sufficient theta 

rhythm. Each spikes was than assigned a theta phase and the mean resultant vector 

length (MRL) was calculated as an indicator for the strength of coupling using the CircStat-



Materials and Methods 

65 
 

Toolbox [45, 401]. The number of spikes was fixed to 1000 for each recording to prevent 

spuriously high MRL values and fluctuations in the firing rate. To determine the direction-

ality between MUA and theta oscillations, phase locking was calculated for 50 different 

temporal offsets ranging from -100 ms to 100 ms in steps of 4 ms using custom written 

MatLab scripts. If the MRL peaked at a positive offset, spikes were most strongly phased 

to the next theta cycle of the past, suggesting that theta drives spiking activity [400, 401]. 

A Wilcoxon sign rank test was applied to determine if the lag or lead was significantly dif-

ferent from zero. SPC was only analysed during the open-field experiment since single-

trial analysis was not possible due to too erratic appearance of spikes. 

2.6 SUPERVISED MACHINE LEARNING 

To validate the calculated measures of neural connectivity and to identify predictive vari-

ables of WM we employed supervised ML algorithms. Spectrally resolved parameters 

(e.g., -coherence, -power) from each inter-regional connection (e.g., dHC-PFC) and local 

brain region (e.g., dHC) were analysed separately using different classifiers. For classifica-

tion, we used the absolute parameter values as well as the ratio of each parameter rela-

tive to the preceding ITI. In mice, 240 connectivity metrics per connection and 56 local 

activity metrics per region were used in the 5-CSWM DMTS task (1184 for all connections 

and regions combined; 296 per task-phase), and 180 connectivity metrics and 42 local 

activity metrics were used on the operant 2-CSWM DNMTS task and the T-maze (888 

combined). The difference originates from the usage of 4 task phases, including pre- and 

post-delay phases, in the 5-CSWM task, but only 3 phases (one delay phase) in the two 

DNMTS tasks, which was the post-delay in the 2-CSWM task. For all predictor matrices, 

the pre- and post-delay phases were combined to allow uniform comparisons between all 

three tasks. In humans, 448 connectivity metrics per connection and 80 local activity met-

rics were generated, using all 4 task phases including SP, pre-cue delay, post-cue delay, 

and CP (classifiers omitting the CP were also calculated, see Figure 3.2.14). Note that, in 

humans more predictors arise because frequency bands have been determined addition-

ally in the alpha-band (8-12 Hz), and in a higher gamma-band (50-100 Hz) in addition to 

the low gamma band (30-49 Hz) used in rodent analysis. We also included the combined 

band (30-100 Hz) as separate predictor. To ensure a sufficient number of trials for classifi-
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cation and the general validity of the identified predicting variables, we merged data from 

all subjects of one group, i.e., from all mice of a given genotype (KO or WT) provided cor-

rect electrode placement or from the subset of human subjects with coverage of all three 

regions, respectively.  

Since rodent and human subjects performed proficiently above chance level (except for 

Gria1-KOs on the T-maze) resulting in more correct than incorrect trials (see Figure 3.3.2 

for behavioural results in mice; mean accuracies (%) and standard deviation in humans: 

0.90/0.04 (identity), 0.92/0.09 (spatial), 0.89/0.09 (temporal) [225]), we used a synthetic 

minority over-sampling technique (SMOTE) to construct a balanced dataset with five 

nearest neighbours to consider [91]. All electrophysiological predictor variables of a clas-

sifier were normalized between 0 and 1, setting the maximum empirical value for each 

metric to 1. We used 90% of the data as a training set and the remaining 10% for testing. 

Allocation to the training and test set was done randomly and repeated 100 times to ob-

tain a mean and its variance for the achieved decoding accuracy the predictor weights. To 

identify the classification algorithm which fits our data best we assessed the 25 most used 

classifiers implemented in MatLab (Figure 3.2.4). Focussing on easy interpretability and 

high predictive accuracy we chose random subspace ensembles on a linear discriminant 

analysis (LDA) template (subspace discriminant classifier) for our further analysis, which 

achieved the highest prediction accuracies compared to all other tested linear classifiers. 

Briefly, LDA aims to identify a hyperplane that maximizes the mean distance between the 

mean of the two classes while minimizing variance between them. Since the sample size 

of our data was relatively small compared to the number of features, we used the ran-

dom subspace method, which is a valid approach to resolve this issue and has been shown 

to be superior to single classification algorithms [404, 440]. It operates by creating a clas-

sifier ensemble where each classifier is trained with a reduced, randomly sampled num-

ber of input features, e.g., they are projected into a new subspace which leads to a rela-

tive increase of the number of samples. The number of features to sample in each classi-

fier and the number of learning cycles were set to half of the total number of features 

and 30, respectively. The coefficient magnitudes of each feature obtained by each sub-

space LDA classifier were averaged across learning cycles to get a solid quantification of 

its predictive value. Because the accuracy alone does not always give a full representation 

of an ML model’s performance, we used the prediction accuracy, the area under the 



Materials and Methods 

67 
 

curve (AUC) of the receiver operating characteristic (ROC) and the F1-score which is de-

fined as follows: F1 = (2*class1precision * class1recall) / (class1precision + class1recall). 

Precision is defined as the True Positives / (True Positives + False Positives) for class 1 and 

as the True Negatives / (True Negative + False Negative) for class 2. Recall is defined as 

True Positives / (True Positives + False Negatives) for class1 and as True Negatives / (True 

Negatives + False Positives) for class2. The sensitivity refers to the percentage of positives 

that are correctly identified which equals the recall for class1, whereas the specificity de-

scribes the proportion of negatives that are correctly identified which equals the recall for 

class2. 

The ROC represents a probability curve between the True positive rate (= Re-

call/Sensitivity) and the False positive rate (= False Positives / (False Positives + True Neg-

atives)). The AUC of such a curve therefore indicates the separability of the classes, i.e., 

an excellent model has AUC close to one, whereas a poor model has AUC near to zero and 

an AUC of 0.5 means that the model has no class separation capability at all. 

During this study, classifier performance for binary grouping is reported as the F1 and as 

the prediction accuracy for multiclass calculation. To be transparent about the perfor-

mance of the classifier performance we report all the mentioned indicators of perfor-

mance in order to avoid disbalances towards one of the classes. However, throughout all 

measures showed high percentages, indicating that the classifiers fitted the data well 

without any imbalances (see Suppl. Table 2, Suppl. Table 3 and Suppl. Table 4 for mice 

data and Suppl. Table 5, Suppl. Table 6 and Suppl. Table 7 for human data). Since it has 

been shown that the theoretical chance level of 50% should not be expected and it is fa-

vourable to obtain an empirical chance level, we randomly shuffled the data labels (e.g. 

correct / incorrect) and repeated the analysis described above to create an empirical null 

distribution [103]. A direct comparison between the actual values and the respective 

chance level distribution was employed to attain the associated p-value. 
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Figure 2.6.1: Illustration of ML-based decoding analysis 
From left to right: Exemplary time series of the four analysed brain regions over the course of one trial with 
time points of interest. Frequency-resolved GC spectrum between two signals highlighting frequency-band 
specific information and arrays containing frequency-averaged connectivity metrics. Matrix containing pre-
dictor arrays from each trial with the respective labelling (correct/incorrect). The fraction of trial that is 
used for training and testing the classifier is indicated in red and the experimental setup for mice is exempli-
fied. Blue bar graph illustrates exemplary weights assigned by the classifier for each predictor (e.g., δ Coh). 
Adapted from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

2.7 PERFUSION OF MICE 

Mice were sacrificed by injecting a ketamine (100 mg/ml, WDT, G) / medetomidine 

(1mg/ml, Domitor, Orion Pharma, Finland) solution intraperitoneally. To validate the cor-

rect placements of the electrodes miniature lesions were made by applying electrical cur-

rent on the recording electrodes immediately after the death of the mouse. After this, the 

mouse was perfused with phosphate-buffered saline (PBS) followed by 4 % paraformal-

dehyde (PFA). After decapitation and removal of the brain, the same was post-fixed in 4 % 

PFA for at least 24 h and then cut with a vibratome (VT1000, Leica) into 60 µm slices. 

2.8 STATISTICAL ANALYSIS 

Statistical analyses were performed with SPSS version 25 (IBM, USA) and MatLab 2020 

(Mathworks, USA).  

For the open-field experiment, genotype-related differences within the same metric and 

frequency range were assessed by independent-sample t-test or, in the case of GC, by 

Sidak paired post-hoc tests conducted after a significant effect of genotype or interaction 

in the prior repeated-measures analysis of variance (ANOVA). For circular data (spike and 

coherence phase angles) the Watson-Williams two-sample test was used to assess geno-

type-related differences. A p-value < 0.05 was used as indicator for statistical significance; 

no further correction for multiple comparisons were applied, given that we aimed to 

emulate the situation that only a single measure is used to characterise connectivity, and 

false-negatives were to be avoided given the analytical goal of detecting redundancies 
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between metrics. Bivariate correlations were calculated using Spearman’s rho. To detect 

correlations between circular and circular and between circular and linear data we used 

circular-circular correlation and circular-linear correlation as implemented in [45].  

For WM-experiments, behavioural training and challenge data were analysed with re-

peated-measures ANOVA and pairwise Sidak post-hoc tests for simple main effects. To 

determine the importance of individual connectivity or activity measures (predictors), we 

used a two-step procedure: First, pre-classification, we performed a paired t-test for each 

feature comparing its value in correct vs. incorrect trials. Second, post-classification, we 

used the magnitude of the weight of each predictor as delivered by the subspace discri-

minant classifiers to perform a paired t-test between the obtained magnitudes and the 

magnitudes from the shuffled dataset. Features were only recognized as significantly im-

portant if both criteria were met. P-values were Bonferroni-corrected within-species for 

the total number of used features across all classifiers calculated in mice (1184; P < 

0.05/1184) and humans (1584; P < 0.05/1584) in the most conservative analysis; addi-

tional analysis was conducted to evaluate the dependency of the number of obtained 

significant predictors with less stringent adjustments. 

For the experiments conducted in the Gria1Amigo2 and Gria1Grik4 cohort, one-way univari-

ate or repeated measures ANOVAs were used with a simple between-subjects design.  

Variability in the data is displayed as standard error of mean (SEM) throughout.  
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3 RESULTS 

3.1 LACK OF REDUNDANCY BETWEEN ELECTROPHYSIOLOGICAL MEASURES OF LONG-RANGE 

NEURAL COMMUNICATION 

3.1.1 Elevated locomotor activity in Gria1-KO mice during measurement of interregional 

communication 

To measure inter-regional coupling, we implanted 15 adult Gria1-/- mice and 12 littermate 

WT controls unilaterally with LFP electrodes in 4 regions, PFC (2 electrodes), MD (1 elec-

trode), dHC (1 electrode) and vHC (2 electrodes), and inserted screws for ground and ref-

erence above the cerebellum and frontal cortex, respectively (Figure 3.1.1a). After suc-

cessful recovery from surgery, recordings from all regions were made during a 10 min test 

of novelty-induced locomotor activity where we could replicate the previously shown 

hyperlocomotion-phenotype of Gria1-/- mice (Figure 3.1.1b-c; [76]).  

After finishing all experiments (see Figure 3.2.1a for a timeline), placements of all elec-

trodes were evaluated through electrolytically lesioning the respective sites and mis-

placed electrodes were eliminated from the dataset (number of all included electrodes 

are depicted in Figure 3.1.2); data from the MD was discarded for most of the subsequent 

analysis because of the low number of animals with accurate placements.  

In accordance with previous study in this mouse line [76], the ground screw above the 

cerebellum was used as the primary reference for subsequent analyses but we also used 

the data from the frontal reference screw for a separate analysis (displayed in Figure 

3.1.8). Besides extracting LFP signals (Figure 3.1.1d-e) from all electrodes we also ob-

tained MUA spikes from the prefrontal wires. For PAC, amplitude cross-correlations and 

SPC, the theta-phase angle was extracted using a Hilbert-transform for the two former or 

linear interpolation between consecutive cycles for the latter (Figure 3.1.1f-g).  
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Figure 3.1.1: Experimental set-up, behaviour, and recorded signals 
(a) Placement of LFP and screw electrodes. (b) Top, experimental set-up; bottom, distance moved in 20 s 
bins by Gria1-/- (KO, purple) and wildtype controls (WT, black), dashed line indicating mean, shaded region 
representing SEM, solid overlaid line representing linear interpolations across time. (c) Same data as in (b) 
but displayed as total distance moved in 10 min (top) and slope of the interpolated line (bottom). *** p < 
0.001, t-test. (d) Examples of unfiltered LFP traces recorded in the four brain regions. (e) Illustration of the 
processing for connectivity measures using the same LFP frequency-band in both regions; raw LFP signal 

(top) and LFP signal filtered in a specific frequency-range (bottom). (f) Illustration of cross-regional − PAC, 

whereby the signal in one region is filtered in the low− range and the amplitude is extracted (top), while 

the signal in the other region is filtered in the -range and Hilbert-transformed to extract the -phase (mid-

dle). The coupling-strength is derived as MI measuring the phase-related change of  -amplitude (bottom). 
Left histogram depicts solid modulation, whereas right histogram depicts no modulation (g) Illustration of 
SPC; the hippocampal LFP (top) is filtered in the theta-range and the phase angle is extracted by linear in-
terpolation (below, brown); the prefrontal high-pass-filtered signal reveals MUA from which spikes are 
extracted by thresholding (below, single spikes, and bottom left, average of all extracted PFC spikes, black). 
A circular histogram is computed by assigning each spike to its theta-phase angle and the average of all 
vectors is calculated as mean resultant vector (red) whose length (MRL) is taken as indicator of SPC strength 
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(bottom right). Adapted from [420], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

3.1.2 Differences in detecting delta and gamma-range coupling in Gria1-KO mice across 

measures of synchrony and differences in detecting elevated inter-regional theta-

range coupling in Gria1-KO mice across measures of directed communication 

First, we analysed phase-synchronization along the two prefrontal-hippocampal connec-

tions (PFC-dHC and PFC-vHC) and within the hippocampus (vHC-dHC) using coherence, 

wPLI, PLV, and PPC (Figure 3.1.2a-r). We were able to validate results of a previous study 

[76] showing that PFC-dHC theta coherence is strongly elevated in Gria1-KOs in a novel 

environment. Also, this pattern further increases with time which likely reflects the spa-

tial exploration behaviour of this genotype (Figure 3.1.1b-c, Figure 3.1.2a, d). Still, this 

phenotype was by no means specific to the PFC-dHC coupling, but also re-appeared in the 

PFC-vHC and vHC-dHC connections suggesting a broader deficit of excessive theta-range 

connectivity (Figure 3.1.2b-c, e-f). Reassuringly, the same phenotype was revealed by the 

wPLI, PLV and PPC metric across connections (Figure 3.1.2g-r). However, when inspecting 

the other frequency bands, findings were not particularly consistent between wPLI and 

the other three measures (which appeared very similar to each other). While all indica-

tors revealed a reduced gamma-range PFC-dHC coupling in KOs, a sole analysis with wPLI 

suggested further differences in the delta (PFC-dHC, vHC-dHC) and gamma (PFC-vHC) 

ranges that would have gone undetected, if using the other metrics (Figure 3.1.2d-f, j-r). 

Also, qualitatively, wPLI resulted in spectra with quite different shape compared to the 

other ones, especially in the low frequency range. 
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Figure 3.1.2: Non-directed measures of synchrony in Gria1-/- and wildtype controls across 
10 min novelty-induced activity 
(a-l) Spectrograms (a-c, g-r) and frequency-spectra (d-f, j-r) displaying coherence (a-f), wPLI (g-l), PLV (m-o), 
and PPC (p-r) along the PFC-dHC (a, d, g, j, m, p), PFC-vHC (b, e, h, k, n, q) and vHC-dHC (c, f, i, l, o, r) connec-
tions. Dotted red lines in spectra indicate boundaries of the analysed frequency bands named by the Greek 
letters at the top. Stars indicate significant differences between genotypes (t-test) in mean (black) or peak 
(grey) synchrony metrics. Lines display mean ± SEM. # p < 0.1; * p < 0.05; ** p < 0.01; *** p ≤ 0.001. 
Adapted from [420], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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An analysis of directed connectivity with parametric GC revealed a confirmatory but much 

more fine-grained picture with KO-induced aberrations in all four frequency bands de-

pending on the connection and direction (Figure 3.1.3a-c). Most prominently, we found 

strongly elevated theta-range GC in KOs for all projections departing in either subdivision 

of the hippocampus. This confirms the hippocampal (as opposed to prefrontal) origin of 

the theta hyper-connectivity phenotype in Gria1-KO mice, that was postulated before 

based on the normalization of this phenotype in mice with hippocampal rescue of GluA1-

expression [76]. Likewise, beta/gamma dHC→PFC GC was strongly reduced in KOs (Figure 

3.1.3a), in line with reduced phase-synchronization measures (Figure 3.1.2d, j, m, p), 

while PFC→dHC beta and gamma GC were even mildly elevated. This again suggests a 

hippocampal origin of the observed reduced synchrony in this frequency range. The most 

prominent GC was found in the delta range, with PFC→d/vHC GC being significantly larger 

than the delta GC in the opposite direction in both genotypes. Further, genotype-related 

differences in vHC→PFC and dHC→vHC delta GC were found that did not match with re-

sults from the non-directed synchrony metrics (Figure 3.1.2).  

In contrast to GC, significantly elevated theta PDC in KOs was only detected in the 

dHC→PFC/vHC connections, but not in the vHC→PFC/dHC projections. And in the be-

ta/gamma-ranges there were virtually no matches between PDC and GC at all regarding 

genotype-related differences (except for a minority of null-results and trends; Figure 

3.1.3a-f). Assessing SPC using the MRL representing average spike-occurrence in theta-

phase space [4], we found the opposite of what would have been assumed from the PDC 

metric: locking of PFC spikes to vHC theta was higher in Gria1-KOs, but phase-locking of 

PFC spikes to dHC theta showed no difference between genotypes (the latter also con-

trasts with GC and all synchrony measures; Figure 3.1.3g). 

Further discrepancies appeared when analysing consistent phase-differences (leads and 

lags) between potentially coupled oscillations in different regions to assess directionality. 

We investigated two directed measures obtainable from the SPC: the average theta-

phase of the MRL [123] and analysis of the effect of incremental shifts of the MUA rela-

tive to the theta-cycle on the MRL [400, 401]. The MRLs of PFC spikes relative to the dHC 

– but not vHC - theta phase was significantly shifted between genotypes: while they oc-

curred during the rising phase of theta in KOs, they occurred at its through in WTs (Figure 
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3.1.3h). Leading of PFC spikes relative to dHC and vHC theta was seen with phase shifted 

MRL analysis in KOs, but no significant difference between genotypes was detectable in 

this metric (Figure 3.1.3i). The equivalent analysis but conducted with PFC LFP (instead of 

spikes) using cross-amplitude coupling showed the opposite, namely a lead of dHC and 

vHC theta relative to prefrontal theta in KOs, and significant differences between geno-

types in both connections (Figure 3.1.3j). In reverse, in the gamma range, PFC led both 

hippocampal regions exclusively in KOs (Figure 3.1.3j), which is not consistent with GC, 

but – at least for the PFC-vHC connection – with PDC. Lastly, we examined the coherence 

phase angle. This showed a characteristic ~90°-shift between the theta, beta, and gamma 

oscillations of the PFC vis-à-vis the dHC, particularly in WT mice. In contrast to other di-

rected metrics, significant genotype-related differences were only seen in the gamma-

range, and they were prominent in the two HC-PFC-connections (Figure 3.1.3k).  

Finally, dHC- and vHC-gamma oscillations were coupled stronger to theta oscillations in 

PFC and the mutually coupled part of the hippocampus in KOs (gamma-theta cross-

regional PAC; Figure 3.1.3l). However, PFC-gamma to hippocampal theta coupling was 

even reduced in KOs (Figure 3.1.3l) which contrasts sharply with the results from all other 

measures. 

In summary, while the identification of genotype-related differences in coupling was simi-

lar between some measures (especially coherence, PLV, PPC, and GC), there was also a 

considerable lack of redundancy across the different measures of interregional connectiv-

ity (see overview in Table 3.1.1). 
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Figure 3.1.3: Directed metrics of inter-regional coupling in Gria1-/- and wildtype controls across 
10 min novelty-induced activity 
(a-c) Parametric GC on log10-scale in the frequency bands indicated by Greek letters and along the directed 
connections identified by the colour (blue: dHC→PFC (a), vHC→PFC (b), vHC→dHC (c); orange: reverse of 
the before). Statistical indicators in the same colour identify a difference between genotypes (Sidak); statis-
tical indictors in black (WT) or purple (KO) refer to a significant difference between the GC-values of the two 
opposing directions within the colour-coded genotype whereby the location of the indicator identifies the 
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direction with smaller average GC. (d-f) Same display as (a-c) but for PDC. (g) MRL as indicator of SPC of 
prefrontal spikes to hippocampal theta. (h) Average theta-phase angle of the mean resultant vector from 
SPC analysis. The theta-phase corresponding to the degree-value is shown on the right (horizontal axis illus-
trates voltage of LFP). (i) MRL as a function of lag between prefrontal MUA and hippocampal LFP. Some 
data was excluded based on lag-amplitudes above 100ms; contributing N-numbers are stated; statistics 
identical to (g). (j) Cross-correlation functions of instantaneous amplitude curves in the connections and 
frequency bands named at the top of each sub-panel with peak values indicated by a red dot. Statistical 
indictors in black (WT) or purple (KO) refer to a significant difference of the lag (temporal shift) from 0ms 
(Wilcoxon’s signed rank test). (k) Spectra of coherence phase angle along the named connection. Dotted 
red lines and Greek letters indicate analysed frequency bands. (l) Theta-gamma cross-regional PAC for the 
named directed connections. Solid lines display means and shaded area SEM throughout; bars display 
mean ± SEM throughout. Grey stars in (g-l) indicate genotype-differences (t-test in g,i-j,l; Watson-Williams 
test in h,k). # p < 0.1, * p < 0.05; ** p < 0.01; *** p ≤ 0.001. Adapted from [420], open access article: CC BY 
4.0, https://creativecommons.org/licenses/by/4.0/ 

3.1.3 Differences in detecting increases of inter-regional coupling over time in Gria1-

knockouts across measures 

As a second indicator for redundancy between connectivity measures, we investigated 

potential physiological correlates of the characteristic divergence of exploratory drive 

between the two genotypes over time (Figure 3.1.1b-c). To allow for an efficient analysis, 

we captured the change of a given parameter over time in a single number, namely the 

slope of the linear interpolation across the time series over the 10 min of the test. It was 

previously found that both local theta power in the dHC and also dHC-PFC theta coher-

ence displayed a characteristic divergence between the groups, that mirrored exploratory 

behaviour [76]. In this novel dataset and analysis, this pattern emerged much more 

broadly, namely across multiple power and coherence measures in all three connections 

(compare Figure 3.1.1b-c with Figure 3.1.4a-d). This included local PFC power in all ana-

lysed frequency bands, and gamma and (at trend-level) theta-peak power in the hippo-

campal regions (Figure 3.1.4a-b). For coherence, the KO-related increase in slopes was 

limited to the delta and theta range and was apparent in the hippocampal-prefrontal 

connections (confirming earlier results) and marginally for intra-hippocampal coupling 

(Figure 3.1.4c-d). In the beta and gamma range, either no group-difference occurred or – 

for PFC-dHC beta coherence – it was even inversed with a higher slope in WT mice. Stun-

ningly, this pattern was not reproduced by the wPLI analysis (Figure 3.1.4e-f) – even in the 

one case where the coupling slope was increased in KOs in both metrics (PFC-vHC, theta), 

the metrics differed in the respect that, in WT controls, theta-wPLI remained constant, 

while theta-coherence decreased over time. 
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GC remained largely constant or decreased slightly over time in WT mice, irrespective of 

connection or frequency band (Figure 3.1.4g-i). In Gria1-/- mice, in contrast, GC increased 

over time in the delta and theta range in most connections leading to genotype-related 

differences in the vHC→PFC ( ), vHC→dHC (), dHC→vHC ( ), PFC→vHC ( ), and 

PFC→dHC ( ) projections. Thus, except for an isolated match in the vHC→PFC theta-

connectivity, the GC metric did not align with the wPLI-based slope assessment but pro-

vided a near perfect match to the coherence slope pattern (Table 3.1.1). The latter obser-

vation even extends to the one instance of PFC-dHC beta coupling where the slope is 

higher in WT than in KO mice (Figure 3.1.4g-i). The slope of the gamma-theta PAC also 

showed the expected divergence between genotypes in coupling-strength along vHC-

connections, but not in the PFC-dHC connections (Figure 3.1.4j). This pattern matched 

neither with coherence and GC (as they detected temporal changes in the PFC-dHC con-

nection) nor with wPLI (which detected no changes in the vHC-dHC connection). Likewise, 

cross-correlational lags did not change in any pattern that resembled the other measures 

(Figure 3.1.4k). The slopes of MUA-related metrics were not determined because SPC 

analysis requires a considerable and equal number of spikes (not suitable for short inter-

vals), and PDC and other lag-metrics were not further regarded given that they already 

differed from the other metrics in the first comparison (Figure 3.1.3). 
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Figure 3.1.4: Changes of power and coupling strength over time during the 10 min open-field 
test 
(a, c, e) Examples of individual measures of power (a), coherence (c), and wPLI (e) as they behave as popula-
tion overage over the 10 min of novelty-induced activity in the open field (dashed line, mean; shaded area, 
SEM) with linear interpolation between time points overlaid (solid line) to determine the slope as indicator 
of temporal changes. (b, d, f) Average slope (temporal change) of power (b), coherence (d) and wPLI (f) in 
the indicated regions or connections (top of sub-panel) and frequency bands (x-axis). (g, h, i) Slope of GC in 
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the frequency bands indicated by Greek letters and along the directed connections identified by the colour 
(blue: dHC→PFC (g), vHC→PFC (h), vHC→dHC (i); orange: reverse of the before). Statistical indicators in the 
same colour identify a difference between genotypes (t-test). (j) Slope of theta-gamma PAC in the stated 
directed connections. (k) Slope of cross-correlation lags indicating putative changes of temporal shifts of the 
oscillations in the named frequency bands. Black stars indicate significant differences between genotypes 
(t-test), and error bars or shaded regions indicate SEM throughout. # p < 0.1; * p < 0.05; ** p < 0.01; *** p ≤ 
0.001. Adapted from [420], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

Table 3.1.1: Pairwise comparison between wildtype and Gria1-knockouts 
Overview over genotype-related statistical comparisons of the data displayed in Figure 3.1.2, Figure 3.1.3 
(average metric) and Figure 3.1.4 (slope metric). GC and PDC results are derived from Sidak post-hoc test 
after repeated-measures ANOVA across both directions of a connection and genotypes; MRL-phase and 
coherence phase-angle are compared with the Watson-Williams test [123]; all other P-values are derived 
from independent-sample t-tests. For LFP-based measures (coherence, wPLI, PLV, PPC, GC, PDC) the P-
values in the theta-range refer to peak-theta (not mean-theta). Arrows in directed measures indicated di-
rection of coupling, → direction labelled in column name (e.g., PFC→ dHC in the PFC-dHC column), ← oppo-
site direction. For MI and MRL measures, the region named first corresponds to the region that contributes 
the theta-oscillation to the analysis. White background, no measure available or assessed; grey background 
alone, p ≥ 0.1; # p < 0.1; * p < 0.05, ** p < 0.01, *** p ≤ 0.001. Adapted from [420], open access article: CC 
BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

KO vs. WT 

delta theta beta gamma 

PFC-
dHC 

PFC-
vHC 

vHC-
dHC 

PFC-
dHC 

PFC-
vHC 

vHC-
dHC 

PFC-
dHC 

PFC-
vHC 

vHC-
dHC 

PFC-
dHC 

PFC-
vHC 

vHC-
dHC 

av
e

ra
ge

 m
e

tr
ic

 

Coherence       *** *** ***       *     

wPLI **   * * *** ** ** #   * * # 

PLV    *** *** *** *   **   

PPC    *** *** *** *   **   

GC →       #   * #     * # * 

GC ←   * * ** *** * ***     ***   # 

PDC →  *   ***   *   ***  

PDC ←   ** * # **      ** 

MRL ←         **               

MI/PAC →       * ** *             

MI/PAC ←       * # *             

Coherence phase     #  #         * *** # 

CC       *** * *       * ***   

MRL-phase ←       *                

MRL-lag ←                        

sl
o

p
e

 m
e

tr
ic

 

Coherence *** ** * ** *** # **       #   

wPLI #       **               

GC → ** *   **   * *       **   

GC ←   ** **   *** *           * 

MI/PAC →         **               

MI/PAC ←         * *             

CC       *     #         * 
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3.1.4 Lack of redundancy between most coupling measures revealed by bivariate corre-

lation analysis 

Given that the above analysis of comparing genotype-related differences across measures 

ultimately allows only a qualitative judgement about the epistemological redundancy of 

interregional coupling metrics, we supplemented our analysis by a more quantitative 

analysis in form of bivariate Spearman correlations between pairs of parameters and 

within genotypes and connections using the average value for each parameter in each 

electrode pair as dependent variable. We included all metrics analysed in Figure 3.1.2 and 

Figure 3.1.3 and also DTF and npGC.  

This revealed multiple levels of complexity when analysing the relation between the met-

rics. On the one hand, at the level of isolated observations, the correlations supported the 

commonalities between measures already seen with the two prior analyses. For example, 

PFC-dHC theta coherence correlated strongly with dHC→PFC theta-GC in WTs (Figure 

3.1.5a). However, this correlation did neither exist in the KOs in the same connection 

(Figure 3.1.5a) nor in the same genotype but the PFC-vHC connection (Figure 3.1.5b). In-

deed, PFC-vHC theta coherence, did correlate highly with GC in the opposite, i.e. 

PFC→vHC, direction but not in the vHC→PFC direction – and it did so across all frequency 

bands - which was not the case in the other two connections (Figure 3.1.5a-b, Figure 

3.1.6a, also see Additional File 1, Tables S1 and S2 from [420] for the full correlation ta-

bles in WT mice including all metrics and four frequency bands, which is too large to be 

included in this thesis). In general, when carefully examining each pair of metrics, it be-

came apparent that a correlation seen in one genotype and connection would rarely re-

appear in another one (Figure 3.1.5a-b, Figure 3.1.6a).  

In order to evaluate this systematically, we calculated the average correlation coefficient 

for each pair across the three connections and indicated its significance only if it was pre-

sent in all of them (Figure 3.1.6b). Reassuringly, the three pairs of mathematically closely 

related metrics showed consistent correlations in each connection and frequency band: 

PPC and PLV, parametric and non-parametric GC, and PDC and DTF. Beyond that, howev-

er, there was not a single pair of distinct metrics that achieved a significant correlation in 

all three connections in WT mice in the theta band, and only two (coherence correlating 

with PPC and PLV) in the gamma band (Figure 3.1.6b, also see Additional File 1: Table S4 
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from [420], which is too large to be included in this thesis). In Gria1-KOs, the picture was 

similar, except that here coherence correlated significantly with PLV and PPC in both the 

theta and the gamma band, and additionally gamma wPLI correlated with coherence, 

PPC, and PLV, across connections. The latter result contrasts sharply with the absence of 

such wPLI-correlations in WT mice, illustrating that some observed correlations may de-

pend on the genotype, and are hence not reflecting a priori redundancies. 

We further examined correlations that were not significant in all three connections, but 

yet achieved a high correlation coefficient on average. In the theta-range, coherence also 

correlated strongly with PPC and PLV (average rho ≥ 0.8) - in alignment with our first 

analysis (Figure 3.1.2, Figure 3.1.3), the correlation result in KOs, and the gamma-band in 

both genotypes (Figure 3.1.6b) - and with coherence phase angle (average rho > 0.7); fur-

ther correlations yielded a medium (0.6-0.7) average rho: (a) coherence phase angle with 

PPC, PLV, PDC, DTF, GC, and npGC, and (b) PPC/PLV with wPLI, PDC, and DTF. In the 

gamma range, coherence phase angle also showed the largest number of medium aver-

age correlations with other measures, namely wPLI (average rho = 0.77) and coherence 

magnitude, PPC, PLV, PDC, DTF, GC and npGC (average rho 0.6-0.7); the only remaining 

medium average correlations (0.6-0.7) in the gamma range were wPLI with PDC and DTF 

(Figure 3.1.6b, also see Additional File 1: Table S4 from [420], which is too large to be in-

cluded in this thesis). Also, in KOs, the coherence phase angle showed average medium 

correlations with most other LFP-based metrics in the theta and gamma range (Figure 

3.1.6b). It should be noted that this combined analysis may overlook correlations with 

directed metrics in case they occur in only one direction. For example, theta GC (and 

npGC) did actually correlate with theta PDC (and DTF) in each of the three connections 

but only in one direction each: PFC→vHC, dHC→PFC and vHC→dHC which is difficult to 

interpret given that we always recorded significant GC and PDC in both directions. Results 

from the SPC (MRL), PAC, and amplitude cross-correlation (lag) analyses did not correlate 

with any other measure consistently in any genotype. This synopsis largely aligns with the 

redundancy patterns seen with the two former analyses (averages and slopes, Table 

3.1.1).  
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Figure 3.1.5: Correlations between individual measures of hippocampal-prefrontal connectivity 
(a, b) Spearman’s coefficient (rho, colour of squares) and significance (star within squares) of bivariate cor-
relations between individual measures of connectivity in the PFC-dHC (a) and PFC-vHC (b) connections with-
in KO (top-right) and WT (bottom-left) mice. White stars, p < 0.01; purple stars, p < 0.001. Theta- and gam-
ma metrics are spatially separated, and delta and beta metrics are omitted. Adapted from [420], open ac-
cess article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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Figure 3.1.6: Correlations between individual measures of intra-hippocampal and overall con-
nectivity 
(a) Spearman’s coefficient (rho, colour of squares) and significance (star within squares) of bivariate correla-
tions between individual measures of connectivity in the vHC-dHC connection within KO (top-right) and WT 
(bottom-left) mice. (b) Same display as in (a) but indicating the average correlation coefficient across the 
three connections (Figure 3.1.5a-b, Figure 3.1.6a) by the colour of a square and significance only if a signifi-
cant correlation existed in every one of the three connections. White stars, p < 0.01; purple stars, p < 0.001. 
Theta- and gamma metrics are spatially separated, and delta and beta metrics are omitted. Adapted from 
[420], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

3.1.5 No differences in electrode placements, but in reference location 

Additionally, for WT animals, we sorted the LFP power and coherence values obtained 

from each electrode according to its in different subdivisions of the PFC (PrL, Cg1 and 

Cg2), dHC (apical dendritic layers of CA1, CA1 pyramidal cells, CA1 stratum oriens) and 

vHC (apical dendritic layers of CA1/CA3, CA1 pyramidal cells, DG). While we did not con-

duct statistical analysis given the much smaller number of sites outside the target region 

(PrL in PFC and apical dendritic layers, including fissure, in the hippocampus), a qualitative 

inspection suggested that the placements inferred from lesion sites did not noticeably 

alter the obtained spectral LFP properties (Figure 3.1.7). 

 

Figure 3.1.7: No qualitative differences in electrode placements 
(a-c) Power of LFP in the indicated frequency bands (x-axis) and region (top of panel) displayed for each 
individual electrode that contributed to the WT-dataset colour-coded by the sub-division in which it was 
placed; hippocampal layers: pyramidal (Pyr), stratum oriens (Or), lacunosum-moleculare (LM), radiatum 
(Rad), fissure (Fis). (d-f) Coherence between all possible combinations of electrode pairs. No statistical anal-
ysis was done given some rare placements. Adapted from [420], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

The choice of placement site for the reference electrode varies considerably between 

studies, and both the referencing to the ground screw above the cerebellum (as done for 
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all analyses in this work) and to the anterior part of the frontal cortex are widely used. In 

order to investigate the effect of this difference, we recorded a separate reference signal 

from a frontal reference screw [401, 434] and used it to digitally re-reference all recorded 

data by subtracting this signal from the recorded LFP traces before re-calculating local 

power, coherence, wPLI, and GC.  

Using repeated-measures ANOVAs with the within-subject factor of re-referencing and 

the between-subject factor of genotype, we found that the location of the reference has 

quite a substantial influence on the results. In the lower frequency-ranges, there were 

significant effects of re-referencing on local power in the delta range in all brain regions 

(except for the MD) and in the theta range only in the dHC. For connectivity measures, 

there were also discrepancies between frequency bands: For delta, there were significant 

effects of re-referencing on coherence and GC in all connections, while the effect on wPLI 

was comparatively minor (but note that delta-wPLI is generally very low and entirely dif-

ferent from delta-coherence and GC; Figure 3.1.8a-m). In the theta-range, re-referencing 

strongly impacted coherence, wPLI, and GC alike along both hippocampal-prefrontal con-

nections – not only in terms of significant effects of re-referencing, but also in terms of 

genotype-reference interactions, which indicate that the prior conclusions on theta-range 

connectivity are partly dependent on the position of the reference. In the GC measure, 

interactions were apparent in the d/vHC→PFC direction but not in the reverse (Figure 

3.1.8k-l). Nevertheless, there were also significant effects of genotype in those connec-

tions and measures, suggesting that the fundamental observation of elevated hippocam-

pal-prefrontal theta-connectivity in KOs still holds, especially for the PFC-dHC connection 

and the GC measure in general (Figure 3.1.8e-f, h-i, k-l). Intra-hippocampal theta-

connectivity was not much affected by the reference placement, irrespective of measure 

(Figure 3.1.8g, j, m).  

In the higher frequency-ranges the effects were more mixed. Beta power in the dHC and 

coherence – but only partly wPLI and GC – along its connections were affected by refer-

ence placement. In the gamma range, re-referencing impacted power in the PFC and dHC, 

wPLI in the PFC-d/vHC connections, and coherence along all three connections (Figure 

3.1.8a-j). In fact, the formerly observed lower PFC-dHC gamma-coherence and wPLI in 

KOs (Figure 3.1.2d, j) was dependent on the reference placement for detection (interac-
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tion effect only for coherence and wPLI, Figure 3.1.8e, h). A similar observation holds for 

the PFC-vHC gamma connectivity, which was increased in KOs in the wPLI, but not the 

coherence measure (Figure 3.1.2e, k). Here again, an interaction indicated that the ab-

sence or presence of this difference in the coherence measure depends on the reference 

location (Figure 3.1.8f), while an effect of genotype is maintained when using wPLI even 

though an interaction is found in addition (Figure 3.1.8i). The impact of referencing on 

gamma-GC, in contrast, was limited to the dHC→PFC projection (Figure 3.1.8k-m). 

In summary, a frontal reference electrode - as often used when studying prefrontal-

hippocampal connectivity [401, 434] - may considerably alter the results obtained for LFP-

based measurements of connectivity between the PFC and the hippocampus. Somewhat 

surprisingly, the wPLI measure does not eliminate this contingency but only reduces it, 

especially in the beta-gamma range. Referencing effects on GC are particularly visible in 

the low (delta/theta) frequency range and (as interactions) in the direction from hippo-

campus towards PFC. 
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Figure 3.1.8: Assessment of the impact of the reference electrode placement on the measure-
ment of power and connectivity 
(a-j) Spectra for power (a-d), coherence (e-g) and wPLI (h-j) for the regions or connections indicated at the 
top of each panel, shown for standard referencing to the ground screw above the cerebellum (black, WT 
and purple, KO; as in Figure 3.1.2 and Figure 3.1.3) or digitally re-referencing to the reference screw above 
the frontal cortex (blue, WT and orange, KO). Red lines indicate the boundaries of the analysed frequency 
bands named by the Greek letters at the top. (k-m) GC in the frequency bands indicated by Greek letters 
and along the directed connections identified by the colour (blue: dHC→PFC (k), vHC→PFC (l), vHC→dHC 
(m); orange: reverse of the before; display as in Figure 3.1.3a-c). Throughout, shaded regions indicate SEM 
and stars indicate results of RM-ANOVA: black, effect of genotype; green, effect of chosen reference; grey, 
genotype-reference interaction. In the theta-range the statistics for coherence and wPLI refer to peak-
theta. * p < 0.05; ** p < 0.01; *** p ≤ 0.001. Adapted from [420], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 
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3.2 HIGHLY TASK-SPECIFIC AND DISTRIBUTED NEURAL CONNECTIVITY IN WORKING MEMORY IN 

MICE AND HUMANS 

After identifying non-redundant measures of neural communication and the most suited 

reference location (3.1) we next aimed to apply those findings to recordings made in 

Gria1 KO and WT mice and also in humans [225] to scrutinize the electrophysiological 

basis of WM. To this end, mice were tested in three WM tasks, and measures of neural 

communication at multiple time points during the tasks were calculated. We then estab-

lished a ML-based approach and investigated the predictability of WM performance 

based on the calculated measures. We also extracted relevant electrophysiological fea-

tures in order to compare different WM paradigms (3.2.1 - 3.2.6). A similar methodology 

was subsequently harnessed to analyse a publicly available dataset of humans performing 

various WM tasks [225] (3.2.7 - 3.2.8). We then turned to our Gria1-/- mice to translate 

our methodology to a mouse model of schizophrenia in order to identify potentially dis-

ease-related alterations (3.3). 

3.2.1 Correct choices in DMTS working memory are associated with distinct signatures in 

connectivity 

Mice were first trained across multiple training stages in an operant DMTS 5-choice SWM 

(5-CSWM) task before undergoing surgery for electrode implantation (Figure 3.2.1a-b). 

After recovery from surgery, neural activity was recorded during a 10 min open-field test. 

Results from this experiment and according analyses were presented in section 3.1 above 

and in [420] and guided the choice of metrics used for the subsequent analysis to include 

GC, PDC, coherence, theta-gamma PAC, and wPLI (i.e., largely mutually non-redundant 

metrics).  

To evaluate associations between WM and electrophysiological measures of inter-

regional connectivity, we first trained and tested mice implanted with chronic field elec-

trodes in PFC, MD, vHC, and dHC in three SWM tasks (Figure 3.2.1a-f): First, the operant 

DMTS 5-choice SWM (5-CSWM) task in which mice were trained before implantation, 

subsequently the T-maze rewarded alternation task, and finally an operant DNMTS 2-

choice SWM (2-CSWM) task. To allow for simultaneous LFP recordings during operant 

tasks, a recently developed custom-designed operant box optimized for implanted and 
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tethered animals (Figure 3.2.1c) that is tightly integrated with electrophysiological record-

ings via pyControl software and microcontroller modules was used [7]. The set of three 

tasks (Figure 3.2.1d-f) was chosen to retain comparability due to their shared visuo-spatial 

nature and distinct individual differences (i.e., operant DMTS vs. DNMTS; maze-based 

DNMTS vs. operant DNMTS). In addition, the T-maze task was included due to its wide 

usage (see e.g., Table 1.6.1). The 5-CSWM task was specifically designed to limit the usage 

of non-WM mediation strategies by the animal - due the large number of choice configu-

rations, requirement to shuttle between opposite walls of the box, and delay-periods in 

total darkness, as described in detail in [437]. Also, both operant tasks provide tight con-

trol over the timing of behavioural events and deliver intrinsic control variables for WM-

enabling psychological functions like attention, measured by SP accuracy, and motiva-

tional drive, measured by reward latency. In each task, we applied extensions of the delay 

between the SP and the CP across which the memorized information needed to be main-

tained in order to strongly engage WM capacity. As expected for WM assays [21], such 

delay challenges significantly decreased WM choice accuracy of the mice (Figure 3.2.1g-i).  
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Figure 3.2.1: Behaviour in rodent WM 
(a) Timeline of experiments in the analysed cohort (see Methods). (b) Illustration of electrode placements in 
in the mouse brain (image taken from the Allen Brain Atlas (http://connectivity.brain-
map.org/static/brainexplorer)); pairs of electrodes were inserted into PFC and vHC. (c) Lack of obstruction 
of tethered mice with mounted head stage during poking of choice hole (top) and reward collection (bot-
tom) in custom-made pyControl operant boxes. (d-f) Illustration of DMTS 5-CSWM [437] (d), T-maze re-
warded alternation (e), and DNMTS 2-CSWM (f) tasks; in (d, f), choices in SP and CP need to be made at the 
5-choice wall, while rewards for correct responses in each phase are collected on the opposite wall. (g-i) 
WM performance measured as response accuracy in the CP (% correct choices relative to available indicat-
ed options) in wildtype mice (N = 12) in each set of challenge conditions including their respective baseline 
with simultaneous electrophysiological recordings. Delay length determining the WM challenge stated on x-
axes; for operant tasks (e, j) pre- + post-delay (referring to set delays before and after SP-reward collection) 
are indicated. SP-SD, stimulus duration in SP. Asterisks indicate differences between challenge, Sidak-post-
hoc tests conducted after significant main effect of challenge, RM-ANOVA. Orange line, chance level per-
formance. * P < 0.05; ** P < 0.01; *** P ≤ 0.001. Training mice on the operant tasks and on the T-maze was 
supported by Sampath K.T. Kapanaiah. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

To elucidate possible correlates of WM among measures of neural connectivity, we com-

puted time-resolved spectrograms of four largely non-redundant (see 3.1.4 and [420]) 

connectivity metrics aligned to the time of correct and incorrect CP and SP responses for 

the distinct phases of the 5-CSWM task (non-directed: coherence, Coh; wPLI; directed: GC; 

PDC; Suppl. Figure 1, Suppl. Figure 2). We subtracted spectra from correct SP responses or 
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incorrect CP responses from those of correct CP responses to eliminate neural representa-

tions of poking action, execution of a reward-related response, or attention (Figure 

3.2.2a-d, Suppl. Figure 3). In this qualitative analysis, we observed multiple changes asso-

ciated with correct WM decisions including elevated hippocampal-prefrontal low gamma-

range (30-48 Hz) activity immediately after the response (Figure 3.2.2a, b), and sustained 

theta-activity (5-12 Hz) during the delay in the PFC→MD and vHC→dHC connections 

(Figure 3.2.2c-d). 

 

Figure 3.2.2: Connectivity in rodent WM during the 5-CSWM task 
(a-d) Spectrograms depicting min-max normalized coherence and GC for the connections stated above each 
triplet panel for the delay and CP of the 5-CSWM task, temporally aligned to the choice poke entry (p, white 
vertical lines) showing 6 s before until 1 s after the poke; the start and end of the post-delay shown by 
white stripes corresponding to mean ± SD as determined by CP response latency. Each triplet shows the 
absolute value (left), the difference between the former and either the prior correct SP (middle), or incor-
rect CPs (right). Horizontal white lines show borders between analysed frequency bands, stated on the left. 
See Suppl. Figure 1 and Suppl. Figure 2 for spectrograms of absolute values in correct and incorrect trials of 
the CP and SP, respectively, and Suppl. Figure 3 for the same display as (a-d) for wPLI and PDC. Adapted 
from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

3.2.2 Trial-by-trial prediction of WM-mediated choices from local and long-range neural 

activity 

The ability to predict behavioural choices from neural activity may be regarded as proof 

that such activity encodes aspects of these choices [104, 410]. Even though individual LFP 
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traces recorded on individual trials are unlikely to represent cleanly a certain behavioural 

state but instead are affected by various sources of noise and biological activity, we at-

tempted to infer WM-based choice from metrics obtained from LFP traces to probe their 

predictive power using a ML approach. This data-driven approach is able to overcome the 

inherit hurdle of having too many data to analyse in a more classic, descriptive way as 

presented in Figure 3.2.2. Individual connectivity and activity variables were computed in 

four task phases (SP, pre-reward delay, post-reward delay, CP; see Figure 2.6.1), and four 

frequency bands (delta, 1-4 Hz, theta, 5-12 Hz, beta, 15-30 Hz, low-gamma, 30-48 Hz) 

along 4 connections (as shown in Figure 3.2.2a-d). In the same way, indicators of local 

activity (power and local PAC) were calculated in the four involved regions (dHC, vHC, 

PFC, MD). Additionally, all metrics were calculated in relative terms by dividing their ob-

tained value by the value that specific metric had in the ITI before the start of the respec-

tive trial. This resulted in 240 variables for connections and 56 variables for local regions 

characterizing each 5-CSWM trial. Subspace discriminant classifiers – which proved supe-

rior among 25 different types of linear and non-linear classifiers (Figure 3.2.4) - were 

trained to predict WM-choice trial-by-trial using the parameters contributed by each con-

nection or region separately for trials of the final 5-CSWM challenge (1 s SP-SD, 5 s delay; 

Figure 3.2.3a). Decoding models were generated across all subjects and trials and decod-

ing accuracies were determined by predicting trials that were not part of the training da-

taset. This procedure was repeated separately 100 times to ensure that all trials were 

used as training and test data – but obviously not both in the same iteration – resulting in 

solid cross-validated prediction scores (see Figure 2.6.1 for graphical illustration of the ML 

analysis pipeline). 

We found that individual DMTS 5-CSWM choices could be predicted with 79.4% and 

79.8% average accuracy when using measures of neural connectivity along the PFC-MD or 

the PFC-dHC connection as predictors, respectively (Figure 3.2.3a). Using one-way ANOVA 

and pairwise Tukey post-hoc tests, we established a hierarchy between connections and 

regions revealing that the prediction accuracies obtained from PFC-MD, PFC-dHC, local 

dHC and MD activity did not differ from each other and were superior to the remainder 

(Figure 3.2.3a). Even though decoding accuracies varied by connection and region, they 

were always significantly better than those of control classifiers trained with shuffled la-

bels (P < 10-17, t-tests) which, in turn, decoded indistinguishably from chance level on av-
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erage (Figure 3.2.3a). These data reveal that WM-based choice is encoded in LFP-based 

connectivity and activity measures in individual trials and that such information is widely 

distributed across multiple brain regions.  

To evaluate the generality of the obtained classifiers, we assessed if they could also de-

code WM-based choices in data from other DMTS 5-CSWM challenge protocols. For this, 

we used data from one task protocol as training data and data from another protocol as 

test data to evaluate the predictive capabilities of the classifier. Even though prediction 

accuracies were generally lower compared to those achieved with data from the same 

protocol, they were still significantly higher than those of classifiers trained with shuffled 

labels (Figure 3.2.5). Note that for cross-paradigm prediction only task phases that were 

present in both paradigms were included (i.e., pre-delay was excluded in paradigms with-

out extended delay). 

To investigate if this conclusion applies generally to rodent WM, we repeated the same 

analysis for the operant DNMTS-data (final baseline sessions, 2 s delay). In this case, how-

ever, we obtained the maximum average prediction accuracy (86.1 %) from local dHC 

activity, rather than PFC-MD (66.1%, lowest rank of all classifiers) or PFC-dHC (73.5%) 

connections. Generally, in this task, local activities allowed relatively high decoding accu-

racies (72-77 % for PFC, MD, and vHC), while coupling metrics were significantly less pre-

dictive (66-68%, P < 0.001, Tukey; except for dHC-PFC, Figure 3.2.3a).  

In reverse, trial-by-trial decoding of T-maze data achieved the highest average accuracies 

(82-88 %) when using connectivity data from either one of the four connections (with 

dHC-connections being most predictive), whereas local activities were significantly less 

predictive (62-79%; P < 0.001, Tukey, Figure 3.2.3b). However, decoding accuracies for 

information from all 4 connections decreased when analysing data from the 30 s delay 

challenge, in which these animals also showed lower behavioural performance (Figure 

3.2.1h, Figure 3.2.3b), suggesting that not only task type but also task difficulty affect the 

information encoded in each connection.  
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Figure 3.2.3: Trial-by-trial decoding of WM-based choice 
(a-b) Cross-subject decoding accuracies achieved on average when using connectivity or local activity pa-
rameters of the indicated individual connections (black) or areas (grey), respectively to predict WM-based 
correct vs. incorrect choices in the DMTS 5-CSWM task (combined 1 s SP-SD, 5+2 s delay challenge, 2 ses-
sions; red, a), the DNMTS 2-CSWM task (baseline, 2 sessions, green, a), the T-maze WM task with either 5s 
(solid blue, 4 sessions, b) or 30s (dashed blue, 4 sessions, b). Thinner dotted lines show decoding accuracies 
of corresponding classifiers trained with shuffled labels, remaining at chance level (0.5, orange). Classifiers 
trained with real labels perform better than those trained with shuffled labels in all cases (P < 10-17, t-tests, 
not indicated). The accuracy of 0.8 is coloured in purple to aid comparison. Numbers in coloured ovals indi-
cate the rank of the prediction accuracies achieved on average by using data from the respective connec-
tion or region. See Suppl. Table 2, Suppl. Table 3 and Suppl. Table 4 for confirmation of classifier quality by 
evaluation of various measures of decoding performance. Ranks have been generated from pairwise com-
parisons with Tukey post-doc tests conducted after significant effects of connection/region in one-way 
ANOVAs (P < 0.0001 in all cases); connections/regions that were not significantly different from each other 
were assigned the same rank. Blue stars in (b) indicate pairwise differences between the two delays (uncor-
rected t-tests). ** P < 0.01; *** P ≤ 0.001. Shaded regions around mean show s.e.m. across 100 classifiers 
generated for each task and connection or region. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

To check for imbalances in the classifier performance, e.g., if only one class is driving the 

high prediction accuracy, we also analysed measures like the AUC of the ROC, the F1-

score and sensitivity and specificity (for description see 2.6). For all three WM paradigms, 

high percentages were evenly distributed across all measures, indicating that the classifi-

ers fitted the data well without any imbalances (Suppl. Table 2, Suppl. Table 3 and Suppl. 

Table 4). 
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Figure 3.2.4: Decoding performance of different types of classifiers 
(a-c) Decoding accuracy displayed as the F1-score for the connections (a, c) or brain region activity (b) which 
yielded the highest predictive power in its respective task (see Figure 3.2.3), as named above each panel. 
The most commonly used classifiers implemented in MatLab were trained and tested with the same data, 
and prediction accuracies were compared. Yellow horizontal line depicts chance level. Red lines indicate 
mean, coloured boxes the 25th and 75th percentile and whiskers indicate data range across the 100 classifi-
ers computed for each type and connection. The subspace discriminant analysis (green) was superior to all 
tested linear classifier types and therefore used for all analyses in this study. Only two of the tested non-
linear classifier types, named in light blue font, yielded equivalent accuracies across all three comparisons 
(a-c), but non-linear classifiers do not allow to extract and compare predictor weights for individual metrics. 
Classifier performance was compared using pairwise Tukey post-hoc tests after a significant main effect of 
classifier type in a one-way ANOVA (P < 0.0001). Results of Tukey tests comparing each classifier type to the 
subspace discriminant type are indicated by green dashes (P > 0.05, n.s.) or stars, * P < 0.05, *** P < 0.001. 
Abbr.: QDA (Quadratic Discriminant Analysis), SVM (support vector machine), GLM (Generalized linear 
model), KNN (K-nearest neighbours), RUS (random under sampling). Adapted from [421], open access arti-
cle: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

 

Figure 3.2.5: Cross-prediction accuracy for dHC-PFC classifiers trained on different challenges. 
(a-d) Decoding accuracies achieved when using the classifiers trained on dHC-PFC connectivity data from 
the DMTS combined challenge (a), the training (b), the 5 s delay WM challenge (c), or the 1 s SP-SD atten-
tion challenge (d) on data from the other respective 5-CSWM protocols named on x-axes; blue and grey 
depicts performance of classifiers trained on trials with correct or incorrect (shuffled) labels (stars indicate 
t-test comparisons between them). Error bars, data range without identified outliers which are highlighted 
in red; boxes, range between 25th-75th percentile; dot, median. *** P < 0.001. Adapted from [421], open 
access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

3.2.3 Specific connections and regions are engaged differently in distinct phases of ro-

dent WM tasks 

The prior analyses entail at least two conclusions: Firstly, WM-related information in a 

single trial is not encoded in any single region or connection, although some of them bear 

higher predictive power regarding WM-choice than others. Secondly, the predictive pow-
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er of a given region or connection is not uniform but strongly depends on the type of WM 

task and its difficulty, indicating that different mechanisms and regions are engaged to 

solve distinct behavioural demands. These conclusions re-emphasize the question as to 

what extent oscillatory processes in distinct frequency bands, of a distinct biological type, 

or in a specific task phase (encoding, delay, choice) can be regarded as correlates of WM 

(Table 1.6.1). 

To answer this question, we took advantage of the fact that a linear classifier reveals the 

predictive power of each involved predictor variable according to its assigned weight. We 

performed Bonferroni-adjusted t-tests comparing the weights for each connectivity vari-

able with the weights assigned by the classifiers trained on label-shuffled control data, 

and, additionally, conducted t-tests comparing the amplitudes of each variable between 

correct and incorrect trials that contributed to the classifiers. Variables for which both t-

tests were significant were considered as bearing WM-related information (indicated by 

colour in Figure 3.2.6a). This analysis revealed a relatively small set of consistent WM-

related feature-classes as correlates of DMTS 5-CSWM, a majority of them in the -range 

(Figure 3.2.6b): (1) PFC→MD - and -range connectivity in the SP, (2) MD→PFC - and -

range as well as dHC-vHC −range connectivity in the delay, (3) dHC→PFC and MD-PFC -

range as well as vHC-PFC −-range coupling in the CP, and (4) intra-hippocampal -

connectivity in all phases (Figure 3.2.6c-d). 
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Figure 3.2.6: Individual connectivity measures predicting WM choice in wildtype mice. 
(a) Matrix showing all connectivity predictor variables that contributed to the connection-based classifiers 
shown in Figure 3.2.3a,b. Variables that were significantly associated with WM-performance according to 
both their prediction weight and differences between correct and incorrect CP (t-tests, Bonferroni-adjusted 
for total number of variables, see (b) in any of the three WM tasks are indicated by the corresponding col-
our, remainder in grey (white squares have no corresponding variable). Variables from the pre- and post-
delay in the 5-CSWM are combined in single lines. For theta, mean amplitude (m), peak amplitude (p) and 
frequency of peak (f) are shown, while for all other frequency bands only the mean amplitude is used due 
to the absence of a clear singular peak. At the bottom, all task phases are combined and only connectivity 
metrics that are predictive in all three tasks (in at least one phase) are indicated in black. (b) Share of each 
connection (coded by colour) and frequency band (stated around pie chart with separations in blue) among 
all significant predictors (N stated in centre) for the indicated task. (c-d) Values of absolute (c) or relative (d) 
predictor variables for DMTS WM (extracted from (a)) in correct (blue) and incorrect (red) trials (left axes). 
Bars in the background, referenced to by right axis, show absolute values of average predictor weights 
normalized within each classifier (i.e., connection) coded by their colour. Significance is not indicated as it 
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applies to all shown variables. Blue font, directed connectivity in the opposite direction compared to con-
nection-name. Error bars, s.e.m. (e, f) Left: Number of variables identified as significant based on ML predic-
tor weight (light green), difference between correct and incorrect trials (medium green), or both (dark 
green) in dependence on the P-value adjustment (y-axes) in the DNMTS (e) and T-maze (f) tasks. Right: 
Share of predictor variables as depicted in (b) for the P-levels indicated in green. Adapted from [421], open 
access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

Given the prominence and high predictor weights of CP parameters (Figure 3.2.6c, d) - 

which align with the arising -band connectivity immediately after the CP-poke (Figure 

3.2.2a-d) - we wondered, if the predictability of WM-choice (Figure 3.2.3) actually relied 

mainly on identifying a representation of anticipated reward. Therefore, we replicated 

the decoding analysis for SP choices for which animals also expect reward. For the SP, 

however, average decoding accuracies were – although still above the 50% chance level - 

considerably smaller, namely 64-68 % and 54-59 % for predictions based on connectivity 

and local activity, respectively (Figure 3.2.7a).  

While this result shows that the attentional element of the task is more difficult to predict 

from the available parameters than WM choice, it also demonstrates that the obtained 

CP prediction accuracy was not simply based on representations of motor-action (hole-

poking), attention, or reward anticipation. We also repeated the decoding analysis for CP 

choice with complete omission of all CP parameters; even though decoding accuracies 

decreased significantly for some connections, including the most predictive ones (PFC-

dHC, 72%; PFC-MD, 73.9%) - but not for vHC-dHC (72%) - overall accuracies remained far 

above those obtained from classifiers trained on shuffled labels, and hence above chance 

level (P < 10-30 and P < 0.002 for classifiers trained on connectivity or local data, respec-

tively; Figure 3.2.7b). Overall, these analyses demonstrate that activity along distinct con-

nections and in distinct frequency bands represent encoding (SP), maintenance (delay), 

and recall (CP) of WM contents in the 5-CSWM task. 

When omitting the CP predictors for decoding of correct choices on the T-maze, visual 

inspection of the overall distribution of accuracies revealed no major deviation from the 

original distribution (Figure 3.2.7c). Still, four regions or connections displayed significant-

ly higher accuracies when including CP predictors, but not as pronounced as seen for the 

DMTS task (Figure 3.2.7b). Also, contrasting the DMTS findings, decoding accuracy for the 

PFC-MD connection was even higher when CP predictors were excluded (Figure 3.2.7c). 
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Figure 3.2.7: Prediction accuracies in the 5-CSWM SP and without CP predictors 
(a) Cross-subject decoding accuracies for predicting of correct vs incorrect SP-choices (as a measure of sus-
tained attention) from SP connectivity or local activity parameters of the indicated connections or areas in 
the 5-CSWM (black line; combined 1 s SP-SD, 5+2 s delay challenge, 2 sessions). A time window that ends 
1 s after the SP-poke was used to retain equivalence to CP-based predictors contributing to WM-decoding 
accuracies in Figure 3.2.3a. The CP decoding accuracy (as in Figure 3.2.3a) is shown for comparison in red. 
(b) Same display as Figure 3.2.3a (5-CSWM DMTS data only, red) but showing equivalently determined WM 
decoding accuracies without including CP variables as predictors (black). Decoding accuracies were still 
significantly higher than what was achieved by classifiers trained on control datasets with shuffled labels 
(grey, P < 10-30 and P < 0.002 for classifiers trained on connectivity or local data, respectively; t-test for each 
connection, not indicated), but are also lower than the accuracies obtained if CP variables are included (red) 
for all connections and regions (uncorrected t-test, indicated by black asterisks). Except for accuracies for 
MD-derived predictors, the rank order of decoding accuracies across connections/regions remained similar, 
however. (c) Same analysis as in (b) but for the T-maze (5 s delay protocol) and hence in relation to main 
Figure 3.2.3b. Note that, for several connections/regions, prediction accuracies remained roughly equal if 
CP predictor variables are omitted (black; uncorrected t-test, indicated by black asterisks). Also, decoding 
accuracies achieved without CP variables were significantly higher than those achieved with classifiers 
trained the same data but with shuffled labels in all cases (dotted line, P < 10-40, t-tests, not indicated). 
Numbers in coloured ovals indicate the rank of the prediction accuracies achieved on average by using data 
from the respective connection or region. Ranks have been generated from pairwise comparisons with 
Tukey post-doc tests conducted after significant effects of connection/region in one-way ANOVAs (P < 
0.0001 in all cases); connections/regions that were not significantly different from each other were assigned 
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the same rank. ns, P > 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. Shaded regions represent s.e.m. Adapted 
from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

3.2.4 WM-related functional connectivity is highly task-specific in mice 

To uncover if such phase-specific connectivity generalizes across WM tasks, we per-

formed the same analysis for the classifiers predicting performance in the operant 

DNMTS and the T-maze assays. In both cases, considerably more parameters carried WM-

related information than in the 5-CSWM task (Figure 3.2.6a-b). Compared to DMTS WM, 

T-maze rewarded alternation choice was predicted by a much larger number of predic-

tors, with a prominence of - and -range (as opposed to -range) variables, and a con-

siderable proportion of SP-parameters (Figure 3.2.6a-b).  

Most astonishingly, the combined analysis of all three tasks revealed that none of the 

specific connectivity parameters identified in one task bore significant predictive power in 

both of the other tasks, revealing a remarkable task-specificity of such parameters (Figure 

3.2.6a). It is possible that this finding is simply caused by a very conservative Bonferroni-

adjustment of the P-value used as significance threshold (0.05/number of all connectivity 

and activity variables combined; 0.05/1184 for the 5-CSWM, 0.05/888 for the T-maze and 

2-CSWM). Therefore, we repeated the above analysis while relaxing this adjustment in-

crementally over four orders of magnitude (Figure 3.2.6e-f). However, the number of 

identified significant parameters, the relative contribution of individual frequency bands, 

and especially the extreme sparseness of overlap between task-specific predictors 

changed relatively little (Figure 3.2.6e-f, Figure 3.2.8). This analysis also revealed that far 

more connectivity parameters are identified according to their prediction weight than 

according to their amplitude difference between correct and incorrect trials (Figure 

3.2.6e-f). This suggests that the classical approach of correlating behavioural performance 

with amplitude of a given metric (Table 1.6.1) likely misses a sizeable proportion of WM-

related functional connectivity. 
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Figure 3.2.8: P-value adjustment of individual connectivity measures predicting WM choice 
across rodent tasks. 
(a-b) Same display as in Figure 3.2.6a but for higher (less conservative) P-value thresholds: (a) Bonferroni-
adjustment using the number of parameters per connection (240 for 5-CSWM DMTS, 180 for the other two 
tasks). (b) Use of 0.01 as a fixed threshold. Matrix showing all connectivity predictor variables that contrib-
uted to the connection-based classifiers shown in Figure 3.2.3a-b for the three rodent WM tasks (WT only) 
and were significantly associated with WM-performance according to their weight and differences between 
correct and incorrect CP. Note that variables from the pre- and post-delay in the 5-CSWM have been com-
bined in single lines. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

To investigate potential differences or similarities between the time-course of individual 

parameters during the task, we extracted those spectral connectivity parameters that 

were predictive across all three assays albeit in different phases: directed dHC→PFC -

connectivity and intra-hippocampal -range coupling (Figure 3.2.6a). Inspection of the 
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time-course of these parameters over the delay and CP revealed that they behaved rather 

differently in the individual tasks: dHC→PFC -connectivity showed a transient increase 

during the delay of all three tasks, but only in the operant tasks a second increase oc-

curred immediately after correct choices (but not after incorrect choices; Figure 3.2.9a-b). 

Intra-hippocampal -coupling even showed a different time course in every task, includ-

ing a correct choice-specific decrease in the 2-CSWM delay which contrasted sharply with 

a steady rise during the T-maze delay (Figure 3.2.9a-b). Thus, even within the few predic-

tor variables that are relevant across all tasks, the actual physiological activity relating to 

the behaviour differed markedly.

 

Figure 3.2.9: Time-frequency resolved connectivity measures predicting WM choice in all tasks 
in wildtype mice. 
(a) Spectrograms for metrics (stated on the left) that were predictive in all three tasks (albeit in different 
phases; named at the top) are shown as absolute values and as difference between correct and incorrect CP 
responses, -6s until +1s around the choice; relevant frequency bands are gamma (top) and delta (bottom). 
(b) Average temporal evolution of those metrics in units of their value during the preceding ITI aligned to 
the choice point in each task (vertical grey line, poke or exit from decision zone) during correct (blue) and 
incorrect (red) trials. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

Given these results, we directly tested the hypothesis that distinct activity patterns un-

derlie the different rodent WM tasks by rendering task-type a dependent variable: we 

trained classifiers to decode which one of the three tasks a subject is currently conducting 

using connectivity or local activity parameters from correct trials as input. Based on con-

nectivity data, task-type could be decoded with average accuracies of 97-99% when dis-

criminating between the two operant tasks (50% chance level) and with an accuracy >90-

95% when discriminating between all three tasks simultaneously (33.3% chance level; 

Figure 3.2.10), underlining the high separability of these task paradigms. 
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Figure 3.2.10: Prediction of task-type from connectivity and activity data recorded in correct 
trials. 
(a) Cross-subject decoding accuracies for predicting the task during which the data was recorded using the 
connectivity or local activity predictor variables as in the other classifiers (main Figure 3.2.3a-b) albeit only 
from trials with correct choices. Either all three tasks had to be discriminated from each other (left) or only 
the two operant tasks (right), resulting in chance levels of 33.3% and 50% respectively. Lines for accuracy 
levels of 80% and 90% are emphasized by purple colour or dashed appearance, respectively, to aid compari-
son. Decoding accuracies were significantly higher than what was achieved by classifiers trained on control 
datasets with shuffled labels (dashed grey lines at chance level, P <0.0001; t-test for each connection, not 
indicated). Numbers in coloured ovals indicate the rank of the prediction accuracies achieved on average by 
using data from the respective connection or region. Ranks have been generated from pairwise compari-
sons with Tukey post-doc tests conducted after significant effects of connection/region in one-way ANOVAs 
(P < 0.0001 in all cases); connections/regions that were not significantly different from each other were 
assigned the same rank. Shaded regions represent s.e.m. Adapted from [421], open access article: CC BY 
4.0, https://creativecommons.org/licenses/by/4.0/ 

3.2.5 Common hippocampal-prefrontal WM-related activity during the delay and CP of 

all WM tasks 

To extract commonalities of connectivity between the three tasks, we aggregated predic-

tive non-directed (coherence, wPLI) and directed (GC, PDC) metrics (extracted from Figure 

3.2.6a) and depicted their amplitude increases relative to the preceding ITI for each task 

phase (Figure 3.2.11a-c). For the T-maze (the only task for which prior reference data ex-

ists), this revealed several connectivity patterns associated before with rewarded alterna-

tion performance, including vHC-PFC [410] and dHC-PFC [295] coupling during encoding 

and MD→PFC beta-range activity during maintenance across the delay [56, 349]. Im-

portantly, MD-PFC -range delay activity was also seen in the other two WM tasks, alt-

hough their directionality differed (MD→PFC in the DMTS task; PFC→MD in the DNMTS 

task; Figure 3.2.11a-c). Likewise, further task-independent connectivity patterns emerged 
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in this analysis: prominent vHC-PFC and vHC-dHC coupling in the CP of all tasks (especially 

in the delta and theta range), as well as MD→PFC delta and PFC→dHC/vHC multi-

frequency directed connectivity during the SP and delay, respectively, of the two DNMTS 

tasks (Figure 3.2.11a-c). At the same time, this analysis also confirmed that the vast ma-

jority of WM-related connectivity was task-specific, especially when comparing the 5-

CSWM DMTS to the other two tasks (Figure 3.2.11a-c). 

 

Figure 3.2.11: Connections in all tasks in wildtype mice 
(a-c) Depictions of directed connectivity (arrows, derived from GC or PDC) or non-directed coupling (round-
ended arcs, coherence or wPLI) during the three phases of each task identified on the left, derived from 
significant predictor variables shown in Figure 3.2.6a. Line weights indicate the increase of connectivity in 
the stated phase relative to the preceding ITI. Connectivity metrics for which only the absolute, but not the 
relative variable yielded significance are shown as dotted lines in (a, b), omitted in (c) for clarity, and their 
line thickness nevertheless represents relative increase. Measures that are significant but decrease in the 
respective phase relative to the ITI are omitted. (d) Average decoding accuracies obtained with classifiers 
calculated with a reduced number of predictor variables are shown as a function of the number of added 
predictors, whereby the addition was done in order of normalized prediction weight obtained with all vari-
ables (Figure 3.2.3a, b) for DMTS (red) and T-maze (blue) and the named connections. Chance level (50%) 
and 80% accuracy are indicated by coloured lines. Shaded area, s.e.m. Adapted from [421], open access 
article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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An important aspect of this analytical approach is that none of these individually high-

lighted connectivity measures (Figure 3.2.6a, Figure 3.2.11a-c) is particularly predictive on 

its own: When performing decoding analysis with reduced sets of predictor variables – 

starting with the parameter with the single highest weight and adding variables incre-

mentally – the inclusion of several dozen predictor variables was necessary to achieve 

maximum decoding accuracy (Figure 3.2.11d).  

3.2.6 Predictive power of local activity in a single area varies by task phase and type 

Local oscillatory activity in the four analysed regions also allowed considerable prediction 

accuracy in all three tasks - partly even exceeding that obtained from connectivity metrics 

(Figure 3.2.3a-b). Therefore, to reveal WM-related local activity metrics, we repeated the 

prior weight-based analysis for the respective variables (power, local PAC). In the 5-

CSWM DMTS task – in line with connectivity predictors (Figure 3.2.6a) - only CP parame-

ters, mostly in the /-range, were significantly associated with WM (Figure 3.2.12a). For 

the two other tasks, in contrast, significant predictors came from all three phases and 

were somewhat less frequency-specific; the power of dHC-oscillations across all frequen-

cy bands and phases constituted the most prominent cluster of choice-predictors in both 

assays (Figure 3.2.12a). In agreement with the high decoding accuracy obtained with local 

activity (as opposed to connectivity) in the DNMTS 2-CSWM (Figure 3.2.3a), many more 

significant local predictor-variables were found for this task compared to the other two, 

irrespective of P-value threshold (Figure 3.2.12b). Importantly, however, there was again 

hardly any overlap between significant predictors from the three tasks. PFC and MD -

power were identified as the only common variables when collapsing across task phases 

(Figure 3.2.12a) but displayed a different temporal evolution in each paradigm (Figure 

3.2.12c). Also, while in DMTS WM all predictive activity parameters had higher amplitudes 

in correct trials compared to incorrect trials, this was not the case for the T-maze, where 

virtually all predictive hippocampal activity was lower in correct trials compared to incor-

rect trials – only PFC and MD power were higher in correct trials (Figure 3.2.12d, e). 

Hence, as observed in inter-regional connectivity, local activities related to WM-choice 

were highly task-specific in multiple respects. 
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Figure 3.2.12: Local activity measures predicting WM choice in all tasks. 
(a) Display and analysis as in Figure 3.2.6a, but for all local activity parameters that contributed to the classi-
fiers shown in Figure 3.2.3a,b. Variables that were significantly associated with WM-performance according 
to both their prediction weight and differences between correct and incorrect CP (t-tests, Bonferroni-
adjusted for total number of variables) in any of the three WM tasks are indicated by the corresponding 
colour, remainder in grey (white squares have no corresponding variable). At the bottom, all task phases 
are combined and only metrics that are predictive in all three tasks (in at least one phase) are indicated in 
black. (b) Number of variables identified as significant based on ML predictor weight (light green), differ-
ence between correct and incorrect trials (medium green), or both (dark green) in dependence on the P-
value adjustment (x-axes) in the named tasks. (c) Average temporal metrics predictive in all three tasks 
absolute unite (top) or in units of their value during the preceding ITI (below) aligned to the choice point in 
each task (vertical grey line, poke or exit from decision zone) during correct (blue) and incorrect (red) trials. 
(e-f) Values of absolute (left) or relative (right) predictor variables for DMTS (e) or T-maze (f) WM (extracted 
from (a)) in correct (blue) and incorrect (red) trials (left axes). Bars in the background, referenced to by right 
axis, show absolute values of average predictor weights normalized within each classifier (i.e., connection) 
coded by their colour. Significance is not indicated as it applies to all shown variables. Error bars, s.e.m. 
Adapted from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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3.2.7 Trial-by-trial prediction of WM-mediated choices from local and long-range neural 

activity in humans 

It remains unclear if highly task-specific and widely distributed WM correlates are only 

found in rodents or also in human WM. To clarify this question, we used a dataset of in-

tracranial LFP (iEEG) recordings made in 8 human subjects from three sites -  PFC,  OFC, 

and MTL (Figure 2.4.1b) – during three types of WM assays whose trials were intermixed 

within a single test session: identity-related WM (differentiating between identical and 

novel shapes), spatial WM (tell which of the two cues was presented above or below the 

other), and temporal WM (remembering the temporal order of two stimuli; Figure 2.4.1a) 

[225]. For each of the three tasks, we applied the same ML-approach as in mice, generat-

ing classifiers that use activity data from four phases (SP, pre-cue- and post-cue delay 

phases, CP; see task schedule in Figure 2.4.1a) from only a single connection (three con-

nections in total: PFC-MTL, PFC-OFC and OFC-MTL) or region (see above) at a time.  

Average decoding accuracies for trial-by-trial prediction of WM-choices were mostly 

higher than those achieved in mice, ranging consistently between 87-90% for predictions 

based on connectivity and between 72-82% for predictions based on local activity, 

whereas “predictions” based on shuffled control data remained significantly lower (P < 

10-40, t-tests) and were not different from chance level (50%; Figure 3.2.13a). We also 

trained classifiers on the combined data from all three inter-regional connections and 

three regions – either separately for each task-type or combining all types of trials indis-

criminately. For task-specific classifiers, average encoding accuracies reached 87.6%, 

90.8%, and 89.8% for identity-related, spatial, and temporal WM, respectively, i.e., no 

higher than what could be achieved by connectivity data from the single best connection 

in each task (Figure 3.2.13b). However, encoding accuracy dropped to 79.4% if task-

paradigms were intermixed (Figure 3.2.13c) suggesting that functional connectivity is, at 

least partially, task-specific. Task-specific prediction accuracies of up to 91% could also be 

obtained without including CP connectivity measures (Figure 3.2.14a). Furthermore, in 

two cases, an average prediction accuracy of up to 81% could even be achieved if using 

connectivity data from only a single task phase – either the SP in temporal WM or the 

post-cue delay in spatial WM (Figure 3.2.14b). Strikingly, in both cases, prediction accura-

cies – and hence information contents - of all three connections were always similar to 



Results 

111 
 

each other, suggesting a broad presence of WM-related neural substrates across the 

brain.  

Also, neural communication between the three assessed regions bore more information 

on predicting WM performance than local activity in those brain regions as the prediction 

accuracy of the former was consistently higher in all paradigms (Figure 3.2.14b). 

 

Figure 3.2.13: Single trial-based prediction of WM choice in humans. 
(a) Cross-subject decoding accuracies achieved on average when using connectivity or local activity parame-
ters of the indicated connections or areas, respectively, to predict WM-based correct vs. incorrect choices in 
the tasks coded by colour on the left. Accuracies achieved by classifiers trained with randomly shuffled 
labels are shown as coloured dotted lines; they are consistently lower than accuracies achieved by classifi-
ers trained with real labels in all tasks and connections/regions (P < 10-40, t-tests, not indicated) and assume 
chance level (50%, orange). Accuracies of 80% (yellow line) and 90% (black dotted line) are indicated to aid 
comparison. Shaded area represents s.e.m. See Suppl. Table 5, Suppl. Table 6 and Suppl. Table 7 for confir-
mation of classifier quality by evaluation of various measures of decoding performance. Numbers in circles 
colour-coded for the respective paradigm indicate the rank of the average decoding accuracies achieved 
using data from the respective connection or region. Ranks have been generated from pairwise compari-
sons with Tukey post-doc tests conducted after significant effects of connection/region in one-way ANOVAs 
(P < 0.0001 in all cases); connections/regions that were not significantly different from each other were 
assigned the same rank. (b) Decoding accuracies achieved when using the classifiers trained on predictors 
from all connections/regions combined (c) Similar analysis as (d) but with trials from all three paradigms 
inter-mixed. Blue and grey in (b-c) depicts performance of classifiers trained on trials with correct or incor-
rect (shuffled) labels (stars indicate t-test comparisons between them). Error bars, data range without iden-
tified outliers which are highlighted in red; boxes, range between 25th-75th percentile; dot, median. Red 
lines indicate mean, boxes the 25th and 75th percentile, whiskers indicate data range without outliers, and 
red crosses indicate outliers. See Figure 3.2.14 for analysis but using only predictors from single task-
phases. Adapted from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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Figure 3.2.14: Decoding accuracy in human WM when using only predictors from the SP and 
delay. 
(a) Decoding of human WM performance by including all trials irrespective of sub-task (left) and separately 
for the identity, spatial and temporal sub-task (as indicated on x-axis) and using variables from all 3 connec-
tions and 3 regions combined. In contrast to the primary analysis shown in Figure 3.2.13a-b, here, parame-
ters from the CP and relative measures (that proved to carry little predictive weight in the main analysis, 
see Figure 3.2.15a) were not included as predictor variables. Blue and grey depict performance of classifiers 
trained on trials with correct or incorrect (shuffled) labels (stars indicate t-test comparisons between them). 
Error bars, data range without identified outliers which are highlighted in red; boxes, range between 25th-
75th percentile; dot, median. (b) Separate classifiers were used to predict WM choice separately for the 3 
sub-tasks (named at the top of each subpanel) and for each brain region or connection (named on the x-
axis) separately, using exclusively absolute metrics obtained during the during the SP (top, same as main 
Figure 3.2.13f), the pre-cue delay (middle) or the post-cue delay phase (bottom, named on the left). Red 
lines indicate mean, boxes the 25th and 75th percentile, whiskers indicate data range without outliers, and 
red crosses indicate outliers. Accuracies of 50% (chance level, orange line), 80% (yellow line) and 90% (dot-
ted line) are indicated to aid comparison in (a, b). Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

Akin to the mouse data analysis (3.2.2), we checked for imbalances in the classifier per-

formance by also analysing measures like the AUC of the ROC, the F1-score, sensitivity, 

and specificity (see 2.6). For all three human WM paradigms, high percentages were 

equally distributed across all measures, indicating that the classifiers fitted the data well 

without any imbalances (Suppl. Table 5, Suppl. Table 6 and Suppl. Table 7). 
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In order to identify possible individual correlates of WM in humans, we analysed the pre-

diction weights of the connectivity metrics similarly as for the mouse dataset, again ex-

tracting WM-related metrics based on the two criteria of prediction weight and a differ-

ent amplitude of the metric in correct trials compared to incorrect trials (Bonferroni-

adjusted t-tests). As in mice, WM-related measures (185 out of 1344 connectivity predic-

tor variables) were widely distributed across connections, frequency bands, and metric 

types. When inspecting the matrix of significant predictors more closely, some regularities 

emerged (Figure 3.2.15a):  

(a) WM-related activity was highly task-specific with 88% of significantly WM-related 

connectivity metrics being relevant in only a single paradigm. If separating by task-phase, 

only a single metric was predictive in all three paradigms – OFC→PFC post-cue -PDC. 

Such principal task-specificity was maintained also with relaxed P-value thresholds (Suppl. 

Figure 4, Suppl. Figure 5). Similar to the mouse decoding analysis, the classical approach 

of correlating behavioural performance with the amplitude of a given metric would likely 

miss a substantial fraction of WM-related functional connectivity because the ML-

approach identified predictors that were not detected when comparing between correct 

and incorrect trials (Suppl. Figure 5). 

(b) By far the most – and the most common - predictors emerged in the -band, irrespec-

tive of significance threshold (Figure 3.2.15a-d, Suppl. Figure 4). In contrast to mice, the -

band contributed almost no WM-related variables (only one each in spatial and temporal 

WM, confined to the OFC-MTL connection). Also, the -band bore relatively few WM-

related connectivity parameters, and these were mostly relevant for spatial WM and to a 

lesser extent for identity WM, but hardly for temporal WM. In contrast to rodents, --

PAC appeared rather relevant (as found in the same data before [225]) in all three types 

of tasks, especially identity-related WM.  

(c) Changes of a metric relative to the ITI before each trial were rarely predictive.  

(d) Despite the relatively high encoding accuracy achieved for temporal WM (Figure 

3.2.13a-b), the number of connectivity metrics related to this WM-type was considerably 

smaller (18 out of 1344 measures) than for the other two (72 and 95) and there was hard-
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ly any overlap between these metrics and those relevant for the other two WM-

paradigms (only 3 each, mostly in the -band; Figure 3.2.15a-d).  

In summary, the analysis in humans confirms the high-task specificity, and broad anatom-

ical and frequency-range distribution of WM-related neural activity already seen in mice. 

 

Figure 3.2.15: Highly task-specific and broadly distributed correlates of human WM 
(a) Matrix showing all connectivity predictor variables that contributed to the classifiers shown in (Figure 
3.2.13a) and were significantly associated with WM-performance according to their weight and differences 
between correct and incorrect CP in the paradigms coded by colour (see legend on the right). For theta, 
mean amplitude (m), peak amplitude (p), and frequency of peak (f) are shown, while for all other variables 
only the mean amplitude is used. The gamma-band contributed three predictors each as this frequency was 
split into a high- and low-gamma-range in addition to using the whole range (30-100 Hz). At the bottom, all 
task phases are combined and only connectivity metrics that are predictive in all three tasks (in at least one 
phase) are indicated in black. See Suppl. Figure 4 for the same analysis with relaxed P-value correction. (b-d) 
Share of each connection (coded by colour) and frequency band (stated around pie chart with separations 
in blue) among all significant predictors (N stated in centre) for the indicated task. The significance thresh-
old has been Bonferroni-adjusted either by the total number of predictor variables from all connections and 
regions (1548, corresponding to analysis in panel (a); b), or by the number of connectivity variables for a 
single connection (448; c), or a standard threshold of 0.01 was chosen (d). Adapted from [421], open access 
article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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3.2.8 Common -band connectivity across human WM tasks 

To scrutinize this conclusion, we searched for commonalities between tasks by aggregat-

ing predictive non-directed (coherence, wPLI) and directed (GC, PDC) metrics as well as 

the multiple measures within the - and -bands (extracted from Figure 3.2.15a), and de-

picted their amplitude change relative to the preceding ITI for each task phase (Figure 

3.2.16a-c), as previously done for the mouse dataset (Figure 3.2.11a-c). In this analysis, 

OFC-PFC -coupling during encoding and directed OFC→PFC/MTL -connectivity during 

the post-cue delay emerged as common patterns present in every task. There were also 

more commonalities between spatial and identity WM, namely gamma-coupling between 

all three regions that was elevated throughout encoding and delay phases and then de-

creased below ITI-levels in the CP (Figure 3.2.16a-b). Strikingly in fact, all significant pre-

dictors from the −−-range in these two tasks showed elevated amplitudes during en-

coding and delay, but decreased amplitudes during the CP, compared to their amplitude 

in the preceding ITI (Figure 3.2.16a-c). Only  and −-PAC predictor variables increased in 

amplitude during the CP in spatial WM (Figure 3.2.16b). Finally, even with this aggregated 

analysis, not a single connectivity pattern that was shared between any two tasks 

emerged outside the -band in any task phase (Figure 3.2.16a-c). This analysis suggests 

that human WM generally relies on anatomically broad, task phase-specific modulation of 

-connectivity between several brain regions irrespective of task, while the engagement 

of oscillatory coupling in other frequency bands is task-specific. 
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Figure 3.2.16: Neural communication during different WM paradigms in humans 
(a-c) Depictions of directed connectivity (arrows, derived from GC or PDC) or non-directed coupling (round-
ended arcs, coherence or wPLI) during the four phases of each task identified on the left, derived from sig-
nificant predictor variables shown in Figure 3.2.15a. Line weights indicate the increase of connectivity in the 
stated phase relative to the preceding ITI. Measures that are significant but decrease in the respective 
phase relative to the ITI are shown as dashed lines. Significant coupling metrics are not depicted if directed 

measures are represented in both directions. P, −-PAC. Adapted from [421], open access article: CC BY 
4.0, https://creativecommons.org/licenses/by/4.0/ 

3.3 IMPAIRMENT OF GRIA1-/- MICE IN OPERANT WORKING MEMORY ASSAYS 

Several prior rodent studies investigated connectivity during T-maze testing in genetic 

mouse models that display a WM-deficit in order to reveal both putative WM correlates 

in general and causes of the given WM impairment of the model specifically (Table 1.6.1, 

[76, 401, 432]). In order to assess if the putative WM correlates identified with our ML-

approach relate to potential pathological mechanisms of WM-deficits in schizophrenia, 

we extended our analysis to the Gria1-/- mouse model [488] that has genetic, cellular, and 

neuropsychological relevance to this disease (summarized in 1.5.2 and in [29]). The global 

ablation of the GluA1 AMPAR subunit (encoded by Gria1) in these mice entails a specific, 

complete, and persistent impairment in rewarded-alternation performance in the T-maze 

[76, 364] and radial maze [385], but their performance in non-maze WM assays is un-

known. The WT mice used for the analysis presented so far were WT littermates of Gria1-

KO mice, and the latter were trained, tested, and recorded alongside the former in order 

to allow direct comparisons of behaviour and physiology. As described in 2.3.5, mice were 

tested on the operant DMTS task and challenged by prolonging the delay period, by 
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sound distraction, or by reducing the SD and simultaneously increasing the delay period 

(see column-wise arrangement in Figure 3.3.1 and Figure 3.3.3 for the resulting behav-

ioural performance). For the operant DNMTS paradigm, mice were trained on the 2-

CSWM task (see 2.3.6) and challenged by introducing a longer delay period. T-maze per-

formance was assessed by first training mice for eight days and then challenging them by 

a longer delay period for four days, as stated in section 2.3.7.  

In contrast to expectation, we found that Gria1-KO mice could actually perform the DMTS 

5-CSWM task well above chance level. Before surgery, there was no significant difference 

between genotypes on the DMTS across training stages (Figure 3.3.1a, b). Interestingly, 

Gria1-/- mice initially even performed better than their WT littermates (Figure 3.3.1a). 

Nevertheless, when tested after full training (and with concomitant electrophysiological 

recordings), KO mice displayed significantly lower WM accuracy across the applied delay 

and distraction challenges compared to their WT littermates (Figure 3.3.2a, Figure 3.3.1c). 

In subsequent testing in the T-maze, we confirmed the chance level WM accuracy of 

Gria1-/- mice in this assay (Figure 3.3.2c). Finally, in the DNMTS 2-CSWM assay, Gria1-/- 

mice performed somewhat above chance level, but again worse than WT mice (Figure 

3.3.2d-e, Figure 3.3.4a-b).  

Their deficits in the DMTS paradigm were selective for the WM component of the task, 

and not mediated by impairments in more basic attentional or motivational functioning 

since SP accuracy, CP omission rate and CP reward latency were similar between groups 

(Figure 3.3.2b, Figure 3.3.1e, f). Note, however, that SP omission rates and correct laten-

cies (time from illumination onset until correct poke) in SP and CP were even lower in KO 

mice (Figure 3.3.3b-d, Figure 3.3.1g). Also, Gria1-/- mice performed more correct SP trials 

in total (Figure 3.3.3c) and were faster in getting to the reward as their reward latency in 

SPs was slightly lower than in WT mice (Figure 3.3.3e). These behavioural anomalies sug-

gest hyper-alertness, faster processing, and more task engagement (or motor drive) in 

this genotype during the SP which, however, does not translate to enhanced WM com-

pared to WT mice in the CP. 

Similar to the DMTS assay, WM-performance in the DNMTS task was also not confounded 

by motivational or attentional components as the SP accuracy, SP and CP omission rates, 

and CP reward latency were indistinguishable between genotypes (Figure 3.3.2e, Figure 
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3.3.4c, e, g). Also, even if not as pronounced as in the DMTS paradigm, Gria1-/- mice 

showed faster responding as indicated by lower SP correct latency (Figure 3.3.4i). 

 

Figure 3.3.1: Behavioural performance in the CP of the 5-CSWM task 
(a, b) Mean CP performance (accuracylit, number of correct CP responses into lit holes divided by number of 
all CP responses into lit holes) of WT and KO mice during initial 21 training days (a) and on 2-3 d of succes-
sively conducted training stages (b) in the 5-CSWM DMTS paradigm before surgery. (c-g) Performance pa-
rameters for three DMTS challenge series for which SP and CP accuracy data is shown in Figure 3.3.2a (pa-
rameters stated on x-axes) including their respective baseline. Parameters are accuracyall (number of correct 
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CP responses divided by number of all CP responses; c), absolute number of correct CP responses (d), rela-
tive number of CP omissions (e), CP reward latency as the mean duration between correct CP-poke (entry) 
and entry into the reward receptacle on the opposite site of the box (f), and CP correct response latency as 
mean time needed to enter the correct CP poke hole after the onset of its illumination. In each panel the 
results of a repeated-measures (RM) ANOVA of the data are shown a P-values of effects of phase (challenge 
condition), genotype, and interaction. Paired within-group post-hoc comparisons between phases are indi-
cated on horizontal lines for each genotype and pairwise comparisons between genotypes at individual 
phases are indicated below the data points in grey. # P < 0.1, * P < 0.05; ** P < 0.01; *** P ≤ 0.001; error 
bars display s.e.m. 

 

Figure 3.3.2: Impaired WM performance in Gria1-/- mice 
(a-e) WM (a, c, d) and attentional (b, e) accuracy of Gria1-/- mice (KO, cyan) and littermate controls (WT, 
black) in each set of baseline and challenge conditions, as stated on the x-axes, of the tasks identified in 
(a,c,d; top left). Right panel in (c) shows same data as (the left panel) but averaged across the last 4 sessions 
of each delay, which were also used for ML-based analysis. All shown behavioural data was conducted with 
simultaneous electrophysiological recordings. Delay length in operant tasks (a-b, d-e) is indicated as pre- + 
post-delay (referring to set delays before and after SP-reward collection). SD, stimulus duration in SP. Or-
ange line, chance level performance. N numbers for each dataset are stated in (b,c,e). Results of repeated-
measures ANOVAs within each challenge set are stated at the bottom of each graph; grey stars indicate 
pairwise Sidak post-hoc comparisons between groups within protocol. See Figure 3.3.1 and Figure 3.3.3 for 
further behavioural parameters in the CP and SP of the two operant tasks. 
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Figure 3.3.3: Behavioural performance in the SP of the 5-CSWM task 
(a-e) Same display and analysis as in Figure 3.3.1c-g, but for behavioural SP parameters in the same 5-
CSWM protocols (indicated on x-axes), namely (a) SP accuracy (main indicator of sustained attention in this 
task), relative number of SP omissions (b), number of corrects responses (c), correct response latency as 
time from illumination of poke-hole until the entry into the hole (d), and (e) SP reward latency (including 
the pre-reward delay where applied). Statistical analysis as in Figure 3.3.1. # P < 0.1, * P < 0.05; ** P < 0.01; 
*** P ≤ 0.001; error bars display s.e.m. 
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Figure 3.3.4: Behavioural performance on the DNMTS paradigm of the 5-CSWM task 
(a) Accuracylit of WT and KO mice over the course of the initial 30 training sessions in the operant DNMTS 
paradigm. (b-i) Behavioural parameters during DNMTS delay challenges and its baseline (indicated on x-
axes), for which SP and CP accuracies are shown in Figure 3.3.2d,e as same display and analysis as in Figure 
3.3.1 and Figure 3.3.3 for the DMTS task, namely for accuracyall (b), SP omission rate (c), total number of 
correct CP responses (d), CP reward latency (e), number of correct SP responses (f), CP omission rate (g), 
correct CP response latency (h), and correct SP response latency (i). # P < 0.1, * P < 0.05; ** P < 0.01; *** P ≤ 
0.001; error bars display s.e.m. 

3.3.1 Absence of WM-related information underlies impaired rewarded alternation on 

the T-maze in Gria1-/- mice 

To reveal possible physiological correlates of impaired WM performance in Gria1-/- mice, 

we firstly computed classifiers to predict WM-based choices in KOs as done before for 

WTs (Figure 3.2.3a-b, Figure 3.3.5a-c). For DMTS data, there were no obvious relations 

between predictability of WM choice and behavioural performance differences between 

the two groups: compared to WTs, in KOs, decoding accuracy was significantly lower if 

computed from PFC-dHC/vHC, MD, and dHC activity, but was higher if derived from the 

remaining regions and connections (Figure 3.3.5a). For DNMTS data, prediction accuracy 

was lower in KOs compared to WTs in five out of eight connections or regions, but the 
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appearance in the spider plots upon visual inspection (Figure 3.3.5b) and the ranks ob-

tained by genotype specific one-way ANOVAs were roughly similar between genotypes 

(e.g., dHC being the region with the high accuracy and MD and PFC being the only regions 

with differing ranks).  

This pattern contrasted sharply with decoding accuracies on the T-maze, which were not 

only significantly lower than those obtained with WT data along all connections and re-

gions but did not even exceed chance level in five out of eight of them and were at or 

below 60% in the remainder (Figure 3.3.5c). Thus, classifier accuracy mirrored the chance 

level performance of the animals in the task itself (Figure 3.3.2c) suggesting that their 

impairment is caused by a basic neural failure to store and communicate WM items. As a 

consequence, mice are likely unaware of what constitutes a correct choice even if they 

make one, and instead follow a different behavioural rule in this task - the simplest possi-

bility being to always turn into the same direction. Indeed, we found that KO-mice exhib-

ited a strong bias to turn to a specific side in the CP of any given session (Figure 3.3.5d). 
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Figure 3.3.5: Decoding of WM in Gria1-/- mice. 
(a-c) Cross-subject decoding accuracies when using indicated connectivity or local activity parameters to 
predict WM-based choices in Gria1-knockouts (cyan) and littermate wildtype controls (black) in the 5-
CSWM DMTS (combined 1 s SP-SD, 5+2 s delay challenge, a), 2-CSWM DNMTS (b) and the T-maze (c). 
Wildtype data and respective ranks (numbers in ovals) are identical to Figure 3.2.3a, b. Similarly, ranks for 
KO (in cyan ovals) have been generated from pairwise comparisons with Tukey post-hoc tests conducted 
after significant effects of connection/region in one-way ANOVAs (P < 0.0001 in all cases); connec-
tions/regions that were not significantly different from each other were assigned the same rank. Genotype-
related differences indicated by asterisks (unadjusted t-tests). Accuracies of classifiers trained on shuffled 
data are shown in the corresponding colour as dashed lines. Accuracies of all classifiers trained on real data 
in (a-c) exceeded chance level, except for those trained on Gria1-KO data in the T-maze for PFC-v/dHC con-
nections, PFC, and dHC. (d) Average bias to turn to one of the two choice arms irrespective of correct 
choice. # P < 0.1 * P < 0.05, ** P < 0.01; *** P ≤ 0.001. Shaded regions around mean show s.e.m. 

3.3.2 Simultaneous decoding of genotype and choice reveals aberrant WM-related con-

nectivity in Gria1-/- mice 

In order to find specific connectivity metrics that may underlie behavioural WM differ-

ences between genotypes, we extracted significant predictor weights from the obtained 
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classifiers from KO data in all three tasks, as done before for the WT data from the same 

experiments. However, there was only minimal overlap between the sets of significant 

predictor variables of both genotypes in the operant WM tasks (Figure 3.3.6a, b). For the 

5-CSWM assay, these were exclusively in the -range - namely MD→PFC -PDC in the de-

lay and dHC→PFC -PDC (and coherence) in the CP – which may be taken as an indication 

for the importance of such connectivity for DMTS WM (Figure 3.3.6a). Likewise, for oper-

ant DNMTS, the few parameters highlighted as significant predictors in both genotypes 

were almost exclusively in the - and -range (mainly PFC-vHC/dHC connectivity in the CP, 

Figure 3.3.6b). In the T-maze, virtually no significant predictors were found in KO mice, in 

line with the near chance level decoding accuracy of the respective classifiers (Figure 

3.3.5c, Figure 3.3.6c). 
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Figure 3.3.6: Individual connectivity measures predicting WM choice in all three rodent tasks in 
WT and KO. 
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(a-c) Matrix showing all connectivity predictor variables that contributed to the connection-based classifiers 
shown in Figure 3.2.3a-b (WT) and Figure 3.3.5a-c (WT and KO; DMTS, DNMTS and T-maze) and that were 
significantly associated with WM-performance according to their weight and differences between correct 
and incorrect CP in the dataset from WT (black), KO (blue), or both (green), or did not reach significance 
(grey). The same Bonferroni-adjustment as in Figure 3.2.6a was used: P < 0.05/ (total number of predictor 
variables across all phases, connections, and regions), i.e., P < 0.05/1184 for DMTS and P < 0.05/888 for 
DNMTS and T-maze. Variables from the pre- and post-delay of the DMTS 5-CSWM task have been combined 
in single lines. For theta, mean amplitude (m), peak amplitude (p) and frequency of peak (f) are shown, 
while for all other variables only the mean amplitude is used due to the absence of a clear singular peak. 
Note the relatively small overlap between sets of significant predictors in WT and KO mice, and the virtual 
absence of significant predictors for KO data in the T-maze, aligning with virtual lack of prediction accuracy 
of the respective classifiers (Figure 3.3.5c). 

This broad lack of overlap between predictor matrices in KO and WT even in the operant 

tasks suggests that KO mice engage partly different neural mechanisms to perform above 

chance level in these assays. To identify those aberrations among the broad changes of 

connectivity in Gria1-/- mice, that are most directly related to their WM-deficit, we 

adapted our ML approach and trained classifiers to discriminate genotype (KO vs. WT) 

and trial-type (correct vs. incorrect) simultaneously (multi-class decoding). Average de-

coding accuracies of such multi-class classifiers were always far above chance level (25%; 

P < 0.0001, t-test; Figure 3.3.7a). By a wide margin, the highest average decoding accura-

cies were achieved when using data from the PFC-MD connection in the 5-CSWM (80%) 

and the T-maze (82%) assays, and from local dHC activity in the 2-CSWM task (79%), 

pointing to them as a likely source of WM deficits in Gria1-/- mice (Figure 3.3.7a). Analysis 

of the pairwise multi-class decoding accuracies (assessing four categories (WT/KO and 

correct/incorrect) against each other with either differing genotype or trial type, but not 

both (KO correct vs. WT incorrect or vice versa)) for 5-CSWM assay data revealed that 

genotype could be predicted with significantly higher accuracy (> 95% at maximum) than 

trial type, irrespective of which connection or region contributed the data used for decod-

ing (Figure 3.3.7b). 
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Figure 3.3.7: Multi-class decoding of WM in Gria1-/- mice 
(a) Multi-class decoding accuracy for simultaneous predictions of genotype and choice (25% chance level) in 
the three rodent tasks indicated by colour. Rank order of each connection and region determined as in 
Figure 3.2.3a, b. (b) Pairwise classification accuracy between the four relevant (out of six) comparisons for 
the 5-CSWM task. Accuracies of classifiers trained on shuffled data are shown in the corresponding colour 
as dashed lines. Accuracies of all classifiers trained on real data exceeded chance level. # P < 0.1 * P < 0.05, 
** P < 0.01; *** P ≤ 0.001. Shaded regions around mean show s.e.m. 

Analogously to our previous analysis, we extracted the most predictive connectivity met-

rics of the multi-class decoders in order to identify WM-related neurophysiological differ-

ences between the genotypes. Again, two criteria had to be fulfilled for such predictors: 

their absolute weights had to be significantly higher in classifiers trained with real labels 

than in those trained with shuffled labels (t-test), and, when analysing the effects of gen-

otype and choice (correct vs. incorrect) on the amplitude of the metric with repeated-

measures ANOVAs, the genotype-choice interaction had to be significant. Strikingly, there 

was no single common connectivity measure that was identified in every one of the three 

tasks as significant predictor. Only two common predictors – vHC-dHC -coherence in the 

delay and PFC-dHC -wPLI in the CP – emerged when relaxing the P-value adjustment to P 

< 0.01 for genotype-choice interactions (Suppl. Figure 6). These results suggest that – in 

alignment with the high task-specificity of WM-correlates seen in WT mice (see 3.2.4) – 

the specific circuit-level origins of WM-deficits in Gria1-/- mice are distinct between tasks. 

Indeed, the vast majority of significant multi-class predictor variables for the T-maze were 

found in the PFC-MD and, to a lesser extent, in the vHC-dHC connections. For the 5-

CSWM task, in contrast, the most significant predictors were almost exclusively confined 

to the dHC→PFC connection (Figure 3.3.8a), although predictors in the PFC-MD and vHC-

dHC connection emerged with lower p-value threshold (Suppl. Figure 6). 
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Figure 3.3.8: Distinct WM-related connectivity in Gria1-/- mice 
(a) Matrix showing all connectivity predictor variables that contributed to the connection-based classifiers 
shown in Figure 3.3.7a. Variables that were significantly associated with WM-performance according to 
both their prediction weight (t-tests) and a significant genotype-choice interaction (RM-ANOVA, Bonferroni-
adjusted for total number of variables) in any of the three WM tasks are indicated by the corresponding 
colour, remainder in grey (white squares have no corresponding variable). Variables from the pre- and post-
delay in the 5-CSWM are combined in single lines. For theta, mean amplitude (m), peak amplitude (p) and 
frequency of peak (f) are shown, while for all other frequency bands only the mean amplitude is used due 
to the absence of a clear singular peak. At the bottom, all task phases are combined. 

We further analysed the most predictive predictors depicted in Figure 3.3.8a by displaying 

the amplitudes for measures during the DMTS task (Figure 3.3.9). Interestingly, for the 

PFC-dHC connection, the classifier mainly used predictors in which KOs had always higher 

absolute or relative amplitudes during correct compared to incorrect trials whereas the 

picture was more variable for WT mice.  
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Figure 3.3.9: Significant multiclass predictors for DMTS 
Mean values of absolute (a) or relative (b) predictor variables for DMTS WM (extracted from Figure 3.3.8a) 
for WT in correct (black) and incorrect (grey) trials and for KO in correct (dark blue) and incorrect (light blue) 
trials. X-axis contains significant features sorted by frequency band, measure, task phase and connection. 
Significance is not indicated as a significant genotype/choice interaction revealed by repeated-measures 
ANOVA applies to all shown variables. PDC in blue font, directed connectivity in the opposite direction com-
pared to connection-name. Error bars, s.e.m. 

These data suggest that there is no singular neural cause for the profound WM-deficits of 

Gria1-/- mice, but that the broad connectivity aberrations in this mouse-line, seen across 

multiple connections and all frequency bands [76, 420] affect the successful execution of 

each WM task in distinct ways, depending on the relative engagement of each brain re-

gion by each task’s demands. 

3.4 NORMAL ANXIETY IN GRIA1-/- MICE 

As described in the Introduction, the overarching goal of this thesis work was to elucidate 

GluA1-mediated circuit mechanisms of schizophrenia-related cognitive and affective func-

tions. This centrally includes mechanisms of salience attribution in addition to those of 

WM. While a large plethora of alterations in Gria1-KOs under conditions of spatial novelty 

have already been described in section 1.5.2, we also sought to investigate other types of 

saliencies. For example, mutant mice with inactivated GluA1 phosphorylation sites [266] 

have shown a decrease in anxiety-like behaviours [250] - and so have Gria1-/-  mice [141], 

which points to a role of GluA1 in assigning anxiogenic salience. To firstly recapitulate 
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these findings and to validate the behavioural phenotype in this mouse model, uncondi-

tioned anxiety and exploration were tested on the EPM and in the open field (Figure 

3.4.1) in the same cohort that underwent the WM tasks (15 Gria1-/- mice (10 males and 5 

females) and 12 Gria1 WT mice (8 males and 4 females)). On the EPM, more time spent in 

and more entries to the open arms relative to the closed arms is considered to represent 

either reduced anxiety or increased exploratory drive (or a combination of both) in ro-

dents. The preference ratio calculated from visiting time – i.e., time spent in the open arm 

divided by time spent in all arms – revealed no significant differences between genotypes 

(Figure 3.4.1c). Also, the preference calculated from the number of entries– i.e., entries to 

the open arm divided by entries to all arms – showed no significant difference (Figure 

3.4.1d). In line with the latter, in the open field test (10 minute exploration in a novel box; 

same experiment as in Figure 3.1.1b-c; see 2.3.1 and 3.1.1 for methodological description 

and further results, respectively), the distance mice kept to the border of the box was not 

significantly different between genotypes (Figure 3.4.1h), indicating no pronounced anxi-

ety-related behavioural phenotype. 

However, Gria1-/- mice showed hyperlocomotion on the EPM as also seen on the open 

field test (Figure 3.1.1b, c): The mean distance travelled on the EPM was higher in Gria1-/- 

mice than in Gria1 WT mice (29.33 vs. 16.79m, Figure 3.4.1e) and Gria1-/- mice entered 

both of the closed arms more often than their WT littermates (71.40 vs. 39.08, Figure 

3.4.1b). Additionally, Gria1-/- mice travelled at a higher speed during the experiment 

(0.049 vs. 0.028 cm/s, Figure 3.4.1f). These results are in line with previous descriptions of 

hyper locomotor activity in this mouse line (e.g. Figure 3.1.1b, c, or [76]). Since no robust 

anxiety-related phenotypes of Gria1-/- mice were found, no further electrophysiological 

analyses of potential correlates of anxiety-related salience were performed. 
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Figure 3.4.1: Gria1-/- mice show hyperactivity on the EPM, but no anxiety-related abnormalities. 
(a) Experimental setup for assessing anxiety in Gria1 WT and KO mice, a 5min habituation time in a novel 
cage is followed by a 5min test phase on the EPM. Locomotion was measured by analysing the total entries 
to the closed arm (b) and the total distance travelled (e). (c) Preference for time spent in the open arm and 
preference for the number of entries to the open arm (d). (f) Mean travelling speed (m/s) on the EPM. (g) 
graphical depiction of the open field setup. (h) Mean distance to border during exploration in the open field 
test. Dots indicate all data points, boxes the 25th and 75th percentile, whiskers range and horizontal line 
median. *** p<0.001 (unpaired t-test; Wilcoxon rank-sum test was used where the normality of the data 
was not assumed). 

3.5 BEHAVIOURAL IMPACT OF GLUA1 ABLATION FROM EXCITATORY CA2/CA3 CELLS 

A previous study of the lab has pointed to a crucial role of GluA1-containing AMPARs in 

either the CA2 or the CA3 subfield of the hippocampus in spatial novelty-related salience 

attribution (spatial short-term habituation, [76]). To further elucidate and clarify this role, 

we turned to a transgenic approach to ablate GluA1 from specific populations of excitato-

ry cells of the CA2-subfield (targeted by the Amigo2-Cre driver line; Gria1Amigo2) or of the 

CA3-subfield (targeted by the Grik4-Cre driver line; Gria1Grik4). Inside the hippocampus, 

correct ablation was verified as Gria1Amigo2 and Gria1Grik4 mice showed a noticeable gap 

of GluA1-expression in the CA2 and CA3 subfields, respectively (Figure 3.5.1a). 
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3.5.1 Gria1-knockout from excitatory cells of CA2/CA3 causes mild hyperlocomotion 

Both Gria1Amigo2 and Gria1Grik4 mice displayed a mild increase of novelty-induced loco-

motion in the open-field and EPM (Figure 3.5.1d-h) – although far from the pronounced 

hyperlocomotion phenotype consistently seen with global Gria1-knockout (see Figure 

3.1.1b, c, Figure 3.4.1e and [53, 76, 471]). Gria1Amigo2 – but not Gria1Grik4 – mice showed 

marginally higher preference for entries into the open arm of the EPM compared to con-

trols, indicating slightly reduced anxiety (Figure 3.5.1b). In contrast, they also displayed a 

reduced average distance from the wall of the open field, suggesting higher anxiety 

(Figure 3.5.1c). This mixed phenotype points to a subtle aberration in the processing of 

anxiogenic signals but argues against a clear phenotype of altered anxiety in this line.  

 

Figure 3.5.1: Ablation of GluA11 from CA2/CA3 mildly elevates locomotion. 
(a) Confocal images of anti-GluA1 staining (red) of slices of dorsal (top) and ventral (bottom) hippocampus 
from the groups named above. Scale bar, 1 mm. (b) Preference (time and entries) for the open arm on the 
EPM. (c) Average distance from border during 90 min locomotor activity measurement in a novel open field. 
(d-g) Novelty-induced locomotor activity displayed in 5 min intervals (d, f) or as total distance moved (e, g). 
(h) Distance moved on the EPM. In (b-h), the cohort is identified above the panels and colour-coded, with 
KO-mice and control groups of each cohort in colour and black, respectively. N-numbers stated in (d, f). The 
two cohorts were treated separately for statistics. Repeated measures-ANOVA was used for analysing data 
over time (d, f), univariate ANOVAs for the remainder, ANOVAs used genotype and sex as independent 
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variables. All graphs represent mean ± s.e.m. *** P < 0.001, * P < 0.05. Post-mortem histology was con-
ducted by Kasyoka Kilonzo, Dennis Kätzel, and Stefanie Schulz. 

3.5.2 GluA1-hypofunction in CA2/CA3 impairs short-time habituation 

Short-term habituation to sensory stimuli is strongly impaired by global Gria1-knockout, 

entailing deficits of object-related and spatial novelty-preference in the novel-object 

recognition and Y-maze tests, respectively [29, 380]. Both tests were conducted in 

Gria1Amigo2 and Gria1Grik4 mice. In the Y-maze, GluA1 ablation from CA3 excitatory cells 

caused reduced spatial novelty preference in terms of entries into the novel vs. the famil-

iar arm at young age and in terms of time spent in the novel vs. the familiar arm at old 

age, whereas Gria1Amigo2 mice showed no significant alterations on the task (Figure 

3.5.2a-c).  

In addition, object-related short-term habituation was tested by assessing the preference 

for a novel object relative to an object that mice familiarized with immediately before the 

preference test. In contrast to spatial short-term habituation, a deficit of novel object 

recognition was seen both in Gria1Amigo2 and Gria1Grik4 mice as the preference index for 

the novel object was significantly lower in both groups compared to the respective con-

trol mice (Figure 3.5.2g). However, only Gria1Amigo2 mice displayed strongly increased 

exploration of all types of objects in all phases of the task, suggesting a profound deficit of 

object-related short-term habituation (Figure 3.5.2d-g). 
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Figure 3.5.2: Ablation of GluA1 from CA2/CA3 impairs short time habituation. 
(a) Illustration of Y-maze SNP task of spatial short-term habituation. (b) Locomotor-activity in the sample 
phase (SP) for the cohorts stated on the left test at different ages (x-axes). (c) Preference for the novel arm 
in the test phase of the Y-maze, conducted at the indicated ages, calculated from residence time or number 
of entries, as stated. Stated N (b) refer to the test at old age, while the full cohorts participated in the first 
test. (d) Illustration of the novel-object recognition test (NOR) of object-related short-term habituation. (e) 
Exploration of the two identical objects in the sample phase measured as interaction time (left) and number 
of contacts (right). (f) Interaction time with novel and familiar object in the NOR choice phase (CP). (g) Pref-
erence for the novel object calculated as interaction with novel object relative to interaction with both 
objects combined using interaction time or the number of contacts as indicator. In (b-c, e-g), the cohort is 
identified above the panels and colour-coded, with KO-mice and control groups of each cohort in colour 
and black, respectively. N-numbers stated in (b, e); the two cohorts were treated separately for statistics. 
Univariate ANOVAs were used for the remainder using genotype and sex as independent variables. Dot 
graphs represent individual mice, all other show mean ± s.e.m. Orange line indicates chance level, where 
applicable. *** P < 0.001, ** P < 0.01, * P < 0.05. The NOR-test was conducted by Vivien Prex and Dennis 
Kätzel, the Y-maze testing was supported by Sampath K.T. Kapanaiah. 

3.5.3 Altered social behaviour in Gria1Amigo2 mice 

Ablation of synapses from Amigo2-positive cells in the hippocampus was shown to entail 

a deficit of social short-term memory [201] and of representation of social novelty by 

CA2-activity [127], but whether AMPARs are involved in these processes is unknown. 

Therefore, we conducted a reciprocal sociability test in a familiar environment at the be-

ginning of the test battery, and found that, Gria1Amigo2 – but not Gria1Grik4 – mice 
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showed a strongly reduced social interaction (Figure 3.5.3b-d). At older age, we repeated 

the test, albeit with an additional novelty-based social memory test an hour later (analo-

gously to [201]; Figure 3.5.3a). At this later stage, sociability was normal, but the social 

novelty preference score was not different from chance level in both Gria1Amigo2 and 

Gria1Grik4 mice (but was also only marginally above chance level in controls; Figure 

3.5.3b-e). For further exploration, we applied the 3-chamber task with a modification 

(analogously to [201]) that allowed to discriminate between social novelty- and genuine 

social memory effects by testing separately for social novelty-preference (using cage-

mates as control stimulus condition; Figure 3.5.3f). Briefly summarised, social preference 

(sociability) was tested by introducing a cage mate and a mouse-sized dark sponge, social 

novelty preference by introducing an unfamiliar mouse together with the same cage ma-

te, and social short-term memory by introducing another unfamiliar mouse together with 

the previously familiarised novel mouse (Figure 3.5.3f).  

During the sociability phase we found that Gria1Amigo2 mice were normal, but Gria1Grik4 

mice showed enhanced social interaction as they visited their cage mate more often (rel-

ative to investigations of the inanimate sponge) than their control group (Figure 3.5.3g). 

While both transgenic GluA1-ablation models showed normal social novelty-preference, 

only Gria1Amigo2 mice showed a deficit in social short-term memory indicated by a chance 

level preference score (P > 0.3, one-sample t-test; note that due to high variability the 

difference to control mice reached only trend-level; Figure 3.5.3g). 
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Figure 3.5.3: Ablation of GluA1 from CA2/CA3 alters social behaviour. 
(a) Illustration of reciprocal social interaction assay with memory phase 1h later; see 2.3.3. (b) Social inter-
action time in 2 min intervals in the cohorts named on the left for the first 12 min exposure, tested at two 
different ages (stated in upper left corner). (c) Same as (b) but summed up total interaction time. (d) Total 
number of interactions in 12 min. (e) Preference for novel mouse calculated as interaction with novel 
mouse relative to sum of interaction with both mice using interaction time or the number of contacts as 
indicator. (f) Illustration of phases of 3-chamber task (omitting habituation to small compartments on the 
prior day and a 5 min habituation phase on day 2); see 2.3.3. (g) Preference indexes for the three test phas-
es named in orange in (f) and (g) each calculated either from the time spent in the interaction zone around 
the lateral compartments (cyan in (f)), or from the distance the head of the animal moved inside the inter-
action zone, as stated. The social preference refers to the preference for the compartment with a cage-
mate compared to the compartment with a mouse-sized object, as determined in the last phase of day 1. 
Novelty-preference refers to the preference for an unknown mouse compared to a cage-mate. Short-term 
memory refers to the preference for another novel mouse compared to the mouse that has become famil-
iar across the two immediately prior phases on day 2. All data shown in (b-e, g) is from male mice and the 
cohort is identified on the left of (b, g) and colour-coded, with KO-mice and control groups of each cohort in 
colour and black, respectively. N-numbers stated in (b, g), although some mice were excluded for the 
memory test (e); the two cohorts were treated separately for statistical comparison between wildtype and 
control data with univariate ANOVAs. White stars and numbers indicate result of one-sample t-test against 
chance level (orange line). All graphs show mean ± s.e.m. *** P < 0.001, ** P < 0.01, * P < 0.05. Experiments 
were supported by Stefanie Schulz, Vivien Prex, and Dennis Kätzel. 
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4 DISCUSSION 

The objectives of this thesis were to explore the neural basis of WM by analysing multiple 

measures of LFP-based connectivity in mice and humans using a novel ML approach and 

to further scrutinize the role of GluA1-containig AMPARs for various forms of short-term 

memory, including WM and short-term habituation. In addition - to allow for an optimal 

connectivity analysis in the first place - the most widely applied measures of interregional 

directed and non-directed neural connectivity were comparatively examined in awake 

mice recorded during the open field test with chronically implanted field electrodes.  

To investigate WM-related connectivity, firstly, a cohort of Gria1-KO and WT mice was 

trained and tested on multiple WM paradigms using a novel operant box system and the 

conventional T-maze. Simultaneously, field recordings from frontal, temporal and thalam-

ic brain regions were obtained, and measures of connectivity were calculated on a single-

trial basis to investigate the neural basis of WM using a newly designed approach of ML-

based decoding of individual WM-mediated choices. Additionally, this approach was also 

applied to a publicly available dataset of intracranial recordings made in human subjects 

while they performed three distinct visual WM tasks with transiently implanted surface 

field electrodes. In a separate project, various forms of short-term memory were assessed 

in two transgenic mouse lines, in which GluA1 was selectively ablated from excitatory 

cells of either the CA2 or the CA3 subfield of the hippocampus.  

In the following, results from each part will be summarised and reviewed in context of the 

current literature regarding their relevance, limitations, and future implications. 

4.1 ELEVATED THETA-BAND CONNECTIVITY ACROSS THE BRAIN DURING EXPLORATION IN 

GRIA1-/- MICE 

Following up on a previous study from our laboratory [76], in which the coherence be-

tween and power and PAC within the PFC and dHC were examined during novelty-

induced locomotion, we aimed to further elucidate the underlying pathophysiology of 

hyperlocomotion of Gria1-/- mice. This thesis work replicated this robust hyperactivity 
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phenotype [53, 76, 471] and analysed LFP data from field electrodes chronically implant-

ed in the PFC, dHC, and vHC by calculating a large number of commonly used measures of 

inter-regional neural connectivity. We found that elevated theta-band connectivity in 

Gria1-/- mice could be found in all examined connections and across all measures of non-

directed synchrony (coherence, wPLI, PLV and PPC). Furthermore, the PFC-dHC connec-

tion showed reduced gamma-band connectivity in all measures. Bygrave et al. suggested 

a hippocampal origin of the theta hyperconnectivity phenotype since viral rescue of 

GluA1 in the hippocampus was able to restore normal theta coherence [76]. This hypoth-

esis could be confirmed in the present work since theta-band GC departed in either sub-

division of the hippocampus. However, other measures of directed synchrony (PDC, DTF, 

SPC) were only partly able to recapitulate these findings, calling for a cautious application 

of all of those measures in order to obtain a full and fine-grained picture of connectivity 

across the brain. Apart from the characterization of the pathological connectivity in Gria1-

KO mice, we also investigated and discovered discrepancies between the various connec-

tivity measures which is discussed in broader detail in 4.2. 

Regarding clinical relevance of these findings, it is important to note that hyperconnectiv-

ity and EEG disturbances in general are reliably found in schizophrenia patients [146, 254] 

and might serve as potential biomarkers in the future [246, 268, 443]. To find proper 

treatment strategies it might therefore be crucial to find the underlying pathophysiology 

of these electrophysiological alterations, first and foremost in animal models. Growing 

evidence suggests that the Gria1 mouse might serve as a suitable model for schizophrenia 

as it displays several behavioural abnormalities related to the disease such as hyperloco-

motion and impaired SWM and attentional regulation of salience attribution to novel 

stimuli [28, 29]. 

4.2 SUBSTANTIAL LACK OF REDUNDANCY BETWEEN A BROAD NUMBER OF MEASURES OF CON-

NECTIVITY  

We examined the level of redundancy and experimental contingencies of the most widely 

applied measures of interregional directed and non-directed neural connectivity that are 

obtainable when recording LFP and MUA with chronically implanted field electrodes in 

awake mice. This analysis revealed a surprisingly large absence of redundancies between 
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such metrics which suggests that the implicitly held belief that experimental results ob-

tained with one metric of connectivity would allow general deductions about aberrations 

in inter-regional functional connectivity is problematic.  

While this finding was somewhat expected a priori when regarding metrics of distinct 

conceptual foundation – e.g., non-directed synchrony vs. measures of causation – the lack 

of similarity even within the same analytical category is unreckoned. From a conceptual 

perspective, the results reveal the absence of a concrete empirical counterpart of the 

rather interchangeably used terms of inter-regional communication, coupling, infor-

mation transfer, or functional connectivity. Given these contingencies of a result obtained 

with any single metric, it is difficult to equate it with the too generic concept of neural 

communication. 

Intriguingly, a comparable conclusion has been reached by a recent study on connectivity 

measures applied on human EEG data [149]. In this study, the authors analysed a freely 

available resting-state EEG dataset and questioned the vast proliferation of different ap-

proaches and their capricious use in the literature in order to capture functional connec-

tivity. To this end, they computed multiple measures of connectivity (for a brief review 

see 1.2.1 and Table 1.2.1) such as PLV, PPC and wPLI and concluded, similarly to our 

study, that the often arbitrary choice of the applied measure might have detrimental ef-

fects on the reported conclusions across different studies and that the term functional 

connectivity is misleading and should therefore be used much more carefully [149].  

A particular analytical problem appears to be the lack of benchmarking of the sensitivity, 

specificity, and robustness of the individual measures against a ground truth of actual 

physiological trans-synaptic activity along anatomically verified connections. Notably, we 

here, like previous studies, found evidence for significant causal influence not only along 

the direct anatomical projections – dHC→vHC [47, 428], vHC→dHC [47] and vHC→PFC 

[47, 221, 410, 426] – but also along the PFC-dHC connection that is mediated only indi-

rectly via the nucleus reuniens [452, 453], and even in the direction for which no obvious 

anatomical correlate has been described yet to our knowledge (PFC→vHC [47]), which 

complicates the validation and interpretation of the functional connectivity measure-

ments.  
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In absence of such benchmarking and while facing considerable logistical limits in apply-

ing multiple referencing and multiple metrics for every experiment, our analysis at least 

qualitatively implies some guidelines on how to maximize the analytical advance from 

similar experiments by proposing a set of coupling metrics suited for a rather comprehen-

sive, yet non-redundant analysis of inter-regional communication: 

Firstly, we demonstrate that some mathematically related measures do actually show a 

pairwise redundancy and hence do not need to be included into the same analysis, name-

ly PPC and PLV [36], parametric and non-parametric GC (allowing for considerably faster 

computation by using the non-parametric approach [121]), and PDC and DTF [19, 50, 

233].  

Secondly, beyond these reliable redundancies, we found further partial redundancies 

across connections, genotypes and frequencies helping to narrow the list of metrics to 

include in an analysis, further. Most importantly, PPC and PLV also showed considerable 

overlap with both the magnitude and (to a lesser degree) the phase angle of coherence, 

and medium average correlations with wPLI, PDC, and DTF. Also, coherence phase angle 

correlated broadly at a medium average level with coherence amplitude, PDC, DTF, GC 

and npGC in addition to PLV and PPC. Additionally, coherence magnitude often correlated 

with wPLI, suggesting, for practical purposes, that an assessment of two pairs of metrics – 

PPC and coherence phase angle, or coherence magnitude and wPLI – would be a useful 

first-pass approach to survey LFP data for possible aberrations in functional connectivity, 

which can then be followed up with mutually non-redundant directed metrics. However, 

it is important to note that coherence phase angle did not capture between genotype 

effects that were seen with other measures (Figure 3.1.3). 

Thirdly, while in such further analysis GC and PDC (or DTF) may seem particularly attrac-

tive metrics given that they provide a more fine-grained picture of coupling in distinct 

directions and may be interpreted as indicators of causal influence between two brain 

regions, it is important to note that they do not yield similar results even though they are 

sometimes (erroneously [30]) equated. Despite some correlations between PDC (and DTF) 

with PLV, PPC, and coherence phase angle in the correlation analysis (Figure 3.1.5, Figure 

3.1.6), there were actually considerable and irresolvable discrepancies between these 

measures in the genotype-comparison (compare Figure 3.1.2 with Figure 3.1.3d-f). For 



Discussion 

141 
 

instance, genotype-related differences in PFC-dHC gamma-range coupling seen across all 

measures of synchrony and coherence phase angle, were not uncovered by PDC, while 

the reverse was true for the vHC-dHC connection. Therefore, PDC/DTF and GC may serve 

as complementary metrics rather than surrogates and are in combination suited for an 

educated assertion about directed communication.   

Fourthly, spike-phase and phase-amplitude coupling take on a special role as they cannot 

be expected to be equivalent to any of the other parameters because they capture inter-

dependencies between spikes and LFP and between distinct LFP frequencies respectively 

and are therefore useful to include to deliver a different perspective on functional con-

nectivity. While this may have been expected given their distinct biological nature, the 

degree of absence of redundancy is nevertheless astonishing. Therefore, when adding 

further metrics to the analysis, SPC and PAC would be the measures of choice because 

they correlate least with the other measures, including GC, both in the bivariate correla-

tional analysis within subjects and with respect to detecting genotype-related effects. It 

should be noted, however, that the presented SPC analysis using MUA [4] is likely far 

from optimal given that units cannot be chosen by movement of the electrodes and not 

properly sorted. The recording of single-unit activity from moveable electrode bundles or 

arrays [401, 434] will certainly improve the assessment of SPC and its related directed 

measures.  

The analysis discussed in this section informed the choice of metrics for the analysis of 

the subsequent WM experiments. For non-directed measures, coherence and wPLI were 

included as they are largely non-redundant; for directed measures, GC and PDC were 

used for the same reason; PAC was included as it contains exclusive cross-frequency in-

formation and is non-redundant with almost all other measures. SPC was not applicable 

due to the short trial length leading to too few spikes per time frame to calculate reliable 

coupling. Amplitude cross-correlation and coherence phase angle were not applied be-

cause they were shown to be unsensitive to aberrations detected with other measures. 

The remaining measures were excluded because of obvious redundancies with the in-

cluded measures. 
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4.3 CHOICE OF REFERENCE LOCATION IS CRUCIAL FOR IDENTIFYING DIFFERENCES USING LFP-

BASED CONNECTIVITY 

A prefrontal or cerebellar placement are potential locations for a reference electrode in 

rodent studies. When analysing the PFC, the distance of the reference electrode to the 

analysed brain regions plays an important role because it might obscure biological effects. 

We therefore sought to systematically investigate this issue by recording from both refer-

ence locations in order to be able to digitally re-reference the recorded signals. We found 

a worrying contingency with respect to the location of the reference electrode and, as 

shown in Figure 3.1.8, connectivity involving the PFC is most strongly affected by the 

choice of reference location. These findings advocate, that experimental results obtained 

with one configuration for referencing do not deliver the complete picture of inter-

regional functional connectivity. Therefore, for LFP-based measures, the reference elec-

trode should be placed in a brain structure that is largely separate from the brain regions 

between which connectivity is studied. A frontal electrode may easily obscure pheno-

types in prefrontal connectivity as it may pick-up field potential signals from the PFC [197, 

230]. It was argued that the LFP might not be as local as its name suggests, therefore, it 

should be of high importance to keep enough distance between the recorded region of 

interest and the reference location [197, 230]. Contrary to this, Katzner et al. revealed 

that LFPs in the visual cortex mainly stem from sources within 100µm of the respective 

recording point, with evident influences coming from up to within 250µm [241] and Xing 

et al. found a spatial spread of around 200-400µm [482], both studies suggesting that 

LFPs are in general local phenomena. However, Kajikawa and Schroeder demonstrated 

that the lateral and vertical spread of the LFP can reach well beyond 400µm [230] which is 

in line with previous findings that propose a larger spatial spread up to 3mm [46, 327, 

463]. These studies question the widely held belief that indirect currents picked up as LFP 

can be complementary to directly measured, local action potentials, because exact spatial 

localization of the LFP source is problematic [135, 230, 231]. 

The present study supports the notion that some reference locations may obscure biolog-

ical changes while others are more favourable, as it provides a systematic comparison of 

two reference locations [1, 345, 401, 434].   
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4.4 TESTS OF WORKING MEMORY IN MICE 

In this study, we were able to show for the first time that healthy mice are capable of 

learning several WM tasks with opposing rules consecutively, namely a DMTS 5-CSWM 

task, a DNMTS T-maze and a DNMTS 2-CSWM task (Figure 3.2.1). Previous studies imple-

mented the DMTS 5-CSWM task (termed CAM task) in rats [97] and mice [437]. Here, 

Gria1 KO and WT mice were first trained on this task until they reached solid above 

chance level performance, then they underwent surgery for electrode implantation and 

were subsequently retrained on the DMTS assay (for a timeline of WM experiments, see 

Figure 3.2.1). After successful completion of several challenges with simultaneous record-

ings, they were shifted to the T-maze where they effectively adopted a rewarded alterna-

tion (DNMTS) paradigm. (Implementing a DMTS paradigm in the T-maze is not possible 

because mice naturally tend to novelty-seeking behaviour by entering the previously un-

entered arm.) After that, mice were again transferred to the operant boxes where they 

learned the DNMTS 2-CSWM task with only the second and fourth hole being illuminated 

(making it similar to a task developed by [178]). This paradigm was then used for chal-

lenge experiments with simultaneous recordings because mice failed to acquire the 5-

choice (5-CSWM) version of the DNMTS paradigm (in line with previous data, [437]). In 

contrast to the T-maze, spatial cues for exploration (or spatial novelty in general) do not 

play a major role since the mouse resides in the same box all the time and hence, choice 

options (illuminated holes) are presented within the same setting. Nevertheless, learning 

the DNMTS 2-CSWM task after the other two paradigms still has to be considered a chal-

lenging task for mice, as the stimulus that was previously presented has to be ignored in 

order to obtain a reward. These findings, together with the previous study that firstly 

proposed operant 5-CSWM testing in mice [437], add a valuable repertoire of tasks that 

capture different aspects of WM in mice. This is underlined by our electrophysiological 

findings that point to the fact that mice use different neural mechanisms to solve differ-

ent tasks what makes them even harder to compare and makes them seem complemen-

tary rather than interchangeable (see 4.5.1). This is also supported by the finding that 

mice with NMDAR-hypofunction in excitatory cells in the PFC were impaired in the 5-

CSWM paradigm but performed normally on the T-maze [245] whereas the reverse is the 

case for mice with hippocampal GluA1 ablation (Kilonzo et al., in preparation). 
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Though, it is noteworthy that training and testing mice on operant tasks requires a more 

extensive setup, custom-made equipment to measure electrophysiology simultaneously, 

and time and labour for several months of training compared to the conventional T-maze. 

4.5 WORKING MEMORY RELATED CHOICES CAN BE PREDICTED TRIAL-BY-TRIAL BY LFP-BASED 

MEASURES 

Using a combination of WM-testing, simultaneous electrophysiological multi-site record-

ings and ML, we reveal that WM-related choices can be predicted trial-by-trial in mice 

and humans by linear decoding of high-dimensional arrays of LFP-based measures of in-

ter-regional connectivity or local activity (the electome). In mice, we analysed signals from 

the chronically implanted depth electrodes and calculated a largely non-redundant set of 

measures of inter-regional and local activity (4.2). In humans, an openly available dataset 

of recordings made with iEEG electrodes during WM testing were used and the same 

measures were calculated. 

The high decoding accuracies of around 90% (compared to a chance level of 50%) 

achieved in both species are remarkable in multiple respects, including the spatially 

coarse nature of the extracted neural signal (see 4.3 and [230]), the short – often sub-

second – data traces used to calculate predictors, the intrinsic variability caused by merg-

ing data from all analysed subjects with varying electrode placements, and the lack of 

precise neuronal information as encoded in spike trains of individual neurons [56, 410, 

419, 475]. Our novel approach utilizes the trial-by-trial predictive capacity of physiological 

activity as an indicator for its association with WM, and thus enabled a largely unbiased 

top-down analysis to reveal an unexpectedly rich pattern of frequency-specific connectivi-

ty and activity changes during individual phases of distinct WM assays in mice and hu-

mans.  

4.5.1 Prediction of working memory in healthy subjects 

The comparative analysis of multiple WM assays in mice - including those that allow con-

trol over basic motivational and attentional parameters - provides the unique advantage 

that neurophysiological activity patterns that might be truly relevant to WM may be iso-

lated. In this way, we could reveal MD-PFC − and -range coupling during memory en-
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coding and maintenance, respectively, as well as vHC-PFC and vHC-dHC -coupling dur-

ing retrieval as common connectivity patterns across all three rodent tasks - whereas the 

vast majority of connectivity proved to be task-specific (Figure 3.2.11a-c).  

Against a backdrop of widely varying claims about which kind of neural connectivity un-

derlies WM (Table 1.6.1), our initial intention was to establish an unbiased analytical pipe-

line to extract “true” anatomical and frequency-related WM-correlates using the predic-

tor weights generated by the linear classifiers that decode WM-based choices with high 

accuracy. Our results, however, refute some implicit key assumptions of this endeavour – 

and, by extension, of many prior investigations of WM-correlates:  

Firstly, there is no single – or small set of – anatomical regions or connections, types of 

directed information transmission, or frequency bands that can be regarded as a unique 

WM correlate. Recalling the streetlight effect (overestimation of already known, and ne-

glect of possible other, electrophysiological features, see 1.6.2 and [111]), previously sug-

gested correlates, especially in the rodent literature (Table 1.6.1), could be identified as 

such only because the whole quantity of connections and measures investigated in each 

study was rather small, as opposed to the minimum 888 metrics analysed here in mice. In 

our study virtually every analysed frequency band, metric, connection, and region bore 

some predictive power regarding WM-mediated choice and significantly differed between 

correct and incorrect choices in some instances.  

Notably, when reconsidering the issue of volume conduction, one would expect that ac-

tivity in and connectivity between all brain regions would be equally proficient in predict-

ing behavioural outcome because similar information is allegedly recorded at each site 

due to spread across the brain. However, this is not the case since distinct differences in 

predictive performance between brain regions and connections emerged and the classifi-

er apparently found distinctive features which yielded varying predictive power. 

Secondly, there is no single behavioural WM-task that could be regarded as representa-

tive of the broad psychological construct termed “working memory” in order to allow the 

identification of the neurophysiological correlate of that construct. This is illustrated by 

the enormous variability in the patterns of predictive connections and metrics across 

task-paradigms in both species. In mice, the diversity of predictive parameters between 

the three tasks and the relative predominance of SP and delay parameters in the T-maze 
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compared to the other tasks is reflective of the variety of connectivity parameters that 

have been associated with T-maze performance in prior studies (Table 1.6.1), and the 

relatively detrimental effects of optogenetic manipulations in the SP and delay of the T-

maze, as compared to the CP [56, 295, 410]. In other words, a physiological variable that 

correlates with choice accuracy in the T-maze represents a neurophysiological correlate 

of T-maze performance, but not necessarily of WM. The same principle applies to our 

cross-species comparison, as the uncovered candidates for a generic (task-independent) 

WM correlate originated from different frequency bands in humans () than in rodents 

(−−). A translational implication of these findings is that it is likely impossible to define 

neurophysiological underpinnings of “working memory” as a uniform psychological con-

struct. However, the RDoC explicitly assumes the existence of certain tasks that represent 

such a psychological function, i.e., that engage a physiological mechanism that is central 

to all WM tasks across species, and further envisions to apply those representative para-

digms to identify WM-enhancing cellular and molecular targets (see 1.1 and [113, 114]). 

When trying to accommodate this approach, our data would suggest that the key target 

variable in the preclinical discovery of WM-enhancing compounds might be the appropri-

ate regulation of -range connectivity (given its importance for human WM) rather than 

behavioural performance in any particular rodent task.  

4.5.2 Working Memory is not tied to one area or connection 

Compared to the presented rodent results, the analysis of the human dataset, in particu-

lar, paints a rather different picture of what a correlate of WM could look like – at least 

when searched for in LFP-data. In all three tasks, prediction accuracies calculated from 

connectivity (as opposed to local activity) metrics were not only very high, but it was also 

roughly equal between the three analysed connections, even though these are anatomi-

cally quite distinct. This was the case even with the limited analysis incorporating only SP 

or post-cue delay connectivity as predictors of spatial WM. These findings may be taken 

as an indication that WM-related information is extremely broadly distributed, and - ra-

ther than specific activity located in a specific connection or region - it is the ability to 

manipulate information flow across brain regions as such, that determines task perfor-

mance [227, 293]. Matching this observation, the body of studies implicating several brain 

regions in WM including the superior frontal [296], anterior cingulate [330, 331] and sen-
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sory cortex [137, 169], VTA [130], and the nuclei of the midline and anterior thalamus 

[188, 262, 295] is constantly growing. Also, our results are consistent with findings from 

Gilad et al. who found that mice were able to adopt various strategies to solve short-term 

memory tasks which are linked to activity in different areas of the neocortex and that the 

disruption of one strategy led to the switch to another [169].  

An unexpectedly broad anatomical representation of sensory and behavioural infor-

mation has recently been uncovered also by decoding activity of individual neurons or 

EEG in multiple cortical areas [191, 216, 224, 307]. E.g., Insanally et al. investigated the 

predictive power of non-classically responsive cortical neurons – neurons that do not ex-

hibit a discernible response to certain trigger events and are therefore often omitted 

from further analysis – and found that including activity traces of these neurons drastical-

ly improved decoding of sensory stimuli (two distinct tones) and behavioural decisions 

(poking into two separate holes depending on the presented tone) [216]. Indeed, they 

revealed that these non-classically responsive neurons do not show obvious correlation to 

the animal’s behaviour, but, however, that the spike intervals contain valuable infor-

mation and that the neurons seem to work together in groups to encode information - 

which was also uncovered using a ML based decoding algorithm [216]. So, their approach 

very much resembles our study as we also made no a priori assumptions about what fre-

quency range and what connection to primarily focus on (in contrast to the studies dis-

played in Table 1.6.1) and used a purely data-driven ML algorithm to detect the underly-

ing connectivity in the brain during WM. 

Also, in movement decoding in Parkinson’s patients, it was shown that grip force could be 

decoded with higher accuracy when considering whole brain activity based on EEG power 

and MRI connectivity than decoding from LFP-traces from the subthalamic nucleus alone 

[307]. This study widens the range of surgical treatment options because their approach 

enables clinicians to determine the best trajectory individually for each patient taking into 

account their whole brain activity [307]. 

With regards to schizophrenia, Johannesen et al. challenged and circumvented the com-

monly used approach of determining and selecting EEG features a priori in order to identi-

fy possible correlates of WM performance in schizophrenia and healthy adults by using a 

linear classifier which was trained with local, frequency-resolved power values from three 

scalp sites and predicted trial accuracy and diagnosis, respectively [224]. With their study, 
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the authors were able to uncover already known and novel features which might have 

gone undetected when not considering whole brain dynamics which is why their study 

might serve as a role model for future studies trying to differentiate between conditions 

and diagnoses using EEG in an unrestricted and objective way. 

The studies from Insanally et al., Hattori et al., Merk et al., Johannesen et al. and ours 

clearly demonstrate that complex behaviour such as decision making, complex motor 

function and WM most likely cannot be traced back to a single underlying region or pro-

cess but are rather distributed across various circuits of the brain. To capture these dy-

namics, ML-based decoding algorithms as implemented in this thesis and in the other 

cited studies seem the most suited strategy to identify relevant circuits in a rather unbi-

ased (top-down) manner.  

On the other hand, somewhat arguing against the necessity of such a vast distribution of 

connectivity in WM for successful task performance, is a recent study which showed that 

WM could be revived in the elderly by applying transcranial alternating-current stimula-

tion (tACS) broadly to the left dlPFC and temporal cortex of humans [363]. They found 

that stimulation with a subject-specific theta frequency recorded by EEG could increase 

prefrontal-temporal theta-gamma PAC and significantly improve WM function for about 

50 min, indicating that, while it might prove difficult to trace the neural basis of WM back 

to single regions, connections or frequency bands (as described in this thesis), stimulation 

of a single connection in a single frequency may still be sufficient to augment it [363]. Also 

in patients with schizophrenia, non-invasive brain stimulation especially over the left 

dorsolateral PFC has been shown to be effective in improving WM [223]. The methods 

used in these studies can be considered a coarse and non-invasive form of Brain-Machine 

Interfaces (BMI) which individually monitor brain activity and stimulate accordingly (e.g., 

with a certain frequency or at certain phases of the theta cycle). Ultimately, the approach 

proposed in this thesis and in other studies that try to decode cognitive functions by ap-

plying ML to neural signals could be used to individually identify brain patterns of func-

tion and, importantly, malfunction in order to stimulate or inhibit them accordingly. By 

that, one could overcome the restriction of applying the same stimulation protocol to all 

patients and step towards a more individualised, patient-based, and non-pharmaceutical 

manner of treatment. A technical concern, however, would be to implement this in real 
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time because the computation of the measures described in this work is computationally 

intense and time consuming. Also, while such direct applications in human patients may 

still be a little bit farfetched, the methods described in this work could be used to investi-

gate causal neural connectivity in preclinical models of various diseases. E.g., effects of 

chemogenetic, optogenetic or pharmacological manipulations in animal models could be 

assessed to determine the underlying circuits and their coordination into distinct net-

works depending on the condition. Regarding the suitability of certain pharmacological 

approaches, one is often confronted with the situation that their physiological mecha-

nism remains unknown. Here, our approach could be helpful to search for patterns in 

brain dynamics that underlie their therapeutic effect. 

4.5.3 Specific impairment of working memory in Gria1-/- mice 

The notion that WM is a complex construct which is difficult to capture in a single task 

and whose physiological correlates are widely distributed across the brain, is further sup-

ported by our analysis of the Gria1-/- mouse line, which models schizophrenia-related def-

icits of WM and salience attribution and has considerable construct validity for this dis-

ease at the genetic, cellular, and neurophysiological levels (see 1.5 and [28, 29, 141]). De-

spite these animals’ uniquely selective [385] and robust chance-level accuracy in reward-

ed alternation WM tasks, which does not improve with training [76, 364] as reproduced 

here (see 3.3), it was unknown if this represents a genuine WM-deficit or whether it is, at 

least in part, driven by impaired preference for relative spatial novelty. Our assessment in 

the two operant tasks confirms that GluA1-ablation genuinely impairs WM-performance, 

in comparison to well-trained WT mice. However, in contrast to the T-maze, in the oper-

ant assays, performance was higher than chance level and already above chance level at 

the start of their training in the 5-CSWM DMTS task. For the DMTS assay, the preference 

of these animals for familiar (as opposed to novel) stimulus [380] might help them with 

the task – indeed on the first few days of training, they were qualitatively better than 

controls and, in contrast to them, they did not further improve their performance with 

training (Figure 3.3.1a). This supports their usage of passive “familiarity preference” (or 

sensory sensitization) [380] to solve the task, at least initially, when the spatial stimuli are 

still relatively novel. However, if this were the only mechanism to solve the operant WM 

task, these animals would not perform above chance level in the DNMTS assay – which 
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they, however, consistently do (although on a lower level than on the DMTS assay). This 

confirms that these mice do actually have the potential to learn new forms of WM assays.  

More convincingly, the decoding analysis strongly supports the notion that the perfor-

mance differences between the tasks are not simply a matter of degree of the impair-

ment: the classifier was able to predict WM-based choices in Gria1-KOs as well as in WT 

mice for many connections or regions in both operant assays but was virtually unable to 

predict them in the T-maze with any appreciable accuracy (Figure 3.3.5). This suggests 

that, in the T-maze, the brains of these animals are indeed clueless about what consti-

tutes the correct choice. This conclusion is further supported by the strong bias of KO-

mice to turn into the same arm across the trials of a session, suggesting the adoption of 

an ineffective strategy that does not engage WM. This divergence of the behavioural and 

electrophysiological phenotypes of Gria1-/- between the operant and the maze tasks re-

veals stark differences between the psychological requirements these tasks actually pose 

despite their uniform categorization as spatial working memory assays.   

Besides the striking divergence between the tasks, Gria1-/- mice displayed fundamental 

differences in the regions and connections they engage within each task compared to 

their WT littermates. This was analysed by comparative assessment of the overlap of pre-

dictive features between Gria1 KO and WT mice, which revealed hardly any commonali-

ties suggesting different communication involved in WM (see Figure 3.3.6). The few fea-

tures that predicted WM in both genotypes were mainly in the gamma frequency band. 

Also, multi-class decoding was feasible with high accuracies (>90%) which directly implies 

that there are fundamental differences between tasks and genotypes. Hence, our study 

found several previously unknown, WM-related aberrations in LFP-based neural commu-

nication of Gria1-/- mice [76]. In contrast to prior studies which investigated differences in 

LFP-based connectivity in rodent mouse models of schizophrenia [1, 76, 401, 434], we 

aimed for a more unbiased search for WM-related connectivity by assessing a large num-

ber of mostly non-redundant measures (see 3.1.4 and [420]) and recording from 4 brain 

regions (instead of 2) in order to paint a comprehensive picture of oscillatory abnormali-

ties in our mouse model. Of course, it has to be noted that our study is also far from being 

completely unbiased as several more brain regions should be recorded from, if technically 

possible. 
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4.6 BEHAVIOURAL IMPACT OF GLUA1 ABLATION FROM THE HIPPOCAMPAL CA2/CA3 SUB-

FIELDS 

Gria1-/-  mice display various behavioural deficits that point to a failure of short-term ha-

bituation including impaired spatial novelty preference and excessive novelty induced 

hyperactivity (see 1.5 and [25, 141, 359]). This failure was hypothesized to drive their in-

creased exploratory behaviour and also links their behavioural phenotype to the theory of 

aberrant salience introduced in 1.1.2. It remains elusive, however, in which brain (sub-

)region reduced GluA1 expression leads to this deficit. Freudenberg et al. virally reintro-

duced GluA1 in all subfields of the hippocampus in Gria1-/-  mice and with this could res-

cue novelty induced hyperactivity [152]. Schmitt et al., however, could not rescue novelty 

induced hyperactivity by reintroducing GluA1 into the forebrain and the CA1 subfield of 

the hippocampus, further highlighting the possible role of GluA1 in the hippocampus, and 

particularly in CA3 [386]. Considering these studies, Bygrave et al. showed that selective 

viral reintroduction of GluA1 into CA2/CA3 combined was sufficient to restore spatial 

novelty preference on the Y-maze and normalize novelty-induced locomotion [76].  

In the present study, we aimed to further elucidate the role of GluA1 in the CA2 and CA3 

subfields of the hippocampus by taking the opposite approach – transgenically mediated 

selective ablation of GluA1 from excitatory cells of either CA2 or CA3 by breeding Cre-

dependent conditional GluA1 KO mice with either Amigo2-Cre (expressing in excitatory 

cells in CA2) or Grik4-Cre (expressing in excitatory cells in CA3) lines. It was previously 

shown that excitatory cells of CA2 are crucial for social memory [201] and impaired CA2 

firing and social behaviour was found in a mouse model of the human 22q11.2 microdele-

tion, a prominent risk factor for schizophrenia [127]. Our results confirm this association 

as selective ablation of GluA1 from excitatory cells in CA2 led to reduced reciprocal social 

interaction in young Gria1Amigo2 mice and to impaired social short-term memory (meas-

ured during non-reciprocal social interaction). However, CA2 specific GluA1 ablation 

seemed to have behavioural effects beyond social memory as Gria1Amigo2 mice also 

demonstrated mildly elevated spatial novelty-induced hyperlocomotion, strong increases 

of object exploration and resulting impairments of object-related short-term habituation 

and task-dependent mild alterations of anxiety behaviour. In contrast, in Gria1Grik4 mice 

spatial short-term habituation was impaired, in addition to a mild deficit object-related 
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short-term habituation. In the context of the theory of aberrant salience, these results 

suggest that the mechanism of salience attribution by short-term habituation is not a sin-

gular function organized by a single hippocampal circuit but that different circuits are en-

gaged in dependence on the type of stimulus. 

Notably, given that Amigo2-expression is broader outside hippocampus early during de-

velopment [201], our use of a transgenic approach (to ensure complete GluA1 ablation 

from CA2 at potential expense of specificity) entails the possibility that the aberrant pro-

cessing of non-social stimuli results from GluA1–ablation outside CA2. The extent of such 

non-hippocampal distribution is difficult to evaluate due to the much lower GluA1 expres-

sion (and detectability) outside hippocampus (Figure 3.5.1a), the scattered and time-

dependent distribution of Amigo2-expression during development [201], and the de-

pendence of the stochastic Cre-lox-recombination on the distance between lox-sites [40] 

which is smaller in typical fluorescent reporter lines (e.g. 838 bp in the widely used Ai9 

and Ai14 tdTomato Cre-reporter lines) [294] than in the floxed Gria1 line (1628 bp) [160]. 

Therefore, the unexpected finding of a possible association between CA2 and processing 

of non-social stimuli needs to be evaluated further in the future using virally mediated 

local manipulations [212] in combination with the tasks described here.  

Intriguingly, GluA1 ablation from CA3 excitatory cells led to an increase in social prefer-

ence with no impact on social memory, while Finlay et al. found that CA3 NMDAR dele-

tion caused decreased social novelty preference [140] and Chiang et al. found that 

chemogenetic silencing of the ventral, but not dorsal, CA3 or deletion of the NMDA re-

ceptor subunit 1 in CA3 pyramidal cells led to a deficit in social memory (with no effect on 

sociability) [93], indicating GluA1-independent mechanisms of social memory in CA3. In-

terestingly, apart from this novel observation described in this thesis, another opposition 

has also been observed – CA3 ablation of NMDARs increases premature responding which 

indicates disrupted sustained attention [140], while CA3 GluA1 ablation decreases prema-

ture responding, i.e., an improvement of sustained attention (Kilonzo et al., in prepara-

tion). 
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4.7 CONCLUSIONS AND FUTURE DIRECTIONS 

The precise circuit mechanisms that are involved in WM and other cognitive processes 

are yet to be understood. By measuring the dynamic coordination of neural activity within 

and between several brain regions, we can associate specific neural correlates with specif-

ic cognitive processes. To this end, this thesis has explored the redundancies between 

measures of neural communication and the mechanisms by which brain circuits coordi-

nate during WM in mice and humans. A main contribution of this thesis to the field is the 

ML-based decoding approach of identifying electrophysiological correlates of working 

memory, as it challenges previous, less comprehensive, and correlational studies by in-

cluding an unusually wide variety of parameters of neural communication and linking 

them to behavioural outcome (correct or incorrect choices) in an unbiased manner. By 

using this method, future studies could benefit and identify so far unknown features from 

electrophysiological signals during any task in animals or humans. In rodents, one could 

even take it one step further by manipulating the involved circuits and surveying the ef-

fects on the behavioural phenotype and decoding accuracy. We hope that using these 

approaches, we will be able to form a more complete understanding of the neural circuits 

that underlie functional and dysfunctional cognitive behaviour. 

A caveat in rodent research that was emphasized by this thesis is, that one should be cau-

tious when generalising results from one task onto other tasks which supposedly measure 

the same psychological construct (e.g., WM). Therefore, future studies aiming to investi-

gate WM performance would significantly benefit from using multiple different para-

digms in order to cross-validate their findings between tasks and to filter out potential 

confounding or highly task-specific factors.  

The robust deficits in schizophrenia-related cognitive functions like WM and attentional 

regulation displayed by Gria1-KO mice - in addition to the multiple associations between 

Gria1 and schizophrenia in humans - render targeted manipulations of this gene a fruitful 

research tool to identify neural circuits underlying these functions. The targeted knockout 

of Gria1 in excitatory cells of CA2 or CA3 (hippocampal subfields where GluA1-expression 

is also reduced in patients with schizophrenia) could pinpoint them as important circuits 

for multiple forms of short-term habituation relevant to aberrant salience assignment in 

schizophrenia. Following similar approaches but using local manipulations with viral vec-
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tors, circuits and neuronal populations involved in these functions could be further nar-

rowed down. For example, the role of GluA1 in the dorsal vs. the ventral hippocampus 

could be investigated by selectively targeting these areas and analysing behavioural and 

electrophysiological effects. Further, using local and Cre-dependent CRISPR/Cas9-

mediated knockout in adult animals, the limitations imposed by the broader expression of 

the Amigo2-Cre driver line in cells outside CA2 during development could be overcome to 

verify that the deficits observed in the Gria1Amigo2 line are truly originating from GluA1-

ablation in CA2 only.  These targeted knockout studies could be combined with an ex-

tended set of tasks to assess aspects of attentional control and short-term habituation-

mediated salience assignment like the HORNS task or auditory stimulation paradigms (as 

described in 1.4 and 1.5.2) while performing electrophysiological recordings not only in 

the 4 regions recorded in the present study but also in the relevant sensory areas.  

Therefore, both the scientific discoveries as well as the analytical tools developed in this 

thesis open multiple opportunities for future investigations into potential circuit mecha-

nisms of schizophrenia-related pathologies of cognition. 
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5 SUMMARY 

Communication between brain areas has been implicated in a wide range of cognitive and 

emotive functions and is impaired in numerous mental disorders. Various metrics have 

been used to quantify inter-regional neural communication. However, typically only few 

measures of coupling are reported and, hence, redundancy across such indicators is im-

plicitly assumed. To, firstly, test this assumption, we applied these measures to simulta-

neous field recordings from the prefrontal cortex and dorsal and ventral hippocampus in 

the Gria1-/- mouse line which globally lacks the glutamate α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) subunit GluA1 and serves as a model with rele-

vance to schizophrenia as it displays several related phenotypic abnormalities such as 

impaired working memory (WM) and short-term habituation. Using the detectability of 

coupling deficits in Gria1-/- mice and bivariate correlations within animals as criteria, we 

found a considerable lack of redundancy across measures of neural communication. Our 

analysis highlights the difficulty of quantifying real correlates of inter-regional information 

transfer, underscores the need to assess multiple coupling measures, and provides some 

guidelines which metrics to choose for a comprehensive, yet non-redundant characteriza-

tion of functional connectivity.  

Secondly, based on these findings, we aimed to investigate the physiological basis of WM 

which is the capacity to encode, maintain and retrieve mental items for a brief time peri-

od. WM is thought to be key to successful goal-directed behaviour and is impaired in a 

range of psychiatric disorders, especially in schizophrenia. To date, several brain regions, 

connections, and types of neural activity have been correlatively associated with WM 

performance. However, no unifying framework to integrate these findings exits, as the 

degree of their species- and task-specificity remains unclear. Here, we investigate WM 

correlates in three task paradigms each in mice and humans, with simultaneous multi-site 

electrophysiological recordings. In mice, we deployed novel operant delayed-matching-

to-sample and non-matching-to-sample protocols in addition to the widely used T-maze 

alternation assay to assess WM performance. Gria1-/- mice performed above chance level, 

but still worse than their wildtype littermates in the operant tasks and at chance level on 

the T-maze. This suggests that they use different neural processes to solve each task. We 
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then developed an approach based on machine learning to decode WM-mediated choices 

in individual trials across subjects from over 800 electrophysiological measures of neural 

connectivity with up to ~90% prediction accuracy. Relying on predictive power as the ul-

timate indicator of correlates of psychological functions, we unveiled a large number of 

task phase-specific WM-related connectivity from analysis of predictor weights in an un-

biased manner. Mostly, the predictive activity patterns were unexpectedly specific to 

each task and always widely distributed across brain regions. Furthermore, in Gria1-/- 

mice, we were able to reliably predict WM choices in the operant tasks but not in the T-

maze (mimicking their chance-level performance in the latter task). This further empha-

sizes the stark differences between those tasks and the specific impairments in Gria1-/- 

mice. Also, we could uncover noticeable differences in WM-related connectivity between 

genotypes, indicating different neurophysiological strategies to solve each task’s de-

mands. These results suggest that individual tasks cannot be used to uncover generic 

physiological correlates of the psychological construct termed WM which also calls for a 

new conceptualization of this cognitive domain in translational psychiatry. 

Hippocampal expression of GluA1 also seems to play an important role in short-term ha-

bituation, a form of short-term memory that denotes the ability to decrease attention to 

novel stimuli as they become familiar. However, the exact circuitry within the hippocam-

pus mediating this process remains elusive. Building upon previous studies emphasizing 

the role of the hippocampal subfields CA2 and CA3 in this process, we used transgenically 

modified mouse cohorts with selective ablation of GluA1 from excitatory cells of either 

CA2 or CA3 and tested them on a battery of tasks assessing short-term habituation as 

short-term novelty preference. This revealed a complex dissociation of different forms of 

short-term habituation, as GluA1-ablation from CA3 entailed a deficit in spatial novelty-

preference whereas the same manipulation in CA2 impaired social short-term habitua-

tion, while both manipulations affected object-related novelty-preference, albeit in dif-

ferent ways. 

These findings collectively underline the importance of GluA1-containing AMPARs for 

controlling short-term habituation and spatial WM , while simultaneously revealing that 

both of these cognitive functions are not singular entities but entail distinct circuit mech-

anisms depending on the specific task and involved stimuli. 
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APPENDIX 

Suppl. Table 1: Number of electrodes, connections, mice, and trials in mouse experiments. 
Adapted from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

  # of 
electrodes 

# of 
mice 

Number of trials in ... 

5-CSWM, 1s SD 
+ 5s delay 

DNMTS, baseli-
ne 

T-maze, 5s T-maze, 30s 

PFC electrodes 19 12 758 1431 732 674 

dHC electrodes 7 7 464 1320 448 408 

vHC electrodes 12 9 584 1700 544 480 

MD electrodes 4 7 236 694 246 224 

PFC-dHC 7 7 464 1320 448 408 

PFC-vHC 9 9 584 1700 544 480 

vHC-dHC 6 6 400 1172 318 334 

MD-PFC 4 4 236 694 246 224 

 

Suppl. Table 2: Classifier parameters for prediction of operant DMTS 5-CSWM in wildtype mice 
Measures of classification performance, the prediction accuracy, the AUC of the ROC the F1 and F2-score, 
sensitivity, specificity, and precision and recall for both classes (for definition of these parameters see 2.6). 
Rows represent respective brain region or connection. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

  Accuracy AUC F1 F2 sensitivity specificity cl1-
precision 

cl1-
recall 

cl2-
precision 

cl2-
recall 

PFC 0.66 0.66 0.66 0.65 0.65 0.67 0.68 0.65 0.64 0.67 

dHC 0.79 0.79 0.79 0.78 0.79 0.79 0.79 0.79 0.78 0.79 

vHC 0.61 0.61 0.62 0.58 0.60 0.62 0.65 0.60 0.56 0.62 

MD 0.76 0.77 0.77 0.74 0.73 0.81 0.83 0.73 0.69 0.81 

PFC-dHC 0.78 0.79 0.80 0.76 0.75 0.84 0.86 0.75 0.70 0.84 

PFC-vHC 0.71 0.71 0.71 0.70 0.70 0.72 0.73 0.70 0.68 0.72 

PFC-MD 0.77 0.79 0.79 0.74 0.74 0.85 0.87 0.74 0.67 0.85 

vHC-dHC 0.73 0.74 0.74 0.71 0.71 0.76 0.78 0.71 0.68 0.76 
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Suppl. Table 3: Classifier parameters for prediction of operant DNMTS 2-CSWM in wildtype mice 
Displays same as in Suppl. Table 2 but for the operant DNMTS task. Adapted from [421], open access article: 
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

  Accuracy AUC F1 F2 sensitivity specificity cl1-
precision 

cl1-
recall 

cl2-
precision 

cl2-
recall 

PFC 0.77 0.77 0.77 0.76 0.75 0.79 0.80 0.75 0.74 0.79 

dHC 0.87 0.87 0.87 0.86 0.85 0.89 0.89 0.85 0.84 0.89 

vHC 0.71 0.72 0.73 0.69 0.69 0.74 0.77 0.69 0.65 0.74 

MD 0.73 0.74 0.74 0.72 0.72 0.75 0.77 0.72 0.69 0.75 

PFC-dHC 0.70 0.71 0.73 0.67 0.67 0.75 0.80 0.67 0.61 0.75 

PFC-vHC 0.63 0.63 0.65 0.61 0.62 0.65 0.68 0.62 0.58 0.65 

PFC-MD 0.67 0.68 0.69 0.63 0.65 0.71 0.76 0.65 0.58 0.71 

vHC-dHC 0.65 0.66 0.67 0.63 0.64 0.68 0.71 0.64 0.59 0.68 

 

Suppl. Table 4: Classifier parameters for prediction of T-maze SWM in wildtype mice 
Displays same as in Suppl. Table 2 but for T-maze. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

  Accuracy AUC F1 F2 sensitivity specificity cl1-
precision 

cl1-
recall 

cl2-
precision 

cl2-
recall 

PFC 0.63 0.63 0.62 0.63 0.64 0.62 0.61 0.64 0.64 0.62 

dHC 0.70 0.73 0.75 0.64 0.65 0.82 0.88 0.65 0.53 0.82 

vHC 0.67 0.67 0.66 0.67 0.68 0.67 0.66 0.68 0.68 0.67 

MD 0.77 0.82 0.81 0.71 0.70 0.94 0.96 0.70 0.58 0.94 

PFC-dHC 0.87 0.90 0.89 0.85 0.80 1.00 1.00 0.80 0.74 1.00 

PFC-vHC 0.82 0.83 0.82 0.82 0.82 0.83 0.83 0.82 0.82 0.83 

PFC-MD 0.84 0.88 0.86 0.80 0.77 1.00 1.00 0.77 0.68 1.00 

vHC-dHC 0.83 0.85 0.84 0.81 0.79 0.91 0.91 0.79 0.75 0.91 

 

Suppl. Table 5: Classifier parameters for prediction of identity task in humans 
Displays same as in Suppl. Table 2 but for identity task in humans. Adapted from [421], open access article: 
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

  Accuracy AUC F1 F2 sensitivity specificity cl1-
precision 

cl1-
recall 

cl2-
precision 

cl2-
recall 

PFC 0.78 0.78 0.79 0.77 0.76 0.8 0.82 0.76 0.74 0.8 

OFC 0.77 0.78 0.78 0.77 0.77 0.79 0.79 0.77 0.75 0.79 

MTL 0.8 0.81 0.81 0.8 0.8 0.82 0.82 0.8 0.79 0.82 

PFC-MTL 0.84 0.88 0.87 0.81 0.76 1 1 0.76 0.69 1 

PFC-OFC 0.89 0.91 0.9 0.88 0.83 1 1 0.83 0.79 1 

OFC-MTL 0.86 0.88 0.88 0.84 0.79 0.98 0.98 0.79 0.74 0.98 
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Suppl. Table 6: Classifier parameters for prediction of spatial task in humans 
Displays same as in Suppl. Table 2 but for spatial task in humans. Adapted from [421], open access article: 
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

 
  Accuracy AUC F1 F2 sensitivity specificity cl1-

precision 
cl1-

recall 
cl2-

precision 
cl2-

recall 

PFC 0.71 0.72 0.73 0.68 0.68 0.75 0.79 0.68 0.63 0.75 

OFC 0.82 0.82 0.82 0.81 0.81 0.84 0.85 0.81 0.79 0.84 

MTL 0.76 0.77 0.78 0.74 0.73 0.81 0.83 0.73 0.7 0.81 

PFC-MTL 0.89 0.91 0.9 0.87 0.82 1 1 0.82 0.77 1 

PFC-OFC 0.89 0.91 0.9 0.88 0.83 1 1 0.83 0.79 1 

OFC-MTL 0.89 0.91 0.9 0.87 0.82 1 1 0.82 0.77 1 

 

Suppl. Table 7: Classifier parameters for prediction of temporal task in humans 
Displays same as in Suppl. Table 2 but for temporal task in humans. Adapted from [421], open access arti-
cle: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

  Accuracy  AUC F1 F2 sensitivity specificity cl1-
precision 

cl1-
recall 

cl2-
precision 

cl2-
recall 

PFC 0.78  0.79 0.79 0.78 0.77 0.81 0.81 0.77 0.76 0.81 

OFC 0.75  0.76 0.76 0.73 0.72 0.79 0.81 0.72 0.69 0.79 

MTL 0.73  0.74 0.75 0.72 0.71 0.77 0.8 0.71 0.67 0.77 

PFC-MTL 0.86  0.89 0.88 0.84 0.79 1 1 0.79 0.73 1 

PFC-OFC 0.86  0.89 0.88 0.84 0.79 0.99 1 0.79 0.73 0.99 

OFC-MTL 0.89  0.91 0.9 0.87 0.82 1 1 0.82 0.78 1 
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Suppl. Figure 1: Spectrograms of connectivity during the 5-CSWM delay and CP (1s SD+5s delay 
challenge) 
(a-d) Spectrograms displayed from 6s before to 1s after a CP poke for the connections and metrics named in 
subpanel titles. Left and right graphs of each subpanel correspond to connectivity during correct and incor-
rect responses, respectively. White vertical lines indicate time of CP poke, while white horizontal lines dif-
ferentiate between frequency ranges named on the left. Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 
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Suppl. Figure 2: Spectrograms of connectivity during the 5-CSWM SP (1s SD+5s delay challenge) 
Same display as in Suppl. Figure 1, but for SP. Analogously, left, and right graphs of each subpanel corre-
spond to connectivity during correct and incorrect SP responses, respectively. White vertical lines indicate 
SP poke. Adapted from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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Suppl. Figure 3: Spectrograms of differential connectivity during the 5-CSWM delay and CP (1s 
SD+5s delay challenge) 
(a-d) Same display as in main Figure 3.2.2a-d, but for wPLI and PDC. Spectrograms depicting min-max nor-
malized coherence and GC for the connections stated above each triplet panel for the delay and CP of the 5-
CSWM task, temporally aligned to the choice poke entry (p, white vertical lines; showing 6 s before until 1 s 
after the poke); the start and end of the post-delay shown by white stripes corresponding to mean ± SD as 
determined by CP response latency. Each triplet shows the absolute value (left), the difference between the 
former and either the prior correct SP (controlling for representations of attention and reward, middle), or 
incorrect CPs (showing differences of WM engagement and subtracting motor representations of poking; 
right). Horizontal white lines show borders between analysed frequency bands, stated on the left. Adapted 
from [421], open access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 
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Suppl. Figure 4: Individual connectivity measures predicting WM choice in humans selected at 
lower P-value threshold. 
(a-b) Matrix showing all connectivity predictor variables that contributed to the classifiers for which per-
formance is shown in main Figure 3.2.13a (one classifier using all regional and local variables of all phases, N 
= 1584, as predictors). Indicated by colour are variables that were significantly associated with WM-
performance according to their weight and differences between correct and incorrect CP in the paradigms 
coded by colour (see legend on the right). Same display as in main Figure 3.2.15a but using less conservative 
P-values: (a) Bonferroni-adjustment using the number of predictor variables of each single connection 
(448), P < 0.05/448. (b) Standard P-value of 0.01, P < 0.01. For theta, mean amplitude (m), peak amplitude 
(p), and frequency of peak (f) are shown, while for all other variables only the mean amplitude is used. The 
gamma-band contributed three predictors each as this frequency was split into a high- and low-gamma-
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range in addition to using the whole range (30-100 Hz). Adapted from [421], open access article: CC BY 4.0, 
https://creativecommons.org/licenses/by/4.0/ 

 

Suppl. Figure 5: Number of connectivity measures predicting WM choice in humans in depend-
ence on P-value. 
(a) The number of connectivity variables that are associated with WM-performance as the P-value adjust-
ment for the selection of significant predictors is relaxed. The first value in each sub-panel corresponds to 
the adjustment by the number of all connectivity variables (P < 0.05/1344), the second value corresponds 
to the adjustment by number variables in a single connection (P < 0.05/448). Adapted from [421], open 
access article: CC BY 4.0, https://creativecommons.org/licenses/by/4.0/ 

 

Suppl. Figure 6: Individual connectivity measures predicting WM choice and genotype in multi-
class classifiers across rodent tasks. 
(a) Same display as in main Figure 3.3.8a but for higher (less conservative) P-value thresholds: Bonferroni-
adjustment using the number of parameters for all connections (990 for 5-CSWM DMTS, 720 for the other 
two tasks) for the comparison of predictor weights (real vs. shuffled, t-test) and P < 0.01 used as threshold 
for significant interactions between genotype (KO/WT) and trial-type (correct vs. incorrect). In the lower 
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sub-panel, the display is reproduced but with all task-phases combined. Note that variables from the pre- 
and post-delay in the 5-CSWM have been combined in single lines. 



Figures and Tables 

212 
 

FIGURES AND TABLES 

 

Figure 2.4.1: Human data overview ................................................................................................................ 59 

Figure 2.6.1: Illustration of ML-based decoding analysis ................................................................................ 68 

Figure 3.1.1: Experimental set-up, behaviour, and recorded signals .............................................................. 71 

Figure 3.1.2: Non-directed measures of synchrony in Gria1-/- and wildtype controls across 10 min novelty-

induced activity................................................................................................................................................ 73 

Figure 3.1.3: Directed metrics of inter-regional coupling in Gria1-/- and wildtype controls across 10 min 

novelty-induced activity ................................................................................................................................... 76 

Figure 3.1.4: Changes of power and coupling strength over time during the 10 min open-field test ............. 79 

Figure 3.1.5: Correlations between individual measures of hippocampal-prefrontal connectivity ................. 84 

Figure 3.1.6: Correlations between individual measures of intra-hippocampal and overall connectivity ....... 86 

Figure 3.1.7: No qualitative differences in electrode placements ................................................................... 86 

Figure 3.1.8: Assessment of the impact of the reference electrode placement on the measurement of power 

and connectivity .............................................................................................................................................. 89 

Figure 3.2.1: Behaviour in rodent WM ............................................................................................................ 92 

Figure 3.2.2: Connectivity in rodent WM during the 5-CSWM task ................................................................. 93 

Figure 3.2.3: Trial-by-trial decoding of WM-based choice .............................................................................. 96 

Figure 3.2.4: Decoding performance of different types of classifiers .............................................................. 98 

Figure 3.2.5: Cross-prediction accuracy for dHC-PFC classifiers trained on different challenges. ................... 98 

Figure 3.2.6: Individual connectivity measures predicting WM choice in wildtype mice. ............................. 100 

Figure 3.2.7: Prediction accuracies in the 5-CSWM SP and without CP predictors ........................................ 102 

Figure 3.2.8: P-value adjustment of individual connectivity measures predicting WM choice across rodent 

tasks. ............................................................................................................................................................. 104 

Figure 3.2.9: Time-frequency resolved connectivity measures predicting WM choice in all tasks in wildtype 

mice. .............................................................................................................................................................. 105 

Figure 3.2.10: Prediction of task-type from connectivity and activity data recorded in correct trials........... 106 

Figure 3.2.11: Connections in all tasks in wildtype mice ............................................................................... 107 

Figure 3.2.12: Local activity measures predicting WM choice in all tasks. .................................................... 109 

Figure 3.2.13: Single trial-based prediction of WM choice in humans. ......................................................... 111 

Figure 3.2.14: Decoding accuracy in human WM when using only predictors from the SP and delay. ......... 112 

Figure 3.2.15: Highly task-specific and broadly distributed correlates of human WM ................................. 114 

Figure 3.2.16: Neural communication during different WM paradigms in humans...................................... 116 

Figure 3.3.1: Behavioural performance in the CP of the 5-CSWM task ......................................................... 118 

Figure 3.3.2: Impaired WM performance in Gria1-/- mice ............................................................................. 119 



Figures and Tables 

213 
 

Figure 3.3.3: Behavioural performance in the SP of the 5-CSWM task ......................................................... 120 

Figure 3.3.4: Behavioural performance on the DNMTS paradigm of the 5-CSWM task................................ 121 

Figure 3.3.5: Decoding of WM in Gria1-/- mice. ............................................................................................. 123 

Figure 3.3.6: Individual connectivity measures predicting WM choice in all three rodent tasks in WT and KO.

 ....................................................................................................................................................................... 125 

Figure 3.3.7: Multi-class decoding of WM in Gria1-/- mice ............................................................................ 127 

Figure 3.3.8: Distinct WM-related connectivity in Gria1-/- mice .................................................................... 128 

Figure 3.3.9: Significant multiclass predictors for DMTS ............................................................................... 129 

Figure 3.4.1: Gria1-/- mice show hyperactivity on the EPM, but no anxiety-related abnormalities. .............. 131 

Figure 3.5.1: Ablation of GluA11 from CA2/CA3 mildly elevates locomotion. ............................................... 132 

Figure 3.5.2: Ablation of GluA1 from CA2/CA3 impairs short time habituation. ........................................... 134 

Figure 3.5.3: Ablation of GluA1 from CA2/CA3 alters social behaviour......................................................... 136 

 

Table 1.2.1: Overview of commonly used measures of neural communication .............................................. 18 

Table 1.6.1: Measures of long-range neural connectivity associated with WM in rodents............................. 42 

Table 2.2.1: Coordinates used for electrode implantation. ............................................................................. 49 

Table 2.3.1: 5-CSWM training stages .............................................................................................................. 55 

Table 3.1.1: Pairwise comparison between wildtype and Gria1-knockouts .................................................... 80 

 

Suppl. Figure 1: Spectrograms of connectivity during the 5-CSWM delay and CP (1s SD+5s delay challenge)

 ....................................................................................................................................................................... 206 

Suppl. Figure 2: Spectrograms of connectivity during the 5-CSWM SP (1s SD+5s delay challenge) .............. 207 

Suppl. Figure 3: Spectrograms of differential connectivity during the 5-CSWM delay and CP (1s SD+5s delay 

challenge) ...................................................................................................................................................... 208 

Suppl. Figure 4: Individual connectivity measures predicting WM choice in humans selected at lower P-value 

threshold. ....................................................................................................................................................... 209 

Suppl. Figure 5: Number of connectivity measures predicting WM choice in humans in dependence on P-

value. ............................................................................................................................................................. 210 

Suppl. Figure 6: Individual connectivity measures predicting WM choice and genotype in multi-class 

classifiers across rodent tasks. ...................................................................................................................... 210 

 

Suppl. Table 1: Number of electrodes, connections, mice, and trials in mouse experiments. ....................... 203 

Suppl. Table 2: Classifier parameters for prediction of operant DMTS 5-CSWM in wildtype mice ................ 203 

Suppl. Table 3: Classifier parameters for prediction of operant DNMTS 2-CSWM in wildtype mice ............. 204 

Suppl. Table 4: Classifier parameters for prediction of T-maze SWM in wildtype mice ................................ 204 

Suppl. Table 5: Classifier parameters for prediction of identity task in humans ........................................... 204 

Suppl. Table 6: Classifier parameters for prediction of spatial task in humans ............................................. 205 



Figures and Tables 

214 
 

Suppl. Table 7: Classifier parameters for prediction of temporal task in humans ......................................... 205 

 



Acknowledgements 

215 
 

ACKNOWLEDGEMENTS 

Diese Arbeit wurde am Institut für Angewandte Physiologie der Universität Ulm unter der 

Betreuung von Prof. Dennis Kätzel angefertigt, dem ich allem voran für die Möglichkeit 

danken möchte meine Arbeit in seinem Labor durchzuführen. Vielen Dank für die uner-

müdliche Unterstützung und die außergewöhnlich motivierende und hingebungsvolle Art 

mit der du wissenschaftliches Denken und Arbeit vermittelst. Dein konstanter Enthusias-

mus für die Wissenschaft war stets inspirierend und hat auch in mir die Leidenschaft zur 

Forschung geweckt.  

My special thanks go to Sampath K. T. Kapanaiah who introduced me to working in the 

lab and had tremendous influence on the results presented in this thesis. Without his 

mastermind behind the operant boxes, I would have been left clueless more than once. 

Thank you for showing me how to carry out experiments, your help in general and our 

fruitful discussions! 

I am also thankful for the unlimited help I received from Stefanie Schulz during my time in 

the lab and her guidance on how best to care of the mice. 

I would also like to thank the other members of the group during my time in the lab. 

Kasyoka, Bas, Uwe, Peter, and Martin, thank you for your constant support and our inspir-

ing lunch and coffee breaks!  



Curriculum vitae 

216 
 

CURRICULUM VITAE 

The curriculum vitae has been removed for data protection reasons. 


