
Doctoral Thesis

Empirical Assessment of Advantages and
Disadvantages of Model Transformation

Languages

Author:
Stefan Höppner (née Götz)

born in Ehingen (Donau)

Supervisor:
Prof. Dr. Matthias Tichy

A thesis submitted in fulfilment of the requirements
for the degree of Dr.rer.nat

at the

Institute of Software Engineering and Programming Languages
Faculty of Engineering, Computer Science and Psychology

2023

https://www.uni-ulm.de/in/sp/team/tichy/
https://www.uni-ulm.de/en/in/sp/
https://www.uni-ulm.de/in/fakultaet/fakultaet/fakultaet-organisation/

ii

Empirical Assessment of Advantages and Disadvantages of Model Trans-
formation Languages

Stefan Höppner (née Götz)

Acting Dean:
Prof. Dr. Anke Huckauf

Reviewers:
Prof. Dr. Matthias Tichy

Prof. Dr. Regina Hebig
Prof. Dr. Daniel Strüber

Copyright ©2023 Stefan Höppner
except when otherwise stated.
All rights reserved.

Day of PhD Graduation: 19.07.2023

iii

“If the only tool you have is a hammer, it is tempting to treat everything as if it were
a nail.”

Abraham Maslow

v

Abstract

Context: Model-driven software engineering envisages the use of model transformations to evolve
models. Model transformation languages, domain-specific languages developed for this task, are
touted with many benefits over general-purpose languages. However, most of these claims have nei-
ther been substantiated nor investigated thoroughly. Moreover, they frequently lack the contextual
information required to critically assess their merit or build meaningful empirical studies around
them.

Objective: The main objective of this thesis is to aggregate all necessary data to set up proper eval-
uation and use this data to asses the most prevalent claims about model transformation languages
empirically. We aim to provide evidence on whether those claims withstand rigorous empirical
scrutiny. We further want to provide a foundation of data upon which more empirical evaluation
can be built.

Method: To address our objectives, we employ several research methodologies. Initially, we use
a structured literature review to determine the state of research and what claims about quality
attributes of MTLs are propagated in literature. The SLR results serve as a basis for conducting
semi-structured interviews to collect qualitative data on relevant factors and co-founding factors
pertaining to the claims discussed. We quantify the identified influences between quality attributes,
factors and co-founding variables using structural equation modelling and an online survey. Finally,
we use repository mining and design science to collect and prepare artefacts. The artefacts are used
in two separate case studies to empirically evaluate several MTL quality attributes based on the
previously identified factors.

Results: Our results show that many quality attributes believed to be associated with MTLs are
in dire need of empirical evidence. To aid in this task, we contribute a quantified structure model
describing factors’ influence and moderation effects on quality attributes of MTLs. The model
aggregates the results of our literature review, interview study and online survey using structural
equation modelling. The literature review produced a comprehensive list of quality attributes for
which advantages and disadvantages of MTLs are claimed. The interviews resulted in factors con-
tributing to the perception of quality attributes of MTLs and several co-founding factors defining
context for the evaluation thereof. Data from the online survey is then used for quantification.
Based on the in-depth discussions during our interviews, we further contribute 15 suggestions on
actions requiring community-wide effort to improve confidence in the usefulness of model transfor-
mation languages. These are further refined based on the quantitative results of the online survey.
We also make a direct contribution through the results of our case studies. The first case study
provides empirical evidence of how well the ATL transformation language is suited to a category
of model transformation problems. The second case study demonstrates the shortcomings of model
transformations written in both legacy and modern Java styles. To execute these evaluations, we
developed a novel approach for translating ATL transformations into Java code and a classification
schema for model transformations written in Java.

Conclusion: Our results demonstrate that empirical evaluation of model transformation languages
is feasible and necessary. Efforts to provide more empirical substance need to be undergone, and
lacklustre language capabilities and tooling need to be improved. The results of this thesis can
provide a basis for these further actions.

vii

Acknowledgements
There is a lot of people without whom this thesis would not have been possible.

First, my supervisor and mentor Matthias Tichy, for allowing me to embark on this journey, his
guidance at every step along the way and all his insightful comments, suggestions, and reviews. I
could not have asked for a more invested and helpful supervisor.

Jens Kohlmeyer and Klaus Murmann for presenting me with the opportunity to start my PhD
and giving me every possible room to do finish it.

My co-authors for supporting me along the way: Raffaela Groner, for being my go-to colleague
all things MTL related. Timo Kehrer, for being my second mentor during our work together. Yves
Haas, for doing a lot of the leg work to get the interview study going.

All my colleagues for the insightful discussions during our time together.
I would like to thank all my student assistants at SGI over the years, Burak Aktas, Julian Czym-

meck, Kevin Jedlhauser, Max-Immanuel Appel, Melissa Loos, Micha Götz, Niklas Haas, Philipp
Bitzer, Sergej Schmidt, Tobias Guggenmos, and Yves Haas. If it weren’t for you guys having my
back for all things SGI related, I’d probably still be working on installing Ubuntu 18.04 in the PC
pool and writing my first paper.

Thank you to my friends, who have been there since school days and have allowed me to have a
life outside of school and uni.

I owe much of what I have achieved to my parents, who let me choose my own path but were
there for me whenever I needed support. I strive to one day make it all up to you and be the person
you always knew I could be.

Finally, Anke. You have been my guiding light throughout this whole process. You encouraged
me, believed in me, kept me on course and reigned me in. This is for all the support you gave me.

ix

List of Publications

Appended publications
This thesis is based on the following publications:

[A] S. Götz, M. Tichy, R. Groner. Claimed advantages and disadvantages of (dedicated) model
transformation languages: a systematic literature review
Software and Systems Modeling (SoSyM), volume 20, pages 469–503, 2021

[B] S. Höppner, Y. Haas, M. Tichy, K. Juhnke. Advantages and disadvantages of (dedicated)
model transformation languages: A Qualitative Interview Study
Empirical Software Engineering (EMSE), volume 27, article number 159, 2022

[C] S. Höppner, M. Tichy. Traceability and Reuse Mechanisms, the most important Properties of
Model Transformation Languages
Empirical Software Engineering (EMSE), under review

[D] S. Götz, M. Tichy. Investigating the Origins of Complexity and Expressiveness in ATL Trans-
formations
Journal of Object Technology (JoT), volume 19, article number 2, July 2020

[E] S. Höppner, M. Tichy, T. Kehrer. Contrasting Dedicated Model Transformation Languages
Versus General Purpose Languages: A Historical Perspective on ATL Versus Java Based on
Complexity and Size
Software and Systems Modeling (SoSyM), volume 21, pages 805–837, 2022

Other publications
The following publications complete the list of my research contributions during my PhD studies.
They are not appended to this thesis, due to overlapping contents or not being related to the thesis.

Journal (Peer reviewed)
[a] R. Groner, K. Juhnke, S. Götz, M. Tichy, S. Becker, V. Vijayshree, S. Frank “A Survey on the

Relevance of the Performance of Model Transformations”
Journal of Object Technology (JoT), volume 20(2), 2:1-27, 2021

Conference (Peer reviewed)
[a] S. Kögel, M. Tichy, R. Groner, M. Stegmaier, S. Götz, S. Rechenberger “Developing an Opti-

mizing Compiler for the Game Boy as a Software Engineering Project”
Software Engineering Education and Training Track of the International Conference on Soft-
ware Engineering (ICSE SEET), 2018

[b] S. Götz, M. Tichy, Timo Kehrer “Dedicated Model Transformation Languages vs. General-
Purpose Languages: A Historical Perspective on ATL vs. Java”
9th International Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD), 2021

[c] S. Götz, M. Tichy, R. Groner “Claimed advantages and disadvantages of (dedicated) model
transformation languages: a systematic literature review (extended abstract)”
Software Engineering (SE), 2021

[d] S. Höppner, T. Kehrer, M. Tichy “Contrasting Dedicated Model Transformation Languages vs.
General Purpose Languages: A Historical Perspective on ATL vs. Java based on Complexity
and Size (extended abstract)”
Software Engineering (SE), 2022

x

[e] S. Höppner, M. Tichy “The Relevance of Model Transformation Language Features on Quali-
tative Properties of MTLs: A Study Protocol”
Empirical Software Engineering and Measures (ESEM), 2022

[f] S. Stiess, S. Höppner, F. Ege, M. Tichy “Event-based Simulation for Transient System with
Capture Replay to Predict Self-adaptive Systems (Work in Progress Paper)”
14th ACM/SPEC International Conference on Performance Engineering (ICPE), 2023

[g] R. Groner, P. Bellmann, S. Höppner, P. Thiam, F. Schwenker, M. Tichy “Predicting the
Performance of ATL Model Transformations”
14th ACM/SPEC International Conference on Performance Engineering (ICPE), 2023

Workshop (Peer reviewed)
[a] S. Stiess, S. Höppner, F. Ege, M. Tichy, S. Becker “Coordination and Explanation of Recon-

figurations in Self-adaptive high-performance Systems”
2nd International Workshop on Model-Driven Engineering of Digital Twins (ModDiT), 2022

[b] S. Höppner, S. Stiess, F. Ege, M. Tichy “State Space Exploration for Planning Reconfigurations
in Cloud-native Systems”
13th Symposium on Software Performance (SSP), 2022

[c] S. Greiner, S. Höppner, Frederic Jouault, Theo Le Calvar, Mickael Clavreul “Incremental MTL
vs. GPLs: Class into Relational Database Schema”
Transformation Tool Contest (TTC), 2023

xi

Research Contribution
I am the main contributor for all publications appended to this thesis. I had varying degrees of

help by the co-authors of each publication. Each publication was composed by me with revisions
based on reviews from the co-authors.

My contribution for Paper A was the study design, conduction of search and snowballing as well
as the analysis of data. I was supported by the co-authors during the selection process.

In Paper B, I designed the study together with one of the co-authors. Apart from one instance, all
interviews were conducted by me. Transcription was split between me and one co-author. Analysis
of the transcripts was done by me with some supporting work by all co-authors.

Paper C was designed, conducted and analysed by me. I got help in selection of the research
methodology by the co-author.

Similarly, for Paper D, I contributed the research design and conducted the analysis.
For Paper E, I was supported by both co-authors during the development of the translation

schema. All other work was conducted by me.

xiii

Contents

Abstract v

Acknowledgements vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background . 2

1.1.1 Model-Driven Engineering . 2
1.1.2 Domain-specific Languages . 2
1.1.3 Model Transformation Languages . 3

1.1.3.1 External and Internal Transformation Languages 3
1.1.3.2 Transformation Rules . 5
1.1.3.3 Rule Application Control: Location Determination 5
1.1.3.4 Directionality . 7
1.1.3.5 Incrementality . 7
1.1.3.6 Tracing . 7
1.1.3.7 Dedicated Model Navigation Syntax 8

1.2 Goals and Scope . 8
1.3 Related Work . 9

1.3.1 Classifications of Model Transformation Languages 10
1.3.2 Studies on Domain Specific Languages . 10
1.3.3 Studies on Model Driven Software Engineering 10
1.3.4 Studies on Model Transformation Languages 10

1.4 Research Methodology . 11
1.5 Contribution . 13

1.5.1 Paper A: Claims and Evidence in Literature 13
1.5.2 Paper B: Factors for Advantages and Disadvantages 15
1.5.3 Paper C: Quantification of Influence Weights of Factors 18
1.5.4 Paper D: The Suitability of ATL for Expressing Model Transformations . . . 19
1.5.5 Paper E: A Historical Perspective on ATL Versus Java Based on Complexity

and Size . 22
1.6 Discussion . 23

1.6.1 The State of Claims in Literature and How We Got There 24
1.6.2 The Tooling Problem . 24
1.6.3 The Problem With Empirical Research . 25
1.6.4 MTL vs. GPL: a guide . 25
1.6.5 Cyclomatic Complexity in Data-Driven Programming 26

1.7 Threats to Validity . 27
1.7.1 Construct Validity . 27
1.7.2 Internal Validity . 27
1.7.3 External Validity . 27
1.7.4 Conclusion Validity . 28

1.8 Conclusion and Future Work . 28

xiv

2 Paper A 31
2.1 Introduction . 34
2.2 Background . 35

2.2.1 Model-Driven Engineering . 35
2.2.2 Domain specific languages . 35
2.2.3 Model transformation languages . 35

2.3 Methodology . 35
2.3.1 Objective and Research Questions . 36
2.3.2 Search Strategy . 37
2.3.3 Selection Criteria . 39
2.3.4 Quality Assessment Checklist and Procedures 40
2.3.5 Data Extraction Strategy . 40
2.3.6 Synthesis Procedures . 40

2.3.6.1 RQ1: What advantages and disadvantages of model transformation
languages are claimed in literature? 40

2.3.6.2 RQ2: What advantages and disadvantages of model transformation
languages are validated through empirical studies or by other means? 41

2.4 Findings . 42
2.4.1 Demographics . 42
2.4.2 Quality of publications . 43
2.4.3 RQ1: Advantages and Disadvantages of Model Transformation Languages . . 43

2.4.3.1 Analysability . 44
2.4.3.2 Comprehensibility . 44
2.4.3.3 Conciseness . 45
2.4.3.4 Debugging . 46
2.4.3.5 Ease of writing a transformation . 46
2.4.3.6 Expressiveness . 47
2.4.3.7 Extendability . 47
2.4.3.8 Just better . 47
2.4.3.9 Learnability . 48
2.4.3.10 Performance . 48
2.4.3.11 Productivity . 48
2.4.3.12 Reuse and Maintainability . 48
2.4.3.13 Semantics and Verification . 49
2.4.3.14 Tool support . 49
2.4.3.15 Versatility . 49

2.4.4 RQ2: Supporting evidence for Advantages and Disadvantages of MTLs 49
2.4.4.1 Citation as evidence . 50
2.4.4.2 Empirical evidence . 52
2.4.4.3 Evidence by example/experience . 52
2.4.4.4 No evidence . 53

2.5 Discussion . 53
2.5.1 Claims about model transformation languages in context of software quality . 53
2.5.2 Claims about model transformation languages in context of language features 54
2.5.3 Lack of evidence for MTL advantages and disadvantages 54
2.5.4 Research direction . 55

2.6 Related Work . 56
2.7 Threats to validity . 57

2.7.1 Internal Validity . 57
2.7.2 External Validity . 57
2.7.3 Construct Validity . 58
2.7.4 Conclusion Validity . 58

2.8 Conclusion . 58

xv

3 Paper B 59
3.1 Introduction . 62
3.2 Background . 63

3.2.1 Model-driven engineering . 63
3.2.2 Domain-specific languages . 64
3.2.3 Model transformation languages . 64

3.2.3.1 External and Internal transformation languages 64
3.2.3.2 Transformation Rules . 64
3.2.3.3 Rule Application Control: Location Determination 66
3.2.3.4 Directionality . 67
3.2.3.5 Incrementality . 68
3.2.3.6 Tracing . 68
3.2.3.7 Dedicated Model Navigation Syntax 68

3.3 Methodology . 68
3.3.1 Interview Preparation . 69

3.3.1.1 Identifying the appropriateness of semi-structured interviews 69
3.3.1.2 Retrieving previous knowledge . 70
3.3.1.3 Interview guide . 70
3.3.1.4 Selecting & contacting participants 73

3.3.2 Interview Conduction and Transcription . 74
3.3.3 Coding & Analysis . 74

3.3.3.1 Initial Text Work . 74
3.3.3.2 Developing thematic main codes . 75
3.3.3.3 Coding of all the material with main codes 75
3.3.3.4 Compilation of all text passages coded with the same main code . . 76
3.3.3.5 Inductive development of sub-codes 76
3.3.3.6 Coding of all the material with complete code system 76
3.3.3.7 Simple and complex analysis and visualisation 77
3.3.3.8 Privacy and Ethical concerns . 77

3.4 Demographics . 78
3.4.1 Background . 78
3.4.2 Experience . 79
3.4.3 Used languages for transformation development 79

3.5 Findings . 80
3.5.1 GPL Capabilities . 81
3.5.2 MTL Capabilities . 83

3.5.2.1 Domain Focus . 83
3.5.2.2 Bidirectionality . 84
3.5.2.3 Incrementality . 84
3.5.2.4 Mappings . 85
3.5.2.5 Traceability . 86
3.5.2.6 Automatic Model Traversal . 86
3.5.2.7 Pattern-Matching . 87
3.5.2.8 Model Navigation . 87
3.5.2.9 Model Management . 87
3.5.2.10 Reuse Mechanism . 88
3.5.2.11 Learnability . 88

3.5.3 Tooling . 89
3.5.3.1 Analysis Tooling . 89
3.5.3.2 Code Repositories . 89
3.5.3.3 Debugging Tooling . 89
3.5.3.4 Ecosystem . 90
3.5.3.5 IDE Tooling . 90
3.5.3.6 Interoperability . 90
3.5.3.7 Tooling Awareness . 91
3.5.3.8 Tool Creation Effort . 91
3.5.3.9 Tool Learnability . 91
3.5.3.10 Tool Usability . 91

xvi

3.5.3.11 Tool Maturity . 92
3.5.3.12 Validation Tooling . 92

3.5.4 Choice of MTL . 92
3.5.5 Skills . 92

3.5.5.1 Language Skills . 92
3.5.5.2 User Experience/Knowledge . 93

3.5.6 Use Case . 93
3.5.6.1 Involved (meta-) models . 93
3.5.6.2 Semantic gap between input and output 93
3.5.6.3 Size . 94

3.6 Cross-Factor Findings . 94
3.6.1 The Effects of MTL Capabilities . 95
3.6.2 Tooling Impact on Properties other than Tool Support 95
3.6.3 The Importance of Moderating Factors . 97

3.7 Actionable Results . 97
3.7.1 Evaluation and Development of MTL Capabilities 97

3.7.1.1 Evaluation of MTL Capabilities and Properties 98
3.7.1.2 Improving MTL Capabilities . 99

3.7.2 Steps Towards Solving the Tooling Problem 101
3.8 Threats to validity . 102

3.8.1 Internal Validity . 102
3.8.2 External Validity . 103
3.8.3 Construct Validity . 103
3.8.4 Conclusion Validity . 103

3.9 Related Work . 104
3.9.1 Empirical studies on model transformation languages 104
3.9.2 Empirical studies on model transformations 105
3.9.3 Interview studies on model driven software engineering 105

3.10 Conclusion . 106

4 Paper C 107
4.1 Introduction . 110
4.2 Background . 113

4.2.1 Model-driven engineering . 113
4.2.2 Domain-specific languages . 113
4.2.3 Model transformation languages . 113

4.2.3.1 External and Internal transformation languages 114
4.2.3.2 Transformation Rules . 114
4.2.3.3 Rule Application Control: Location Determination 115
4.2.3.4 Directionality . 116
4.2.3.5 Incrementality . 116
4.2.3.6 Tracing . 117
4.2.3.7 Dedicated Model Navigation Syntax 117

4.2.4 Structural equation modelling and (Universal) Structural Equation Modelling 117
4.2.5 MTL Quality Properties . 119

4.3 Methodology . 120
4.3.1 Survey Design . 120

4.3.1.1 Questionnaire . 120
4.3.1.2 Pilot Study . 121
4.3.1.3 Target Subjects & Distribution . 121

4.3.2 Data Analysis . 122
4.3.3 Privacy and Ethical concerns . 123

4.4 Demographics . 123
4.4.1 Experience in developing model transformations (ξ12) 123
4.4.2 Languages used for developing model transformations (ξ10) and experience

therein (ξ11) . 123
4.4.3 Sizes (ξ12,ξ14) . 125
4.4.4 Conceptual distance between meta-models (ξ16) 125

xvii

4.4.5 Meta-model quality (ξ17) . 125
4.5 Results . 126

4.5.1 RQ1: Which of the hypothesised interdependencies withstands a test of sig-
nificance? & RQ4: What additional interdependencies arise from the analysis
that were not initially hypothesised? . 126

4.5.2 RQ2: How strong are the influences of model transformation language capa-
bilities on the properties thereof? . 128

4.5.3 RQ3: How strong are moderation effects expressed by the contextual factors
use-case, skills & experience and MTL choice? 128

4.6 Discussion . 130
4.6.1 Implications of results . 130

4.6.1.1 Suggestions for further empirical evaluation studies 130
4.6.1.2 Suggestions on language development 132

4.6.2 Interesting observations outside of USM . 132
4.6.3 Critical Assessment of the used methodology 132

4.7 Threats to validity . 133
4.7.1 Internal Validity . 133
4.7.2 External Validity . 133
4.7.3 Construct Validity . 134
4.7.4 Conclusion Validity . 134

4.8 Related Work . 134
4.8.1 Studies on the Properties of Model Transformation Languages 134
4.8.2 Empirical Studies on Model Transformation Languages 135

4.9 Conclusion . 135

5 Paper D 137
5.1 Introduction . 140
5.2 The Atlas Transformation Language (ATL) . 141

5.2.1 Modules . 141
5.2.2 Helpers and Attributes . 141
5.2.3 Rules . 142
5.2.4 Refining mode . 142

5.3 Complexity Measures . 143
5.3.1 Syntactic complexity . 143
5.3.2 Computational complexity . 144

5.4 Methodology . 144
5.4.1 Module Selection . 145
5.4.2 RQ1,2: How is the complexity of ATL transformations distributed over multi-

ple transformations and transformation components and are there any salient
characteristics? . 145

5.4.3 RQ3: How does the usage of refining mode impact the complexities of ATL
modules? . 146

5.4.4 RQ4: How large is the percentage of bindings that require trace-based binding
resolution? . 146

5.4.5 RQ5: What portion of ATL transformations use implicit rule ordering? . . . 146
5.5 Result Summary and Analysis . 146

5.5.1 RQ1: How is the complexity of ATL transformations distributed over multiple
transformations and transformation components? 146

5.5.2 RQ2: When looking at the complexity distributions of individual transforma-
tion components, are there any salient characteristics? 149

5.5.3 RQ3: How does the usage of refining mode impact the complexities of ATL
modules? . 150

5.5.4 RQ4: How large is the percentage of bindings that require trace-based binding
resolution? . 150

5.5.5 RQ5: What portion of ATL transformations use implicit rule ordering? . . . 151
5.6 Related Work . 152
5.7 Threats to validity . 152
5.8 Conclusion and Future Work . 153

xviii

6 Paper E 155
6.1 Introduction . 158

6.1.1 Context & Motivation . 158
6.1.2 Research Goals and Questions . 158
6.1.3 Research Methodology . 159
6.1.4 Results . 160
6.1.5 Contributions and Paper Structure . 160

6.2 Background . 161
6.2.1 Models in MDE . 161
6.2.2 ATL . 161

6.2.2.1 Units . 161
6.2.2.2 Helpers and Attributes . 162
6.2.2.3 Rules . 162
6.2.2.4 Refining Mode . 162

6.2.3 Technological advancements in Java SE14 compared to Java SE5 163
6.2.3.1 Functional Interfaces . 163
6.2.3.2 Streams . 163

6.3 Translation Schema . 164
6.3.1 Schema Development . 164
6.3.2 General Setup and Module Translation . 165
6.3.3 Libraries . 168

6.3.3.1 IO Library . 168
6.3.3.2 Traversal Library . 168
6.3.3.3 Trace Library . 169

6.3.4 Matched Rule Translation . 169
6.3.5 Called Rule Translation . 170
6.3.6 Helper and OCL Expression Translation . 171

6.4 Code Classification Schema . 171
6.4.1 ATL . 172
6.4.2 Java . 173

6.5 Size and Complexity Analysis Methodology . 175
6.5.1 RQ1: How much can the complexity and size of transformations written in

Java SE14 be improved compared to Java SE5? 177
6.5.2 RQ2: How is the complexity of transformations written in Java SE5 & SE14

distributed over the different aspects of the transformation process compared
to each other and ATL? . 177

6.5.3 RQ3: How is the size of transformations written in Java SE5 & SE14 dis-
tributed over the different aspects of the transformation process compared to
each other and ATL? . 178

6.5.4 RQ4: How does the size of query aspects of transformations written in Java
SE5 & SE14 compare to each other and ATL? 179

6.6 Results . 179
6.6.1 RQ1: How much can the complexity and size of transformations written in

Java SE14 be improved compared to Java SE5? 179
6.6.2 RQ2: How is the complexity of transformations written in Java SE5 & SE14

distributed over the different aspects of the transformation process compared
to ATL? . 181
6.6.2.1 Java SE5 . 181
6.6.2.2 Java SE14 . 181

6.6.3 RQ3: How is the size of transformations written in Java SE5 & SE14 dis-
tributed over the different aspects of the transformation process compared to
ATL? . 182
6.6.3.1 Java SE5 . 182
6.6.3.2 Java SE14 . 185

6.6.4 RQ4: How does the size of query aspects of transformations written in Java
SE5 & SE14 compare to each other and ATL? 187

6.7 Discussion . 187
6.7.1 The impact of not outsourcing model traversal in Java SE 5 188

xix

6.7.2 Language Advancements and Their Influence on the Ability to Write Trans-
formations: A Historical Perspective . 189

6.7.3 A Guideline for When and When Not to Use Java or similar GPLs 189
6.7.4 Limits of our Results in the Context of the Research Field 190

6.8 Threats to Validity . 191
6.8.1 Internal Validity . 191
6.8.2 External Validity . 191
6.8.3 Construct Validity . 192
6.8.4 Conclusion Validity . 192

6.9 Related work . 192
6.10 Conclusion . 193

Bibliography 195

A Appendix - Paper A 207
A.1 SLR results . 207
A.2 Overview over all extracted claims . 210

B Appendix - Paper B 219
B.1 Interview Questions . 219
B.2 Mail Templates . 221
B.3 Demographics . 222
B.4 Data Privacy Agreement . 224
B.5 Quotations . 227

C Appendix - Paper C 233
C.1 USM Results for Moderation Effects . 233
C.2 Survey Overview . 241
C.3 Mail Templates . 264
C.4 Data Privacy Agreement . 264

D Appendix - Paper D 265

E Appendix - Paper E 267
E.1 OCL expression translations in Java SE5 . 267

F Published Versions of included Articles 269
F.1 Paper A . 271
F.2 Paper B . 309
F.3 Paper D . 383
F.4 Paper E . 407

xxi

List of Abbreviations

API Application Programming Interface
ASE Average Simulated Effect
AST Abstract Syntax Tree
ATL Atlas Transformation Language
CIM Computation Independent Model
DFG Deutsche Forschungsgemeinschaft
DSL Domain-Specific Language
EMF Eclipse Modelling Framework
GLSP Graphical Language Server Protocol
GPL General Purpose Language
LOC Lines Of Code
LSP Language Server Protocol
MBE Model Based Engineering
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
MDSE Model Driven Software Engineering
MOF Meta-Object Facility
MT Model Transformation
MTL Model Transformation Language
OCL Object Constraint Language
OEAD Overall Explained Absolute Deviation
OMG Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model
QVT Query-View-Transform
SEM Structural Equation Modelling
SLR Structured Literature Review
TTC Transformation Tool Contest
USM Universal Structure Modelling
WMC Weighted Method Count

1

Chapter 1

Introduction

Sendall et al. (2003) describe model transformations as the “heart and soul of model-driven software
development”. It stands to reason that this particular task has been the focus of much research. No-
tably, a large number of dedicated domain-specific languages, called model transformation languages
(MTLs), have been developed to aid practitioners in developing model transformations. MTLs
are touted with many advantages in areas like productivity, expressiveness and comprehensibility
compared to general purpose programming languages (GPLs) for developing model transforma-
tions (Mernik et al. 2005; Sendall et al. 2003; Tratt 2005). However, little focus is put into providing
evidence for these claims. Researchers tend to prioritize the development of new abstractions or the
expansion of existing concepts to explore advanced and nice application domains, at the expense of
properly assessing their practical utility. As a result, increasingly many features and new languages
are being developed while evaluation is neglected.

One can argue that this is a fair use of resources because it is aligns with the purpose of research.
However, as the model-driven paradigm gains maturity, industry picks up more of its concepts and
new trends like AI emerge, confidence in one of MDSE’s core elements is imperative.

This is best highlighted in a study by Burgueño et al. (2019). They found that social aspects
like acceptance of the MDSE are a big issue for the community. As a result, proper empirical
evaluation to provide evidence of the advantages of MTLs is becoming increasingly important.
Furthermore, evaluation can help to detect current shortcomings that can be addressed to improve
the usefulness of transformation languages. It can also assist in precisely defining those areas where
using model transformation languages is most potent. Lastly, it helps to identify those features
of model transformation languages that are most useful for transformation developers, allowing
language development to focus on the correct areas to make the languages more streamlined for
practical use. All this can help improve research on MTLs and help increase their acceptance by
researchers and industry.

In the course of our work, we identified several hurdles that hamper extensive empirical evalu-
ations of MTLs. First, little explicit knowledge exists about the quality attributes associated with
model transformation languages (Götz et al. 2021a). Most of it exists solely in the minds of re-
searchers and users. There is also no unified designation of the quality attributes, and different
descriptions often exist for the same aspects. Moreover, there is a lack of knowledge about cause-
and-effect relations between the quality attributes of MTLs and language features or other factors
that facilitate or hamper them.

Second, it is unclear which quality attributes are most important and should thus be investigated
first.

And third, setting up proper empirical evaluation is challenging (France 2008; Höppner et al.
2022a; Rainer et al. 2021). This is partly caused by the lack of cause-and-effect relations leading to
uncertainty about variables to consider. And due to the high amount of effort and uncertainty of
results. Thus, empirical evaluation is a high-risk use of limited resources.

The goal of this thesis is to curb all three of these hurdles. We aim to build up detailed data
on what quality attributes are associated with MTLs, where advantages and disadvantages in those
are presumed, and what factors facilitate them. We further intend to provide information on the
most important properties to evaluate. Lastly, we want to demonstrate the feasibility of extensive
empirical studies by assessing some of the suggested properties in studies ourselves.

This thesis is structured in two parts. Part one, comprised of Chapter 1, aggregates the results of
all accompanying publications. Part two, comprised of Chapters 2 to 6, contains the five publications
associated with this thesis.

2 Chapter 1. Introduction

The remainder of this chapter is structured as follows: Section 1.1 presents an overview of
the problem domains model transformation languages and model-driven software development. In
Section 1.2 the research objectives and scope of this thesis are presented and discussed. Related work
is outlined in Section 1.3. The research methodologies employed for this thesis and the contributions
of each individual paper are presented in Sections 1.4 and 1.5, respectively and the implications of
our results are discussed in Section 1.6. In Section 1.7 the threats to validity of this thesis are
discussed. Lastly, Section 1.8 a conclusion is drawn and future work is outlined.

1.1 Background
This thesis focuses on advantages and disadvantages of model transformation languages which are
domain-specific languages used in model-driven (software) engineering. Therefore, this section pro-
vides an overview of the model-driven engineering approach, domain-specific languages and model
transformation languages.

1.1.1 Model-Driven Engineering
Stachowiak (1973) defines models as “a representation of entities and relationships in the real world
with a certain correspondence for a certain purpose”. Model-driven engineering (MDE) and model-
driven software engineering (MDSE) put such models at the centre of development (Brambilla et al.
2017).

There exist several other model-driven approaches, each with a slightly different focus. For this
thesis, we will focus on MDE as it encompasses all the other approaches. We use the definition
given by Brambilla et al. (2017).

MDE is centred around the concept of automatically generating artefacts from models. Artefacts
can be models or different artefacts used in the running system. In MDE models are used both
to describe and reason about the problem domain and to develop solutions (Brown et al. 2005).
This constitutes an advantage over regular development because the models express domain-related
concepts more closely (Selic 2003).

The realisation of a system is spread over three levels (Brambilla et al. 2017). The modelling
level, where models are defined. The realisation level, where the solutions are implemented
through artefacts in use within the running system. And the automation level, where transfor-
mations from models to artefacts are defined. An overview of the relationship between the three
levels can be found in Figure 1.1.

In the context of the modelling level, meta-models play a crucial role. They define the structure
of models that adhere to them. Each model is written in a modelling language expressed through a
meta-model (Bézivin 2004). Meta-models thus define an application domain for which models can
be created. The structure of meta-models themselves is defined through meta-models of their own.
The Object Management Group (OMG) developed a modelling standard called Meta-object Facility
(MOF) (OMG 2002) for this purpose. Several modelling frameworks such as the Eclipse Modelling
Framework (EMF) (Steinberg et al. 2008) and the .NET Modelling Framework (Hinkel 2016) have
been developed based on MOF.

MDE describes a top-down approach for the automatic generation of executable solutions derived
from abstract models (Schmidt 2006; Selic 2003). The (automatic) transformations from one model
into other artefacts are called model transformations (MTs). Since they connect the modelling level
with the realisation level, they constitute the heart of MDE. A fact that is often referred to in
literature (Metzger 2005; Sendall et al. 2003). Model transformations can be developed through the
use of general-purpose programming languages (GPLs) or through the use of dedicated languages
called model transformation languages (MTLs).

1.1.2 Domain-specific Languages
Domain-specific languages (DSLs) are languages focused on one particular aspect (Fowler 2011).
They are designed with a notation that is tailored for a specific domain by focusing on relevant
features of the domain (Van Deursen et al. 2002). In doing so DSLs provide domain specific language
constructs, that let developers feel like working directly with domain concepts. This increases speed
and ease of development and even reduces the barrier of entry for non experts to understand what is

1.1. Background 3

Transformation
Language

Artefact
Artefact

Transformation
Transformation

Transformation
DefinitionTransformation

Definition

Meta-Model
Meta-Model

Model
Model

Model Platform Artefact

Platform

to
to

from
Transformation

Meta-Model

Transformation
Definition

Transformation
Language

Modeling Language

Artefact

Legend
defined using

defined by

maps used in

Modelling Level Automation Level Realisation Level

Figure 1.1: Overview of MDE based on Brambilla et al. (2017)

written (Fowler 2011; Sprinkle et al. 2009). A well-defined DSL can provide an alternative to using
general-purpose tools for problem-solving in a specific domain.

Examples of this include languages such as shell scripts in Unix operating systems (Kernighan
et al. 1984), HTML (Raggett et al. 1999) for designing web pages or AADL an architecture design
language (SAEMobilus 2004).

Fowler (2011) describes DSLs as being either internal or external. External DSLs are languages
that are parsed and often executed separately from the general purpose language in which they are
used. Examples of external DSLs are SQL (Codd 1970) and CSS (W3C 2021). Internal DSLs are a
form of API within a GPL referred to as fluent interfaces (Fowler 2011). A fluent interface allows an
eloquent definition of DSL expressions that can be read much like a standard sentence in a natural
language. The integrated query language LINQ (Meijer et al. 2006) in .NET and the declarative
Java API to create mock objects JMock (Freeman et al. 2004) fall in this category of DSLs.

1.1.3 Model Transformation Languages1

Model transformation languages are DSLs designed to support developers in writing model trans-
formations. For this purpose, they provide explicit language constructs for tasks involved in model
transformations such as model matching. There are various features, such as directionality or rule
organization (Czarnecki et al. 2006), by which model transformation languages can be distinguished.
In this section, we will only be explaining those features relevant to the thesis. Please refer to Czar-
necki et al. (2006), Kahani et al. (2019), and Mens et al. (2006) for complete classifications. Table 1.1
provides an overview of the presented features.

1.1.3.1 External and Internal Transformation Languages

As explained in Section 1.1.2, DSLs can be distinguished as internal or external languages. MTLs
can be distinguished in the same fashion. They can be embedded into another language, the so-
called host language or they can be fully independent languages that come with a compiler or virtual

1This section is based on the descriptions from Chapter 3 (Höppner et al. 2022a).

4 Chapter 1. Introduction

T
a
bl

e
1.

1:
M

T
L

fe
at

ur
e

ov
er

vi
ew

Fe
at

u
re

C
h
ar

ac
te

ri
st

ic
R

ep
re

se
nt

at
iv

e
L
an

gu
ag

e

E
m

be
dd

ed
ne

ss
In

te
rn

al
Fu

nn
yQ

T
(C

lo
ju

re
),

R
ub

yT
L

(R
ub

y)
,N

M
F

Sy
nc

hr
on

iz
at

io
ns

(C
#

)
E

xt
er

na
l

A
T

L,
H

en
sh

in
,Q

V
T

R
ul

es
E

xp
lic

it
Sy

nt
ax

C
on

st
ru

ct
A

T
L,

H
en

sh
in

,Q
V

T
R

ep
ur

po
se

d
Sy

nt
ax

C
on

st
ru

ct
N

M
F

Sy
nc

hr
on

iz
at

io
ns

(C
la

ss
es

),
Fu

nn
yQ

T
(M

ac
ro

s)

Lo
ca

ti
on

D
et

er
m

in
at

io
n

A
ut

om
at

ic
T
ra

ve
rs

al
A

T
L,

Q
V

T
P
at

te
rn

M
at

ch
in

g
H

en
sh

in

D
ir

ec
ti

on
al

it
y

U
ni

di
re

ct
io

na
l

A
T

L,
Q

V
T

-O
B

id
ir

ec
ti

on
al

Q
V

T
-R

,N
M

F
Sy

nc
hr

on
is

at
io

ns

In
cr

em
en

ta
lit

y
In

cr
em

en
ta

lit
y

N
M

F
Sy

nc
hr

on
iz

at
io

ns
N

o
in

cr
em

en
ta

lit
y

Q
V

T
-O

T
ra

ci
ng

A
ut

om
at

ic
A

T
L,

Q
V

T
M

an
ua

l
N

M
F

Sy
nc

hr
on

iz
at

io
ns

D
ed

ic
at

ed
M

od
el

N
av

ig
at

io
n

Sy
nt

ax
D

ed
ic

at
ed

na
vi

ga
ti

on
sy

nt
ax

A
T

L
(O

C
L)

,Q
V

T
(O

C
L)

,H
en

sh
in

(i
m

pl
ic

it
in

ru
le

s)
N

o
de

di
ca

te
d

na
vi

ga
ti

on
sy

nt
ax

N
M

F
Sy

nc
hr

on
iz

at
io

ns
,F

un
ny

Q
T

,R
ub

yT
L

1.1. Background 5

� �
1 public void methodExample(Member m) {
2 System.out.println(m.getFirstName());
3 }
4 public void methodExample2(Member m) {
5 Male target = new Male();
6 target.setFullName(m.getFirstName() + " Smith");
7 REGISTRY.register(target);
8 }� �

List. 1.1: Example Java methods

machine.
Model transformation languages embedded in a host language are called internal MTLs. Promi-

nent representatives among model transformation languages are FunnyQT (Horn 2013) a language
embedded in Clojure, NMF Synchronizations and the .NET transformation language (Hinkel et al.
2019a) embedded in C#, and RubyTL (Jesús Sánchez Cuadrado et al. 2006) embedded in Ruby.

Fully independent model transformation languages are called external MTLs. Examples of ex-
ternal model transformation languages are the Atlas transformation language (ATL) (Jouault et al.
2006), one of the most widely known MTLs, the graphical transformation language Henshin (Arendt
et al. 2010), as well as a complete model transformation framework called VIATRA (Balogh et al.
2006).

1.1.3.2 Transformation Rules

Czarnecki et al. (2006) describe rules as “a broad term that describes the smallest units of [a] trans-
formation [definition]”. Depending on the language, rules can take different forms. Transformation
rules in ATL are the rules that make up transformation modules. In other languages, they can take
the form of a function or method that implements a transformation from an input element to an
output element.

The fundamental difference between model transformation languages and general-purpose lan-
guages that originates in this definition lies in dedicated constructs that represent rules. In GPLs,
there is no clear-cut difference between a transformation rule and any other function, method or
procedure. This distinction can only be made based on the contents thereof. An example of this can
be seen in Listing 1.1, which contains exemplary Java methods. Without detailed inspection of the
two methods, it is not apparent which method does some form of transformation and which does
not. Using descriptive names for methods can help alleviate the problem, but it does not prevent
transformation functionality from being written in methods that are not intended for it.

In MTLs, transformation rules are dedicated constructs within the languages that allow a defi-
nition of a mapping between input and output (elements). The example rules written in the model
transformation language ATL in Listing 1.2 make this apparent. They define mappings between
model elements of type Member and model elements of type Male as well as between Member and
Female using rules, a dedicated language construct for defining transformation mappings. The trans-
formation is a modified version of the well known Families2Persons transformation case (Anjorin
et al. 2017).

1.1.3.3 Rule Application Control: Location Determination

Location determination describes the strategy that is applied for determining the elements within
a model onto which a transformation rule should be applied (Czarnecki et al. 2006). Most model
transformation languages such as ATL, Henshin, VIATRA or QVT (OMG 2016), rely on some form
of automatic traversal strategy to determine where to apply rules.

We differentiate two forms of location determination based on the kind of matching that occurs
during traversal: basic automatic traversal and pattern matching. In basic automatic traversal, the
rule applied to an element is determined based on the model element and constraints on it. This
type of location determination is employed in languages such as ATL or QVT. In pattern matching,
a model- or graph-pattern, defined in a rule, is matched within the model. This allows developers
to define sub-graphs consisting of several model elements and references between them, which are
then manipulated by a rule. Pattern matching is used, e.g., in Henshin.

6 Chapter 1. Introduction

� �
1 rule Member2Male {
2 from
3 s : Member (not s.isFemale())
4 to
5 t : Male (
6 fullName <- s.firstName + ’ Smith’
7)
8 }
9

10 rule Member2Female {
11 from
12 s : Member (s.isFemale())
13 to
14 t : Female (
15 fullName = s.firstName + ’ Smith’
16 partner = s.companion
17)
18 }� �

List. 1.2: Example ATL rules

Figure 1.2: Example Henshin transformation

The basic automatic traversal of ATL applied to the example from Listing 1.2 will result in
the transformation engine automatically executing the Member2Male on all model elements of type
Member where the function isFemale() returns false and the Member2Female on all other model
elements of type Member.

The pattern matching of Henshin can be demonstrated using Figure 1.2, a modified version of
the transformation examples by Krause et al. (2014). It describes a transformation that creates a
couple connection between two actors that play in two films together. When the transformation
is executed the transformation engine will try and find instances of the defined graph pattern and
apply the changes to the found matches.

The examples highlight the main difference between automatic traversal and pattern matching.
The engine will search for a sub-graph within the model instead of applying a rule to single elements
within the model.

1.1. Background 7

� �
1 top relation Member2Male {
2 n, fullName : String;
3 domain Families s:Member {
4 firstName = n };
5 domain Persons t:Male {
6 fullName = fullName};
7 where {
8 fullName = n + ’ Smith’; };
9 }� �

List. 1.3: Example QVT-R relation

1.1.3.4 Directionality

The directionality of a model transformation describes whether it can be executed in one direction,
called a unidirectional transformation, or in multiple directions, called a multidirectional transfor-
mation (Czarnecki et al. 2006).

For this thesis, the distinction between unidirectional and bidirectional transformations is rele-
vant. Languages that allow dedicated support for executing a transformation both ways based on
one transformation definition are called bidirectional. Those that require users to define transforma-
tion rules for both directions are called unidirectional. General-purpose languages can not provide
bidirectional support and always require both directions to be implemented explicitly.

The ATL transformation from Listing 1.2 defines a unidirectional transformation. Input and
output are defined and the transformation can only be executed in that direction.

The QVT-R relation defined in Listing 1.3 is an example of a bidirectional transformation def-
inition (for simplicity reasons, the transformation omits the condition that males are only created
from members that are not female). Instead of a declaration of input and output, it defines how
two elements from different domains relate to one another. As a result, given a Member element its
corresponding Male elements can be inferred, and vice versa.

1.1.3.5 Incrementality

Incrementality of a transformation describes whether existing models can be updated based on
changes in the source models without rerunning the complete transformation (Czarnecki et al.
2006). This feature is sometimes also called model synchronisation.

Providing incrementality for transformations requires (active) monitoring of input and/or output
models to detect changes therein. Additionally information on which rules affect what parts of the
models is also needed. When a change is detected, the corresponding rules can then be executed.
It can also require additional management tasks to keep models valid and consistent.

1.1.3.6 Tracing

According to Czarnecki et al. (2006) tracing “is concerned with the mechanisms for recording different
aspects of transformation execution, such as creating and maintaining trace links between source and
target model elements”.

Several model transformation languages, such as ATL and QVT, have automated mechanisms
for trace management. This means that traces are automatically created during runtime. Some
trace information can be accessed through special syntax constructs. At the same time, some of it
is automatically resolved to provide seamless access to the target elements based on their sources.

An example of tracing in action can be seen in line 16 of Listing 1.2. Here the partner at-
tribute of a Female element that is being created, is assigned to s.companion. The s.companion
reference points towards a element of type Member within the input model. When creating a Female
or Male element from a Member element, the ATL engine will resolve this reference into the corre-
sponding element, that was created from the referred Member element via either the Member2Male
or Member2Female rule. ATL achieves this by automatically tracing which target model elements
are created from which source model elements.

8 Chapter 1. Introduction

1.1.3.7 Dedicated Model Navigation Syntax

Languages or syntax constructs for navigating models are not part of any feature classification for
model transformation languages. However, it is a relevant distinction for this thesis.

Languages such as OCL (OMG 2014), which is used in transformation languages like ATL,
provide dedicated syntax for querying and navigating models. They provide syntactical constructs
that aid users in navigation tasks. Different model transformation languages provide different syntax
for this purpose. The aim is to provide specific syntax, so users do not have to manually implement
queries using loops or other general purpose constructs. OCL provides a functional approach for
accumulating and querying data based on collections, while Henshin uses graph patterns to express
the relationship of sought-after model elements.

1.2 Goals and Scope
As described in the introduction of this chapter, the objective of this Ph.D. thesis is threefold. We
want to create a reliable source of data about advantages and disadvantages of MTLs and where
they originate from, provide clear suggestions on the most important aspects to investigate and add
to the current body of empirical research by investigating some of the suggested aspects ourselves.
Each of these goals is addressed through research questions described in this section.

G1: Build up detailed data on what quality attributes are associated with MTLs.

RQ1: What are quality attributes claimed to be associated with MTLs, and is the association
positive or negative?

RQ2: What empirical studies or other means are used to validate claimed advantages and
disadvantages?

G2: Provide a model of factors that facilitate or hamper the perception of quality attributes and
information on the importance of the factors.

RQ3: What are the factors that influence the association of quality attributes with MTLs?

RQ4: How do the identified factors influence MTL quality attributes?

RQ5: How important are the influences of factors on the perceived MTL quality attributes?

RQ6: What is the relevancy of the identified quality attributes and factors for language
developers, researchers & transformation developers?

G3: Demonstrate the feasibility of extensive empirical studies and provide first real results through
assessing some of the suggested properties

RQ7: How do domain specific syntax constructs influence the expressiveness of ATL for de-
veloping model transformations?

RQ8: How does the complexity of transformations written in ATL compare to those written
in Java?

G1 & G2 aim to form a basis to build empirical studies on and to further research on model
transformation languages in general. In detail, RQ1 addresses the need for explicit and precise
information in the form of a list of quality attributes with a detailed description thereof. It also
intents to establish a characterisation of what specific advantages and disadvantages are associated
with quality attributes of MTLs. RQ2 aims to establish the current state of validation of all claims
on model transformation languages that are identified in RQ1. The results serve the purpose of
providing further justification for this work and information on used methodologies and investigated
properties. RQ3 aims to extend the data basis by eliciting the underlying factors that lead people
to associate advantages and disadvantages with MTLs. RQ4 looks to complete a qualitative picture
through details on how factors facilitate these influences. RQ5 aims to extend the qualitative model
with quantitative data on the influences between the identified factors and the perceived quality of
MTLs. These numbers serve as the basis to evaluate what the most important quality attributes
and factors are for RQ6 with the aim to prioritise evaluation and further language development.

1.3. Related Work 9

Paper A
MTL Quality Attributes

G1, RQ1 & RQ2

Paper B
Influence Factors

G2, RQ3-6

Paper C
Influence Quantification

G2, RQ5 & RQ6

Paper D
Expressiveness in ATL

G3, RQ7

Paper E
Comparision ATL & Java

G3, RQ8

Empirical Studies

Empirical Basis

Figure 1.3: Ph.D. scope

Lastly, G3 aims to add empirical evidence to some of the most prevalent aspects and demon-
strate the feasibility of conducting such studies. For this purpose we focus on one specific model
transformation language and one general purpose language and investigate one of the quality at-
tributes identified in RQ1. The results of RQ3-5 provide information about the factors that need
to be taken into account when answering the research questions for this goal. RQ7 aims to establish
first quantitative results on the effects of the domain specific syntax constructs present in the model
transformation language ATL. The results serve as a basis for comparing ATL with Java transfor-
mations in RQ8. RQ8 aims to investigate how much manual effort is required to implement the
domain specific functionality and how this effects the code structure. We are especially interested
in how much more code has to be written and how much this changes the focus of the code from
developing a transformation to writing code to make the transformation work. RQ7 and RQ8 are
intended to be answered through several additional sub-research questions that define concrete and
measurable variables to investigate.

The goals of this thesis are addressed through the five papers included in this thesis. Figure 1.3
depicts which goals and research questions are addressed by each individual paper. Papers A, B and
C jointly form the basis for the empirical studies conducted in Papers D and E by addressing goals
G1 & G2. For this, Paper A answers research questions RQ1 & RQ2. The results are used in
Paper B to answer RQ3 & RQ4. Additionally, due to the nature of the study conducted in Paper
B, we can also infer first answers for RQ5 & RQ6. Paper C uses all these results to address goal
G2 with answers to RQ5 & RQ6.

The results from goals G1 & G2 are then used to design the studies in Paper D and E. Paper
D answers RQ7 through a case study focused on ATL transformations. In Paper E we extend this
investigation with a comparison between ATL and Java transformations to answer RQ8.

1.3 Related Work
A broad body of literature can be related to the papers of this thesis individually and the goals in
general. In this section, we give an overview of works related to the overall scope of this thesis. There
are four main bodies of related work. First, works on classifying model transformation languages.
Second, studies on domain specific languages. Third, empirical studies on model driven engineering.
Fourth, empirical studies focused on model transformation languages. A detailed discussion of work
related to the studies included in this thesis is given in each paper individually.

10 Chapter 1. Introduction

1.3.1 Classifications of Model Transformation Languages
There exist no prior works that contribute to a systematisation of what quality attributes are
associated with model transformation languages. However there are several works that provide
classification of model transformations (Czarnecki et al. 2006; Kahani et al. 2019; Mens et al. 2006)
which we use as a basis to close the existing gap. Their classifications systematise functionality and
language makeup. Our classification on the other hand focuses on non-functional quality properties
that are associated with model transformation languages.

1.3.2 Studies on Domain Specific Languages
In the area of domain specific languages several classifying works exist. Tomaž Kosar et al. (2016)
detail a mapping study, highlighting trends in DSL research. Similar to the results of Paper A they
also identified a lack of empirical studies that compare DSLs with general purpose languages or
investigate properties of DSLs in depth. A discussion of DSL terminology and risks and benefits
thereof is presented by Van Deursen et al. (2000). Many of the points raised by Van Deursen et al.,
such as claims about the conciseness of DSLs or better performance, are also reflected in our results
on model transformation languages from Paper A. Expanding on the discussion of using general
purpose languages as alternatives to DSLs Tomaz Kosar et al. (2010) present an empirical study
comparing C# Forms and XAML for the purpose of defining user interfaces. The study represents
one of the few attempts in comparing DSLs and general purpose languages. Albeit being focused
on user interface design it demonstrates the importance of such comparative studies as their results
provide quantitative data that can be used to argue the use of a DSL over a general-purpose language
for specific tasks.

1.3.3 Studies on Model Driven Software Engineering
More closely related to model transformation languages, several empirical studies on MDSE have
been conducted and reported on. Staron (2006) conducted interviews with experts from two com-
panies planning to adopt MDSE to find the state-of-practice in adopting the approach in industry.
Their main finding was that the existing tooling and processes were not up to the task of basing
development solely around models. A tooling gap specifically for model transformation languages
was also identified in our study reported in Paper B.

Similarly, using questionnaires and interviews (Hutchinson et al. 2011a,b, 2014; Whittle et al.
2013), Whittle, Hutchinson, Rouncefiled et al. elicited positive and negative consequences of ap-
plying MDSE in industry and factors that drive or hamper its adoption. Their findings include
organisational benefits in communication and flexibility to changing requirements. Productivity
gains far beyond what they expected were also observed. Relevant factors for the success of MDSE
were mainly centred around organisational tasks such as applying MDSE to the right use-cases and
commitment to enact changes required in the process. In Paper B, we also identified the use-case
as one of the most important aspects when comparing model transformation languages with GPLs.
Whittle, Hutchinson, Rouncefiled et al. also point toward several open challenges for research that
are similar to our findings. This includes opening communities to educate people on MDSE and its
applications and focusing on improving the most relevant processes within MDSE rather than just
developing more tools.

Mohagheghi et al. carried out multiple empirical studies on MDSE, focusing on factors for and
consequences of adoption thereof. They used surveys and interviews at several companies (Mo-
hagheghi et al. 2013a,b) as well as a literature review (Mohagheghi et al. 2008) for this purpose.
They found MDSE to not be suited for small projects as it required tool customisation and inte-
grating them into existing tool chains. Tasks that are labour intensive and do not pay off for small
projects. Similar to our results in Paper A, but for MDSE in general, they too identified a lack of
existing empirical studies.

1.3.4 Studies on Model Transformation Languages
There exist several empirical studies on the topic of model transformation languages dealing with
different aspects thereof. Some focus on the social aspects involved in writing model transforma-
tions (Groner et al. 2020; Tehrani et al. 2016). Others compare model transformation languages
with each other (Jakumeit et al. 2014).

1.4. Research Methodology 11

Tehrani et al. (2016) use an interview study with five individuals to understand the context in
which model transformations are developed when using MTLs and identify differences compared
to GPL transformation development. An interesting finding of theirs is that all transformation
projects discussed in their study were greenfield projects. This is in line with our findings in Paper
B that embedding transformations written in MTLs is difficult. Additionally the development of
transformations seems to lack systematic processes which we also identified as a gap in the state of
the art.

Groner et al. (2020) report on a mixed method study to investigate whether transformation
developers are concerned with the performance of their transformations and what strategies they
employ to identify performance issues. Their results show that 42% of developers are only sometimes
satisfied with their transformations performance which stands in contrast with much of literature
that claims performance benefits of MTLs as identified in Paper A.

Jakumeit et al. (2014) report on an in-depth qualitative comparison of different model trans-
formation languages based on the Transformation Tool Contest (TTC). They compare all solution
submissions for a transformation case submitted for the contest in 2011 and highlight the process
how the case was solved using the different languages. The study is a rare case of an in-depth report
on how to use model transformation languages and thus provides a valuable resource for people
when deciding on what language to use for development. Unfortunately the report is over 10 years
old and thus suffers from the same over-ageing that we identified for many of the claims surrounding
model transformation languages in Paper A.

Several studies follow a similar methodology as we use in the empirical studies included in this
thesis. Di Rocco et al. (2015) analyse the impact of input and output meta-models on a number of
metrics calculated for ATL transformations. For this purpose, they use repository mining to collect
91 ATL transformations and the meta-models associated with those transformations. We employ this
approach in Papers D and E with a different aim. While they focus on identifying the impact of the
meta-models on things like the size of ATL transformations, our studies are more introspective. We
analyse and compare transformation scripts written in ATL and Java, drawing direct conclusions on
the advantages and disadvantages of using ATL compared to Java for transformation development.

Similarly Angelika Kusel et al. (2013) analysed the ATL Zoo2 with the goal to gain insights about
the frequency of use of reuse mechanisms. Their results are highly important as we identified in
Paper C, that the use of reuse mechanisms is a major factor for the perception of quality attributes
of MTLs. They also highlight the current challenges of reuse mechanisms in model transformation
languages, specifically ATL, because it requires complex abstraction and specialization mechanisms
that are hard for transformation developers to utilise.

Tolosa et al. (2011) calculate several metrics for 9 different ATL transformations. However their
main purpose was to demonstrate the feasibility of their metrics calculation transformation. Since
they have not published any follow up studies that utilise their metrics the study is another example
of the lack of thorough empirical rigour in the area of MTL evaluation.

Only one empirical study, a controlled experiment by Hebig et al. (2018), focuses on comparing
model transformation languages with general purpose languages. They let 78 subjects solve three
different model transformation tasks (comprehending, changing and creating) using ATL, QVT-O
and Xtend. Unfortunately, they could not find statistically significant data on their main hypotheses
about subjects performing better in the tasks using MTLs than GPLs. They did however find that
MTLs provide better support to users for identifying context for changes and that subjects were
much better in creating conditioning via types than via values. We were able to support several
of their qualitative observations and identify which parts of ATL facilitate them in our study from
Paper E using a different methodology.

Lastly, there exist several experiment templates for evaluating model transformation languages
against each other and GPLs that have yet to be executed (Kramer et al. 2016; Strüber et al. 2016).

1.4 Research Methodology
This thesis aims to curb all three hurdles hampering the empirical evaluation of model transformation
languages. To this end, we employ several empirical studies ourselves. The applied methodologies
are tuned to the respective research questions answered in the studies. Papers A, B and C aim
to collect empirical data on the advantages and disadvantages of MTLs and the influences that

2https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/

12 Chapter 1. Introduction

Table 1.2: Research Methodology per Paper

Paper Strategy Data

Paper A Structured Literature Survey 58 Publications
Paper B Interview Study 56 Participants
Paper C Questionnaire & Universal Structure Modelling 113 Participants
Paper D Repository Mining 33 Transformations
Paper E Repository Mining & Design Science 3x12 Transformations

facilitate them. Papers A and B use qualitative methods while Paper C is a quantitative study. The
results of these studies were then used to decide on the focus of the two case studies in Papers D
and E. Table 1.2 summarises the empirical strategies employed and the data used in all five studies.

At the beginning of this work, in Paper A, we collected data on the current state of literature
using a structured literature review (SLR) (Kitchenham et al. 2007). We surveyed literature to
determine what quality aspects were associated with MTLs and whether the association is positive,
i.e., an advantage, or negative, i.e., a disadvantage. Moreover, it allowed us to identify how much
of the claimed advantages and disadvantages are backed up by evidence and what type of evidence
was used. Structured literature reviews are well suited for this purpose, as they allow for mapping
the landscape of current research and identifying gaps in said research (Boot et al. 2016).

In Paper B, these insights were contextualised and expanded upon in an interview study. We
collected and analysed reasons and background information that led participants to believe claims
about MTLs to be true. Interviews are an appropriate approach for this goal because they allow for
ascertaining qualitative data such as opinions and estimates and are one of the most widely used
research methods in the technical field for this purpose (Hove et al. 2005; Meyer et al. 1990). Due
to the number of quality attributes identified in Paper A, Paper B only focuses on a subset thereof.

Paper C seamlessly follows and adds quantification to the findings of Paper B. We aimed at
quantifying how strong the influence of language capabilities and user background are on their
perception of quality attributes of MTLs. In this study, the focus was again narrowed to keep the
size of the study in check. For the purpose of the study, we use a survey that follows the seven-step
process outlined by Kasunic (2005) and utilises universal structure modelling (USM) (Buckler et al.
2008) for analysis. Survey research was chosen because “it provides a means to distil the subjective
(and often fuzzy) opinions of the respondents” (Torchiano et al. 2017). Using USM to analyse
the responses to the questionnaire has several reasons. The hypothesised relationships between
quality attributes, user background and language capabilities define a complex structure model.
Such models are generally investigated by means of structure equation modelling (Weiber et al.
2021). USM is a methodology for structure equation modelling that is able to handle uncertainty
about the completeness of the structure model better than alternative approaches (Buckler et al.
2008). Moreover, it provides more potent capabilities to analyse moderation effects and non linear
correlations between the analysed factors (Weiber et al. 2021).

Papers D and E use repository mining to investigate some of the relationships revealed in Papers
A-C empirically. Repository mining is an approach where data collected from a platform hosting
large numbers of structured or semi-structured text is analysed and cross-linked with the intent of
finding interesting and actionable information about the data (Hassan 2008). In contrast to case
studies (Runeson et al. 2012), repository mining does not investigate the dataset within its real-world
context. Instead, it is concerned with using a larger amount of data to draw quantitative conclusions.
We employ repository mining because more data is readily available, and the quantitative results
are more robust in their generalisability.

Paper D is focused on the expressiveness of ATL for writing model transformations with a special
focus on the effects of automatic trace handling, model traversal and dedicated model navigation
syntax. We collected 33 transformations and analysed them qualitatively and quantitatively for what
code is required for which aspect of the transformation development. This data is used to assess
the code distribution over the different aspects quantitatively. The measure used for quantitative
analysis is called syntactic complexity, a measure based on the collection of ATL measures by Lano
et al. (2018).

In Paper E repository mining is complemented with design science. Design science is concerned
with iterative creation and evaluation of new artefacts (Hevner et al. 2004). We use design science to
create a translation schema used to generate additional artefacts based on those extracted through

1.5. Contribution 13

repository mining. This complementary method was chosen, because no suitable Java artefacts were
readily available through repository mining alone.

The focus of Paper E is to investigate how transformations written in a general-purpose lan-
guage, i.e., Java compare to those written in ATL in legacy and modern Java styles. Because no
transformations written in Java were readily available, we used design science to create them based
on existing ATL transformations. All transformations were analysed and compared in terms of
code distribution over the different transformation aspects. For this purpose we used the syntactic
complexity measure for ATL and word count for Java. The word count measure counts the number
of words that are separated either by whitespaces or other delimiters used in the languages, such
as a dot (.) and different kinds of parentheses (()[]{}). It has already been successfully used
by Anjorin et al. (2019) to compare several (bidirectional) transformation languages. Moreover, the
Java transformations in the different programming styles were compared on in terms of lines of code,
McCabe complexity (McCabe 1976) and word count.

A more detailed exposition on the methodologies used in each paper can be found in Chapters 2
to 6.

1.5 Contribution
In this section, we briefly outline all five papers included this thesis and describe their contribution
to the state of research. The complete papers can be found in Chapters 2 to 6.

1.5.1 Paper A: Claims and Evidence in Literature
As mentioned in Chapter 1, model transformation languages are developed to improve the transfor-
mation development process. A substantial amount of effort is put into developing new languages
and new concepts to incorporate into them. The advancements made through new developments
are then casually related to new or improved advantages of MTLs compared to prior iterations and
general-purpose languages. However, as we show in Paper A, there is a lack of evidence for claims
raised in literature. Moreover, there is no uniform definition of the quality attributes generally
associated with model transformation languages and no central repository of knowledge about the
state of evidence. While these gaps can be considered convenience problems, they pose a problem
for those trying to convince people outside of the MDE community of the usefulness of MTLs.

The contribution of Paper A is a comprehensive overview of the quality attributes associated
with model transformation languages and state of evidence thereof throughout literature. Paper A
aims to answer RQ1 & RQ2:

RQ1: What are quality attributes claimed to be associated with MTLs, and is the association
positive or negative?

RQ2: What empirical studies or other means are used to validate claimed advantages and
disadvantages?

The paper lays the foundation for this thesis by providing a set of 15 quality attributes associated
with MTLs in literature. It also provides further motivation for our work by highlighting how grave
the state of empirical research, or any evidence, for MTLs is. Lastly, it also highlights how a casual
way of handling claims leads to misrepresentation of the state of evidence, which crumbles under
a small amount of scrutiny. This makes the community look inaccurate at best and dishonest at
worst.

Paper A does not focus on a specific type of model transformation language or feature set.
Instead it aims to provide a complete overview for the entirety of MTLs.

Using 4 literature databases and the search terms MDE, model transformation and model trans-
formation languages (and synonyms thereof), as well as snowballing, we collected over 4000 pub-
lications. The publications were filtered for mentions of advantages or disadvantages of model
transformation languages by two separate researchers. Different assessments were discussed. In the
end 58 papers were selected for further analysis. The selected papers were analysed for quality at-
tributes mentioned as well as advantages and disadvantages associated with the attributes. Finally,
we looked for evidence the papers provided that support the raised connections. To do so, we em-
ployed initial coding and focused coding as described by Charmaz (2014), first extracting common
phrases and then using them to form categories.

14 Chapter 1. Introduction

A
na

ly
za

bi
lit

y

C
om

pr
eh

en
si

bi
lit

y

C
on

ci
se

ne
ss

D
eb

ug
gi

ng

E
as

e
of

 w
rit

in
g

a
tr

an
sf

or
m

at
io

n

E
xp

re
ss

iv
en

es
s

E
xt

en
da

bi
lit

y

Ju
st

 b
et

te
r

Le
ar

na
bi

lit
y

P
er

fo
rm

an
ce

P
ro

du
ct

iv
ity

R
eu

se
 a

nd
 M

ai
nt

ai
na

bi
lit

y

To
ol

 S
up

po
rt

S
em

an
tic

s
an

d
V

er
ifi

ca
tio

n

V
er

sa
til

ity

positive
negative

pu

bl
ic

at
io

ns

0

5

10

15

20

Figure 1.4: Quality attributes associated with MTLs from Paper A (Götz et al.
2021a)

The findings of Paper A answer RQ1 as follows. Literature associates MTLs with 15 different
quality attributes shown in Figure 1.4. Most quality attributes are associated positively and neg-
atively with MTLs highlighting the intricate balance between useful abstractions and drawbacks
thereof. Moreover, we believe that a portion of this variance can be attributed to the diverse range
of languages, each with their own unique trade-offs between accentuating capabilities and accepting
drawbacks. Outliers to this are Analysability, Conciseness, Extendability and Versatility.

These results are contrasted by a bleak state of evidence for claims made about the quality
attributes as analysed for RQ2. We found four different means used to support claims. First,
empirical studies. Regrettably they constitute the smallest amount of presented evidence. Second,
references to other scientific literature. Third, examples that are used to demonstrate a claim. And
fourth, no evidence.

More than 70% of all claims found in our literature review lack any form of substantiation.
Much of the evidence that is given stems from examples that demonstrate the claimed advantage
or disadvantage in a single case. We were only able to identify four studies that use empirical
methods. Moreover, only one of these studies focused on model transformation languages as the
central artefact of evaluation.

Another concerning observation is, that citations are often used to reference other works that

1.5. Contribution 15

make similar claims rather than literature that provides proper substantiation. We attribute this
to the fact that there is no evidence to support most of the claims. However, regardless of the
reasons, the practice distorts the perception of evidence. It suggests that statements are supported
by evidence even though the only available source of information is the opinions of other users and
researchers.

Overall, Paper A shows that there is an enormous amount of claims, both positive and nega-
tive, made about model transformation languages. The state of evidence for claimed advantages
and disadvantages is, however, lacking. Moreover, the practice of citing other literature making
similar claims leads to a twisted image of reality in which there is more certainty about the ad-
vantages and disadvantages than what corresponds with reality. There is also no clear information
on what functional properties of MTLs give them advantages or disadvantages for different quality
attributes. Paper A thus creates motivation and a starting data set for further, in-depth studies
into transformation languages and their associated quality attributes.

An overview of Paper A’s contribution is shown in Figure 1.5.

RQ1 RQ2

• Collection of 137 claims on the advan-
tages and disadvantages of MTLs

• List of 15 quality attributes associated
with model transformation languages

• Categorisation of what quality attributes
are raised in the 137 claims

• Discussion of similarities and dissimilar-
ities among claims for each quality at-
tribute

• Overview of types of evidence used in lit-
erature to support claims on MTLs

• Classification of the type of evidence
used to support each of the 137 claims

• Quantitative analysis of each type of ev-
idence

• Qualitative analysis of citations, used as
evidence, in literature

• Suggestions on how to improve the state
of evidence

Figure 1.5: Contribution of Paper A

1.5.2 Paper B: Factors for Advantages and Disadvantages
Based on the results from Paper A, Paper B explores the relationship between model transformation
languages and their quality attributes in more depth. Specifically we aim to find out what factors
influence the association of quality attributes with MTLs (RQ3) and the nature of the influence
(RQ4).

RQ3: What are the factors that influence the association of quality attributes with MTLs?

RQ4: How do the identified factors influence MTL quality attributes?

The results of this study are important for further empirical studies on model transformation lan-
guages because they provide explicit knowledge on the variables that need to be considered in such
studies.

We employ a semi-structured interview study, because the association between MTLs and their
quality attributes stems from the impression of users and developers. The qualitative nature of the
study also allows for first insights for RQ5 & RQ6.

RQ5: How important are the influences of factors on the perceived MTL quality attributes?

RQ6: What is the relevancy of the identified quality attributes and factors for language
developers, researchers & transformation developers?

The study focuses on the quality attributes from the results of Paper A. We narrowed the
set of investigated quality attributes down to 6 attributes, because of the large effort involved
in conducting interviews. The 6 investigated attributes are: Comprehensibility, Ease of Writing,

16 Chapter 1. Introduction

Table 1.3: Overview of influence factors

Top-level Factor Sub-Factor

GPL Capabilities

MTL Capabilities

Domain Focus
Bidirectionality
Incrementality
Mappings
Traceability
Model Traversal
Pattern Matching
Model Navigation
Model Management
Reuse Mechanisms
Learnability

Tooling

Analysis Tooling
Code Repositories
Debugging Tooling
Ecosystem
IDE Tooling
Interoperability
Tooling Awareness
Tool Creation Effort
Tool Learnability
Tool Usability
Tool Maturity
Validation Tooling

Choice of MTL

Skills Language Skills
User Experience/Knowledge

Use Case
(Meta-) Models
I/O Semantic gap
Size

practical Expressiveness, Productivity, Reuse and Maintainability and Tool Support. They were
chosen because of the large number of claims about them in literature and because we ascribe them
a relevant role for the adoption of MTLs.

We held interviews with 55 participants and collected one written response. The interviews were
transcribed and the transcripts were analysed using content structuring content analysis (Kuckartz
2014).

As answer to RQ3, we identified six top-level factors, namely GPL Capabilities, MTL Capa-
bilities, Tooling, Choice of Language, Skills and Use Case. Each top-level factor comprises several
sub-factors. An overview of the top-level factors and associated sub-factors can be found in Table 1.3.

The influences identified to answer RQ4 are split into two groups, direct influences and context
influences. We found that GPL Capabilities, MTL Capabilities and Tooling have a direct influence
on perceived quality attributes of MTLs and Choice of Language, Skills and Use Case define context
that moderates the type and strength of influence of the other factors. A graphical depiction of these
relationships can be found in Figure 1.6.

Central to the abstract model of influences are the advantages and disadvantages of model
transformation languages. The effectiveness of MTLs depends on their capabilities, which can vary
based on the language in question and whether the abstractions provided are useful for the specific
case, i.e., bidirectional support is only useful for bidirectional transformation cases. Additionally,
the developer’s skill plays a crucial role too. If they are unable to effectively utilise the capabilities of
a language due to inexperience or lack of knowledge, none of the advantages might apply. Moreover,

1.5. Contribution 17

promotes

(dis-) advantages in
MTL properties

result in

MTL Capabilities facilitates Tooling

Choice of
MTL

Skills

overshadow

GPL Capabilities

Factor Moderating
Factor Influence Moderation

Use Case

Figure 1.6: Graphical overview over factor influences and moderations adapted
from Paper B (Höppner et al. 2022a)

general-purpose constructs in GPLs can overshadow any perceived advantage or disadvantage of an
MTL. These constructs may be just as easy to use. On the other hand, lack of support in a GPL
can make MTLs more attractive, as labour intensive manual implementations might be required.
Finally, the tooling available for MTLs can either enhance or impede their capabilities. This again
depends on the language and use case as tooling may or may not exist. A detailed description and
discussion of the influences of all factors and sub-factors is also given.

We were also able to gain qualitative data for answers to research questions RQ5 & RQ6
based on the responses from the interview participants. While different participants talked about
different language features in MTLs and GPLs, one common subject was raised. Most participants
mentioned that the use case is extremely important in determining whether MTLs have advantages
or disadvantages. There was also a lot of agreement that tooling needs to be expanded significantly.
This universal agreement suggests to us that in addition to language development, focus should be
on investigating precisely in which cases and how MTLs should best be applied. A big gap, we
identified, is the embedding of MTLs in legacy systems. Participants frequently mentioned that
MTLs are difficult to integrate into existing systems and processes and are therefore mainly suitable
for greenfield projects.

We provide 15 suggestions for future work for language developers and researchers. For re-
searchers, suggestions include focused empirical evaluation of MTL properties and features based on
the influences we identified. For language developers, suggestions include the aforementioned legacy
integration and the development of transformation-specific reuse mechanisms. In addition, we rec-
ommend more work in knowledge transfer. This includes the suggestions to improve the teaching

18 Chapter 1. Introduction

of the MDSE paradigm and better tutorials for MTLs. Furthermore, more industry collaborations
for language improvement and evaluation should be aspired.

Paper B highlights the complexity and size of the topic of this thesis. Its intricate results also form
the basis for much of our empirical studies. Three suggested future works, influence quantification,
empirical investigation of MTL quality attributes and empirical factor evaluation, are tackled in
Papers C, D and E. Paper C provides quantification of the influence weights of the factors, and
Papers D and E are empirical studies to investigate MTL quality attributes based on the knowledge
about which factors influence what attributes.

Figure 1.7 provides an overview of Paper B’s contribution.

RQ3 RQ4

• Collection of 30 factors influencing the
perception of MTL quality attributes

• Categorisation of factors into 6 overarch-
ing top-level factors

• Differentiation of factors into direct and
moderating influencing factors

• Structure model describing which factors
influence which quality attributes and
which factors moderate these influences

• Discussion of the implications resulting
from the influence of each factor

RQ5 & RQ6

• Qualitative assessment which of the identified factors have the highest practical impact

• Qualitative assessment which of the identified factors have the highest relevance for em-
pirical studies

• Suggestions on 15 actionable results, focusing on different identified factors, for researcher
and language developers

Figure 1.7: Contribution of Paper B

1.5.3 Paper C: Quantification of Influence Weights of Factors
The structure model from Paper B that depicts assumed influences between factors and quality
attributes is missing quantification of the influence strengths. These are important for further
empirical studies to be able to decide what variables to measure and control. It also provides
indication of what factors to focus on in other work as stronger influence suggests more relevance
for both developers and users. Paper C aims to provide the quantification of the structure model
and by answering RQ5 & RQ6.

RQ5: How important are the influences of factors on the perceived MTL quality attributes?

RQ6: What is the relevancy of the identified quality attributes and factors for language
developers, researchers & transformation developers?

A natural progression of the structure model from Paper B is to use further structural equation
modelling methods to add quantitative results to it. The study reported in Paper C aims to do
this. In this study, too, the focus was narrowed to keep the size of the study in check. We use a
survey for this purpose that follows the seven-step process outlined by Kasunic (2005) and utilises
universal structure modelling (USM) (Buckler et al. 2008) for analysis. The study focuses solely on
the impact of MTL Capabilities and moderating factors. The survey was pilot tested and sent to
about 2500 potential participants. The responses from 113 participants were recorded and analysed
using USM to refine the structure model and answer RQ5 & RQ6. The methodology used for this
paper is published as a registered report at ESEM’22 (Höppner et al. 2022b). The complete paper

1.5. Contribution 19

is under review for a special issue of EMSE as a progression from the registered reports track of
ESEM’22.

To answer RQ5, we collected the average simulated effect and overall explained absolute devia-
tion of all influences. Overall we found that Traceability and Reuse Mechanisms are the two most
important direct influence factors. Traceability has the strongest influence on perceived Comprehen-
sibility. Reuse Mechanisms exert the strongest influence on perceived Maintainability, Productivity
and Reuseability.

Contrary to the hypothesis formulated in Paper B, moderation effects are nearly as nuanced as
the direct influences of MTL Capabilities. The size of meta-models, for example, moderates the
influence on Comprehensibility and Ease of Writing. But the strength of this moderation differs
immensely between different MTL Capabilities. Its moderation effect on the influence of Model
Management onto Comprehensibility is about 150 times as strong as the moderation effect on the
influence of Bidirectionality onto Comprehensibility. Overall, we found the transformation size to be
the most important moderating factor. It has a consistently high moderating effect on a multitude
of influences.

The insights gained from the results of Paper C help to provide clear suggestions on further
actions for language developers, researchers & developers to take, thus answering RQ6. For further
language development, we suggest to focus on the development of transformation specific reuse
mechanisms. This is because of the surprisingly high importance of reuse mechanisms for several
MTL quality attributes. We also believe that such features provide a unique selling point for MTLs
compared to general purpose languages, because they can not be easily adopted in them. Admittedly,
this is an argument for domain-specific languages that is often used and, as highlighted in Paper
A, does not necessarily hold. However, the results of Paper C show that reuse mechanisms play an
important role, which in our view presents an opportunity that should be pursued.

For further empirical evaluation, we suggest investigating the cost of reimplementing MTL ab-
stractions in general purpose languages. Most prominently the cost of manually handling traces.
This also includes an assessment of how much tracing is required in real-world use cases to allow for
a proper cost-benefit analysis later on. We further point out that during the selection of transfor-
mation cases to evaluate, their size has to be a selection criterium. Our results have shown that it
is the moderating factor with the highest impact overall.

Paper C provides the first quantitative results for the importance of different language capabilities
of model transformation languages. The results open up a variety of empirical research and language
development opportunities. Some of these opportunities, namely the evaluation of Traceability costs
in GPLs, are tackled in the remaining two publications included in this thesis.

The contribution of Paper C is summarised in Figure 1.8.

RQ5 RQ6

• Quantitative data on effect strength and
significance of each factors influence on
quality attributes

• Identification of Traceability and Reuse
Mechanisms as the two most important
factors overall

• Quantitative data on the moderation
strength of each moderating factor on
each investigated influence

• Empirically backed suggestions for the
focus of further empirical studies

• Empirically backed suggestions for the
focus of model transformation language
development

Figure 1.8: Contribution of Paper C

1.5.4 Paper D: The Suitability of ATL for Expressing Model Transfor-
mations

One of the most common claims about model transformation languages is that they bolster increased
expressiveness (Götz et al. 2021a). We investigate this claim in Paper D through an empirical study.

20 Chapter 1. Introduction

Thus, working towards achieving G3 by answering RQ7:

RQ7: How do domain specific syntax constructs influence the expressiveness of ATL for de-
veloping model transformations?

The study focuses on the model transformation language ATL because, as shown by its prevalence
in the results reported on in Paper A, B and C, it is one of the most widely known and used
transformation languages.

Based on the results from Paper B, the study can be clearly defined as focusing on automatic
trace handling, model traversal and dedicated model navigation syntax. As described in Section 1.2
we define additional sub-research questions to define concrete and measurable variables to investi-
gate. The research questions are derived from three claims that have been made multiple times in
literature:

H1 : Model transformation languages hide complex semantics behind simple syntax (Gray et al.
2003; Jouault et al. 2008; Krikava et al. 2014; Sendall et al. 2003).

H2 : Automatic handling and resolution of trace information by the transformation engines is a
huge advantage of model transformation languages (Hinkel et al. 2019b; Jouault et al. 2008;
Lawley et al. 2007).

H3 : Model transformation languages allow for implicit rule ordering which can lessen the load on
developers (Jouault et al. 2008; Lawley et al. 2007).

The resulting research questions investigated in Paper D are thus:

RQ7.1: How is the complexity of ATL transformations distributed over multiple transforma-
tions and transformation components?

RQ7.2: When looking at the complexity distributions of individual transformation compo-
nents, are there any salient characteristics?

RQ7.3: How does the usage of refining mode impact the complexities of ATL modules?

RQ7.4: How large is the percentage of bindings that require trace-based binding resolution?

RQ7.5: What portion of ATL transformations use implicit rule ordering?

We surveyed GitHub and the ATL Zoo3 for transformations written in ATL. In total, 33 trans-
formations were selected and their syntactic complexity was calculated. The syntactic complexity
measure is based on the collection of ATL measures by Lano et al. (2018). It determines the
amount of tokens used in ATL code. We then investigated how much complexity is associated with
each part of the transformation. Additionally, we looked into how much tracing was used in the
transformations to see how useful automatic trace handling is.

Figure 1.9 shows an alluvial plot for the distribution of syntactic complexity in the analysed ATL
modules over different parts of ATL transformations. It visualises the main points for answering
RQ7.1. First, over half of the complexity resides within bindings meaning that over half of the
effort spent is spent on assigning values to the output model. This highlights that ATL enables
developers to focus on the main task of a transformation. Moreover, only a small percentage (3%)
of the total complexity stems from In-Patterns, i.e., the code concerned with selecting elements to
transform. This leads us to draw the a similar conclusion as Hebig et al. (2018). Conditioning on
types, as ATL does it, provides a well suited abstraction for model transformation development.

Looking at the distributions for individual transformation components for RQ7.2, we found that
the majority of bindings in ATL map one attribute of an input model element to one attribute of
an output model element. This suggests that the main effort in writing ATL transformations stems
from defining how the output should look like. This further highlights the suitability of ATL for
transformation development.

Looking at refining mode transformations for RQ7.3 shows a shift in the structure of transfor-
mation modules. In refining transformations much more complexity originates from the In-Patterns
and filter expressions therein compared to out-place transformations. We attribute this to the fact

3https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/

1.5. Contribution 21

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

0
10

00
0

20
00

0
30

00
0

40
00

0

Module Top Level Rule Content Definitions Binding Source
Level

C
om

pl
ex

it
y

Top Level CalledRule Helper LMatchedRule MatchedRule

Figure 1.9: Distribution of syntactic complexity in ATL

that refining transformations are concerned with changing things in specific elements, thus requiring
selection expressions more complex than simply selecting by type.

To explore the importance of automatic trace handling, RQ7.4 was conceived and answered.
We found that about 15% of all bindings require trace information. This suggests less relevance of
the automatic trace handling feature than hypothesised. However, in Paper E we show, that this
small portion can have huge complexity impacts when it has to be implemented manually.

Lastly, for RQ7.5 we investigated how much of ATL transformation modules utilise implicit rule
ordering to find out how well this abstraction is accepted. Here we found that 79% of all rules are
matched rules, meaning rules that utilise implicit rule ordering and selection. To us this suggests
that automatic rule selection provides a well suited abstraction for transformation development and
can lessens the burden on developers substantially.

The results of Paper D show, that ATL provides several useful abstractions and shifts the focus
of transformation development onto the definition of transformation logic. Only little complexity
resides in describing how the transformation should be executed or how elements should be selected.
Therefore, the expressiveness of ATL for the investigated transformations is high. The way ATL
transformations are structured is well suited for its purpose because only 1/5 of all transformations
require manual intervention of additional guards.

Apart from the results for the research questions of Paper D, we also found that both GitHub

22 Chapter 1. Introduction

and the ATL Zoo contain mainly transformations aged a decade or older. This is concerning because
it limits studies relying on repository mining in their generalisability to more recent transformation
examples.

Figure 1.10 provides an overview of Paper D’s contribution.

RQ7

• Data on how much complexity originates from what part of ATL transformations

• Indication that the main effort in ATL is spent on mapping input attributes to output
attributes

• Data showing the effectiveness of ATL’s refining mode in reducing code for in-place trans-
formations

• Data on how much complexity originates from code involving tracing

• Data showing how well received ATL’s functionality for implicit rule ordering and trans-
formation target selection is

Figure 1.10: Contribution of Paper D

1.5.5 Paper E: A Historical Perspective on ATL Versus Java Based on
Complexity and Size

As shown in the results of Paper B, the properties of GPLs influence how people perceive the quality
of MTLs. Moreover, in Paper A we identified the lack of comparisons between GPLs and MTLs. In
Paper E, we try to work towards closing this gap and further work on G3 by answering RQ8:

RQ8: How does the complexity of transformations written in ATL compare to those written
in Java?

This is done by comparing code distributions over different transformation aspects between ATL
and Java. As with Paper D, we split our main research question into additional sub-research ques-
tions that properly define variables and metrics to measure and evaluate. The developed research
questions are designed as extensions of the research questions from Paper D on which much of the
work is based. The following research questions are investigated:

RQ8.1: How much can the complexity and size of transformations written in Java SE14 be
improved compared to Java SE5?

RQ8.2: How is the complexity of transformations written in Java SE5 & SE14 distributed
over the different aspects of the transformation process compared to each other and ATL?

RQ8.3: How is the size of transformations written in Java SE5 & SE14 distributed over the
different aspects of the transformation process compared to each other and ATL?

RQ8.4: How does the size of query aspects of transformations written in Java SE5 & SE14
compare to each other and ATL?

We used 12 ATL transformations and translated them into programs that follow coding styles
used in Java SE14 and Java SE5 respectively. Java SE14 was chosen for being the state of the
art during conduction of the study and Java SE5 was chosen for being current version when ATL
was first introduced. The translation uses a translation schema we developed specifically for this
study. We manually analysed the Java transformations to assess which code is associated with what
transformation aspect. This data was used to associate calculated metrics, i.e., LOC and word count,
for Java code with the transformation aspects and compare the distribution with the distribution of
syntactic complexity in ATL transformations. The word count measure counts the number of words
that are separated either by whitespaces or other delimiters used in the languages, such as a dot (.)

1.6. Discussion 23

and different kinds of parentheses (()[]{}). It has already been successfully used by Anjorin et al.
(2019) to compare several transformation languages. The syntactic complexity measure is based on
the collection of ATL measures by Lano et al. (2018). It determines the amount of tokens used in
ATL code and is thus comparable to the word count measure.

We further directly compared the metrics LOC, weighted method count (WMC), based on Mc-
Cabe complexity, and word count, calculated on Java SE5 and Java SE14 solutions, to investigate
whether new language advancements provided improvement for transformation development.

When comparing the complexity of the transformations written in Java SE14 and Java SE5 for
RQ8.1, we found that both the WMC and lines of code are greatly reduced in Java SE14. However,
no significant changes in the number of required words exist. We attribute this to newer language
features in Java that reduce the amount of explicit control flow one has to write. These features
enable a more functional, data flow driven style of coding which leads to fewer, but much wider lines
of code.

Surprisingly the distribution of complexity over the different transformation aspects for RQ8.2
reveals only slight improvements in Java SE14. In both language versions large portions of the
code are overhead produced by manually implementing tracing, model traversal and setup. Even
the distribution of how much overhead stems from what transformation aspect stays similar. The
only notable exception for this is model traversal, which we were able to significantly reduce the
complexity of in Java SE14 by outsourcing it into a generic library.

The results for RQ8.3 again highlight the overhead entailed when using Java. While in ATL
over half of all code is used for defining bindings, in Java it is only about 25% as much.

Lastly, for RQ8.4 we created a linear regression model to predict the word count of Java ex-
pressions based on the corresponding OCL expression. We found that in Java SE5 the complexity
of Java expressions raises by a factor of 1.5 while in Java SE14 the complexity raises by a factor of
1.1. This suggests that OCL no longer provides much benefit compared to general purpose code.

Overall the results of Paper E show that new language features in Java SE14 now enable a
style of writing transformations with significantly less cyclomatic complexity. At the same time,
it is still impossible to hide those transformation aspects that ATL abstracts away from properly.
The relative amount of complexity associated with the development overhead stays the same as in
Java SE5. We also discovered that the amount of code required to write model transformations
in Java stayed the same. All in all, our results point toward Java being useful for transformation
development only when there is little tracing necessary and the number of model element types to
transform is small.

An overview of the contributions provided by Paper E is shown in Figure 1.11.

RQ8

• Data showing that newer Java version help reduce cyclomatic complexity of transformation
implementations

• Data showing that newer Java version do not help to reduce the amount of words that
need to be written for implementing transformations

• Evidence that much overhead code is required to implement domain specific functionality
(Model Traversal & Tracing) in Java that ATL provides out of the box

• Regression model for predicting the word count of Java SE5 & SE14 expressions based on
OCL expressions

Figure 1.11: Contribution of Paper E

1.6 Discussion
The results of the papers included in this thesis provide much needed data in the area of empirical
evaluation of model transformation languages. They raise a number of important points to discuss.
First, how the lax use of claimed advantages of MLTs in literature led to the current state of
discontent and misbelieve on much of the technology surrounding MTLs. Second, the lack of proper

24 Chapter 1. Introduction

tooling is the most raised critique on model transformation languages. This leads to the question
of who is responsible for solving it and how. Third, reasons why little empirical studies on MTLs
are conducted. Fourth, we gained a lot of insights into the pros and cons of using either a MTL or
GPL for developing transformations. These are discussed in the form of a checklist on key points
to consider when deciding on whether to use a GPL or a MTL for transformation development.
Lastly, we found noteworthy limitations of using cyclomatic complexity to measure the complexity
of data-driven, functional code.

1.6.1 The State of Claims in Literature and How We Got There
The results of Paper A show two things clearly: There are numerous claims about model transfor-
mation languages and they are simply brought into being for seemingly no apparent reason.

We believe that claims on MTLs follow a natural progression through research that has not
(yet) been completed. A claim starts off as an idea of what might be an advantage or limitation.
The idea might be reasonable or visionary. Sometimes such a claim gets demonstrated on a simple
example. Sometimes it is just mentioned due to being a vision. The next step is an assessment of
how relevant the idea is. If it is not relevant, it gets discarded. If it is relevant, it should get picked
up and demonstrated thoroughly or evaluated empirically.

However, for nearly all claims about model transformation languages this last step never hap-
pened. Granted, due to the number of claims, it is not feasible to expect this to happen for each
claim, but at least the most important claims should follow this path. Instead, most claims just get
picked up as a ‘fact’ or at least are presented in a way that makes them seem like they are taken as a
fact. Sometimes this is done without referencing their origin or providing a reasonable explanation
as to why they are believed to be true. This further lessens the amount of context given to assess
the truthfulness of a statement.

We can only assume why this happens. It could be sloppiness or conscious deceit. It could be
that the researcher reiterating the claim has experience leading them to believe it to be reasonable.
In any case, much of the chain of reasoning is lost. This presents a problem for people outside of
the community, as they are in need of this chain of reasoning to have confidence in what is stated.
The end result of this is, that confidence in the research area erodes away. Not only confidence by
people outside of the community, but also by those close to it or even involved in it. This is the
impression that we got several times when talking to other researchers.

MTL research needs to move towards providing more empirical data on claimed advantages. This
provides two major advantages. First, the missing confidence in the technology can be built up.
Second, it can guide further research. Instead of blindly building what researchers think will provide
a benefit, they can base their decisions on existing data about gaps in languages and technologies.

1.6.2 The Tooling Problem
The responses to our interviews, reported on in Paper B, make it apparent, that many people believe
current tooling to be one of the most limiting factors for wider adoption of MTLs. Many participants
criticised the proof-of-concept quality of tools and requested more industry ready tools. The strong
coupling of MTL tools and the Eclipse eco-system was also seen as approaching a crossroads. The
coupling was described as a good idea for early, fast and well-supported development. Nowadays,
however, it presents a limitation for adoption as it enforces the complete technology stack to be
adopted.

All in all there are many calls for ‘someone’ to provide better tools, so that the languages and
methodology can be taken up more easily. It is not clear who is responsible for this, though.

An argument can be made, that research has done its job in demonstrating that tools are feasible
and someone else has to put in the additional effort to make them industry ready. It can also be
argued that, due to the lack of empirical evidence, proof-of-concept tools are not enough and more
needs to be provided by research. It could also be the case that the tools are mature enough but
the know-how to integrate them into existing systems is missing.

We believe that all these areas need to be explored. Research needs to provide clear indication,
empirical or demonstrative, that MTL tools can be made industry ready and support all required
activities.

1.6. Discussion 25

We also need research into legacy integration. This enables research to do two things simultane-
ously. Novel research with novel results can be conducted while providing direct impact for industry
applicability.

1.6.3 The Problem With Empirical Research
Empirical research on MTLs has two main problems. First, it is hard to pinpoint where quality
attributes originate and how to measure them. Second, a lot of effort is required to create empirical
studies which makes them hard to conduct in general (France 2008).

MTL researchers often have had experiences that make them feel that dedicated model trans-
formation languages are better suited for the cases at hand. However, while they gained these
experiences through writing many transformations, it is still not easy to pinpoint what part of the
used languages make them better suited. The results presented in our Papers A, B and C can
remedy this problem to some extent. We provide clear indication of what factors play a role for
what quality attributes of MTLs.

The problem of effort involved in conducting empirical studies remains. Many of the identified
quality attributes of MTLs require human study subjects to evaluate. Finding enough suitable
participants can be time consuming. This is demonstrated by the study conducted by Hebig et al.
(2018), one of the only comparative studies between MTLs and GPLs. It took the authors several
months to complete the study. Moreover, such studies are also time consuming to set up and to
analyse.

Our experience supports this observation as well. The interview study, reported on in Paper B,
took over one year from conception to reporting. The questionnaire, reported on in Paper C, also
took almost one year to set up, revise and conduct.

An approach to reduce the required effort to find suitable study subjects and gather all necessary
data from them is to rely on repository mining. The suitability of this approach is demonstrated by
the results of Papers D and E.

Nonetheless, studies involving human subjects are paramount for evaluating quality attributes
such as productivity. We therefore suggest, that researchers focus on using both approaches, de-
pending on what attributes are investigated, to increase the body of empirical data on model trans-
formation languages.

1.6.4 MTL vs. GPL: a guide
From our experience comparing Java and ATL to develop model transformations, we draw a number
of key points to consider when making the decision which language to use. While we draw these
conclusions from comparing Java and ATL, we do believe the points to consider are also relevant
when choosing between other MTLs and GPLs. In general, if a complex and repetitive task, that a
MTL can abstract away from, is at the centre of development they are a suitable candidate. If this
is not the case, the effort of integrating the MTL might be better put into other tasks. Finding the
right problem to apply MTLs and MDSE in general to has already been identified as an important
aspect to consider by Whittle et al. (2013).

In the following, we present the key points to consider, ordered by on what level of detail the
consideration takes place.

At what point of the lifecycle of a project is the decision being made? Deciding
between using a MTL or a GPL is often prefaced with deciding whether to use MDSE techniques
or not. If a project has been in development for a long period of time, it can be time consuming
to try and integrate a MTL for one specific task. It is much easier to use MTLs when the project
being developed has been set up to use MDSE from the beginning.

Are there explicit meta-model definitions of the transformed models? Regardless of
the development process used, if meta-models for the transformed models exist, model transforma-
tion languages are easy to use. MTLs rely on these explicit definitions to support developers in
their transformation construction and they are used by transformation engines during execution.
Implicitly defined data structures make it hard for MTLs to integrate into the development process.
There are, however, some approaches that try to break this barrier such as Dresden OCL (Demuth
et al. 2004) which can work on any Java object structure. With the advent of more internal model
transformation languages this barrier might not be as relevant in the future. Currently, however,

26 Chapter 1. Introduction

explicit meta-model definitions are mostly required. As a result, one has to decide if the extra effort
to create these definitions is worth it. This is highly use-case dependent.

Are there special requirements like validation, analysis, bidirectionality or incre-
mentality? The heterogeneous structure of MTLs provides an advantage when specific parts of
the transformation need to be analysed. The explicit constructs in these languages eases validation
and analysis approaches because much less effort is required to extract the relevant transformation
parts. Moreover, dedicated constructs with a transformation engine behind them allow for hiding
functionality like bidirectionality and incrementality. This can reduce development effort, if these
use-cases constitute a large portion of development. Admittedly, there currently do not exist any
empirical studies to back up this claim, though it is a commonly shared belief. We are also currently
in the process of providing empirical data for this claim in a study of similar setup to what was
done for Paper E (Greiner et al. 2023).

Is there a lot of focus on the structure of models to decide what transformations
should be applied? There is a consensus between researchers that having to describe complex
graph patterns for matching is labour intensive and error prone in GPLs. This was mentioned
multiple times during the interviews reported on in Paper B. There again exists no empirical evidence
of this, but the number of dedicated query languages for graph structures/databases (Facebook 2016;
Francis et al. 2018) indicate some merit to the claim.

Is the transformation explicit or implicit within the system? The easier one can separate
the transformation from the rest of the system, the easier it is to integrate it into a MTL. If there is
a strong cohesion between the transformation and other aspects of the system it is hard to do this
in a separate language. Again, internal MTLs might remedy this problem in the future.

How high is the number of distinct element that are being transformed? If finding
the correct element and rule to apply to it is a large part of the transformation, GPLs might not be
well suited for the task. They do not provide any abstraction for this and thus much development
effort has to be put into a problem, that is already solved in a MTL. We have shown this in Papers
D and E.

Does the focus of the transformation lie in structural changes or computation? If
there are computationally complex manipulations done to the data within the elements that are
being transformed, a GPL might be better suited. They provide powerful language constructs that
are optimised for describing what steps should be undertaken to manipulate primitive data. If the
focus of the transformation lies more in finding the correct elements to transform and do smaller
changes to the data within them, MTLs are better suited. This again is a direct observation of the
data we collected for Papers D and E.

Is the amount of required tracing between input and output high or low? Dedicated
support for tracing is one of the main advantages of MTLs that we found in Paper E. Thus, if a
high amount of tracing between input and output of the transformation is required, MTLs are much
better suited for the task. It is still feasible to do this in a GPL, but it requires manual work and
thus has a higher chance of introducing errors.

1.6.5 Cyclomatic Complexity in Data-Driven Programming
A startling finding in Paper E was how much the cyclomatic complexity of model transformations
dropped between Java SE5 and Java SE14. This is surprising because, apart from obvious dedupli-
cation, there is still a lot of conditional branching, when iterating over data structures, involved in
defining the transformations in Java SE14.

The main reason why cyclomatic complexity is reduced this much lies in the language constructs
used to express these semantics. Iterating over Collections and selecting elements to use is done in
the traditional way of using loops in Java SE5. In Java SE14, we opted for using as much functional
concepts as possible. This moves development from using explicit loops to the use of streams with
mapping or filtering methods which hide the process of iterating over the data structures. Because
these method calls are seen as single nodes with one incoming and one outgoing edge in the AST,
they do not increase the cyclomatic complexity of the code while still expressing the same semantics
as a corresponding loop.

The question arises whether this differentiation is fair. Is the complexity of the code that is
written less? An argument can be made that this is the case, as there is less mental load for the
developer to understand the core semantics of a piece of code. On the other hand, the developer

1.7. Threats to Validity 27

still has to think about the implications of what is written. They still have to understand that
conditional branching happens during execution.

1.7 Threats to Validity
In this section, we give an overview of the threats to validity of results of this thesis and how we
met them. The discussion is structured around the classification of validity threats as defined by
Cook et al. (1979). A detailed discussion of the threats for each included paper is given in their
respective chapters (Chapters 2 to 6).

1.7.1 Construct Validity
Construct validity describes the extent to which the right measures were applied to investigate the
intended research questions (Cook et al. 1979). Construct validity is threatened by erroneous study
setups and lack of quality control during the study.

To increase the construct validity of our studies, we relied on existing, much tested guides for
all study designs. The appropriateness of the guides and applied methodology was thoroughly
discussed. All manual steps involved in our studies were cross-checked by at least one co-author
and interviews and survey were pilot tested prior to conduction. All analysis steps also relied on
reputable guidelines and established methodologies.

Some threats to construct validity still remain in spite of all these precaution. For example,
the use of existing statements as the basis for discussion in our interview study can introduce an
unconscious bias in the participants. Participants might be more positive or pessimistic about
the topic under discussion, depending on the phrasing of the presented statement. Furthermore,
statements containing specific lines of reasoning might lead participants down one line of thought,
preventing them from coming up with their own reasoning. We tried to limit these threats by
presenting statements that are positively phrased, negatively phrased, contain specific reasoning
and contain no particular reasoning. Nonetheless, a threat to construct validity based on these
design decisions remains.

The appropriateness of used metrics for our empirical studies also poses a construct validity
threat. Cyclomatic complexity has been associated with a number of quality attributes for object
oriented programming languages (Jabangwe et al. 2015). The meaningfulness of lines of code, on the
other hand, is much debated (Armour 2004; C. Jones 2000) and word count has not been utilised
often. We base their appropriateness on the fact that word count can provide a language agnostic
complement to LOC and argue that it has been successfully applied in other studies (Anjorin et al.
2019). However, a potential threat to the construct validity based on using these metrics can not
be dismissed.

1.7.2 Internal Validity
Internal validity describes the extent of causal relationships between investigated variables in a study
(Cook et al. 1979). Internal validity is threatened by manual errors or misunderstandings during
the study.

Much like for construct validity, we relied on manual validation through one or two co-authors
to decrease the risk of errors threatening the internal validity of our studies.

Threats we were unable to completely alleviate exist in our qualitative studies. Authors in
papers and experts during interviews can ascribe differing meanings to the same terms. This can
lead to misinterpretation of the original statements. In interviews, we tried to combat this by asking
participants to describe their understanding of overloaded terms. In the literature review, we tried
to consider the context in which the terms were used to improve our understanding of the authors
intended meaning. These efforts aim to remedy the problem but can not fully eliminate it.

1.7.3 External Validity
External validity describes the extent to which the results of a study can be generalised (Cook et al.
1979). External validity is threatened by application of bad sampling methods.

There is much uncertainty surrounding the target population on which to generalise our study
results. As a result, it is hard to estimate the exact extent of external validity of our studies. We

28 Chapter 1. Introduction

aimed to base all our studies on an exhaustive data or participation pool, but limitations due to
availability are undeniable. Particularly the interview and questionnaire studies rely on voluntary
and convenience sampling threatening their generalisability. All studies utilising repository mining
aimed to collect a broad selection of transformations to study, but limitations due to public avail-
ability still persist. The literature survey used exhaustive database searches and snowballing to
reduce the threat to external validity but it is still possible that relevant studies were missed.

1.7.4 Conclusion Validity
Conclusion validity describes the extent to which conclusions are reproducible (Cook et al. 1979).
Conclusion validity is threatened by unreliable measurement methods, data sources and not making
the underlying data and methodology available.

To increase conclusion validity of our studies we always make all data sources and raw data
available for public use. The publications themselves contain detailed description of how data was
accumulated, processed and analysed.

Still, there are several limitations to the conclusion validity of our studies. For example, the
interview study and questionnaire rely mostly on responses from researchers within the field of
model driven engineering. This makes them an unreliable source of data, because of positive bias
towards technology involved in their field of research. Surprisingly, participants in our studies dealt
with the topic more critical than expected.

The comparative study between Java and ATL relies on a translation schema we developed
ourselves. This poses a threat to conclusion validity because more than one way of translating ATL
transformations into Java exists.

1.8 Conclusion and Future Work
This study contributes much needed systematisation and empirical ground work to the body of
knowledge on model transformation languages. We do so by applying a broad spectrum of empirical
approaches to provide a categorisation of quality attributes associated with MTLs (G1), a qualitative
and quantitative model of influence factors that facilitate and hamper the perceived quality of MTLs
(G2) and an empirical analysis of the impacts of transformation specific language constructs as well
as a comparison between Java and ATL (G3).

Model transformation languages are associated with a broad spectrum of quality attributes. The
attributes associated with MTLs range from broad categories (being just better) to transformation
specific (better for writing model transformations). We show that there is currently next to no
empirical evidence supporting any of these associations. Moreover, constant reiteration of claims
leads to a distorted picture of facts, so the meaningfulness of much of the current research can be
questioned.

Based on much community wide input we created a structure model portraying factors that influ-
ence the perception of the most important quality attributes. The model also contains quantitative
data on how strong the influence is.

We supplement the state of empirical research with results on the origin of expressiveness in
ATL and a comparative study on ATL and Java transformations. Furthermore, we present consid-
erations on the improvement of writing model transformations in Java over time. Based on these
results we discuss what key points to consider when deciding between ATL and Java. These are:
State of project before introduction, i.e., new project or legacy project; availability of explicit model
definitions; special requirements on analysability, directionality or incrementality; focus of transfor-
mation, i.e., pattern selection or computation of input to output; number of distinct meta-model
elements involved in the transformation; requirements on tracing.

For future work we see the need for further research in two main areas. First, the body of
empirical data on comparison between MTLs and GPLs needs to be expanded. The focus of such
studies should be on the quality attributes and factors shown as relevant in our structure model.
And second, research to design and develop technology highly relevant for industry adoption needs
to be done.

Empirical research can be focused on multiple areas. This starts with expanding our work on
comparing Java and ATL with additional data that does not require translation of transformation
scripts in one language into the other. Such work can greatly increase the external validity of our
results or provide contrasting results that have to be discussed.

1.8. Conclusion and Future Work 29

It is also necessary to focus on different use-cases for transformations such as incrementality or
bidirectionality. Both of these transformation modes are claimed to make development only feasible
in dedicated model transformation languages, but this has not yet been evaluated. Another use-case
to look at is pattern-matching for graph structures. It is often mentioned as a labour intensive and
error prone task if done in a GPL, but there exists no data to back this up.

Apart from empirical studies, we also see a lot of potential for further design-science research in
the area of model transformation languages. Such work should focus on current gaps for industrial
application. Integration of model transformation concepts into legacy systems is one such area. This
can be achieved, e.g., by making MTLs easier to integrate into existing systems or by developing
new concepts or processes to integrate MTLs gradually. It is also conceivable that internal MTLs
are a key concept for this application area.

Finally, a major issue with adoption of MTLs is the lack of easily accessible learning resources
and information on them. There currently exists an enormous barrier to entry and it is thus
vitally important to educate people on how to use the available tools and languages properly. We
feel that outreach programs such as MDENet4 need to be expanded upon. Model transformation
specific programs can be integrated in these platforms to take advantage of their interconnectedness.
They can educate how model transformations fit into the concept of model driven engineering and
provide guidance with first steps in utilising them. This gap has already been identified for the
whole paradigm of MDE in 2011 by Hutchinson et al. (2011a) but has yet to be tackled properly.

4community.mde-network.org

community.mde-network.org

31

Chapter 2

Paper A

Claimed advantages and disadvantages of (dedicated) model transformation languages:
a systematic literature review

S. Götz, M. Tichy, R. Groner

International Journal on Software and Systems Modeling (SoSyM), volume 20, pages 469–503, 2021
Springer Nature

Chapter 2. Paper A 33

Abstract
There exists a plethora of claims about the advantages and disadvantages of model transformation
languages compared to general-purpose programming languages. With this work, we aim to create
an overview over these claims in the literature and systematize evidence thereof. For this purpose, we
conducted a systematic literature review by following a systematic process for searching and selecting
relevant publications and extracting data. We selected a total of 58 publications, categorized claims
about model transformation languages into 14 separate groups and conceived a representation to
track claims and evidence through the literature. From our results, we conclude that: (i) the current
literature claims many advantages of model transformation languages but also points towards certain
deficits and (ii) there is insufficient evidence for claimed advantages and disadvantages and (iii) there
is a lack of research interest into the verification of claims.

34 Chapter 2. Paper A

2.1 Introduction

Ever since the dawn of Model-Driven Engineering at the beginning of the century, model trans-
formations, supported by dedicated transformation languages (Hinkel 2013), have been an integral
part of model-driven development. Model transformation languages (MTLs), being domain specific
languages, have ever since been associated with advantages in areas like productivity, expressiveness
and comprehensibility compared to general purpose programming languages (GPLs) (Mernik et al.
2005; Sendall et al. 2003; Tratt 2005). Such claims are reiterated time and time again in literature,
often without any actual evidence. Nowadays, such an abundance of claims runs through the whole
literature body, that one can be forgiven when losing track of which claims verifiably apply and
which are still purely visionary.

The goal of this study is to identify and categorize claims about advantages and disadvantages
of model transformation languages made throughout the literature and to gather available evidence
thereof. We do not intend to provide a complete overview over the current state of the art in
research. For this purpose we performed a systematic review of claims and evidence in literature.

The main contributions of our study are:

• a systematic review and overview over the advantages and disadvantages of model transfor-
mation languages as claimed in literature;

• insights into the state of verification of aforementioned advantages and disadvantages;

This study is intended for researchers to (i) raise awareness for the current state of research and
(ii) incentivise further research in areas where we identified gaps. The study can also be of interest
to practitioners who wish to gain an overview over what research claims about MTLs compared to
a practitioners view of the matter.

To systematize information from literature we performed a systematic literature review (Boot et
al. 2016; Kitchenham et al. 2007) based on the research questions we defined (see Sect. 2.3.1). As a
first step during the review we selected 58 publications from which to extract claims and evidence for
advantages and disadvantages of model transformation languages. Afterwards we categorized claims
and systematized the evidence to produce (i) a categorization of claimed advantages and disadvan-
tages into 15 separate categories (namely analysability, comprehensibility, conciseness, debugging,
ease of writing a transformation, expressiveness, extendability, just better, learnability, performance,
productivity, reuse and maintainability, tool support, semantics and verification, versatility) and (ii)
a systematic representation of which claims are verified through what means. From our results we
conclude that:

1. Current literature claims many advantages and disadvantages of model transformation lan-
guages.

2. A large portion of claims are very broad.

3. There is insufficient or no evidence for a large portion of claims.

4. There is a number of claims that originate in claims about DSLs without proper evidence why
they hold for MTLs too.

5. There is a lack of research interest in evaluation and especially verification of claimed advan-
tages and disadvantages.

We hope our results can provide an overview over what MTLs are envisioned to achieve, what
current research suggest they do and where further research to validate the claimed properties is
necessary.

The remainder of this paper is structured as follows: Section 2.2 introduces the background
of this research, model driven engineering and model transformation languages. In Sect. 2.3 we
will detail the methodology used for the conducted literature review. We present our findings
in Sect. 2.4. Afterwards, in Sect. 2.5, we discuss the results of our findings. This section will also
include propositions for much needed validation of claims about model transformation languages
synthesized from the literature review. Sect. 2.6 contains information about related work and
in Sect. 2.7 potential threats to the validity of this research are discussed. Lastly Sect. 2.8 draws a
conclusion for our research.

2.2. Background 35

2.2 Background

In this section we provide the necessary background for our study and explain the context in
which our study integrates.

2.2.1 Model-Driven Engineering
In 2001 the Object Management Group published the software design approach called Model Driven
Architecture (OMG 2001) as a means to cope with the ever growing complexity of software systems.
MDA placed models at the centre of development rather than using them as mere documentation
artefacts. The approach envisions an automated, continuous specialization from abstract models
towards code. Starting with so called Computation Independent Models (CIMs) each specialization
step should provide the models with more specific information about the intended system. Trans-
forming them from CIM into Platform Independent Models (PIMs) then into Platform Specific
Models (PSMs) and finally into production ready source code.

The different abstraction levels were designed to enable practitioners to be as platform, system
and language independent as possible. The notion of using models as the central artefact during de-
velopment is what is commonly referred to as Model-Driven (Software-) Engineering (MDE/MDSE)
or Model-Based (Software-) Engineering (MBE/MBSE) (Ciccozzi et al. 2019).

The structure of a model is defined by a so called meta-model whose structure is then also defined
by meta-models of their own.

2.2.2 Domain specific languages
“A domain-specific language (DSL) provides a notation tailored towards an application domain and
is based on relevant concepts and features of that domain” (Van Deursen et al. 2002). The idea
behind this design philosophy is to increase expressiveness and ease of use through more specific
syntax. As such DSLs provide an auspicious alternative for solving tasks associated with a specific
domain. Representative DSLs include HTML for designing webpages or SQL for database querying
and manipulation.

2.2.3 Model transformation languages
Models are transformed into different models of the same or a different meta-model via so called
model transformations. Driven by the appeal of DSLs, a plethora of dedicated MTLs have been
introduced since the emergence of MDE as a software development approach (Arendt et al. 2010;
Balogh et al. 2006; Jouault et al. 2006; Kolovos et al. 2008). Unlike general purpose programming
languages, MTLs are designed for the sole purpose of enabling developers to transform models. As
a result model transformation languages provide explicit language constructs for tasks performed
during model transformation such as model matching. Similar to GPLs model transformation
languages can differ vastly in several aspects. Starting with features that can be found in GPLs
as well like language paradigm and typing all the way to transformation specific features such as
directionality (Czarnecki et al. 2006). There are numerous of features that can be used to distinguish
model transformation languages from one another. For a complete classification of these features
please refer to Kahani et al. (2019), Mens et al. (2006) or Czarnecki et al. (2006).

Model transformation languages, being DSLs, promise dedicated syntax tailored to enhance the
development of model transformations.

2.3 Methodology
Our review procedures are based on the descriptions of literature and mapping reviews from Boot

et al. (2016). First of all a protocol for the review was defined. The protocol, as defined in Boot et al.
(2016), describes (I) the research background (see Sect. 2.2), (II) the objective of the review and
review questions (see Sect. 2.3.1), (III) the search strategy (see Sect. 2.3.2), (IV) selection criteria
for the studies (see Sect. 2.3.3), (V) a quality assessment checklist and procedures (see Sect. 2.3.4),
(VI) the strategy for data extraction and (VII) a description of the planned synthesis procedures
(see Sect. 2.3.5). A complete overview of all steps of our literature review can be found in Fig. 2.1.

36 Chapter 2. Paper A

Planning

Review needs
identification

Applied GQM

Protocol
definition

Protocol
evaluation

Research
questions

Protocol

Conducting

Database
search

Set of
publications

Selection
Reviewer 1

Selection
Reviewer 2

Relevant
publications 2

Relevant
publications 1

Combined
selection

Data extraction

Quality
assessment Data Synthesis

Data Items

Relevant
publications

Quality Score

Snowballing

Reporting

Threats
analysis

Report writing

Report
evaluation

Final
report

Activity Artifact
Activity flow Artifact flow

Figure 2.1: Protocol overview.

The remainder of this section will describe in detail each of the introduced protocol elements,
with the exemption of the research background which we already covered in Sect. 2.2.

2.3.1 Objective and Research Questions
To formulate the objective as well as to derive the research questions for our review we first applied

the Goal-Question-Metric approach (V. R. Basili et al. 1994) which splits the overall goal into four
separate concerns, namely purpose, issue, object and viewpoint.

Purpose: Find and categorize

Issue: claims of and evidence for advantages and disadvantages

Object : of model transformation languages

Viewpoint : from the standpoint of researchers and practitioners.

Based on the described goal we then extracted the two main research questions for our literature
review:

RQ1: What advantages and disadvantages of model transformation languages are claimed in liter-
ature?

RQ2: What advantages and disadvantages of model transformation languages are validated through
empirical studies or by other means?

The aim of RQ1 is to provide an extensive overview over what kinds of advantages or dis-
advantages are explicitly attributed to using dedicated model transformation languages compared
to using general purpose programming languages. We consider such an overview to be necessary,
because the number of claims and their repetition in literature to date makes it difficult to keep
track of which claims verifiably apply and which are still purely visionary. Naturally to be able to
distinguish between substantiated and unsubstantiated claims it is also required to record which
claims are supported by evidence. With RQ2 we aim to do exactly that. Combining the results
of RQ1 and RQ2 then makes it possible to determine if, and how, a positive or negative claim

2.3. Methodology 37

about MTLs is verified. Additionally this also enables us to identify those claims that have yet to
be investigated.

2.3.2 Search Strategy
Our search strategy consists of seven consecutive steps. A visual overview of the complete

search process can be found in Fig. 2.3. The figure visualizes steps Database search to Snowballing
from Fig. 2.1 in more detail.

In the first step we defined the search string to be used for automatic database searches. For
this we identified major terms concerning our research questions. Each new term was made more
specific than the previous one. The resulting terms and justifications for including them were:

• Model Driven Engineering : The overall context we are concerned with. This was included to
ensure only papers from the relevant context were found.

• Model Transformation: The more specific context we are concerned with.

• Model Transformation Language: Since our focus is on the languages to express model trans-
formations.

We used a thesaurus to identify relevant synonyms for each term in order to enhance our search
string. In addition, we included one representative model transformation language with graphical
syntax, one imperative language, one declarative language and one hybrid language as well as the
term domain specific language and its synonyms. The selection of the representative languages was
made on the basis of their widespread use, active development and in the case of QVT because it
is the standard for model transformations adopted by the Object Management Group. All these
additional terms were included as synonyms for the model transformation language term.

We dropped the terms advantage and disadvantage after initial searches, because they resulted
in a too narrow of a result set which excluded key publications (Hebig et al. 2018; Hinkel et al.
2019b) manually identified by the authors.

To combine all keywords we followed the advice of Kofod-Petersen (2015) to use the Boolean (∨)
to group together synonyms and the Boolean (∧) to link our major term groups.

This resulted in the search string shown in Fig. 2.2 which was applied in full text searches.

(Model Driven Engineering ∨ MDE ∨ Model Based Engineering ∨
MBE ∨ Model Driven Development ∨ MDD ∨
Model Driven Software Engineering ∨ MDSE ∨
Model Driven Software Development ∨
MDSE ∨ Model-Driven Software Development ∨
Model-Driven Engineering ∨ Model-Based Engineering ∨
Model-Driven Software Engineering)
∧
(Model Transformation ∨ Transformation ∨
Model Transformations ∨ Transformations)
∧
(Model Transformation Language ∨ Transformation Language ∨
ATL ∨ Henshin ∨ QVT ∨ TL ∨
Transformation Languages ∨ DSL ∨ domain specific language ∨
Model Transformation Languages)

Figure 2.2: Search string used for automatic database searches

We decided on the following four search engines to use for automated literature search:

38 Chapter 2. Paper A

IEEE Xplore
(n = 139)

ACM Digital Library
(n = 358)

Web of Science
(n = 365)

Springer Link
(n = 1977)

Preliminary relevance
filtering

(n = 500)

Duplicate removal
(n = 935)

Application of
Selection Criteria

(n = 99)

Snowballing
(n = 107)

Full-text screening
(n = 58)

Papers included
(n = 58)

II

III

IV + V

VI

VII

Steps

Figure 2.3: The search and selection process.

• ACM Digital Library

• IEEE Xplore

• Springer Link

• Web Of Science

Search engines were chosen based on their overall coverage, completeness, the availability of acces-
sible publications and usage in other literature reviews in this field such as Barat et al. (2017) and
Loniewski et al. (2010). The online library Science Direct, which is often used in this domain, was
excluded from our list due to us only having limited access to the publications in the data base.
We decided that the overhead of requesting access to all publications for which our proceedings
would require a full text review (see step four) would take up too much time thus we excluded the
database from our automatic search process. Badampudi et al. (2015) also show that combining
the automatic database searches with an additional snowballing process can make up for a reduced
list of searched databases. We also decided against using Google Scholar as a search engine due to
our experience with it producing too many irrelevant results and having a large overlap with ACM
Digital Library and IEEE.

We conducted several preliminary searches on all four databases during the construction of the
search string, to validate the resulting publications included key publications.

After the definition and validation of the search string, the second step consisted of full text
searches using the search engines of ACM Digital Library, IEEE Xplore Digital Library and Web of
Science.

For the Springer Link database we realized early on that a full text search would result in too
many hits and instead opted to query only the titles for the keyword model transformation language
and its synonyms and filtered these results by applying a full text search based on the remaining

2.3. Methodology 39

keywords and their synonyms. The remaining results still far exceeded those of all other databases
combined. We further realized during preliminary sifting, that the neither title nor abstracts of
publications beyond the first 200 results suggested a relevance to our study. For that reason we
decided to cap our search at 500 publications, doubling the size of results from the point where the
relevance of publications started to slide. This decision is supported by the fact that any publication
which ended up in our data extraction set was found within the first 200 results.

All automated database searches were conducted between the 17th and 28th of June 2019.
In the third step all duplicates that resulted from using multiple search engines were filtered out

based on the publication title and date. This also included the removal of publications that had
extended versions published in a journal. This resulted in a total of 935 publications.

During the forth step two researchers independently used the selection criteria (see Sect. 2.3.3)
on the titles and abstracts to select a set of relevant publications. The researchers categorized
literature as either relevant or irrelevant. And in cases where they could not deduce the relevance
based on the title and abstract the publication was marked as undecidable.

Afterwards in step five the results for each publication of the independent selection processes
were compared. In cases where the two researchers agreed on relevant or irrelevant the paper was
included or excluded from the final set of publications. In cases of either a disparity between the
categorizations or an agreement on undecidable, the full text of the publications was consulted using
adaptive reading techniques to decide whether it should be included or excluded. Adaptive reading
in this context meant going from reading the introduction to reading the conclusion and if a decision
was still not reached reading the paper from start to finish until a decision could be reached. The
step resulted in a total of 99 publications to use as a start set for the sixth step.

In the sixth step we applied exhaustive backward and forward snowballing, meaning, as described
in many previous studies (Auer et al. 2018; Somasundaram et al. 2003), until no new publication
was selected. The snowballing procedures followed the guidelines laid out by Wohlin (2014). Our
start set was comprised of all 99 publications from step 5. We then applied backward and forward
snowballing to the set. For backward snowballing we used the reference lists contained in the
publications and for forward snowballing we used Google Scholar as suggested by Wohlin (2014)
and because from our experience it provides the most reliable source for the cited by statistic. To
the cited and citing publications we then applied our inclusion and exclusion criteria as described
in step 4. All publications that were deemed as relevant were then used as the starting set for the
next round of snowballing until no new publications were selected as relevant. The result of this
step was a set of 107 relevant publications.

Lastly, in step seven, we filtered out all publications that did not explicitly mention advantages
or disadvantages of model transformation languages by reading the full text of all publications. This
step was introduced to filter out the noise that arose from a broader search string and less restrictive
inclusion criteria (see Sect. 2.3.3). The remaining 58 publications form our final set on which data
synthesis was performed on (a list of all included publications with an unique assigned ID can be
found in Appendix A).

2.3.3 Selection Criteria

We decided that a publication be marked as relevant, if it satisfies at least one inclusion criteria
and does not satisfy any exclusion criteria. The inclusion criteria were chosen to include as many
papers that potentially contain advantages or disadvantages as possible. A publication was included
if:

IC1 : The publication introduces a model transformation language.

IC2 : The publication analyses or evaluates properties of one or multiple model transformation
languages.

IC3 : The publication describes the application of one or multiple model transformation languages.

IC1 is an inclusion criteria, because the introduction of a new language should include a mo-
tivation for the language and possibly even a section on potential shortcomings of the language.
Such shortcomings can be attributed either to the design of the language or to the concept of model
transformation languages as a whole.

40 Chapter 2. Paper A

A publication that is covered by IC2 can help answer both RQ1 and RQ2 depending on the
analysed/evaluated properties.

IC3 forms our third inclusion criteria since experience reports can be a good source for both
strengths and weaknesses of any applied technique or tool.

Our exclusion criteria were:

EC1 : Publications written in a language other than English.

EC2 : Publications that are tutorial papers, poster papers or lecture slides.

EC3 : Publications that are a Doctoral/Bachelor/Master thesis.

EC1 ensures that the scientific community is able to verify our extracted data from publications.
Because tutorial papers, poster papers and lecture slides are less reliable and do not provide

enough information to work with, they are excluded with EC2.
Lastly, to reduce the required workload, we excluded all thesis publications with EC3 as full text

reviews would take up too much time. We also argue that relevant thesis findings are most likely
also published in journal or conference papers.

2.3.4 Quality Assessment Checklist and Procedures
Assessing the quality of publications found during the selection process is an essential part of a

literature review (Boot et al. 2016).
For that reason, we adopted a list of six quality attributes for studies. The quality attributes

(seen in Table 2.1) are taken from Shevtsov et al. (2018) which adapted quality criteria from Weyns
et al. (2012). Each quality item has a set of three characteristics for which a value between 0 and
2 is assigned. The quality score of a publication is calculated by summing up the values for each
characteristic, making 12 the maximum quality score for a publication. The quality score did not
influence the decision to include or exclude a publication.

2.3.5 Data Extraction Strategy

Based on our research questions, and general documentation concerns, we devised a total of eight
data items to extract from each selected publication. Table 2.2 lists all extracted data items.

Data items D1 -D3 are recoded for documentation purposes.
To gather explicitly claimed advantages and disadvantages of model transformation languages

D4 and D5 are necessary items to include.
Another goal of our literature review is to find out which advantages or disadvantages are em-

pirically verified. It is therefore necessary to extract information about whether empirical evidence
exists and which advantage or disadvantage it is concerned with (D6). Similarly, citations used to
back up claimed advantages or disadvantages are also documented (D7). Our goal is it to either
track down references that provide evidence and find sources of common claims about advantages
and disadvantages of model transformation languages.

Lastly, in order to evaluate the quality of publications the quality score D8 for each publication
is recorded.

All data items were extracted during full text reviews of all selected publications.

2.3.6 Synthesis Procedures
The synthesis of the collected data was split into multiple parts with multiple results for each
research question.

2.3.6.1 RQ1: What advantages and disadvantages of model transformation languages
are claimed in literature?

The first part of the synthesis for RQ1 was a simple collection of all claimed advantages and
disadvantages. This was done in order to create a basic overview.

2.3. Methodology 41

Table 2.1: Quality assessment criteria (Weyns et al. 2012).

Q1: Problem definition

2 The authors provide an explicit problem description.
1 The authors provide a general problem description.
0 There is no problem description.

Q2: Problem context

2 If there is an explicit problem description for the research, this problem description is supported
by references.

1 If there is a general problem description, this problem description is supported by references.
0 There is no description of the problem context.

Q3: Research design

2 The authors explicitly describe the plan (different steps, timing,etc.) they have used to perform
the research, or the way the research was organized.

1 The authors provide some general words about the research plan or the way the research was
organized.

0 There is no description of how the research was planned/organized.

Q4: Contributions

2 The authors explicitly list the contributions/results.
1 The authors provide some general words about the results.
0 There is no description of the research results.

Q5: Insights

2 The authors explicitly list insights/lessons learned.
1 The authors provide some general words about insights/lessons learned.
0 There is no description of the derived insights.

Q6: Limitations

2 The authors explicitly list problems and/or limitations.
1 The authors provide some general words about limitations and/or problems.
0 There is no description of the limitations.

Next an analysis of all collected items was done in order to devise categories for the advantages
and disadvantages. To develop categories we used initial coding and focused coding as described
by Charmaz (2014). First all claims were analysed claim by claim to extract common phrases or
similar topics. These were then used to group together claims and develop descriptive terms when
then served as the name for the category formed by the grouped claims. The categories themselves
were split into a positive section and a negative section to contrast negative and positive mentions
with each other.

Using the devised categorization allows for quick identification of contradictory claims. Such
claims then have to be further analysed in terms of origin, context and supporting evidence.

2.3.6.2 RQ2: What advantages and disadvantages of model transformation languages
are validated through empirical studies or by other means?

To analyse evidence of claimed advantages and disadvantage we started by assessing the quality of
each respective publication using the quality score system from Sect. 2.3.4.

Afterwards we devised a visual representation for claims and evidence thereof in publications.
The representation allows a straightforward identification of substantiated and unsubstantiated
claims and tracking of citations back to the origin of cited claims. This in turn enabled us to
easily identify whether citations back up stated claims or serve as nothing more than a reference to
a publication which claims the same thing.

42 Chapter 2. Paper A

Table 2.2: Data items.

ID Data Purpose

D1 Author(s) Documentation
D2 Publication year Documentation
D3 Title Documentation
D4 Named advantage(s) of MTL(s) RQ1
D5 Named disadvantage(s) MTL(s) RQ1
D6 Empirical evidence of advantage(s) or disadvantage(s) RQ2
D7 Cited evidence RQ2
D8 Quality score Documentation

2.4 Findings

In this section we provide a summary of the synthesized data as well as an analysis of the
demographics and quality of publications. The summary will be in narrative form, supported by
plots and graphs as suggested by Boot et al. (2016). Before describing our findings with regard to the
research questions from Section 2.3.1, we first offer statistics and information about the demographic
data of the collected literature as well as an overview over their quality which we assessed using the
quality criteria from Section 2.3.4.

2.4.1 Demographics
Fig. 2.4 provides an overview over the quantity of included publications per year. A interesting

thing to note is, that it took only two years from the introduction of the Model Driven Architecture
in 2001 to the first mentions of advantages of model transformation languages. One of the most cited
papers about model transformations in our literature review was published that year too (P63). Its
title shapes introductions of publications in the community even today: Model transformation: The
heart and soul of model-driven software development.

Scrutinizing claims about MTLs however, just recently started to be a focus of research. With
the first study (P59) dedicated to evaluating advantages of MTLs being published in 2018. To
us this suggests that research might be slowly catching on to the fact that evaluation of specific
properties of MTLs is necessary instead of relying on broad claims. Simply relying on the fact that
model transformation languages are DSLs and that DSLs in general fare better compared to non
domain specific languages (D. Batory et al. 2002; Hailpern et al. 2006; Kieburtz et al. 1996) is not
enough.

Industrial case studies about the adoption of MDSE have been performed much earlier than
2018 but such studies mainly focus on the complete MDSE workbench and do not analyse the
impact of the used MTLs in great detail. The case study P670 for example, while stating that “The
technology used in the company should provide advanced features for developing and executing
model transformations”, does not go into detail about neither current shortcomings nor any other
specifics of model transformation languages used during the development process.

Overall there are 32 publications that mention advantages and 36 publications that mention
disadvantages. Moreover four publications provide empirical evidence for either advantages or
disadvantages while 12 publications use citations to support their claims and 14 publications use
other means such as examples and experience (more on this in Sect. 2.4.4).

Lastly Table 2.3 shows which transformation languages were directly involved in publications
used in our data extraction. We counted a transformation languages as being involved if it was
used, analysed or introduced in the publication. Simply being mentioned during enumerations of
example MTLs was not sufficient.

The table paints an interesting picture. ATL far exceeds all other model transformation languages
in involvement and most languages are only discussed in a single publication.

2.4. Findings 43

1988 1992 1996 2000 2004 2008 2012 2016

year

pu

bl
ic

at
io

ns

0
2

4
6

8
10

Figure 2.4: Number of publications that mention or evaluate advantages or dis-
advantages of MTLs per year.

2.4.2 Quality of publications
The results from the quality assessment, summarized in Figure 2.5, shows that both the problem
context and definition as well as the overall contributions are well defined in a majority of publi-
cations. Insights drawn from the work described in these publications, while less comprehensive in
many cases, are also described most often. However thorough descriptions of the research design,
the used methods or steps taken are less common. A trend which is even more prominent for the
presentation and discussion of limitations that act upon the studies. Similar observations have al-
ready been made by other literature reviews in different domains (Galster et al. 2014; Shevtsov et al.
2018).

2.4.3 RQ1: Advantages and Disadvantages of Model Transformation Lan-
guages

We used data items D4 and D5 to answer our first research question, namely which advantages or
disadvantages of dedicated model transformation languages are claimed in literature. The resulting
statements were sorted into 15 different categories (seen in Fig. 2.6) which arose naturally from
the collected statements. An overview over all claims sorted into the different categories can be
found in Table A.1. The table ascribes each claim with a unique ID (Cxx) for reference throughout
this work. The table also contains evidence used to support a claim (if existent) to which we will
come back later in Sect. 2.4.4. For almost all categories there exist papers that describe model
transformation languages as being advantageous as well as publications that describe them as dis-
advantageous in the category. In the following we discuss the statements made in publications for
each the category.

44 Chapter 2. Paper A

Table 2.3: Number of publications that mention specific MTLs.

Model transformation language # of mentions

ATL 16
EMT 1
ETL 3
GreAT 1
Henshin 1
Iquery 1
JTL 1
MOFLON 1
MT 1
NTL 2
QVT-O 4
QVT-R 2
SDM 1
SIGMA 1
SiTra 1
Tefkat 1
TGG 1
TN 1
VMTL 1

2.4.3.1 Analysability

Throughout our gathered literature there is only one publication, P45, that mentions analysabil-
ity. According to them a declarative transformation languages comes with the added advantage
of being automatically analysable which enables optimizations and specialized tool support (C1).
While a detailed discussion of this claim within the publication remains owed, the authors provide
examples of how static analysis allows the engine to implicitly construct an execution order. While
our literature review found only a single publication that explicitly mentions analysability as an
advantage of model transformation languages, there do exist multiple publications (Marcel F. van
Amstel et al. 2011b; Arendt et al. 2010; Varró et al. 2006) that contain analysis procedures for
model transformations.

2.4.3.2 Comprehensibility

Comprehensibility is a much disputed and multifaceted issue for model transformation languages.
A total of eleven publications touch on several different aspects of how the use of MTLs influences
the understandability of written transformations.

The first aspect is the use of graphical syntax compared to a textual one which is typically used in
general-purpose programming languages. In P63 the authors talk about “perceived cognitive gains”
of graphical representations of models when compared to textual ones (C6). A pronouncement
that is echoed in P43 which state that graphical syntax for transformations is more intuitive and
beneficial when reading transformation programs (C2).

While all these claims about graphical notation increasing the comprehensibility of transforma-
tions stand undisputed in our gathered literature, there are other facets in which graphical notation
is said to be disadvantageous. We will come back to them later on in Sect. 2.4.3.5.

Declarative textual syntax is another commonly used syntax for defining model transformations.
The authors of P45 contend that a declarative syntax makes it easy to understand transforma-
tion rules in isolation and combination (C3). However, declarative transformation languages are
typically based on graph transformation approaches which can become complex and hard to read
according to P70 (C13). They additionally assert that the use of abstract syntax hampers the com-
prehensibility of transformation rules (C12). Furthermore P22 insist that the use of graph patterns
results in only parts of a meta-model being revealed in the transformation rules and that current
transformation languages exhibit a general lack of facilities for understanding transformations (C8).
P22 also reports that understanding transformations in current model transformation languages is

2.4. Findings 45

P
ro

bl
em

 D
ef

in
iti

on

P
ro

bl
em

 C
on

te
xt

R
es

ea
rc

h
D

es
ig

n

C
on

tr
ib

ut
io

ns

In
si

gh
ts

Li
m

ita
tio

ns

0 points
1 point
2 points

pu

bl
ic

at
io

ns

0

10

20

30

40

50

Figure 2.5: Quality score distribution.

hampered, specially by the fact that many of the involved artefacts such as meta-models, models
and transformation rules are scattered across multiple views (C9). P29 brings forward the concern
that large models are also a factor that hampers comprehensibility since there exist no language
concepts to master this complexity (C11). Adding to this point, P27 describes that for non ex-
perts (e.g stakeholders) transformations written in a traditional model transformation language are
“very complex to understand” because they lack the necessary skills (C10). The authors of P95 on
the other hand claim that the usage of dedicated MTLs, which incorperate high-level abstractions,
produces transformations that are more concise and more understandable (C7). This sentiment
is shared in P44 which explains the belief that using GPLs for defining synchronizations brings
disadvantages in comprehensibility compared to model transformation languages (C3).

Understanding a transformation requires, among other things, understanding which elements
are affected by it and in which context a transformation is placed. Using a model transformation
language is beneficial for this as shown in the study described in P59 (C5).

2.4.3.3 Conciseness

Interestingly there seems to be a consensus on the conciseness of model transformation languages
compared to GPLs.

In general dedicated model transformation languages are seen as more concise (P63 C17, P95
C21) which, apart from textual languages, is also stated for graphical languages in P75 (C18).

The fact that MTLs are more abstract making them more concise and thus better is claimed
multiple times in P80 (C19), P52 (C15), P3 (C14) and P95 (C20) while P673 claims that the
abstraction in MTLs helps to reduce their overall complexity (C22).

The SLOC metric has also been drawn from as a way to compare MTLs other MTLs and even
GPLs. According to an experiment described in P59, using a rule based model transformation
reduces the transformation code by up to 48% (C16). Whether or not this is any indication of
superiority is a disputed subject (Barb et al. 2014).

46 Chapter 2. Paper A

A
na

ly
za

bi
lit

y

C
om

pr
eh

en
si

bi
lit

y

C
on

ci
se

ne
ss

D
eb

ug
gi

ng

E
as

e
of

 w
rit

in
g

a
tr

an
sf

or
m

at
io

n

E
xp

re
ss

iv
en

es
s

E
xt

en
da

bi
lit

y

Ju
st

 b
et

te
r

Le
ar

na
bi

lit
y

P
er

fo
rm

an
ce

P
ro

du
ct

iv
ity

R
eu

se
 a

nd
 M

ai
nt

ai
na

bi
lit

y

To
ol

 S
up

po
rt

S
em

an
tic

s
an

d
V

er
ifi

ca
tio

n

V
er

sa
til

ity

positive
negative

pu

bl
ic

at
io

ns

0

5

10

15

20

Figure 2.6: Number of publications that claim an advantage or disadvantage of
MTLs in a category.

2.4.3.4 Debugging

Debugging support is much less disputed than comprehensibility. Of the five publications that talk
about debugging in model transformation languages none praise the current state of debugging
support.

P22 (C24, C25) and P90 (C27) both describe that currently no sufficient debugging support
exist for MTLs. And while in P95 it is stated that debugging of transformations in a dedicated
languages is likely better than when the transformation is written in a general-purpose language
(C23) they fail to bring forth a single example for their assertion.

Lastly P45 lauded declarative syntax for its benefit in comprehension but also note that imper-
ative syntax is easier to debug in general (C26).

2.4.3.5 Ease of writing a transformation

The main purpose of model transformation languages is to improve the ease with which developers
are able to define transformations. Hence this should also be a main benefit when compared to
general-purpose languages. However the authors of the study described in P59 found:“no sufficient
(statistically significant evidence) of general advantage of the specialized model transformation lan-
guage QVT-O over the modern GPL Xtend” (C39). This is not to say that there are none as the
authors admit the conclusions were “made under narrow conditions” but is still a concerning finding.
Much more so because claims about such benefits of using MTLs persist through literature. Claims
such as those described in P29 (C29), P672 (C32) and P50 (C30), which state that their simpler
syntax make it easier to handle and transform models. These claims draw from statements about
the expressiveness, to which we will come to in the next section, and reason that better expressive-
ness must lead to an easier time in writing transformations. A potential reason that hampers model
transformation languages from evidentially being better for writing transformations is cited in P27
(C34) and P28 (C35). They both state that using a model transformation language requires skill,

2.4. Findings 47

experience and a deep knowledge of the meta-models involved (P56 C38). In our opinion, however,
this holds true regardless of the language used to transform models.

Moreover, many model transformation languages use declarative syntax which can be unfamiliar
for many programmers, according to P45 (C37) and P63 (C40), which are much more familiar
with the status quo, i.e. imperative languages. The authors of P22, on the other hand, state, that
imperative MTLs often require additional code since many issues have to be accomplished explicitly
compared to implicitly in declarative languages (C33).

Lastly graphical syntax is said to make writing model transformations easier as the syntax is
purported to be more intuitive for this task compared to a textual one in P3. In P43 (C36) and
P672 (C41), however, the authors claim that graphical syntax can be complicated to use, that
textual syntax is more compact and does not force users to spend time to beautify the layout of
diagrams.

2.4.3.6 Expressiveness

As described in Sect. 2.2.2, the idea behind domain specific languages is to design languages around
a specific domain, thus making it more expressive for tasks within the domain (Mernik et al. 2005).
Since model transformation languages are DSLs it should not be a surprise that their expressiveness
in the domain of model transformations is mentioned almost exclusively positive by a total of 19
different publications found in our literature review.

A large portion (P95, P80, P94, P63, P15, P40, P52, P70) of publications that refer to
expressiveness state, that the higher level of abstraction that results from specific language constructs
for model manipulation increases the conciseness and expressiveness of MTLs. P80 additionally
asserts, that model transformation languages are just easier to use (C61).

Another portion (P2, P15, P45, P677, P27, P63, P95, P27) explains that the expressiveness
is increased by the fact that model transformation engines can hide complexity from the developer.
One such complex task is pattern matching and the source model traversal as mentioned in P2
(C42), P15 (C43) and P45 (C53) respectively. According to them not having to write the matching
algorithms increases the expressiveness and ease of writing transformations in MTLs. Implicit rule
ordering and rule triggering is another aspect that P15 (C46), P45 (C51) and P677 (C65) claim
increases the expressiveness of a transformation language. Related to rule ordering is the internal
management and resolution of trace information which is stated by P15 (C44), P45 (C50), P677
(C65) and P95 (C64) to be a major advantage of model transformation languages. Furthermore,
P45 asserts that, implicit target creation is another expressiveness advantage that MTLs can have
over general-purpose languages (C52). Lastly the study described in P59 observed that copying
complex structures can be done more effective in MTLs (C56).

However we also uncovered some shortcomings in current syntaxes. P10 argues that the lack of
expressions for transforming a single element into fragments of multiple targets is a detriment to the
expressiveness of transformation languages, going as far as to allege that without such constructs
model transformation languages are not expressive enough (C68). P32 implies that MTLs are
unable to transform OCL constraints on source model elements to target model elements (C69).
And lastly P33 critiques that model transformation languages lack mechanisms for describing and
storing information about the properties of transformations (C70).

2.4.3.7 Extendability

Being able to extend the capabilities of a model transformation language seems to be less of a concern
to the community. This can be seen by the fact that only P50 touches this issue. They explain that
external MTLs can only be extended (“if at all”) with a specific general-purpose language (C71).
Internal model transformation languages of course do not suffer from this problem since they can be
extended using the host language (Jesús Sánchez Cuadrado et al. 2006; Hinkel et al. 2019a; Křikava
et al. 2014).

2.4.3.8 Just better

Apart from specific aspects in which the literature ascribes advantages or disadvantages to model
transformation languages, there are also several instances where a much broader claim is made.

P86 for example states that there exists a consensus that MTLs are most suitable for defining
model transformations (C78). This claim is also reiterated in several other publications using

48 Chapter 2. Paper A

statements such as “the only sensible way” or “most potential due to being tailored to the purpose”
(P9, P23, P63, P64, P66). However one publication claims, that both GPLs and MTLs are not
well suited for model migrations, and that instead dedicated migration languages are required (P34
C80).

2.4.3.9 Learnability

The learnability issues of tools have been shown to positively correlate with usability defects (Alves
et al. 2016) and thus their general acceptance.

However the learnability of model transformation languages is rarely discussed in detail. P30
(C81), P58 (C83) and P81 (C84) all express concerns about the steep learning curve of model
transformation languages and P52 explain that transformation developers are often required to
learn multiple languages which requires both time and effort (C82).

2.4.3.10 Performance

The execution performance of transformations is an important aspect of model transformations.
Often times the goal is to trigger a chain of multiple transformations with each change to a model.
Hence good transformation performance is paramount to the success of model transformation lan-
guages.

Opinion on performance in literature is divided. On one hand there are publications such as P52
(C88) and P80 (C89) which describe that the performance of dedicated MTLs is worse than that
of compiled general-purpose programming languages. While on the other hand there is P95 which
states that some introduced transformation languages are more performant (C85), citing articles
from the Transformation Tool Contest (TTC), and P675 which shows a performance comparison
of transformations written in Java and GrGen where GrGen performs better than Java (C86).
There are also more nuanced views on the subject. P45 describes that practitioners sometimes
perceive the performance as worse and that there exist factors that hamper the performance (C87).
The listed factors are the fact that the transformation languages are often interpreted, a mismatch
with hardware and less control over the algorithms that are used. However they also describe that
specialized optimizations can bridge the performance gap.

2.4.3.11 Productivity

Increased productivity through the use of DSLs is a much cited advantage (Mernik et al. 2005)
(C6D). Unsurprisingly it resurfaces in various forms in the context of model transformation lan-
guages as well. For instance, in P45 it is described, that the use of declarative MTLs improves
the productivity of developers (C91). P29 goes even further, claiming that the use of any model
transformation language results in higher productivity (C90).

This is contrasted by the hypothesis that productivity in general-purpose programming languages
might be higher due to the fact that it is easier to hire expert users which was put forward in
P59 (C93). Lastly P32 raises the concern that some of the interviewed subjects perceive model
transformation languages as not effective, i.e. not helpful for the productivity of developers (C92).

2.4.3.12 Reuse and Maintainability

In our gathered literature maintainability is used as a motivation for modularization and reuse
concepts. P29,P60 and P95 all claim that reuse mechanisms are necessary to keep model trans-
formations maintainable. Combined with a total of eight (P4, P10, P29, P33, P41, P60, P95,
P78) publications that state that reuse is hardly, if at all, established in current model transforma-
tion languages, this paints a bleak picture for both maintainability and reuse. The need for reuse
mechanisms has already been recognized in the research community as stated by P77 in which the
authors explain that a plethora of mechanisms have been introduced (C95) but are hindered by sev-
eral barriers such as insufficient abstraction from meta-models and platform or missing repositories
of reusable artefacts (C103).

There exists only a single claim that directly addresses maintainability. P44 state that bidirec-
tional model transformation languages have an advantage when it comes to maintenance (C94).

2.4. Findings 49

Apart from the maintainability of written code, there is also the maintainability of languages and
their ecosystems. Surprisingly, this is hardly discussed in literature at all. Only P52 explains that
evolving and maintaining a model transformation language is difficult and time consuming (C101).

2.4.3.13 Semantics and Verification

Three publications (P39, P23, P58) all suggest that most model transformation languages do not
have well defined semantics which in turn makes verification and verification support difficult (P22
C109). P44 however explains that bidirectional transformations are advantageous with regards to
verification (C107).

2.4.3.14 Tool support

Tools are another important aspect in the MDE life-cycle according to Hailpern et al. (2006). They
are essential for efficient transformation development. Regrettably, MTLs lack good tool support
according to P23, P45, P52 and P80 and if tools exist, they are not close to as mature as those
of general-purpose languages as stated in P74 (C119). Additionally, the authors of P94 explain
that developers of MTLs need to put extra effort into the creation of tool support for the language
(C121). This might however be worthwhile, because P44 presumes that dedicated tools for model
transformation languages have the potential to be more powerful than tools for GPLs in the context
of transformations (C114). And due to the high analysability of MTLs, P45 explains, that tool
support could potentially thrive (C115). Internal MTLs, on the other hand, are able to inherit tool
support form their host languages as reported by P23 (C113). This helps to mitigate the overall
lack of tool support, at least for internal MTLs.

An interesting discussion to be held, is how important tool support for the acceptance of MTLs
actually is. Whittle et al. (2013) describe that organizational effects are far more impactful on
the adoption of MDE, while the results of Burgueño et al. (2019) contradict this observation citing
interviewees from commercial tool vendors that stopped the development of tools due to lack of
customer interest.

2.4.3.15 Versatility

It should be self-evident that languages that are designed for a special purpose do not possess
the same level of versatility and area of applicability than general-purpose languages. Hence, it is
not surprising that all mentions of versatility of model transformation languages in our gathered
literature paint MTLs as less versatile compared to GPLs (P52 (C124), P80 (C125), P94 (C127)).

2.4.4 RQ2: Supporting evidence for Advantages and Disadvantages of
MTLs

We found a number of different ways used by authors of our gathered literature to support their
assertions. The largest portion of ‘supporting evidence’ is made up of cited literature, i.e., a claim
is followed by a citation that supposedly supports the claim.

The second way claims are supported is by example, i.e., authors implemented transformations in
MTLs and/or GPLs and reported on their findings. Another aspect of this is relying on experience,
i.e. authors state that from experience it is clear that some pronouncement is true or that it is a
well established fact within the community that a claim is true.

Third, there is empirical evidence, i.e., studies designed to measure specific effects of model
transformation languages or case studies designed to gather the state of MTL usage in industry.

Last, there are those assertions that are not supported by any means. Authors simply suggest
that an advantage or disadvantage exists. We assume that some claims made in this way implicitly
rely on experience but do not state so. Nevertheless, since there is no way of testing this assumption
we have to record such claims exactly the way they are made, without any evidence.

In the following sections, we will talk in detail about how each group of evidence is used in
literature to support claims about advantages or disadvantages of model transformation languages.
As mentioned previously Table A.1 contains a complete overview over each claim and through what
evidence the claim is supported.

50 Chapter 2. Paper A

2.4.4.1 Citation as evidence

Using citations to support statements is a core principle in research. It should therefore come as no
surprise that citations are used to support claims about model transformation languages. An inter-
esting aspect to explore for us was to trace how the cited literature supports the claim. For that, as
stated in Sect. 2.3, we created a graphical representation to trace citations used as evidence through
literature. The graph can be found in Fig. 2.7. It is inspired by UML syntax for object diagrams.
The head of an ‘object’ contains a publication id while the body contains the categories for which
advantages (+) or disadvantages (-) are claimed in the publication. Each category within the body
is accompanied by an ID which can be used to find the corresponding claim within Table A.1. We
use different borders around publications to denote the type of evidence provided by the publication
and arrows from one category within a publication to a different publication stand for the use of
a citation to support a claim. Lastly, if the content of a publication does not concern itself with
model transformation languages but instead with DSLs the publication id is followed by ‘(DSL)’.

Our graph allows to easily gauge information about the following things:

• What publication claims an advantage or disadvantage of MTLs in which category?

• What type of evidence (if any) is used to support claims in a publication?

• Which exact claims are supported through the citation of what publication?

In the following we discuss observations about citations as evidence that can be made with help
from the citation graphs.

First, only a total of 25 citations, split among 12 out of the 58 gathered publications, are used to
support claims. This constitutes less than ten percent of all assertions found during our literature
review. 7 of the 25 citations cite a publication that itself only states claims without any evidence
thereof (P63, P94, P673, P674, P800). A further 11 end in a publication that uses examples
or experience (see also Sect. 2.4.4.3) (P664, P665, P667, P671, P672, P676, P77, P64, P804,
P801). Next there are 3 citations that cite publications which in turn cite further publications
to support their claims (P677, P675), leaving only 4 citations that cite empirical studies (P669,
P670, P803) (see also Sect. 2.4.4.2). To us this is worrying because the practice of citing literature
that only restates a assertion corrodes the confidence readers can have in citations as supporting
evidence.

From the graph it is clearly evident that there exists no single cited source for claims about
model transformation languages. This is clearly indicated by the fact that only five publications
(P63, P77, P673, P675, P803) are cited more than once. Twice to be exact. And no publication
is cited more than two times. Moreover, of those five publications P675 and P803 are each cited by
a single publication respectively. P675 is cited twice by P80 and P803 by P675. Related thereto,
nearly each claim, even within the same category, is being supported through different citations.

Furthermore, only claims about conciseness, expressiveness, reuse & maintainability, tool sup-
port, performance and statements that MTLs are just better are supported using citations. It is
interesting to note that claims within these categories which are supported by citations, are either
all positive or all negative. This is not to say that there are no contrasting claims, see for example
C113 and C116 in P23, only that, if citations are used for a category the supported claims are
either all positive or all negative.

Another thing to note is that in some instances claims about model transformation languages
are being supported by citing publications on domain specific languages in general. This can be seen
in P80. The claims C60 and C61 are both supported by a citation of P675 which is a publication
that concerns itself with DSLs. Interestingly P675 itself then cites both publications about DSLs
(P800, P801, 803) and a publication about model transformation languages (P804) to support
claims stated within the publication.

Coming back to citations of empirical studies we have to report that while there exist 4 citations
of empirical studies only a single claim about model transformation languages (C116 in P23) is
actually supported thereby. This is due to P803 being an empirical study about DSLs and P669
and P670 both being cited as evidence for C116.

Lastly, apart from those publications that only make a single claim, no publication supports all
their claims using citations. Extreme cases of this can be seen in P45 and P52 which make a total of
16 claims, only supporting three of them with citations while leaving the other 13 unsubstantiated.

2.4. Findings 51

P9

(+) just better (C72)

P27

(-) comprehensibility (C10)

(-) ease of writing transfor. (C34)

(+) expressiveness (C48)

P40

(+) expressiveness (C49)

P664

(+) just better (C79)

P665

P667

P671

P672

(+) ease of writing a transfor. (C32)

Px claims
advantage/disadvantage
in category

Px claims category
from experience or
through examples

Px supports claim
of category via
citation

Px is report of
empirical study;
advantage/disadvantage
in category is
part of the findings of study

Legend

P45

(+) analysability (C1)

(+) comprehensibility (C4)

(-) debugging (C26)

(-) ease of writing a transfor. (C37)

(+) expressiveness (C50-53)

(-) performance (C87)

(+) productivity (C91)

(+) tool support (C115)

(-) tool support (C117)

P52

(-) reuse & maintainability (C101)

(+) expressiveness (C54-55)

(-) performance (C88)

(+) conciseness (C15)

(-) learnability (C82)

(-) tool support (C118)

(-) versatility (C124)

P80

(+) conciseness (C19)

(+) expressiveness (C60-61)

(-) performance (C88)

(-) versatility (C125-126)

(+) expressiveness (C59)

(-) tool support (C120)

P63

(+) comprehensibility (C6)

(+) conciseness (C17)

(+) ease of writing a transfor. (C31)

(-) ease of writing a transfor. (C40)

(+) expressiveness (C57)

P669

(-) tool support (C122)

P670

(-) tool support (C123)

P94

(+) expressiveness (C62)

(-) tool support (C121)

(-) versatility (C127)

P673

(+) conciseness (C22)

P674

(-) reuse & maintainability (C106)

P675 (DSL)

(+) expressiveness (C1D)

(+) just better (C[2-3]D)

(+) productivity (C6D)

(+) reuse & maintainability (C9D)

(-) versatility (C10D)

P23

(+) just better (C73)

(-) semantics & verification (C110)

(+) tool support (C113)

(-) tool support (C116)

P677

(+) expressiveness (C65)

P4

(-) reuse & maintainability (C96)

P64

(+) just better (C76)

P66

(+) just better (C77)

P77

(+) reuse & maintainability (C95)

(-) reuse & maintainability (C103)

P95

(+) comprehensibility (C7)

(+) debugging (C23)

(+) expressiveness (C63-64)

(+) performance (C85)

(-) reuse & maintainability (C105)

(+) conciseness (C20-21)

P676

(+) performance (C86)

Px

(+/-) category (CID)

Px

(+/-) category (CID)

Px

(+/-) category (CID)

Px

(+/-) category (CID)

P801 (DSL)

(+) productivity (C7D)

(+) performance (C5D)

P803 (DSL)

(+) just better (C4D)

(+) productivity (C8D)

P804

(+) expressiveness (C66)

P800 (DSL)

Figure 2.7: Graph tracking citations of claims of various categories through lit-
erature.

52 Chapter 2. Paper A

2.4.4.2 Empirical evidence

To our disappointment we have to report a lack of overall empirical evidence for properties of
model transformation languages. Only four publications (P32, P59, P669, P670) in our gath-
ered literature assess characteristics of model transformations using empirical means (see Fig. 2.7
and Table A.1). Of those four only P59 focuses on MTLs as its central research object while the
other three are case studies about MDA that happen to contain results about transformation lan-
guages. P803 too is an empirical study, but as mentioned in Sect. 2.4.4.1 focuses on domain specific
languages in general not on MTLs. In order to provide the necessary context for scrutinizing the
claims extracted from the publications we provide a short overview over the central aspects of P32,
P59, P669, P670 in the following.

The study described in P59 was comprised of a large-scale controlled experiment with over 78
subjects from two universities as well as a preliminary study with a single individual. Subjects had to
solve 231 tasks using three different languages (ATL, QVT-O and Xtend). The tasks focused on one
of three aspects in transformation development, namely comprehending an existing transformation,
changing a transformation and creating a transformation from scratch. After analysing the results,
the authors come to the disillusioning conclusion, that there is “no statistically significant benefit of
using a dedicated transformation language over a modern general-purpose language”.

The authors of P32 report on an empirical study on the efficiency and effectiveness of MDA.
A total of 38 subjects, selected from a model-driven engineering course, were asked to implement
the book-purchasing functionality of an e-book store system. Afterwards the subjects evaluated the
perceived efficiency and effectiveness of the used methodology. This also included questions about
the used QVT language which was perceived as only marginally efficient.

Both P669 and 670 are reports of industrial case studies. The objective of the study in P669 was
to investigate the state of practice of applying MDSE in industry. To achieve this, they collected data
from tool evaluations, interviews and a survey. Four different companies were consulted to collect
the data. Again while some reported results concerned themselves with transformations, model
transformation languages were not explicitly discussed. Similarly, P670 reports on an industrial
case study involving two companies aiming to collect factors that influence the decision to adopt
MDE. For that purpose multiple pre-selected individuals at both companies were interviewed. Just
as P669 the study did not directly focus on transformations or transformation languages.

As evident from Fig. 2.7, the results from P32 and P59 have yet to be used in literature for
supporting claims about MTLs. Since both of them have only been published recently we are
however optimistic about this prospect.

2.4.4.3 Evidence by example/experience

Using examples to demonstrate shortcomings of any kind has a long standing tradition not only in
informatics. Using examples to demonstrate an advantage however, can result in less robust claims
(especially toy or textbook examples Shaw (2003)). As such it is important to differentiate whether
a claim is made by demonstrating a shortcoming or benefit.

In our gathered literature, ten publications use examples to support a claim. Interestingly,
examples are mainly used to support broad claims about model transformation languages. This can
be observed by the fact that P34 and P64 use examples to try and demonstrate that GPLs are
not well suited for transforming models while P664, P665, P667, P672, P804 and P676 try to
demonstrate the general superiority of MTLs by showing examples of transformations written in
MTLs. Other claims that are supported through examples are a demonstration of the reduction in
code size when using rule based MTLs in P59 and statements about the extensive amount of reuse
mechanisms for MTLs through listing gathered publications about proposed mechanisms in P77.

Long time practitioners of model transformation languages or programming languages in general
often rely on their experience to make assertions about aspects of the language. And while the
experience of long term users can create valuable insights it is still subjective and can therefore vary
in accuracy. In our case six publications directly state that their assertions come from experience.
P3 report on their experiences using different languages to implement transformations, coming to
the conclusion that graphical rule definition is more intuitive. An experience shared by P40. P43
name user feedback as grounds for claiming that visual syntax has advantages in comprehension but
makes writing transformations more difficult. And P672 share that they are under the impression
that graph transformations are the superior method for defining refactorings.

2.5. Discussion 53

Since experience is subjective contradicting experiences are bound to occur sometime. While the
authors of P10 believe from experience that current MTLs are not abstract enough for expressing
transformations P671 feel that the difficulty of writing transformations in a MTL does stem from
the chosen MDD method rather than the syntax of the language.

2.4.4.4 No evidence

Fig. 2.7 and especially Table A.1 make it clear that a large portion of both positive and negative
claims about model transformations are never substantiated. In fact of the 127 claims ~69% are
unsubstantiated. Adding those that are supported by a citation that in the end turns out to be
unsupported as well, brings the number up to ~77%. Particularly the categories concerning the
usability of MTLs such as comprehensibility, ease of writing a transformation and productivity lack
meaningful evidence. All three of them being cornerstones of language engineers arguments for the
superiority of model transformation languages makes this especially worrisome.

We believe that a realization in the community about this fact is necessary. The necessity
or superiority of model transformations has to be properly motivated. This means that it is not
sufficient to claim advantages or disadvantages without providing at least some form of explanation
on why this claim is valid (more on this in Sect. 2.5.3).

2.5 Discussion

In this section we reflect on the previously presented findings. Our focus for this is fourfold. First
we feel it is necessary to draw parallels between our categorization and attributes of product quality.
Next we want to briefly discuss how claims are made in regards to transformation language features.
Afterwards a discussion about lack of empirical studies about properties of model transformation
languages is warranted. And last we feel a discussion about the research direction for the community
is also necessary.

2.5.1 Claims about model transformation languages in context of soft-
ware quality

There are undeniable parallels between the categories we developed for claims and characteristics of
software quality as defined by ISO/IEC 25010:2011 (2011). This can be seen by the fact that many
of our categories can be directly placed within the characteristics of the software product quality
model (namely Functional Suitability, Performance Efficiency, Compatibility, Usability, Reliability,
Security, Maintainability, Portability).

Both expressiveness and semantics and verification are part of Functional Suitability. Perfor-
mance and productivity can be classified under Performance Efficiency. Furthermore are compre-
hensibility, conciseness, debugging, ease of writing a transformation, learnability and tool support
part of Usability. Maintainability covers analysability and reuse & maintainability. And lastly ex-
tendability and versatility can be classified under Portability. This leaves only our generic category
just better without a corresponding characteristic which is to be expected.

However there are also Compatibility, Reliability and Security which have no corresponding cat-
egories from our categorisation. This does not necessarily mean that current research is not focused
on aspects related to these quality criteria. It instead suggest a lack of concrete statements regarding
them. And while Security is justifiably less of a concern for model transformation languages, both
the Compatibility of different approaches and their Reliability should definitely be focused on (see
also Sect. 2.5.4).

Lastly, even though most claims we collected during our review could be categorised within the
software product quality model we opted to develop a classification based on the claims alone since
we believe the resulting categories to more specialised and allow for a more nuanced view on the
subject matter than the generic characteristics defined by ISO/IEC 25010:2011 (2011).

54 Chapter 2. Paper A

2.5.2 Claims about model transformation languages in context of lan-
guage features

An effort by us to categorize the extracted claims along an existing taxonomy of model transfor-
mation language features such as the one by Czarnecki et al. (2006) failed because a large portion
of claims (~70%) are made broadly without reference to specific features of MTLs that aid the
advantage or disadvantage.

We suggest that claims on benefits and disadvantages of model transformation languages be
made more specific and include mentions of the features that aid or hamper the benefits. For
example incrementality aids the performance of model transformations since only parts of a trans-
formation have to be re-executed and bidirectional transformation languages provide special support
for incremental execution giving them an edge in performance.

2.5.3 Lack of evidence for MTL advantages and disadvantages
Current literature exhibits a deficit in evidence (empirical or otherwise) for asserted properties of
model transformation languages. We believe there to be several factors which can explain this lack
of evidence.

First, designing and conducting rigorous studies to examine model transformation languages
requires a substantial amount of time and effort. Studies are further complicated by the lack of
easily available study subjects due to the community being relatively small compared to the body
of general purpose programming language users. The study described in P59, for example, had
to be conducted over the timespan of three semesters and at two universities just to attain 78
subjects. And even when a pertinent number of study subjects is found, ensuring comparable
levels of experience within the subjects is another challenge, even more so when collaborating with
industrial partners (Sjoberg et al. 2002).

Relying on the fact that transformation languages are DSLs and hence bear all the benefits
that are proclaimed for those, might also be a factor. Describing the advantages of DSLs in the
introduction of a paper about transformation languages is far from uncommon in literature. And
while we too believe that there are benefits when using DSLs, we would caution against broad usage
of the fact that model transformation languages are DSLs to claim them advantageous over general
purpose languages (as is done in publications such as P29, P63 or P804). Especially, because the
manpower that goes into the development of the ecosystems of GPLs far exceeds that of MTLs.

Another problem is, that statements can become ‘established’ facts by virtue of being cited by
a paper which is in turn cited. Suppose one author claims that model transformation languages
are more expressive than GPLs. A second author claims the same thing and references the first
author to provide context. Next a third author, assuming the second author verifies their claim
via the citation, cites the second author to support a similar claim. Over time this can lead to
the statement being treated as a fact rather than an assumption made multiple times. This can
be seen on multiple occasions in Fig. 2.7. P63 makes an unsubstantiated claim (C57) that the
expressiveness of MTLs is superior to that of GPLs. This claim is then reiterated by P677 (C65)
citing P67. Lastly P677 is cited by P45 to support their assertion about the expressiveness of
model transformation languages (C50-53). Such a chain is not even the worst case in our results.
The chain P80 → P675 → P801-804 is even more worrisome, in that some of the claims stated
in P80 (C75) actually originate in claims about domain specific languages from 675 (C1D). P80
claims two advantages of MTLs using P675 as reference. P675 again uses citations to support their
claims. However, the papers cited by P675 do not make statements about model transformation
languages but DSLs in general. This shows how such chains can create a blurred factual picture.
Moreover, in the presented cases it is still possible to find the origin of claims and realize how the
claims were changed throughout the citation chains. If authors deemed it unnecessary to support
claims that are ‘established’ facts this is no longer possible. Quite likely this is the case for a non-
negligible number of publications (see Table A.1) where no citations or any other substantiation for
claimed properties of MTLs are given.

As previously described, it is not uncommon for authors to ascribe properties to model trans-
formation languages due to them being DSLs. However, a language does not necessarily have to
be more expressive, easier to use or easier to maintain simply by being domain specific. In fact we
believe, that everything about a DSL stands and falls with the domain itself as well as the design of
the language. As a result all advantages and disadvantages for DSLs, described in literature, only

2.5. Discussion 55

define potential properties. Thus it is necessary to evaluate advantages and disadvantages anew for
each domain. Especially in complex domains such as model transformations.

2.5.4 Research direction
In our opinion the research community has to acknowledge that the current way of language devel-
opment is not expedient. There needs to be a shift away from constant development of new features
and transformation languages with, at best, prototypical evaluation. Tomaž Kosar et al. (2016)
share this sentiment after a mapping study on the development of DSLs in general (see Sect. 2.6).

Instead it is necessary to extensively evaluate current transformation languages. First, to identify
their actual strengths and weaknesses. Then to compare these results with the expected (and desired)
results to determine which aspects of MTLs still need improving.

We believe the categories from Sect. 2.4 to be a good reference for possible areas to evaluate.
It is not necessary to evaluate each category empirically: for some categories empirical evaluation

might not be sensible at all. Such categories include analysability, and semantics and verification for
example, since there exist no universally accepted measures to base evaluation on. Additional liter-
ature reviews are also conceivable. Analogous to how P77 gathered different reuse mechanisms, a
comprehensive review of verification and analysis approaches can be useful to assess the analysability
and verifiability of model transformation languages.

Designing and executing appropriate studies also entails significant effort which is why it becomes
necessary to carefully weigh up which properties should be evaluated. Additionally, some categories
should also be examined more urgently than others.

The ease of writing a transformation and comprehensibility are two such categories for which
evaluation is most pressing. Also given that in the domain of programming languages (especially
object oriented programming) many studies exploring the comprehensibility and ease of use such
as Burkhardt et al. (2002), Kurniawan et al. (2004), and Rein et al. (2019) already exist. Study
designs similar to the one described in P59 are in our opinion most suitable for this purpose. This
is supported by the fact that many studies for comparing programming languages follow a similar
structure in that a common problem or task is solved in multiple languages and the resulting code
is analysed (Aruoba et al. 2014; Henderson et al. 1994; Prechelt 2000). It may also be useful to
design the cases in such a way that the complete capabilities of the used transformation languages
have to be used. In the study described in P59 for example advanced features such as QVTs late
resolve were not part of the evaluation. Such a design can help to better understand if the most
‘advanced’ features of transformation languages have practical value and how complex a GPL for
these features is.

Comprehensibility can also be tested in isolation by requiring subjects to describe functionality
of given transformations written in both a dedicated model transformation language and a GPL.

According to Mohagheghi et al. (2013a) one of the main motivations for adopting MDE in
industry is to improve productivity, hence we believe that evaluation of the productivity when using
model transformation languages should be a focus too. Admittedly measuring productivity is a
challenging task, a fact that has been observed as early as 1978 (T. C. Jones 1978). But since then
numerous ways have been proposed and tested out in practice (V. Basili et al. 1979; Boehm et al.
1995) which should allow for productivity studies on MTLs to be carried out. A potential study into
the productivity could require subjects to develop transformations in either a model transformation
language or a general purpose language within a certain time frame followed by measuring and
comparing how productive the subjects were in both cases. Researchers can also draw from the
large corpus of productivity studies on different aspects of programming such as Dieste et al. (2017),
Frakes et al. (2001), and Wiger et al. (2001).

The performance of model transformations can have huge impact on development, especially
when multiple transformations have to be executed in succession. Many language engineers already
pay tribute to that fact by providing performance comparisons between their languages and other
MTLs or general purpose languages such as Java (Hinkel et al. 2019a; Křikava et al. 2014). And
the Transformation Tool Contest (TTC) provides a venue for comparing MTLs. However, we
believe extensive comparisons between the performance of model transformation languages and
general-purpose programming languages to be necessary to abolish the prejudice that dedicated
transformation languages cannot outperform current compilers. Comparing of performance between
different programming languages that are used for the same purpose is a well established practice
demonstrated by comparisons between Java and C++ for robotics programming done by Gherardi

56 Chapter 2. Paper A

et al. (2012) or C++ and F90 for scientific programming by Cary et al. (1997). Performance
comparisons are also common practice in other domains such as GPU programming where specialised
DSLs are used and performance is of high importance (Fang et al. 2011; Karimi et al. 2010). It is
conceivable to compare the performance of transformations written in dedicated MTLs and GPLs
by either manually solving the same tasks as described previously or by using existing mechanisms
(such as for example Calvar et al. (2019)) for transforming transformation scripts written in a MTL
into GPL code.

We also believe that special focus needs to be given to the question of what model transformation
languages are expected to achieve (such as easy synchronization of multiple artefacts or fast transfor-
mations through incremental transformations). First, because this can allow to direct more resources
on evaluating relevant aspects of MTLs. And second, because model transformation languages will
appear more streamlined and mature when the focus of development lies in improving their core
features instead of overloading them with ‘experimental’ features. An opinion Tomaž Kosar et al.
(2016) share, stating that this can enable practitioners to truly understand the effectiveness and
efficiencies of DSLs.

2.6 Related Work
To the best of our knowledge, there exists no other literature review that explores advantages and
disadvantages of model transformation languages. There does, however, exist some literature that
can be related to our work.

A closely related survey and open discussion about the future of model transformation languages
was held by Burgueño et al. (2019). They report on the results of an online survey and subsequent
open discussion during the 12th edition of the International Conference on Model Transforma-
tions (ICMT’2019). The survey was designed to gather information about why developers used
MTLs or why they hesitate to do so and what their predictions about the future of these languages
were. An open discussion was held after the results of the online survey were presented to the au-
dience at ICMT’2019. The results of the study point toward MTLs becoming less popular not only
because of technical issues but also due to tooling and social issues as well as the fact that some
GPLs have assimilated ideas from MTLs and thus making them less bad alternatives to writing
transformations in dedicated languages.

Hutchinson et al. (2011a) conducted an empirical study into MDSE in industry. The authors
used questionnaires and interviews to explore different factors that influence the success of MDSE in
organizations and attempt to provide empirical evidence for hailed benefits of MDSE. They report
on a total of over 250 questionnaire responses as well as interviews with 22 practitioners from 17
different companies. While the main focus of the study was on MDSE adoption in general, the
authors do report on some findings regarding model transformations, such as negative influences of
writing and testing transformations on the productivity and influences of transformations on the
portability. However, no results regarding used transformation languages are included.

Mens et al. (2006) propose a taxonomy for model transformation languages. They define groups
of transformation languages based on answers to a set of questions. The answers are split into
multiple subgroups themselves. The authors describe in great detail different possible characteristics
within the groups. In part, this also includes listings of properties for transformation languages
that fall into specific groups. The authors, however, have not provided any evidence or more
precise explanations. Similarly Czarnecki et al. (2006) propose a classification framework for model
transformation approaches based on several approaches such as VIATRA, ATL and QVT. The
framework is given as a feature diagram to allow to explicitly highlight different design choices for
transformations. At the top level the feature model contains features such as rule organization,
incrementality, directionality and tracing. Each feature and its sub-components are extensively
discussed and demonstrated with examples of transformation tools that boast different aspects of
the features. In contrast to the two described classifications our study categorizes claims about
MTLs on a qualitative dimension rather than on language features.

Kahani et al. (2019) describe a classification and comparison of a total of 60 model transfor-
mation tools. Their classification differentiates tools based on two levels. The first level describes
whether the tool is a model-to-model (M2M) or model-to-text (M2T) tool. The second level dif-
ferentiates M2M tools based on their transformation approach meaning whether the approach is

2.7. Threats to validity 57

relational, operational or graph-based and M2T tools based on the underlying implementation ap-
proach meaning visitor-based, template-based or hybrid. Unlike our study the described comparison
focuses on comparing different model transformation tools on a technical basis based on six cate-
gories (general, model-level, transformation, user experience, collaboration support and runtime
requirements) while we focus on qualitative aspects of claims made throughout literature about any
kind of dedicated model transformation language.

Van Deursen et al. (2000) gathered an annotated bibliography on the premise of domain-specific
languages versus generic programming languages. The bibliography contains 73 different DSLs
differentiated by their application domains: Software Engineering, Systems Software, Multi-Media,
Telecommunication and Miscellaneous. Additionally they provide a discussion of terminology as
well as risks and benefits of DSLs. And while parts of the listed risks an benefits such as enhanced
productivity or cost of education can be found in the listed advantages and disadvantages of our
literature review, their bibliography does not contain any model transformation languages.

Tomaž Kosar et al. (2016) report on the results of a systematic mapping study they conducted
to understand the DSL research field, identify research trends and to detect open issues. Their data
comprised a total of 1153 candidates which they condensed into 390 publications for classification.
The results from the study corroborate observations made during our literature review. The research
community is mainly concerned with the development of new techniques while research into the
effectiveness of languages and empirical evaluations is lacking.

Tomaz Kosar et al. (2010) describe an empirical study comparing a domain specific language
with a general purpose language with a focus on learning, perceiving and evolving programs. The
two languages considered were XAML as a DSL representative and the GPL C#. The experiment
comprised of 36 programmers which were asked to construct a graphical interface using both XAML
and C# Forms. Afterwards the subjects had to answer a questionnaire. In contrast to the results
of P59 their results show a statistically significant advantage of DSLs for learning, comprehending
and evolving programs.

Jakumeit et al. (2014) provide an extensive overview over and comparison of 13 state of the art
transformation tools used in the TTC 2011. The authors give detailed descriptions of the tools based
on a ‘Hello World‘ case posed at the contest. They also describe for what use cases the individual
tools are best suited and provide a novel taxonomy based on which the tools are compared. The
introduced taxonomy features many of the same categories we synthesized from the claims in our
literature review such as expressiveness, extendability, learnability, reuse and verification but also
other categories such as maturity and license.

2.7 Threats to validity
To ensure reproducibility and a high quality of the results, we followed a systematic approach as
detailed in Sect. 2.3. However, possible threats to validity still remain. In this section we discuss
these threats.

2.7.1 Internal Validity
Internal validity describes the extent to which a casual conclusion based on the study is warranted.
This validity is threatened by possible differences in the interpretation of our selection criteria. To
alleviate the potential threat two researchers independently applied the selection criteria and in
cases of different decisions about the inclusion of a publication, full text cross reading was applied.

A threat to the internal validity we could not meet with prevention measures was the fact that
our categorization is based on certain defining expressions like ‘expressive’ and ‘versatile’. It is
possible that different authors ascribe different meanings to these phrases. While we believe that
for most cases this is less of a problem it is still a problem that we could not fully solve since not
every publication defines their understanding of used phrases.

2.7.2 External Validity
External validity describes the extent to which the findings of a study can be generalized. For struc-
tured literature reviews a threat to this validity arises from the existence of relevant but undetected
or excluded publications (Ciccozzi et al. 2019). To mitigate this threat as much as possible we used
both automatic searches and exhaustive backward and forward snowballing. The automatic search

58 Chapter 2. Paper A

was also conducted on multiple literature databases to broaden the field of searched literature. Fur-
thermore we employed a ‘when uncertain include’ strategy for including publications, as well as less
strict inclusion criteria which helped prevent relevant publications from being overlooked.

2.7.3 Construct Validity
Construct validity describes the extent to which the right measures were obtained and whether the
right scope was defined in relation to our research questions. The construct validity of our research
is not under threat since the research questions define easily producible results. Cited advantages or
disadvantages of model transformation languages can be directly extracted and the same also holds
for used evidence for claims.

2.7.4 Conclusion Validity
Conclusion validity describes the extent to which conclusions based on data are reproducible.

Prior to the execution of our literature review we defined a review protocol for all phases of the
review. We followed the protocol rigorously to ensure reproducibility of the study. The protocol
did not only include descriptions of how the review had to be conducted but also detailed how data
should be extracted from the selected literature (see Sect. 2.3). It is of course possible that, with
the passage of time, a repetition of the literature review can draw different conclusions due to the
added body of literature between then and now.

2.8 Conclusion
In this study, we have reported on a systematic literature review intended to extract and categorize
claims about model transformation languages as well as the current state of evaluation thereof. The
goal of the study was to compile a comprehensive list and the categorization of positive and negative
claims about model transformation languages. We further wanted to investigate the current state
of evaluation of claims as well as identify gaps in the area of evaluation of MTLs.

We combed over 4000 publications for that purpose, 58 of which we selected for the study. To
this end, we followed a rigorous process by using a combination of automatic searches on literature
databases, exhaustive backward and forward snowballing and multiple researchers during the selec-
tion phase. The selected publications were combed for mentions of advantages and disadvantages of
MTLs and evidence of the stated claims. Lastly, we analysed and discussed the extracted claims and
evidence to: (i) provide an overview over claimed advantages and disadvantages and their origin,
(ii) the current state of evidence thereof and (iii) identify areas where further research is necessary.

We conclude that: (i) current literature claims many advantages of MTLs but also points towards
deficits owed to the mostly experimental nature of the languages and its limited domain, (ii) there
is insufficient evidence for and (iii) research about properties of model transformation languages.

The results of our study suggest that there is much to be done in terms of evaluation of model
transformation languages and that effort that is currently being invested into the development of
new features might be better spent evaluating the state of the art in hopes of ascertaining both
what current MTLs are lacking most and where their strengths really lie.

59

Chapter 3

Paper B

Advantages and disadvantages of (dedicated) model transformation languages: A Qual-
itative Interview Study

S. Höppner, Y. Haas, M. Tichy, K. Juhnke

Empirical Software Engineering (EMSE), volume 27, article number 159, 2022
Springer Nature

Chapter 3. Paper B 61

Abstract
Context
Model driven development envisages the use of model transformations to evolve models. Model
transformation languages, developed for this task, are touted with many benefits over general pur-
pose programming languages. However, a large number of these claims have not yet been substan-
tiated. They are also made without the context necessary to be able to critically assess their merit
or built meaningful empirical studies around them.

Objective
The objective of our work is to elicit the reasoning, influences and background knowledge that lead
people to assume benefits or drawbacks of model transformation languages.

Method
We conducted a large-scale interview study involving 56 participants from research and industry.
Interviewees were presented with claims about model transformation languages and were asked to
provide reasons for their assessment thereof. We qualitatively analysed the responses to find factors
that influence the properties of model transformation languages as well as explanations as to how
exactly they do so.

Results
Our interviews show, that general purpose expressiveness of GPLs, domain specific capabilities of
MTLs as well as tooling all have strong influences on how people view properties of model transfor-
mation languages. Moreover, the Choice of MTL, the Use Case for which a transformation should
be developed as well as the Skills of involved stakeholders have a moderating effect on the influences,
by changing the context to consider.

Conclusion
There is a broad body of experience, that suggests positive and negative influences for properties
of MTLs. Our data suggests, that much needs to be done in order to convey the viability of
model transformation languages. Efforts to provide more empirical substance need to be undergone
and lacklustre language capabilities and tooling need to be improved upon. We suggest several
approaches for this that can be based on the results of the presented study.

62 Chapter 3. Paper B

3.1 Introduction
Model transformations are at the heart of model-driven engineering (MDE) (Metzger 2005; Sendall
et al. 2003). They provide a way to consistently and automatically derive a multitude of artefacts
such as source code, simulation inputs or different views from system models (Schmidt 2006). Model
transformations also allow to analyse system aspects on the basis of models (Schmidt 2006) and can
provide interoperability between different modelling languages, e.g. architecture description lan-
guages like those described by Malavolta et al. (2010). Since the emergence of the MDE paradigm at
the beginning of the century numerous dedicated model transformation languages (MTLs) have been
developed to support engineers in their endeavours (Arendt et al. 2010; Jouault et al. 2006; OMG
2016). Their appeal is driven by the promise of many advantages such as increased productivity,
comprehensibility and domain specificity associated with using domain specific languages (Hermans
et al. 2009; Johannes et al. 2009).

A recent literature study of us revealed, that, while a large number of such advantages and
also disadvantages are claimed in literature, there exist only a few studies investigating to what
extend these claims actually hold (Götz et al. 2021a). The study presents 15 properties of MTLs
for which literature claims advantages or disadvantages. In this context, a claimed positive effect on
one of the properties means an advantage whereas a negative influence means a disadvantage. The
properties identified in the study are: Analysability, Comprehensibility, Conciseness, Debugging,
Ease of Writing (a transformation), Expressiveness, Extendability, (being) Just Better, Learnability,
Performance, Productivity, Reuse & Maintainability, Tool Support, Semantics & Verification and
Versatility.

Our study also revealed, that most claims in literature are made broadly and without much
explanation as to where the claim originates from (Götz et al. 2021a). Claims such as “Model
transformation languages make it easy to work with models.” (Liepin, š 2012), “Declarative MTLs
increase programmer productivity” (Lawley et al. 2007) or “Model transformation languages are
more concise” (Hinkel et al. 2019b) illustrate this. We assume that authors make such claims while
having certain context and background in mind, but choose to omit it for unspecified reasons. Some
likely reason for omission of the context are, that authors believe it to not be worth mentioning or
to preserve space which is often sparse in publications.

Regardless of the concrete reasons, a result of this practice is a lack of cause and effect rela-
tions in the context of model transformation languages that explain both why and when certain
advantages or disadvantages hold. Claims are thus easily dismissed based on anecdotal evidence.
Furthermore, setting up proper evaluation is also difficult because the claims do not provide the
necessary background to do so.

To close this gap, we executed a large-scale empirical study using semi-structured interviews. It
involved a total of 56 researchers and practitioners in the field of model transformations. The goal
of our study was to compile a comprehensive list of influences on properties of model transformation
languages guided by the following research questions:

RQ 1: What are the factors that influence properties of model transformation languages?

RQ 2: How do the identified factors influence MTL properties?

To concentrate our efforts and best utilize all available resources, we decided to focus on 6 of
the 15 properties of model transformation languages identified by us in the preceding SLR (Götz
et al. 2021a). The 6 properties investigated in this study are: Comprehensibility, Ease of Writing,
(practical) Expressiveness, Productivity, Reuse and Maintainability and Tool support. We have
chosen these six because they all play a major role in providing reasons for the adoption of model
transformation languages.

Interviewees were presented with a number of claims about MTLs from literature and asked
to reveal their views on the matter, as well as assumptions and reasons that lead them to agree
or disagree with the presented claims. We qualitatively analysed the interviews to understand the
participants perceived influence factors and reasons for the advantages or disadvantages stated in
the claims. The extracted data was then analysed to find commonalities between interviewees. This
was done for single claims as well as for overarching factors and reasons that influence a variety of
aspects of MTLs.

3.2. Background 63

We present a comprehensive explanation of factors that, according to experts, play an essential
role in the discussion of advantages and disadvantages of model transformation languages for the
investigated properties. This is accompanied by a detailed exposition of how factors are relevant for
the properties given above. Lastly, we discuss the most salient factors and argue actionable results
for the community and further research.

As the first study of this type, we make the following contributions:

1. A comprehensive categorisation and listing of factors resulting in advantages or disadvantages
of MTLs in the 6 properties studied.

2. A detailed description of why and how each identified factor exerts an influence on different
properties.

3. Suggestions for how the presented information can be utilised to empirically investigate MTL
properties.

4. Procedural proposals for improving current model transformation languages based on the
presented data.

The results of our study show, that there is a large number of factors that influence properties of
model transformation languages. There is also a number of factors on which this influence depends
on, i.e. factors that have a moderation effect on the influence of other factors. These factors provide
a solid basis that allows further studies to be conducted with more focus. They also enable precise
decisions on where improvements and adjustments in or for model transformation languages can be
made.

The remainder of this paper is structured as follows: Section 3.2 introduces model-driven engi-
neering and model transformation languages, the context in which our study integrates. Section 3.3
will detail our methodology for preparing and conducting the interviews and the procedures used to
analyse the data accumulated through the interviews. Afterwards Sect. 3.4 gives an overview over
demographic data of our interview participants while Sect. 3.5 presents our code system and details
the findings for each code based on the interviews and analysis thereof. In Sect. 3.6 we present
overarching findings and in Sect. 3.7, we discuss actionable results that can be drawn from our stud
that indicate avenues to focus on for the research community. Section 3.8 contains a detailed dis-
cussion of the validity threats of this research, and in Sect. 3.9 related efforts are presented. Lastly,
Sect. 3.10 draws a conclusion for our research and proposes future work.

3.2 Background
This section will provide the necessary background for the context in which our study is integrated
in.

3.2.1 Model-driven engineering
The Model-Driven Architecture (MDA) paradigm was first introduced by the Object Management
Group in 2001 (OMG 2001). It forms the basis for an approach commonly referred to as Model-
driven development (MDD) (Brown et al. 2005), introduced as means to cope with the ever growing
complexity associated with software development. At the core of it lies the notion of using models as
the central artefact for development. In essence this means, that models are used both to describe
and reason about the problem domain as well as to develop solutions (Brown et al. 2005). An
advantage ascribed to this approach that arises from the use of models in this way, is that they
can be expressed with concepts closer to the related domain than when using regular programming
languages (Selic 2003).

When fully utilized, MDD envisions automatic generation of executable solutions specialized
from abstract models (Schmidt 2006; Selic 2003). To be able to achieve this, the structure of models
needs to be known. This is achieved through so called meta-models which define the structure of
models. The structure of meta-models themselves is then defined through meta-models of their own.
For this setup, the OMG developed a modelling standard called Meta-object Facility (MOF) (OMG
2002) on the basis of which a number of modelling frameworks such as the Eclipse Modelling Frame-
work (EMF) (Steinberg et al. 2008) and the .NET Modelling Framework (Hinkel 2016) have been
developed.

64 Chapter 3. Paper B

3.2.2 Domain-specific languages
Domain-specific languages (DSLs) are languages designed with a notation that is tailored for a
specific domain by focusing on relevant features of the domain (Van Deursen et al. 2002). In doing
so DSLs aim to provide domain specific language constructs, that let developers feel like working
directly with domain concepts thus increasing speed and ease of development (Sprinkle et al. 2009).
Because of these potential advantages, a well defined DSL can provide a promising alternative to
using general purpose tools for solving problems in a specific domain. Examples of this include
languages such as shell scripts in Unix operating systems (Kernighan et al. 1984), HTML (Raggett
et al. 1999) for designing web pages or AADL an architecture design language (SAEMobilus 2004).

3.2.3 Model transformation languages
The process of (automatically) transforming one model into another model of the same or differ-
ent meta-model is called model transformation (MT). They are regarded as being at the heart of
Model Driven Software Development (Metzger 2005; Sendall et al. 2003), thus making the process
of developing them an integral part of MDD. Since the introduction of MDE at the beginning of
the century, a plethora of domain specific languages for developing model transformations, so called
model transformation languages (MTLs), have been developed (Arendt et al. 2010; Balogh et al.
2006; George et al. 2012; Hinkel et al. 2019a; Horn 2013; Jouault et al. 2006; Kolovos et al. 2008).
Model transformation languages are DSLs designed to support developers in writing model trans-
formations. For this purpose, they provide explicit language constructs for tasks involved in model
transformations such as model matching. There are various features, such as directionality or rule
organization (Czarnecki et al. 2006), by which model transformation languages can be distinguished.
For the purpose of this paper, we will only be explaining those features that are relevant to our
study and discussion in Sections 3.2.3.1 to 3.2.3.7. Table 3.1 provides an overview over the presented
features.

Please refer to Czarnecki et al. (2006), Kahani et al. (2019), and Mens et al. (2006) for complete
classification.

3.2.3.1 External and Internal transformation languages

Domain specific languages, and MTLs by extension, can be distinguished on whether they are
embedded into another language, the so called host language, or whether they are fully independent
languages that come with their own compiler or virtual machine.

Languages embedded in a host language are called internal languages. Prominent representatives
among model transformation languages are FunnyQT (Horn 2013) a language embedded in Clojure,
NMF Synchronizations and the .NET transformation language (Hinkel et al. 2019a) embedded in
C#, and RubyTL (Jesús Sánchez Cuadrado et al. 2006) embedded in Ruby.

Fully independent languages are called external languages. Examples of external model transfor-
mation languages include one of the most widely known languages such as the Atlas transformation
language (ATL) (Jouault et al. 2006), the graphical transformation language Henshin (Arendt et al.
2010) as well as a complete model transformation framework called VIATRA (Balogh et al. 2006).

3.2.3.2 Transformation Rules

Czarnecki et al. (2006) describe rules as being “understood as a broad term that describes the smallest
units of [a] transformation [definition]”. Examples for transformation rules are the rules that make
up transformation modules in ATL, but also functions, methods or procedures that implement a
transformation from input elements to output elements.

The fundamental difference between model transformation languages and general-purpose lan-
guages that originates in this definition, lies in dedicated constructs that represent rules. The
difference between a transformation rule and any other function, method or procedure is not clear
cut when looking at GPLs. It can only be made based on the contents thereof. An example of this
can be seen in Listing 3.1, which contains exemplary Java methods. Without detailed inspection of
the two methods it is not apparent which method does some form of transformation and which does
not.

In a MTL on the other hand transformation rules tend to be dedicated constructs within the
language that allow a definition of a mapping between input and output (elements). The example

3.2. Background 65

T
a
bl

e
3.

1:
M

T
L

fe
at

ur
e

ov
er

vi
ew

Fe
at

u
re

C
h
ar

ac
te

ri
st

ic
R

ep
re

se
nt

at
iv

e
L
an

gu
ag

e

E
m

be
dd

ed
ne

ss
In

te
rn

al
Fu

nn
yQ

T
(C

lo
ju

re
),

R
ub

yT
L

(R
ub

y)
,

N
M

F
Sy

n-
ch

ro
ni

za
ti

on
s

(C
#

)
E

xt
er

na
l

A
T

L,
H

en
sh

in
,Q

V
T

R
ul

es
E

xp
lic

it
Sy

nt
ax

C
on

st
ru

ct
A
T

L,
H

en
sh

in
,Q

V
T

R
ep

ur
po

se
d

Sy
nt

ax
C

on
st

ru
ct

N
M

F
Sy

nc
hr

on
iz

at
io

ns
(C

la
ss

es
),

Fu
nn

yQ
T

(M
ac

ro
s)

Lo
ca

ti
on

D
et

er
m

in
at

io
n

A
ut

om
at

ic
T
ra

ve
rs

al
A

T
L,

Q
V

T
P
at

te
rn

M
at

ch
in

g
H

en
sh

in

D
ir

ec
ti

on
al

it
y

U
ni

di
re

ct
io

na
l

A
T

L,
Q

V
T

-O
B

id
ir

ec
ti

on
al

Q
V

T
-R

,N
M

F
Sy

nc
hr

on
is

at
io

ns

In
cr

em
en

ta
lit

y
Y

es
N

M
F

Sy
nc

hr
on

iz
at

io
ns

N
o

Q
V

T
-O

T
ra

ci
ng

A
ut

om
at

ic
A

T
L,

Q
V

T
M

an
ua

l
N

M
F

Sy
nc

hr
on

iz
at

io
ns

D
ed

ic
at

ed
M

od
el

N
av

ig
at

io
n

Sy
nt

ax
Y

es
A

T
L

(O
C

L)
,

Q
V

T
(O

C
L)

,
H

en
sh

in
(i

m
pl

ic
it

in
ru

le
s)

N
o

N
M

F
Sy

nc
hr

on
iz

at
io

ns
,F

un
ny

Q
T

,R
ub

yT
L

66 Chapter 3. Paper B

� �
1 public void methodExample(Member m) {
2 System.out.println(m.getFirstName());
3 }
4 public void methodExample2(Member m) {
5 Male target = new Male();
6 target.setFullName(m.getFirstName() + " Smith");
7 REGISTRY.register(target);
8 }� �

List. 3.1: Example Java methods

� �
1 rule Member2Male {
2 from
3 s : Member (not s.isFemale())
4 to
5 t : Male (
6 fullName <- s.firstName + ’ Smith’
7)
8 }
9

10 rule Member2Female {
11 from
12 s : Member (s.isFemale())
13 to
14 t : Female (
15 fullName = s.firstName + ’ Smith’
16 partner = s.companion
17)
18 }� �

List. 3.2: Example ATL rules

rules written in the model transformation language ATL in Listing 3.2 make this apparent. They
define mappings between model elements of type Member and model elements of type Male as well
as between Member and Female using rules, a dedicated language construct for defining transfor-
mation mappings. The transformation is a modified version of the well known Families2Persons
transformation case (Anjorin et al. 2017).

3.2.3.3 Rule Application Control: Location Determination

Location determination describes the strategy that is applied for determining the elements within
a model onto which a transformation rule should be applied (Czarnecki et al. 2006). Most model
transformation languages such as ATL, Henshin, VIATRA or QVT (OMG 2016), rely on some form
of automatic traversal strategy to determine where to apply rules.

We differentiate two forms of location determination, based on the kind of matching that takes
place during traversal. There is the basic automatic traversal in languages such as ATL or QVT,
where single elements are matched to which transformation rules are applied. The other form of
location determination, used in languages like Henshin, is based on pattern matching, meaning
a model- or graph-pattern is matched to which rules are applied. This does allow developers to
define sub-graphs consisting of several model elements and references between them which are then
manipulated by a rule.

The automatic traversal of ATL applied to the example from Listing 3.2 will result in the
transformation engine automatically executing the Member2Male on all model elements of type
Member where the function isFemale() returns false and the Member2Female on all other model
elements of type Member.

The pattern matching of Henshin can be demonstrated using Figure 3.1, a modified version of
the transformation examples by Krause et al. (2014). It describes a transformation that creates a
couple connection between two actors that play in two films together. When the transformation

3.2. Background 67

Figure 3.1: Example Henshin transformation� �
1 top relation Member2Male {
2 n, fullName : String;
3 domain Families s:Member {
4 firstName = n };
5 domain Persons t:Male {
6 fullName = fullName};
7 where {
8 fullName = n + ’ Smith’; };
9 }� �

List. 3.3: Example QVT-R relation

is executed the transformation engine will try and find instances of the defined graph pattern and
apply the changes on the found matches.

This highlights the main difference between automatic traversal and pattern matching as the
engine will search for a sub graph within the model instead of applying a rule to single elements
within the model.

3.2.3.4 Directionality

The directionality of a model transformation describes whether it can be executed in one direction,
called a unidirectional transformation or in multiple directions, called a multidirectional transfor-
mation (Czarnecki et al. 2006).

For the purpose of our study the distinction between unidirectional and bidirectional transfor-
mations is relevant. Some languages allow dedicated support for executing a transformation both
ways based on only one transformation definition, while other require users to define transformation
rules for both directions. General-purpose languages can not provide bidirectional support and also
require both directions to be implemented explicitly.

The ATL transformation from Listing 3.2 defines a unidirectional transformation. Input and
output are defined and the transformation can only be executed in that direction.

The QVT-R relation defined in Listing 3.3 is an example of a bidirectional transformation def-
inition (For simplicity reasons the transformation omits the condition that males are only created
from members that are not female). Instead of a declaration of input and output, it defines how
two elements from different domains relate to one another. As a result given a Member element its
corresponding Male elements can be inferred, and vice versa.

68 Chapter 3. Paper B

3.2.3.5 Incrementality

Incrementality of a transformation describes whether existing models can be updated based on
changes in the source models without rerunning the complete transformation (Czarnecki et al.
2006). This feature is sometimes also called model synchronisation.

Providing incrementality for transformations requires active monitoring of input and/or output
models as well as information which rules affect what parts of the models. When a change is detected
the corresponding rules can then be executed. It can also require additional management tasks to
be executed to keep models valid and consistent.

3.2.3.6 Tracing

According to Czarnecki et al. (2006) tracing “is concerned with the mechanisms for recording different
aspects of transformation execution, such as creating and maintaining trace links between source and
target model elements”.

Several model transformation languages, such as ATL and QVT have automated mechanisms for
trace management. This means that traces are automatically created during runtime. Some of the
trace information can be accessed through special syntax constructs while some of it is automatically
resolved to provide seamless access to the target elements based on their sources.

An example of tracing in action can be seen in line 16 of Listing 3.2. Here the partner at-
tribute of a Female element that is being created, is assigned to s.companion. The s.companion
reference points towards a element of type Member within the input model. When creating a Female
or Male element from a Member element, the ATL engine will resolve this reference into the corre-
sponding element, that was created from the referred Member element via either the Member2Male
or Member2Female rule. ATL achieves this by automatically tracing which target model elements
are created from which source model elements.

3.2.3.7 Dedicated Model Navigation Syntax

Languages or syntax constructs for navigating models is not part of any feature classification for
model transformation languages. However, it was often discussed in our interviews and thus requires
an explanation as to what interviewees refer to.

Languages such as OCL (OMG 2014), which is used in transformation languages like ATL,
provide dedicated syntax for querying and navigating models. As such they provide syntactical
constructs that aid users in navigation tasks. Different model transformation languages provide
different syntax for this purpose. The aim is to provide specific syntax so users do not have to
manually implement queries using loops or other general purpose constructs. OCL provides a
functional approach for accumulating and querying data based on collections while Henshin uses
graph patterns for expressing the relationship of sought-after model elements.

3.3 Methodology
To collect data for our research question, we decided on using semi-structured interviews and a
subsequent qualitative content analysis that follows the guidelines detailed by Kuckartz (2014).
Semi-structured interviews were chosen as a data collection method because they present a versatile
approach to eliciting information from experts. They provide a framework that allows to get insights
into opinions, thoughts and knowledge of experts (Hove et al. 2005; Kallio et al. 2016; Meyer et al.
1990). The qualitative content analysis guidelines by Kuckartz (2014) were chosen because of their
detailed descriptions for all steps of the analysis process. As such they provide a more detailed
and modern framework compared to the procedures introduced by Mayring (1994), which have long
been a gold standard in qualitative content analysis.

An overview over our complete study design can be found in Fig. 3.2. It shows the order of
activities that were planned and executed as well as the artefacts produced and used throughout the
study. Each activity is annotated with the section number in which we detail the activity. We split
our approach into three main-phases: Preparation (detailed in Section 3.3.1), Operation (detailed
in Section 3.3.2) and Coding & Analysis (detailed in Section 3.3.3).

For the preparation phase, we used a subset of the claimed properties of model transformation
languages identified by us (Götz et al. 2021a) to develop an interview guide. The guide focuses

3.3. Methodology 69

around asking participants whether they agree with a claim from one of the properties and then
envisages the usage of why questions to gain a deeper understanding of their opinions on the
matter. After identifying and contacting participants based on the publications considered during
our previous literature review (Götz et al. 2021a), we conducted 54 interviews with 55 interviewees
(at the request of two participants, one interview was conducted with both of them together) and
collected one additional written response. During the Coding & Analysis phase, we coded and
analysed all 54 transcripts, as well as the written response, guided by the framework detailed by
Kuckartz. In doing so, we focused first on factors and reasons for the individual properties and then
on common factors and reasons between them.

Analysis

... 3.3.6

Material
Preparation

3.3.1

Coding
3.3.2

Analysis
3.3.7

Coded
Transcripts

Preparation

 Interview Guide

Preliminary
Interview Guide

Method selection
3.1.1

Retrieving
previous

knowledge 3.1.2

Creating
Interview

Guide 3.1.3

Pilot Interviews
3.1.3

Participant
selection &
contacting 3.1.4

Operation

54 recordings

55 Transcripts

Interview
Conduction

3.2

Interview
Transcription 3.2

Results Literature
Review

Structured
Literature
Review

Activity Artefact
Activity Flow Artifact Flow

Figure 3.2: Overview over the study design

The remainder of this section will describe in detail how each of the three phases of our study
was conducted.

3.3.1 Interview Preparation
Our interview preparation phase consists of the creation of an interview guide plus selecting and
contacting appropriate interview participants. We use the guidelines by Kallio et al. (2016) for the
creation of our interview guide and expand the steps detailed there with steps for selecting and
contacting participants. In addition, we use the guidance from Newcomer et al. (2015) to construct
our study in the best possible way.

According to Kallio et al. (Kallio et al. 2016) the creation of an interview guide consists of
five consecutive steps. First, researchers are urged to evaluate how appropriate semi-structured
interviews are as a data collection method for the posed research questions. Then, existing knowledge
about the topic should be retrieved by means of a literature review. Based on the knowledge from
the knowledge retrieval phase, a preliminary interview guide can then be formulated and in another
step be pilot tested. Lastly the complete interview guide can then be presented and used. As
previously stated, we enhance these steps with two additional steps for selecting and contacting
potential interview participants.

In the following, we detail how the presented steps were executed and the results thereof.

3.3.1.1 Identifying the appropriateness of semi-structured interviews

The goal of our study, outlined in our research questions, is to collect and analyse reasons and
background information of why people believe claims about model transformation languages to be
true. Data such as this is qualitative by nature and hence requires a research method capable
of producing qualitative data. According to Hove et al. (2005) and Meyer et al. (1990) expert
interviews are one of the most widely used research methodologies in the technical field for this

70 Chapter 3. Paper B

purpose. They allow to ascertain qualitative data such as opinions and estimates. Interviews also
enable qualitative interpretation of already available data (Meyer et al. 1990) which perfectly aligns
with our goal. Moreover the opportunity to ask further questions about specific statements made
by the participants (Newcomer et al. 2015) fits the open ended nature of our research question.
For these reasons, we believe semi-structured interviews to be a well suited to answer our research
questions.

3.3.1.2 Retrieving previous knowledge

In our previous publication (Götz et al. 2021a), we detailed the preparation, execution and results
of an extensive structured literature review on the topic of claims about model transformation lan-
guages. The literature review resulted in a categorization of 127 claims into 15 different categories
(i.e. properties of MTLs) namely Analysability, Comprehensibility, Conciseness, Debugging, Ease
of Writing a transformation, Expressiveness, Extendability, Just better, Learnability, Performance,
Productivity, Reuse & Maintainability, Tool Support, Semantics and Verification and lastly Versa-
tility. These properties and the claims about them serve as the basis for the design of our interview
study presented here.

3.3.1.3 Interview guide

The interview guide involves presenting each interview participant with several claims on model
transformation languages. We use claims from literature instead of formulating our own statements,
to make them more accessible. This also prevents any bias from the authors to be introduced at this
step. Participants are first asked to assess their agreement with a claim before transitioning into a
discussion on what the reasons for their decision are based on an open-ended question. This style of
using close-ended questions as a prerequisite for open-ended or probe questions has been suggested
by multiple guides (Hove et al. 2005; Newcomer et al. 2015).

We focus on a subset of six properties. This is due to the aim of keeping the length of interviews
within an acceptable range for participants. According to Newcomer et al. (2015) semi-structured
interviews should not exceed a maximum length of one hour. As a result, only a number of properties
can be discussed per interview. In order to still talk with enough participants about each property,
the number of properties examined must be reduced. The properties we discuss in the interviews
and the reasons why they are relevant are as follows:

• Comprehensibility : Is an important property when transformations are being developed as
part of a team effort or evolve over time.

• Ease of Writing : Is a decisive property that influences whether developers want to use a
languages to write transformations in.

• Expressiveness: Is one of the most cited properties in literature (Götz et al. 2021a) and main
selling point of domain specific languages in general.

• Productivity : Is a property that is highly relevant for industrial adoption.

• Reuse & Maintainability : Is another property that enables wider adoption of model transfor-
mation languages in project settings.

• Tools: High-quality tools can provide huge improvements to the development.

The list consists of the 5 most claimed properties form the previous literature review (Götz et al.
2021a) and is supplemented with Productivity, because we believe this attribute to be the most
relevant for industry adoption.

To maximize the response rate of contacted persons, we aim for an interview length of 30 minutes.
This decision is based on experiences from previous interview studies conducted at our research
group (Groner et al. 2020; Juhnke et al. 2020) and fits within the maximum interview length
suggested by Newcomer et al. (2015).

To best utilize the limited time per interview, the six properties are split into three sets of two
properties each. In each interview one of the three sets is discussed.

3.3. Methodology 71

For each property, one non-specific, one specific and one negative claim is used to structure all
interviews involving this property around. A complete overview over all selected claims can be found
in Table 3.2.

We consider non-specific claims to be those that do not provide any rationale as to why the
claimed property holds, e.g. “Model transformation languages ease the writing of model transforma-
tions.”. The non-specific claims chosen simply reflect the property itself. They serve the purpose
of getting participants to state their assumptions and beliefs for the property without any influence
exerted by the discussed claim.

We consider those claims as specific, that provide a rationale or reason for why the claimed
property holds, e.g. “Model transformation languages, being DSLs, improve the productivity.”. And
we consider negative claims to be those, that state a negative property of model transformation
languages, e.g. “Model transformation languages lack sophisticated reuse mechanisms.”. Generally,
we use claims where we believe the discussions about the reasons to provide useful insights.

There exist several reasons why we believe this setup of using the same three none-specific,
specific and negative claims for each property to be appropriate. First, the non-specific claim
allows participants to provide any and all factors or reasons that they believe influence a claimed
property. The specific claim then allows us to introduce a reason, that participants might not have
thought about. It also prompts a discussion about a particular reason or factor that is shared
between all participants. This ensures at least one area for cross comparison between answers. The
negative claim forces participants to also deliberate negative aspects, providing a counterbalance
that counteracts bias. Furthermore, the non-specific claim provides an easy introduction into the
discussion about a specific MTL property that can present the interviewer with an overview of the
participants thoughts on the matter. It also allows participants to provide other influence factors
not specifically covered through the discussed claims or even new factors and reasons not present in
the collection of claims from our literature review (Götz et al. 2021a).

The complete interview guide resulting from the aforementioned considerations can be seen
in Fig. 3.3. After introductory pleasantries we start all interviews of with demographic questions.
Although some sources discourage asking demographic questions early in the interview due to their
sensitive nature (Newcomer et al. 2015), we use them to break the ice between the interviewer and
interviewee because our demographic questions do not probe any sensitive information.

After this initial get-to-know each other phase, the interviewer then proceeds to explain the
research intentions, goals and the procedure of the remaining interview. Depending on the property-
set selected for the interview, participants are then presented with a claim about a property. They
are asked to rate their agreement with the claim based on a 5-point likert scale (5: completely
agree, 4: agree, 3: neither agree nor disagree, 2: disagree, 1: completely disagree). The likert scale
is used to allow the interviewer to better assess the participants tendency compared to a simple yes
or no question. This part of the interview is intended solely to get a first impression of the view of
the participant and not for a quantitative analysis. It also creates a casual point of entry for the
interviewee to think about the topic under consideration. We communicate this to all participants
to reduce any pressure they might feel to answer the question correctly. Afterwards an open-ended
question inquiring about the reasons for the interviewees assessment is asked.

Some terms used within the discussed claims have ambiguous definitions. We tried to ask partic-
ipants to explain their understanding of such terms, to prevent errors in analysis due to interviewees
having different interpretations thereof. This allows for better assessment during analysis. The
terms we have deemed to be ambiguous are: ‘succinct syntax’, ‘mapping’, ‘specific skills’, ‘high-level
abstractions’, ‘convenient facilities’, ‘sufficient tool support’, ‘powerful tool support’, ‘sophisticated
reuse mechanisms’ and ‘expressiveness’. We provide a definition for the term expressiveness. This
is, because we are only interested in a specific type of expressiveness, i.e. how concisely and readily
developers can express something. We are not interested in expressiveness in a theoretical sense, i.e.
the closeness to Turing completeness.

This process of presenting a claim, querying the participants agreement before discussing their
reasons for the assessment is repeated for all 3 claims about both properties. After discussing all
claims, it is explained to the participants that the formal part of the interview is finished and that
they are allowed to make final remarks about all discussed topics or other properties they want
to address. After this phase of the interview acknowledgements on the part of the interviewer are
expressed before saying goodbye. The complete question catalogue for the interviews can be found
in Appendix B.1.

72 Chapter 3. Paper B

Table 3.2: Properties and Claims

Property Claim

Comprehensibility

The use of model transformation languages increases the comprehen-
sibility of model transformations.
Model transformation languages incorporate high-level abstractions
that make them more understandable than general purpose languages.
Most model transformation languages lack convenient facilities for
understanding the transformation logic.

Ease of Writing

The use of model transformation languages increases the ease of writ-
ing model transformations.
Model transformation languages ease development efforts by offering
succinct syntax to query from and map model elements between dif-
ferent modelling domains.
Model transformation languages require specific skills to be able to
write model transformations.

Expressiveness

The use of model transformation languages increases the expressive-
ness of model transformations.
Model transformation languages hide transformation complexity and
burden from the user.
Having written several transformations we have identified that current
model transformation languages are too low a level of abstraction
for succinctly expressing transformations between DSLs because they
demonstrate several recurring patterns that have to be reimplemented
each time.

Productivity

The use of model transformation languages increases the productivity
of writing model transformations.
Model transformation languages, being DSLs, improve the productiv-
ity.
Productivity of GPL development might be higher since expert users
for general purpose languages are easier to hire.

Reuse &
Maintainability

The use of model transformation languages increases the reusability
and maintainability of model transformations.
Bidirectional model transformations have an advantage in maintain-
ability.
Model transformation languages lack sophisticated reuse mechanisms.

Tool Support

There is sufficient tool support for the use of model transformation
languages for writing model transformations.
Tool support for external transformation languages is potentially
more powerful than for internal MTL or GPL because it can be tai-
lored to the DSL.
Model transformation languages lack tool support.

3.3. Methodology 73

Introductory
Pleasantries

Demographic
Questions

Research Intention
Explanations

Questions +
Discussion 2nd

Property

Acknowledgements &
Farewell

Claim presentation

Agreement Query

Reasoning Query

Claims left?

No

Yes
Questions +

Discussion 1st
Property

Figure 3.3: Interview guide

The interview guide was tested in a pilot study by the main author with one co-author that was
not involved in its creation. After pilot testing, we changed the question about agreement with a
claim from a yes-no question to one that uses a likert scale. We also extended the question sets
with non-specific claims that do not contain any reasoning. Before adding the non specific claim,
discussions focused too much on the narrow view within the presented claims.

3.3.1.4 Selecting & contacting participants

The target population for our study consists of all users of model transformation languages. To
select potential participants for our study we rely on data from our previous literature review (Götz
et al. 2021a). The literature review produced a list of publications that address the topic of model
transformations and model transformation languages. Because search terms such as ‘model to
text’ and the like were not used in the study, using this list limits our results to model to model
transformation languages. We discuss this limitation more thoroughly in Section 3.8.2.

All authors of the resulting publications are deemed to be potential interview participants. We
assume, that people using MTLs in industry do have some research background and thus have
published work in the field. There is also no other systematic way to find industry users. We also
assume that people who are still active in the field have published within the last 5 years. This
limits outreach but makes the set of potential participants more manageable. For this reason, the
list was shortened to publications more recent than 2015 before the authors of all publications was
compiled. This resulted in a total of 645 potential participants.

After selection, the authors were contacted via mail. First, everyone was contacted once and
then, after a week, everyone who had not responded by then was contacted again. The texts we
use for both mails can be found in Appendix B.2. Ten potential participants, from the list of
potential participants, were not contacted through this channel but via personalised emails, as they
are personal contacts of the authors.

Within the contact mails, potential participants are asked to select a suitable date for the inter-
view and fill out a data consent form allowing us to record and transcribe the interviews.

74 Chapter 3. Paper B

Overall of the 645 contacted authors, 55 agreed to participate in our interview study resulting
in a response rate of 8.53%1.

3.3.2 Interview Conduction and Transcription
All but one interview were conducted by the first author using the online conferencing tool WebEx
and lasted between 20 and 80 minutes. Due to scheduling issues, one interview had to be conducted
by the second author, who had a preparatory mock interview with the main interviewer. Addition-
ally, at the request of two participants, one interview was conducted with both of them together.
Since our main focus for all interviews is on discussions, we do not believe this to have any effect
on its results. WebEx is the chosen conferencing tool, due to its availability to the authors and
its integrated recording tool which is used to record all interviews. For data privacy reasons and
for easier in-depth analysis later on, all recordings are transcribed by two authors. To increase the
readability of heavily fragmented sentences they are shortened to only contain the actual content
without interruptions. In case of audibility issues the transcribing authors consulted with each other
to try and resolve the issue. Altogether the interviews produced just over 32 hours of audio and
about 162.100 words of transcriptions.

Each day, the main author decided on which question sets to use for all participants that had
agreed to partake in the interviews. The question sets had to be chosen daily, as many participants
only responded to the invitation after interviews had already taken place.

The goal of the decision process was, to ensure an even spread of participants over the question
sets based on relevant demographic backgrounds, namely research, industry, MTL developer and
MTL user. We consider those relevant because each group has a different view point on model
transformation languages and their usage for writing transformations. It is therefore important
to have answers from each group for each set of questions, to reduce the risk of missing relevant
opinions.

We were able to ensure that at least one representative for each demographic group provided
answers for each question set. A complete uniform distribution was not possible due to overlaps in
the demographic groups.

3.3.3 Coding & Analysis
Coding and analysing the interview transcripts is done in accordance with the guidelines for content
structuring content analysis suggested by Kuckartz (2014). The guideline recommends a seven step
process (depicted in Figure 3.4) for coding and analysing qualitative data. All steps are carried
out with tool support provided by the MAXQDA2 software. In the following, we explain how each
process step is conducted in detail. We will use the following statement as a running example to
show how codes and sub-codes are assigned and how the coding of text segments evolved throughout
the process: “Of course some MTLs use explicit traceability for instance. But even then you have a
mechanism to access it. And if you have a MTL with implicit traceability where the trace links are
created automatically then of course you gain a lot of expressivity because you don’t have to write
something that you would otherwise have to write for almost every rule.” (P30)

3.3.3.1 Initial Text Work

The initial text work step initiates our qualitative analysis. Kuckartz (Kuckartz 2014) suggests to
read through all the material and highlight important segments as well as to write notes for the
transcripts using memos. Following these suggestions, we apply initial coding from constructivist
grounded theory (Charmaz 2014; Stol et al. 2016; Vollstedt et al. 2019) to mark and summarize
all text segments where interviewees reason about their beliefs on influence factors about the dis-
cussed properties. To do so, the two authors, which conducted and transcribed the interviews, read
through all transcripts and mark all relevant text segments with codes that preferably represented
the segment word for word. The codes allow for easier reference in later steps and, due to tooling,
we are still able to quickly read the underlying text segment if necessary.

During this step, the example statement was labelled with the code automatic tracing in-
creases expressiveness because no manual overhead.

1when including the written response in this statistic, the resulting response rate is 8.68%.
2https://www.maxqda.com/

https://www.maxqda.com/

3.3. Methodology 75

Figure 3.4: Process of a content structuring content analysis as presented by
Kuckartz (2014)

3.3.3.2 Developing thematic main codes

For developing the thematic main codes for our study we follow the common practice of inferring
them from our research questions as suggested by Kuckartz (2014). Since the goal of our research
is to investigate implicit assumptions, and factors that influence the assessment of experts about
properties of model transformation languages three main codes arise:

• Properties: Denoting which property is being discussed (e.g. Comprehensibility).

• Factors: Denoting what influences a discussed property according to an interviewee (e.g.
Bidirectional functionality of a MTL).

• Factor assessment: Denoting an evaluation of how a factor influences a property (e.g. pos-
itive or negative or mixed depending on other factors).

The sub-codes for the property code can be directly defined based on the six properties from our
previous literature review (Götz et al. 2021a). As such they are deductive (a-priori) codes that are
intended to mark text segments based on the properties that are being discussed in them.

3.3.3.3 Coding of all the material with main codes

In order to code of all the material with the main codes one author analyses all interview transcripts.
While doing so, the conversations about a discussed claim are marked with the code that is based
on the property stated in the claim. To exemplify this, all discussions on the claim "The use of
MTLs increases the comprehensibility of model transformations." are coded with the main code
comprehensibility.

This realisation of the process step breaks with Kuckartz’s specifications in multiple ways. First,
we do not code the material with the main codes Factors and Factor assessment, because all
factors and factor assessments are already coded with the summarising initial codes. These will be
refined into actual sub-codes of Factors and Factor assessment in a later step. Second, we directly
code segments with the sub-codes for the Property main code, because the differentiation comes

76 Chapter 3. Paper B

naturally with the structure of the interviews and delaying this refinement makes no sense. And
third, this way of coding makes it possible that unimportant segments are also coded, something that
Kuckartz suggests not to do. However, we actively decided in favour of this, because it accelerates
the coding process enormously. Furthermore, only overlaps of the property codes with the other
codes are considered, in later steps, thus automatically excluding unimportant text segments from
consideration.

During this step, the coding for the example text segment was extended with the code Expres-
siveness. While this does not look like much of an enhancement on the surface, it is paramount
to allow for systematic analysis in later steps.

After this step the example segment had its initial code, summarising the essence of the statement,
and the explicit property sub-code Expressiveness, providing the first systematic categorisation of
the segment.

3.3.3.4 Compilation of all text passages coded with the same main code

This step forms the basis for the subsequent iterative process of inductively developing sub-codes
for each main code. Due to the use of the MAXQDA tool, this step is purely technical and does not
require any special procedure outside of the selection of the main code that is being considered in
the tool.

3.3.3.5 Inductive development of sub-codes

The inductive development of sub-codes forms the most important coding step in our study. Induc-
tive development here means that the sub-codes are developed based on the transcripts contents.

Kuckartz (2014) suggests to read through all segments coded with a main code to iteratively
refine the code into several sub-codes that define the main category more precisely. We optimize
this step by analysing all the initial codes from the Initial Text Work step, to construct concise
and comprehensive codes for similar initial codes that could be used as sub-codes for the Factor or
Factor assessment main codes. In doing so we follow the focused coding procedure of constructivist
grounded theory to refine the initial code system.

All sub-codes of the Factor main code, that are refined using this process, are thematic codes,
meaning they denote a specific topic or argument made within the transcripts. As a result, the
sub-codes represent factors explicitly named by interviewees that influence the different properties.
In contrast, all sub-codes of the Factor assessment main code, that are refined using this process,
are evaluative codes, meaning they represent an evaluation, made by the authors, about an effect.
More specifically, the codes represent an evaluation of how participants believe factors influence
various properties.

Because of the importance of this coding step, the sub code refinement is created in a joint effort
by three of the authors. First, over a period of three meetings, the authors develop comprehensive
codes based on the initial codes of 18 interviews through discussions. Then the main author com-
plements the resulting code system by analysing the remaining set of interview transcripts, while
the two other authors each analyse half of them. In a final meeting any new sub code, devised by
one of the authors, is discussed and a consensus for the complete code system is established.

During this step no code segment is extended with additional codes. Instead new codes derived
from the initial codes are saved for usage in the following steps.

From the example code segment and its initial code, a sub-code automatic tracing for the Factors
code was derived. The finalised sub-code Traceability was decided upon based on the combination
with other derived codes of similar meaning, like traces.

3.3.3.6 Coding of all the material with complete code system

After the final code system is established, the main author processes all transcripts to replace the
initial codes with codes from the final code system. For this, each coded statement is re-coded with
codes indicating the influence factors expressed by the interviewees as well as a factor assessment, if
possible. This final coding step is done by the main author while all three co-authors each check 10
coded transcripts to validate the correct and consistent use of all codes and to make sure all relevant
statements are considered. The results from the reviews are discussed in pairwise meetings between
the main author and the reviewing co-author before being incorporated in a final coding approved
by all authors.

3.3. Methodology 77

During this step, the initial code for the example segment was dropped and replaced by the
codes MTL advantage and Traceability.

The final codes assigned to the example text segment thus were: Expressiveness, Traceability and
MTL advantage. The reasoning given within the statement as to why automatic tracing provides
an expressiveness advantage, are manually extracted during analysis using tooling provided by
MAXQDA.

3.3.3.7 Simple and complex analysis and visualisation

The resulting coding and the coded text segments are then used as the basis for our analysis which,
in accordance with our research question, focuses on identifying and evaluating factors that influence
the properties of MTLs. As recommended by Kuckartz (2014), this is first done for each Property
individually before analysis across all properties is conducted (as shown in Figure 3.5).

For analysing the influence factors of an individual property, we use the MAXQDA tooling to
find segments coded with both a factor and the considered property. Using this approach we first
compile a list of all factors relevant for a property, before then doing an in-depth analysis of all
the gathered statements for each factor. Here the goal is to elicit commonalities and contradictions
between the opinions of our interviewees that can be used to establish a theory on how each factor
influences each property individually.

In terms of our example text segment, the segment and all other segments coded with Expres-
siveness and Traceability were read and analysed. The goal was to see if reduced overhead from
implicit trace capabilities played a role in the argumentation of other participants and to gather all
the other mentioned reasons.

For the analysis over all properties combined we apply the theoretical coding process of construc-
tivist grounded theory (Charmaz 2014; Stol et al. 2016) to develop a model of influences. To do so,
the Factor assessments are used to examine how the factors influence the respective properties,
what the commonalities between properties are and where the differences lie. The goal here is to
develop a cohesive theory which explains the influences of factors on the individual properties but
also on the properties as a whole and potential influences between the factors themselves.

In terms of our example text segment, the results from analysing Expressiveness and Trace-
ability segments were compared to results from analysing segments coded with other property
codes and Traceability. The goal was to find commonalities and differences between the analysed
groups.

3.3.3.8 Privacy and Ethical concerns

All interview participants were informed of the data collection procedure, the handling of the data
and their rights surrounding the process, prior to the interview.

During selection of potential participants the following data was collected and processed.

• First & last name.

• E-Mail address.

For participants that agreed to the partake in the interview study the following additional data
was collected and processed during the course of the study.

• Non anonymised audio recording of the interview.

• Transcripts of the audio recordings.

All data collected during the study was not shared with any person outside of the group of
authors. Audio recordings were handled only by the first and second author.

The complete information and consent form can be found in Appendix B.4. All participants have
consented to having their interview recorded, transcribed and analysed based on this information.
All interview recordings were stored on a single device with hardware encryption and deleted as soon
as transcriptions were finalised. The interview transcripts were processed to prevent identification
of participants. For this, identifying statements and names were removed.

Apart from the voice recordings and names, no sensitive information about the interviewees was
collected.

78 Chapter 3. Paper B

Figure 3.5: Analysis forms in a content structuring content analysis as presented
by Kuckartz (2014)

The study design was not presented to an ethical board. The basis for this decision are the
rules of the German Research Foundation (DFG) on when to use a ethical board in humanities
and social sciences3. We refer to these guidelines because there are none specifically for software
engineering research and humanities and social sciences are the closest related branch of science for
our research.

3.4 Demographics
We interviewed a total of 55 experts from 16 different countries with varied backgrounds and expe-
rience levels and collected one comprehensive written response. Table B.1 in Appendix B.3 presents
an overview of the demographic data about all interview participants. Experts and their statements
are distinguished via an anonymous ID (P1 to P56).

3.4.1 Background
As evident from Figure 3.6 participants with a research background constitute the largest portion of
our interviewees. Overall there is an even split between participants solely from research and those
that have at least some degree of industrial contact (either through industry projects or by working
in industry). Only 3 participants stated to have used model transformations solely in an industrial
context. This is in part offset by the fact that 25 of interviewees have executed research projects
in cooperation with industry or have worked both in research and industry (22 and 3 respectively).
While there is a definitive lack of industry practitioners present in our study, a large portion of
interviewees are still able to provide insights into model transformations and model transformation
languages with an industry view.

Lastly, 10 of our participants are, in some capacity, involved in the development of model trans-
formation languages. They can provide a different angle on advantages or disadvantages of MTLs
compared to the 46 participants that use them solely for transformation purposes.

3https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

3.4. Demographics 79

Figure 3.6: Distribution of participants background

3.4.2 Experience
50 interviewees expressed to have 5 or more years of experience in using model transformations.
Moreover, 24 of the participants have over 10 years of experience in the field. Lastly there was a
single participant that had only used model transformations for a brief amount of time during their
masters thesis.

3.4.3 Used languages for transformation development
To better assess our participants and to qualify their answers with respect to their background
we asked all interviewees to list languages they used to develop model transformations. Figure 3.7
summarises the answers given by participants while categorizing languages in one of three categories
namely dedicated MTL, internal MTL and GPL. This differentiation is based on the classifications
from Czarnecki et al. (2006) and Kahani et al. (2019).

The distinction between GPL and dedicated/internal MTL is made, to gain an overview over
how large the portion of users of general purpose languages for the development is, compared to
the users of model transformation languages. Furthermore, it also allows for comprehending the
viewpoint participants will take when answering questions throughout the interview, i.e. do they
compare general purpose languages with model transformation languages based on their experience
with both or do they give specific insights into their experiences with one of the two approaches.
Internal MTL is separated from dedicated MTL because one claim within the interview protocol
specifically explores the topic of internal model transformation languages.

52 participants have used dedicated model transformation languages such as ATL, Henshin
or Viatra for transforming models. Only half as many (27) stated to have used general purpose
languages for this goal. Lastly, only 5 indicated the use of internal MTLs.

When looking at the specific dedicated MTLs used ATL is by far the most prominent one
used by interviewees. A total of 37 participants mention having used ATL. This is more than
double the amount of the second most used language namely Henshin which is only mentioned by
17 interviewees. The QVT family then follows in third place with QVT-R having been used by 13
participants, QVT-O by 11. A complete overview over all dedicated model transformation languages
used by our interviewees can be found in Figure 3.8. Note that several interviewees mentioned using
more than one language, making the total number of data points in this figure larger than 52.

In the group of GPL languages used for model transformation (summarised in Figure 3.9), Java
is the most used language with 14 participants stating so. Note that several interviewees mentioned
using more than one language, making the total number of data points in this figure larger than 27.
Java is closely followed by Xtend which is mentioned by 12 interviewees. Then follows a steep drop
of in popularity with Java Emitter Templates having been used by only four participants.

Lastly, only four internal model transformation languages, namely RubyTL, NTL, NMF Syn-
chronizations and FunnyQT, are mentioned. This shows a lack of prominence thereof. Moreover
none of the languages is used by more than two interviewees.

80 Chapter 3. Paper B

dedicated
MTL GPL

internal
MTL

25 4

0

4

1

0

22

Figure 3.7: Venn diagram depicting the language usage of participants

3.5 Findings
Based on the responses of our interviewees and our analysis, we developed a framework to classify
influence factors. It allows us to categorize how factors influence properties of MLTs and each other
according to our interviewees. Note that we split the property Reuse & Maintainability into two
properties for the purpose of reporting. This is done because interviewees chose to consider them
separately. Thus reporting on them separately allows for presenting more nuanced results.

The factors themselves are split into six top-level factors namely GPL Capabilities, MTL Capabil-
ities, Tooling, Choice of MTL, Skills and Use Case. The first factor, GPL Capabilities, encompasses
sub-factors related to writing model transformations in general purpose languages. MTL Capabilities
encompasses sub-factors that originate from transformation specific features of model transforma-
tion languages. Tooling contains factors surrounding tool support for MTLs. Choice of MTL details
how the choice of language asserts its influence. The factor Skills encompasses sub-factors associated
with skills. Lastly, the Use Cases factor contains sub-factors that relate to the involved use case an
its influences.

Within the framework we differentiate between two kinds of factors. The first kind are factors,
that have a positive or negative impact on properties of MTLs. These include the factors GPL Capa-
bilities, MTL Capabilities and Tooling as well as their sub-factors. The second kind are factors that,
depending on their characteristic, moderate how other factors influence properties, e.g. depending
on the language, its syntax might have a positive or negative influence on the comprehensibility of
written code. We call such factors moderating factors. These include the factors Choice of MTL,
Skills and Use Case and their sub-factors.

Table 3.3 provides an overview over the answers given by our interviewees. The table shows
factors on its rows and MTL properties on its columns. A + in a cell denotes, that interviewees
mentioned the factor to have a positive effect on their view of the MTL property. A - means
interviewees saw a negative influence and +/- describes that there have been mentions of both
positive and negative influences. Lastly, a M in a cell denotes, that the factor represents a moderating

3.5. Findings 81

Figure 3.8: Number of participants using a specific dedicated MTL

factor for the MTL property, according to some interviewees. The detailed extent of the influence
of each factor is described throughout Sections 3.5 and 3.6.

In the following we present all top-level factors and their sub-factors and describe their place
within our framework. For each factor we detail its influence on properties of model transformation
languages or on other factors, based on the statements made by our interviewees.

3.5.1 GPL Capabilities
Using general purpose languages for developing model transformations, as an alternative to using
dedicated languages was extensively discussed in our interviews. Interviewees mentioned both ad-
vantages and disadvantages that GPLs have compared to MTLs that made them view MTLs more
or less favourably.

The disadvantages of GPLs compared to MTLs stem from additional features and abstractions
that MTLs bring with them and will be discussed later in Section 3.5.2. The advantages of GPLs
on the other hand can not be placed within the MTL Capability factors. These will instead be
presented separately in this section.

According to our interviewees, advantages of GPLs are a relevant factor for all properties of
MTLs.

General purpose languages are better suited for writing transformations that require lots of
computations. This is because they were streamlined for these kinds of activities and designed for

Figure 3.9: Number of participants using a specific GPL

82 Chapter 3. Paper B

T
a
bl

e
3.

3:
O

ve
rv

ie
w

ov
er

qu
al

it
y

at
tr

ib
ut

e
in

flu
en

ce
s

pe
r

fa
ct

or

T
op

-l
ev

el
Fa

ct
or

S
u
b
-F

ac
to

r
C

om
p
re

-
h
en

si
b
il
it
y

E
as

e
of

W
ri

ti
n
g

E
xp

re
s-

si
ve

n
es

s
M

ai
nt

ai
n
-

ab
il
it
y

P
ro

d
u
c-

ti
vi

ty
R

eu
se

-
ab

il
it
y

T
oo

l
S
u
p
p
or

t

G
P

L
C

ap
a-

bi
lit

ie
s

+
/-

+
/-

-
-

+
/-

+
+

/-

M
T

L
C

a-
pa

bi
lit

ie
s

D
om

ai
n

Fo
cu

s
+

+
+

/-
+

+
/-

+
B

id
ir

ec
ti

on
al

it
y

+
/-

+
/-

+
+

/-
+

In
cr

em
en

ta
lit

y
+

+
/-

+
M

ap
pi

ng
s

+
+

/-
+

+
+

/-
T
ra

ce
ab

ili
ty

+
+

/-
+

/-
+

M
od

el
T
ra

ve
rs

al
+

+
+

+
P
at

te
rn

M
at

ch
in

g
+

+
+

M
od

el
N

av
ig

at
io

n
+

+
+

M
od

el
M

an
ag

em
en

t
+

+
+

R
eu

se
M

ec
ha

ni
sm

s
+

/-
Le

ar
na

bi
lit

y
-

T
oo

lin
g

A
na

ly
si

s
T
oo

lin
g

+
+

+
/-

C
od

e
R

ep
os

it
or

ie
s

-
-

D
eb

ug
gi

ng
T
oo

lin
g

+
/-

+
/-

E
co

sy
st

em
-

-
-

ID
E

T
oo

lin
g

+
/-

-
-

In
te

ro
pe

ra
bi

lit
y

-
T
oo

lin
g

A
w

ar
en

es
s

-
T
oo

lC
re

at
io

n
E

ffo
rt

-
T
oo

lL
ea

rn
ab

ili
ty

-
-

T
oo

lU
sa

bi
lit

y
-

-
-

T
oo

lM
at

ur
it
y

-
V

al
id

at
io

n
T
oo

lin
g

-
C

ho
ic

e
of

M
T

L
M

M
M

M
M

M
M

Sk
ill

s
La

ng
ua

ge
Sk

ill
s

M
M

M
M

U
se

r
E

xp
er

ie
nc

e/
K

no
w

le
dg

e
M

M
M

U
se

C
as

e
(M

et
a-

)
M

od
el

s
M

I/
O

Se
m

an
ti

c
ga

p
M

M
M

Si
ze

M
M

3.5. Findings 83

this task, with language features like streams, generics and lambdas. As a result, general purpose
languages are far more advanced for such situations compared to model transformation languages,
which sacrifice this for more domain expressiveness [Qgpl1].

Much like the language design for GPLs, their tools and ecosystems are mature and designed to
integrate well with each other. Moreover, according to several interviewees, their tools are of high
quality making developers feel more Productive [Qgpl2].

Lastly, multiple participants noted, that there are much more GPL developers readily available
for companies to hire, thus making GPLs more attractive for them. This helps the Maintainability
of existing code as such experts are more likely to Comprehend GPL code [Qgpl3]. Whether this
aspect also improves the overall Productivity of transformation development in a GPL was disagreed
upon, because it might be that developers trained in a MTL could produce similar results with less
resources.

It was also mentioned, that much more training resources are available for GPL development,
making it easier to start learning and using a new GPL compared to a MTL.

3.5.2 MTL Capabilities
The capabilities that model transformation languages provide that are not present in GPLs, are
important factors that influence properties of the languages. This view is shared by our interviewees
that raised many different aspects and abstractions present in model transformation languages.

The influence of capabilities specifically introduced in MTLs is diverse and depends on the
concrete implementation in a specific language, the skills of the developers using the MTL and the
use case in which the MTL is to be applied. We will discuss all the implications raised by our
interviewees regarding the transformation specific capabilities of MTLs for the properties attributed
to MTLs in detail, in this section.

3.5.2.1 Domain Focus

Domain Focus describes the fact that model transformation languages provide transformation spe-
cific constructs, abstractions or workflows. Interviewees remarked the domain focus, provided by
MTLs, as influencing Comprehensibility, Ease of Writing, Expressiveness, Maintainability, Produc-
tivity and Tool Support. But the effects can differ depending on the specific MTL in question.

There exists a consensus that MTLs can provide better domain specificity than GPLs by in-
troducing domain specific language constructs and abstractions. This increases Expressiveness by
lifting the problem onto the same level as the involved models allowing developers to express more
while writing less. MTLs allow developers to treat the transformation problem on the same abstrac-
tion level as the involved modelling languages [Qdf1]. This also improves the ease of development.

Several interviewees argued, that when moving towards domain specific concepts the Compre-
hensibility of written code is greatly increased. The reason for this is, that because transformation
logic is written in terms of domain elements, unnecessary parts are omitted (compared to GPLs)
and one can focus solely on the transformation aspect [Qdf2].

Having domain specific constructs was also raised as facilitating better Maintainability. Co-
evolving transformations written in MTLs together with hardware-, technology-, platform- or model
changes is said to be easier than in GPLs because “Once you have things like rules and helpers and
things like left hand side and right hand side and all these patterns then [it is] easier to create things
like meta-rules to take rules from one version to another version [...]” (P23).

Domain focus also enforces a stricter code structure on model transformations. This reduces the
amount of variety in which they can be expressed in MTLs. As a result, developing Tool Support for
analysing transformation scripts gets easier. Achieving similarly powerful tool support for general
purpose languages, and even for internal MTLs, can be a lot harder or even impossible because
much less is known solely based on the structure of the code. Analysis of GPL transformations
has to deal with the complete array of functionality of general purpose language constructs [Qdf4].
While MTLs can be Turing complete too, they tend to limit this capability to specific sections of the
transformation code. They also make more information about the transformation explicit compared
to GPLs. This allows for easier analysis of properties of the transformation scripts which reduces
the amount of work required to develop analysis tooling.

The influence of domain abstractions on Productivity was heavily discussed in our interviews.
Interviewees agreed that, depending on the used language, Productivity gains are likely, due to their

84 Chapter 3. Paper B

domain focus. However, one interviewee explained that precisely because of Productivity concerns
companies in the industry might use general purpose languages. The reason for this boils down to
the Use Case and project context. Infrastructure for general purpose languages might already be
set up and developers do not need to be trained in other languages [Qdf5]. Moreover, different tasks
might require different model transformation languages to fully utilise their benefits, which, from
an organisational standpoint, does not make sense for a company. So instead one GPL is used for
all tasks.

3.5.2.2 Bidirectionality

According to our interviewees bidirectional functionality in a model transformation language influ-
ences its Comprehensibility, Ease of Writing, Expressiveness and Maintainability and Productivity.
Its effects on these properties then depends on the concrete implementation of the functionality in
a MTL. It also depends on the Skills of the developers and the concrete Use Case.

Our interviewees mentioned that the problem of bidirectional transformations is inherently dif-
ficult and that high level formalisms are required to concisely define all aspects of such transfor-
mations. Many believe that because of this solutions using general purpose languages can never be
sufficient. Statements in the vein of “in a general purpose programming language you would have to
add a bit of clutter, a bit of distraction, from the real heart of the matter” (P42) were made several
times. This, combined with having less optimal querying syntax, then shifts focus away from the
actual transformation and decreases both the Comprehensibility and Maintainability of the written
code.

Maintainability is also hampered because GPL solutions scatter the implementation throughout
two or more rules (or methods or files) that have to be adapted in case of changes [Qbx2]. Expressive
and high level syntax in MTLs helps alleviate these problems and increases the ease at which
developers can write bidirectional model transformations.

Interviewees also commented on the fact that, thanks to bidirectional functionalities, consistency
definitions and synchronisations between both sides of the transformation can be achieved easier.
This improves the Maintainability of modelling projects as a whole and allows for more Productive
workflows. Manual attempts to do so have been stated to be error-prone and labour-intensive.

It was also pointed out that the inherent complexity of bidirectionality leads to several problems
that have to be considered. MTLs that offer syntax for defining bidirectional transformations are
mentioned to be more complex to use as their unidirectional counterparts. They should thus only
be used in cases where bidirectionality is a requirement. Moreover, one interviewee mentioned that
developers are not generally used to thinking in bidirectional way [Qbx3].

Lastly, the models involved in bidirectional transformations also play a role regardless of the
language used to define the transformation. Often the models are not equally powerful making it
hard to actually achieve bidirectionality between them, because of information loss from one side to
the other [Qbx4].

3.5.2.3 Incrementality

Dedicated functionality in MTLs for executing incremental transformations has been discussed as
influencing Comprehensibility, Ease of Writing and Expressiveness. Similar to bidirectionality its
influence is again heavily dependent on the Use Case in which incremental languages are applied as
well as the Skills of the involved developers.

Declarative languages have been mentioned to facilitate incrementality because the execution
semantics are already hidden and thus completely up to the execution engine. This increases the
Expressiveness of language constructs. It can, however, hamper the Comprehensibility of trans-
formation scripts for developers inexperienced with the language because there is no direct way of
knowing in which order transformation steps are executed [Qinc1].

On the other hand interviewees also explained that writing incremental transformations in a
GPL is unfeasible. Manual implementations are error-prone because too many kinds of changes
have to be considered and chances are high that developers miss some specific kind. Due to the high
level of complexity that the problem of incrementality inherently posses interviewees argued that
writing such transformations in MTLs is much easier [Qinc2].

The same argumentation also applied for the Comprehensibility of transformations. All the
additional code required to introduce incrementality to GPL transformations is argued to clutter
the code so much that developers “[will be] in way over their head[s] ” (P13).

3.5. Findings 85

As with bidirectionality interviewees agreed, that the Use Case needs to be carefully considered
when arguing over incremental functionality. Only when ad-hoc incrementality is really needed
should developers consider using incremental languages. In cases where transformations are executed
in batches, maybe even over night, no actual incrementality is necessary and then “general purpose
programming languages are very much contenders for implementing model transformations” (P42).
It was also explained that using general purpose languages for simple transformations is common
practice in industry as they are “very good in expressing [the required] control flow ” (P42) and
because none of the aforementioned problems for GPLs have a strong impact in these cases.

3.5.2.4 Mappings

The ability of a MTL to define mappings influences that languages Comprehensibility, Ease of
Writing, Expressiveness, Maintainability and Reuse of model transformations. Developer Skills, the
used Language and concrete Use Case also play an important role in the kind of influence.

Interviewees agreed, that the Expressiveness of transformation languages utilising syntax for
mapping is increased due to them hiding low level operations [Qmap1]. However, as remarked by
one participant, the semantic complexity of transformations can not be hidden by mappings, only
the computational complexity.

According our interviewees mappings form a natural way of how people think about transfor-
mations. They impose a strict structure on how transformations need to be defined, making it easy
for developers to start of writing transformations. The structure also aids general development,
because all elements of a transformation have a predetermined place within a mapping. Being this
restrictive has the advantage of directing ones thoughts and focus solely on the elements that should
be transformed [Qmap2]. To transform an element, developers only need to write down the element
and what it should be mapped to.

The simple structure expressed by mappings also benefits the Comprehensibility of transforma-
tions. It allows to easily grasp which elements are involved in a transformation, even by people that
are not experienced in the used language. Trying to understand the same transformation in GPLs
would be much harder because “[one] would not recognize [the involved elements] in Java code any
more” (P32). Instead, they are hidden in between all the other instructions necessary to perform
transformations in the language. Interviewees also mentioned that, due to the natural fit of map-
pings for transformations, it is much easier to find entry points from where to start and understand
a transformation and to reconstruct relationships between input and output. This is aided by the
fact that the order of mappings within a transformation does not need to conform with its execution
sequence and thus enables developers to order them in a comprehensible way [Qmap3].

One interviewee explained that, from their experience, mappings lead to less code being written
which makes the transformations both easier to comprehend and to maintain. However, they con-
ceded that the competence of the involved developers is a crucial factor as well. According to them,
language features alone do not make code maintainable. Developers need to have language engineer-
ing skills and intricate domain knowledge to be able to design well maintainable transformations
[Qmap4]. Both are skills that too little developers posses.

Moreover, several interviewees raised the concern, that complex Use Cases can hamper the
Comprehensibility of transformations. Understanding which elements are being mapped can be
hard to grasp if several auxiliary functions are used for selecting the elements. Here one interviewee
suggested that a standardized way of annotating such selections could help alleviate the problem.

It was also mentioned that, while mappings and other MTL features increase the Expressiveness
of the language, they might make it harder for developers to start learning the languages. Because a
lot of semantics are hidden behind keywords, developers need to first understand the hidden concepts
to be able to utilise them correctly [Qmap5].

Other features that highlight how much Expressiveness is gained from mappings have also been
mentioned. Mappings hide how relations between input and output are defined. This creates a
formal and predictable correspondence between them and thus enables Tracing. Moreover, the
correspondence between elements allows languages to provide functionality such as Bidirectionality
and Incrementality [Qmap6].

Because many languages that utilise mappings can forgo definitions of explicit control flow,
mappings allow transformation engines to do execution optimisations. However, one interviewee
explained that they encountered Use Cases where developers want to influence the execution order,
forcing them to introduce imperative elements into their code effectively hampering this advantage.

86 Chapter 3. Paper B

It has also been mentioned that in complex cases the code within mappings can get complicated
to the point where non experts are unable to comprehend the transformation again. This problem
also exists for writing transformations as well. According to one interviewee mappings are great for
linear transformations and are thus very dependent on the involved (meta-)models. Also in cases
where complex interactions needs to be defined mappings do not present any advantage over GPL
syntax and sometimes it can even be easier to define such logic in GPLs [Qmap7].

Lastly, mappings enable more modular code to be written. This in turn facilitates reuse, because
reusing and changing code results in local changes instead of several changes throughout different
parts of GPL code [Qmap8].

3.5.2.5 Traceability

The ability in model transformation languages to automatically create and handle trace information
about the transformation has been discussed by our interviewees to influence Comprehensibility,
Ease of writing, Expressiveness and Productivity. However, the concrete effect depends on the MTL
and the skill of users.

All interviewees talking about automatic tracing agreed that it increases the Expressiveness
of the language utilising it. In GPLs this functionality would need to be manually implemented
using structures like hash maps. Code to set up traces would then also need to be added to all
transformation rules [Qtrc1].

However, interviewees disagreed on how much this actually impacts the overall transformation
development. Most interviewees felt like automatic trace handling Eases Writing transformations
and even increases Productivity since no manual workarounds need to be implemented. This is
because manual implementation requires developers to think about when and in which cases traces
need to be created and how to access them correctly. It also enables languages that allow developers
to define rules independent from the execution sequence. One interviewee however felt like this was
not as effort intensive as commonly claimed and thus automatic trace handling to them is more
of a nice to have feature than a requirement for writing transformations effectively. Moreover, for
complex Use Cases of tracing such as QVTs late resolve, the Users are required to understand the
principle of tracing [Qtrc2]. And according to another interviewee teaching how tracing and trace
models work is hard.

Comprehending written transformations can also be aided by automatic trace management.
Manual implementations introduce unnecessary clutter into transformation code that needs to be
understood to be able to understand a whole transformation. This is especially true if effort has
been put into making tracing work efficiently, according to one interviewee. Understanding a trans-
formation is much more straight forward when only the established relationships between the input
and output domains need to be considered, without any additional code to setup and use traces
[Qtrc3].

Lastly, one interviewee raised the issue that manual trace handling might be necessary to write
complex transformations involving multiple source and target models, as current engines are not
intended for such Use Cases.

3.5.2.6 Automatic Model Traversal

According to our interviewees, the automatic traversal of the input model to apply transformations
influences Ease of Writing, Expressiveness, Comprehensibility and Productivity. They also explain
that depending on the implementation in a concrete MTL the effects can differ. Use Cases are also
mentioned to be relevant to the influence of automatic traversal.

Automatic model traversal hides the traversal of the input model and how and when trans-
formations are applied to the input model elements. Because of this many interviewees expressed
that this feature in MTLs increases their Expressiveness. The reduced code clutter also helps with
Comprehensibility.

It also Eases the Writing of transformations because developers do not need to worry about
traversing the input and finding all relevant elements, a task that has been described as complicated
by interviewees. This can be of significant help to developers. One interviewee explained, that they
ran an experiment with several participants where they observed model traversal to be “one of the
biggest problems for test persons” (P49).

Not having to manually define traversal reduces the amount of code that needs to be written and
thus increases the overall Productivity of development, according to one interviewee. However, there

3.5. Findings 87

can also be drawbacks from this practice. Hiding the traversal automatically leads to the context
of model elements to be hidden from the developer. In cases where the context contains relevant
information this can be detrimental and even mask errors that are hard to track down [Qtrv1].

Lastly, automatic input traversal enables transformation engines to optimize the order of exe-
cution in declarative MTLs. And MTLs where no automatic execution ordering can be performed
have been described as being “close to plain GPLs” (P52).

3.5.2.7 Pattern-Matching

Some model transformation languages, such as Henshin, allow developers to define sub-graphs of
the model graph, often using a graphical syntax, to be matched and transformed. This pattern-
matching functionality influences the Comprehensibility, Expressiveness and Productivity, according
to our interviewees. It is, however, strongly dependent on the specific language and Use Case. The
feature is only present in a small portion of MTLs and brings with it its own set of restrictions
depending on the concrete implementation in the language.

Pattern-matching functionality greatly increases the Expressiveness of MTLs. Similar to the
basic model traversal no extra code has to be written to implement this semantic. However, the
complexity of the abstracted functionality is even higher, since it is required to perform sub-graph
matching to find all the relevant elements in a model. These patterns can also become arbitrarily
complex and thus all interviewees talking about pattern-matching agreed that manual implementa-
tions are nearly impossible. Nevertheless one interviewee mentioned, that all languages they used
that provided pattern-matching functionality (Henshin and TGG) had the drawback of providing no
abstractions for resolving traces which takes away from its overall usefulness for certain Use Cases
[Qpm1].

Not having to implement complex pattern-matching algorithms manually is also mentioned to
increase the Productivity of writing transformations because this task is labour-intensive and error-
prone.

Improvements for the Comprehensibility of transformations have also been recognized by some
interviewees. They explained that the, often times graphical, syntax of languages with pattern-
matching functionality allows to directly see the connection between involved elements. In GPLs
this would be hidden behind all the code required to find and collect the elements. As such MTL
code is “less polluted” (P52) than GPL code. Moreover, the Comprehensibility is also promoted by
the fact that in some languages the graphical syntax shows the involved elements as they would be
represented in the abstract syntax of the model.

3.5.2.8 Model Navigation

Dedicated syntax for expressing model navigation has influence on the Comprehensibility and Ease
of Writing of model transformations as well as on the Expressiveness of the MTL that utilises it.

Having dedicated syntax for model navigation helps to ease development as it allows transfor-
mation engineers to simply express which elements or data they want to query from a model while
the engine takes care of everything else. Furthermore, it has been mentioned that this has a positive
effect on transformation development because developers do not need to consider the efficiency of
the query compared to when defining such queries using nested loops in general purpose languages
[Qnav1].

Because languages like OCL abstract from how a model is navigated to compute the results of
a query, interviewees attributed a higher Expressiveness to them than GPL solutions and described
code written in these languages as more concise. Several interviewees attribute a better Compre-
hensibility to OCL as a result of this conciseness, arguing that well designed conditions and queries
written in OCL are easy to read [Qnav2].

OCL has however also been criticised by an interviewee. According to them, the language is
too practically oriented, misses a good theoretical foundation and lacks elegance to properly express
ones intent. They explain that because of this, the worth of learning such a language compared to
using a more common language is uncertain.

3.5.2.9 Model Management

The impact of having to read and write models from and to files, i.e., model management, has been
discussed by several interviewees. Automatic model management was discussed in our interviews as

88 Chapter 3. Paper B

influencing the Comprehensibility, Ease of Writing and Expressiveness of model transformations in
MTLs.

The argument for all three properties boils down to developers not having to write code for
reading input models or writing output models, as well as the automatic creation of output elements
and the order thereof. Interviewees agreed that implicit language functionality for these aspects
raised the Expressiveness of languages. It reduces clutter when reading a written transformation
and thus improving the Comprehensibility. Finally, developers do not have to deal with model
management tasks, e.g. using the right format, that are not relevant to the actual transformation
which helps with writing transformations [Qman1].

3.5.2.10 Reuse Mechanism

Mechanisms to reuse model transformations mostly influence the Reusability of model transforma-
tions in MTLs. Their concrete influence depends on the used Language and how reuse is handled in
it. Interviewees also reported on cases where the users Skills with the language was relevant because
novices might not be familiar with how the provided facilities can be utilised to achieve reuse.

There exists discourse between the interviewees about reuse mechanisms and their usefulness
in model transformation languages. Several interviewees argued that MTLs do not have any reuse
mechanisms that go beyond what is already present in general purpose languages. They believe
that most, if not all, the reuse mechanisms that exist in MTLs are already present in GPLs and as
such MTLs do not provide any reuse advantages [Qrm1]. According to them such reuse mechanisms
include things like rule inheritance from languages like ATL or modules and libraries.

Other interviewees on the other hand suggested that while the aforementioned mechanisms
stem from general purpose languages, they are still more transformation specific than their GPL
counterpart. This is, because the mechanisms work on transformation specific parts in MTLs rather
than generic constructs in GPLs [Qrm2, Qrm3]. Because of this focus, interviewees argue that they
are more straight forward to use and thus improve Reusability in MTLs.

Interviewees also explained that there exist many languages that do not provide any useful reuse
or modularisation mechanisms and that even in those that do it can be hard to achieve Reusability
in a useful manner. However, one participant acknowledged that in their case, the reason for this
might also relate to the inability of the Users to properly utilize the available mechanisms.

It has also been mentioned that reuse in model transformations is an inherently complex problem
to solve. Transferring needs between two transformations which apply on different meta-models is
difficult to do. As such, model transformation are often tightly tied to the domain in which they
are used which makes reuse hard to achieve and most reuse between domains is currently done via
copy & paste. This argument can present a reason why, as criticised by several interviewees, no
advanced reuse mechanisms are broadly available.

The desire for advanced mechanisms has been expressed several times. One interviewee would
like to see a mechanism that allows to define transformations to adapt to different input and output
models to really feel like MTLs provide better reusability than GPLs. Another mentioned, that
all reuse mechanisms conferred from object orientation rely on the tree like structure present in
class structures while models are often more graph like and cyclic in nature. They believe that
mechanisms that address this difference could be useful in MTLs.

Another disadvantage in some MTLs that was raised, is the granularity on which reuse can be
defined. In languages like Henshin, for example, reuse is defined on a much coarser level than what
is possible in GPLs.

Not having a central catalogue, similar to maven for Java, from which transformations or libraries
can be reused, has also been critiqued as hindering reuse in model transformation languages.

3.5.2.11 Learnability

The learnability of model transformation languages has been discussed as influencing the Ease of
Writing model transformations.

It has been criticised by several interviewees, that the learning curve for MTLs is steep. This is,
in part, due to the fact that users not only need to learn the languages themselves, but also accompa-
nying concepts from MDE which are often required to be able to fully utilise model transformation
languages. The learning curve makes it difficult for users to get started and therefore hampers the
Ease of Writing transformations [Qler1]. This effect could be observed among computer science
students at several of the universities of our interviewees. The students were described to having

3.5. Findings 89

difficulties adapting to the vastly different approach to development compared to more traditional
methods. A potential reason for this could be that people come into contact with MDE principles
too late, as noted by an interviewee [Qler2].

3.5.3 Tooling
While Tool Support is a MTL property that was investigated in our study, the tooling provided for
MTLs, as well as several functional properties thereof, have been raised many times as factors that
influence other properties attributed to model transformation languages as well. Most of the time
this influence is negative, as tooling is seen as one of the greatest weak points of model transformation
languages by our interviewees.

Many interviewees explained, that the most common languages do in fact have tools. The
problem, however, lies in the fact that some helpful tools only exist for one language while others
only exist for another language. As a result there is always some tool missing for any specific
language. This leads people to feel like Tool Support for MTLs is bad compared to GPLs. Though
there was one interviewee that explained that for their Use Cases, all tools required to be productive
were present.

In the following, we will present several functional properties and tools that interviewees ex-
pressed as influential for Tool Support as well as other properties of MTLs.

3.5.3.1 Analysis Tooling

Analysis tools are seen as a strong suit of MTLs. Their existence in MTLs is said to impact
Productivity, Comprehensibility and perceived Tool Support.

According to the interviewees, some analyses can only be carried out on MTLs, as the abstraction
in transformations in GPLs is not high enough and too much information is represented by the
program logic and not in analysable constructs. As one interviewee explained, this comes from the
fact that for complex analysis, such as validating correctness, languages need to be more structured.
Nevertheless, participants mainly mentioned analyses they would like to see, which is an indication
that, while the potential for analysis tools for MTLs is high, they do not yet see usable solutions
for it, or are unaware of it. This is highlighted by one interviewee that explained that they are
missing ways to check properties of model transformations, even though such solutions exist for
certain MTLs [Qdb1].

A desired analysis tool mentioned in the interviews is rule dependency analysis and visualisation.
They believe that such a tool would provide valuable insights into the structure of written trans-
formations and help to better comprehend them and their intent. “What I would need for QVT-R,
for example, in more complex cases, would be a kind of dependency graph.” (P32). Moreover two
interviewees expressed the desire for tools to verify that transformations uphold certain properties
or preserve certain properties of the involved models.

3.5.3.2 Code Repositories

A gap in Tool Support that has been brought up several times, is a central platform to share
transformation libraries, much like maven-central for Java or npm for JavaScript. This tool influences
Tool Support and the Reusability of MTLs.

According to two interviewees, not having a central repository where transformations, written
by other developers, can be browsed or downloaded, greatly hinders their view on the Reusability
of model transformation languages. This is because it creates a barrier for reuse. For one thing,
it is difficult to find model transformations that can be reused. Secondly, mechanisms that would
simplify such reuse are then also missing. “I think what is currently missing is a catalogue or a tool
like maven for having repositories for transformations so you can possibly find transformations to
reuse.” (P14)

3.5.3.3 Debugging Tooling

Debuggers have been raised as essential tools that help with the Comprehensibility of written model
transformations. The existence of a debugger for a given language therefore influences its Tool
Support as well as its Comprehensibility.

90 Chapter 3. Paper B

One interviewee explained that, especially for declarative languages, where the execution deviates
greatly from the definition, debugging tools would be a tremendous help in understanding what is
going on. In this context, opinions were also expressed that more information is needed for debugging
model transformations than for traditional programming and that the tools should therefore be able
to do more. Interviewees mentioned the desire to be able to see how matchings arise or why expected
matches are not produced as well as the ability to challenge their transformations with assertions
to see when and why expressions evaluate to certain values. “Demonstrate to me that this is true,
show me the section of the transformation in which this OCL constraint is true or false.” (P28).

Valuable debugging of model transformations is mainly possible in dedicated MTLs, according to
one interviewee. They argue that debugging model transformations in GPLs is cumbersome because
much of the code does not relate to the actual transformation thus hampering a developers ability
to grasp problems in their code.

3.5.3.4 Ecosystem

The ecosystems around a language, as well as existing ecosystems, in which model transforma-
tions languages would have to be incorporated into, were remarked as mostly limiting factors for
Productivity, Maintainability as well as the perceived amount of Tool Support.

One interviewee explained, that for many companies, adopting a model transformation language
for their modelling concerns is out of the question because it would negatively impact their Produc-
tivity. The reason for this are existing ecosystems, which are designed for GPL usage. Moreover,
it was noted that, to fully utilise the benefits of dedicated languages many companies would need
to adopt several languages to properly utilise their benefits. This is seen as hard to implement as
“people from industry have a hard time when they are required to use multiple languages” (P49)
making it hard for them to maintain code in such ecosystems.

Ecosystems surrounding MTLs have also been criticised in hampering Productivity and perceived
Tool Support. Several interviewees mentioned, that developers tend to favour ecosystems where
many activities can be done in one place, something they see as lacking in MTL ecosystems. One
interviewee even referred to this problem as the reason why they turned away from using model
transformation languages completely [Qeco2].

This issue somewhat contrasts a concern raised by a different group of interviewees. They felt
that the coupling of much of MDE tooling to Eclipse is a problem that hampers the adoption of
MTLs and MDE. This coupling allows many tools to be available within the Eclipse IDE but,
according to them, the problem lies in the fact that Eclipse is developed at a faster pace than what
tool developers are able to keep up with, leaving much of the Tool Support for MTLs in an outdated
state, limiting their exposure and usability [Qeco3].

3.5.3.5 IDE Tooling

One essential tool for Tool Support, Ease of Writing and Maintainability of MTLs are language
specific editors in IDEs.

Several interviewees mentioned, that languages without basic IDE support are likely to be un-
usable, because developers are used to all the quality-of-life improvements, with autocompletion
and syntax highlighting being the two most important features offered by such tools. Refactor-
ing capabilities in IDEs, like renaming, have also been raised as crucial, especially for easing the
Maintainability of transformations.

3.5.3.6 Interoperability

How well tools can be integrated with each other has been raised as a concern for the Tool Support
of MTLs by several interviewees.

Interviewees see a clear advantage for GPLs when talking about interoperability between dif-
ferent MTL tools. They believe, that due to the majority of tools being research projects, little
effort is spent into standardizing those in a way that allows for interoperability on the level that is
currently provided for GPLs. “But the technologies, to combine them, it is difficult [...]” (P36). One
interviewee described their first hand experience with this. They could not get a MTL to process
models they generated with a software architecture tool because it produced non standard UML
models which could not be used by the MTL. This problem has been echoed by another interviewee
who explained that many MTLs do not work with non EMF compatible models.

3.5. Findings 91

3.5.3.7 Tooling Awareness

A few interviewees talked about the availability of information about tools and the general awareness
of which tools for MTLs exist. According to them, this strongly influences the perceived lack of Tool
Support for model transformation languages in general.

When starting out with model transformations it can be hard to find out which tools one should
use or even which tools are available at all. Two interview participants mention experiencing this
first hand. They further explain that there exists no central starting point when looking for tools
and tools are generally not well communicated to potential users outside of research [Qawa1].

Another interviewee suspected that the same problem also happens the other way around. They
believe that some well designed MTL tools are completely unknown outside of the companies that
developed them for internal use.

3.5.3.8 Tool Creation Effort

The amount of effort, that is required to be put into the development of MTL tools, has been raised
by many interviewees as a reason why Tool Support for MTLs is seen as lacking.

All interviewees talking about the effort involved in creating tools for MTLs agree that there is a
lot of effort involved in developing tools. This is not a problem in and of itself but, when comparing
tooling with GPLs interviewees felt like MTLs being at a disadvantage. The disadvantage stems
from the community for MTLs being much smaller and thus having less man power to develop
tools which limits the amount of tools that can be developed. Several interviewees noted, that the
only solution they see for this problem is industrial backing or commercial tool vendors because
“I am keenly aware of the cost to being able to develop a good programming language, the cost of
maintaining it and the cost of adding debuggers and refactoring engines. It is enormous.” (P01).

When comparing the actual effort for creating transformation specific tools, some interviewees
explained that their experience suggests easier tool development for MTLs than for GPLs. They
explained that, extracting the transformation specific information necessary for such tools out of
GPL code complicates the whole process, whereas dedicated MTLs with their small and focused
language core provide much easier access to such information [Qtce2].

3.5.3.9 Tool Learnability

The learning curve for someone starting off with MTLs and MTL tools is discussed as a heavy
burden to the perceived effectiveness of Tools and even influences Ease of Writing.

Several interviewees criticised the fact that when starting off with a new MTL and its accom-
panying tools there is little support for users. Many tools lack basic documentation on how to set
them up properly and how to use them. As a result users feel lost and find it difficult to start off
writing transformations [Qtle1].

3.5.3.10 Tool Usability

Related to the topic of learnability, the usability of tools for model transformation languages is
discussed as influencing the quality of Tool Support for the languages as well as the Ease of Writing
and Productivity.

To fully utilise the potential of MTLs useable tools are essential. Due to their higher level of
abstraction, high quality tools are necessary to properly work with them and Write well rounded
transformations [Quse1].

This is currently not the case when looking at the opinions of our interviewees talking about
the topic of tool usability. There are tools available for people to start off with developing trans-
formations but they are not well rounded and thus not ready for professional use, according to one
interviewee. This is supported by several other interviewees opinions, many tools are faulty, which
hinders the workflow and reduces Productivity [Quse2]. It has also been stated that if there were
high quality useable tools available, they would be used. The reality for many users is, however,
more in line with the experience of one interviewee who stated that they were unable to get many
tools (for bidirectional languages) to even work at all.

92 Chapter 3. Paper B

3.5.3.11 Tool Maturity

A reason given for many of the criticised points surrounding MTL tools is their maturity. It is said
to be a pivotal factor for everything related to Tool Support.

The maturity of tools for model transformation languages was commented on a lot. Tools need
to be refined more in order to raze many of their current faults. The fact that this is not currently
done relates back to the effort that is involved with it and the limited personnel available to do so.
This is highlighted in an argument made by one of the interviewees who feels, that the community
should not be hiding behind the argument of maturity [Qmat1].

3.5.3.12 Validation Tooling

Tools or frameworks to support the validation and testing of transformations written in MTLs have
been discussed to influence the perceived Tool Support for nearly all MTLs.

Too much of the available tool support focuses solely on the writing phase of transformation
development. There is little tool support for testing developed transformations, which has been
raised as an area where much progress can, and has to be, made. Especially when comparing the
current state of the art with GPLs, MTLs are seen as lacking [Qval1]. Not only are there little to
no tools like unit testing frameworks, there is also too few transformation specific support such as
tools to specifically verify binding or helper code in ATL.

3.5.4 Choice of MTL
The choice of MTL is an obvious factor that influences how other factors, such as the MTL Capabil-
ities, influence the properties of model transformation languages. However, it should be explicitly
mentioned, because it has been brought up countless times by interviewees while not often being
considered in literature. Depending on the chosen model transformation language its capabilities
and whole makeup changes, which has strong implications on all aspects of model transformation
development.

A large number of the interviewees have commented on this. They either directly raised the
concern, by prefacing a discussion with a statement such as “[...] it depends on the MTL”, or
indirectly raised the concern, when comparing specific languages that do or do not exhibit certain
capabilities and properties.

3.5.5 Skills
Skills of involved stakeholders is another group of factors that does not have a direct influence on
how MTLs are perceived but instead plays a passive role. Many interviewees cited skills as a limiting
factor to other influence factors. They argue that insufficient user skills could hinder advantages
that MTLs can provide and might even create disadvantages compared to the more well-known and
commonly used GPLs.

In this section we present the different types of skills mentioned by our interviewees as being
relevant to the discussion of properties of model transformation languages.

3.5.5.1 Language Skills

The skill of developers in a specific model transformation language was raised by several interviewees
as critical in facilitating many of the advantages provided through the languages capabilities. So
much so that, according to them, the ability of developers to use and read a language can make
or break any and all advantages and disadvantages of MTLs related to Comprehensibility, Ease of
Writing, Maintainability and Reuseability.

Basic skills in any language are a prerequisite to being able to use it. They are also necessary
to understand written code. There is no difference between GPLs and MTLs. It was however
mentioned, that developers are generally more used to the development style in general purpose
languages. Thus users need to learn how to solve a problem with the functionality of the model
transformation language to be able to successfully develop transformations in a MTL [Qskl1]. This
is especially relevant for complex transformations, where users are required to know of abstractions
such as tracing or automatic traversal. Following on on this, one interviewee explained, that while

3.5. Findings 93

learning the language is a requirement, using a new library, e.g. one for developing model transfor-
mations, in a GPL also entails learning and as such this must not be regarded as a disadvantage.

For reuse it is also paramount for users to know what elements of a transformation can be reused
through language functionality. As a result the Reuseability is again limited by the knowledge of
users in the specific language.

Lastly, being able to maintain a transformation written in an MTL also requires users to know
the language to be able to understand where changes need to be made [Qskl2].

3.5.5.2 User Experience/Knowledge

Apart from mastering a used language, the amount of experience users have with said languages and
techniques also play a vital role in bringing out the full potential of said languages. Our interviewees
discussed this for Ease of Writing, Maintainability and Productivity.

One interviewee explained that, from their experience, the amount of experience developers have
with a language greatly impacts their Productivity when using said language. The problem for
MTLs that results from this is the fact that there is little incentive for a person that is trying to
build up their CV to spend much time on dedicated languages such as MTLs [Qexp1]. Developers
are more inclined to learning and accumulating experience in languages that are commonly used
in different companies to improve their chances of landing jobs. As a result people tend to have
little to no experience in using MTLs. This in turn results in them having a harder time developing
transformations in these languages, and the final product being of lower quality than what they
could achieve using a GPL in which they have more experience in.

The problem is further exacerbated in teaching. “Many MDSE courses are just given too late,
when people are too acquainted with GPLs, and then its really hard for students to see the point
of using models, modelling and MTLs, because it’s comparable with languages and stuff they have
already learned and worked with.” (P06).

3.5.6 Use Case
Similar as the MTL itself and stakeholder Skills, the concrete Use Case in which model transforma-
tions are being developed is another factor that does not directly influence how properties of MTLs
are being assessed. Instead, interviewees often mention that, depending on the Use Case, other
influence factors could either have a positive or negative effect.

Use cases are distinguished along three dimensions. The complexity of involved models based on
their structure, the complexity of the transformation based on the semantic gap between source and
target, and the size of the transformation based on the use case. Depending on which differentiation
is referred to by the interviewees, the considerations look differently.

3.5.6.1 Involved (meta-) models

The involved models and meta-models can have a large impact on the transformation and can hence
heavily influence the advantages or disadvantages that MTLs exhibit.

Writing transformations for well behaved models, meaning models that are well structured and
documented, can be immensely productive in a MTL while ‘badly’ behaved models bring out prob-
lems that require well trained experts to properly solve in a MTL. The UML meta-model was put
forth as an example for such a badly behaved meta-model by one interviewee. According to them,
transformations involving UML models can be problematic due to templates, which are model ele-
ments that are parametrized by other model elements, and eGenericType. The problem with these
complex model elements is often worsened by low-quality documentation [Qmod1]. In cases where
these badly behaved models are involved, many of the advantages from advanced features of MTLs
can not be properly utilised without powerful tooling.

3.5.6.2 Semantic gap between input and output

Many interviewees formulate considerations based on the differentiation between ‘simple’ and ‘com-
plex’ transformations in terms of the semantic gap that needs to be overcome. Transformations are
considered simple when there is little semantic difference between the source and target models.
Common comparisons read like: “transforming boxes into circles” (P32).

94 Chapter 3. Paper B

For simple transformations, model transformation languages are regarded as taking a lot of work
off of the developers through the different language features discussed in Section 3.5.2. In more
complex cases, transformations will get more complex and the developers experience gets more and
more relevant, as more advanced language features need to be utilised, which can favour GPLs
[Qgap1].

Others argue that the advantages of MTLs only really come into play in more complex cases or
when high level features, such as bidirectionality or incrementality, are required. The reasoning for
this argument is, that in simple cases the overhead of GPLs is not that prominent. Moreover, for
writing complex transformations, dedicated query languages in MTLs are regarded by some to be
much better than having to manually define complex conditions and loops in a GPL.

3.5.6.3 Size

The Size of the transformation based on the Use Case is considered by some interviewees to be
a relevant factor as well. In cases with many rules that depend on each other, MTLs are seen as
having advantages [Qsiz1]. The size of transformations has been said to be a limiting factor for the
use of graphical languages as enormous transformations would make graphical notations confusing.
Modularisation mechanisms of languages also become a relevant feature in these cases.

3.6 Cross-Factor Findings
Based on interview responses, we developed a structure model from structural equation model-
ing (Weiber et al. 2021) that models interactions between the presented influence factors and the
properties of model transformation languages.

Structure models depict assumed relationships between variables (Weiber et al. 2021). They
divide their components into endogenous and exogenous variables. The endogenous variables are
explained by the causal influences assumed in the model. The exogenous variables serve as explana-
tory variables, but are not themselves explained by the causal model. Exogenous variables either
directly influence a endogenous variable or they moderate an influence of another exogenous variable
on an endogenous variable.

Structure models are therefore well suited to provide a theoretical framework for the findings of
our work. Factors identified during analysis constitute exogenous variables while MTL properties
constitute endogenous variables. Moderating factors also constitute exogenous variables, with the
caveat of only having moderating influences on other influences.

A graphical overview over the influences identified by us can be found in Figure 3.10. The
detailed structure model is depicted in Figure 3.11.

The structure model depicts which MTL properties are influenced by which of the identified
factors. For each MTL property the model also illustrates which factors moderate the influence on
the property. Rectangles represent factors, rounded rectangles represent MTL properties. Below
each MTL property the moderating factors for the property are displayed. Arrows between a factor
and a MTL property represent the factor having an influence on the MTL property. Each influence
on a MTL property is moderated by its moderating factors. The graphical representation deviates
from standard presentation due to its size.

The capabilities of model transformation languages based on domain specific abstractions are
aimed at providing advantages over general purpose languages. Whether these advantages are re-
alised or whether disadvantages emerge is moderated by the Skills of the users, the concrete MTL
chosen as well as the Use Case for which transformations are applied. Depending on these organi-
sational factors the versatility provided by general purpose languages may overshadow advantages
provided by MTLs.

Tooling can aid the usage of advanced features of MTLs by supporting developers in their
endeavours beyond simple syntax highlighting. As a result, tools can further promote the advantages
that stem from the domain specific abstractions. The biggest problem that tools for MTLs face is
their availability and quality.

In the following we will present thorough discussions of the most salient observations based on
our interviews and the presented structure model. Note that, as will be thoroughly discussed in
Section 3.8.2, the observations have a limited applicability for industry use cases due to the lack of
interviewees that use MTLs in an industry setting.

3.6. Cross-Factor Findings 95

promotes

(dis-) advantages in
MTL properties

result in

MTL Capabilities facilitates Tooling

Choice of
MTL

Skills

overshadow

GPL Capabilities

Factor Moderating
Factor Influence Moderation

Use Case

5.1

5.4

5.2

5.6

5.3

5.5

Figure 3.10: Graphical overview over factor influences and moderations

3.6.1 The Effects of MTL Capabilities
Capabilities of model transformation languages that go beyond what general purpose languages
can offer, are regarded as opportunities for better support in development of transformations. The
advantage often boils down to not having to manually implement the functionality in question when
it is required. It also helps reduce clutter in transformation code, putting the mapping of input and
output at the centre of attention. Moreover, they aid developers in handling problems specific to the
transformation domain, such as synchronisations and the relationship of input and output values.

This does however come with its own set of limitations. Model transformation languages favour
a different way of problem solving that is well suited to the problem at hand, but is unfamiliar for
the common programmer. This is amplified by an education that is heavily focused on imperative
programming and lacks deeper exposure to logical and functional programming. Knowledge and
understanding of functional concepts would help developers when using query languages such as
OCL, while logical concepts often find application in graph based transformation languages. The
domain specific mechanisms in model transformation languages also make generalisations harder.
This is highlighted in the discussions regarding reusability. Interviewees commonly referred to trans-
formations as conceptionally hard to reuse because of their specificity that makes them applicable
only to the use case for which they were developed.

3.6.2 Tooling Impact on Properties other than Tool Support
Tooling, or the lack thereof, is a main factor that influences how people perceive the quality and
availability of usable model transformation languages. However, our interviews show that tool-
ing also facilitates many other properties. This is because tools are not developed as an end in
themselves. Tools are intended to support developers in their efforts to develop and maintain their
code.

As a result, the quality of available tools is a major factor that impacts all aspects of a MTL.
“Basically all the good aids you see in a Java environment should be there even better in a MTL tool,
because model transformation is so much more abstract and more relevant that you should be having
tools that are again more abstract and more relevant.” (P28). Problems in the area of Usability,
Maturity and Interoperability of tools have also been reported on in empirical studies on MDE in
general (Mohagheghi et al. 2013a; Whittle et al. 2013).

96 Chapter 3. Paper B

• Choice of MTL
• Language Skills
• I/O Semantic gap
• Size

• Choice of MTL
• Language Skills
• User Experience
• (Meta-) Models
• I/O Semantic gap
• Size

• Choice of MTL

• Choice of MTL

• Choice of MTL
• Language Skills
• User Experience

• Choice of MTL
• Language Skills
• I/O Semantic gap

• Choice of MTL
• Language Skills

Domain Focus

Bidirectionality

Incrementality

Mappings

Model Man-
agement

Model Navigation

GPL Capabilities

Model Traversal

Pattern Matching

Reuse Mech-
anisms

Traceability

Learnability

Debugging
Tooling

Tool Maturity

Tool Learnability

Validation
Tooling

Tool Usability

IDE Tooling

Tool Inter-
operability

Tool Cre-
ation Effort

Analysis Tooling

Ecosystem

Code Repositories

Tooling
Awareness

Comprehensibility

Ease of Writing

Expressiveness

Tool Support

Maintainability

Productivity

Reusability

Reset

Figure 3.11: Structure model of influence and moderation effects of factors on
MTL properties (Due to its size, the model has been made interactive using standard
PDF features. Clicking a factor will show only influences of the factor. Clicking a MTL
property will show only influences on the property. This view can be reset by using the
reset button that appears when using the interactive features. To use the interactive
features please open the PDF in Adobe Reader or okular. Other PDF viewers might work

but have not been tested.)

3.7. Actionable Results 97

Herein also lies the biggest problem for model transformation languages. The quality of tools is
inadequate. While there do exist good and useable tools, they are far and between, only exist for
certain languages and are not integrated with each other. This greatly diminishes the potential of
model transformation languages because, compared to general purpose languages, developing with
them can often be scattered over multiple separate workflows and tools. There do exist many tools,
but most of them are prototypical in nature and only available for individual languages. This makes
it hard to fully utilise the capabilities of a MTL when suitable tools only exist in theory.

The lack of good tools can be attributed mainly to the amount of work required to develop them
and the comparatively small community. Moreover, there are no large commercial vendors, that
could put in the required resources to develop tools of a commercially viable quality.

3.6.3 The Importance of Moderating Factors
The saying “Use the right tool for the job” also applies to the context of model transformations.
One of the most important things to note is that depending on the context, such as Use Case and
developer Skills, the right language to use can differ greatly. This was highlighted time and time
again in our interviews.

Interviewees insisted that the combination of use case and the concrete implementation of a
language feature significantly change how well a feature supports properties such as Comprehen-
sibility or Productivity, i.e. the influence of factors is moderated by ‘contextual’ factors. For one,
the implementation of a feature in a language might not fit well for the problem that needs to be
solved. Or the feature is not required at all and thus could impose effort on developers that is
seen as unnecessary. In our opinion, this stems from the use cases language developers intended the
language for. For example, a language such as Henshin is intended for cases where patterns of model
elements need to be matched and manipulated. In such cases, the features provided by Henshin
can bring significant advantages over implementing the intended transformation in general purpose
languages. Other use cases, where these features are not required, bring no advantage. They can
even have negative effects as the language design around them might hinder users from developing
a straight forward solution.

The skills and background knowledge of users is relevant, as it can greatly influence how com-
fortable people are in using a language. This in turn reflects on how well they can perform. This is
problematic for the adoption of model transformation languages, as programmers tend to be trained
in imperative, general purpose languages. As a result, a gentle learning curve is essential and the
initial costs of learning need to bear fruit in adequate time. The choice of using an MTL is therefore
a long term investment that is not necessarily suited for only a single project.

The considerations around Use Case, Skills and the Choice of MTL are not novel, but they are
rarely discussed explicitly. This is concerning because almost any decision process will come back to
these three factors and their sub-factors, as seen in the fact that the influence on each MTL property
in Figure 3.11 is moderated by at least one of them. They provide organisational considerations that
come into play before transformation development begins. Moreover, organisational concerns have
already been identified as relevant factors for general MDE adoption (Hutchinson et al. 2011a,b;
Whittle et al. 2013). As such they have to be at the centre of attention of researchers and language
developers too.

3.7 Actionable Results
In this section we present and discuss actionable results that arise from the responses made by
our interviewees and analysis thereof. Results will largely focus on actions that can be taken by
researchers, because they make up the largest portion of our interview participants.

3.7.1 Evaluation and Development of MTL Capabilities
Our interviewees mentioned a large number of model transformation language capabilities and rea-
soned about their implications for the investigated properties of MTL. We believe the detailed results
of the interviews can form a basis for further research into two key aspects:

(I) backing up the expert opinions with empirical data

(II) improving existing model transformation languages

98 Chapter 3. Paper B

3.7.1.1 Evaluation of MTL Capabilities and Properties

In our interviews, experts voiced many opinions on how and why factors influence the various
MTL aspects examined in our study. The opinions were always based on personal experiences,
experiences of colleagues and reasoning. We therefore believe, that our results provide a good
insight into the communities sentiment and show that there exists consensus between the experts in
many aspects. Model transformation language capabilities are considered largely beneficial, except
for certain edge cases. However, empirical data to support this consensus is still missing. The lack
of empirical studies into the topic of model transformation languages has already been highlighted
in our preceding study (Götz et al. 2021a).

We are firmly convinced that researchers within the community need to carry out extensive
empirical studies, to back up the expert opinions and to explore the exact limits that interviewees
hinted at.

We envision two main types of studies, experiments and case studies. Setting up experiments that
consider real-world examples with a large number of suitable participants would be optimal but is
hard to achieve. Introducing large transformation examples in experiments is very time-consuming
and requires that all participants are experts in the languages used. In addition, recruiting ap-
propriate participants is a generally difficult in software engineering studies (Rainer et al. 2021).
We recommend using existing transformations as the object of study in experiments instead. This
enables the analysis of complex systems to generate quantitative data without involving human
subjects.

If the assessments and experiences of developers are to be the central object of study, we recom-
mend to set up case studies. This allows researchers to study effects in complex, real-world settings
over a longer period of time. This is important because the exact effects of, for example, the use of
a certain language feature often only become apparent to developers after a long period of use. Case
studies of research projects or even industrial transformation systems can thus be used to obtain
detailed information on the impact of the applied technologies.

To design such studies, our results can form an important basis.
(a) Empirical factor evaluation. How and under which circumstances the factors we have

identified affect MTL properties needs to be comprehensively evaluated. Here we envision both
qualitative and quantitative studies that focus on the impact of a single factor or a group of related
factors. These could, for example, make comparisons between cases where a factor does or does not
apply. The results of such studies can help language developers make decisions about features to
include in their MTLs.

Our interviews provide extensive context that should be taken into account in the study design
and interpretation of results. For example, our interviews show that the semantic gap between input
and output defines a relevant context that needs to be considered. For this reason, when investigat-
ing the advantages and disadvantages of mappings, transformations involving models with different
levels of semantic gaps between input and output have to be used, to be able to fully evaluate all
relevant use cases. Some transformations need to contain complicated selection conditions or com-
plex calculations for attributes while others need to have less complicated expressions. Researchers
can then evaluate how well mappings in a language fit the different scenarios to aid in providing a
clear picture of their advantages and disadvantages.

(b) Empirical MTL property evaluation. What advantages or disadvantages MTLs really
have is still up for debate. We believe that the credibility of research efforts on MTL can be greatly
improved with studies that provide empirical substantiation to the speculated properties. Advances
like those made by Hebig et al. (2018) are rare and further ones, based on real world examples, must
be carried out.

Our results can also make a valuable contribution to such studies. The factors we have identified
as influencing a property can be taken into account in studies from the outset. They can be used
to formulate null hypotheses on why a MTL is superior or inferior to a GPL when considering one
specific property.

For example, a study that is interested in investigating the Comprehensibility of MTLs compared
to GPLs can find a number of factors in our results that need to be taken into account. Such factors
include tracing mechanisms, mappings or pattern matching capabilities. Researchers can consciously
decide which of them are relevant for the transformations used in the study and what impact their
presence or absence has on the study results. Based on these considerations hypotheses can be
formed.

3.7. Actionable Results 99

A recent study we conducted provides an example of how these considerations can be used to
expand the body of empirical studies on this topic (Höppner et al. 2021) By focusing the investigation
on Mappings, Model Navigation and Tracing we were able to present clear and focused results for
comparing and explaining differences in the expressiveness of transformation code written in ATL
and Java. We concentrated our analysis on these factors because they all influence Expressiveness
according to our interviews.

Such considerations should of course be part of any proper study, but our results provide a basis
that can be useful in ensuring that no relevant factors are overlooked.

(c) Influence Quantification. Lastly, the results of this study should be quantified. The
design of the reported study makes quantification of the importance of factors and their influence
strengths impossible. However, such quantification is necessary to prioritise which factors to focus
on first, both for assessment and for improvement. We intend to design and execute such a study
as future work to this study.

We can use structural equation modelling methods (Weiber et al. 2021) to quantify the factors
and their influences because we already have a structure model. We plan to use an online survey
to query users of MTLs from research and industry about the amount they use different language
features, their perception of qualitative properties of their transformations and demographic data
surrounding use-case, skills & experience and used languages. The responses are used as input for
universal structure modelling (USM) (Buckler et al. 2008) based on the structural equation model
developed from the interview responses.

USM is used to estimate the influence and moderation weights of all variables within the structure
model. We can therefore use it to produce quantified data on the influence and moderation effects
of identified factors.

We are confident that the approach of using a survey to quantify interview results, can com-
plement the current results, because several of the authors have had positive experiences applying
it (Juhnke et al. 2020; Liebel et al. 2018).

3.7.1.2 Improving MTL Capabilities

To improve current model transformation languages the criticisms articulated by interviewees can
be used as starting points for enhancements and innovation. There are several aspects that are
considered to be problematic by our interviewees.

(d) Improve reuse mechanism adoption. Reuse mechanisms in model transformation lan-
guages are one aspect where interviewees saw potential for improvement (see Section 3.5.2.10).
Languages that do not currently possess mature reuse mechanisms can adopt them to become more
usable. For the adoption of mature reuse mechanisms in MTLs we see the languages developers as
responsible.

(e) Reuse mechanism innovation. Innovation towards transformation specific reuse mecha-
nisms, as has been requested by some participants (see Section 3.5.2.10), should also be advanced.
This topic was discussed at length during the interviews on the statement “Having written several
transformations, we have identified that current MTLs are too low a level of abstraction for succinctly
expressing transformations between DSLs, because they demonstrate several recurring patterns that
have to be reimplemented each time.” in Question Set 3.

Interviewees pointed out a need for reuse mechanisms that allow transformations to adapt to
differing inputs and outputs. It would be conceivable to define transformation rules, or parts of them,
independently of concrete model types, similar to generics in GPLs. This would allow development
of generic transformation ‘templates’ of common transformation patterns. One pattern, for example,
could be finding and manipulating specific model structures, like cliques, independent of the concrete
model elements involved. Such templates can then be reused and adapted in all transformations
where the pattern is required.

We believe, that innovating such new transformation specific reuse mechanisms is a community
wide effort that needs to be taken on in order to make them more widely usable.

(f) Improving MDSE education. The Learnability of MTLs has also been a point of criticism.
We believe, that more effort needs to be put into the transfer of knowledge for MDSE and its
techniques like model transformations and MTLs. This believe is supported by the findings of
Hutchinson et al. (2011a). They also identified the lack of MDSE knowledge as a limiting factor for
the adoption of the approach.

100 Chapter 3. Paper B

People need to come into contact with the principles earlier so that the inhibition threshold to
apply them is lower. This was also remarked by interviewees when discussing the Learnability (see
Section 3.5.2.11). More focus needs to be given to modelling and modelling techniques in software
engineering courses. This is especially important since the skill of users has been said to be a largely
impactful factor upon which many of the advantages from other MTL capabilities rely. Furthermore,
there exist studies such as the one by Dieste et al. (2017), which detected a connection between the
experience of developers with a language and their productivity as well as the code quality of the
resulting programs.

To achieve this, we believe, that the researchers from the community, in their role as higher
education teachers and university staff, need to become active. They should advocate for teaching
the concepts of MDSE and the advantages/disadvantages in undergraduate studies in computer
science study programmes. This view is shared by Samiee et al. (2018). Particularly, it should
be taught that models can be used for more than documentation purposes, e.g., code generation,
simulations early in the development cycle, test case generation. These other uses are widely and
successfully employed in the domain of cyber-physical systems according to Bucchiarone et al. (2021).
Hence, it might be beneficial to include industrial modelling tools like Matlab/Simulink/Stateflow
from this domain in addition to standard UML tools in undergraduate courses. Furthermore, we
successfully used simulation frameworks for autonomous cars, like Carla (see Dosovitskiy et al.
(2017)), in the past as targets for student projects when teaching courses on the development of
modeling languages and model transformations. For example, the students devised a state machine
language and code generator targeting the simulation framework to develop an automatic parking
functionality. Model transformations were developed to flatten hierarchical state machines to non-
hierarchical state machines prior to code generation.

(g) Increase knowledge retention. It is also difficult to get to grips with the subject matter
in general, as information on it is much harder to obtain than on general purpose programming (see
Section 3.5.3.7). This starts with the fact that, we found websites on MTLs to often be outdated
or unappealing and lack good tutorials and comprehensible documentation. These points need to
be fixed, by the language developers, to provide potential users with better resources to combat the
perceived steepness of the learning curve. More active community involvement is also conceivable
here. Users of MTLs could invest time in creating documentation and keeping it up-to-date. The
possibility of this working and producing good results can be seen in examples such as the arch-linux
wiki4.

(h) Improve community outwards presentation. The model transformation community is
small. In our opinion this leads to less innovation and poses the danger of entrenched practices. The
problem is not limited to small communities as seen by, for example, the risk averse movie industry
or low innovation automotive industry. An improved outwards presentation of the technology of
model transformations can help alleviate the problem of limited human resources. The current hype
surrounding low-code-platforms can be used to inspire young and aspiring researchers to contribute
to its underlying concepts such as model transformations.

(i) Improve industry outreach and cooperation. We think it is also paramount to pursue
industry cooperation to gauge industrial needs in order to facilitate more industrial adoption of
MTLs. Here ambitious studies are required that attempt to provide the community with clear
requirements specific domains of industry have for MDE and transformation languages, as well
as to show for which domains application is reasonable at all. There exist some field studies by
Mohagheghi et al. (2008, 2013a) and Staron (2006) but they are far and in between and do not
focus on the transformation languages involved. The research community can attempt to organize
solutions for these requirements based on such field study and industry research. However, for such
industry cooperation to be possible, a focused community outreach is required. There are notable
advancements in this direction e.g. MDENet5, but they are still in their infancy and require more
involvement by the research community.

(j) Provide representative model transformation languages. To provide reasonable ev-
idence that model transformation languages can be competitive against GPLs there also needs to
be heavy focus on providing less prototypical and more pragmatic and useable transformation lan-
guages (see Section 3.6.2). To that end only a few selected languages should be attempted to be
made production ready, potentially through further industry cooperation. MTLs could be integrated
into commercial modelling tools in order to be able to process models programmatically in the tool.

4wiki.archlinux.org
5community.mde-network.org

wiki.archlinux.org
community.mde-network.org

3.7. Actionable Results 101

Alternatively, few modern standardised MTLs could be promoted by the community. Since such
a decision has far-reaching effects, a central, community wide respected body is needed. The OMG
could possibly take action for this as they are already deciding on community impacting standards.

The QVT standard was an ambitious push in this direction. However, we believe that the
initiative needs a fresh take, given the findings of the last 20 years of research. This idea is supported
by several interviewees who considered QVT to be bloated and outdated. Especially in the areas of
bidirectional and incremental transformations we see huge potential. Furthermore, relying more on
declarative approaches for defining uni-directional transformations should also be considered. This
trend can also be observed in the field of GPLs with the introduction of more and more functional
concepts into them.

Innovation in prototypical languages should then be thoroughly evaluated for its usefulness before
adoption into one of the flagship languages. It is not the task of research to produce industry ready
languages, but setting up the environment and using these languages should not be more complicated
than for any general purpose programming language.

(k) Research legacy integration. The integration of MTLs into existing legacy systems has
been remarked as a huge entry barrier for industry adoption (see Sections 3.5.2.1 and 3.5.3.4). We
believe this stems from a lack of techniques that facilitate gradual integration of modelling technology
into existing systems and infrastructure. This is highlighted by the fact that basic literature such
as that by Brambilla et al. (2017) does not contain any suggestions to this end. To combat this, we
propose a dedicated branch of MDE research focused on developing tools and processes to integrate
model driven techniques into legacy systems.

We envision distinct guidelines and processes on how to integrate transformations and trans-
formation concepts into existing systems. There should be terms of reference as to which types of
system components lend themselves to the use of model transformations. Furthermore, descriptions
of which transformations and which transformation languages are suitable for which type of use case
are also required. Having such guides can reduce the barrier of entry, because they provide a clear
course of action when trying to (gradually) adopt the paradigm.

This also includes accessible GPL bindings for applying model transformation concepts. They
can be used to gradually replace system components that can benefit from the use of transformations.
This can be done without the overhead of integrating a new language and intermediate models. One
example for this is DresdenOCL, a OCL dialect that can be used on Java code (Demuth et al. 2009).

3.7.2 Steps Towards Solving the Tooling Problem
From our interviews, we have to conclude that the biggest weak point of model transformation
languages is their Tool Support.

The two biggest tooling gaps that we were able to identify are:

(I) many necessary tools do not exist

(II) existing tools lack user-friendliness and are not compatible with each other

We hope that our work can be a starting point in counteracting these drawbacks.
(l) Provide essential tooling. In our view, tooling of flagship model transformation languages

needs to be extended to include all the essential tools mentioned in the interviews to make MTLs
production and industry ready. This includes useable Editors, Debuggers and Validation or Analysis
tools. At best all such tools for a language should be useable within one IDE. One way language
developers can help with this task is by implementing the Language Server Protocol (LSP) (Microsoft
2022) or its graphical counterpart GLSP (Eclipse Foundation 2022) for their MTL. This would
greatly improve the ability of tool developers to create and distribute tooling.

(m) Develop transformation specific debugging. As mentioned by our interviewees, for
debuggers there is a need for model transformation specific techniques. Troya et al. (2022) showed
that there are numerous advances in this area like by Ege et al. (2019), Hibberd et al. (2007), and
Wimmer et al. (2009) but none of them have led to well rounded debuggers yet. Further effort by
researchers active in this area is therefore required. They should strive to develop their approaches
to a point where they can be productively used to demonstrate their usefulness for a productive
transformation development.

(n) Improve tool usability. Most importantly, a lot of effort needs to be put into improving
the usability of MTL tools. Our interviews have shown, that unusable tools are the most off putting

102 Chapter 3. Paper B

factor that hampers wider adoption. To combat this, we believe usability studies to be essential.
Studies to identify usability issues in the likeness of what is proposed by Pietron et al. (2018) can
be used to gain insights into where problems originate from and how to improve them. Such studies
have already been successfully utilised for other MDE related tooling (Stegmaier et al. 2019). We
therefore need more researchers from the community to get involved in designing and conducting
usability studies for tooling surrounding MTLs.

We think the results of usability studies can also provide useful lessons learned for tool developers
to make tools more usable from the beginning. The overall goal must be to find out what needs
to be changed or improved in MTL tools to make their adoption significant. Industrial efforts to
provide proper tool support can then be based on these results and the existing, usable, tools. This
adoption is necessary because, in our view, the human resources required for providing adequate
long-term support for the tools can only be provided by commercially operating companies. Such
long term support is necessary so that model transformation languages, and their accompanying
tools, can gain a foothold in the fast-moving industrial world. The industrialisation of MTL tooling
was also proposed during an open community discussion detailed by Burgueño et al. (2019).

The goal should be to provide well rounded, all-in-one solutions that integrate all necessary
tooling in one place, to make development as seamless as possible. The appropriateness of this has
been shown by Jonkers et al. (Jonkers et al. 2006).

(o) Limit-test internal MTLs. A different approach that should be further explored is the
attempt to thoroughly embed an internal model transformation language in a main stream GPL as
done by Hinkel et al. (2019b). The advantage of this approach is the ability to inherit tooling of
the host language (Hinkel et al. 2019b) and it allows general purpose developers to apply their rich
pool of experience. However, there are some drawbacks to this approach, as discussed in Section 3.5.
The amount of tooling that can be properly integrated is limited and it is more difficult to develop
transformation specific tooling for internal languages as it is hard to extract the required information
from the code. For this reason, we think, the required tools should be known at design time and the
language has to be designed to expose all the required information while not imposing this as an
additional burden on developers. Researchers that plan to develop an internal model transformation
language should therefore thoroughly asses the tool requirements for the use case for which they
intend to develop their language.

3.8 Threats to validity
Our interview study was carefully designed, and followed reputable guidelines for preparation, con-
duction and analysis. Nonetheless there are some threats to validity that need to be discussed to
provide a complete picture of our study and its results.

3.8.1 Internal Validity
Internal validity describes the extent to which a casual conclusion based on the study is warranted.
The validity is threatened by manual errors and biases of the involved researchers throughout the
study process.

Errors could have been introduced during the transcription phase and during the analysis of the
data since both steps were conducted by a single author at a time.

To prevent transcription errors, all transcripts were re-examined after completion to ensure
consistency between the transcripts and audio recordings.

To minimize possible confirmation biases introduced during analysis and categorisation of in-
terviewee statements, random samples were checked by other authors to find possible discrepancies
between the authors assessments on statements. In cases where such discrepancies were encountered,
thorough discussions between all authors were conducted to find a consensus that was then applied
to all transcripts containing similar considerations.

Lastly there is the potential of misinterpretation of interviewees responses during analysis. While
we carefully stuck to interpret statements literally during coding, there are words and phrases that
have overloaded meanings. During the interviews, it would always be necessary to ask exactly what
meaning interviewees used, but this was not always possible. Therefore the threat could not be
mitigated completely as contextual information was required to interpret interviewees responses in
some cases.

3.8. Threats to validity 103

3.8.2 External Validity
External validity describes the extent to which the results of a study can be generalised. In our
interview study this validity is threatened by our interview participant assortment ,which is a result
of our sampling and selection method.

We utilise convenience sampling interviewing any and all people that respond to our emails.
This can limit how representative the final group of interviewees is of the target population. The
issue here is that we do not know much about the makeup of the target population. It is therefore
difficult to assess how much the group of participants deviates from a representative set.

Using research publications as the starting point for participant selection also introduces a bias
towards users from research. This can be clearly seen in Figure 3.6. There is an apparent lack
of participants from industry which limits the applicability of our results to industrial cases. This
threat is somewhat mitigated by the fact that half of all participants do have at least some contact
with industry, either through research projects in conjunction with industry or by having worked in
industry.

Another threat to external validity relates to model to text (M2T) transformations. Only a few
of our participants stated to have experience in applying M2T transformations. This is a result
of how the initial set of potential participants was constructed. The search terms used in the
SLR miss terms that relate to M2T such as ‘code generation’ or ‘model to text’. This limitation
was opted into to avoid having to differentiate between the two transformation approaches during
analysis. Moreover, the consensus during discussions was that we were talking about model to model
transformations. As such, our results can not be applied to the field of model to text languages.

Lastly, there is the threat of participation bias. Participants may disproportionately posses a
trait that reduces the generalisability of their responses. People that view model transformation
languages positively might be more inclined to participate than critics. We can not preclude this
threat, but, the amount of critique we were able to elicit from the interviews suggests the effects
from this bias to be weak. Other impacts of this bias are discussed in Section 3.8.4.

3.8.3 Construct Validity
Construct validity describes the extent to which the right method was applied to find answers for
the research question. This validity is threatened by an inappropriate method that allows for errors.

Prior to conducting our research much work went into designing a proper framework to use. Here
we relied on reputable existing guidelines for both the interview and analysis parts of this work.
We used open ended questions to facilitate an open space for participants to bring forth any and
all their opinions and considerations for the topic at hand. The statements used as guidance can
however present a potential threat since their wording could introduce an unconscious bias in our
interviewees. To combat this we selected broad statements as well as used both a negative and a
positive statement for each discussed property. However, there is a chance that these measures were
not fully sufficient.

Lastly, it can not be excluded that some relevant factors have not been raised during our inter-
views. We have interviewed a large number of people, but this threat cannot be overcome because
of the study design and the open nature of our research question.

3.8.4 Conclusion Validity
Conclusion validity describes the extent to which our results stem from the investigated variables
and are reproducible. Here, the biases of our participants represent the biggest threat.

It is safe to assume that people who do research on a subject are more likely to see it in a positive
light and less likely to find anything negative about it. As such there is the possibility that too
little negative impact factors were considered and presented. However, we found that the people we
interviewed were also able to deal with the topic in a very critical way. We therefore conclude that
the statements may have been somewhat more positively loaded, but that the results themselves
are meaningful.

104 Chapter 3. Paper B

3.9 Related Work
To the best of our knowledge, there exists no other interview study that focuses on influence factors
on the advantages and disadvantages of model transformation languages. Nonetheless there exist
several works that can be related to our study. The related work is divided into empirical studies
on model transformation languages, empirical studies on model transformations in general and
interview studies on MDE.

3.9.1 Empirical studies on model transformation languages
A structured literature review we conducted (Götz et al. 2021a) forms the basis for the work pre-
sented in this paper. The goal of the reported literature review was to extract and categorize claims
about the advantages and disadvantages of model transformation languages as well as to learn and
report on the current state of evaluation thereof. The authors searched over 4000 publications to
extract a total of 58 publications that directly claim properties of model transformation languages.
In total the authors found 137 claims and categorized them into 15 properties. From their work
the authors conclude that while many advantages and disadvantages are claimed little to no studies
have been executed to verify them. They also point out a general lack of context and background
information on the claimed properties that hinders evaluation and prompts scepticism.

Burgueño et al. (2019) report on a online survey as well as a subsequent open discussion at
the 12th edition of the International Conference on Model Transformations (ICMT’2019) about the
future of model transformation languages. Their goal for the survey was to identify reasons as to
why developers decided for or against the use of model transformation languages and what their
opinion on the future of these languages was. At ICMT’2019 where the results of the survey were
presented they then moderated an open discussion on the same topic. The results of the study
indicate that MTLs have fallen in popularity compared to at the beginning of the decade which
they attribute to technical issues, tooling issues, social issues and the fact that general purpose
languages have assimilated ideas from MTLs making GPLs a more viable option for defining model
transformations. While their methodology differed from our interview study, the results of both
studies support each other. However the results of our study are more detailed and provide a larger
body of background knowledge that is relevant for future studies on the subject.

The notion of general purpose programming languages as alternatives to MTLs for writing model
transformations has been explored by Hebig et al. (2018) and by us (Götz et al. 2021b). Hebig et
al (Hebig et al. 2018) report on a controlled experiment where student participants had to complete
three tasks involved in the development of model transformations. One task was to comprehend
an existing transformation, one task involved modifying an existing transformation and one task
required the participants to develop a transformation from scratch. The authors compare how the
use of ATL, QVT-O and the general purpose language Xtend affect the outcome of the three tasks.
Their results show no clear evidence of an advantage when using a MTL compared to a GPL but
concede the narrow conditions under which the observation was made. The study provides a rare
example of empirical evaluation of MTLs of which we suggest that more be made. The narrow
conditions the authors struggled with could be alleviated by follow-up studies that draw from our
results for defining their boundaries.

In a recent study by us (Götz et al. 2021b) we put the value of model transformation language
into a historical perspective and drew from the preliminary results of the interview study for the
study setup. We compare the complexity of a set of 10 model transformations written in ATL
with their counterparts written in Java SE5, which was current around 2006 when ATL was first
introduced, and Java SE14. The Java transformations were translated from the ATL modules
based on a predefined translation schema. The findings support the assumptions from Burgueno
et al. (Burgueño et al. 2019) in part. While we found that newer Java features such as Streams
allow for a significant reduction in cyclomatic complexity and lines of code the relative amount of
complexity of aspects that ATL can hide stays the same between the two Java versions.

Gerpheide et al. (2016) use an exploratory study with expert interviews, a literature review and
introspection to formalize a quality model for the QVT-O model transformation standard by the
OMG. They validate their quality model using a survey and afterwards use the quality model to
identify tool support need of transformation developers. In a final step the authors design and
evaluate a code test coverage tool for QVT-O. Their study is similar to ours in that they also relied
on expert interviews for their goal. The end goal of the study however differs from ours as they used

3.9. Related Work 105

the interviews to design a quality model for QvT-O while we used it to formulate influence factors
on quality attributes of model transformation languages

Lastly there are two study templates for evaluating model transformation languages which have
yet to be used for executing actual studies. Kramer et al. (2016) present a template for a controlled
experiment to evaluate the comprehensibility of model transformation languages. Their approach
suggests the use of a paper-based questionnaire to let participants prove their ability to understand
what a transformation code snippet does. The influence of the language in which the code is written
on comprehension speed and quality is then measured by comparing the average number of correct
answers and the average time spent to fill out the questionnaires. Strüber et al. (2016) propose
a controlled experiment for comparing the benefits and drawbacks of the reusability mechanisms
rule refinement and variability-based rules. They suggest that the value of the reusability of an
approach can be measured by looking at the comprehensibility of the two mechanisms as well their
changeability, which is measured through bug-fixing and modification tasks. The results of studies
executed based on both study templates could draw from our results for their final design and would
provide valuable empirical data, a gap we identified in this and the preceding literature review.

3.9.2 Empirical studies on model transformations
Tehrani et al. (2016) executed an interview based study on requirements engineering for model
transformation development. Their goal was to identify and understand the contexts and manner in
which model transformations are applied as well as how requirements for them are established. To
this end they interviewed 5 industry experts. From the interviews the authors found that out of 7
transformation projects only a single project was developed in an already existing project while all
other projects were created from scratch. Their findings are relevant to our work since participants
in our study agreed that it is hard to integrate MTLs in existing infrastructures. Whether the fact
that MTLs are hard to integrate was an influence factor for the projects considered in the interview
study by them is however not clear.

Groner et al. (2020) utilize an exploratory mixed method study consisting of a survey and subse-
quent interviews with a selection of the survey participants to try and evaluate how developers deal
with performance issues in their model transformations. They also asses the causes and solutions
that developers experienced. The survey results show that over half of all developers have expe-
rienced performance issues in their transformations. While the interviews allowed the authors to
identify and categorize performance causes and solutions into 3 categories: Engine related, Transfor-
mation definition related and Model related. From the interviews they were also able to identify that
tools such as useable profilers and static analyses would help developers in managing performance
issues. The results of their study highlight that some of the factors identified by us are also relevant
for other MTL properties not directly investigated in our study.

3.9.3 Interview studies on model driven software engineering
There are numerous publications and several groups of researchers that have carried out large scale,
in-depth empirical studies on model driven engineering as a whole. We focus on a selection of those
that have relation to our study in terms of findings.

Whittle, Hutchinson, Rouncefield et al. used questionnaires (Hutchinson et al. 2011a, 2014)
and interviews (Hutchinson et al. 2011a,b, 2014; Whittle et al. 2013) to elicit positive and negative
consequences of the usage of MDE in industrial settings. Apart from technical factors related to
tooling they also found organisational and social factors that impact the adoption and efficacy of
MDE. Several of their findings for MDE in general coincide with results from our study. Related
to tooling they too found the factors of Interoperability, Maturity and Usability to be influential.
Moreover, on the organisational side, the small amount of people that are knowledgable in MDE
techniques and the problem of integrating into existing infrastructure are also results Whittle et al.
found. Lastly, developers being more interested in using techniques that help build their CV was
identified by them as a limiting factor too.

Staron (2006) analyse data collected from a case study of MDE adoption at two companies
where one company withdrew from adopting MDE while the other was in the process of adoption.
Their findings suggest that legacy code was a main influence factor on whether a cost efficient MDE
adoption was possible. This observation is consistent with our findings that integrating MTLs into
existing infrastructures has a negative impact on the Productivity that can be achieved with MTLs.

106 Chapter 3. Paper B

The research group surrounding Mohagheghi also carried out multiple empirical studies on MDE,
focusing on factors for and consequences of adoption thereof. They use surveys and interviews at
several companies (Mohagheghi et al. 2013a,b) as well as a literature review (Mohagheghi et al. 2008)
for this purpose. In addition to mature tooling, factors identified by the authors are usefulness, ease
of use and compatibility with existing tools. Similar to statements by our interviewees, they also
found that MDE is seen as a long term investment. It is not well suited for single projects.

Lastly, Akdur et al. (2018) report on a large online survey of people from the domain of embedded
systems industry. They too found tools surrounding MDE to be a major factor. Another interesting
finding by them was that UML models are by far the most commonly used models. This is of
relevance to our results since one of our interviewees pointed out, that the makeup of some UML
models can have detrimental effects on the usefulness of MTLs.

The results of all presented research groups show, that many of the factors we identified for
MTLs also apply to MDE in general which provides additional confidence in our results and shows
that advancements in these areas would have a high impact.

3.10 Conclusion
There are many claims about the advantages and disadvantages of model transformation languages.
In this paper, we presented and argued the detailed factors that play a role for such claims. Based on
interviews with 56 participants from research and industry we present a structure model of relevant
factors for the Ease of writing, Expressiveness, Comprehensibility, Tool Support, Productivity, Reuse
and Maintainability of model transformation languages. For each factor we detail which properties
they influence and how they influence them. We have identified two types of factors. There
are factors that have a direct impact on said properties, e.g. different capabilities of model
transformation languages like automatic trace handling. And there are factors that define a context
whose characteristics moderate the the impact of the former factors, e.g. the Skills of developers.

Based on the interview results we suggest a number of tangible actions that need to be taken
in order to convey the viability of model transformation languages and MDSE. For one, empirical
studies need to be executed to provide proper substantiation to claimed properties. We also need
to see more innovation for transformation specific reuse, legacy integration and need to improve
outreach and presentation to both industry and academia. Lastly, efforts must be made to improve
tool support and especially tool usability for MTLs.

For all of the suggested actions, our results can provide detailed data to draw from.

107

Chapter 4

Paper C

Traceability and Reuse Mechanisms, the most important Properties of Model Trans-
formation Languages

S. Höppner, M. Tichy

under review in Empirical Software Engineering (EMSE)
Springer Nature

Chapter 4. Paper C 109

Abstract
Context
Dedicated model transformation languages are claimed to provide many benefits over the use of
general purpose languages for developing model transformations. However, the actual advantages
and disadvantages associated with the use of model transformation languages are poorly understood
empirically. There is little knowledge and even less empirical assessment about what advantages
and disadvantages hold in which cases and where they originate from. In a prior interview study,
we elicited expert opinions on what advantages result from what factors surrounding model trans-
formation languages as well as a number of moderating factors that moderate the influence.
Objective
We aim to quantitatively asses the interview results to confirm or reject the influences and modera-
tion effects posed by different factors. We further intend to gain insights into how valuable different
factors are to the discussion so that future studies can draw on these data for designing targeted
and relevant studies.
Method
We gather data on the factors and quality attributes using an online survey. To analyse the data and
examine the hypothesised influences and moderations, we use universal structure modelling based
on a structural equation model. Universal structure modelling produces significance values and
path coefficients for each hypothesised and modelled interdependence between factors and quality
attributes that can be used to confirm or reject correlation and to weigh the strength of influence
present.
Results
We analyzed 113 responses. The results show that the MTL capabilities Tracing and Reuse Mech-
anisms are most important overall. Though the observed effects were generally 10 times lower than
anticipated. Additionally, we found that a more nuanced view of moderation effects is warranted.
Their moderating influence differed significantly between the different influences, with the strongest
effects being 1000 times higher than the weakest.
Conclusion
The empirical assessment of MTLs is a complex topic that cannot be solved by looking at a single
stand-alone factor. Our results provide clear indication that evaluation should consider transforma-
tions of different sizes and use-cases that go beyond mapping one elements attributes to another.
Language development on the other hand should focus on providing practical, transformation spe-
cific reuse mechanisms that allow MTLs to excel in areas such as maintainability and productivity
compared to GPLs.

110 Chapter 4. Paper C

4.1 Introduction
Model driven engineering (MDE) envisions the use of model transformations as a main activity dur-
ing development (Sendall et al. 2003). When practising MDE, model transformations are used for a
wide array of tasks such as manipulating and evolving models (Metzger 2005), deriving artefacts like
source code or documentation, simulating system behaviour or analysing system aspects (Schmidt
2006).

Numerous dedicated model transformation languages (MTLs) of different form, aim and syn-
tax (Kahani et al. 2019) have been developed to aid with model transformations. Using MTLs
is associated with many benefits compared to using general purpose languages (GPLs), though
little evidence for this has been brought forth (Götz et al. 2021a). The number of claimed ben-
efits is enormous and includes, but is not limited to, better Comprehensibility, Productivity and
Maintainability as well as easier development in general (Götz et al. 2021a). The existence of such
claims can partially be attributed to the advantages that are ascribed to domain specific languages
(DSLs) (Hermans et al. 2009; Johannes et al. 2009).

In a prior systematic literature review, we have shown that it is still uncertain whether these
advantages exist and where they arise from (Götz et al. 2021a). Due to this uncertainty it is hard to
convincingly argue the use of MTLs over GPLs for transformation development. This problem is ex-
acerbated when considering recent GPL advancements, like Java Streams, LINQ in C# or advanced
pattern matching syntax, that help reduce boilerplate code (Höppner et al. 2021) and have put them
back into the discussion for transformation development. Even a community discussion held at the
12th edition for the International Conference on Model Transformations (ICMT’19) acknowledges
GPLs as suitable contenders (Burgueño et al. 2019). Moreover, the few existing empirical studies on
this topic provide mixed and limited results. Hebig et al. found no direct advantage for the devel-
opment of transformations, but did find an advantage for the comprehensibility of transformation
code in their limited setup (Hebig et al. 2018). A study conducted by us, found that certain use
cases favour the use of MTLs, while in others the versatility of GPLs prevails (Höppner et al. 2021).
Overall there exists a gap in knowledge in what the exact benefits of MTLs are, how strong their
impact really is and what parts of the language they originate from.

To bridge this gap, we conducted an interview study with 56 experts from research and industry
to discuss the topic of advantages and disadvantages of model transformation languages (Höppner
et al. 2022a). Participants were queried about their views on the advantages and disadvantages
of model transformation languages and the origins thereof. The results point towards three main-
areas that are relevant to the discussion, namely General Purpose Languages Capabilities, Model
Transformation Languages Capabilities and Tooling. From the responses of the interviewees we
identified which claimed MTL properties are influenced by which sub-areas and why. They also
provided us with insights on moderation effects on these interdependencies caused by different Use-
Cases, Skill & Experience levels of users and Choice of Transformation Language.

All results of the interview study are qualitative and therefore limited in their informative value
as they do not provide indication on the strength of influence between the involved variables. It
is also not clear whether the influence model is complete and whether the views pretended by the
interview participants withstand community scrutiny. Therefore they only represent an initial data
set that requires a quantitative and detailed analysis.

In this paper, we report on the results of a study to confirm or deny the interdependencies
hypothesised from our interview results. We provide quantification of the influence strengths and
moderation effects. To ensure a more complete theory of interactions, we also present the results of
exploring interdependencies between factors and quality properties not hypothesised in the inter-
views.

Due to limited resources, this study focuses on the effects of MTL capabilities (namely Bidi-
rectionality, Incrementality, Mappings, Model Management, Model Navigation, Model Traversal,
Pattern Matching, Reuse Mechanisms and Traceability) on MTL properties (namely Comprehen-
sibility, Ease of Writing, Expressiveness, Productivity, Maintainability and Reusability and Tool
Support) in the context of their uses-case (namely bidirectional or unidirectional, incremental or
non-incremental, meta-model sanity, meta-model, model and transformation size and semantic gap
between input and output), the skills & experience of users and language choice. Further studies
can follow the same approach and focus on different areas. Descriptions for all MTL capabilities
and MTL properties can be found in Section 4.2 and thorough explanations can be found in our
previous works (Götz et al. 2021a; Höppner et al. 2022a).

4.1. Introduction 111

The goal of our study is to provide quantitative results on the influence strengths of interde-
pendences between model transformation language Capabilities and claimed Quality Properties as
perceived by users. Additionally we provide data on the strength of moderation expressed by contex-
tual properties. The study is structured around the hypothesised interdependencies between these
variables, and their more detailed breakdown, extracted from our previous interview study. Each
presumed influence of a MTL capability on a MTL property forms one hypothesis which is to be
examined in this study. All hypotheses are extended with an assumption of moderation by the
context variables. The system of hypotheses that arises from these deliberations is visualised in a
structure model, which forms the basis for our study. The structure model is depicted in Figure 4.1.
The model shows exogenous variables on the left and right and endogenous variables at the cen-
tre. Exogenous variables depicted in a ellipse with a dashed outline constitute the hypothesised
moderating variables.

All hypotheses investigated in our study are of the form: “<MTL Property> is (positively or
negatively) influenced by <MTL Capability>”. They are represented by arrows from exogenous
variables on the left of Figure 4.1 to endogenous variable at the centre. A moderation on the
hypothesised influence is assumed from all exogenous variables on the right of the figure connected
to the considered endogenous variable. In total we investigate 31 hypothesised influences, i.e. the
number of outgoing arrows from the exogenous variables on the left of Figure 4.1.

Our study is guided by the following research questions:

RQ1 Which of the hypothesised interdependencies withstands a test of significance?

RQ2 How strong are the influences of model transformation language capabilities on the properties
thereof?

RQ3 How strong are moderation effects expressed by the contextual factors use-case, skills & expe-
rience and MTL choice?

RQ4 What additional interdependencies arise from the analysis that were not initially hypothesised?

As the first study on this subject it contains confirmatory and exploratory elements. We intend
to confirm which of the interdependencies between MTL capabilities, MTL properties and contex-
tual properties withstand quantitative scrutiny (RQ1). We explore how strong the influence and
moderation effects between variables are (RQ2 & RQ3), to gain new insights and to confirm their
significance and relevance (minor influence strengths might suggest irrelevance even if goodness of fit
tests confirm a correlation that is not purely accidental). Lastly, we utilise the exploratory elements
of USM to identify interdependencies not hypothesised by the experts in our interviews (RQ4).

We use an online survey to gather data on language use and perceived quality of researchers
and practitioners. The responses are analysed using universal structure modelling (USM) (Buckler
et al. 2008) based on the structure model developed from the interview responses. This results in a
quantified structure model with influence weights, significance values and effect strengths.

Based on the responses from 113 participants, the key contributions of this paper are:

• An adjusted structure model with newly discovered interdependencies;

• Quantitative data on the influence weight and effect strength of all factors as well as significant
values for the influences;

• Quantitative data on the moderation strength of context factors;

• An analysis of the implications of the results for further empirical studies and language devel-
opment;

• Reflections on the use of USM for investigating large hypotheses systems in software engineer-
ing research;

The method used in the reported study has been reviewed and published as part of the Registered
Reports track at ESEM’22 (Höppner et al. 2022b).

The structure of this paper is as follows: Section 4.2 provides an extensive overview of model-
driven engineering, domain-specific languages, model transformation languages and structural equa-
tion modelling as well as universal structure modelling. Afterwards, in Section 4.3 the methodology

112 Chapter 4. Paper C

Bidirectionality
ξ1

Incrementality
ξ2

Mappings ξ3

Model Man-
agement ξ4

Model
Navigation ξ5

Model
Traversal ξ6

Pattern
Matching ξ7

Reuse Mech-
anisms ξ8

Traceability
ξ9

Meta-model
Size ξ13

Model
Size ξ14

Transformation
Sizeξ15

Bidirectional
Useξ18

Language
Choice ξ10

Language
Skills ξ11

Experience
ξ12

I/O Semantic
gap ξ16

Meta-model
sanity ξ17

Incremental
Use ξ19

Comprehensi-
bility η1

ζ1

Ease of
Writing η2

ζ2

Expressiveness
η3

ζ3

Tool Sup-
port η4

ζ4

Maintainability
η5

ζ5

Productivity
η6

ζ6

Reusability
η7

ζ1

Figure 4.1: Structure model depicting the hypothesised influence and moderation
effects of factors on MTL properties.

4.2. Background 113

is outlined. Demographic data of the responses is reported in Section 4.4 and the results of analysis
is presented in Section 4.5. In Section 4.6 we discuss implications of the results and report our
reflections on the use of USM. Section 4.7 discusses threats to validity of our study and how we met
them. Lastly, in Section 4.8 we present related work before giving concluding remarks on our study
in Section 4.9.

4.2 Background
In this section we provide the necessary background for our study. Since it is a follow up study to our
interview study (Höppner et al. 2022a) much of the background is the same and is therefore taken
from those descriptions. To stay self contained we still provide these descriptions. This concerns
Sections 4.2.1 to 4.2.3. Sections 4.2.4 and 4.2.5 contains an extension of our descriptions from the
registered report (Höppner et al. 2022b).

4.2.1 Model-driven engineering
The Model-Driven Architecture (MDA) paradigm was first introduced by the Object Management
Group in 2001 (OMG 2001). It forms the basis for an approach commonly referred to as Model-
driven development (MDD) (Brown et al. 2005), introduced as means to cope with the ever growing
complexity associated with software development. At the core of it lies the notion of using models as
the central artefact for development. In essence this means, that models are used both to describe
and reason about the problem domain as well as to develop solutions (Brown et al. 2005). An
advantage ascribed to this approach that arises from the use of models in this way, is that they
can be expressed with concepts closer to the related domain than when using regular programming
languages (Selic 2003).

When fully utilized, MDD envisions automatic generation of executable solutions specialized
from abstract models (Schmidt 2006; Selic 2003). To be able to achieve this, the structure of models
needs to be known. This is achieved through so called meta-models which define the structure of
models. The structure of meta-models themselves is then defined through meta-models of their own.
For this setup, the OMG developed a modelling standard called Meta-object Facility (MOF) (OMG
2002) on the basis of which a number of modelling frameworks such as the Eclipse Modelling Frame-
work (EMF) (Steinberg et al. 2008) and the .NET Modelling Framework (Hinkel 2016) have been
developed.

4.2.2 Domain-specific languages
Domain-specific languages (DSLs) are languages designed with a notation that is tailored for a
specific domain by focusing on relevant features of the domain (Van Deursen et al. 2002). In doing
so DSLs aim to provide domain specific language constructs, that let developers feel like working
directly with domain concepts thus increasing speed and ease of development (Sprinkle et al. 2009).
Because of these potential advantages, a well defined DSL can provide a promising alternative to
using general purpose tools for solving problems in a specific domain. Examples of this include
languages such as shell scripts in Unix operating systems (Kernighan et al. 1984), HTML (Raggett
et al. 1999) for designing web pages or AADL an architecture design language (SAEMobilus 2004).

4.2.3 Model transformation languages
The process of (automatically) transforming one model into another model of the same or differ-
ent meta-model is called model transformation (MT). They are regarded as being at the heart of
Model Driven Software Development (Metzger 2005; Sendall et al. 2003), thus making the process
of developing them an integral part of MDD. Since the introduction of MDE at the beginning of
the century, a plethora of domain specific languages for developing model transformations, so called
model transformation languages (MTLs), have been developed (Arendt et al. 2010; Balogh et al.
2006; George et al. 2012; Hinkel et al. 2019a; Horn 2013; Jouault et al. 2006; Kolovos et al. 2008).
Model transformation languages are DSLs designed to support developers in writing model trans-
formations. For this purpose, they provide explicit language constructs for tasks involved in model
transformations such as model matching. There are various features, such as directionality or rule
organization (Czarnecki et al. 2006), by which model transformation languages can be distinguished.

114 Chapter 4. Paper C

Table 4.1: MTL feature overview

Feature Characteristic Representative Language

Embeddedness Internal FunnyQT (Clojure), RubyTL (Ruby),
NMF Synchronizations (C#)

External ATL, Henshin, QVT

Rules Explicit Syntax Construct ATL, Henshin, QVT

Repurposed Syntax Construct NMF Synchronizations (Classes), Fun-
nyQT (Macros)

Location
Determination

Automatic Traversal ATL, QVT

Pattern Matching Henshin

Directionality Unidirectional ATL, QVT-O

Bidirectional QVT-R, NMF Synchronisations

Incrementality Yes NMF Synchronizations

No QVT-O

Tracing Automatic ATL, QVT

Manual NMF Synchronizations

Dedicated Model
Navigation
Syntax

Yes ATL (OCL), QVT (OCL), Henshin (im-
plicit in rules)

No NMF Synchronizations, FunnyQT,
RubyTL

For the purpose of this paper, we will only be explaining those features that are relevant to our
study and discussion in Sections 4.2.3.1 to 4.2.3.7. Table 4.1 provides an overview over the presented
features.

Please refer to Czarnecki et al. (2006), Kahani et al. (2019), and Mens et al. (2006) for complete
classification.

4.2.3.1 External and Internal transformation languages

Domain specific languages, and MTLs by extension, can be distinguished on whether they are
embedded into another language, the so called host language, or whether they are fully independent
languages that come with their own compiler or virtual machine.

Languages embedded in a host language are called internal languages. Prominent representatives
among model transformation languages are FunnyQT (Horn 2013) a language embedded in Clojure,
NMF Synchronizations and the .NET transformation language (Hinkel et al. 2019a) embedded in
C#, and RubyTL (Jesús Sánchez Cuadrado et al. 2006) embedded in Ruby.

Fully independent languages are called external languages. Examples of external model transfor-
mation languages include one of the most widely known languages such as the Atlas transformation
language (ATL) (Jouault et al. 2006), the graphical transformation language Henshin (Arendt et al.
2010) as well as a complete model transformation framework called VIATRA (Balogh et al. 2006).

4.2.3.2 Transformation Rules

Czarnecki et al. (2006) describe rules as being “understood as a broad term that describes the smallest
units of [a] transformation [definition]”. Examples for transformation rules are the rules that make
up transformation modules in ATL, but also functions, methods or procedures that implement a
transformation from input elements to output elements.

The fundamental difference between model transformation languages and general-purpose lan-
guages that originates in this definition, lies in dedicated constructs that represent rules. The
difference between a transformation rule and any other function, method or procedure is not clear
cut when looking at GPLs. It can only be made based on the contents thereof. An example of this

4.2. Background 115

� �
1 public void methodExample(Member m) {
2 System.out.println(m.getFirstName());
3 }
4 public void methodExample2(Member m) {
5 Male target = new Male();
6 target.setFullName(m.getFirstName() + " Smith");
7 REGISTRY.register(target);
8 }� �

List. 4.1: Example Java methods

� �
1 rule Member2Male {
2 from
3 s : Member (not s.isFemale())
4 to
5 t : Male (
6 fullName <- s.firstName + ’ Smith’
7)
8 }
9

10 rule Member2Female {
11 from
12 s : Member (s.isFemale())
13 to
14 t : Female (
15 fullName = s.firstName + ’ Smith’
16 partner = s.companion
17)
18 }� �

List. 4.2: Example ATL rules

can be seen in Listing 4.1, which contains exemplary Java methods. Without detailed inspection of
the two methods it is not apparent which method does some form of transformation and which does
not.

In a MTL on the other hand transformation rules tend to be dedicated constructs within the
language that allow a definition of a mapping between input and output (elements). The example
rules written in the model transformation language ATL in Listing 4.2 make this apparent. They
define mappings between model elements of type Member and model elements of type Male as well
as between Member and Female using rules, a dedicated language construct for defining transfor-
mation mappings. The transformation is a modified version of the well known Families2Persons
transformation case (Anjorin et al. 2017).

4.2.3.3 Rule Application Control: Location Determination

Location determination describes the strategy that is applied for determining the elements within
a model onto which a transformation rule should be applied (Czarnecki et al. 2006). Most model
transformation languages such as ATL, Henshin, VIATRA or QVT (OMG 2016), rely on some form
of automatic traversal strategy to determine where to apply rules.

We differentiate two forms of location determination, based on the kind of matching that takes
place during traversal. There is the basic automatic traversal in languages such as ATL or QVT,
where single elements are matched to which transformation rules are applied. The other form of
location determination, used in languages like Henshin, is based on pattern matching, meaning
a model- or graph-pattern is matched to which rules are applied. This does allow developers to
define sub-graphs consisting of several model elements and references between them which are then
manipulated by a rule.

The automatic traversal of ATL applied to the example from Listing 4.2 will result in the
transformation engine automatically executing the Member2Male on all model elements of type

116 Chapter 4. Paper C

Figure 4.2: Example Henshin transformation

Member where the function isFemale() returns false and the Member2Female on all other model
elements of type Member.

The pattern matching of Henshin can be demonstrated using Figure 4.2, a modified version of
the transformation examples by Krause et al. (2014). It describes a transformation that creates a
couple connection between two actors that play in two films together. When the transformation
is executed the transformation engine will try and find instances of the defined graph pattern and
apply the changes on the found matches.

This highlights the main difference between automatic traversal and pattern matching as the
engine will search for a sub graph within the model instead of applying a rule to single elements
within the model.

4.2.3.4 Directionality

The directionality of a model transformation describes whether it can be executed in one direction,
called a unidirectional transformation or in multiple directions, called a multidirectional transfor-
mation (Czarnecki et al. 2006).

For the purpose of our study the distinction between unidirectional and bidirectional transfor-
mations is relevant. Some languages allow dedicated support for executing a transformation both
ways based on only one transformation definition, while other require users to define transformation
rules for both directions. General-purpose languages can not provide bidirectional support and also
require both directions to be implemented explicitly.

The ATL transformation from Listing 4.2 defines a unidirectional transformation. Input and
output are defined and the transformation can only be executed in that direction.

The QVT-R relation defined in Listing 4.3 is an example of a bidirectional transformation def-
inition (For simplicity reasons the transformation omits the condition that males are only created
from members that are not female). Instead of a declaration of input and output, it defines how
two elements from different domains relate to one another. As a result given a Member element its
corresponding Male elements can be inferred, and vice versa.

4.2.3.5 Incrementality

Incrementality of a transformation describes whether existing models can be updated based on
changes in the source models without rerunning the complete transformation (Czarnecki et al.
2006). This feature is sometimes also called model synchronisation.

Providing incrementality for transformations requires active monitoring of input and/or output
models as well as information which rules affect what parts of the models. When a change is detected
the corresponding rules can then be executed. It can also require additional management tasks to
be executed to keep models valid and consistent.

4.2. Background 117

� �
1 top relation Member2Male {
2 n, fullName : String;
3 domain Families s:Member {
4 firstName = n };
5 domain Persons t:Male {
6 fullName = fullName};
7 where {
8 fullName = n + ’ Smith’; };
9 }� �

List. 4.3: Example QVT-R relation

4.2.3.6 Tracing

According to Czarnecki et al. (2006) tracing “is concerned with the mechanisms for recording different
aspects of transformation execution, such as creating and maintaining trace links between source and
target model elements”.

Several model transformation languages, such as ATL and QVT have automated mechanisms for
trace management. This means that traces are automatically created during runtime. Some of the
trace information can be accessed through special syntax constructs while some of it is automatically
resolved to provide seamless access to the target elements based on their sources.

An example of tracing in action can be seen in line 16 of Listing 4.2. Here the partner at-
tribute of a Female element that is being created, is assigned to s.companion. The s.companion
reference points towards a element of type Member within the input model. When creating a Female
or Male element from a Member element, the ATL engine will resolve this reference into the corre-
sponding element, that was created from the referred Member element via either the Member2Male
or Member2Female rule. ATL achieves this by automatically tracing which target model elements
are created from which source model elements.

4.2.3.7 Dedicated Model Navigation Syntax

Languages or syntax constructs for navigating models is not part of any feature classification for
model transformation languages. However, it was often discussed in our interviews and thus requires
an explanation as to what interviewees refer to.

Languages such as OCL (OMG 2014), which is used in transformation languages like ATL,
provide dedicated syntax for querying and navigating models. As such they provide syntactical
constructs that aid users in navigation tasks. Different model transformation languages provide
different syntax for this purpose. The aim is to provide specific syntax so users do not have to
manually implement queries using loops or other general purpose constructs. OCL provides a
functional approach for accumulating and querying data based on collections while Henshin uses
graph patterns for expressing the relationship of sought-after model elements.

4.2.4 Structural equation modelling and (Universal) Structural Equation
Modelling

Structural equation modelling (SEM) is an approach used for confirmatory factor analy-
sis (Graziotin et al. 2021). It defines a set of methods used to “investigate complex relationship
structures between variables and allows for quantitative estimates of interdependencies thereof. Its
goal is to map the a-priori formulated cause-effect relationships into a linear system of equations
and to estimate the model parameters in such a way that the initial data, collected for the variables,
are reproduced as well as possible” (Weiber et al. 2021).

Structural equation modelling distinguishes between two sets of variables manifest and latent.
Manifest variables are variables that are empirically measured and latent variables describe theo-
retical constructs that are hypothesised to interact with each other. Latent variables are further
divided into exogenous or independent and endogenous or dependent variables.

So called structural equation models, a sample of which can be seen in Figure 4.3, comprised
of manifest and latent variables, form the heart of analysis. They are made up of three connected

118 Chapter 4. Paper C

Comprehensibility
η₁

ζ₁

ƛ₁₁

Mappings
ξ₁% Mappings

used x₁

Comp.
rating y₁

δ₁

ε₁

Measurement model for exogenous latent
variables

Measurement model for endogenous
latent variables

structure model

γ₁₁

ƛ₁

Legend

δ₁

x₁

residual variable

manifest variable

latent variable

Experience
ξ₂

programmer
for #years x₂

ƛ₂₂δ₂

ξ₁

moderating
latent variableξ₁

#hours
working per

month x₃
δ₃

ƛ₃₂
γ₂₁

Figure 4.3: The makeup of a structural equation model.

sub-models. The structure model, the measurement model of the exogenous latent variables and the
measurement model of the endogenous latent variables.

The structure model defines all hypothesised interactions between exogenous (ξexID) and en-
dogenous (ηendID) latent variables. Each exogenous variable is linked, by arrow, to all endogenous
variables that are presumed to be influenced by it. Each of these connections is given a variable
(γexID_endID) that measures the influence strength. If an exogenous variable moderates the in-
fluences on a endogenous variable, the exogenous variable is depicted with a dashed outline and
connected to all endogenous variables that are moderated by it1. For each moderated influence a
separate variable of the form γexID_endID_modEndID is assigned. In addition, an residual (or error)
variable is appended to each endogenous latent variable to represent the influence of variables not
represented in the model.

Figure 4.3 shows an example structure equation model model for the hypothesis that “Mappings
help with the comprehensibility of transformations, depending on the developers experience.”. The
structure model seen at the centre of the figure, is comprised of the exogenous latent variable ξ1
(Mappings), the moderating exogenous variable ξ2 (Experience), the endogenous latent variable
η1 (Comprehensibility), a presumed influence of Mappings on Comprehensibility via γ11 and the
error variable ζ1. Lastly the model also contains a moderation of Experience on all influences of
Comprehensibility. As described earlier, this moderation effect is assigned the variable γ11_2. The
moderation variables are not depicted in our graphical representation of the structure model because
of their high number and associated visibility issues.

The measurement model of the exogenous latent variables reflects the relationships between all
exogenous latent variables and their associated manifest variables. Each manifest variable is linked,
by arrow, to all exogenous latent variables that are measured through it. Each of these connections is
given a variable that measures the indication strength of the manifest variable for the latent variable.
Additionally, an error variable for each manifest variable is introduced that represents measurement
errors. In Figure 4.3, the measurement model for exogenous latent variables, seen at the left of the
figure, is comprised of the exogenous latent variables ξ1 (Mappings) and ξ2 (Experience), the manifest
variables x1 (% of code using Mappings), x2 (number of years a person has been a programmer)
and x3 (number of hours per month spent developing transformations) their measurement accuracy
for Mapping usage λ11 and their measurement accuracy for Experience λ22 and and λ32 and the
associated measurement error δ1 and δ2 and δ3.

The measurement model of the endogenous latent variables reflects the relationships between all
endogenous latent variables and their associated manifest variables. It is structured the same way
as the measurement model of the exogenous latent variables. In Figure 4.3, it is shown on the right
of the figure.

1To illustrate moderation, arrows are usually shown from the moderating exogenous variable to the arrow repre-
senting the moderated influence , i.e., an arrow between an exogenous variable and an endogenous variable. However
our illustration deviates from this due to the size and makeup of our hypothesis system. Standard representations
can be found in the basic literature such as Weiber et al. (2021).

4.2. Background 119

Given a structural equation model and measurements for manifest variables, the SEM approach
calls for estimating the influence weights and latent variables within the models. This is done in
alternation for the measurement models and the structure model until a predefined quality criterion
is reached. Traditional methods (covariance-based structural equation modeling & partial least
squares) use different mathematical approaches such as maximum-likelihood estimation or least
squares (Weiber et al. 2021) to estimate influence weights.

Universal Structure Modeling (USM) is an exploratory approach that complements the tra-
ditional confirmatory SEM methods (Buckler et al. 2008). It combines the iterative methodology of
partial least squares with a Bayesian neural network approach using multilayer perceptron architec-
ture. USM derives a starting value for latent variables in the model via principal component analysis
and then applies the Bayesian neural network to discover an optimal system of linear, nonlinear and
interactive paths between the variables. This enables USM to identify complex relationships that
may not be detected using traditional SEM approaches including hidden structures within the data
and highlights unproposed model paths, nonlinear relations among model variables, and moderation
effects.

The primary measures calculated in USM are the ‘Average Simulated Effect’ (ASE), ‘Overall
Explained Absolute Deviation’ (OEAD), ‘interaction effect’ (IE) and ‘parameter significance’. ASE
measures the average change in the endogenous variable resulting from a one-unit change in the
exogenous variable across all simulations. OEAD assesses the degree of fit between the observed
and simulated values of the endogenous variable, capturing the overall explanatory power of the
model. IE evaluates the extent to which the effect of one exogenous variable on the endogenous
variable depends on the level of another variable. Parameter Significance determines whether the
estimated coefficients for each exogenous variable in the model are statistically significant at a
predetermined level of confidence which indicated if the exogenous variable has a meaningful impact
on the endogenous variable and is calculated through a bootstrapping routine (Mooney et al. 1993).
These metrics together provide a comprehensive assessment of the performance and explanatory
power of a USM model.

USM is recommended for use in situations where traditional SEM approaches may not be suffi-
cient to fully explore the relationships between variables. Using USM instead of traditional struc-
tural equation modelling approaches is suggested for studies where there are still uncertainties about
the completeness of the underlying hypotheses system and for exploring non-linearity in the influ-
ences (Buckler et al. 2008; Weiber et al. 2021). Moreover its use of a neural network also reduces
the requirements for the scale levels of data thus allowing the introduction of categorical variables
in addition to metric variables (Weiber et al. 2021).

At present, the tool NEUSREL2 is the only tool available for conducting USM.

4.2.5 MTL Quality Properties
There exists a large body of quality properties that get associated with model transformation lan-
guages. In literature many claims are made about advantages or disadvantages of MTLs in these
different properties. We categorised these properties in a previous work of ours (Götz et al. 2021a).
This study focuses on a subset of all the identified quality properties of MTLs which requires them
to be properly explained. In this section, we give a brief description of our definitions of each of the
quality properties of MTLs relevant to the study.

Comprehensibility describes the ease of understanding the purpose and functionality of a trans-
formation based on reading code.

Ease of Writing describes the ease at which a developer can produce a transformation for a
specific purpose.

Expressiveness describes the amount of useful dedicated transformation concepts in a language.
Productivity describes the degree of effectiveness and efficiency with which transformations can

be developed and used.
Maintainability describes the degree of effectiveness and efficiency with which a transformation

can be modified.
Reusability describes the ease of reusing transformations or parts of transformations to create

new transformations (with different purposes).
Tool Support describes the amount of quality tools that exist to support developers in their

efforts.
2https://www.neusrel.com

https://www.neusrel.com

120 Chapter 4. Paper C

4.3 Methodology
The methodology used in this study has been reviewed and published as part of the Registered
Reports track at ESEM’22 (Höppner et al. 2022b). In the following, we provide a more detailed
description and highlight all deviations from the reported method as well as justification for the
changes.

The study itself is comprised of the following steps which were executed sequentially and are
reported on in this section.

1. Development of survey methodology.

2. Submission to the Registered Reports track at EMSE’22.

3. Methodology revision based on feedback.

4. Development of online survey using an on premise version of the survey tool LimeSurvey3.

5. Survey review and pilot test by co-authors.

6. Reworking survey based on pilot test.

7. Opening online survey to public.

8. Reaching out to potential survey subjects per mail and social media.

9. Closing of online survey (9 weeks after opening).

10. Data extraction.

11. Data analysis using the USM tool NEUSREL.

The steps executed differ in two ways from those reported in the registered report. First, we do
not contact potential participants for a second time after two weeks. This was deemed unnecessary
based on the number of participants at that point in time. Moreover we did not want to bother
those that participated already and had no way of knowing their identity. Second, we kept the
survey open 3 weeks longer than intended due to receiving several requests to do so.

4.3.1 Survey Design
In this section we detail the design of the used questionnaire and methodology used to develop and
distribute it.

4.3.1.1 Questionnaire

The questions in the questionnaire are designed to query data for measuring the latent variables
from the structure model in Figure 4.1. The complete questionnaire can be found in Appendix C.2.
In the following, we describe each latent variable and explain how we measure it through questions
in the questionnaire.

There are 26 latent variables relevant to our study. Variables ξ1..19 describe exogenous variables
and η1..7 describe endogenous variables. Each latent variable is measured through one or more
manifest variables. Extending the structure model from Figure 4.1 with the manifest variables
produces the complete structural equation model evaluated in this study. Note that USM reduces
the requirements for the scale levels of data thus allowing the use of categorical variables in addition
to metric variables (Weiber et al. 2021).

All latent variables related to MTL capabilities (ξ1..9) are associated with a single manifest
variable x1..9, which measures how frequently the participants utilized the MTL capabilities in
their transformations. This measurement is represented as a ratio ranging from 0% to 100%. The
higher the value of x1..9, the more frequently the participants used the MTL capabilities in their
transformations. Similarly, latent variables related to MTL properties (η1..7) are associated with
a single manifest variable y1..7 which measures the perceived quality of the property on a 5-point
likert scale (e.g., very good, good, neither good nor bad, bad, very bad).

3https://www.limesurvey.org/

https://www.limesurvey.org/

4.3. Methodology 121

The use of single-item scales is a debated topic. We justify their usage for the described latent
variables on multiple grounds. First, the latent variables are of high complexity due to the abstract
concepts they represent. Second, our study aims to produce first results that need to be investigated
in more detail in follow up studies, more focused on single aspects of the model. And third, due
to the size of our structural equation model multi-item scales for all latent variables would increase
the size of the survey, potentially putting off many subjects. The validity of these deliberations for
using single-item scales is supported by Fuchs et al. (2009).

The latent variable language choice (ξ10) is measured by means of querying participants to list
their 5 most recently used transformation languages. In our registered report we planned to also
request participants to give an estimate on the percentage of their respective use % (x10). This was
discarded during pilot testing as it was seen as unnecessarily prolonging the questionnaire. Pilot
testers had difficulties providing accurate data and questioned whether this data was actually used
in analysis.

Language skills (ξ11) is measured through x11 and x12 for which participants are asked to give
the amount of years they have been using each language (x11) and the amount of hours they use
the language per month (x12).

Similarly, experience (ξ12) is associated with the amount of years subjects have been involved in
defining model transformations (x13) and the amount of hours they spend on developing transfor-
mations each month (x14).

Meta-model size (ξ13) and model size (ξ14) both require participants to state the range between
which their (meta-) models vary (x15, x16). This is measured by offering participants a number
of ranges of (meta-) model objects. For each range participants should give an estimate on how
much percent of the (meta-) models they work fall within that size range. For models the ranges
are: #objects ≤ 10, 10 ≤ #objects ≤ 100, 100 ≤ #objects ≤ 1000, 1000 ≤ #objects ≤ 10000,
10000 ≤ #objects ≤ 100000, 100000 ≤ #objects. For meta-model the ranges are: #objects ≤ 10,
10 ≤ #objects ≤ 20, 20 ≤ #objects ≤ 50, 50 ≤ #objects ≤ 100, 100 ≤ #objects ≤ 1000, 1000 ≤
#objects. Similarly, Transformation size (ξ15) is measured on a range of lines of code (x17). The
options being: LOC ≤ 100, 100 ≤ LOC ≤ 500, 500 ≤ LOC ≤ 1000, 1000 ≤ LOC ≤ 5000, 5000 ≤
LOC ≤ 10000, 10000 ≤ LOC. Querying size data in this manner and the associated ranges have
been successfully applied in a prior work the authors were involved in (Groner et al. 2021).

To formulate the semantic gap between input and output (ξ16) we elicit the similarity of the
structure (x18) and data types (x19) on a 5-point likert scale (very similar, similar, neither similar
nor dissimilar, dissimilar, very dissimilar). Participants are asked to give the percentage of all their
meta-models that fall within each of the five assessments.

The meta-model sanity (ξ17) is measured through means of how well participants perceive their
structure (x20) and their documentation (x21) to be on a 5-point scale (very well, well, neither well
nor bad, bad, very bad). Participants are asked to give the percentage of all their meta-models that
fall within each of the five assessments.

Lastly, for both bidirectional uses (ξ18) and incremental uses (ξ19) we query participants on the
ratio of bidirectional (x22) and incremental (x23) transformations compared to simple uni-directional
transformations they have written.

4.3.1.2 Pilot Study

We pilot tested the study with three researchers from the institute. All pilot testers are researchers
in the field of model driven engineering with more than 5 years of experience. Based on their
feedback, we reworded some questions questions, removed the usage percentage part of the question
for language choice and added more precise descriptions of the queried concepts. We then made the
questionnaire publicly available and distributed a link to it via emails.

4.3.1.3 Target Subjects & Distribution

The target subjects are both researchers and professionals from industry that have used dedicated
model transformation languages to develop model transformations in the last five years. We use
voluntary and convenience sampling to select our study participants. Both authors reached out to
researchers and professionals they knew personally via mail and request them to fill out the online
survey. We further reach out, via mail, to all authors of publications listed in ACM Digital Library,
IEEE Xplore, Springer Link and Web of Science that contain the key word model transformation
from the last five years. A third source of subjects is drawn from social media. The authors use

122 Chapter 4. Paper C

their available social media channels to recruit further subjects by posting about the online-survey
on the platforms. The social media platform used for distribution was MDE-Net4, a community
platform dedicated to model driven engineering.

The sampling method differs from the intended method by not including snowballing sampling as
a secondary sampling method. We decided on this to have more control over the subjects receiving
a link to the study as we believe secondary and tertiary contacts might be too far secluded from our
target subjects.

Participation was voluntary and we did not incentivise participation through offering rewards.
This decision is rooted in our experience in previous studies one other survey with 83 subjects
(Groner et al. 2021) and the interview study we are basing this study on with 56 subjects (Höppner
et al. 2022a).

It is suggested in literature to have between 5 to 10 times as many participants as the largest
number of parameters to be estimated in each structural equation (i.e., the largest number of
incoming paths for a latent model variable) (Buckler et al. 2008). Thus, the minimal number of
subjects for our study to achieve stable results is 80. To gain any meaningful results a sample size
of 30 must not be undercut (Buckler et al. 2008).

In total we contacted 2383 potential participants and got 1135 responses exceeding the minimum
requirement for stable results.

4.3.2 Data Analysis
We use USM to examine the hypotheses system modelled by the structure model shown in Fig-
ure 4.1. USM is chosen over its structural equation modelling alternatives due to it being able
to better handle uncertainty about the completeness of the hypothesis system under investigation,
it having more capabilities to analyse moderation effects and the ability to investigate non linear
correlations (Weiber et al. 2021).

USM requires a declaration of an initial likelihood of an interdependence between two variables.
This is used as a starting point for calculating influence weights but can change over the course of
calculation. For this, Buckler et al. (2008) suggest to only assign a value of 0 to those relationships
that are known to be wrong. We use the results of our interview study (Höppner et al. 2022a),
shown in the structure model, to assign these values. For each path that is present in the model,
we assume a likelihood of 100%. To check for interdependencies that might have been missed by
interview participants, we also use a likelihood of 100% for all missing paths between ξ1..19 and η1..7.
Our plan was to use a likelihood of 50% for these interdependencies but the tool available to us only
allowed for either 100% or 0% to be put as input.

The tool NEUSREL is used on the extracted empirical data and the described additional input
to estimate path weights and moderation weights within the extended structure model, i.e., the
structure model where each exogenous latent variable is connected to all endogenous latent variables.
It also runs significance tests via a bootstrapping routine (Buckler et al. 2008; Mooney et al. 1993)
and produces the significance value estimates for each influence. The following procedures are then
followed to answer the research questions from Section 4.1.

RQ1. We reject all hypothesised influences, i.e., those present in our structure model in Fig-
ure 4.1, that do not pass the statistical significance test. The threshold we set for this is 0.01.
Moreover, we discard hypothesised influences with minimal effects strengths that are several mag-
nitudes lower than the median influence of all coefficients. If, for example, the median of all path
coefficients is 0.03 all influences with a coefficient lower or equal to 0.0009 are discarded. We do so
because such low influences suggest that the influence is negligible.

RQ2 & RQ3. All path coefficients produced that were not rejected in RQ1 will then provide
direct values for the influence and moderation strengths to answer RQ2 & RQ3.

RQ4. The same significance criteria we applied to all hypothesised influences for RQ1, we also
apply to the extended influences, i.e., those not present in the structure model from Figure 4.1.
Those influences that pass the significance test are added to the initial structural model as newly
discovered influences.

4https://mde-network.com/
5This constitutes a response rate of 4.8%. We do however not know how many responses are a result of our social

media posting.

https://mde-network.com/

4.4. Demographics 123

4.3.3 Privacy and Ethical concerns
All participants were informed of the data collection procedure, handling of the data and their rights,
prior to filling out the questionnaire. Participation was completely voluntary and not incentivised
through rewards.

During selection of potential participants the following data was collected and processed.

• First & last name.

• E-Mail address.

The questionnaire did not collect any sensitive or identifiable data.
All data collected during the study was not shared with any person outside of the group of

authors.
The complete information and consent form can be found in Appendix C.4.
The study design was not presented to an ethical board. The basis for this decision are the

rules of the German Research Foundation (DFG) on when to use a ethical board in humanities
and social sciences6. We refer to these guidelines because there are none specifically for software
engineering research and humanities and social sciences are the closest related branch of science for
our research.

4.4 Demographics
We detail the background and experience of the participants in our study in the following sections.

4.4.1 Experience in developing model transformations (ξ12)
Our survey captured model transformation developers with wide range of experience. The experience
span (x13) ranges from the least experience participant with half a year of experience up to the
one with most experience of 30 years. Figure 4.4 shows a histogram of the experience stated by
participants. Over half of all participants have between 1 to ten years of experience in writing model
transformations. Three stated to have more than 20 years in total. On average our participants
have 9 years of experience.

How much time participants spend developing transformations each month (x14) also greatly
varies. Some participants have not developed transformations in recent time whereas others stated
to spend 70 or more hours each month on transformation development. Figure 4.5 shows an overview
over the hours participants spend each month in developing transformations. The vast majority
spends around 1 to 10 hours each month on transformation development. Nine stated that they did
not develop any transformation in recent times. On average our participants spend about 14 hours
per month developing model transformations.

4.4.2 Languages used for developing model transformations (ξ10) and ex-
perience therein (ξ11)

To develop their transformations, participants use a wide array of languages. In total 43 languages
(x10) have been named 24 of which are unique languages used only by a single participant.

Surprisingly the language that has been used by the most participants is Java, a general purpose
language. Java has been used by 70 of the 113 participants. The most used MTL is ATL with 58
users closely followed by another GPL, namely Xtend with 52 users. Table 4.2 shows how many
participants use one of the ten most used languages for developing transformations.

Overall the prevalence of general purpose programming languages is higher than expected. This
might be explained by the large number of existing MTLs which reduce the amount of total users
per language while only four different GPLs are used.

6https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

https://www.dfg.de/foerderung/faq/geistes_sozialwissenschaften/

124 Chapter 4. Paper C

0
10

20
30

40

0 5 10 15 20 25 30
of years

of

 p
ar

tic
ip

an
ts

Figure 4.4: Histogram of
participants total experience

in years

0
20

40
60

80
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Hours per Month

of

 p
ar

tic
ip

an
ts

Figure 4.5: Histogram of
participants recent experi-

ence in hours per month

Table 4.2: Overview of languages used by participants

Language # number of participants

Java 70
ATL 58
Xtend 52
ETL 29
QVT-O 22
Henshin 14
JavaScript 12
eMoflon 7
Fujaba 5
Python 4

4.4. Demographics 125

el

em
en

ts
 <

=
10

10
 <

 #
 e

le
m

en
ts

 <
=

20
20

 <
 #

 e
le

m
en

ts
 <

=
50

50
 <

 #
 e

le
m

en
ts

 <
=

10
0

10
0

<

el
em

en
ts

 <
=

10
00

el

em
en

ts
 >

 1
00

0

Figure 4.6: Distribution of
meta-model sizes per partic-

ipant
LO

C
 <

=
10

0
10

0
<

LO
C

 <
=

50
0

50
0

<
LO

C
 <

=
10

00
10

00
 <

 L
O

C
 <

=
50

00
50

00
 <

 L
O

C
 <

=
10

00
0

LO
C

 >
 1

00
00

Figure 4.7: Distribution of
transformation sizes per par-

ticipant

4.4.3 Sizes (ξ12,ξ14)
The size distribution of meta-models (x15) transformed by participants is shown in Figure 4.6. On
the x-axis the given intervals of meta-model sizes are shown and on the y-axis the distribution
for each participant is shown. For example, the first ridge line at the bottom of Figure 4.6 shows
the answers of a participant who has stated that 100% of their transformations revolve around
meta-models with 10 or less meta-model elements.

The figure illustrates that most transformations involve meta-models with 20 to 100 meta-model
elements. Moreover, most participants have some experience with small meta-models while only
a handful of them has experience with transformations involving large meta models of more than
1.000 elements.

The size distribution of model transformations (x17) written by participants is shown in Fig-
ure 4.7. Similarly to the meta-model sizes, the figure illustrates that most participants have some
experience with small transformations of sizes up to 100 lines of code. Most also have experience
with large transformations up to 1.000 lines of code. More than 25% of all participants also have
experience with large and very large transformations ranging from 5.000 up to more than 10.000
lines of transformation code.

Overall the experience of our participants includes many moderately large to large transforma-
tions. This strengthens us in the assumption that their answers are meaningful for our study.

4.4.4 Conceptual distance between meta-models (ξ16)
The similarity distribution of meta-models involved in the transformations of our participants is
shown in Figure 4.8 for the similarity of meta-model structures (x18) and Figure 4.9 for the similarity
of data types (x19). Both show a even mix between structurally similar and distant meta-models
as well as similar and dissimilar attribute types within the elements that are transformed into each
other.

4.4.5 Meta-model quality (ξ17)
Participants agreed that the vast majority of meta-models they transform are well structured (x20).
This means there is little to no additional burden put onto development solely due to unfavourably
structured meta-models. The distribution of structure assessment per participant is shown in Fig-
ure 4.10.

126 Chapter 4. Paper C

Ve
ry

 S
im

ila
r

Si
m

ila
r

N
ei

th
er

 D
is

si
m

ila
r n

or
 S

im
ila

r
D

is
si

m
ila

r

Ve
ry

 D
is

si
m

ila
r

Figure 4.8: Distribution
of input output meta-model

structure similarity

Ve
ry

 S
im

ila
r

Si
m

ila
r

N
ei

th
er

 D
is

si
m

ila
r n

or
 S

im
ila

r
D

is
si

m
ila

r

Ve
ry

 D
is

si
m

ila
r

Figure 4.9: Distribution of
input output meta-model at-

tribute types similarity

The situation is different with documentation (x21). Most participants stated that they have
experience with badly or even very baldy documented meta-models Figure 4.11. For many partici-
pants, this constitutes the majority of meta-models they work with.

4.5 Results
In this section, we present the results of our analysis of the questionnaire responses using universal
structure modelling structured around the research questions RQ1-4. The quantitative results for
all influences between MTL capabilities and MTL properties are shown in Table 4.3 in Appendix C.1.
On the x-axis the different MTL Properties are shown. On the y-axis the MTL Capabilities are
shown. The first number in a cell describes the average simulated effect. The second number
describes the overall explained absolute deviation. The third number shows the significance value. A
significance value lower or equal to 0.01* (the chosen significance level) is indicated with one asterisks.
The effect strengths of moderation effects can be found in Tables C.1 to C.10 in Appendix C.1. Each
table describes the moderation effect of one of the moderating factors on all influences between MTL
Capabilities and MTL Properties.

The rest of this section presents our results in context of the four research questions. We focus on
the most salient influences that we deem interesting for the respective research question. Detailed
interpretation and discussion of the implications of the presented results are done in Section 4.6.

4.5.1 RQ1: Which of the hypothesised interdependencies withstands a
test of significance? & RQ4: What additional interdependencies
arise from the analysis that were not initially hypothesised?

Our first research question is aimed at evaluating the accuracy of the structure model developed in
the previous study (Höppner et al. 2022a). We do so by subjecting all hypothesised influences to
a significance test during analysis. The significance test can also be used to directly gain insights
into interdependencies missed in the initial model. Thus we discuss both the rejection of previously
hypothesised influences as well as the extension of the model through newly discovered significant
interdependencies in this section.

Most initially hypothesised influences withstand the test of significance but there are several ex-
ceptions. Most notably all but one(Maintainability) of the hypothesised influences of Bidirectionality
functionality of MTLs have to be rejected. This means that from our results we can not conclude
that the presence of Bidirectionality functionality in a language changes how people perceive the

4.5. Results 127

ve
ry

 w
el

l

w
el

l

ne
ith

er
 w

el
l n

or
 b

ad

ba
d

ve
ry

 b
ad

Figure 4.10: Distribution
of structure quality of meta-

models per participant
ve

ry
 w

el
l

w
el

l

ne
ith

er
 w

el
l n

or
 b

ad

ba
d

ve
ry

 b
ad

Figure 4.11: Distribution
of meta-model documenta-
tion quality per participant

Comprehensibility, Ease of Writing Expressiveness, Tool Support, Productivity and Reusability of
the language.

Similarly, half of the influences on Ease of Writing and Expressiveness are also rejected. This
means that the presence of Bidirectionality, Incrementality, Model Management and Model Traversal
functionality do not change how people perceive the Ease of Writing transformations with a lan-
guage. And that the presence of Bidirectionality, Incrementality, Model Navigation, Model Traversal
and Reuse functionality do not change how people perceive the Expressiveness of a language.

On a more positive note. The hypothesised influences on Comprehensibility are confirmed (apart
from the one exerted by Bidirectionality). The same goes for Productivity and Reusability.

We also found that the perceived quality in Tool Support and Maintainability are influenced
by most of the MTL Properties. A result that was not apparent from previous interview study.
Tool support was hypothesised to be influenced only by the chosen language and Maintainability
only by Bidirectionality and Mapping functionality. Our results however show, that the perceived
Maintainability of transformations written in a language is influenced by all MTL functionality
considered in this study with the exception of Incrementality.

Moreover, several additional influences on Productivity and Reusability were also discovered. The
perceived Productivity and Reusability of transformations in a language are influenced by Mappings,
Model Management, Model Navigation, Model Traversal, Pattern Matching, Reuse Mechanisms and
Tracability functionality.

Regarding the moderating effects, our findings suggest that a nuanced view is warranted. The
hypothesis that context moderates all influences on an MTL Property still holds but the strength
of the moderation effects varies greatly.

As hypothesised, we are able to observe that Comprehensibility and Ease of Writing are the
two properties moderated by the most context variables. But the moderation is only significant
for a hand full of influences on these properties. This can be seen e.g. in the moderation effects
of Meta-Model Size on influences on Comprehensibility depicted in Table C.2 in Appendix C.1.
Changes in the Meta-model sizes participants worked with had next to no effect on how their usage
of Bidirectionality functionality affected their view on the Comprehensibility of transformations.
The impact on the influence of Model Management on Comprehensibility is orders of magnitudes
higher.

Another observation that stands out is the impact of Language Choice and Language Experience.
The moderation effects of both variables are negligible or even 0 for all influences. We believe this
is due to the large number of languages considered in this study. It makes analysing the effects of
choosing one of the languages difficult.

Overall the results for research questions RQ1 & RQ4 suggest that our initial structure model
contains many relevant interdependencies but several more have to be considered as well. We do

128 Chapter 4. Paper C

have to reject several direct influences due to low significance and moderation effects have to be
considered on a per influence basis instead of being generalised for each MTL Property.

4.5.2 RQ2: How strong are the influences of model transformation lan-
guage capabilities on the properties thereof?

Our second research question is intended to provide numbers that can help to identify the most
important factors to consider when evaluating the advantages and disadvantages of model trans-
formation languages empirically. We do this by considering both the average simulated effect of
influences calculated by NEUSREL as well as the overall explained absolute deviation of influences
compared to each other. As explained earlier in this section all numbers can be found in Table 4.3.

Overall the effects identified in our analysis are lower than anticipated. They range from 0.29
down till 6.5e-8. We expected some effects to be low, mainly those from non significant interdepen-
dencies, but the fact that even significant effects are in the order of 0.01 is surprising. We assume
this stems from the large number of variables that are involved and the overall complexity of the
matter under investigation. Nonetheless we believe there are meaningful insights that can be drawn
when comparing the influences for each MTL Property with each other.

Of the influences hypothesised from our previous interview study Traceability is the most impact-
ful MTL Capability. Its usage exerts the highest influence on perceived Comprehensibility with 0.29.
Similarly it has the highest influence for Ease of Writing though with a value of 0.0021 the effect
is small. We were, however, already able to show empirical evidence that MTLs utilising automatic
trace handling provide clear advantages for writing transformations compared to GPLs (Höppner
et al. 2021).

For the properties Tool Support, Maintainability and Productivity the availability of Reuse Mech-
anisms seems to be the strongest driving factor with an average simulated effect of 0.1, 0.1, 0.1 and
0.2, respectively. No other factor has an ASE or effect strength as high as Reuse Mechanisms for
these properties. This result is surprising as the influences were not raised even once during our
interview study.

Overall, automatic tracing and reuse mechanisms appear to be the most influential factors for
MTL properties. This suggests to us two main pathways for further research. First, to improve
model transformation languages more research should be devoted to developing effective ways to
reuse transformations or parts of transformations. From our experience, current mechanism are
hard to use and are especially unsuited for different use-cases. Secondly, the first area to address
for improved adoption of model transformation concepts in general purpose languages should be the
development of mechanisms for automatic trace handling.

4.5.3 RQ3: How strong are moderation effects expressed by the contex-
tual factors use-case, skills & experience and MTL choice?

As expressed in Section 4.5.1 the results of our analysis suggest that a more nuanced view of
moderation effects is warranted. In this section we go into detail on these nuances.

As hypothesised the size of meta-models moderates the influences on Comprehensibility. The
moderation strength differs greatly between the different causing factors though. For example,
Meta-model size exerts the strongest moderation on the influence of Model Management onto Com-
prehensibility with 0.14. All other moderation effects are far lower. The second highest moderation
effect, the moderation of Meta-model size on the influence of Traceability on Comprehensibility,
is about half es strong (0.0778) and the lowest, the moderation of Meta-model size on the influ-
ence of Bidirectionality functionality on Comprehensibility, is only 0.0009. The moderations make
sense intuitively as larger meta-models would make implementing these tasks manually more labour
intensive and thus clutter the code unnecessarily.

Model size exerts similar moderation effects as meta-model size. Its strongest moderation effect is
also on the influence of Model Management on Comprehensibility (0.36). Moreover, Model size also
strongly moderates the influence of Traceability functionality on the Ease of Writing transformations
(0.17). Most other moderation effects of Model size are far lower than 0.1.

Transformation size seems to be the most relevant moderating factors across the board. It has
many noteworthy moderation effects on all influences of MTL Capabilities on Tool Support, none
being less than 0.16, and Productivity, most being above 0.12. We assume this is because the larger

4.5. Results 129

T
a
bl

e
4.

3:
A
ve

ra
ge

si
m

ul
at

ed
eff

ec
t,

ov
er

al
le

xp
la

in
ed

ab
so

lu
te

de
vi

at
io

n
an

d
si

gn
ifi

ca
nc

e
of

di
re

ct
in

flu
en

ce
s

C
om

pr
eh

en
si

bi
l-

it
y

E
as

e
of

W
ri

ti
ng

E
xp

re
ss

iv
en

es
s

T
oo

lS
up

po
rt

M
ai

nt
ai

na
bi

lit
y

P
ro

du
ct

iv
it
y

R
eu

sa
bi

lit
y

B
id

ir
ec

ti
on

al
it
y

-3
.2

e-
07

/
3.

3e
-0

7/
1

6.
6e

-0
8/

9.
2e

-0
5/

1
1.

5e
-0

9/
4.

2e
-0

6/
1

-1
.5

e-
05

/
2.

0e
-0

5/
1

-0
.0

6/
0.

05
/

0.
1*

-8
.3

e-
06

/
8.

9e
-0

7/
1

1.
4e

-0
6/

5.
5e

-0
6/

1

In
cr

em
en

ta
lit

y
0.

02
/

0.
01

/
0.

01
*

-3
.5

e-
07

/
0.

00
03

/
1

7.
4e

-0
7/

0.
00

2/
1

0.
00

02
/

0.
00

02
/

1
0.

00
04

/
1.

7e
-0

5/
1

-0
.0

00
1/

6.
5e

-0
7/

1
0.

02
/

0.
00

5/
0.

05

M
ap

pi
ng

s
0.

03
/

0.
01

/
0.

01
*

-1
.8

e-
05

/
0.

01
/

0.
01

*
-6

.8
e-

06
/

0.
01

/
0.

01
*

-0
.0

11
6/

0.
01

/
0.

01
*

-0
.0

00
79

3/
0.

00
3/

1
-0

.0
05

/
0.

04
/

0.
01

*
-0

.0
2/

0.
01

/
0.

01
*

M
od

el
M

an
ag

em
en

t
0.

03
/

0.
1/

0.
01

*
4.

4e
-0

5/
0.

00
3/

1
0.

00
06

/
0.

00
6/

0.
01

*
0.

02
/

0.
07

/
0.

01
*

0.
03

/
0.

04
/

0.
01

*
-0

.0
00

5/
0.

05
/

0.
01

*
0.

06
/

0.
03

/
0.

01
*

M
od

el
N

av
ig

at
io

n
-0

.0
1/

0.
03

/
0.

01
*

-2
.3

e-
05

/
0.

01
/

0.
01

*
5.

9e
-0

5/
0.

00
5/

0.
05

0.
06

/
0.

2/
0.

01
*

-0
.0

04
/

0.
05

/
0.

01
*

0.
05

/
0.

07
/

0.
01

*
-0

.0
8/

0.
08

/
0.

01
*

M
od

el
T
ra

ve
rs

al
0.

00
8/

0.
00

9/
0.

01
*

2.
1e

-0
7/

0.
00

2/
1

-9
.4

e-
05

/
0.

00
05

/
1

-0
.0

9/
0.

2/
0.

01
*

0.
07

/
0.

1/
0.

01
*

-0
.0

03
/

0.
03

/
0.

01
*

0.
00

7/
0.

01
/

0.
01

*

P
at

te
rn

M
at

ch
in

g
0.

05
/

0.
07

/
0.

01
*

-8
.4

e-
05

/
0.

01
/

0.
01

*
-0

.0
00

1/
0.

00
6/

0.
01

*
0.

05
/

0.
06

/
0.

01
*

-0
.0

4/
0.

08
/

0.
01

*
0.

00
5/

0.
1/

0.
01

*
-0

.0
6/

0.
06

/
0.

01
*

R
eu

se
M

ec
ha

ni
sm

s
0.

1/
0.

08
/

0.
01

*
-7

.8
e-

05
/

0.
00

8/
0.

01
*

-0
.0

00
2/

0.
00

2/
1

0.
1/

0.
1/

0.
01

*
0.

1/
0.

2/
0.

01
*

0.
1/

0.
2/

0.
01

*
0.

2/
0.

1/
0.

01
*

T
ra

ce
ab

ili
ty

0.
29

/
0.

12
/

0.
01

*
0.

00
2/

0.
02

/
0.

01
*

-2
.1

e-
05

/
0.

00
7/

0.
01

*
-0

.0
5/

0.
2/

0.
01

*
-0

.0
2/

0.
1/

0.
01

*
0.

04
/

0.
05

/
0.

01
*

0.
08

/
0.

09
/

0.
01

*

P
le

as
e

no
te

th
at

th
e

si
gn

ifi
ca

nc
e

va
lu

es
ob

ta
in

ed
th

ro
ug

h
th

e
N

E
U

SR
E

L
to

ol
m

ay
ex

hi
bi

t
re

du
ce

d
ac

cu
ra

cy
co

m
pa

re
d

to
st

an
da

rd
ap

pr
oa

ch
es

du
e

to
th

e
bo

ot
st

ra
pp

in
g

m
et

ho
d

us
ed

fo
r

th
ei

r
es

ti
m

at
io

n.

130 Chapter 4. Paper C

transformations get, the more reliant developers are on tooling and abstractions that reduce the
development effort.

Another interesting effect we found is, that developer experience moderates the influence of many
of the domain specific abstractions, e.g. Mappings and Model Traversal, on Productivity. This makes
sense because these specific features often break with how developers are used to develop programs
and thus need practice to use them effectively.

The semantic gap between input and output meta-models exerts its moderation strongest on the
influences on Maintainability. Most notable are the moderations on the influences of Model Traversal
(0.194), Pattern Matching (0.239) and Reuse Mechanisms (0.237).

Lastly, there is a strong moderation effect of the meta-model sanity onto the influence of Model
Management facilities and Bidirectionality on Comprehensibility. Both being about 0.2. This makes
sense as badly structured or poorly documented meta-models are harder to handle and thus the tasks
revolving around working with the structure are most influenced by that.

Overall the size of transformations is in our opinion the most relevant moderating variable. The
assumption on the relevance of language choice could however not be confirmed. This is most likely
due to the large amount of languages each participant has had experience with which weakens the
ability to elicit the effect of differences of language choice between participants.

4.6 Discussion
The results of our analysis provide useful insights for research on model transformation languages.
In this section, we discuss the implications of our results for evaluation and development of MTLs.
Additionally, we provide a critical evaluation of our methodology with regards to the goals of this
study.

4.6.1 Implications of results
The topic of influences on the quality properties of model transformation language is vastly complex,
as reflected in the already large structure model which we set out to analyse. While we were able
to reject some of the hypothesised influences, our analysis also identified several new influences. As
a result, the structure model depicting the influences grew in complexity, further highlighting the
need for comprehensive studies of the factors that influence MTL quality properties. The updated
structure model can be seen in Figure 4.12. It contains 36 more interdependencies than the one we
started our analysis with.

Our analysis produced a number of interesting observations that have important implications for
further research. In particular, we now discuss the implications for empirical evaluations. Addition-
ally, we highlight the implications of our results for further development of MTLs and domain-specific
features thereof.

4.6.1.1 Suggestions for further empirical evaluation studies

Traceability is one of the most important factors to consider when it comes to the development of
model transformations. This is because it has the strongest influence on the perceived quality of
both the ease of writing and the comprehensibility of the resulting code. It is crucial to consider
scenarios where tracing is involved in order to properly evaluate the value of MTL abstractions
for writing and comprehending transformations. Additionally, it is important to evaluate scenarios
where tracing is not necessary to understand the difference that MTL abstractions can make. To
truly understand the relevance of this feature, it is also important to assess how many real-world use
cases require it. By taking all of these factors into account, it is possible to gain a comprehensive
understanding of the value of MTL abstractions for writing and comprehending transformations.

For evaluation of Maintainability, Reuse Mechanisms as well as Model Traversal functionality
are important capabilities to consider. We therefore believe that researchers focusing on such an
evaluation must make sure to use transformations that utilise these capabilities. Moreover, the most
important context to consider is the semantic gap between input and output meta-models. Empirical
evaluations focusing on maintainability should therefore make sure to evaluate transformation cases
with varying degrees of differences between input and output meta-models. These studies should
then analyse how much the effectiveness of MTLs and GPLs changes in light of the semantic gap
between input and output.

4.6. Discussion 131

Bidirectionality
ξ1

Incrementality
ξ2

Mappings ξ3

Model Man-
agement ξ4

Model
Navigation ξ5

Model
Traversal ξ6

Pattern
Matching ξ7

Reuse Mech-
anisms ξ8

Traceability
ξ9

Meta-model
Size ξ13

Model
Size ξ14

Transformation
Sizeξ15

Bidirectional
Useξ18

Language
Choice ξ10

Language
Skills ξ11

Experience
ξ12

I/O Semantic
gap ξ16

Meta-model
sanity ξ17

Incremental
Use ξ19

Comprehensi-
bility η1

ζ1

Ease of
Writing η2

ζ2

Expressiveness
η3

ζ3

Tool Sup-
port η4

ζ4

Maintainability
η5

ζ5

Productivity
η6

ζ6

Reusability
η7

ζ1

Figure 4.12: Structure model depicting the confirmed influence and moderation
effects of factors on MTL properties.

132 Chapter 4. Paper C

When selecting transformations for evaluation, it is essential to consider their size. Our results
have shown that size has the most significant impact on the influence of other factors on properties.
Put differently, the larger the transformation, the more noticeable the effect of all capabilities will
be. As such, it is imperative to focus on large transformation use-cases when designing a study to
evaluate MTLs.

4.6.1.2 Suggestions on language development

For us, the most surprising finding of this study is the importance of reuse functionality. The quality
attributes tool support, maintainability, productivity and reusability are all most influenced by it.
This is especially surprising because there was no indication of this in our interviews (Höppner
et al. 2022a). We suppose this influence stems from the fact that reuse mechanisms allow for more
abstraction and thus less code that can be developed and maintained more efficiently.

As a result we believe that more focus should be put on developing transformation specific
reuse mechanisms. We are aware that some languages, e.g. ATL, already provide general reuse
mechanisms through concepts like inheritance. However, these concepts are limited by the fact that
they rely on the object-oriented nature of the involved models. This means that they can only be
used to define reusable code within transformations of a single meta-model. Defining transformation
behaviour that can be reused between different meta-models is not possible. But this would be
important to further reduce redundancy in transformation development.

As result, we believe, that development of reuse mechanisms tailored to MTs is important to
focus on. In order to stand out compared to the reuse mechanisms of GPLs, it may be valuable to
explore ways to define and reuse common transformation patterns independently of meta-models.
Higher order transformations are sometimes used to allow reuse too (A. Kusel et al. 2015), but from
our experience current implementations are too cumbersome to be used productively. Chechik et al.
(2016) provide a number of suggestions for transformation specific reuse mechanisms but to the best
of our knowledge there exist no implementations of their concepts.

4.6.2 Interesting observations outside of USM
When discussing model transformation languages, it is often stated that they are only demonstrated
on ‘toy examples’ that have little to no real world value. This argumentation has for example
been raised several times in our previous interview study (Höppner et al. 2022a). However, the
demographic data collected in our study disputes this.

There are several participants that stated to have worked solely on small transformations with
small meta-and input models. But this group is opposed by a similarly large group of participants
that have worked with huge transformations, dissimilar and large meta-models as well as large inputs.
From this we conclude, that there are large use-cases where model transformations and MTLs are
applied but they rarely get described in publications. It seems likely that such examples are not
used for highlighting important aspects authors want to discuss due to the space describing such
cases would take up. However, we argue that it is paramount that such case-studies are published
to diminish the cynicism that MTLs are only useful for small examples.

Another noteworthy observation based on the demographic data of our participants is that
documentation pertaining meta-models is predominantly perceived as inadequate. We believe that
this is primarily due to the fact that many of meta-models stem from research projects that prioritize
expeditious prototyping over the long-term viability of the artefacts. Nonetheless, we are convinced
that there is an urgent need to enhance the documentation surrounding model transformations. This
issue is not limited solely to the meta-models, but also extends to the languages that are known for
their challenging learning curve because of lack of tutorials (Höppner et al. 2022a).

4.6.3 Critical Assessment of the used methodology
The appeal of using structural equation modelling for analysing the responses to our survey was to
have a method of analysis that can be used to investigate a complex hypothesis system in its entirety.
Moreover, analysis is straight forward after an initial setup due to the sophisticated tooling for this
methodology. Instead of presenting participants with a case that they should assess we also opted
for querying them on their overall assessment of MTL quality attributes. These design decisions
have implications and ramifications that we discuss in this section.

4.7. Threats to validity 133

First, the effects observed in our study are small. We assume this stems from the intricate and
large structure model and the comparatively small sample size. As explained in Section 4.3 it is
suggested to have between 5 to 10 times as many participants as the largest number of parameters
to be estimated in each structural equation. In light of the newly discovered paths in our structure
model, the 113 total participants are close to the minimum sample size required. Moreover, because
of the large number of influences we do expect the influence of a single factor to be much smaller
than in structure models where only 2-3 factors are relevant. The results therefore reinforce our
assessment that it is a very complex topic.

We also ran into some difficulties when using NEUSREL to analyse our data. The structure
model was so large that sometimes the tool crashed during calculations. The online tooling to
set everything up was also painfully inefficient leading to more problems during setup like browser
crashes. It took us some trial and error to find a way to get everything set up and run the analysis
without crashes.

We chose to execute a study based on our study design in hopes of producing a complete theory
independent of the use case under consideration. The results exhibit less effect strength but we
believe them to be more externally valid. Nonetheless, we think that several additional studies need
to be conducted to confirm our results for different use-cases.

4.7 Threats to validity
Our study is carefully designed and follows standard procedures for this type of study. There are,
however still threats to validity that stem from design decisions and limitations. In this section we
discuss these threats.

4.7.1 Internal Validity
Internal validity is threatened by manual errors and biases of the involved researchers throughout
the process.

The two activities where such errors and biases can be introduced are the subject selection
and question creation. The selection criteria for study subjects is designed in such a way, that no
ambiguities exist during selection. This prevents researcher bias.

The survey questions and answers to the questions pose another threat to internal validity.
We used neutral questions to prevent subconsciously influencing the opinions of research subjects.
We also provide explanations for ambiguous terms used in the survey. However, there are several
instances where we can not fully ensure that each participant interprets terms the same way. The
questions on quality properties of model transformation languages allow room for interpretation in
that we do not provide a clear metric what terms such as ‘Very Comprehensible’ or ‘Very Hard to
write’ mean. Similarly, the questions on meta-model quality leave room for interpretation on the
side of participants. We opted for this limitation because there are no universal ways to quantify
such estimates and because the subjective assessment is what we want to collect. The reason for
this is, that subjective experiences are the main driving factor for all discussions on development
when people are the main subject.

To ensure overall understandability and prevent errors in the setup of the survey we used a pilot
study.

4.7.2 External Validity
External validity is threatened by our subject sampling strategy and the limitations on the survey
questions imposed by the complexity of the subject matter.

We utilise convenience sampling. Convenience sampling can limit how representative the final
group of interviewees is. Since we do not know the target populations makeup, it is difficult to asses
the extend of this problem.

Using research articles as a starting point introduces a bias towards researchers. There is little
potential to mitigate this problem during the study design, because there exists no systematic way
to find industry users.

Due to the complexity and abstractness of the concepts under investigation, a measurement via
reflective of formative indicators is not possible. Instead we use single item questions. We further
assume that positive and negative effects of a feature are more prominent if the feature is used more

134 Chapter 4. Paper C

frequently. This can have a negative effect on the external validity of our results. However, we
consciously decided for these limitations to be able to create a study that concerns itself with all
factors and influences at once.

4.7.3 Construct Validity
Construct validity is threatened by inappropriate methods used for the study.

Using the results of online surveys as input for structural equation modelling techniques is
common practice in market research (Weiber et al. 2021). It is less common in computer science.
However, we argue that for the purpose of our study it is an appropriate methodology. This is
because the goal of extracting influence strengths and moderation effects of factors on different
properties aligns with the goals of market research studies that employ structural equation modelling.

4.7.4 Conclusion Validity
Conclusion validity is mainly threatened by biases of our survey participants.

It is possible that people who do research on model transformation languages or use them for
a long time are more likely to see them in a positive light. As such there is the risk that too little
experiences will be reported on in our survey. However, this problem did not present itself in a
previous study by us on the subject matter (Höppner et al. 2022a). In fact researchers were far
more critical in dealing with the subject. As a result, there might be a slight positive bias in the
survey responses, but we believe this to be negligible.

4.8 Related Work
There are numerous works that explore the possibilities gained through the usage of MTLs such as
automatic parallelisation (Benelallam et al. 2015; Biermann et al. 2010; Sanchez Cuadrado et al.
2020), verification (Ko et al. 2015; Lano et al. 2015) or simply the application of difficult trans-
formations (Anastasakis et al. 2007). There is, however, only a small amount of works trying to
evaluate the languages to gain insights into where specific advantages or disadvantages associated
with the use of MTLs originate from. Several other works that can be related to our study also
exist. The related work is divided into studies focused on the investigation of properties of model
transformation languages and empirical studies on model transformation languages.

4.8.1 Studies on the Properties of Model Transformation Languages
Burgueño et al. (2019) conducted on a online survey and open discussion at the 12th edition of the
International Conference on Model Transformations (ICMT’2019). The goal of the survey was to
identify reasons why developers decided to use or dismiss MTLs for writing transformations. They
also tried to gauge the communities sentiment on the future of model transformation languages. At
ICMT’2019, where the results of the survey were presented, they then held an open discussion on
this topic and collected the responses of participants. Their results show that MTLs have fallen in
popularity. They attribute this to 3 types of issues, technical issues, tooling issues and social issues,
as well as the fact that GPLs have assimilated many ideas from MTLs. The results of their study
are a major driver in the motivation of our work. While they identified issues and potential avenues
for future research, their results are qualitative and broad which we try to improve upon with our
study.

In a prior study of ours (Götz et al. 2021a), we conducted a structured literature review which
forms the basis of much of our work since then. The literature review aimed at extracting and
categorising claims about the advantages and disadvantages of model transformation languages as
well as the state of empirical evaluation thereof. We searched over 4000 publication for this purpose
and extracted 58 that directly claim properties of MTLs. In total 137 claims were found and
categorised into 15 quality properties of model transformation languages. The results of the study
show that little to no empirical studies to evaluate MTLs exist and that there is a severe lack of
context and background information that further hinders their evaluation.

Lastly, there is our interview study (Höppner et al. 2022a) the data of which forms the basis
for the reported study. We interviewed 56 people on what they believe the most relevant factors
are that facilitate or hamper their advantages for different quality properties identified in the prior

4.9. Conclusion 135

literature review. The interviews brought forth insights into factors from which the advantages and
disadvantages of MTLs originate from as well as suggested a number of moderation effects on the
effects of these factors. These results for the data basis for this study.

4.8.2 Empirical Studies on Model Transformation Languages
Hebig et al. (2018) report on a controlled experiment to evaluate how the use of different languages,
namely ATL, QVT-O and Xtend affects the outcome of students solving several transformation tasks.
During the study student participants had to complete a series of three model transformation tasks.
One task was focused on comprehension, one task focused on modifying an existing transformation
and one task required participants to develop a transformation from scratch. The authors compared
how the use of ATL, QVT-O and Xtend affected the outcome of each of the tasks. Unfortunately
their results show no clear evidence of an advantage when using a model transformation language
compared to Xtend. However, they concede that the conditions under which the observations are
made, were narrow.

We published a study on how much complexity stems from what parts of ATL transforma-
tions (Götz et al. 2020) and compared these results with data for transformations written in
Java (Höppner et al. 2021) to elicit advantageous features in ATL and to explore what use-cases
justify the use of a general purpose language over a model transformation language. In the study, the
complexity of transformations written in ATL were compared to the same transformations written
in Java SE5 and Java SE14 allowing for a comparison and historical perspective. The Java trans-
formations were translated from the ATL transformations using a predefined translation schema.
The results show that new language features in Java, like the Streams API, allow for significant
improvement over older Java code, the relative amount of complexity aspects that ATL can hide
stays the same between the two versions.

Gerpheide et al. (2016) use a mixed method study consisting of expert interviews, a literature
review and introspection, to formalize a quality model for the QVT-O model transformation stan-
dard. The quality model is validated using a survey and used to identify the necessity of quality
tool support for developers.

We know of two study templates for evaluating model transformation languages that have been
proposed but not yet used. Kramer et al. (2016) propose a template for a controlled experiment to
evaluate comprehensibility of MTLs. The template envisages using a questionnaire to evaluate the
ability of participants to understand what presented transformation code does. The influence of the
language used for the transformation should then be measured by comparing the average number
of correct answers and average time spent to fill out the questionnaire. Strüber et al. (2016) also
propose a template for a controlled experiment. The aim of the study is to evaluate the benefits
and drawbacks of rule refinement and variability-based rules for reuse. The quality of reusability
is measured through measuring the comprehensibility as well as the changeability collected in bug-
fixing and modification tasks.

4.9 Conclusion
Our study provides the first quantification of the importance of model transformation language
capabilities for the perception of quality attributes by developers. It once again highlight the
complexity of the subject matter as the effect sizes of the influences are small and the final structure
model grew in size.

As demonstrated by the amount of influences contained in the structure model many language
capabilities need to be considered when designing empirical studies on MTLs. The results however
point towards Traceability and Reuse Mechanisms as the two most important MTL capabilities.
Moreover, the size of the transformations provides the strongest moderation effects to many of
influences and is thus the most important context factor to consider.

Apart from implications for further empirical studies our results also point a clear picture for
further language development. Transformation specific reuse mechanisms should be the main fo-
cus as shown by their relevance for many development lifecycle focused quality attributes such as
Maintainability and Productivity.

137

Chapter 5

Paper D

Investigating the Origins of Complexity and Expressiveness in ATL Transformations

S. Götz, M. Tichy

Journal of Object Technology (JoT), volume 19, article number 2, July 2020
AITO — Association Internationale pour les Technologies Objets

Chapter 5. Paper D 139

Abstract
Model transformations provide an essential element to the model driven engineering approach. Over
the years, many languages tailored to this special task, so-called model transformation languages,
have been developed. A multitude of advantages have been proclaimed as reasons to why these
dedicated languages are better suited to the task of transforming models than general purpose pro-
gramming languages. However, little work has been done to confirm many of these claims. In this
paper, we analyse ATL transformation scripts from various sources to investigate three common
claims about the expressiveness of model transformation languages. The claims we are interested
in assert that automatic trace handling and implicit rule ordering are huge advantages for model
transformation languages and that model transformation languages are able to hide complex seman-
tics behind simple syntax. We use complexity measures to analyse the distribution of complexity
over transformation modules and to gain insights about what this means for the abstractions used
by ATL. We found that a large portion of the complexity of transformations stem from simple at-
tribute assignments. We also found indications for the usefulness of conditioning on types, implicit
rule ordering and automatic trace resolution.

140 Chapter 5. Paper D

5.1 Introduction
Model transformations are a pivotal part of model-driven engineering (MDE) (Schmidt 2006; Sendall
et al. 2003). This is also evident from the amount of transformation languages that have been
proposed, i.e. ATL (Jouault et al. 2006), Henshin (Arendt et al. 2010), ETL (Kolovos et al. 2008),
Viatra (Balogh et al. 2006) and QVT (Kurtev 2007) just to name a few.

While the number of transformation languages and their features is ever increasing, little time
is spent on empirical studies on the use of said languages (Selim et al. 2017). A fact that is true not
only for model transformation languages but any kind of DSL as evident from the results of Tomaž
Kosar et al. (2016).

Selim et al. (2017), have shown that studying the use of transformation languages on code
repositories such as the ATL Zoo1 can provide insights into how a transformation language is used
which can help developers with language evolution.

Such studies are also necessary because there is continual debate about whether dedicated model
transformation languages are necessary at all (Burgueño et al. 2019; Hebig et al. 2018) since GPLs
like Java can also be used for writing transformations and have been discussed as an alternative
since the introduction of model transformations (Sendall et al. 2003).

In the study described here, we apply these goals to the Atlas model Transformation Language
(ATL) (Jouault et al. 2006). We are particularly interested in investigating transformation scripts
to gather data concerning the following claims which have been made multiple times in literature:

H1 : Model transformation languages hide complex semantics behind simple syntax (Gray et al.
2003; Jouault et al. 2008; Krikava et al. 2014; Sendall et al. 2003).

H2 : Automatic handling and resolution of trace information by the transformation engines is a
huge advantage of model transformation languages (Hinkel et al. 2019b; Jouault et al. 2008;
Lawley et al. 2007).

H3 : Model transformation languages allow for implicit rule ordering which can lessen the load on
developers (Jouault et al. 2008; Lawley et al. 2007).

One thing that immediately stands out from the three claims is that they are intertwined.
Automatic handling of traces and implicit rule ordering are both concepts that can hide certain
semantics within the transformation engine. So to investigate their impact and provide insights into
the complexity within model transformations as a whole we devised 5 research questions to focus
our research on:

RQ1: How is the complexity of ATL transformations distributed over multiple transformations and
transformation components? This question forms a basis data set for the following investiga-
tions. Its results can provide useful insights into where the complexity in ATL transformations
originates from to provide starting points for more focused investigations. It can also help to
uncover potential strengths and weaknesses of the abstractions used by ATL (H1).

RQ2: When looking at the complexity distributions of individual transformation components, are
there any salient characteristics? ATL components such as the out-pattern consist of a set of
bindings that assign values to the attributes of the output model. The question that arises from
such structures is, whether the complexity of out-patterns stems largely from single complex
bindings or a number of simpler bindings. With this research question we aim to investigate
such effects which can indicate points where ATL does a good job of hiding complexity (H1)

RQ3: How does the usage of refining mode impact the complexities of ATL modules? ATLs refin-
ing mode was introduced to ease refinement transformations by allowing developers to only
focus on the code generating modified elements while leaving all other elements unchanged.
Accordingly, the complexity of refining mode transformations should originate to large parts
in refining activities. Otherwise it would indicate that the refining mode fails in supporting
developers with model refinements. This in turn would be a counterexample to the claims
made in H1.

1https://www.eclipse.org/atl/atlTransformations/

https://www.eclipse.org/atl/atlTransformations/

5.2. The Atlas Transformation Language (ATL) 141

RQ4: How large is the percentage of bindings that require trace-based binding resolution? Before
being able to argue about the usefulness of trace information (H2) for model transformations it
should be investigated to what extent their existence influences a model transformation script.
If only a small proportion of transformations utilize traces then maybe the development effort
for implicit trace handling is not worth it.

RQ5: What portion of ATL transformations use implicit rule ordering? The amount of implicitly
ordered rules compared to manual rule ordering can be a good indication into whether the
feature is well liked by developers hinting at an advantage over manual ordering.

To answer the research questions we selected a total of 33 ATL transformations from various
sources to analyse. We use two sets of complexity measures based on Lano et al. (2018) to measure
the complexity of ATL transformations. A meta-model representing the basic components of ATL
modules is used to compile the complexity values together. Information about trace usage and rule
ordering is taken directly from the models representing the ATL transformations.

The remainder of this paper is structured as follows: First in Section 5.2 an introduction into
relevant aspects of ATL is given. Section 5.3 defines the used complexity measures. Afterwards
in Section 5.4 we present our extraction and analysis procedures. The results of our analysis are
then presented in Section 5.5. Section 5.7 discusses potential threats to the validity of the described
proceedings while Section 5.6 places the approach in the context of existing work. Lastly Section 5.8
concludes and proposes potential future work.

5.2 The Atlas Transformation Language (ATL)
Specifications in ATL are organized in one of three kinds of so called Units. A unit is either a module,
a library or a query. Depending on their type, units can consist of rules, helpers and attributes, which
are a special kind of helper.

ATL uses the Object Constraint language (OCL) (OMG 2014) for both data types and expres-
sions.

5.2.1 Modules
Modules are used to define transformations. ATL modules are made up of three segments (see
Listing 5.1): the module header which defines the modules name as well as the types of the input
and output meta-models, a number of optional imports and a set of helper and rule definitions.� �
1 module NAME
2 create OUT1:OUTTYPE1, ...
3 [from|refining] IN1:INTYPE1, ...
4

5 [uses LIBRARY]*
6 [RULEDEF|HELPERDEF]*� �

List. 5.1: Structure of an ATL module

Libraries consist of a set of helper definitions. Libraries can be imported into modules.
Lastly, Queries are comprised of an import section, a query element and a set of helper defi-

nitions. Queries are used to define transformations from models to simple OCL types rather than
output models.

5.2.2 Helpers and Attributes
Helpers allow developers to define outsourced expressions that can be called from within rules.
Helper definitions can define a data type for which the helper is specified, called context. ATL also
allows developers to define so called Attribute helpers. The main difference between attributes and
helpers is that attributes do not accept parameters. Attributes serve as constants that are defined
for a specific context.

The definition of both traditional helpers and attribute helpers follow the same syntax patterns
(see Listing 5.2). The only difference lies in whether input parameters are defined.

142 Chapter 5. Paper D

� �
1 helper [context CONTEXTTYPE]? def : NAME[(PARAMETERS)]? : TYPE = EXPR;� �

List. 5.2: Syntax to define Helpers

5.2.3 Rules
In ATL, rules are used to specify the transformation of input models into output models. There
exist two main types of rules: called rules and matched rules. Matched rules enable a declarative
way to define how a model element of a specific type is transformed into output model elements,
while called Rules enable generation of target model elements from imperative code. Matched rules
are executed automatically on all matching input model elements by the ATL engine.

Matched rules are comprised of four main sections (see Listing 5.3):
An In-Pattern which defines source model elements that are being transformed. In-Patterns can

contain a filter expression which defines a condition that must be met for the rule to be applied.
An optional Using-Block that allows to define local variables.
The Out-Pattern which defines a number of output model elements that are created for the

model element defined in the in-pattern when the rule is applied. Each output model element is
defined by an Out-Pattern element which contains so called bindings that assign values to attributes
of the model element.

And lastly an optional Action-Block which allows the specification of imperative code that is
executed once the target elements have been created.� �
1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : INTYPE [(CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR;]+
6 }]?
7 to
8 [OUTVAR : OUTTYPE {
9 [ATR <- EXPR,]+

10 },]+
11 [do {
12 [STATEMENT;]*
13 }]?
14 }� �

List. 5.3: Syntax to define matched rules

Apart from regular matched rules there are also lazy rules. They are defined by adding the
key word lazy in front of a matched rule definition. Lazy rules are executed only when explicitly
called for a specific model element that matches the rules type and filter expression. Lazy rules can
be called multiple times on the same model element to produce multiple distinct output elements.

Unique lazy rules, defined through the unique lazy key words, change this behaviour. Instead
of producing a new model element for each call, unique lazy rules always return the same output
element when called on the same input model element.

Lastly, called rules are defined in a similar fashion to matched rules (see Listing 5.4). The
main difference between the two being that called rules do not contain an In-Pattern and allow
the definition of required parameters.

5.2.4 Refining mode
The refining mode is a special execution mode for ATL rules which is intended to assist developers
with refactoring models, i.e., endogenous transformations.

Normally, the ATL engine only produces output model elements for input elements on which
rules are executed on. When using the refining mode however, the ATL engine executes all rules
on matching input elements and produces a copy of all unmatched elements. This way developers
are able to focus solely on the refining part of their refactoring efforts according to the language
developers.

5.3. Complexity Measures 143

� �
1 rule NAME([PARAMETER,]*) {
2 [using {
3 [VAR : VARTYPE = EXPR;]+
4 }]?
5 to
6 [OUTVAR : OUTTYPE {
7 [ATR <- EXPR,]+
8 },]+
9 [do {

10 [STATEMENT;]*
11 }]?
12 }� �

List. 5.4: Syntax to define called rules

5.3 Complexity Measures
There exist several approaches for measuring complexity of model transformation languages and
ATL in particular (Di Rocco et al. 2015; Kapová et al. 2010; Lano et al. 2018; Tolosa et al. 2011;
Vignaga 2009). Most of these approaches use a simple metric that relates the number of transfor-
mation components such as rules or helpers to the complexity of a transformation module. In our
opinion, however, the number of rules or helpers alone does not capture the complexity of model
transformations well enough. For that reason, we opted to adopt the complexity measure proposed
by Lano et al. (2018) which includes not only the number of transformation components but also
the complexity of expressions used within the transformation.

In the following, the complexity measures will be explained.

5.3.1 Syntactic complexity
The syntactic complexity c(τ) of a transformation specification τ is defined based on the complexity
of expressions and activities within the defined transformation (Lano et al. 2018). The general idea
behind it being that the complexity of each construct is comprised of a static value for the construct
itself plus the sum of the complexities of its contained elements.

The complexity of a module as defined in Listing 5.1 would be comprised of the sum of the
complexities for its contained helper definitions and rule definitions. The complexity of rules, defined
as shown in Listings 5.3 and 5.4, is then comprised of the complexity of their contained from-block
(In-Pattern), the to-block (Out-Pattern), the using-block and do-block plus a static value of 1 for
the rule itself.

The complexity of In-Patterns is defined by their contained filter expression and a static value
for the construct itself, while the complexity of Out-Patterns is defined by a static value for the
construct as well as the sum of the complexities of all contained Out-Pattern elements and their
contained bindings. An overview over the most important complexity measure definitions can be
found in Table 5.1 for expressions and Table 5.2 for activities/structural elements2.

We adopted the complexity measure with slight modifications since we disagreed with certain
defined values. The following adjustments were made to the definition from Lano et al. (2018):

First, the complexity of helpers was adapted to also include the complexity of their context. The
reason for this change being the fact that the context of a helper has to be considered when trying
to understand its function. Furthermore, in our opinion there is no difference between attribute and
operation helpers, the additional, static complexity attributed to both types of helper definitions
was aligned at 1. For this the static complexity of attribute helpers was reduced from 3 to 1 and
that of operation helpers was increased from 0 to 1.

Action blocks were given an additional static complexity value of 1 which was missing from the
definitions of Lano et al. (2018). This aligns it with the static complexity that is attributed to all
elements contained within rules, i.e. In-Patterns, Out-Patterns and Using-blocks.

The complexity attributed to operation calls was increased to 1 to align it with that of attribute
and navigation calls. In our opinion calling an operation on an object is just as complex as accessing

2Full definitions can be found in https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/
-/blob/master/ATL/transformations/qvt/transforms/complexity.qvto

https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/-/blob/master/ATL/transformations/qvt/transforms/complexity.qvto
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/-/blob/master/ATL/transformations/qvt/transforms/complexity.qvto

144 Chapter 5. Paper D

one of its attributes. For the same reason the complexity for collection operation calls was also
increased to 1 as well.

Table 5.1: Definitions of expression complexity measure based on Lano et al.
(2018).

Expression e Complexity c(e)

Numeric, boolean or String value 0
Identifier iden 1
Attribute call source.attr c(source) + 2
Operation call source.op(p1, ..) 2 + c(source) +

∑
i c(pi)

Operator call e1 op e2 c(e1) + c(e2)
CollectionOperation call source− > op(p1, ..) 2 + c(source) +

∑
i c(pi)

if e1 then e2 else e3 endif c(e1) + c(e2) + c(e3) + 1
let v : t = e1 in e2 c(t) + c(e1) + c(e2) + 4
CollectionExpression Col{e1, ..} 1 +

∑
i c(ei)

Primitive Type (Integer,String,...) 1
Collection Type Col(t) 1 + c(t)

Table 5.2: Definitions of complexity measure for ATL elements/activities based
on Lano et al. (2018). ATL elements are capitalized while expression elements are

written in lower case.

ATL element A Complexity c(A)

Module H1, .., R1, ..
∑

i c(Hi) +
∑

i c(Ri)
Helper helper context c def : n : t = e c(c) + c(t) + c(e)
MatchedRule rule N {From Using To Do} c(From) + c(To) + c(Do) + c(Using)
CalledRule rule N(p) {Using To Do} c(To) + c(Do) + c(Using)
VariableDefinition n : t = e c(t) + c(e) + 3
InPattern from s : t (f) c(f) + c(t) + 3
OutPattern o : t {B1, ..} c(t) +

∑
i c(Bi) + 2

Binding n <- e c(e) + 2
ActionBlock do {S} c(S)
S1;S2 c(S1) + c(S2)
if e then S1 else S2 c(e) + c(S1) + c(S2) + 1
for v : e do S c(e) + c(S) + 1
Binding Statement v <- e c(v) + c(e) + 1

5.3.2 Computational complexity
The computational complexity is an extension of the syntactic complexity. Its goal is to more
closely capture the underlying complexity of transformation definition with respect to outsourced
expressions and called transformation rules. To achieve this, the complexity of Operation Calls is
calculated by taking the complexity of the called operation into account instead of adding a static
value regardless of the called operation. For example given a helper sample of syntactic complexity
12, the call sample() has a syntactic complexity of 2 whereas its computational complexity amounts
to 12.

Moreover the complexity of used variables is also resolved by taking the definition expression of
the variable into account instead of using a static value of 1.

5.4 Methodology
Apart from the selection of the ATL transformation modules to analyse, we strongly oriented our
proceedings along the research questions from Section 5.1.

5.4. Methodology 145

Table 5.3: Meta-data about the analysed transformation modules.

Data minimum average maximum total

LOC 39 408 1364 13455
Rules 1 14 55 460
Helpers 0 11 74 376
Bindings 2 112 487 3695

5.4.1 Module Selection
The selection of ATL modules was aimed to achieve a wide spread of transformations based on their
source, purpose and size in terms of lines of code. We also aimed to achieve an even distribution of
modules that use the refining mode and modules that do not.

For this purpose, we searched GitHub for ATL projects by using the search string ‘ATL trans-
formation‘ and included all novel (meaning not present in the ATL zoo) transformations for which
we were also able to find the input and output meta-models since those were required for parts of
our analysis (see Section 5.4.4). This resulted in a total of 16 transformation modules. Addition-
ally we included the R2ML2XML transformation from Marcel F van Amstel et al. (2011a) and the
Families2Persons transformation from the ATL zoo because it is a widely used example for model
transformations. We then supplemented the set of transformations with transformations from the
ATL zoo to try and achieve an even distribution between modules that use the refining mode and
modules that do not.

The result was a set of 33 ATL transformations (some meta-data about the transformations
can be found in Table 5.3). Of those 33 transformations, 15 use the refining mode of ATL while
18 are exogenous transformations. A complete overview over the selected transformations, in-
cluding names and sources can be found under https://spgit.informatik.uni-ulm.de/stefan.
hoeppner/mtl-complexities/blob/master/ATL/resources/input/cases/justifications.

5.4.2 RQ1,2: How is the complexity of ATL transformations distributed
over multiple transformations and transformation components and
are there any salient characteristics?

To be able to collect and analyse complexity data of ATL transformations and relevant elements
thereof a meta-model was constructed3. Its structure was designed to be able to break down the full
representation of an ATL transformation into the basic components that make up ATL transfor-
mations as described in Section 5.2. With this structure it is also possible to investigate where the
complexity of entire ATL modules and rules originate from, e.g. whether a rule is complex because
of its size or due to a few complex contents like filter expressions. The design of the meta-model
followed the principles of abstraction and pragmatics. Compared to the ATL meta-model our de-
veloped meta-model focuses solely on those parts of the ATL transformations we are interested in
and provides an easy way to track their complexity and the origin thereof.

To transform transformation modules into a model of the presented meta-model and to calcu-
late the complexities of its components along the way, a QVT-O transformation4 was defined. Its
correctness was evaluated using unit tests: A test module containing at least one of each activi-
ties/expressions for which a complexity value can be calculated was defined. The complexity values
for each element was calculated manually based on the previously introduced complexity definition.
Afterwards the results of the transformation were manually compared with the manually calculated
complexity values. Discrepancies between the complexity values were investigated and corrected.

In order to collect data for analysis, the tested transformation was applied to the 33 ATL
transformations.

Apart from the raw complexity data, we resorted to using several diagrams such as histograms,
violin and alluvial plots as well as code snippets to investigate the complexity distribution, both
syntactical and computational, of ATL transformations.

3the meta-model can be found under https://spgit.informatik.uni-ulm.de/stefan.hoeppner/
mtl-complexities/-/tree/master/ATL/metamodels/ATLComplexity/model

4https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/blob/master/ATL/
transformations/qvt/transforms/complexity.qvto

https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/blob/master/ATL/resources/input/cases/justifications
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/blob/master/ATL/resources/input/cases/justifications
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/-/tree/master/ATL/metamodels/ATLComplexity/model
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/-/tree/master/ATL/metamodels/ATLComplexity/model
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/blob/master/ATL/transformations/qvt/transforms/complexity.qvto
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/blob/master/ATL/transformations/qvt/transforms/complexity.qvto

146 Chapter 5. Paper D

In order to better understand the meaning behind the complexity values example code snippets
for each component were extracted from the 33 selected transformation modules. The code snippets
were selected so that their complexity values correspond to the components median complexity
within the data set. One such code snippet can be seen in Listing 5.5. All used snippets can
be found under https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/
tree/master/ATL/resources/input/medians.� �
1 helper context SimpleClass!Class def: associations: Sequence(SimpleClass!Association)=
2 SimpleClass!Association.allInstances() -> select(asso | asso.value = 1);� �

List. 5.5: Helper with a syntactic complexity corresponding to the median of all
helper complexities.

5.4.3 RQ3: How does the usage of refining mode impact the complexities
of ATL modules?

As explained in Section 5.1, we also intended to analysed ATL modules using the refining mode as
a example of how transformation languages hide semantics.

To do so, we used the 15 selected transformation modules that use refining mode and analysed
their complexities separately and in comparison to those modules not using the refining mode.

5.4.4 RQ4: How large is the percentage of bindings that require trace-
based binding resolution?

To investigate the usefulness of trace-based binding resolution (and thus to an extent that of implicit
trace management) we resorted to analysing how often it is used in transformation modules. A high
proportion of trace-based resolutions used would then indicate their usefulness. Since trace-based
binding resolution only happens along reference types of the input and output elements we extracted
all reference types per module element for all output meta-models. For this we used a simple Java-
program that given an Ecore-file would produce a list of reference types for each contained EClass.

Afterwards the bindings within all selected transformation modules were analysed for usage of the
extracted reference types. The amount of bindings that use traces compared to simple assignments
was then analysed on the basis of these results.

5.4.5 RQ5: What portion of ATL transformations use implicit rule or-
dering?

Similar to the trace usage, the usefulness of implicit rule ordering can be indicated by the distribution
of implicitly ordered transformation elements compared to explicitly ordered ones.

Called and lazy matched rules all get explicitly ordered by developers when calling them while
matched rules enable the ATL transformation engine to traverse the source model and implicitly
order their execution. Thus the ratio of matched rules to called and lazy rules gives an indication
into how relevant implicit rule ordering is for model transformations.

Data for this analysis can be gathered from both the complexity distributions from RQ1 as well
as directly from the number of definitions.

5.5 Result Summary and Analysis
We present the results of our analysis in this section in accordance with the research questions posed
in Section 5.1.

5.5.1 RQ1: How is the complexity of ATL transformations distributed
over multiple transformations and transformation components?

Figures 5.1 and 5.2 show alluvial plots over the distribution of syntactic complexity and compu-
tational complexity respectively of module elements within ATL transformation modules. They

https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/tree/master/ATL/resources/input/medians
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/tree/master/ATL/resources/input/medians

5.5. Result Summary and Analysis 147

display how much of the complexity of all investigated transformations originate in which com-
ponents beginning with the modules themselves following the definitions down to the contained
expressions and the static value associated with each component.

Interestingly, while making up nearly 45% of all top level definitions, Helpers only contribute
to roughly 18% of the total complexity of a transformation module5. The largest portion of com-
plexity is attributed to matched rules which contribute to over 3/4 of the total complexity of
transformation rules while accounting for 53% of all top level definitions. And lastly called Rules,
which are not widely represented in our data sets, while making up about 1% contribute to 5% of
the overall complexity of modules.

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

0
10

00
0

20
00

0
30

00
0

40
00

0

Module Top Level Rule Content Definitions Binding Source
Level

C
om

pl
ex

it
y

Top Level CalledRule Helper LMatchedRule MatchedRule

Figure 5.1: Distribution of syntactic complexity over all ATL modules.

Another observation that can be made from Figure 5.1, is that about 80% of the syntactic
complexity of (lazy) Matched-rules stems from their Out-Patterns while only 15% come from
In-Patterns and a nearly negligible 5% originate in action- and using blocks. Following this trend
downwards 73% of the complexity of these rules stems from their contained bindings, i.e assigning
a value to attributes of the output model element. Meaning most effort in transformations is spent
not in selecting the correct model elements to transform but simply assigning the output values
(see Section 5.5.2 for a more detailed discussion). This effect is still present when looking at the

5the raw data can be found under https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/
tree/master/ATL/data

https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/tree/master/ATL/data
https://spgit.informatik.uni-ulm.de/stefan.hoeppner/mtl-complexities/tree/master/ATL/data

148 Chapter 5. Paper D

computational complexity distribution (as shown in Figure 5.2) which rules out the possibility that
the effect is created by outsourcing of filter conditions in In-Patterns through helpers. This leads
us to:

Observation 1: Over half of the effort spent in writing ATL transformations is spent assigning
values to the output model.

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

0
20

00
00

40
00

00
60

00
00

80
00

00

Module Top Level Rule Content Definitions Binding Source
Level

C
om

pl
ex

it
y

Top Level CalledRule Helper LMatchedRule MatchedRule

Figure 5.2: Distribution of computational complexity over all ATL modules.

Furthermore the 15% of matched rules syntactic complexity that comes from In-Patterns shows
that conditioning the application of transformation is a relevant task for model transformations.
The low proportion especially when considering the computational complexity rather suggests that
the conditioning on types (as opposed to filter conditions without pre conditioning on types) which
ATL does for all matched rules by default alone already provides a useful abstraction for model
transformations. This assumption is supported by the fact that about 25% of all matched rules
get by with only using the standard type conditioning without any additional filter expression
in the In-Pattern. Of those 25% only 12% (which therefore constitute only 3% of all matched
rules) are trivial transformation rules. Simple transformations in the context of this paper mean
transformations that contain no filter condition and only assign attributes from the input model
element to the output model element without doing any additional operations. The fact that a large
portion of transformations get by with only the default conditioning on types in ATL leads us to:

5.5. Result Summary and Analysis 149

Observation 2: Conditioning on types provides an abstraction well suited for model transforma-
tions.

5.5.2 RQ2: When looking at the complexity distributions of individual
transformation components, are there any salient characteristics?

16
25

6
40

96
65

53
6

Binding

C
om

pl
ex

iti
y

Complexity Type computationalComplexity syntacticComplexity

Figure 5.3: Syntactic complexity distribution of Bindings.

As previously mentioned, the proportion of the complexity of bindings within transformations
also stands out in Figure 5.1. Bindings alone make up over half of the complexity of transformations,
a trend, that persists even when looking at the computational complexity of transformation modules.
Interestingly, the complexity within bindings is very unevenly distributed. Figure 5.3, which shows
a violin and box plot for the syntactic complexity distribution of bindings (note the logarithmic
scale of the y axis), illustrates this. The majority of all bindings have a syntactic complexity 5
(b5 = 60%). This corresponds to directly accessing an attribute of an object as shown in Listing 5.6,
calling a helper on said object or accessing a global attribute (thisModule.attribute).

Further analysis shows that a total of 93% of all bindings with a syntactic complexity of 5 do
indeed stem from direct accesses of attributes of the input model element (b5a = 93%). Only 2% are
global attribute accesses and the last 5% originate from helper calls on the source model element.
This is also indicated by the fact that a majority of bindings have a computational complexity of 7
which can only correspond to accessing attributes on input elements. In summary, this leads us to:

Observation 3: Over half (b5 ∗ b5a = 56%) of all bindings are used to map one attribute of an input
model element to one attribute of an output model element.

Adding to this point, only 5% of bindings with a syntactic complexity of 5 stem from trivial
transformations, i.e., transformations that simply map attributes from an input element to an
output element without doing any meaningful filtering or modification of the content. This reinforces
Observation 3 since we can rule out that the majority of bindings with complexity of 5 stem from
trivial transformations which do by definition only contain bindings of this or lower complexity .

Looking at ATL modules as a whole Observation 3 means that 33% of their total syntactic
complexity comes from the activity of copying input model attributes to output model attributes.

That much of the complexity of transformation modules comes from bindings means that the
main effort when writing model transformations in ATL consists of defining how the output should

150 Chapter 5. Paper D

� �
1 rule MedianBinding {
2 from s : Families!Member
3 to t : Persons!Female (
4 fullName <- s.firstName
5)
6 }� �

List. 5.6: Rule containing a binding with a syntactic (computational) complexity
of 5 (7)

look which is actually one of the main goals of model transformation languages. This in turn suggests
that ATL does a good job in abstracting away other tasks in model transformation such as model
traversal, conditioning on types as shown in Section 5.5.1, tracing and rule ordering to which we
will come in Sections 5.5.4 and 5.5.5.

5.5.3 RQ3: How does the usage of refining mode impact the complexities
of ATL modules?

Given the observations from the previous sections we would expect that the syntactic complexity
distribution of bindings to deviate away from 5 (and the computational complexity form 7) since
the refining mode is designed to enable developers in focusing only on the refining part of the
transformation.

In the transformations investigated for this paper this is however not the case as can be seen
in Figure 5.4, the median syntactic complexity of bindings remains 5 and that of computational
complexity remains 7.

This indicates the usefulness of the changes made to the refining mode with the introduction
of the 2010 ATL compiler. Since 2010 refining mode allows real in-place transformations which
means that rules only need to specify changes to elements while all the other elements remain
untouched. And because the main effort in the investigated transformations, which were all defined
for ATL compilers prior to 2010, is spent on copying attributes from the input model element (98%
of all bindings) to its output counterpart, newer versions of the ATL compiler would heavily reduce
this necessary overhead, allowing developers to focus solely on actually refining models. To us
this suggests that the current versions of ATLs refining mode can significantly reduce unnecessary
overhead for refining transformations. There is also an observation to be made from this:

Observation 4: GitHub and especially the ATL Zoo lack samples of ATL transformations using the
refining mode with compiler versions at least as current as 2010.

Furthermore, In-Patterns in refining mode are, on average about twice as complex as in non
refining modules. Moreover only a small portion (∼ 7%) of In-Patterns do not contain a filter
expression at all compared to 1/3 of In-Patterns in non refining mode.

This leads us to two additional observations:

Observation 5: When refining models, filters are more heavily used than when transforming between
different meta-models.

Observation 6: Filter expressions are more complex in refining mode due to having to select ele-
ments with more specific properties.

5.5.4 RQ4: How large is the percentage of bindings that require trace-
based binding resolution?

About 15% of all bindings in the analysed transformation modules require traces. While this makes
it apparent that traces are less frequently required than one would expect, it still demonstrates their
necessity since 15% is not a negligible proportion. This leads us to:

5.5. Result Summary and Analysis 151

4
16

64

Binding

C
om

pl
ex

iti
y

Complexity Type computationalComplexity syntacticComplexity

Figure 5.4: Complexity distribution of Bindings in refining mode.

Observation 7: Bindings that require traces constitute a significant part of the model transforma-
tions considered.

It is also worth mentioning that while such trace resolution can save developers substantial
amounts of time they can also be a source of errors.

Considering the complexity of the bindings that require traces also reveals something interesting.
About half of all bindings that require traces have a syntactic complexity of 5 and computational
complexity of 7. This shows how well automatic trace handling can hide complexity. The developer
can simply access the input model element that is supposed to be transformed into the correct
output model element and the transformation engine handles resolving and referencing. Would the
developer have to take care of this process manually both syntactic and computational complexity
would be significantly higher since this would require identifying and accessing the corresponding
output model element through additional code.

5.5.5 RQ5: What portion of ATL transformations use implicit rule or-
dering?

In the ATL modules analysed for this study, a total of 460 rules are defined. Of those 364 or 79%
are matched rules, 84 or 18% are lazy matched rules which need to be invoked to transform model
elements and only 12 or 2% are called rules.

Our results, deviate slightly from the results found by Selim et al. (2017) but still reveal the
same preference trend of ATL developers:

Observation 8: Developers strongly prefer matched rules over lazy matched rules and called rules.

Since matched rules allow for implicit model traversal and rule ordering this can indicate that
these concepts provide good support for transformation developers. This is also evident from the
fact that the proportion of Out Pattern complexity (both syntactic and computational) to Action
Block complexity is far more balanced in called rules than in (lazy) matched rules (see Figures 5.1
and 5.2) again indicating that called rules require more structural code such as calling other rules
and conditioning.

152 Chapter 5. Paper D

5.6 Related Work
Di Rocco et al. (2015) analyse the impact of input and output meta-models on, amongst other
things, the complexity of ATL transformations. For this purpose they use a number of meta-model
metrics and correlate these with metrics for ATL transformations using Spearman’s rank correlation
coefficient. Their findings include a high correlation between the number of structural features of
the output meta-models and the number of used bindings in an ATL transformation module. An
insight which can be reflected upon in our results. In contrast to the complexity measures applied in
this work however, the measures proposed for complexity in their work is confined to the number of
structural features such as bindings or helpers of ATL transformations rather than the complexity
of their structure and contained expressions. Which is not to say that the applied measure is
not indicative of the complexity of transformations rather that it is only part of what makes a
transformation complex in our opinion.

Marcel F van Amstel et al. (2011a) propose the usage of cyclomatic complexity to measure
the complexity of helpers. They also envision incorporating the complexity of the contained OCL
expression into its complexity measure. Similarly to Di Rocco et al. (2015), they also use the
number of different transformation components as metrics for measuring ATL transformations.
The described metrics are applied to seven transformations. And the resulting values are then
related to quality attributes, based on the assessment of nineteen experts, such as understandability,
maintainability and conciseness using Kendall’s τb correlations. Notable results include a significant
correlation between the number of transformation rules and conciseness and the number of out-
patterns and understandability. In comparison to this, we try to draw direct conclusions about the
structure and structure of transformations from our gathered data instead of about quality features.

Vignaga (2009) relate the complexity of ATL transformations to a variety of introduced metrics.
Most of the related metrics are once again quantifications of different components within ATL
modules such as the number of matched rules or average number of filters used in rules. They
also relate the cyclomatic complexity to complexity much like Marcel F van Amstel et al. (2011a).
As previously mentioned we believe that the number of components are only part of what makes
transformations complex which is why the used complexity measure in this paper also incorporates
the complexity of expressions.

The numbers of ATL transformation components have also been used by Tolosa et al. (2011) to
make comparisons between several transformation modules to investigate the feasibility of applying
transformations to transformation modules. The authors concede that the applied metrics need
further research and development and predict that such measures could assist with identifying
aspects of ATL transformations to optimize.

Similarly Angelika Kusel et al. (2013) analysed the ATL Zoo with the goal to gain insights about
the frequency of use of reuse mechanisms. For this the authors devised a semi-automated process to
extract and analyse projects from the ATL zoo. They found that reuse mechanisms are exclusively
used within a transformation and that helpers are the most frequently used reuse mechanism while
only little rule inheritance is used. In contrast to their work, our focus does not directly relate to
reuse mechanisms although the computational complexity was introduced in part to account for the
outsourcing of complexity due to reuse mechanisms.

5.7 Threats to validity
This section addresses the potential threats to validity identified for the performed study.

The transformations evaluated for the purpose of this study were chosen from various sources to
reduce the influence of programming habits of individual transformation engineers. Consequently
the purposes and characteristics of the transformations vary immensely. To be able to compare
transformation modules using refining mode with modules that do not use refining mode we also
aimed to use a similar amount of respective transformation modules. While this strengthens the
external validity of our comparison it can potentially lead to a reduction in the external validity
of our other findings since an even distribution of refining and non refining modules is potentially
less representative of the overall ATL ecosystem. Given the selection of transformation modules
it is also not possible to draw representative conclusions about model transformation languages in
general but rather for ATL specifically.

There is of course a discussion to be held about the complexity measure used. As discussed
in Section 5.6 most research uses the number of elements as basis for complexity measures. We

5.8. Conclusion and Future Work 153

and Lano et al. (2018) argue that this alone does not fully cover the complexity of transformations.
The syntactic complexity measure used in this study uses the complexity of expressions and activities
as defined in Tables 5.1 and 5.2. The number of elements are also taken into account in these
definitions but do not constitute the majority of the complexity value of an ATL transformation
this is reserved to the complexity of expressions used within the transformation modules as evident
from Figure 5.1. While we are missing a formal validation of the measures used we believe that
this indicates their overall usefulness. The computational complexity is then a natural extension of
the syntactic complexity to more closely resemble the actual complexity that is hidden in operation
calls in expressions.

5.8 Conclusion and Future Work
In this work we presented our results of analysing ATL modules to provide insights into three com-
mon claims about the advantages of model transformation languages, namely that transformation
languages hide complex semantics behind simple syntax, that automatic trace handling in transfor-
mation languages is advantageous and that implicit rule ordering supports developers in defining
transformations.

For this purpose we used two complexity measures to investigate how complexity is distributed
over ATL transformation modules which we applied to a total of 33 modules. We also analysed the
proportions of matched rules compared to other types of rules and the proportion of bindings that
require trace information to be resolved.

We found, that while transformations can get complex, the complexity originates mainly in
definitions of how the output models should be populated rather than how the transformation
should be executed. To us this provides an indication for how well ATL abstracts away from certain
tasks necessary for model transformation such as model traversal, rule ordering and trace handling.

We have also shown that conditioning on types is well suited for model transformations since a
total of 22% of all non-trivial matched rules get by with only filtering on types. This also provides
a clear example why implicit rule ordering can be beneficial for model transformation definitions
since developers can simply define to which kind of input model element a transformation should
apply and the transformation engine handles execution.

This is further supported by the fact that we found that nearly 80% of all defined rules are
matched rules which make use of exactly this mechanism.

Next we analysed required trace information in bindings. We came to the conclusion that while
bindings that do require trace information are outweighed by those that do not, they still constitute a
significant portion of model transformations. And while this suggests that automatic trace handling
is advantageous further research is necessary to more precisely capture its impact.

Lastly we compared the complexities of transformation modules using the refining mode with
those that do not. We found that while the complexity of matched rules defined in a refining module
is much higher, the increase in complexity can be attributed to an increase in simple bindings. A fact
we were able to attribute to the use of older ATL compilers which did not allow in-place refinements.

For future work, we are interested in repeating the described proceedings on transformations
written in general purpose programming languages. While the resulting values can not be compared
directly, the complexity distributions can be used to gain insights into where the complexity in these
transformation definitions lie. Which we believe can produce further contributions to the discussion
of GPLs vs MTLs for defining model transformations.

155

Chapter 6

Paper E

Contrasting Dedicated Model Transformation Languages Versus General Purpose Lan-
guages: A Historical Perspective on ATL Versus Java Based on Complexity and Size

S. Höppner, M. Tichy, T. Kehrer

International Journal on Software and Systems Modeling (SoSyM), volume 21, pages 805–837, 2022
Springer Nature

Chapter 6. Paper E 157

Abstract
Model transformations are among the key concepts of model-driven engineering (MDE), and dedi-
cated model transformation languages (MTLs) emerged with the popularity of the MDE pssaradigm
about 15 to 20 years ago. MTLs claim to increase the ease of development of model transformations
by abstracting from recurring transformation aspects and hiding complex semantics behind a simple
and intuitive syntax. Nonetheless, MTLs are rarely adopted in practice, there is still no empirical
evidence for the claim of easier development, and the argument of abstraction deserves a fresh look
in the light of modern general purpose languages (GPLs) which have undergone a significant evo-
lution in the last two decades. In this paper, we report about a study in which we compare the
complexity and size of model transformations written in three different languages, namely (i) the
Atlas Transformation Language (ATL), (ii) Java SE5 (2004–2009), and (iii) Java SE14 (2020); the
Java transformations are derived from an ATL specification using a translation schema we developed
for our study. In a nutshell, we found that some of the new features in Java SE14 compared to
Java SE5 help to significantly reduce the complexity of transformations written in Java by as much
as 45%. At the same time, however, the relative amount of complexity that stems from aspects
that ATL can hide from the developer, which is about 40% of the total complexity, stays about the
same. Furthermore we discovered that while transformation code in Java SE14 requires up to 25%
less lines of code, the number of words written in both versions stays about the same. And while
the written number of words stays about the same their distribution throughout the code changes
significantly. Based on these results, we discuss the concrete advancements in newer Java versions.
We also discuss to which extent new language advancements justify writing transformations in a
general purpose language rather than a dedicated transformation language. We further indicate po-
tential avenues for future research on the comparison of MTLs and GPLs in a model transformation
context.

158 Chapter 6. Paper E

6.1 Introduction
Model transformations are among the key concepts of the model-driven engineering (MDE) paradigm
(Sendall et al. 2003). They are a particular kind of software which needs to be developed along with
an MDE tool chain or development environment. With the aim of supporting the development of
model transformations, dedicated model transformation languages (MTLs) have been proposed and
implemented shortly after the MDE paradigm gained a foothold in software engineering.

6.1.1 Context & Motivation
In the literature, many advantages are ascribed to model transformation languages, such as better
analysability, comprehensibility or expressiveness (Götz et al. 2021a). Moreover, model transforma-
tion languages aim at abstracting from certain recurring aspects of a model transformation such as
traversing the input model or creating and managing trace information, claiming to hide complex
semantics behind a simple and intuitive syntax (Gray et al. 2003; Jouault et al. 2008; Krikava et al.
2014; Sendall et al. 2003).

Nowadays, however, such claims have two main flaws. First, as discussed by Götz et al., there
is a lack of actual evidence to have confidence in their genuineness (Götz et al. 2021a). Second, we
argue that most of these claims emerged together with the first MTLs around 15 years ago. The
Atlas Transformation Language (ATL) (Jouault et al. 2006), for example, was first introduced in
2006, at a time when third generation general-purpose languages (GPLs) were still in their infancy.
Arguably, these flaws are underpinned by the observation that MTLs have been rarely adopted in
practical MDE (Burgueño et al. 2019).

Within our research group as well as in conversations with other researchers, the presumption
that transformations can just as well be written in a GPL such as Java has been discussed frequently.
In fact, in our own research, we have implemented various model transformations using a GPL; ex-
amples of this include the meta-tooling facilities of established research tools like SiLift (Kehrer et al.
2012) and SERGe (Kehrer et al. 2016; Rindt et al. 2014), or the implementation of model refactorings
and model mutations in experimental setups of more recent empirical evaluations (Schultheiß et al.
2020a,b). The presumption that model transformations can just as well be written in a GPL has
been confirmed by a community discussion on the future of model transformation languages (Bur-
gueño et al. 2019), and, at least partially, by an empirical study conducted by Hebig et al. (2018).
Our argumentation for specifying model transformations using a modern GPL is mainly rooted in
the idea that new language features allow developers to heavily reduce the boilerplate code that
MTLs claim to abstract away from. There are also other features that certain model transformation
languages can provide such as graph pattern matching, incrementality, bidirectionality or advanced
analysis but for now our study focuses solely on the abstraction and ease of writing argument.

6.1.2 Research Goals and Questions
To validate and better understand this argumentation, we elected to compare ATL, one of the most
widely known MTLs, with Java, a widespread GPL. More specifically, we compare ATL with Java
in one of its recent iterations (Java SE14) as well as at the level of 2006 (Java SE5) when ATL was
introduced1. The goal of this approach is twofold. First, we intend to investigate how transformation
code written in Java SE14 can be improved compared to the Java code using the Java version SE5
that was timely when ATL was released. Second, we want to contextualize these improvements by
relating them to transformation code written in ATL. We opted to use both size and complexity
measures for this purpose because both can provide useful insights for this discussion.

In order to achieve these goals, we developed four research questions to guide our research efforts:

RQ1: How much can the complexity and size of transformations written in Java SE14 be improved
compared to Java SE5?

RQ2: How is the complexity of transformations written in Java SE5 & SE14 distributed over the
different aspects of the transformation process compared to each other and ATL?

RQ3: How is the size of transformations written in Java SE5 & SE14 distributed over the different
aspects of the transformation process compared to each other and ATL?

1Interestingly, there was no significant evolution of the ATL language since its initial introduction in 2006 (Bur-
gueño et al. 2019).

6.1. Introduction 159

Table 6.1: Meta-data about the selected transformation modules.

Transformation Name LOC # rules # helpers

ATL2BindingDebugger 41 2 0
ATL2Tracer 96 2 0
DDSM2TOSCA 582 19 2
ExtendedPN2ClassicalPN 86 7 0
Families2Persons 49 2 2
istar2archi 99 6 1
Modelodatos2FormHTML 127 9 3
Palladio2UML 189 19 0
R2ML2XML 1125 60 1
ResourcePN2ResourceM 44 3 1
SimpleClass2RDBMS 63 4 3
UML22Measure 371 27 11

Average 236.25 13.3 2

RQ4: How does the size of query aspects of transformations written in Java SE5 & SE14 compare
to each other and ATL?

RQ1 aims to provide a general overview of how both size and complexity of transformations in
Java might be improved using language features provided in newer Java versions. For a more detailed
discussion and comparison it is then necessary to inspect and compare how the transformation code
based is associated to the different aspects of a transformation, e.g. model traversal, tracing or
the actual transformation of elements. This is the goal of RQ2 and RQ3 for complexity and size,
respectively. With these two research questions we aim to investigate for which aspects new language
features of Java help to reduce size and complexity of the associated code segments and what this
means compared to ATL. Lastly, it is often assumed that querying aided by language constructs
in MTLs is one key factor for their suitability over GPLs (Rentschler et al. 2014). With RQ4 we
aim to investigate this assumptions via an explicit comparison between queries written in Java and
ATL.

6.1.3 Research Methodology
The process to answer the discussed research questions was structured around four consecutive steps.
First, we selected a total of 12 existing ATL transformations taken from the ATL Zoo2 and several
projects from GitHub3 to the basis for our study. References to all included transformations can be
found in our supplementary material by Höppner et al. (2021). The selection of ATL modules was
done with several goals in mind. First, we wanted to include transformations of different size and
purpose. We also aimed to include both transformations using ATLs’ refining mode and normal
transformations. Lastly, due to the fact that our translations would be done manually, we decided
to limit the total number of transformations to 12 and the maximum size of a single transformation
to around 1000 LOC. Since our work is, in part, based on the work presented in (Götz et al. 2020)
and their selection criteria align with ours, we opted to make the selection of modules from the
set of transformations analysed by them. The module selection process resulted in a total of 12
ATL transformations, from a variety of sources including the ATL Zoo. Basic meta-data about the
transformations can be found in Table 6.1, while further details can be found in the supplementary
materials.

Next, we devised, and tested, a schema to translate the selected ATL transformations to Java.
To develop the translation schema, we followed the design science research methodology (Wieringa
2014) using an iterative pattern for designing and enhancing the schema until it fit our purpose.
To validate the correctness of the translated transformations, we used the input and output models
that were provided within the ATL transformation projects. The input models were used as input
for the Java transformations and the output models were then compared with the output of the
ATL transformations.

2https://www.eclipse.org/atl/atlTransformations
3https://www.github.com

160 Chapter 6. Paper E

Afterwards, we developed a classification schema to divide Java code into its components and
relate each component to the different aspects of the transformation process, i.e., transforming,
tracing and traversing. All Java code was then labelled based on the classification schema. For
ATL, a similar schema from Götz et al. (Götz et al. 2020) already exists which we adopted and
applied to the selected ATL transformations.

Lastly, we decided on and applied several code measures to allow us to compare the transforma-
tions. For comparing transformations specified in Java SE5 and SE14, we use a combination of four
metrics for measuring size and complexity, namely lines of code (LOC), word count (# words) (An-
jorin et al. 2019), McCabe’s cyclomatic complexity (McCabe 1976) and weighted method count
(WMC). We use WMC based on McCabe complexity, i.e., the sum of the McCabe complexities of
all elements, as the complexity measure in cases where the complexities of several elements need to
be grouped together. Word count is used to supplement the standard code size measure LOC as
a measure that is less influenced by code style and independent from keyword and method name
size (Anjorin et al. 2019). Furthermore, word count allows a direct size comparison between ATL
and Java, which is hardly possible with LOC due to the languages’ significantly different structure.

Our comparison of complexity and size distributions is thus based on LOC, word count, McCabe’s
cyclomatic complexity and WMC, and we incorporate the findings of Götz et al. on how code is
distributed within ATL transformations (Götz et al. 2020).

6.1.4 Results
Our analysis for RQ1 shows that newer Java versions allow for a significant reduction in code com-
plexity and lines of code, while the number of required words stays about the same. We attribute this
to a more information dense style of writing single statements in the more functional programming
style enabled by Java SE8 (2014) and newer.

The results for RQ2 reflect the reduction in complexity overhead mainly in the methods involving
model traversal. We also conclude that in newer language versions the most prominent remaining
complexity overhead stems from manual trace management in Java compared to ATL.

The more detailed investigation done for RQ3 support these observations. We show that tracing
is not only a prominent part in the methods dedicated to trace management but also in the methods
that are dedicated to actually transforming input into output elements.

Overall the results for RQ2 and RQ3 suggest that still, a lot of complexity and size overhead
for traversal, tracing and supplementary code is required in Java even though newer Java versions
improve the overall process of writing transformations. Of these, tracing is the biggest obstacle
for efficiently developing transformations in a general-purpose language. The overhead associated
with this transformation aspect is the most significant and, arguably, most error-prone one. A
large portion of the advancements of Java SE14 over Java SE5 stem from the inclusion of more
recent language aspects such as streams and functional interfaces. This fact is highlighted in our
results from RQ4 where those two aspects are the main factors for improvements in the size of OCL
expressions written in Java.

6.1.5 Contributions and Paper Structure
This paper extends prior work on comparing Java and ATL transformations (Götz et al. 2021b).
The extension consists of (i) a more detailed description of the applied translation schema from ATL
to Java, (ii) the inclusion of an additional measure, namely number of words, for comparison, and
(iii) the consideration of a larger set of transformations. Furthermore, we (iv) greatly expanded our
discussion of overhead introduced by using Java for transformations based on the results from the
newly included measure. This includes a more detailed inspection of Java code as well as a direct
comparison between Java and ATL. Additionally, based on all the results and our own experiences,
we (v) are now able to discuss more explicitly what newer Java versions improve over older ones
and where the language is still lacking compared to ATL. Finally, we (vi) present a description of
scenarios where these advancements are enough to justify Java over ATL and (vii) consider other
features of model transformation languages not present in ATL and their impact on the suitability
of general purpose languages.

The remainder of this paper is structured as follows: First, Section 6.2 introduces the relevant
aspects of ATL as well as the relevant differences between Java 5 and Java 14. Afterwards, in
Section 6.3, we give an overview of how we translate ATL transformations to Java. Because the

6.2. Background 161

� �
1 module NAME
2 create OUT1:MetaModelB, ...
3 [from|refining] IN1:MetaModelA, ...
4

5 [uses LIBRARY]*
6 [RULEDEF|HELPERDEF]*� �

List. 6.1: Structure of an ATL module.

discussions for RQ2&3 require a precise classification of how code segments in Java are associated
to the different transformation aspects, we provide an explanation for this in Section 6.4. In Sec-
tion 6.5, we present our detailed method for analysing the size and complexity of the translated
transformations. The results of our analysis and extensive comparison between the different trans-
formation approaches are then presented in Section 6.6. Based on these results, Section 6.7 discusses
our take-aways for what newer Java versions improve over older ones, where the language did not
advance, and when these advancements are enough to justify Java over ATL. Section 6.8 then dis-
cusses potential threats to the validity of our work, while related work is considered in Section 6.9.
Lastly, Section 6.10 concludes the paper and presents potential avenues for future research.

6.2 Background
In this section, we briefly introduce the relevant background knowledge required for this paper.
First, since model transformations can only be specified precisely based on some concrete model
representation, we introduce the structural representation of models in MDE which is typically
assumed by all mainstream model transformation languages, including ATL. Afterwards, since our
work builds on ATL as well as the technological advancement of Java, it is necessary to introduce
the relevant background knowledge on ATL and to present the important differences between Java
SE5 and Java SE14, respectively.

6.2.1 Models in MDE
In MDE, the conceptual model elements of a modelling language are typically defined by a meta-
model. The Eclipse Modeling Framework (EMF) (Steinberg et al. 2008), a Java-based reference
implementation of OMG’s Essential Meta Object Facility (EMOF) (OMG 2002), has evolved into a
de-facto standard technology to define meta-models that prescribe the valid structures that instance
models of the defined modeling language may exhibit. It follows an object-oriented approach in
which model elements and their structural relationships are represented by objects (EObjects) and
references whose types are defined by classes (EClasses) and associations (EReferences), respectively.
Local properties of model elements are represented and defined by object attributes (EAttributes).
A specific kind of references are containments. In a valid EMF model, each object must not have
more than one container and cycles of containments must not occur. Typically, an EMF model has
a dedicated root object that contains all other objects of the model directly or transitively.

6.2.2 ATL
ATL distinguishes among three kinds of so-called Units, being either a module, a library or a query.
Depending on the type of unit, they consist of rules, helpers and attributes. For data types and
expressions, ATL uses the Object Constraint Language (OCL) (OMG 2014).

6.2.2.1 Units

As illustrated in Listing 6.1, transformations are defined in Modules, taking a set of input models
(line 3) which are transformed to a set of output models (line 2) by rule and helper definitions which
make up the transformation (line 6).

Libraries do not define transformations but only consist of a set of helper definitions. Libraries
can be imported into modules to enhance their functionality (line 5).

162 Chapter 6. Paper E

� �
1 helper [context MODELTYPE]? def : NAME[(PARAMETERS)]? :TYPE = EXPR;� �

List. 6.2: Syntax to define Helpers.

Queries are special types of libraries, that are used to define transformations from model elements
to simple OCL types. They are comprised of a query element and a set of helper definitions.

6.2.2.2 Helpers and Attributes

Helpers allow outsourcing of expressions that can be called from within rules, similar to simple
functions in general purpose languages. Helper definitions can specify a so-called context which
defines the data type for which the helper is defined as well as parameters passed to the helper.
ATL also allows the definition of attribute helpers. Attribute helpers differ from helpers in that they
do not accept any parameter and always require a context data type. They serve as constants for
the specified context. Listing 6.2 shows the syntax to define helpers and attribute helpers.

6.2.2.3 Rules

In ATL, transformations of input models into output models are defined using rules. There are two
main types of rules: matched rules and called rules.

Matched rules: The declarative part of an ATL transformation is comprised by matched rules
which are automatically executed on all matching input model elements, thus allowing to define
type-specific transformations into output model elements. For this, the ATL engine traverses the
input model in an optimized order. Furthermore, matched rules generate traceability links (trace
links for short) between the source and target elements. These links can be navigated throughout
the transformation specification to access references to elements created from a source element.
Matched rules are comprised of four sections (see Listing 6.3):

• The In-Pattern (lines 2 to 3) defines the type of source model elements that are to be matched
and transformed. An optional filter expression allows the definition of a condition that must
be met for the rule to be applied.

• An optional Using-Block (lines 4 to 6) allows to define local variables based on the input
element.

• The Out-Pattern (lines 7 to 10) then defines a number of output model elements that are to
be created from the input element when the rule is applied. Each output model element is
defined using a set of so-called bindings for assigning values to attributes of the output model
element.

• Lastly, an optional Action-Block (lines 11 to 13) can be defined which allows the specification
of imperative code that is executed once the target elements have been created.

Matched rules can also be defined as lazy rules by adding the keyword lazy to the rule definition
(line 1). In contrast to regular matched rules, lazy rules are only executed when explicitly called
for a specific model element that matches both the rule’s type and its filter expression. They can
be called multiple times on the same model element to produce multiple distinct output elements.
To change the behaviour of lazy rules to always produce one and the same output element for the
same source model element, lazy rules can be declared as unique (line 1).

Called rules: As opposed to matched rules, called rules enable an explicit generation of target
model elements in an imperative way. Called rules can be called from within the imperative code
defined in the Action-Block of rules. They are defined similarly to matched rules. The main
difference is that they do not contain an In-Pattern but instead allow the definition of required
parameters. These parameters can then be used in the Out-Pattern and Action-Block to produce
output model elements.

6.2.2.4 Refining Mode

The refining mode is a special execution mode for ATL modules which aims at supporting an easy
definition of in-place transformations (Czarnecki et al. 2006; Strüber et al. 2017). Normally, the

6.2. Background 163

� �
1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : MODELATYPE [(CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR;]+
6 }]?
7 to
8 [OUTVAR : MODELBTYPE {
9 [ATR <- EXPR,]+

10 },]+
11 [do {
12 [STATEMENT;]*
13 }]?
14 }� �

List. 6.3: Syntax to define matched rules.

� �
1 public interface Function<T,R> {
2 public R apply(T par);
3 }� �

List. 6.4: Definition of the Function interface.

ATL engine only creates new output model elements from input model elements matched by the
rules defined in a module. However, in the refining mode, the ATL engine instead executes all rules
on matching input elements and produces a copy of all unmatched input elements automatically.
This aims to allow developers to focus solely on local modifications such as model refactorings rather
than also having to manually produce copies of all other model elements.

6.2.3 Technological advancements in Java SE14 compared to Java SE5
Since the release of J2SE 5 in September of 2004, there have been a lot of improvements made to
the Java language. In this section, however, we will only cover the ones relevant in the context of
this paper. All the relevant features relate to a more functional programming style as they allow
developers to express some key aspects of a transformation specification more concisely.

6.2.3.1 Functional Interfaces

With the introduction of the functional interfaces in Java SE8, Java made an important step towards
embracing the functional programming paradigm, paving the way to define lambda expressions in
arbitrary Java code. Lambda expressions, also called anonymous functions, are functions that are
defined without being bound to an identifier. This allows developers to pass them as arguments.

In essence, a functional interface is an interface containing only a single abstract method. One
example of this is the interface called Function<T,R> (see Listing 6.4). It represents a function
which takes a single parameter and returns a value. This abstract method can then be implemented
by means of a Java lambda expression (see Listing 6.5).

Lambdas defined with the interface Function<T,R> as their type are then nothing more than
objects with their definition as the implementation of the apply method wrapped in a more functional
syntax (see Listing 6.5).

Java provides a number of predefined functional interfaces, such as the aforementioned Func-
tion<T,R>, or Consumer<T> which takes one argument and has void as its return value.

6.2.3.2 Streams

Streams represent a sequence of elements and allow a number of different operations to be performed
on the elements within the sequence. Stream operations can either be intermediate or terminal. This
means that the operations can either produce another stream as their result or a non-stream result
which therefore terminates the computation on the stream. This also means that intermediate

164 Chapter 6. Paper E

� �
1 Function<Integer, Integer> doubleIt = (value) -> value * 2;� �

List. 6.5: Lambda expression definition based on Function.

� �
1 List<String> myList = Arrays.asList(1,2,3,4,5,6);
2 myList.stream().filter(i -> i % 2 == 0).forEach(System.out::println);� �

List. 6.6: Finding and printing all even numbers in a list.

operations work with all elements within the stream without the developer having to define a loop
over it.

The example in Listing 6.6 shows how one can find and print all even numbers in a list using
streams.

6.3 Translation Schema
In the following, we will present a detailed description of, first, how the translation schema was
developed (see Section 6.3.1), before then describing the translation schema itself (Sections 6.3.2
to 6.3.6).

The description of the translation schema is split into five parts. In Section 6.3.2, we describe
the general setup used to emulate ATL semantics in Java and the basic structure that all translated
modules follow. Then, in Section 6.3.3, we introduce and describe three libraries to reduce repetitive
code between translated modules, one for trace handling, one for model traversal, and one for
model loading and persisting. Sections 6.3.4 and 6.3.5 describe how the essential building blocks,
namely matched rules and called rules, of ATL transformations are translated into Java. And lastly,
in Section 6.3.6 we explain how helpers and general OCL expressions are translated.

All descriptions are illustrated by the use of a running example. For this, we use an ATL solution
found in the ATL Zoo for the Families2Persons case from the TTC’17 (Anjorin et al. 2017) the code
of which can be found in Listing 6.7 while its Java SE14 counterpart can be found in Listing 6.8.
The meta-models for the transformation case are shown in Figure 6.1. The example illustrates how
different ATL elements are translated into their corresponding Java code based on the described
schemata. Our descriptions will focus on the Java SE14 translation schemata. Notable differences
between the Java SE14 and Java SE5 translation schemata are highlighted as such.

6.3.1 Schema Development
To develop the translation schema, we followed the design science research methodology (Wieringa
2014). We used the ATL solution found in the ATL Zoo for the Families2Persons case from the

(a) The Families meta-model. (b) The Persons meta-model.

Figure 6.1: The Families and Persons meta-models from the Families2Persons
case taken from Jouault (2013).

6.3. Translation Schema 165

TTC’17 (Anjorin et al. 2017) as our initial test input for the translation scheme and focused on
developing the schema for Java SE14.

The development process followed a simple, iterative pattern. A translation schema was devel-
oped by the main author and applied to the Families2Persons case. The resulting transformation
was then reviewed by one co-author, focusing on completeness and meaningfulness. Afterwards, the
results of the review were used as input for reiterating the process.

In a final evolution step, the preliminary transformation schema was applied to all 12 selected
ATL transformations. Afterwards, both co-authors reviewed the resulting transformations sepa-
rately based on a predefined code review protocol. In a joint meeting, the results of the reviews
were discussed and final adjustments to the transformation schema were decided. These were then
used to create a final translation of all 12 ATL transformations.

Lastly we ported the developed transformations to Java SE5 by forking the project, reducing
the compiler compliance level and re-implementing the parts that were not compatible with older
compiler versions.

To validate the correctness of the translated transformations, we used the input and output
models that were provided within the ATL transformation projects. The input models were used as
input for the Java transformations and the output models were then compared with the output of
the transformations. Since neither an input nor an output model was available for the R2ML2XML
transformation, we had to rely solely on the results of our code reviews for its validation. This
validation approach is similar to how Sanchez Cuadrado et al. (2020) validate their generated code.

Our translation schema allows us to translate any ATL module into corresponding Java code.
The only assumption we make is that all the meta-models of input and output models are explicitly
available. The reason for this is that we work with EMF models in so-called static mode, which
means that all model element types defined by a meta-model are translated into corresponding Java
classes using the EMF built-in code generator.

6.3.2 General Setup and Module Translation
In our translation scheme, we generally assume that each model contains a single root element. This
is standard for EMF but could be easily extended by using lists as input and output.

An ATL module is represented by a Java class which contains a single point of entry method
that takes the root element of the input model as its input and returns the root element of the
output model. The transform method in line 13 of Listing 6.8 represents this entry point for
the Families2Persons transformation. It takes the root model element of type Family from the
input model and returns a List of type Person which serves as the root element for the Persons
meta-model4.

Additionally, some setup code is needed for extracting a model and its root element from a given
source file, calling the entry point of the actual transformation class, and serializing the resulting
output model. The code required for our running example is shown in Listing 6.9. We utilize one of
our developed libraries, namely IO, for reading an xmi-file containing a Families model, extracting
the root object of type Family and passing it to the transform method of the Families2Persons
class to initiate the actual transformation. The resulting output of type List<Person> is then
written to an xmi-file, again, utilizing our IO library.

Because traceability links need to be created before they can be used, we split the transformation
process into two separate runs. The first run creates all target elements as well as all traceability
links between them and their source elements, while the second run can safely traverse over model
references and populate the created elements by utilizing the traceability links when needed. Con-
sequently, the corresponding Java transformation class comprises two separate methods, dedicated
to each run and being called by the entry point method. In our example in Listing 6.8, the methods
preTransform(Family root) and actualTransform(Family root) in lines 18 and 25 represent
these two runs. Their implementation will be explained later throughout Section 6.3.4.

4In reality the Persons meta-model does not have a root element and the list is used as a substitute for the
transformation to conform with the translation schema as well as general EMF standards. To produce this list from
the transformed elements the Family2List method in lines 36-42 is introduced which does not have a counterpart in
ATL.

166 Chapter 6. Paper E

� �
1 module Families2Persons;
2 create OUT : Persons from IN : Families;
3

4 helper context Families!Member def: familyName : String =
5 if not self.familyFather.oclIsUndefined() then
6 self.familyFather.lastName
7 else
8 if not self.familyMother.oclIsUndefined() then
9 self.familyMother.lastName

10 else
11 if not self.familySon.oclIsUndefined() then
12 self.familySon.lastName
13 else
14 self.familyDaughter.lastName
15 endif
16 endif
17 endif;
18

19 helper context Families!Member def: isFemale() : Boolean =
20 if not self.familyMother.oclIsUndefined() then
21 true
22 else
23 if not self.familyDaughter.oclIsUndefined() then
24 true
25 else
26 false
27 endif
28 endif;
29

30 rule Member2Male {
31 from
32 s : Families!Member (not s.isFemale())
33 to
34 t : Persons!Male (
35 fullName <- s.firstName + ’ ’ + s.familyName
36)
37 }
38

39 rule Member2Female {
40 from
41 s : Families!Member (s.isFemale())
42 to
43 t : Persons!Female (
44 fullName <- s.firstName + ’ ’ + s.familyName
45)
46 }� �

List. 6.7: Families2Persons ATL solution.

6.3. Translation Schema 167

� �
1 public class Families2Persons {
2 private static final PersonsFactory PERSONSFACTORY = PersonsFactory.eINSTANCE;
3 private static final Tracer TRACER = new Tracer();
4 private static boolean isFemale(Member member) {
5 return member.getFamilyDaughter() != null || member.getFamilyMother() != null;
6 }
7 private static String familyName(Member member) {
8 return ((Family) member.eContainer()).getLastName();
9 }

10 public static List<Person> transform(Family family) {
11 preTransform(family);
12 return actualTransform(family);
13 }
14 private static void preTransform(Family root) {
15 var iterator = root.eAllContents();
16 var traverser = new Traverser(TRACER);
17 traverser.addFunction(Member.class, x -> {Member2MalePre((Member)

x);Member2FemalePre((Member) x);});
18 traverser.traverseAndAcceptPre(iterator);
19 }
20 private static List<Person> actualTransform(Family root) {
21 var newRoot = Family2List(root);
22

23 var iterator = root.eAllContents();
24 var traverser = new Traverser(TRACER);
25 traverser.addFunction(Member.class, x -> {Member2Male((Member)

x);Member2Female((Member) x);});
26 traverser.traverseAndAccept(iterator);
27

28 return newRoot;
29 }
30 private static List<Person> Family2List(Family root) {
31 var persons = new LinkedList<Person>();
32 persons.add(TRACER.resolve(root.getFather(), Male.class));
33 persons.add(TRACER.resolve(root.getMother(), Female.class));
34 persons.addAll(root.getDaughters().stream().map($ -> TRACER.resolve($,

Female.class)).collect(Collectors.toList()));
35 persons.addAll(root.getSons().stream().map($ -> TRACER.resolve($,

Male.class)).collect(Collectors.toList()));
36 return persons;
37 }
38 private static void Member2MalePre(Member m) {
39 if (!isFemale(m)) {
40 TRACER.addTrace(m, PERSONSFACTORY.createMale());
41 }
42 }
43 private static void Member2Male(Member m) {
44 var t = TRACER.resolve(m, PERSONSFACTORY.createMale());
45 t.setFullName(m.getFirstName() + " " + familyName(m));
46 }
47 private static void Member2FemalePre(Member m) {
48 if (isFemale(m)) {
49 TRACER.addTrace(m, PERSONSFACTORY.createFemale());
50 }
51 }
52 private static void Member2Female(Member m) {
53 var t = TRACER.resolve(m, PERSONSFACTORY.createFemale());
54 t.setFullName(m.getFirstName() + " " + familyName(m));
55 }
56 }� �

List. 6.8: The Families2Persons solution translated in Java SE14.

168 Chapter 6. Paper E

� �
1 List<EObject> ins = IO.readModel("Family.xmi");
2 Family family = (Family) ins.get(0);
3 List<Person> persons = Families2Persons.transform(family);
4 IO.persistModel(persons, "persons.xmi");� �

List. 6.9: Setup code for the Families2Persons transformation.

6.3.3 Libraries
For both model traversal as well as trace generation and resolving, we developed generic libraries
which can be reused across all transformation classes. Additionally, we also required a library to
outsource the reading and writing of models from and into files. The remainder of this section will
describe these libraries in more detail.

6.3.3.1 IO Library

The IO library contains methods used for reading and writing models from and to files. The library
exposes two methods, namely readModel(String uri) and persistModel(EObject root, String
uri) which both bundle together several EMF and file-IO methods to achieve the desired effects.
To do so the library utilizes the Resource5 type which represents a “persisted document” in EMF
and allows to read and write EObjects from and to it. To be able to read and write different
file types such as xmi or ecore, a corresponding ResourceFactory needs to be registered in the
ExtensionToFactoryMap of the ResourceFacotry registry. For this reason, we opted to only support
xmi, ecore and uml files since EMF provides default ResourceFactory implementations for all three.

The persistModel method takes a root element of a model as well as a desired output path,
and creates a resource containing the root element (and all its children) which is then saved to the
specified path. The readModels method reverses this approach by extracting the resource pointed
to by the passed path and returning all contents of the referenced resource to the caller. Due to the
makeup of EMF compliant files such as xmi, ecore or uml the first element within the contents will
then always contain the root element of the model within the file which can then be used as seen
in Listing 6.9.

6.3.3.2 Traversal Library

The traversal library allows us to outsource the traversal of the source model and thus reduce the
amount of boilerplate code written for each translated transformation. It builds upon a HashMap
that maps a Class<?> to a Consumer<EObject>. The Consumer<EObject> interface represents a
function that takes an input object of type EObject and has a return type of void. During traversal,
which is encapsulated within the library, the Consumer function that corresponds to an EObject
can be retrieved from the HashMap by using the class of the EObject as key. To achieve this, the
library exposes the methods addFunction and traverseAndAccept.

The addFunction method allows us to add a key-value-pair to the encapsulated hashmap. The
traverseAndAccept method then takes an Iterable collection containing EObjects, iterates over
all contained objects, fetches the function that corresponds to the concrete class of the EObject
and executes it. This way, we only have to write code that adds the required key-value-pairs to
the traverser, while the code for traversing the input model as well as resolving the correct function
which is to be called is completely outsourced. Note that adding such function calls is only necessary
for matched rules since lazy and called rules are called within the transformation code and not
automatically executed based on element type matching. An example of how the traversal library
is used can be found in lines 19-22 and 28-31 of Listing 6.8 and will be explained in more detail
in Section 6.3.4.

For the Java SE5 solution we decided on an alternative solution using the conditional dispatcher
pattern instead of outsourcing the traversal. The reason for this was a weighing of alternatives.
Outsourcing the traversal in Java SE5 would require the utilisation of anonymous classes. This in
turn would offer a similar work flow and an equal McCabe complexity for defining model traversal
as with the functional interface solution in Java SE14. It would however significantly increase the

5https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/
Resource.html

https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html

6.3. Translation Schema 169

required number of words and lines of code compared to the conditional dispatcher solution. Only
with the improved syntax provided through the functional interfaces in Java SE8 could a decrease
of the McCabe complexity be accompanied with an uniform word count and lines of code. Overall,
the decision leads to an increase in the McCabe complexity of the traversal code in Java SE5 but
allows for word count and LOC to remain stagnant. We will come back and discuss the impact of
this decision (in the relevant parts of our results discussion| in Section 6.7.1) later on.

This design decision affects the methods preTransform and actualTransform. Their implemen-
tation in Java SE5 is shown in Listing 6.10. Instead of populating the traverser objects we instead
manually iterate over the whole model and decide which methods to call based on the type of the
currently visited object.� �
1 //...
2 private static void preTransform(Family root) {
3 TreeIterator<EObject> iterator = root.eAllContents();
4 while (iterator.hasNext()) {
5 EObject next = iterator.next();
6 if (next instanceof Member) {
7 Member m = (Member) next;
8 Member2MalePre(m);
9 Member2FemalePre(m);

10 }
11 }
12 }
13

14 private static List<Person> actualTransform(Family root) {
15 List<Person> newRoot = Family2List(root);
16

17 TreeIterator<EObject> iterator = root.eAllContents();
18 while (iterator.hasNext()) {
19 EObject next = iterator.next();
20 if (next instanceof Member) {
21 Member m = (Member) next;
22 Member2Male(m);
23 Member2Female(m);
24 }
25 }
26 return newRoot;
27 }
28 //...� �

List. 6.10: Translated model traversal in Java SE5.

6.3.3.3 Trace Library

The trace library emulates the management of traceability links of ATL. Similar to the traversal
library, the trace library is built based on a HashMap. In this case, however, the HashMap maps
source EObjects to target EObjects and thus can be used both in Java SE5 and Java SE14.

In essence, the trace library exposes two methods. First, for adding a trace (addTrace), thus
requiring the source and target objects to be passed as parameters. Second, for resolving a trace
based on a source object named resolve. To achieve type consistency resolve also requires the
class of the intended target object to be passed as parameter. An example of how the trace library
is used can be found in line 51 of Listing 6.8 and will be explained in more detail in Section 6.3.4.

For more advanced trace management, additional methods exist that take an additional String
parameter to be able to add and distinguish multiple target objects for a single source object. This
functionality is sometimes required to access not the direct target object but another object that
was created during the translation of a source object.

6.3.4 Matched Rule Translation
Matched rules are translated into two methods within the transformation class. One method is re-
sponsible for creating a target object and its corresponding trace link, and one method is responsible

170 Chapter 6. Paper E

for populating the created target object in accordance with the bindings in its corresponding ATL
rule. The second method will also incorporate all code corresponding to the imperative code written
in the Action-Block of the translated rule. As already indicated in Section 6.3.2 when introducing
our two-step transformation process, the main idea behind this separation is that all traces and
referenced objects can be safely resolved by the second method (called during the second traversal)
because they are created by the first method (called during the first traversal). That is, calls for the
object and trace creation are put by the preTransform method, while calls for the second method
are put into the body of the actualTransform method.

For the rules Member2Male and Member2Female, this is illustrated in lines 45 and 50 of List-
ing 6.8. The rule Member2Male from Listing 6.7 is translated into the methods Member2MalePre
(in line 45 of Listing 6.8) and Member2Male (in line 50 of Listing 6.8). Member2MalePre creates
an empty Male object as well as a trace from the input Member, and method Member2Male fills the
corresponding Male object with data as defined through the bindings from the ATL rule. To actually
perform the transformation on all Member objects, the methods preTransform and actualTrans-
form define for which type of object which method should be executed. This is done using methods
from the traversal library to add the corresponding function calls for the Member class as shown in
lines 21 and 30 of Listing 6.8.

A special feature that comes from using our traversal library is that we only need to translate
the condition whether a rule should be applied in the pre method that is translated from it. This
is because the traverseAndAccept method only executes the corresponding function for an object
after it verified that an associated target object can be found via a trace. If no target object can
be found, the function is not executed. An example of this can be found in the translation of
the Member2Male rule. Line 32 of Listing 6.7 states that Member2Male is only executed under the
condition that not s.isFemale(). In the Java code in Listing 6.8, this is only translated into the
Member2MalePre method in line 46, whereas Member2Male in line 50 does not contain this condition.

Lazy rules and unique lazy rules do not require as much overhead as matched rules since they
are called directly from within other rules/methods and thus do not need to be integrated into
the traversal order. However, they do require traces to be created and added to the global tracer.
Additionally, methods translated from these types of rules have the target object as their return
value rather than the return type being void. Suppose Member2Female was a lazy matched rule.
In that case, instead of the code in lines 21, 30 and 59-63 for Member2Female, only the code shown
in Listing 6.11 would be added to the Families2Persons class. The method lazyMember2Female
returns an object of type Female while also creating a trace from the passed Member to the returned
Female. In case Member2Female was a unique lazy matched rule, a precondition using trace links
is added to the translated Java code that ensures that the method always returns the same object
when called for the same input object. This is illustrated in Listing 6.12.� �
1 private static Female lazyMember2Female(Member m) {
2 if (isFemale(m)) {
3 Female t = TRACER.add(m, PERSONSFACTORY.createFemale());
4 t.setFullName(m.getFirstName() + " " + familyName(m));
5 return t;
6 }
7 return null;
8 }� �

List. 6.11: Example translated lazy rule.

6.3.5 Called Rule Translation
Called rules, much like lazy rules, can be translated into a single method that creates the output
object, populates it in accordance with the bindings of the ATL rule and then returns it. Other
than the methods created for matched rules, the methods for called rules can take more than one
parameter as input since called rules in ATL can define an arbitrary amount of parameters of varying
types. Moreover, called rules do not create or use trace links. A sample called rule translated into
Java can be found in Listings 6.13 and 6.14.� �
1 rule calledMember2Female(Member m, String name) {
2 to
3 t : Female (

6.4. Code Classification Schema 171

� �
1 private static B uniqueLazyMember2Female(A a) {
2 Female t = TRACER.resolve(m, PERSONSFACTORY.createFemale());
3 if (t == null) {
4 if (isFemale(m)) {
5 t.setFullName(m.getFirstName() + " " + familyName(m));
6 return t;
7 }
8 return null;
9 }

10 return t;
11 }� �

List. 6.12: Example translated unique lazy rule.

4 fullName <- name
5)
6 }� �

List. 6.13: Example ATL called rule.� �
1 private static Female calledMember2Female(Member m, String name) {
2 Female t = PERSONSFACTORY.createFemale();
3 t.setFullName(name);
4 return t;
5 }� �

List. 6.14: Example translated called rule.

6.3.6 Helper and OCL Expression Translation
Helpers can be translated into methods much like called rules. The contained OCL expressions
can easily be translated into semantically equivalent Java code. Examples of such semantically
equivalent translations can be found in lines 9-11 of Listing 6.8 which correspond to the OCL code
in lines 4-17 of Listing 6.7. One distinction that can be made here is again between the different Java
versions used in terms of our study. Streams can be used to simulate the syntax of OCL, in particular
the arrow symbol for implicitly navigating over collections, while older Java versions need to use
loops instead. Table 6.2 shows a number of OCL expressions and their Java SE14 counterpart using
streams. Note that in contrast to OCL, Java requires all collections to be converted to streams and
back to be able to manage them in a functional programming style. The same expressions written
in Java SE5 without streams can be found in Listings E.1 to E.6 in Appendix E.1.

Table 6.2: A selection of OCL expressions translated to Java SE14.

OCL Java SE14

collection->select(e) collection.stream().filter(e).collect(Collectors.toCollection())

collection->collect(e)
collection.stream().map(x -> e.apply(x)).collect(Collec-
tors.toCollection())

collection->includes(x)
collection.stream().anyMatch(a -> x == a).collect(Collec-
tors.toCollection())

element.attribute element.getAttribute()

collection.attribute
collection.stream().map(x -> x.getAttribute()).collect(Collec-
tors.toCollection())

i | i > 5 i -> i > 5

6.4 Code Classification Schema
In this section we introduce the classifications of Java and ATL code used throughout RQ2 and
RQ3. The ATL classification described in Section 6.4.1 is taken from Götz et al. (2020) and is based

172 Chapter 6. Paper E

on the hierarchical structure of ATL. The classification of Java code described in Section 6.4.2 was
developed specifically for the analysis of this research. It is based in the structure of Java code and
its components as well as the relation thereof to general transformation aspects and ATL. We will
again use the Families2Persons example to illustrate how the classification schemas are applied.

6.4.1 ATL
The hierarchy for the ATL classification was already established by Götz et al. (2020) and consists
of the following levels and their corresponding categories:

1. Module Level

2. Rule Type & Helper Level

3. Rule Blocks Level

4. Content Level

5. Binding Level

The aim of this classification system is to differentiate the different components and their con-
tained subcomponents within an ATL module. As such, this classification represents a way to
indicate how a syntax element is contained within the complete structure of the ATL code. This
allows us to make precise observations on the structure of ATL modules based on their compo-
nents and, for example, the distribution of number of words required to write each component. An
overview of the classification hierarchy can be found in Figure 6.2. And the complete labelling for
the ATL solution of Families2Persons can be found in Figure 6.3.

Helper

In Pattern

OutPattern

Module

UsingBlock

M
at

ch
ed

 R
ul

e

La
zy

 M
at

ch
ed

R
ul

e

Called Rule

Statement

OutPatternElement

Binding

Figure 6.2: Overview of the ATL classification from Götz et al. (2020).

The Module Level defines the belonging of all elements within a module to said module. Below
it on the Rule Type & Helper Level a distinction between helpers and the different types of
rules is made. In the Families2Persons example from Listing 6.7 and Fig. 6.3 the helpers in lines
4 & 19 are labelled as Helper while both rules Member2Male and Member2Female in lines 30 & 39
are labelled as Matched Rule. All elements within the rules and helpers again inherit the respective
classification for this level from their parent elements.

6.4. Code Classification Schema 173

The Rule Blocks Level distinguishes between the different types of blocks that make up rules,
i.e., Using Block, OutPattern, InPattern and Action Block. A more specific distinction of helper
contents is not done due to them only containing OCL expressions. The rules in the Families2Persons
example only contain InPatterns (lines 31-32, 40-41) and OutPatterns (lines 33-36, 42-45).

Below the Rule Blocks Level the Content Level then allows a more precise description of the
elements contained within the rule blocks. The potential classifications on this level are: Out-
PatternElement, Statement and Variable Declaration. Lines 43-45 for example are labelled as an
OutPatternElement.

Lastly, the Binding Level again only contains one characteristic and allows to label bindings
as exactly that. Lines 35 and 44 are bindings and thus labelled as such as seen in Figure 6.3.

6.4.2 Java
In order to draw parallels between transformation code written in Java and ATL, it is necessary to
relate all code components in the Java code to the transformation aspects they implement. For this
purpose, we developed a hierarchical classification for Java code. The hierarchy follows the natural
structure of Java code much like the classification for ATL. However, contrary to ATL, the code
structure of Java does not allow us to directly break it down into transformation-related components.
This is due to the fact that Java is focused around object-oriented and imperative components rather
than transformation-specific ones. As a result, the classification schema breaks Java code down into
its OO and imperative components and then relates those components to transformation aspects.
The hierarchy levels of the classification are as follows:

1. Class Level

2. Attribute & Method Level

3. Statement-Type Level

4. ATL Counterpart Level

An overview of the classification levels and the characteristics attributed to each level can be
found in Figure 6.4. A sample labelling for the Java solution of Families2Persons can be found in
Figure 6.5.

The Class Level stands on top of the hierarchy. The class level itself is made up of only one
type of characteristic, the Class itself. In the Families2Persons example from Listing 6.8 the class
definition and all elements contained within the class body is thus labelled as belonging to the class
characteristic of the Class Level (as seen in Figure 6.5). This also indirectly represents a relation
between the class and the transformation module from which it was translated from, indicating
that the class and all its components relate to the transformation module and its components. More
specific relation between the contained components is then described through the lower levels within
the classification system.

Below the Class Level lies the Attribute & Method Level in which we classify to which trans-
formation aspect an attribute or method is related. The characteristics that can be attributed on
this level are: Traversal when a method is used for the traversal of the input model. Transforma-
tion when a method contains code for the actual transformation of one model element to another.
Tracing for all methods that are related to the creation or resolution of traces. Helper when a
method corresponds to a helper and lastly Setup for all attributes that are required to exist for
access throughout the transformation. The isFemale method in lines 5-7 from Figure 6.5 is thus
assigned the label Helper for the Attribute & Method Level in addition to its Class label on the
Class Level. The transform, preTransform and actualTransform methods all get assigned the
Traversal label while Family2List, Member2Male and Member2Female are all labelled as Transfor-
mation related on the Attribute & Method Level. Lastly, Member2MalePre and Member2FemalePre
both relate to Tracing and are thus characterized as such. All statements within the methods again
inherit the classification of the Class Level and the Attribute & Method level from their respective
parents in which they are contained in and get more specialized again through the lower levels within
the system.

Below the Attribute & Method Level then lies the Statement-Type Level in which all state-
ments within methods are characterized based on whether they are Control Flow statements (i.e.,
conditions or loops), Variable Declarations or any other type of Statement. The categorization on

174 Chapter 6. Paper E

Module

Helper

Matched Rule

In Pattern

Out Pattern

Out Pattern Element

Binding

Figure 6.3: Labelled ATL solution for the Families2Persons case.

6.5. Size and Complexity Analysis Methodology 175

Binding

Tracing O
th
er

Class

Tr
an
sf
or
m
at
io
n

Helper

Tracing

Traversal
Setup

ControlFlow

St
at
em

en
t

VarDec

Figure 6.4: Overview of the makeup of our Java classification.

this level does not directly relate to any transformation aspect but rather allows us to differentiate
between different types of statements in Java that are relevant for highlighting differences between
the structure of Java and ATL code. The condition defined in line 46 of Figure 6.5 is labelled
as belonging to Control Flow on this level while again inheriting its Class Level and Attribute &
Method Level from its container Method Member2MalePre.

The next lower level is the ATL counterpart Level. On this level, we categorize whether a
statement fulfills the role of a Binding in ATL or if it contains code to create or resolve Traces or
if it is any Other type of Java code that does not directly relate to transformation aspects. At this
level, one would expect that the categorization of statements is dependent on the categorization of
the Attribute & Method Level of the methods they are contained in, i.e., a statement within
a Transformation method should either be categorized as Binding or Other. However, in Java
transformations these boundaries become somewhat blurred due to the fact that traces need to
be explicitly resolved to access the corresponding output model elements when assigning them to
output attributes. This can for example be seen for line 51 of Figure 6.5. The classification comes
from it being a variable declaration that assigns the result of a trace resolution call within a method
that performs the transformation of a Member into a Male.

Lastly, we can also label different parts of a single line with different labels based on their
functionality. Line 38 of Figure 6.5, for example, has elements that perform assignments, i.e.,
bindings translated to Java, and elements that perform additional tracing operations. The labelling
of this line reflects these different functionalities within the line by labelling sub-statements within
the line instead of the whole line.

6.5 Size and Complexity Analysis Methodology
Our analysis of the transformation specifications is guided by the research questions introduced in
Section 6.1.2.

176 Chapter 6. Paper E

Class

Setup

Transformation

Tracing

Helper Variable Declaration

Traversal Binding Control Flow

Figure 6.5: Partially labelled Java solution for the Families2Persons case.

6.5. Size and Complexity Analysis Methodology 177

6.5.1 RQ1: How much can the complexity and size of transformations
written in Java SE14 be improved compared to Java SE5?

To compare the transformations written in Java SE14 and Java SE5, we decided to use code measures
focused on code complexity and size. For this reason, we chose McCabe’s cyclomatic complexity, and
LOC which are shown to correlate with the complexity and size of software (Jabangwe et al. 2015).
To keep the LOC count as fair as possible, all Java code was developed by the same researcher and
we used the same standard code formatter for all Java code. Furthermore, we supplement LOC with
an additional measure for code size based on word count, the combination of these two measures
also allowed additional insights. Word count means the number of words that are separated either
by whitespaces or other delimiters used in the languages, such as a dot (.) and different kinds
of parentheses (()[]{}). This measure supplements LOC because it is less influenced by code
style and independent from keyword and method name size (Anjorin et al. 2019). This method
for calculating transformation code size has already been successfully used by Anjorin et al. (2019)
to compare several (bidirectional) transformation languages including eMoflon (Weidmann et al.
2019), JTL (Cicchetti et al. 2011), NMF Synchronizations (Hinkel 2016) and their own language
BXtend (Buchmann 2018). Their argument for using word count is that because it approximates
the number of lexical units it more accurately measures the size of a solution than lines of code.

We applied the Java code metrics calculator (CK) (Aniche 2015) on all 24 transformations (12
Java SE5 + 12 Java SE14) to calculate both metrics and used a program developed by us to
calculate the word count measure. For a basic overview we then compare the total size between
Java SE5 and Java SE14 based on both LOC and word count and discuss observations as well
as possible discrepancies between the two measures. The same is done for McCabe complexity as
well. Because CK calculates metrics on the level of classes, methods, fields and variables we opted to
additionally use the values calculated on the level of methods, i.e., the LOC, word count and McCabe
complexity of the method bodies, to gain a more detailed understanding of where differences in size
and complexity arise from. Since neither the fields level nor the variables level contained values for
McCabe complexity and no interesting values for LOC and word count we decided to omit data
from those in our analysis. The metric values calculated by CK were then analysed and compared
based on maximum, minimum, median and average values.

RQ1 serves the purpose of providing a general overview of the differences between the code
size and complexity between Java SE5 and Java SE14. The results from this research question are
analysed and discussed in more detail in RQ2&3.

6.5.2 RQ2: How is the complexity of transformations written in Java SE5
& SE14 distributed over the different aspects of the transformation
process compared to each other and ATL?

To answer RQ2, we compare the distribution of complexity within the Java code with regards to
the different steps within the transformation process. In particular, we want to see how much effort
needs to be put into writing those aspects that ATL can abstract away from. To be able to analyse
the complexity distribution in Java transformations, it is necessary to differentiate the different
steps within the Java code, i.e., model traversal, transformation, tracing, setup and helper. Since
cyclomatic complexity can not be calculated for each line but only for set of instructions we decided
to fall back on the granularity of methods and use the classification and labelling given to each
method in Section 6.4.

Based on the classification introduced in Section 6.4.2, all Java transformations were labelled
by one author. The labelling was verified by the other two authors with one of them cross checking
2 transformations and the other one checking 4. The checked transformations were istar2archi,
Palladio2UML and R2ML2XML all in both Java SE5 and Java SE14 which in total meant that
about 51% of the total Java code lines were reviewed.

We then used the measures calculated for RQ1 to create plots of the complexity distribution.
The distribution shown in the resulting plots was then analysed taking into account the results
of Götz et al. (2020) regarding the distribution of different transformation aspects in ATL. The goal
in this step was to see how the complexity in Java transformations is distributed onto transformation
aspects, such as tracing and input model traversal, that are abstracted or hidden away in ATL as
well as to see the evolution of this distribution between the two different Java versions.

178 Chapter 6. Paper E

� �
1 rule SimpleBinding {
2 from s : Member
3 to t : Female (
4 name <- s.firstName
5)
6 }� �

List. 6.15: A rule with a simple binding.

6.5.3 RQ3: How is the size of transformations written in Java SE5 &
SE14 distributed over the different aspects of the transformation
process compared to each other and ATL?

The approach for this research question is twofold and follows a top down methodology. First,
we compare the distribution of code size within the Java code over the different transformation
aspects using the classification from Section 6.4. Afterwards, we focus on the actual code. Here,
we compare how code written in ATL compares to the Java code that represents the same aspect
within a transformation.

We opted to use word count as a measure for the detailed discussion of code size. The reason
why we use word count and not lines of code lies in their granularity. For some parts of our analysis,
it is necessary to split the value of single statements up into that of their components. This is much
easier to do when using word count as a measure and does not require code to be rewritten in an
unintuitive way. Moreover, the finer granularity also allows a more detailed look into the structure
of methods that was not possible in RQ2 due to the limitation of cyclomatic complexity.

The idea behind our approach is to calculate the word count for all transformations written in
Java and ATL and then compare both the total count of words as well as the number of words
required for specific aspects within the transformation process. While the word count for Java
transformations is calculated specifically for this study, the data for the ATL transformations is
taken from the results of Götz et al. (2020).

Based on the introduced categorizations, we then create Sankey diagrams for the distribution
of word count in both Java and ATL. These graphs then form the basis for our comparison. Here,
we compare both the distributions of the individual transformation aspects in Java with ATL as
well as the concrete sizes on the basis of the numbers. When comparing the size distribution, we
analyse how the distribution of the transformation aspects in Java differs from ATL, i.e., which
aspects are disproportionally large or small compared to ATL. We also explicitly look at how much
code is required for tracing in Java. For this, we look at the proportion of the transformations that
require traces and how that compares to the total size of Java code related to traces. Lastly, the
total number of words between Java and ATL are also directly compared to see which language
allows for shorter transformation code based on this measure.

To illustrate where the observed effects originate from, we use a selection of three ATL frag-
ments representing code which is often written in ATL transformations. The first fragment (see
Listing 6.15) represents code that copies the value of an input attribute to an attribute of the re-
sulting output model element, an action which constitutes 56% of all bindings in the set analysed
by (Götz et al. 2020). The second fragment (see Listing 6.16) represents code that requires ATL
to use traceability links, which (Götz et al. 2020) found to constitute 15% of all bindings. Because
the attribute s.familyFather does not contain a primitive data type but a reference to another el-
ement within the source model, the contained value cannot simply be copied to the output element.
Instead, ATL needs to follow the traceability link created for the referenced input element to find
its corresponding output element which can then be referenced in the model element created from
s. The last code fragment (see Listing 6.17) is a helper definition of average size and complexity.

We use those code fragments and compare them with the Java code that they are translated to
in order to highlight differences between the languages.

6.6. Results 179

� �
1 rule Trace {
2 from s : Member
3 to t : Male (
4 father <- s.familyFather
5)
6 }� �

List. 6.16: A rule with a binding using traces.

� �
1 helper context Class def: associations: Sequence(Association) =

Association.allInstances() -> select(asso | asso.value = 1);� �
List. 6.17: A typical helper in ATL.

6.5.4 RQ4: How does the size of query aspects of transformations written
in Java SE5 & SE14 compare to each other and ATL?

As previously discussed, the goal of this research question is to investigate the claim that writing
queries for models was improved with the introduction of model transformation languages such as
ATL and to check if this is still the case when utilizing new languages features in general purpose
languages today. This discussion of Java vs OCL has already been raised approaches to replace
OCL with Java (D. S. Batory et al. 2020). The data basis for this analysis is formed by all helpers
and their corresponding Java translations in form of methods within the 12 transformation modules
subject in this study. Because this set only contains a total of 15 helpers, we complement it with
a large collection of helpers and their translations from a set of supplemental libraries used in the
UML2Measure transformation.

In our analysis, we compare Java and ATL helpers first based on their total word count and then
by contrasting each ATL helper with its Java counterpart using regression analysis. All observations
in this analysis are supplemented with code segments that highlight them. The regression analysis
uses a linear regression model to predict the word count of Java methods (J5WC, J14WC) based
on the word count of ATL Helpers (HelperWC). This was chosen based on an hypothesis that
Java code entails an additional fix cost compared to OCL expressions as well as an increase by some
factor due to the more verbose syntax of Java. This approach allows us to both verify the hypothesis
and identify an approximation of the interrelationship between the code sizes.

6.6 Results
In this section, we present the results of our analysis in accordance with the research questions from
Section 6.1.

6.6.1 RQ1: How much can the complexity and size of transformations
written in Java SE14 be improved compared to Java SE5?

Table 6.3 presents an overview of lines of code (LOC), word count (# words) and the sum of McCabe
complexities of all methods contained in the transformation classes (WMC). Looking at the total
lines of code and WMC, the numbers display an expected decrease in both size and complexity.
Our transformations written in Java SE5 total 3252 lines of code and have a WMC of 792. The
same transformations written in Java SE14 require only 2425 lines of code and have a WMC of
411. Based on these measures, the size reduces by about 25%, while the cyclomatic complexity is
cut in half to about 52% of its Java SE5 counterpart. This decreased WMC can be attributed to
the improvements made through utilizing streams for handling collections. The traversal library
also contributes to this by removing all control flow branching for the transform methods and thus
reducing the McCabe complexity of these methods.

The word count measure, however, shows a different picture. While the Java SE5 implementation
uses 13007 words the Java SE14 implementations use nearly the same amount of words, 13118 to
be exact. When combining this with the reduced number of code lines provides and interesting

180 Chapter 6. Paper E

observation. Transformation code written in Java SE14 for our transformation set is more dense, i.e
a single line of code contains a lot more words and thus more information about the transformation.

Table 6.3: Measurement data on the translated transformation modules.

LOC # words WMC

Transformation Name
Java Version SE5 SE14 SE5 SE14 SE5 SE14

ATL2BindingDebugger 22 19 93 88 4 2
ATL2Tracer 74 17 285 283 7 5
DDSM2TOSCA 509 339 2137 2036 103 44
ExtendedPN2ClassicalPN 147 107 569 553 37 19
Families2Persons 72 62 273 297 22 14
istart2archi 184 115 689 714 57 24
Modelodatos2FormHTML 215 178 761 750 58 40
Palladio2UML 303 253 1066 1100 70 47
R2ML2XML 1181 855 4720 4966 303 139
ResourcePN2ResourceM 99 67 380 389 29 13
SimpleClass2RDBMS 163 111 629 581 50 26
UML22Measure 283 249 1405 1356 52 38

Total 3252 2425 13007 13118 792 411
Median 173.5 113 599 647 51 25
Average 271 202.1 1088.9 1092.75 66 34.25

Overall, both the total number of lines of code as well as the WMC of transformations in the newer
Java version are greatly reduced. However, there is no notable change in the number of required
words, which hints at a more information-dense code rather than simply less code.

Table 6.4 summarises the calculated size (LOC and word count) and complexity (McCabe)
measurements on the method level for both the Java SE5 and Java SE14 transformation code.

Table 6.4: Measurement data on the methods in the translated transformation
modules.

Minimum Median Average Maximum

Measure
Java Version SE5 SE14 SE5 SE14 SE5 SE14 SE5 SE14

LOC 3 3 7 6 12.5 9.4 135 105
words 1 2 5 6 5.2 6.4 64 37
McCabe complexity 1 1 2 1 3 1.6 44 11

As expected from the total numbers, the average and median length, measured in LoC, of
methods in Java SE14 is reduced by about 30%. The already low minimum of 3 lines has not been
further reduced in the newer version but the longest method is now 51 lines shorter.

Contrasting the numbers for lines of code with word count, we see a small increase in both
the average and median method sizes in Java SE14 compared to Java SE5. However, the maximum
number of words for a method is about 43% shorter in Java SE14 than in Java SE5. This means that
while on average (or median) the number of words required to implement transformation-related
methods in Java SE14 increased compared to Java SE5, newer Java versions help to reduce the size
of methods that required large number of words in older Java versions.

The reduction in cyclomatic complexity seen in the total numbers is also reflected for the more
detailed consideration on method level. The average transformations written in Java SE14 are 45%
less complex than in Java SE5. A result also reflected in the median. Furthermore, the maximum
McCabe complexity is reduced from 44 to 11, which is a significant decrease as this suggests that
even highly complex methods within the transformations can be expressed a lot less complex in
newer Java versions. This, again, can be attributed to the utilization of streams and functional

6.6. Results 181

interfaces which help to remove the requirement to manually implement large amounts of loops and
nested conditions.

The more detailed results reflect what was already shown on a coarse-grained level. Compared to
Java SE5, new language features in Java SE14 help to reduce the required number of code lines,
while the number of words stays about the same. The cyclomatic complexity is significantly reduced,
most prominently seen in the fact that the most complex method in Java SE14 is only 1/4th of the
complexity of the most complex method in Java SE5.

6.6.2 RQ2: How is the complexity of transformations written in Java SE5
& SE14 distributed over the different aspects of the transformation
process compared to ATL?

The results for this research question are split up into two parts. We first report on our findings for
Java SE5 and its comparison to ATL in Section 6.6.2.1, before reporting the findings for Java SE14
and its comparison to ATL and Java SE5 in Section 6.6.2.2.

6.6.2.1 Java SE5

Figure 6.6 shows a plot over the distribution of WMC split up into the different transformation
aspects involved in a transformation written in Java SE5 and Java SE14. It shows that about 60%
of the complexity involved in writing a transformation in Java SE5 stems from the actual code
representing the transformations and helpers. The other 40% are distributed among the model
traversal, tracing and setup code. In ATL, these three aspects are completely hidden behind ATL’s
syntax. In other words, this means that 40% of the complexity within the transformations written
in Java SE5 stems from overhead code.

Overall, the results support the consensus from back when ATL was introduced that a significant
portion of complexity can be avoided when using a dedicated MTL for writing model transforma-
tions.

6.6.2.2 Java SE14

Given the observations from RQ1 combined with the the general improvements that Java SE14
brings to the translation scheme, one would expect better results for the complexity distribution
of transformations written in that Java version. However, when looking at Figure 6.6, which again
shows a plot over the distribution of McCabe complexity split up into the different transformation
aspects involved in a transformation written in Java, there is still a significant portion of complexity
associated with the model traversal, tracing and setup code in Java SE14.

While the complexity associated with model traversal is greatly reduced by the use of the traversal
library, the overall distribution between the actual code representing the transformations and helpers
and the model traversal, tracing and setup code does not change much. About 40% of the overall
transformation specification complexity still stems from overhead code. Moreover, not only did
this ratio stay similar compared to Java SE5, also the ratio between helper code complexity and
transformation code complexity stayed about the same. One potential reason for this is that while
newer Java features help to reduce complexity, they do so for all aspects of the transformation, thus
the distribution stays about the same.

The reason that the code related to trace management experiences an increase in its complexity
ratio compared to other parts of the transformation can be explained by the fact that this code stayed
the same between the different Java versions. Thus, while the complexity of all other components
shrank, the complexity of trace management methods stayed the same, leading to higher relative
complexity.

Overall, the results point towards even newer versions of Java still having to deal with the complex-
ity overhead that ATL is able to hide. Specifically, handling traces still entails a large overhead.

182 Chapter 6. Paper E

Helper 4.9%
Model Traversal 13.1%

Setup 0.2%

Tracing 25.2%

Transformation 56.6%

Helper 4.2%

Model Traversal 26.1%

Setup 0.1%

Tracing 12.5%

Transformation 57.1%

0
20

0
40

0
60

0
80

0

Java 14 Java 5
LanguageVersion

W
M

C

Category Helper Model Traversal Setup Tracing Transformation

Figure 6.6: Distribution of WMC over transformation aspects in Java SE5 and
SE14.

6.6.3 RQ3: How is the size of transformations written in Java SE5 &
SE14 distributed over the different aspects of the transformation
process compared to ATL?

The reporting of results for this research question follows the same structure as Section 6.6.2. First
in Section 6.6.3.1 the results of our analysis of Java SE5 and its comparison with ATL are reported.
Afterwards in Section 6.6.3.2 the results for Java SE14 and its comparison with ATL are discussed.
This section also contains a comparison to the results of Java SE5.

6.6.3.1 Java SE5

The total size of Java SE5 transformations compared to ATL transformations is much larger when
using word count as a measure. All ATL transformations in our set together amount to 7890 words,
while the Java SE5 code needs 13007. This is an increase of 64.8%. Figure 6.7a allows us to look
at the distribution of written words over the transformation aspects introduced in Section 6.4. The
x-axis of the graph describes the hierarchy-levels from Section 6.4. The word count is depicted
on the y-axis and on each hierarchy-level on the x-axis the word count distribution of its different
aspects are shown. How each level is made up of its sub-levels is then shown by means of the alluvial
lines flowing from left to right. The flow lines are coloured according to the Attribute & Method
level as it represents the top level of separation and eases readability.

Looking at the graph we see a large portion of the number of words is actually associated with
the transformation code itself. Overhead from tracing, traversal and setup exists but it is not as
prevalent as expected from the results presented in Section 6.6.3. However looking more closely
into each of the aspects and their makeup reveals that there is more overhead still hidden in the
transformation-related code. In the following, we will look at the individual aspects and their more
precise breakdown and what this means for transformations written in Java SE5, also in comparison
to ATL.

6.6. Results 183

Class

Traversal

Transformation

Tracing

Setup
Helper

VarDec

Statement

ControlFlow

Other

PureTracing

PureBinding

Value
13007

2476

8598

1294

289
350

2861

5545

2667

5787

2356

2880

13007

0
50

00
10

00
0

Class Attribute &
 Method

Statement−Type ATL Counterpart Source

Level

w

or
ds

Attribute & Method Level Helper

Setup

Tracing

Transformation

Traversal

(a) Distribution in Java SE5.

Class

Traversal

Transformation

Tracing

Setup
Helper

VarDec

Statement

ControlFlow

Other

PureTracing

PureBinding

Value
13118

2522

8685

1294

277
340

3130

7519

547

4811

2724

3654

13118

0
50

00
10

00
0

Class Attribute &
 Method

Statement−Type ATL Counterpart Source

Level

w

or
ds

Attribute & Method Level Helper

Setup

Tracing

Transformation

Traversal

(b) Distribution in Java SE14.

Figure 6.7: Distribution of word count over transformation aspects in Java SE5
and SE14.

The number of words required to express Helper code for our transformation set is low. It
constitutes 2.9% of all words within the transformation class which is in line with the size of helpers
in ATL as seen in Figure 6.8.

Similarly, the number of words required for setup code is also of little consequence as it constitutes
only about 2.2% of the total word count in the transformations considered in this work. However,
even though the amount is small, the code still has to be written and maintained when evolving the
transformation.

Another part of the code within the transformation classes that represents overhead in Java
SE5 compared to ATL is the code related to tracing. While ATL abstracts away tracing and does
target element creation implicitly, in Java this behaviour has to be recreated by hand. The library
for tracing introduced in Section 6.3.3 helps reduce the implied overhead but the creation of target
objects as well as traces for them still has to be initiated manually. The methods involved in this
constitute for 9.9% of words used in our translated transformations and are made up of methods in
style of what is described in Section 6.3.4.

As previously stated, a large portion (65.8%) of the word count comes from methods and at-
tributes related to the actual transformation. This however changes when looking at the lower levels
of classification within those methods. In ATL 60% of the total number of words and 61% of the
words within rules stem from bindings, i.e., the core part responsible for transforming input into
output. In our Java SE5 translation this differs greatly. The translated binding code only makes up
22% of the total word count or 33.5% within the transformation methods. This points to the fact,
that much less of what is written in Java SE5 actually relates to actual transformation activities.
In Java many more words are spent on code not directly transformation-related but rather on tasks
necessary for the transformation to work. Three such types of code stand out.

One is statements that resolve traces built up in the tracing methods discussed in the last
section (as seen by the flow from Transformation over Statement and Variable Declarations towards
Tracing in Figure 6.7a). Examples of such code in the Families2Persons example from Figure 6.5
and Listing 6.8 can be found in lines 38,39 and 51.

The second one is code to initialise temporary variables used for processing steps within the
transformation (as seen by the flow from Transformation over Variable Declarations into Other in
Figure 6.7a).

And lastly there is a large number of words associated with control flow via loops and condi-
tions to process collections in order to bind their transformed contents onto attributes of of the
current output object (as seen by the flow from Transformation over Control Flow towards Other
in Figure 6.7a).

184 Chapter 6. Paper E

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

7890

4268

1672

247

1703

638

5163

764

958

628

936

5026

4355

1607

6283

0
20

00
40

00
60

00
80

00

Module Rule Type
 & Helper

Rule Blocks Content Binding Source

Level

w

or
ds

Rule Type & Helper CalledRule Helper LMatchedRule MatchedRule

Figure 6.8: Distribution of word count “complexity” measure over transformation
aspects in ATL calculated based on Götz et al. (2020).

Code relating to traversal is again overhead introduced due to the usage of Java over ATL. The
number of words required for writing traversal-related code for our set of transformation constitutes
18.9% of the total word count of transformation classes.

Overall, the overhead produced by Tracing, Traversal and Setup code amounts to 31% of the total
number of words for our Java SE5 transformations. Furthermore, while 65.8% of words within
the transformation classes are related to the process of transformation, many of them are again
overhead from manual trace resolving, model traversal and supplemental code.

� �
1 private void simpleBinding(Member s) {
2 ...
3 t.setName(s.getFirstName());
4 }� �

List. 6.18: A rule with a simple binding in Java SE5.

When comparing a simple binding (see Listing 6.15) written in ATL with its translation in Java
SE5 (see Listing 6.18), there is not much difference. Both require nothing more than their language
constructs for accessing attribute values and assigning them to a different attribute.

This is not the case when traces are involved. While ATL allows developers to treat source
elements as if they were their translated target element (see Listing 6.16), some explicit code needs
to be written in Java (see Listing 6.19). As a result, the transformation specification gets larger since
it is not only required to call the trace resolution functionality, but it is also necessary to put some
additional type information in so the Java compiler can handle the resulting object correctly. The
type information is necessary since, as described in Section 6.3.3.3, the trace library holds EObjects
which have to be converted to the correct type after they have been retrieved based on the source
object.

6.6. Results 185

� �
1 private void simpleBinding(Member s) {
2 ...
3 t.setName(TRACER.resolve(s.familyFather, Male.class));
4 }� �

List. 6.19: A rule with a binding using traces in Java SE5.� �
1 private List<Association> associations(Class self) {
2 List<Association> list = new LinkedList<Association>();
3 for (Association asso : ALLASSOCIATIONS) {
4 if (asso.getValue() == 1) {
5 list.add(asso);
6 }
7 }
8 return list;
9 }� �

List. 6.20: A typical helper in Java SE5.

The increase in size is even more prevalent when looking at the translation of a typical helper.
The helper in Listing 6.17 requires OCL code that works with collections which, thanks to OCL’s
“→ syntax”, can be expressed in a concise manner. In Java SE5, however, as seen in Listing 6.20,
the code gets a lot more complex and bloated. This is due to, as previously stated in Section 6.6.3,
the fact that the only way to implement the selection is to iterate over the collection through an
explicit loop (lines 3 to 9) and to use an if-condition within the loop (lines 4 to 6). We investigate
and discuss this in more detail later in Section 6.6.4.

Overall, the examples show that simple bindings can be expressed easily in both ATL and Java
SE5. Bindings involving trace resolution require some additional effort in Java SE5 while ATL
can handle those like any other binding. The most significant difference, however, comes from
expressions involving collections. Due to the required usage of explicit loops, the Java SE5 code
blows up in size and complexity compared to the more compact ATL notation.

6.6.3.2 Java SE14

Comparing the total number of words in Java SE14 transformations with ATL, a similar picture as
for Java SE5 arises. The translated transformations require 13118 words while ATL only requires
7890. Surprisingly, as also discussed in Section 6.6.1, the number of words in Java SE14 is higher
than that of Java SE5, although only by around 100 words, despite requiring less lines of code
and cyclotomic complexity. We believe this to be the result of two effects. One, using streams for
processing collections reduces the lines of code and cyclomatic complexity because they are single
statements and are thus not split over as many lines as when using loops. But, setting up streams
and transforming them back into the original collection requires several additional method calls
which offset the overall reduction of number of words.

The distribution of the number of words between Java SE5 and Java SE14 also differs immensely,
especially around the make up of transformation methods, as evident from Figure 6.7b. It also again
highlights key differences between the ATL transformations and their Java counterparts.

The portion of words required for writing Setup and Helper code has slightly reduced compared
to Java SE5 while the proportion of words for Transformation and Traversal methods increased.
The Methods & Attributes for setting up helpers does not change which is due to the fact that the
underlying code does not change between Java SE5 and Java SE14.

Thus, more can be concluded from how the number of words are distributed within the Trans-
formation and Traversal methods in Java SE14.

For Traversal, it is noticeable that almost no control flow statements are used any more. Instead,
most words now come from simple statements. This is because in Java SE14 we make use of the
Traversal library, which allows us to pass only the classes to be matched and the methods to be
called to the traverser instead of having to write loops and conditions manually. This evidently does
not reduce the number of words, but it creates a different way of defining traversal.

186 Chapter 6. Paper E

Similarly, the transformation-related methods in Java SE14 also contain much less words that
define control flow. The number of words for other statements not directly performing transfor-
mation tasks is also reduced. Instead, the translated bindings now make up a larger proportion of
the word count. In our Java SE14 transformations, the code for translated bindings now makes up
27.8% of all words compared to the 22% in Java SE5 and 41.9% of words within the transformation
methods. This stems from the usage of streams for processing collections of input elements rather
than explicit loops and conditions. As a result the Java SE14 implementation is less control flow
driven and focuses more on the data involved. However, while this allows for less lines of code and
a reduction in cyclomatic complexity as shown in Section 6.6.1, it does not improve the required
number of words. This is because in some cases, the setup overhead for streams counteracts their
conciseness gain when using number of words as a measure. An example of this can be seen when
comparing Listings 6.21 and 6.22. Both code segments resolve all InElements from the input into
their corresponding OutElements and add them to the OutElements list of the output. The number
of words required in Java SE5 for this totals 14 whereas the number of words in Java SE14 amounts
to 17.� �
1 for (InElement i : input.getInElements()) {
2 output.getOutElements()
3 .add(TRACER.resolve(i, OutElement.class));
4 }� �

List. 6.21: Trace resolution example of a collection in Java SE5.� �
1 output.getOutElements()
2 .addAll(input.getInElements().stream()
3 .map(i -> TRACER.resolve(i, OutElement.class))
4 .collect(Collectors.toList()));� �

List. 6.22: Trace resolution example of a collection in Java SE14.

Overall, our translated transformations in Java SE14 do not reduce the number of words compared
to their Java SE5 counterpart. Newer language features do however help in reducing the amount of
explicit control flow statements and supplemental code required. Most of this is now done directly in
translated bindings which more closely follows the ATL-style. In this sense, Java SE14 helps to take
a more data-oriented approach to transformation development compared to Java SE5. However,
there is still much overhead from manual traversal, tracing and supplemental code compared to
ATL.

When comparing the code segments for writing simple bindings and bindings involving traces
in Java SE14 with ATL, there is no difference to the findings from comparing Java SE5 to ATL.
This is due to the fact that no Java features introduced since SE5 help in reducing the complexity
of code that needs to be written here.� �
1 private List<Association> associations(Class self) {
2 return ALLASSOCIATIONS.stream()
3 .filter(asso -> asso.getValue()==1)
4 .collect(Collectors.toList());
5 }� �

List. 6.23: A typical helper in Java SE14.

Comparing translated helper code however, does show some improvements of Java SE14 over Java
SE5. Because of the introduction of the streams API, Java SE14 (see Listing 6.23) can now handle
expressions involving collections nearly as seamless as ATL (see Listing 6.17). Only the overhead
of calling stream() and .collect(Collectors.toList()) remains. This and other observations
regarding OCL expressions translated to Java are discussed in more detail later in Section 6.6.4.

Overall, the examples show that code for both simple bindings and bindings involving traces in Java
SE14 stays just as complex in comparison to ATL as in Java SE5. Code involving collections,
however, can now be expressed nearly as seamless as in ATL due to the introduction of the streams
API in Java which offers a notation that is close to OCL notation.

6.7. Discussion 187

6.6.4 RQ4: How does the size of query aspects of transformations written
in Java SE5 & SE14 compare to each other and ATL?

Comparing the word count numbers of helpers from the transformation modules and libraries with
their translated counterparts we can once again observe an increase in Java. While all helpers in
ATL combined total 2299 words the Java SE5 code totals 3801 words which is an increase of about
65.3%. This was to be expected since Java SE5 is more verbose, especially when handling collections
which are required for all helpers within the libraries. This becomes clear when looking at the Java
SE5 translation of Listing 6.17 in Listing 6.20. Not only does Java require a loop and if-condition
to filter out the desired association subset, a new results list also has to be created and filled with
values. Compared to OCLs “→ syntax” this increases the number of required words to produce the
same result drastically.

Next, as described in Section 6.5.4 a linear regression was calculated to predict the word count of
Java SE5 code for Helpers based on their word count. We were able to find a significant regression
model (p < 2.2e − 16) with an adjusted R2 of 0.649. The predicted word count of Java SE5
expressions for OCL expressions is estimated as 4.85364 + 1.31554 * HelperWC. The hypothesis
of a linear relationship is also supported by a pearson coefficient of 0.81 indicating this linear
relationship.

Overall, we see a linear relationship between OCL expression code and the translated Java SE5
code. The factor with which the Java code increases in size more quickly is 1.53. This combined
with the subjectively less clear way of handling collections through loops leads to the observation
that Java5 was not well suited for defining expressions on models.

Looking at the number of words of Java SE14 Helpers compared with their ATL counterparts
we see a similar but slightly smaller size than with Java SE5. As stated earlier all ATL library
helpers total 2299 words and with 3350 words their Java SE14 counterpart is only about 45.8%
larger compared to the 65.3% of Java SE5. This fits well into our observation that the verbose
handling of collections is responsible for large portions of the size increase. The streams API,
introduced in Java SE8, allows developers a less verbose way of handling collections as can be seen
when comparing Listings 6.20 and 6.23. While there is still some overhead compared to the OCL
counterpart, namely the necessary calls to stream() and .collect(Collectors.toList()), the
total overhead is greatly reduced. Moreover, this difference could in principal be eliminated by using
an alternative GPL. The Scala programming language, for example, does not require a conversion
between streams and collections.

The decrease in size can also be observed in our linear regression model that predicts the word
count of Java SE14 code for OCL expressions based on the word count of those expressions. The
model we were able to find is significant (p < 2.2e − 16) and has an adjusted R2 of 0.64. The
predicted word count of Java SE14 expressions for OCL expressions is estimated as 5.26631 +
1.09064 * HelperWC. And the hypothesis of a linear relationship is again supported by a pearson
coefficient of 0.8. Figure 6.9 shows how well both the regression models fit the data. It also highlights
the decrease of words required for translated helpers in Java SE14 compared to Java SE5.

The x axis depicts the word count value of OCL expressions while the y axis depicts the word
count of Java SE5 codes. The dots within the graph then show the corresponding Java SE5 code word
count for each translated OCL expression. Lastly, the red line shows the predicted correspondence
based on our regression model.

Overall, we still see a linear relationship between OCL expression code and the translated Java
SE14 code. However, the factor with which the Java code increases in size more quickly is only
approximately 1.1. This leads us to believe that a well trained Java developer should be able to
express OCL queries in Java without much difficulties.

6.7 Discussion
In this section we discuss our findings from Section 6.6 as well as our experiences from the process
of translating and using transformations in Java. Our discussion revolves around two main topics.

188 Chapter 6. Paper E

10
20

30
40

50
60

0 10 20 30 40
ATL Helper word count

Ja
va

 tr
an

sl
at

io
n

w
or

d
co

un
t

Word count values actual14 actual5

predicted14 predicted5

Figure 6.9: Comparison of actual Java SE5 and SE14 helper size with predicted
size based on linear the regression models.

First, we want to discuss the impact that the design decision to not use anonymous classes to
outsource traversal in our Java SE5 solution, explained in Section 6.3.3.2, has on the presented
data. Then we discuss how the advancements that have been achieved in newer Java versions
influence the ability for developers to efficiently develop transformations in Java. This also includes
a conversation about what shortcomings still exist. And second we present a guide that suggests
in what cases general purpose languages such as Java can be used in place of ATL. We also show
cases where we would advise against writing transformations in Java because of its disadvantages.
The argumentation of this part is based on the results presented in this publication as well as our
experiences, both from this study as well as previous works (Kehrer et al. 2012, 2016; Rindt et al.
2014; Schultheiß et al. 2020a,b). Finally, we want to have a short discussion beyond the results of
our study. Here we want to talk about other features that MTLs can provide and what those could
mean for the comparison of MTLs vs. GPLs.

6.7.1 The impact of not outsourcing model traversal in Java SE 5
As explained in Section 6.3.3.2, we decided on using the conditional dispatcher pattern to implement
traversal in our Java SE5 solution as opposed to implementing a traversal library, similar to the
one used in Java SE14, using anonymous classes. This design decision has implications for the data
presented throughout Section 6.6 which we discuss here.

As mentioned, using the presented approach leads to an increased McCabe complexity for the
traversal implementation in Java SE5 while it reduces the LOC and number of words. This has
concrete implications for the numbers discussed in Sections 6.6.1 to 6.6.3.

For one, this means that when comparing the concrete numbers as done in Section 6.6.1, the
stagnation of number of words observed between the Java SE 5 and Java SE 14 variants, would not
be present with the alternative Java SE 5 implementation. This is because it would be 812 words
longer (making the total number of words 13819) than the presented implementation and thus one
would instead observe the expected decrease in number of words in the Java SE 14 implementation.

6.7. Discussion 189

It would still not be as significant, because only the traversal part of all transformations are affected,
but it would be more in line with the reduction in code size observed with the LOC measure in
the presented implementations. Moreover, the LOC reduction itself would also be more pronounced
because the alternative traversal implementation does require more lines of code per rule. Specifically
the total of the Java SE 5 implementation would be increased by 1020 LOC to a total of 4272 as
opposed to 3252.

The difference in WMC between the Java SE 5 and Java SE 14 implementation on the other
hand would be less clear-cut. As shown in Figure 6.6 a significant portion of the WMC in the
presented Java SE5 implementation stems from model traversal. In the alternative implementation
this complexity would be significantly reduced by 152 to a total of 640 as opposed to 792. The
overall WMC of the Java SE 5 transformations would still be higher, because the utilisation of
streams in Java SE 14 reduces the McCabe complexity of other parts of the transformation as well,
but it would no longer be nearly halved.

Our observations regarding the differences between implementations in the two different Java
versions would, however, not change significantly with the alternative Java SE 5 implementation.
Thanks to the functional interfaces and streams, in newer Java versions, a more declarative style
for defining transformations can still utilised. The WMC of the code is also still reduced, and the
general focus can be directed a more towards the actual transformation aspects. In addition, the
observations regarding the comparison of Java and ATL do not change.

6.7.2 Language Advancements and Their Influence on the Ability to
Write Transformations: A Historical Perspective

The overall number of words required to write transformations in Java SE14 compared to Java SE5
has not reduced, as shown in Sections 6.6.1 and 6.6.3. However, we have also seen that less explicit
control flow needs to be written and the focus shifts more to the binding expressions. This shows
in the results discussed in Sections 6.6.1 and 6.6.2 as the cyclomatic complexity of transformations
written in Java SE14 is greatly reduced. In principle, a shift towards more data-driven development
of transformations is therefore possible. Whether this brings an overall advantage or not is still
a debated topic (Götz et al. 2021a) and in our eyes depends on the experience and preference
of the developers. However, there are many studies in the field of object-oriented programming
that establish a connection between cyclomatic complexity and reliability (Aggarwal et al. 2007;
Gopalakrishnan Nair et al. 2012; Guo et al. 2011; J. Pai et al. 2007; Singh et al. 2007), i.e., fault-
proneness and error rate, as well as some that establish a connection between cyclomatic complexity
and maintainability (Alshayeb et al. 2003; Olbrich et al. 2009), i.e., change frequency and change
size.

It has been our experience that newer Java features such as streams and the functional interfaces
make the development process easier because less work has to be put into building the traversal,
and the assignments within the transformation methods are now a more prominent part of them,
i.e., they are less hidden in loops and conditions. Whether these advancements justify writing
transformations in Java compared to ATL is discussed in the next section.

6.7.3 A Guideline for When and When Not to Use Java or similar GPLs
As shown in Sections 6.6.2 and 6.6.3, while newer Java features shift the focus more towards a
transformation-centric development, there is still significant overhead from setup, manual traversal
and especially tracing. Of those three, we believe the setup overhead to be of least relevance. That
is because the total overhead for setup is small and it is only an initial overhead that, for the most
part, does not need to be maintained throughout the lifecycle of a transformation. The situation
is similar for traversal overhead. The code required to be added for all rules or transformation
methods, while more significant in its size, still only needs to be written once and can be ignored for
most of the remaining development. There is little to no room for errors to be introduced, in any
Java implementation that follows a style similar to our implementations, as each new rule requires
nearly identical code to be added.

Tracing is where, in our opinion, most of the difficult overhead arises from. It is thus the
main argument for writing transformations in ATL or similar MTLs compared to general purpose
languages. Managing traces and implementing their complete semantics can not be outsourced into
a library, but we can only use a library to reduce the required effort. For many of the advanced

190 Chapter 6. Paper E

use cases, the mapping semantic relies on String constants that are passed to both the creation and
resolution methods, which is error-prone. Such cases arise when traces to objects are needed that
were only a side effect of a transformation rule and not its primary output.

There is also little support through type-checking since the only way to store traces for all
elements is to use the most generic type possible (i.e., EObject). This results in the burden of
creating and fetching objects of the correct type to be shifted to the developer, which constitutes
a clear disadvantage compared to ATL, where trace resolution is type-safe. In simple cases, this
problem is less conspicuous, but in cases where advanced tracing is required, much of the described
difficulties arise and can lead to errors that are hard to track to its origin. It also forces developers to
be more aware of all parts of the transformation at all times, to make sure not to miss any possible
object types that could be returned from resolving a trace. There are approaches, such as Hinkel
et al. (2019b), that bring type safety to GPL transformations, but they also come with their own
set of limitations when considering advanced features such as incrementality and reusability of the
introduced templates, that developers need to be aware of, as well as other boilerplate code that is
required to set it up.

Based on the presented reflection, we believe that general purpose languages largely excel in
transformations where little to no tracing and especially no advanced tracing is required. The
overhead for setup and traversal is manageable in these cases. Moreover, when no traces are required
for the transformation, we can scrap the two-phase mechanism completely and thus half the total
overhead of traversal is required.

There is also an argument to be made about the expressiveness of Java for complex algorithms
compared to the limited capabilities of OCL. We were faced with such a concrete case during the
development of a model differencing tool called SiLift (Kehrer et al. 2012). SiLift takes a so-called
difference model as input and aims at lifting the given input to a higher level of abstraction by
applying in-place transformations to group together interrelated changes. To achieve this low-level
changes comprised by the given difference model are first grouped to so-called semantic change sets
in a greedy fashion. This greedy strategy, however, can lead to too many change sets. Specifically, we
need to get rid of overlapping change sets in a second phase of the transformation, referred to as post-
processing in Kehrer et al. (2011). The post-processing poses a set partitioning problem which may
be framed as an optimization problem: We want to cover all low-level changes by a minimum amount
of semantic change sets which are mutually disjoint. We implemented the heuristics presented by
Kehrer et al. (2011) in Java. This can be hardly expressed in OCL, which was developed as a
language for querying object structures but not for implementing complex algorithms like the post-
processing step of the in-place model transformation scenario described above.

Lastly, related to the previously discussed point of expressiveness, the heterogeneity of Java code
compared to ATL code also sticks out. The structure of ATL rules, enforced by ATL’s strict syntax,
allows for writing consistent code across different transformations. This means that developers can
quickly see the basic intent of a rule. The same can not be said for Java methods. While our
translation scheme, combined with the developed libraries, produces an internal DSL for transfor-
mations, Java code is far less homogeneous due to the absence of any dedicated structure within
methods that perform transformations. This can also be seen in our classification from Section 6.4.2.
Each Java statement can either have transformation-specific semantics (i.e. Binding or Tracing)
or perform any other transformation-unrelated task. This problem of intermixed transformation
and non-transformation code within GPLs also persists throughout other internal transformation
DSLs such as the NMF transformation languages (Hinkel et al. 2019a), YAMTL (Boronat 2018),
RubyTL (Jesús Sánchez Cuadrado et al. 2006) or SiTra (Akehurst et al. 2006). But this does not
only bring disadvantages. The strict structure of ATL allows to easily design mappings from one
input type to one output type. This can suffice in many cases as highlighted by Götz et al. (2020).
However, in cases where several different input types need to be matched to the same output type
(n-to-1), one input type needs to be matched to several output types (1-to-n), or a combination of
the two cases (n-to-m), code duplicates are often unavoidable. In heterogeneous Java code, such
situations can be handled more easily. All in all, the relationship between the input and output
meta-models should also be considered when deciding between using an MTL or a GPL.

6.7.4 Limits of our Results in the Context of the Research Field
Up till now our discussion of MTL vs. GPL largely boiled down to the abstraction of model traversal
and tracing provided by ATL. This is of course by design as our study focused on the comparison

6.8. Threats to Validity 191

of Java and ATL. ATL being the most used model transformation language and Java being one of
the most dominant programming languages of the last decade. Nonetheless, there are more model
transformation-specific features that other model transformation languages provide. Depending on
the situation these features could also influence the decision of using a specific model transformation
language over general purpose languages.

An extension of the model traversal and matching features of ATL come in the form of graph
pattern matching in graph based model transformation languages such as Henshin (Strüber et al.
2017). This allows transformation developers to define complex model element relationships that
are automatically searched and matched by advanced matching engines. There exist some advances
of trying to replicate this behaviour in general purpose languages for example FunnyQT (Horn 2013)
or SDMLib/Fujaba (Zündorf et al. 2013) but even in those cases DSLs are used for defining the
graph patterns.

Some model transformation languages allow to run analysis on the written transformations such
as critical pair analysis (Born et al. 2015) or even verify property preservation by a transforma-
tion (Ehrig et al. 2008), both of which are not easily accessible for transformations written in general
purpose languages. The better analysability of MTLs stems from their syntax being transformation-
specific, as also seen in the structure of our classification schemata from Section 6.4.

Being able to design bidirectional transformations based on only one transformation script is also
a unique property of model transformation languages. Examples of such languages are detailed and
compared in Anjorin et al. (2019) or Leblebici et al. (2014). Some languages like eMoflon (Weidmann
et al. 2019), NMF Synchronizations (Hinkel et al. 2019a) or Viatra (Bergmann et al. 2015) extend
this further by providing the ability to perform incremental transformations both being features that
are hard to reproduce in general purpose languages in our experience. Even ATL now has several
extensions allowing it to run incremental transformations (Calvar et al. 2019; Martínez et al. 2017).

Currently, for general purpose languages to be considered for writing transformations, all the
stated advanced features such as graph pattern matching, bidirectional and incremental transfor-
mations as well as transformation analysis and verification should not be an essential requirement of
the development. This is because none of them can be implemented with justifiable effort in GPLs.

6.8 Threats to Validity
This section addresses potential threats to the validity of the presented work.

6.8.1 Internal Validity
The manual steps done throughout our study pose some threat to the internal validity of our study.
Both the translation based on our translation schema and the labelling of the Java code were done
manually and thus open the possibility of human error. Furthermore the program we developed to
calculate the word count of the Java code could also contain errors. We counteracted these threats
by testing the correctness of the resulting transformations to the extent that was possible based on
available resources. This was done by testing the output of the translated transformations against
the output of the ATL transformations from which they originated as well as through rigorous peer
reviews. We further verified the correctness of our labels and the produced word counts through
reviews as detailed in Section 6.5.

All assumptions we make about cause and effect of increase or decrease of size and complexity
as well as of overhead is supported by more detailed investigations and analysis throughout our
research.

6.8.2 External Validity
To mitigate a potential threat to the external validity of our work due to a bias in the selected
transformation modules we chose the analysed transformations from a variety of sources and different
authors. Moreover, both the purpose and involved meta-models differ between each transformation
module, thus providing a diverse sample set.

However, the transformations chosen for evaluation in our work were subject to a number of
constraints which poses a threat to the generalizability of our results. While we aimed to select
a variety of transformation modules w.r.t. scope and size, the limitation of LOC may introduce a
threat to the external validity of our work.

192 Chapter 6. Paper E

Due to the study setup of selecting ATL transformations and translating those into Java, there
is the possibility of a bias in favour of ATL. It is potentially more likely for an ATL solution to
exist, if the problem it solves is well suited for being developed in ATL. As a result the results of
our study might not be applicable to all model transformations. However, our study does not try to
confirm that ATL is the superior language for developing transformations, but discusses based on
the presented observations, which advantages a dedicated language like ATL can offer. In order to
be able to recognise why ATL is a good solution for certain cases, it is necessary to look at precisely
such cases. In order to validate our results, a further study should be carried out. There, the study
design should be reversed so that ATL solutions are derived from existing Java solutions.

Lastly, all our observations are limited to the comparison between ATL and Java which limits
their generalizability. While the observations might also hold for comparing Java or similar languages
with transformation languages similar to ATL, e.g. QVT-O, they can not be transferred to graph
based transformation languages such as Henshin or even QVT-R.

6.8.3 Construct Validity
The next threat concerns the appropriateness and correctness of our translation schema and the
resulting transformations. We tried to mitigate this threat by following the design science research
method and using two separate reviewers for the proposed transformation schema.

The used metrics for measuring complexity and size need also be discussed. We opted to use
cylomatic complexity for measuring the complexity of Java transformations because it is one of
the most widely used measures for object-oriented languages, and has ben shown in numerous
publications to relate both to the maintainability and reliability of code (Jabangwe et al. 2015).
Because both quality attributes are of interest in the discussion of MTLs vs. GPLs, we believe
the cyclomatic complexity to be a good measure to assess the impact that overhead Java code has
on the quality of transformations. Likewise lines of code are a popular measure for size in all of
programming but has also been criticized due to its disregard for the difference in programming styles
and formatting. To counteract this problem, all Java code was developed by the same researcher
using the same standard code formatter. To further counterbalance issues with lines of code as a
solitary size measure, we supplemented it with the additional measure word count that has been
argued to be more accurate in measuring the size of a programmed solution (Anjorin et al. 2019).
In cases where their ranking differs, we then investigated the cause of the discrepancy and discussed
what this means for our observations and analysis.

6.8.4 Conclusion Validity
To ensure reproducible results, we provide all the data and tools used for our study in the supple-
mentary materials for this work. A repetition of our approach using the provided materials will end
with the same results as those presented here. However, more than one way of translating ATL
constructs into Java constructs and thus multiple translation schemas are possible. This impacts
the conclusion validity of our study because different design decisions for the translation schema
may impact the reproducibility of our results.

6.9 Related work
To the best of our knowledge, there exists no research that relates the size and complexity of
transformations written in a MTL with that of transformations written in a GPL. However, there
do exist several publications that provide relevant context for our work.

Hebig et al. investigate the benefit of using specialized model transformation languages compared
to general purpose languages by means of a controlled experiment where participants had to complete
a comprehension task, a change task, and they had to write one transformation from scratch (Hebig
et al. 2018). They compare ATL, QVT-O and the GPL Xtend, and they found no clear evidence
for an advantage when using MTLs. In comparison to their setup, we focus on a larger number of
transformations. Furthermore, examples shown in the publication also suggest that they did not
consider ATLs refining mode for their refactoring task nor did their examples focus on advanced
transformation aspects such as tracing.

As previously described, parts of our research build upon the work presented in Götz et al. (2020).
Here, the authors use a complexity measure for ATL proposed in the literature to investigate how

6.10. Conclusion 193

the complexity of ATL transformations is distributed over different ATL constructs such as matched
rules and helpers. Their results provide a relevant data set to compare our complexity distributions
in Java transformations to.

Marcel F van Amstel et al. (2011a) use McCabe complexity to measure the complexity of ATL
helpers. Among others, this is also done in (Vignaga 2009). Similar to this, we use McCabe
complexity on transformations written in Java, which includes translated helpers, to measure the
complexity of the code.

The Model Transformation Tool Contest (TTC)6 aims to evaluate and compare various quality
attributes of model transformation tools. While some of these quality attributes (e.g., readability
of a transformation specification) are related to the MTL used by the tool, most of the attributes
are related to tooling issues (such as usability or performance) which are out of the scope of our
study. Moreover, the contest is about comparing different MTLs with each other rather than
comparing them with a GPL. Nonetheless, some cases have been presented along with a reference
implementation in Java (Beurer-Kellner et al. 2020; Getir et al. 2017), which could serve as another
source for comparing MTLs and GPLs more widely, including tooling- and execution-related aspects.

Sanchez Cuadrado et al. (2020) propose A2L, a compiler for parallel execution of ATL model
transformations. A2L takes ATL transformations as input and generates Java code that can be
run from within their self-developed engine. Their data-oriented ATL algorithm describes how ATL
transformations are executed by their code and closely resembles the structure embodied in our
translation schema.

Our approach to utilise libraries and define certain restrictions on the structure of code in Java
defines an internal DSL for developing transformations. There exists a large body of research into
the topic of the design of internal transformation languages for several general purpose languages.
It would be impossible to list them all here. For this reason, we will limit our discussion to a small
selection of internal DSLs which have points of contact with our Java DSL.

The Simple Transformation Library in Java (SiTra) introduced by Akehurst et al. (2006) provides
a simple set of interfaces for defining transformations in Java. Their interfaces abstract rules and
traversal in which they follow an approach similar to ours. However, they do not provide ways for
trace management.

Another JVM based transformation DSL is presented by Boronat (2018). The language YAMTL
is a declarative internal language for Xtend. In contrast to our approach, this language breaks with
the imperative concepts of its host language and offers an ATL-like syntax for defining transforma-
tions.

D. S. Batory et al. (2020) describe Aocl, an implementation of OCLs underlying relational algebra
for Java. Much like OCL, Aocl allows developers to define constraints and queries for a given model
using a straightforward syntax. The authors further argue that, if expanded, Aocl could be used to
write model-to-model transformations, but currently this feature does not exist. Using a MDE tool
it is possible to generate a Java package that allows to use Aocl for a class diagram passed to the
tool.

Hinkel et al. (2019a) introduce NMF-Synchronisations, an internal DSL for C# for developing
bidirectional transformations. The language is built with the intention to reuse as much of the tool
support form its host language as possible. Much like our Java SE14 approach, they utilise functional
language constructs added to C# to allow a more declarative way of defining transformations while
still retaining the full potential of the host language.

6.10 Conclusion
In this work, we presented how we developed and applied a translation schema to translate ATL
transformations to Java. We also described our results of analysing the complexity and size as well
as their distribution over the different transformation aspects. For this purpose, we used McCabe
complexity, LOC and word count to measure the size and complexity of 12 transformations translated
to Java SE5 and Java SE14, respectively. Based on our findings, we then discussed improvements of
Java over the years as well as how well suited these newer language iterations are for writing model
transformations.

We found that new features introduced into Java since 2006 help to significantly reduce the
complexity of transformations written in Java. Moreover, while they also help to reduce the size of

6https://www.transformation-tool-contest.eu/

https://www.transformation-tool-contest.eu/

194 Chapter 6. Paper E

transformations when measured in lines of code, we saw no decrease in the number of words required
to write the transformations. This suggests an ability to express more information dense code in
newer Java versions. We also showed that, while the overall complexity of transformations is reduced,
the distribution of how much of that complexity stems from code that implements functionality that
ATL and other model transformation languages can hide from the developer stays about the same.
This observation is further supported by the analysis of code size distribution. Here, we found that
while large parts of the transformation classes relate to the transformation process itself, within
those parts there is still significant overhead from tracing as well as general supplemental code
required for the transformations to work. We conclude that while the overall complexity is reduced
with newer Java versions, the overhead entailed by using a general purpose language for writing
model transformations is still present.

Our regression models for predicting Java code size based on OCL expressions suggest a linear
relationship for both Java SE5 and Java SE14 with the newer Java version having a slightly lower
growth factor.

Overall we find that the more recent Java version makes development of transformations easier
because less work is required to set up a working transformation, and the creation of output elements
and the assignment of their attributes are now a more prominent aspect within the code. From our
results and experience with this and other projects, we also conclude that general purpose languages
are most suitable for transformations where little to no tracing is required because the overhead
associated with this transformation aspect is the most prominent one and holds the most potential
for errors. However, while we do not see them as prominently used, we believe that advanced
features such as property preservation verification or bidirectional and incremental transformation
development cannot currently be implemented with justifiable effort in a general purpose language.

For future work, we propose to also look at the transformation development process as a whole,
instead of only at the resulting transformations. In particular, we are interested in investigating
how the maintenance effort differs between transformations written in a GPL and those written in
a MTL. For this purpose, the presented artefacts can be reused. Simple modifications to the ATL
transformations can be compared to what needs to be adjusted in the corresponding Java code.
Furthermore, because developers are the first to be impacted by the languages, it is also important
to include users into such studies. For this reason, we propose to focus on user-centric study setups
to be able to better study the impact of the language choice on developers. Such studies could also
investigate several other relevant aspects. For example, how well users are aided by tool support
or the impact of previous knowledge of the languages or involved models on the resulting GPL or
MTL code. Moreover, the impact of language choice on transformation performance, an aspect
that gets more relevant with the ever increasing size of models (Groner et al. 2021), can also be
investigated with our setup. Here, we envision the use of run-time measures like execution time and
memory or CPU utilization to compare MTL solutions with their GPL counterparts, to investigate
the scalability of the underlying technologies.

Another potential avenue to explore is the comparison with a general purpose language that
has a more complete support for functional programming such as Scala. Additional features such
as pattern matching and easier use of functional syntax for translating OCL expressions could
potentially help to further reduce the complexity of the resulting transformation code.

195

Bibliography

Aggarwal, KK et al. (2007). “Investigating effect of Design Metrics on Fault Proneness in Object-
Oriented Systems.” In: J. Object Technol. 6.10, pp. 127–141 (cit. on p. 189).

Akdur, Deniz et al. (2018). “A survey on modeling and model-driven engineering practices in the
embedded software industry”. In: Journal of Systems Architecture 91, pp. 62–82. issn: 1383-7621.
doi: https://doi.org/10.1016/j.sysarc.2018.09.007 (cit. on p. 106).

Akehurst, D. H. et al. (2006). “SiTra: Simple Transformations in Java”. In: Model Driven Engineering
Languages and Systems. MODELS 2006. doi: 10.1007/11880240_25 (cit. on pp. 190, 193).

Alshayeb, M. et al. (2003). “An empirical validation of object-oriented metrics in two different
iterative software processes”. In: IEEE Transactions on Software Engineering 29.11, pp. 1043–
1049. doi: 10.1109/TSE.2003.1245305 (cit. on p. 189).

Alves, Rui et al. (2016). “Ceiling and Threshold of PaaS Tools: The Role of Learnability in Tool
Adoption”. In: International Conference on Human-Centred Software Engineering. HESSD 2016.
doi: 10.1007/978-3-319-44902-9_21 (cit. on p. 48).

Amstel, Marcel F van et al. (2011a). “Using Metrics for Assessing the Quality of ATL Model Trans-
formations”. In: MtATL@ TOOLS (cit. on pp. 145, 152, 193).

Amstel, Marcel F. van et al. (2011b). “Model Transformation Analysis: Staying Ahead of the Main-
tenance Nightmare”. In: Theory and Practice of Model Transformations. ICMT 2011. doi: 10.
1007/978-3-642-21732-6_8 (cit. on p. 44).

Anastasakis, Kyriakos et al. (2007). “UML2Alloy: A Challenging Model Transformation”. In: Model
Driven Engineering Languages and Systems. Ed. by Gregor Engels et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 436–450. isbn: 978-3-540-75209-7 (cit. on p. 134).

Aniche, Maurício (2015). Java code metrics calculator (CK). https://github.com/mauricioaniche/ck
(cit. on p. 177).

Anjorin, Anthony et al. (2017). “The Families to Persons Case”. In: TTC’17 (cit. on pp. 5, 66, 115,
164, 165).

Anjorin, Anthony et al. (2019). “Benchmarking bidirectional transformations: theory, implementa-
tion, application, and assessment”. In: Software and Systems Modeling (SoSyM). doi: 10.1007/
s10270-019-00752-x (cit. on pp. 13, 23, 27, 160, 177, 191, 192).

Arendt, Thorsten et al. (2010). “Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations”. In: Model Driven Engineering Languages and Systems. MODELS 2010. doi:
10.1007/978-3-642-16145-2_9 (cit. on pp. 5, 35, 44, 62, 64, 113, 114, 140).

Armour, Phillip G (2004). “Beware of counting LOC”. In: Communications of the ACM 47.3, pp. 21–
24 (cit. on p. 27).

Aruoba, S. Boragan et al. (2014). A Comparison of Programming Languages in Economics. Tech.
rep. National Bureau of Economic Research, Inc. url: https://EconPapers.repec.org/RePEc:
nbr:nberwo:20263 (cit. on p. 55).

Auer, F. et al. (2018). “Current State of Research on Continuous Experimentation: A Systematic
Mapping Study”. In: 2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). doi: 10.1109/SEAA.2018.00062 (cit. on p. 39).

Badampudi, Deepika et al. (2015). “Experiences from Using Snowballing and Database Searches in
Systematic Literature Studies”. In: Proceedings of the 19th International Conference on Eval-
uation and Assessment in Software Engineering. EASE ’15. doi: 10.1145/2745802.2745818
(cit. on p. 38).

Balogh, András et al. (2006). “Advanced Model Transformation Language Constructs in the VIA-
TRA2 Framework”. In: Proceedings of the 2006 ACM Symposium on Applied Computing. SAC
’06. doi: 10.1145/1141277.1141575 (cit. on pp. 5, 35, 64, 113, 114, 140).

Barat, Souvik et al. (2017). “A Model-Based Approach to Systematic Review of Research Literature”.
In: Proceedings of the 10th Innovations in Software Engineering Conference. ISEC ’17. doi:
10.1145/3021460.3021462 (cit. on p. 38).

https://doi.org/https://doi.org/10.1016/j.sysarc.2018.09.007
https://doi.org/10.1007/11880240_25
https://doi.org/10.1109/TSE.2003.1245305
https://doi.org/10.1007/978-3-319-44902-9_21
https://doi.org/10.1007/978-3-642-21732-6_8
https://doi.org/10.1007/978-3-642-21732-6_8
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/978-3-642-16145-2_9
https://EconPapers.repec.org/RePEc:nbr:nberwo:20263
https://EconPapers.repec.org/RePEc:nbr:nberwo:20263
https://doi.org/10.1109/SEAA.2018.00062
https://doi.org/10.1145/2745802.2745818
https://doi.org/10.1145/1141277.1141575
https://doi.org/10.1145/3021460.3021462

196 Bibliography

Barb, Adrian S. et al. (2014). “A statistical study of the relevance of lines of code measures in software
projects”. In: Innovations in Systems and Software Engineering. doi: 10.1007/s11334-014-
0231-5 (cit. on p. 45).

Basili, V. et al. (1979). “An Investigation of Human Factors in Software Development”. In: Computer.
doi: 10.1109/MC.1979.1658573 (cit. on p. 55).

Basili, Victor R. et al. (1994). “The Goal Question Metric Approach”. In: Encyclopedia of Software
Engineering (cit. on p. 36).

Batory, Don et al. (2002). “Achieving Extensibility Through Product-lines and Domain-specific
Languages: A Case Study”. In: ACM Trans. Softw. Eng. Methodol. 11.02. doi: 10.1145/505145.
505147 (cit. on p. 42).

Batory, Don S et al. (2020). “Aocl: A Pure-Java Constraint and Transformation Language for MDE.”
In: MODELSWARD, pp. 319–327 (cit. on pp. 179, 193).

Benelallam, Amine et al. (2015). “Distributed Model-to-model Transformation with ATL on MapRe-
duce”. In: Proceedings of the 2015 ACM SIGPLAN International Conference on Software Lan-
guage Engineering, pp. 37–48 (cit. on p. 134).

Bergmann, Gábor et al. (2015). “Viatra 3: A Reactive Model Transformation Platform”. In: Theory
and Practice of Model Transformations. Ed. by Dimitris Kolovos et al. Cham: Springer Interna-
tional Publishing, pp. 101–110. isbn: 978-3-319-21155-8 (cit. on p. 191).

Beurer-Kellner, Luca et al. (2020). “Round-trip migration of object-oriented data model instances”.
In: Transformation Tool Contest at the Conference on Software Technologies: Applications and
Foundations (TTC@STAF) (cit. on p. 193).

Bézivin, Jean (2004). “In search of a basic principle for model driven engineering”. In: Novatica
Journal, Special Issue 5.2, pp. 21–24 (cit. on p. 2).

Biermann, Enrico et al. (2010). “Lifting parallel graph transformation concepts to model transfor-
mation based on the eclipse modeling framework”. In: Electronic Communications of the EASST
26 (cit. on p. 134).

Boehm, Barry et al. (1995). “Cost models for future software life cycle processes: COCOMO 2.0”.
In: Annals of Software Engineering. doi: 10.1007/BF02249046 (cit. on p. 55).

Boot, Andrew et al. (2016). Systematic Approaches to a Successful Literature Review. Sage. isbn:
978-1-4739-1245-8 (cit. on pp. 12, 34, 35, 40, 42).

Born, Kristopher et al. (2015). “Analyzing Conflicts and Dependencies of Rule-Based Transforma-
tions in Henshin”. In: Fundamental Approaches to Software Engineering. Ed. by Alexander Egyed
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 165–168. isbn: 978-3-662-46675-9 (cit.
on p. 191).

Boronat, Artur (2018). “Expressive and Efficient Model Transformation with an Internal DSL of
Xtend”. In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems. MODELS ’18. Copenhagen, Denmark: Association for Com-
puting Machinery, pp. 78–88. isbn: 9781450349499. doi: 10.1145/3239372.3239386. url:
https://doi.org/10.1145/3239372.3239386 (cit. on pp. 190, 193).

Brambilla, Marco et al. (2017). Model-Driven Software Engineering in Practice. Springer Interna-
tional Publishing. doi: 10.1007/978-3-031-02549-5 (cit. on pp. 2, 3, 101).

Brown, Alan W et al. (2005). “Introduction: Models, modeling, and model-driven architecture
(mda)”. In: Model-Driven Software Development. Springer, pp. 1–16. doi: 10.1007/3- 540-
28554-7_1 (cit. on pp. 2, 63, 113).

Bucchiarone, Antonio et al. (2021). “What Is the Future of Modeling?” In: IEEE Softw. 38.2, pp. 119–
127. doi: 10.1109/MS.2020.3041522 (cit. on p. 100).

Buchmann, Thomas (2018). “BXtend-A Framework for (Bidirectional) Incremental Model Trans-
formations.” In: MODELSWARD, pp. 336–345 (cit. on p. 177).

Buckler, Frank et al. (2008). “Identifying hidden structures in marketing’s structural models through
universal structure modeling”. In: Marketing ZFP 30.JRM 2, pp. 47–66 (cit. on pp. 12, 18, 99,
111, 119, 122).

Burgueño, Loli et al. (2019). “The Future of Model Transformation Languages: An Open Community
Discussion”. In: Journal of Object Technology. doi: 10.5381/jot.2019.18.3.a7 (cit. on pp. 1,
49, 56, 102, 104, 110, 134, 140, 158).

Burkhardt, Jean-Marie et al. (2002). “Object-Oriented Program Comprehension: Effect of Expertise,
Task and Phase”. In: Empirical Software Engineering. doi: 10.1023/A:1015297914742 (cit. on
p. 55).

https://doi.org/10.1007/s11334-014-0231-5
https://doi.org/10.1007/s11334-014-0231-5
https://doi.org/10.1109/MC.1979.1658573
https://doi.org/10.1145/505145.505147
https://doi.org/10.1145/505145.505147
https://doi.org/10.1007/BF02249046
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.1023/A:1015297914742

Bibliography 197

Calvar, Théo Le et al. (2019). “Efficient ATL Incremental Transformations”. In: Journal of Object
Technology. doi: 10.5381/jot.2019.18.3.a2 (cit. on pp. 56, 191).

Cary, John R. et al. (1997). “Comparison of C++ and Fortran 90 for object-oriented scientific
programming”. English. In: Computer Physics Communications (cit. on p. 56).

Charmaz, Kathy (2014). Constructing grounded theory. Sage. isbn: 9780857029133 (cit. on pp. 13,
41, 74, 77).

Chechik, Marsha et al. (2016). “Perspectives of Model Transformation Reuse”. In: Integrated Formal
Methods. Ed. by Erika Ábrahám et al. Cham: Springer International Publishing, pp. 28–44. isbn:
978-3-319-33693-0 (cit. on p. 132).

Cicchetti, Antonio et al. (2011). “JTL: A Bidirectional and Change Propagating Transformation
Language”. In: Software Language Engineering. Ed. by Brian Malloy et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 183–202. isbn: 978-3-642-19440-5 (cit. on p. 177).

Ciccozzi, Federico et al. (2019). “Execution of UML models: a systematic review of research and
practice”. In: Software & Systems Modeling. doi: 10.1007/s10270-018-0675-4 (cit. on pp. 35,
57).

Codd, E. F. (1970). “A relational model of data for large shared data banks”. In: Communications
of the ACM 13.6, pp. 377–387. doi: 10.1145/362384.362685 (cit. on p. 3).

Cook, T.D. et al. (1979). Quasi-Experimentation: Design and Analysis Issues for Field Settings.
Houghton Mifflin (cit. on pp. 27, 28).

Cuadrado, Jesús Sánchez et al. (2006). “RubyTL: A Practical, Extensible Transformation Language”.
In: Model Driven Architecture – Foundations and Applications. ECMDA-FA 2006. doi: 10.1007/
11787044_13 (cit. on pp. 5, 47, 64, 114, 190).

Czarnecki, K. et al. (2006). “Feature-based survey of model transformation approaches”. In: IBM
Systems Journal. doi: 10.1147/sj.453.0621 (cit. on pp. 3, 5, 7, 10, 35, 54, 56, 64, 66–68, 79,
113–117, 162).

Demuth, Birgit et al. (2004). “Structure of the Dresden OCL toolkit”. In: 2nd International Fujaba
Days “MDA with UML and Rule-based Object Manipulation”. Darmstadt, Germany, September,
pp. 15–17 (cit. on p. 25).

Demuth, Birgit et al. (2009). “Model and object verification by using Dresden OCL”. In: Proceedings
of the Russian-German Workshop Innovation Information Technologies: Theory and Practice,
Ufa, Russia. Citeseer, pp. 687–690 (cit. on p. 101).

Di Rocco, Juri et al. (2015). “Mining correlations of ATL model transformation and metamodel
metrics”. In: 2015 IEEE/ACM 7th International Workshop on Modeling in Software Engineering.
doi: 10.1109/MiSE.2015.17 (cit. on pp. 11, 143, 152).

Dieste, Oscar et al. (2017). “Empirical evaluation of the effects of experience on code quality and
programmer productivity: an exploratory study”. In: Empirical Software Engineering. doi: 10.
1007/s10664-016-9471-3 (cit. on pp. 55, 100).

Dosovitskiy, Alexey et al. (2017). “CARLA: An Open Urban Driving Simulator”. In: Proceedings of
the 1st Annual Conference on Robot Learning, pp. 1–16 (cit. on p. 100).

Eclipse Foundation (2022). Eclipse Graphical Language Server Platform (GLSP). url: https://
www.eclipse.org/glsp/ (cit. on p. 101).

Ege, Florian et al. (2019). “A Proposal of Features to Support Analysis and Debugging of Declar-
ative Model Transformations with Graphical Syntax by Embedded Visualizations”. In: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C), pp. 326–330. doi: 10.1109/MODELS-C.2019.00051 (cit. on
p. 101).

Ehrig, Hartmut et al. (2008). “Semantical Correctness and Completeness of Model Transformations
Using Graph and Rule Transformation”. In: Graph Transformations. Ed. by Hartmut Ehrig et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 194–210. isbn: 978-3-540-87405-8 (cit. on
p. 191).

Facebook, Inc (2016). url: http://facebook.github.io/graphql (cit. on p. 26).
Fang, J. et al. (2011). “A Comprehensive Performance Comparison of CUDA and OpenCL”. In:

2011 International Conference on Parallel Processing. ICPP 2011. doi: 10.1109/ICPP.2011.45
(cit. on p. 56).

Fowler, Martin (2011). Domain-specific languages. Addison-Wesley, p. 597. isbn: 0321712943 (cit. on
pp. 2, 3).

Frakes, William B et al. (2001). “An industrial study of reuse, quality, and productivity”. In: Journal
of Systems and Software. doi: 10.1016/S0164-1212(00)00121-7 (cit. on p. 55).

https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1145/362384.362685
https://doi.org/10.1007/11787044_13
https://doi.org/10.1007/11787044_13
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1109/MiSE.2015.17
https://doi.org/10.1007/s10664-016-9471-3
https://doi.org/10.1007/s10664-016-9471-3
https://www.eclipse.org/glsp/
https://www.eclipse.org/glsp/
https://doi.org/10.1109/MODELS-C.2019.00051
http://facebook.github.io/graphql
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1016/S0164-1212(00)00121-7

198 Bibliography

France, Robert (2008). “Fair treatment of evaluations in reviews”. In: Software & Systems Modeling
7.3, pp. 253–254. doi: 10.1007/s10270-008-0096-x (cit. on pp. 1, 25).

Francis, Nadime et al. (2018). “Cypher: An Evolving Query Language for Property Graphs”. In:
Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18. Hous-
ton, TX, USA: Association for Computing Machinery, pp. 1433–1445. isbn: 9781450347037. doi:
10.1145/3183713.3190657 (cit. on p. 26).

Freeman, Steve et al. (2004). “JMock: Supporting Responsibility-Based Design with Mock Objects”.
In: OOPSLA ’04. Vancouver, BC, CANADA: Association for Computing Machinery, pp. 4–5.
doi: 10.1145/1028664.1028667 (cit. on p. 3).

Fuchs, Christoph et al. (2009). “Using single-item measures for construct measurement in manage-
ment research: Conceptual issues and application guidelines”. In: Die Betriebswirtschaft 69.2,
p. 195 (cit. on p. 121).

Galster, M. et al. (2014). “Variability in Software Systems—A Systematic Literature Review”. In:
IEEE Transactions on Software Engineering. doi: 10.1109/TSE.2013.56 (cit. on p. 43).

George, Lars et al. (2012). “Type-Safe Model Transformation Languages as Internal DSLs in Scala”.
In: Theory and Practice of Model Transformations. ICMT 2012. doi: 10.1007/978-3-642-
30476-7_11 (cit. on pp. 64, 113).

Gerpheide, Christine M. et al. (2016). “Assessing and improving quality of QVTo model transforma-
tions”. In: Software Quality Journal 24.3, pp. 797–834. issn: 1573-1367. doi: 10.1007/s11219-
015-9280-8. url: https://doi.org/10.1007/s11219-015-9280-8 (cit. on pp. 104, 135).

Getir, Sinem et al. (2017). “State Elimination as Model Transformation Problem”. In: Transfor-
mation Tool Contest at the Conference on Software Technologies: Applications and Foundations
(TTC@STAF), pp. 65–73 (cit. on p. 193).

Gherardi, Luca et al. (2012). “A Java vs. C++ Performance Evaluation: A 3D Modeling Bench-
mark”. In: International Conference on Simulation, Modeling, and Programming for Autonomous
Robots. SIMPAR 2012. doi: 10.1007/978-3-642-34327-8_17 (cit. on p. 55).

Gopalakrishnan Nair, T.R. et al. (2012). “Defect proneness estimation and feedback approach for
software design quality improvement”. In: Information and Software Technology 54.3, pp. 274–
285. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2011.10.001 (cit. on p. 189).

Götz, Stefan et al. (July 2020). “Investigating the Origins of Complexity and Expressiveness in ATL
Transformations”. In: Journal of Object Technology 19.2. Ed. by Richard Paige et al. The 16th
European Conference on Modelling Foundations and Applications (ECMFA 2020), 12:1–21. doi:
10.5381/jot.2020.19.2.a12 (cit. on pp. 135, 159, 160, 171, 172, 177, 178, 184, 190, 192).

Götz, Stefan et al. (2021a). “Claimed advantages and disadvantages of (dedicated) model trans-
formation languages: a systematic literature review”. In: Software and Systems Modeling 20.2,
pp. 469–503. issn: 1619-1374. doi: 10.1007/s10270-020-00815-4. url: https://doi.org/
10.1007/s10270-020-00815-4 (cit. on pp. 1, 14, 19, 62, 68–71, 73, 75, 98, 104, 110, 119, 134,
158, 189).

Götz, Stefan et al. (2021b). “Dedicated Model Transformation Languages vs. General-purpose Lan-
guages: A Historical Perspective on ATL vs. Java”. In: Proceedings of the 9th International Con-
ference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
INSTICC. SciTePress, pp. 122–135. doi: 10.5220/0010340801220135 (cit. on pp. 104, 160).

Gray, J. et al. (2003). “An examination of DSLs for concisely representing model traversals and
transformations”. In: 36th Annual Hawaii International Conference on System Sciences, 2003.
Proceedings of the. HICSS ’03. doi: 10.1109/HICSS.2003.1174892 (cit. on pp. 20, 140, 158).

Graziotin, Daniel et al. (2021). “Psychometrics in Behavioral Software Engineering: A Methodolog-
ical Introduction with Guidelines”. In: ACM Trans. Softw. Eng. Methodol. 31.1. doi: 10.1145/
3469888 (cit. on p. 117).

Greiner, Sandra et al. (2023). “Incremental MTL vs. GPLs: Class into Relational Database Schema”.
In: Transformation Tool Contest (TTC). url: http://www.transformation-tool-contest.
eu/TTC_2023_paper_4.pdf (cit. on p. 26).

Groner, Raffaela et al. (2020). “An Exploratory Study on Performance Engineering in Model Trans-
formations”. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. MODELS ’20. Virtual Event, Canada: Association for Com-
puting Machinery, pp. 308–319. doi: 10.1145/3365438.3410950 (cit. on pp. 10, 11, 70, 105).

Groner, Raffaela et al. (2021). “A Survey on the Relevance of the Performance of Model Transfor-
mations”. In: Journal of Object Technology 20.2. OPEN ISSUE, pp. 1–27. issn: 1660-1769. doi:
10.5381/jot.2021.20.2.a5 (cit. on pp. 121, 122, 194).

https://doi.org/10.1007/s10270-008-0096-x
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/1028664.1028667
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1007/s11219-015-9280-8
https://doi.org/10.1007/978-3-642-34327-8_17
https://doi.org/https://doi.org/10.1016/j.infsof.2011.10.001
https://doi.org/10.5381/jot.2020.19.2.a12
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.5220/0010340801220135
https://doi.org/10.1109/HICSS.2003.1174892
https://doi.org/10.1145/3469888
https://doi.org/10.1145/3469888
http://www.transformation-tool-contest.eu/TTC_2023_paper_4.pdf
http://www.transformation-tool-contest.eu/TTC_2023_paper_4.pdf
https://doi.org/10.1145/3365438.3410950
https://doi.org/10.5381/jot.2021.20.2.a5

Bibliography 199

Guo, Y. et al. (2011). “An Empirical Validation of the Benefits of Adhering to the Law of Demeter”.
In: 2011 18th Working Conference on Reverse Engineering, pp. 239–243. doi: 10.1109/WCRE.
2011.36 (cit. on p. 189).

Hailpern, B. et al. (2006). “Model-driven development: The good, the bad, and the ugly”. In: IBM
Systems Journal. doi: 10.1147/sj.453.0451 (cit. on pp. 42, 49).

Hassan, Ahmed E. (2008). “The road ahead for Mining Software Repositories”. In: 2008 Frontiers
of Software Maintenance, pp. 48–57. doi: 10.1109/FOSM.2008.4659248 (cit. on p. 12).

Hebig, Regina et al. (2018). “Model Transformation Languages Under a Magnifying Glass: A Con-
trolled Experiment with Xtend, ATL, and QVT”. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2018. doi: 10.1145/3236024.3236046 (cit. on pp. 11, 20, 25,
37, 98, 104, 110, 135, 140, 158, 192).

Henderson, Robert et al. (1994). “A comparison of object-oriented programming in four modern
languages”. In: Software: Practice and Experience. doi: 10 .1002 /spe . 4380241106 (cit. on
p. 55).

Hermans, Felienne et al. (2009). “Domain-Specific Languages in Practice: A User Study on the
Success Factors”. In: Model Driven Engineering Languages and Systems. MODELS 2009. isbn:
978-3-642-04425-0. doi: 10.1007/978-3-642-04425-0_33 (cit. on pp. 62, 110).

Hevner, Alan R et al. (2004). “Design science in information systems research”. In: MIS quarterly,
pp. 75–105. doi: 10.2307/25148625 (cit. on p. 12).

Hibberd, Mark et al. (2007). “Forensic Debugging of Model Transformations”. In: Model Driven
Engineering Languages and Systems. Ed. by Gregor Engels et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 589–604. isbn: 978-3-540-75209-7 (cit. on p. 101).

Hinkel, Georg (2013). “An approach to maintainable model transformations with an internal DSL”.
PhD thesis. National Research Center (cit. on p. 34).

— (2016). NMF: A Modeling Framework for the. NET Platform. KIT (cit. on pp. 2, 63, 113, 177).
Hinkel, Georg et al. (2019a). “Change propagation and bidirectionality in internal transformation

DSLs”. In: Software & Systems Modeling. doi: 10.1007/s10270-017-0617-6 (cit. on pp. 5, 47,
55, 64, 113, 114, 190, 191, 193).

Hinkel, Georg et al. (2019b). “Using internal domain-specific languages to inherit tool support and
modularity for model transformations”. In: Software & Systems Modeling. doi: 10.1007/s10270-
017-0578-9 (cit. on pp. 20, 37, 62, 102, 140, 190).

Höppner, Stefan et al. (2021). Contrasting Dedicated Model Transformation Languages vs. General
Purpose Languages: A Historical Perspective on ATL vs. Java based on Complexity and Size:
Supplementary Materials. doi: http://dx.doi.org/10.18725/OPARU-38923 (cit. on pp. 99,
110, 128, 135, 159).

Höppner, Stefan et al. (2022a). “Advantages and disadvantages of (dedicated) model transformation
languages”. In: Empirical Software Engineering 27.6, p. 159. doi: 10.1007/s10664-022-10194-7
(cit. on pp. 1, 3, 17, 110, 113, 122, 126, 132, 134).

Höppner, Stefan et al. (2022b). The Impact of Model Transformation Language Features on Quality
Properties of MTLs: A Study Protocol. doi: 10.48550/ARXIV.2209.06570 (cit. on pp. 18, 111,
113, 120).

Horn, Tassilo (2013). “Model Querying with FunnyQT”. In: Theory and Practice of Model Transfor-
mations. Ed. by Keith Duddy et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 56–57.
isbn: 978-3-642-38883-5 (cit. on pp. 5, 64, 113, 114, 191).

Hove, S. E. et al. (2005). “Experiences from conducting semi-structured interviews in empirical soft-
ware engineering research”. In: 11th IEEE International Software Metrics Symposium (MET-
RICS’05), 10 pp.–23. doi: 10.1109/METRICS.2005.24 (cit. on pp. 12, 68–70).

Hutchinson, John et al. (2011a). “Empirical Assessment of MDE in Industry”. In: Proceedings of
the 33rd International Conference on Software Engineering. ICSE ’11. doi: 10.1145/1985793.
1985858 (cit. on pp. 10, 29, 56, 97, 99, 105).

Hutchinson, John et al. (2011b). “Model-Driven Engineering Practices in Industry”. In: Proceedings
of the 33rd International Conference on Software Engineering. ICSE ’11. Waikiki Honolulu HI,
USA: Association for Computing Machinery, pp. 633–642. isbn: 9781450304450. doi: 10.1145/
1985793.1985882. url: https://doi.org/10.1145/1985793.1985882 (cit. on pp. 10, 97,
105).

https://doi.org/10.1109/WCRE.2011.36
https://doi.org/10.1109/WCRE.2011.36
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1002/spe.4380241106
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.2307/25148625
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/http://dx.doi.org/10.18725/OPARU-38923
https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.48550/ARXIV.2209.06570
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985882

200 Bibliography

Hutchinson, John et al. (2014). “Model-driven engineering practices in industry: Social, organiza-
tional and managerial factors that lead to success or failure”. In: Science of Computer Pro-
gramming 89. Special issue on Success Stories in Model Driven Engineering, pp. 144–161. issn:
0167-6423. doi: https://doi.org/10.1016/j.scico.2013.03.017. url: https://www.
sciencedirect.com/science/article/pii/S0167642313000786 (cit. on pp. 10, 105).

ISO/IEC 25010:2011 (2011). ISO/IEC. url: https://www.iso.org/standard/22749.html (cit.
on p. 53).

J. Pai, G. et al. (2007). “Empirical Analysis of Software Fault Content and Fault Proneness Using
Bayesian Methods”. In: IEEE Transactions on Software Engineering 33.10, pp. 675–686. doi:
10.1109/TSE.2007.70722 (cit. on p. 189).

Jabangwe, Ronald et al. (2015). “Empirical evidence on the link between object-oriented measures
and external quality attributes: a systematic literature review”. In: Empirical Software Engineer-
ing 20.3, pp. 640–693. doi: 10.1007/s10664-013-9291-7 (cit. on pp. 27, 177, 192).

Jakumeit, Edgar et al. (2014). “A survey and comparison of transformation tools based on the
transformation tool contest”. In: Science of Computer Programming. doi: 10.1016/j.scico.
2013.10.009 (cit. on pp. 10, 11, 57).

Johannes, Jendrik et al. (2009). “Abstracting Complex Languages through Transformation and
Composition”. In: Model Driven Engineering Languages and Systems. MODELS 2009. doi: 10.
1007/978-3-642-04425-0_41 (cit. on pp. 62, 110).

Jones, Capers (2000). Software assessments, benchmarks, and best practices. Addison-Wesley Long-
man Publishing Co., Inc. isbn: 978-0201485424 (cit. on p. 27).

Jones, T. C. (1978). “Measuring programming quality and productivity”. In: IBM Systems Journal.
doi: 10.1147/sj.171.0039 (cit. on p. 55).

Jonkers, Hans et al. (2006). “Bootstrapping domain-specific model-driven software development
within Philips”. In: 6th OOPSLA Workshop on Domain Specific Modeling (DSM 2006). Citeseer,
p. 10 (cit. on p. 102).

Jouault, Frédéric (June 2013). ATL/Tutorials - Create a simple ATL transformation. https://
wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation. Accessed:
2021-06-12 (cit. on p. 164).

Jouault, Frédéric et al. (2006). “ATL: A QVT-like Transformation Language”. In: Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and
Applications. OOPSLA ’06. doi: 10.1145/1176617.1176691 (cit. on pp. 5, 35, 62, 64, 113, 114,
140, 158).

Jouault, Frédéric et al. (2008). “ATL: A model transformation tool”. In: Science of Computer Pro-
gramming. doi: 10.1016/j.scico.2007.08.002 (cit. on pp. 20, 140, 158).

Juhnke, Katharina et al. (2020). “Challenges concerning test case specifications in automotive soft-
ware testing: assessment of frequency and criticality”. In: Software Quality Journal. issn: 1573-
1367. doi: 10.1007/s11219-020-09523-0. url: https://doi.org/10.1007/s11219-020-
09523-0 (cit. on pp. 70, 99).

Kahani, Nafiseh et al. (2019). “Survey and classification of model transformation tools”. In: Software
& Systems Modeling. doi: 10.1007/s10270-018-0665-6 (cit. on pp. 3, 10, 35, 56, 64, 79, 110,
114).

Kallio, Hanna et al. (2016). “Systematic methodological review: developing a framework for a qual-
itative semi-structured interview guide”. In: Journal of Advanced Nursing 72.12, pp. 2954–2965.
doi: https://doi.org/10.1111/jan.13031 (cit. on pp. 68, 69).

Kapová, Lucia et al. (2010). “Evaluating maintainability with code metrics for model-to-model
transformations”. In: International Conference on the Quality of Software Architectures. doi:
https://doi.org/10.1007/978-3-642-13821-8_12 (cit. on p. 143).

Karimi, Kamran et al. (2010). “A Performance Comparison of CUDA and OpenCL”. In: ArXiv
abs/1005.2581 (cit. on p. 56).

Kasunic, Mark (2005). Designing an effective survey. Tech. rep. Carnegie-Mellon Univ Pittsburgh
PA Software Engineering Inst (cit. on pp. 12, 18).

Kehrer, Timo et al. (2011). “A rule-based approach to the semantic lifting of model differences in the
context of model versioning”. In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE, pp. 163–172 (cit. on p. 190).

Kehrer, Timo et al. (2012). “Understanding model evolution through semantically lifting model dif-
ferences with SiLift”. In: 28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, pp. 638–641 (cit. on pp. 158, 188, 190).

https://doi.org/https://doi.org/10.1016/j.scico.2013.03.017
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://www.sciencedirect.com/science/article/pii/S0167642313000786
https://www.iso.org/standard/22749.html
https://doi.org/10.1109/TSE.2007.70722
https://doi.org/10.1007/s10664-013-9291-7
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1147/sj.171.0039
https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation
https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/s11219-020-09523-0
https://doi.org/10.1007/s11219-020-09523-0
https://doi.org/10.1007/s11219-020-09523-0
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/https://doi.org/10.1111/jan.13031
https://doi.org/https://doi.org/10.1007/978-3-642-13821-8_12

Bibliography 201

Kehrer, Timo et al. (2016). “Automatically deriving the specification of model editing operations
from meta-models”. In: International Conference on Theory and Practice of Model Transforma-
tions. Springer, pp. 173–188 (cit. on pp. 158, 188).

Kernighan, Brian W. et al. (1984). The Unix Programming Environment. Prentice Hall, Inc. isbn:
0-13-937699-2 (cit. on pp. 3, 64, 113).

Kieburtz, Richard B. et al. (1996). “A Software Engineering Experiment in Software Component
Generation”. In: Proceedings of the 18th International Conference on Software Engineering.
ICSE’96. doi: 10.1109/ICSE.1996.493448 (cit. on p. 42).

Kitchenham, B. et al. (2007). Guidelines for performing Systematic Literature Reviews in Software
Engineering. doi: 10.1.1.117.471 (cit. on pp. 12, 34).

Ko, Jong-Won et al. (2015). “Model transformation verification using similarity and graph compar-
ison algorithm”. In: Multimedia Tools and Applications 74.20, pp. 8907–8920. issn: 1573-7721.
doi: 10.1007/s11042-013-1581-y (cit. on p. 134).

Kofod-Petersen, Anders (2015). How to do a Structured Literature Review in computer science (cit.
on p. 37).

Kolovos, Dimitrios S. et al. (2008). “The Epsilon Transformation Language”. In: Theory and Practice
of Model Transformations. ICMT 2008. doi: 10.1007/978-3-540-69927-9_4 (cit. on pp. 35,
64, 113, 140).

Kosar, Tomaz et al. (2010). “Comparing general-purpose and domain-specific languages: An em-
pirical study”. In: ComSIS–Computer Science an Information Systems Journal. doi: 10.2298/
CSIS1002247K (cit. on pp. 10, 57).

Kosar, Tomaž et al. (2016). “Domain-Specific Languages: A Systematic Mapping Study”. In: Infor-
mation and Software Technology. doi: 10.1016/j.infsof.2015.11.001 (cit. on pp. 10, 55–57,
140).

Kramer, M. E. et al. (2016). “A controlled experiment template for evaluating the understandability
of model transformation languages”. In: 2nd International Workshop on Human Factors in Mod-
eling, HuFaMo 2016; Saint Malo; France; 4 October 2016 through. Ed. : M. Goulao. Vol. 1805.
CEUR Workshop Proceedings. CEUR Workshop Proceedings, pp. 11–18 (cit. on pp. 11, 105,
135).

Krause, Christian et al. (2014). “Implementing Graph Transformations in the Bulk Synchronous Par-
allel Model”. In: Fundamental Approaches to Software Engineering. Ed. by Stefania Gnesi et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325–339. isbn: 978-3-642-54804-8 (cit. on
pp. 6, 66, 116).

Krikava, Filip et al. (2014). “Manipulating Models Using Internal Domain-Specific Languages”. In:
Symposium On Applied Computing. SAC ’14. doi: 10.1145/2554850.2555127 (cit. on pp. 20,
140, 158).

Křikava, Filip et al. (2014). “SIGMA: Scala Internal Domain-Specific Languages for Model Manipu-
lations”. In: Model-Driven Engineering Languages and Systems. MODELS 2014. doi: 10.1007/
978-3-319-11653-2_35 (cit. on pp. 47, 55).

Kuckartz, Udo (2014). Qualitative text analysis: A guide to methods, practice and using software.
Sage. isbn: 978-1-4462-6774-5 (cit. on pp. 16, 68, 74–78).

Kurniawan, Budi et al. (2004). “A Comparative Study of Web Application Design Models Using the
Java Technologies”. In: Asia-Pacific Web Conference. APWeb 2004. doi: 10.1007/978-3-540-
24655-8_77 (cit. on p. 55).

Kurtev, Ivan (2007). “State of the art of QVT: A model transformation language standard”. In:
International Symposium on Applications of Graph Transformations with Industrial Relevance.
doi: https://doi.org/10.1007/978-3-540-89020-1_26 (cit. on p. 140).

Kusel, A. et al. (2015). “Reuse in model-to-model transformation languages: are we there yet?” In:
Software & Systems Modeling. doi: 10.1007/s10270-013-0343-7 (cit. on p. 132).

Kusel, Angelika et al. (2013). “Reality Check for Model Transformation Reuse: The ATL Transfor-
mation Zoo Case Study.” In: Amt@ models, pp. 1–11 (cit. on pp. 11, 152).

Lano, Kevin et al. (2015). “A framework for model transformation verification”. In: Formal Aspects
of Computing 27.1, pp. 193–235 (cit. on p. 134).

Lano, Kevin et al. (2018). “Technical Debt in Model Transformation Specifications”. In: Theory and
Practice of Model Transformation. Cham: Publishing. doi: 10.1007/978-3-319-93317-7_6
(cit. on pp. 12, 20, 23, 141, 143, 144, 153).

https://doi.org/10.1109/ICSE.1996.493448
https://doi.org/10.1.1.117.471
https://doi.org/10.1007/s11042-013-1581-y
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.2298/CSIS1002247K
https://doi.org/10.2298/CSIS1002247K
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1007/978-3-319-11653-2_35
https://doi.org/10.1007/978-3-319-11653-2_35
https://doi.org/10.1007/978-3-540-24655-8_77
https://doi.org/10.1007/978-3-540-24655-8_77
https://doi.org/https://doi.org/10.1007/978-3-540-89020-1_26
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.1007/978-3-319-93317-7_6

202 Bibliography

Lawley, Michael et al. (2007). “Implementing a Practical Declarative Logic-based Model Transfor-
mation Engine”. In: Proceedings of the 2007 ACM Symposium on Applied Computing. SAC ’07.
doi: 10.1145/1244002.1244216 (cit. on pp. 20, 62, 140).

Leblebici, Erhan et al. (2014). “A comparison of incremental triple graph grammar tools”. In: Elec-
tronic Communications of the EASST 67. doi: 10.14279/tuj.eceasst.67.939 (cit. on p. 191).

Liebel, Grischa et al. (2018). “Organisation and communication problems in automotive requirements
engineering”. In: Requirements Engineering 23.1, pp. 145–167. issn: 1432-010X. doi: 10.1007/
s00766-016-0261-7. url: https://doi.org/10.1007/s00766-016-0261-7 (cit. on p. 99).

Liepin, š, Renārs (2012). “Library for Model Querying: IQuery”. In: Proceedings of the 12th Workshop
on OCL and Textual Modelling. OCL ’12. doi: 10.1145/2428516.2428522 (cit. on p. 62).

Loniewski, Grzegorz et al. (2010). “A Systematic Review of the Use of Requirements Engineer-
ing Techniques in Model-Driven Development”. In: Model Driven Engineering Languages and
Systems. doi: 10.1007/978-3-642-16129-2_16 (cit. on p. 38).

Malavolta, I. et al. (2010). “Providing Architectural Languages and Tools Interoperability through
Model Transformation Technologies”. In: IEEE Transactions on Software Engineering 36.1,
pp. 119–140. doi: 10.1109/TSE.2009.51 (cit. on p. 62).

Martínez, Salvador et al. (2017). “Reactive model transformation with ATL”. In: Science of Computer
Programming 136, pp. 1–16. issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2016.
08.006 (cit. on p. 191).

Mayring, Philipp (1994). Qualitative inhaltsanalyse. Vol. 14. UVK Univ.-Verl. Konstanz. isbn: 978-
3-407-29393-0 (cit. on p. 68).

McCabe, T.J. (1976). “A Complexity Measure”. In: IEEE Transactions on Software Engineering
SE-2.4, pp. 308–320. doi: 10.1109/TSE.1976.233837 (cit. on pp. 13, 160).

Meijer, Erik et al. (2006). “LINQ: Reconciling Object, Relations and XML in the .NET Framework”.
In: SIGMOD ’06. Chicago, IL, USA: Association for Computing Machinery, p. 706. doi: 10.
1145/1142473.1142552 (cit. on p. 3).

Mens, Tom et al. (2006). “A Taxonomy of Model Transformation”. In: Electronic Notes in Theoretical
Computer Science (GraMoT 2005). doi: 10.1016/j.entcs.2005.10.021 (cit. on pp. 3, 10, 35,
56, 64, 114).

Mernik, Marjan et al. (2005). “When and How to Develop Domain-specific Languages”. In: ACM
computing surveys (CSUR). doi: 10.1145/1118890.1118892 (cit. on pp. 1, 34, 47, 48).

Metzger, Andreas (2005). “A systematic look at model transformations”. In: Model-driven Software
Development. Springer, pp. 19–33. doi: 10.1007/3-540-28554-7_2 (cit. on pp. 2, 62, 64, 110,
113).

Meyer, M A et al. (1990). “Eliciting and analyzing expert judgment: A practical guide”. In: doi:
10.2172/5088782 (cit. on pp. 12, 68–70).

Microsoft (2022). Language Server Protocol Specification. url: https://microsoft.github.io/
language-server-protocol/specifications/specification-current/ (cit. on p. 101).

Mohagheghi, Parastoo et al. (2008). “Where Is the Proof? - A Review of Experiences from Applying
MDE in Industry”. In: Model Driven Architecture – Foundations and Applications. Ed. by Ina
Schieferdecker et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 432–443 (cit. on pp. 10,
100, 106).

Mohagheghi, Parastoo et al. (2013a). “An empirical study of the state of the practice and acceptance
of model-driven engineering in four industrial cases”. In: Empirical Software Engineering. doi:
10.1007/s10664-012-9196-x (cit. on pp. 10, 55, 95, 100, 106).

Mohagheghi, Parastoo et al. (2013b). “Where does model-driven engineering help? Experiences from
three industrial cases”. In: Software & Systems Modeling 12.3, pp. 619–639. issn: 1619-1374. doi:
10.1007/s10270-011-0219-7. url: https://doi.org/10.1007/s10270-011-0219-7 (cit. on
pp. 10, 106).

Mooney, Christopher Z et al. (1993). Bootstrapping: A nonparametric approach to statistical infer-
ence. 95. sage (cit. on pp. 119, 122).

Newcomer, Kathryn E et al. (2015). Handbook of practical program evaluation. John Wiley & Sons.
isbn: 978-1-118-89360-9 (cit. on pp. 69–71).

Olbrich, S. et al. (2009). “The evolution and impact of code smells: A case study of two open
source systems”. In: 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, pp. 390–400. doi: 10.1109/ESEM.2009.5314231 (cit. on p. 189).

OMG (July 2001). Model Driven Architecture (MDA), ormsc/2001-07-01 (cit. on pp. 35, 63, 113).
— (Apr. 2002). Meta Object Facility(MOF) (cit. on pp. 2, 63, 113, 161).

https://doi.org/10.1145/1244002.1244216
https://doi.org/10.14279/tuj.eceasst.67.939
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.1007/s00766-016-0261-7
https://doi.org/10.1145/2428516.2428522
https://doi.org/10.1007/978-3-642-16129-2_16
https://doi.org/10.1109/TSE.2009.51
https://doi.org/https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/3-540-28554-7_2
https://doi.org/10.2172/5088782
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/s10270-011-0219-7
https://doi.org/10.1007/s10270-011-0219-7
https://doi.org/10.1109/ESEM.2009.5314231

Bibliography 203

— (2014). Object Constraint Language (OCL). url: https://www.omg.org/spec/OCL/2.4/PDF
(cit. on pp. 8, 68, 117, 141, 161).

— (2016). Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. url: https:
//www.omg.org/spec/QVT/About-QVT/ (cit. on pp. 5, 62, 66, 115).

Pietron, Jakob et al. (2018). “A study design template for identifying usability issues in graphical
modeling tools.” In: MODELS Workshops, pp. 336–345 (cit. on p. 102).

Prechelt, L. (2000). “An empirical comparison of seven programming languages”. In: Computer. doi:
10.1109/2.876288 (cit. on p. 55).

Raggett, Dave et al. (1999). “HTML 4.01 Specification”. In: W3C recommendation 24 (cit. on pp. 3,
64, 113).

Rainer, Austen et al. (2021). Recruiting credible participants for field studies in software engineering
research. doi: 10.48550/ARXIV.2112.14186 (cit. on pp. 1, 98).

Rein, Patrick et al. (2019). “Towards Empirical Evidence on the Comprehensibility of Natural Lan-
guage Versus Programming Language”. In: Design Thinking Research. doi: 10.1007/978-3-
030-28960-7_7 (cit. on p. 55).

Rentschler, Andreas et al. (2014). “Designing Information Hiding Modularity for Model Transfor-
mation Languages”. In: Proceedings of the 13th International Conference on Modularity. MOD-
ULARITY ’14. doi: 10.1145/2577080.2577094 (cit. on p. 159).

Rindt, Michaela et al. (2014). “Automatic Generation of Consistency-Preserving Edit Operations
for MDE Tools”. In: Demos@ MoDELS 14 (cit. on pp. 158, 188).

Runeson, Per et al. (2012). “Case study research in software engineering”. In: Guidelines and exam-
ples, p. 237 (cit. on p. 12).

SAEMobilus (2004). Architecture Analysis and Design Language (AADL) (cit. on pp. 3, 64, 113).
Samiee, Amir et al. (2018). “Model-Driven-Engineering in Education”. In: 2018 18th International

Conference on Mechatronics - Mechatronika (ME), pp. 1–6 (cit. on p. 100).
Sanchez Cuadrado, J. et al. (2020). “Efficient execution of ATL model transformations using static

analysis and parallelism”. In: IEEE Transactions on Software Engineering. doi: 10.1109/TSE.
2020.3011388 (cit. on pp. 134, 165, 193).

Schmidt, Douglas (2006). “Guest Editor’s Introduction: Model-Driven Engineering”. In: Computer
- IEEE Computer Society. doi: 10.1109/MC.2006.58 (cit. on pp. 2, 62, 63, 110, 113, 140).

Schultheiß, Alexander et al. (2020a). “Comparison of Graph-based Model Transformation Rules”.
In: Journal of Object Technology 19.2, 3:1–21 (cit. on pp. 158, 188).

Schultheiß, Alexander et al. (2020b). “On the use of product-line variants as experimental subjects
for clone-and-own research: a case study”. In: SPLC ’20: 24th ACM International Systems and
Software Product Line Conference, Montreal, Quebec, Canada, October 19-23, 2020, Volume A.
ACM, 27:1–27:6 (cit. on pp. 158, 188).

Selic, B. (2003). “The pragmatics of model-driven development”. In: IEEE Software 20.5, pp. 19–25.
doi: 10.1109/MS.2003.1231146 (cit. on pp. 2, 63, 113).

Selim, Gehan MK et al. (2017). “How is ATL really used? Language feature use in the ATL zoo”. In:
2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and
Systems (MODELS). doi: 10.1109/MODELS.2017.20 (cit. on pp. 140, 151).

Sendall, S. et al. (2003). “Model transformation: the heart and soul of model-driven software devel-
opment”. In: IEEE Software. doi: 10.1109/MS.2003.1231150 (cit. on pp. 1, 2, 20, 34, 62, 64,
110, 113, 140, 158).

Shaw, M. (2003). “Writing good software engineering research papers”. In: 25th International Con-
ference on Software Engineering, 2003. Proceedings. doi: 10.1109/ICSE.2003.1201262 (cit. on
p. 52).

Shevtsov, S. et al. (2018). “Control-Theoretical Software Adaptation: A Systematic Literature Re-
view”. In: IEEE Transactions on Software Engineering. doi: 10.1109/TSE.2017.2704579 (cit.
on pp. 40, 43).

Singh, Yogesh et al. (2007). “Application of Logistic Regression and Artificial Neural Network for
Predicting Software Quality Models.” In: Software engineering research and practice, pp. 664–670
(cit. on p. 189).

Sjoberg, D. I. K. et al. (2002). “Conducting realistic experiments in software engineering”. In: Pro-
ceedings International Symposium on Empirical Software Engineering. ISESE ’02. doi: 10.1109/
ISESE.2002.1166921 (cit. on p. 54).

Somasundaram, Ramanathan et al. (2003). “Research philosophies in the IOS adoption field”. In:
ECIS 2003 proceedings, p. 53 (cit. on p. 39).

https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/QVT/About-QVT/
https://www.omg.org/spec/QVT/About-QVT/
https://doi.org/10.1109/2.876288
https://doi.org/10.48550/ARXIV.2112.14186
https://doi.org/10.1007/978-3-030-28960-7_7
https://doi.org/10.1007/978-3-030-28960-7_7
https://doi.org/10.1145/2577080.2577094
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MODELS.2017.20
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/ICSE.2003.1201262
https://doi.org/10.1109/TSE.2017.2704579
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1109/ISESE.2002.1166921

204 Bibliography

Sprinkle, J. et al. (2009). “Guest Editors’ Introduction: What Kinds of Nails Need a Domain-Specific
Hammer?” In: IEEE Software 26.4, pp. 15–18. doi: 10.1109/MS.2009.92 (cit. on pp. 3, 64,
113).

Stachowiak, Herbert (1973). Allgemeine Modelltheorie. Springer. isbn: ISBN 3-211-81106-0 (cit. on
p. 2).

Staron, Miroslaw (2006). “Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies”. In: Model Driven Engineering Languages and Systems. MODELS
2006. doi: 10.1007/11880240_5 (cit. on pp. 10, 100, 105).

Stegmaier, Michael et al. (2019). “Insights for Improving Diagram Editing Gained from an Em-
pirical Study”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems Companion (MODELS-C), pp. 405–412. doi: 10.1109/MODELS-
C.2019.00063 (cit. on p. 102).

Steinberg, Dave et al. (2008). EMF: eclipse modeling framework. Pearson Education (cit. on pp. 2,
63, 113, 161).

Stol, Klaas-Jan et al. (2016). “Grounded Theory in Software Engineering Research: A Critical Re-
view and Guidelines”. In: Proceedings of the 38th International Conference on Software Engi-
neering. ICSE ’16. Austin, Texas: Association for Computing Machinery, pp. 120–131. isbn:
9781450339001. doi: 10.1145/2884781.2884833. url: https://doi.org/10.1145/2884781.
2884833 (cit. on pp. 74, 77).

Strüber, Daniel et al. (2016). “Comparing Reuse Mechanisms for Model Transformation Languages:
Design for an Empirical Study.” In: HuFaMo@ MoDELS. Citeseer, pp. 27–32 (cit. on pp. 11,
105, 135).

Strüber, Daniel et al. (2017). “Henshin: A Usability-Focused Framework for EMF Model Trans-
formation Development”. In: Graph Transformation. ICGT 2017. doi: 10.1007/978-3-319-
61470-0_12 (cit. on pp. 162, 191).

Tehrani, Sobhan Yassipour et al. (2016). “Requirements engineering in model-transformation de-
velopment: An interview-based study”. In: International Conference on Theory and Practice of
Model Transformations. Springer, pp. 123–137. doi: 10.1007/978-3-319-42064-6_9 (cit. on
pp. 10, 11, 105).

Tolosa, José Barranquero et al. (2011). “Towards the systematic measurement of ATL transformation
models”. In: Software: Practice and Experience. doi: https://doi.org/10.1002/spe.1033 (cit.
on pp. 11, 143, 152).

Torchiano, Marco et al. (2017). “Lessons Learnt in Conducting Survey Research”. In: 2017 IEEE/
ACM 5th International Workshop on Conducting Empirical Studies in Industry (CESI), pp. 33–
39. doi: 10.1109/CESI.2017.5 (cit. on p. 12).

Tratt, Laurence (2005). “Model transformations and tool integration”. In: Software & Systems Mod-
eling. doi: 10.1007/s10270-004-0070-1 (cit. on pp. 1, 34).

Troya, Javier et al. (2022). “Model Transformation Testing and Debugging: A Survey”. In: ACM
Computing Surveys (CSUR) (cit. on p. 101).

Van Deursen, Arie et al. (2000). “Domain-specific languages: An annotated bibliography”. In: ACM
Sigplan Notices. doi: 10.1145/352029.352035 (cit. on pp. 10, 57).

Van Deursen, Arie et al. (2002). “Domain-specific language design requires feature descriptions”. In:
Journal of Computing and Information Technology. doi: 10.2498/cit.2002.01.01 (cit. on
pp. 2, 35, 64, 113).

Varró, Dániel et al. (2006). “Termination Analysis of Model Transformations by Petri Nets”. In:
Graph Transformations. ICGT 2006. doi: 10.1007/11841883_19 (cit. on p. 44).

Vignaga, Andrés (2009). “Metrics for measuring ATL model transformations”. In: MaTE, Depart-
ment of Computer Science, Universidad de Chile, Tech. Rep (cit. on pp. 143, 152, 193).

Vollstedt, Maike et al. (2019). “An Introduction to Grounded Theory with a Special Focus on
Axial Coding and the Coding Paradigm”. In: Compendium for Early Career Researchers in
Mathematics Education. Ed. by Gabriele Kaiser et al. Cham: Springer International Publishing,
pp. 81–100. doi: 10.1007/978-3-030-15636-7_4 (cit. on p. 74).

W3C (2021). Cascading Style Sheets (CSS). url: https://www.w3.org/TR/css-2021/ (cit. on
p. 3).

Weiber, Rolf et al. (2021). Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung
in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS. 3rd ed. Springer-Verlag. doi:
10.1007/978-3-658-32660-9 (cit. on pp. 12, 94, 99, 117–120, 122, 134).

https://doi.org/10.1109/MS.2009.92
https://doi.org/10.1007/11880240_5
https://doi.org/10.1109/MODELS-C.2019.00063
https://doi.org/10.1109/MODELS-C.2019.00063
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-42064-6_9
https://doi.org/https://doi.org/10.1002/spe.1033
https://doi.org/10.1109/CESI.2017.5
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.1145/352029.352035
https://doi.org/10.2498/cit.2002.01.01
https://doi.org/10.1007/11841883_19
https://doi.org/10.1007/978-3-030-15636-7_4
https://www.w3.org/TR/css-2021/
https://doi.org/10.1007/978-3-658-32660-9

Bibliography 205

Weidmann, Nils et al. (2019). “Incremental (Unidirectional) Model Transformation with eMoflon::
IBeX”. In: Graph Transformation. Ed. by Esther Guerra et al. Cham: Springer International
Publishing, pp. 131–140. isbn: 978-3-030-23611-3 (cit. on pp. 177, 191).

Weyns, Danny et al. (2012). “Claims and Supporting Evidence for Self-adaptive Systems: A Liter-
ature Study”. In: Proceedings of the 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS ’12. doi: 10.1109/SEAMS.2012.6224395 (cit. on
pp. 40, 41).

Whittle, Jon et al. (2013). “Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem?” In: Model-Driven Engineering Languages and Systems. MODELS 2013. doi: 10.
1007/978-3-642-41533-3_1 (cit. on pp. 10, 25, 49, 95, 97, 105).

Wieringa, Roelf J. (2014). Design science methodology for information systems and software en-
gineering. Undefined. 10.1007/978-3-662-43839-8. Springer. isbn: 978-3-662-43838-1. doi: 10.
1007/978-3-662-43839-8 (cit. on pp. 159, 164).

Wiger, Ulf et al. (2001). Four-fold Increase in Productivity and Quality - Industrial-Strength Func-
tional Programming in Telecom-Class Products (cit. on p. 55).

Wimmer, Manuel et al. (2009). “Reviving QVT Relations: Model-Based Debugging Using Colored
Petri Nets”. In: Model Driven Engineering Languages and Systems. Ed. by Andy Schürr et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 727–732. isbn: 978-3-642-04425-0 (cit. on
p. 101).

Wohlin, Claes (2014). “Guidelines for Snowballing in Systematic Literature Studies and a Replication
in Software Engineering”. In: Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering. EASE ’14. Association for Computing Machinery. doi:
10.1145/2601248.2601268 (cit. on p. 39).

Zündorf, Albert et al. (2013). “Story Driven Modeling Libary (SDMLib): an Inline DSL for modeling
and model transformations, the Petrinet-Statechart case”. In: Sixth Transformation Tool Contest
(TTC 2013), ser. EPTCS (cit. on p. 191).

https://doi.org/10.1109/SEAMS.2012.6224395
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/2601248.2601268

207

Appendix A

Appendix - Paper A

A.1 SLR results
P2 Patzina, Sven et al. (2012). “A Case Study Based Comparison of ATL and SDM”. In: Proceedings

of the 4th International Conference on Applications of Graph Transformations with Industrial
Relevance. AGTIVE 2011. doi: 10.1007/978-3-642-34176-2_18.

P3 Stephan, Matthew et al. (2009). A Comparative Look at Model Transformation Languages. Tech.
rep. Software Technology Laboratory at Queens University. doi: 10.1.1.712.2983.

P4 Cuadrado, J. S. et al. (2014). “A Component Model for Model Transformations”. In: IEEE
Transactions on Software Engineering. doi: 10.1109/TSE.2014.2339852.

P9 Agrawal, Aditya et al. (2003). “A UML-based graph transformation approach for implementing
domain-specific model transformations”. In: International Journal on Software and Systems
Modeling. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.1226.

P10 Johannes, Jendrik et al. (2009). “Abstracting Complex Languages through Transformation
and Composition”. In: Model Driven Engineering Languages and Systems. MODELS 2009.
doi: 10.1007/978-3-642-04425-0_41 (cit. on pp. 62, 110).

P15 Jouault, Frédéric et al. (2008). “ATL: A model transformation tool”. In: Science of Computer
Programming. doi: 10.1016/j.scico.2007.08.002 (cit. on pp. 20, 140, 158).

P21 Giese, Holger et al. (2014). “Bridging the gap between formal semantics and implementation of
triple graph grammars”. In: Software & Systems Modeling. doi: 10.1007/s10270-012-0247-y.

P22 Schoenboeck, Johannes et al. (2010). “Catch Me If You Can – Debugging Support for Model
Transformations”. In: Models in Software Engineering. MODELS 2009. doi: 10.1007/978-3-
642-12261-3_2.

P23 Hinkel, Georg et al. (2019a). “Change propagation and bidirectionality in internal transforma-
tion DSLs”. In: Software & Systems Modeling. doi: 10.1007/s10270-017-0617-6 (cit. on
pp. 5, 47, 55, 64, 113, 114, 190, 191, 193).

P27 Sottet, J. et al. (2014). “Defining Domain Specific Transformations in Human-Com- puter
interfaces development”. In: 2014 2nd International Conference on Model-Driven Engineering
and Software Development. MODELSWARD ’14. url: https://ieeexplore.ieee.org/
abstract/document/7018471.

P28 Acretoaie, Vlad (2013). Delivering the Next Generation of Model Transformation Languages
and Tools. doi: 10.1.1.708.6612.

P29 Rentschler, Andreas et al. (2014). “Designing Information Hiding Modularity for Model Trans-
formation Languages”. In: Proceedings of the 13th International Conference on Modularity.
MODULARITY ’14. doi: 10.1145/2577080.2577094 (cit. on p. 159).

P30 Steel, Jim et al. (2011). “Domain-Specific Model Transformation in Building Quantity Take-
Off”. In: Model Driven Engineering Languages and Systems. MODELS 2011. doi: 10.1007/
978-3-642-24485-8_15.

P32 Shin, Shin-Shing (2019). “Empirical study on the effectiveness and efficiency of model-driven
architecture techniques”. In: Software & Systems Modeling. doi: 10.1007/s10270-018-00711-
y.

P33 Criado, Javier et al. (2015). “Enabling the Reuse of Stored Model Transformations Through
Annotations”. In: Theory and Practice of Model Transformations. ICMT 2015. doi: 10.1007/
978-3-319-21155-8_4.

P34 Rose, Louis M. et al. (2014). “Epsilon Flock: a model migration language”. In: Software &
Systems Modeling. doi: 10.1007/s10270-012-0296-2.

https://doi.org/10.1007/978-3-642-34176-2_18
https://doi.org/10.1.1.712.2983
https://doi.org/10.1109/TSE.2014.2339852
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.1226
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/s10270-017-0617-6
https://ieeexplore.ieee.org/abstract/document/7018471
https://ieeexplore.ieee.org/abstract/document/7018471
https://doi.org/10.1.1.708.6612
https://doi.org/10.1145/2577080.2577094
https://doi.org/10.1007/978-3-642-24485-8_15
https://doi.org/10.1007/978-3-642-24485-8_15
https://doi.org/10.1007/s10270-018-00711-y
https://doi.org/10.1007/s10270-018-00711-y
https://doi.org/10.1007/978-3-319-21155-8_4
https://doi.org/10.1007/978-3-319-21155-8_4
https://doi.org/10.1007/s10270-012-0296-2

208 SLR results

P39 Berramla, K. et al. (2015). “Formal validation of model transformation with Coq proof as-
sistant”. In: 2015 First International Conference on New Technologies of Information and
Communication. NTIC 2015. doi: 10.1109/NTIC.2015.7368755.

P40 Legros, Elodie et al. (2009). “Generic and reflective graph transformations for checking and
enforcement of modeling guidelines”. In: Journal of Visual Languages & Computing 4. doi:
10.1016/j.jvlc.2009.04.005.

P41 Sánchez Cuadrado, Jesús et al. (2011). “Generic Model Transformations: Write Once, Reuse
Everywhere”. In: Theory and Practice of Model Transformations. ICMT 2011. doi: 10.1007/
978-3-642-21732-6_5.

P43 Strüber, Daniel et al. (2017). “Henshin: A Usability-Focused Framework for EMF Model Trans-
formation Development”. In: Graph Transformation. ICGT 2017. doi: 10.1007/978-3-319-
61470-0_12 (cit. on pp. 162, 191).

P44 Wider, Arif (2014). “Implementing a Bidirectional Model Transformation Language as an
Internal DSL in Scala”. In: EDBT/ICDT Workshops. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.428.9439.

P45 Lawley, Michael et al. (2007). “Implementing a Practical Declarative Logic-based Model Trans-
formation Engine”. In: Proceedings of the 2007 ACM Symposium on Applied Computing. SAC
’07. doi: 10.1145/1244002.1244216 (cit. on pp. 20, 62, 140).

P50 Liepin, š, Renārs (2012). “Library for Model Querying: IQuery”. In: Proceedings of the 12th
Workshop on OCL and Textual Modelling. OCL ’12. doi: 10.1145/2428516.2428522 (cit. on
p. 62).

P52 Krikava, Filip et al. (2014). “Manipulating Models Using Internal Domain-Specific Languages”.
In: Symposium On Applied Computing. SAC ’14. doi: 10.1145/2554850.2555127 (cit. on
pp. 20, 140, 158).

P56 Sun, Yu et al. (2009). “Model Transformation by Demonstration”. In: Model Driven Engineering
Languages and Systems. MODELS 2009. doi: 10.1007/978-3-642-04425-0_58.

P58 Irazábal, Jerónimo et al. (2010). “Model Transformation Languages Relying on Models as
ADTs”. In: Software Language Engineering. SLE 2009. doi: 10.1007/978-3-642-12107-
4_10.

P59 Hebig, Regina et al. (2018). “Model Transformation Languages Under a Magnifying Glass:
A Controlled Experiment with Xtend, ATL, and QVT”. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE 2018. doi: 10.1145/3236024.3236046 (cit.
on pp. 11, 20, 25, 37, 98, 104, 110, 135, 140, 158, 192).

P60 Lara, Juan de et al. (2018). “Model Transformation Product Lines”. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages and Systems.
MODELS ’18. doi: 10.1145/3239372.3239377.

P63 Sendall, S. et al. (2003). “Model transformation: the heart and soul of model-driven software
development”. In: IEEE Software. doi: 10.1109/MS.2003.1231150 (cit. on pp. 1, 2, 20, 34,
62, 64, 110, 113, 140, 158).

P64 Tratt, Laurence (2005). “Model transformations and tool integration”. In: Software & Systems
Modeling. doi: 10.1007/s10270-004-0070-1 (cit. on pp. 1, 34).

P66 — (2007). “Model transformations in MT”. In: Science of Computer Programming. doi:
10.1016/j.scico.2007.05.003.

P70 Baar, Thomas et al. (2007). “On the Usage of Concrete Syntax in Model Transformation Rules”.
In: Perspectives of Systems Informatics. PSI 2006. doi: 10.1007/978-3-540-70881-0_10.

P74 Sánchez Cuadrado, J. et al. (2015). “Quick fixing ATL model transformations”. In: 2015
ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Sys-
tems. MODELS ’15. doi: 10.1109/MODELS.2015.7338245.

P75 Li, Dan et al. (2011). “QVT-based Model Transformation Using XSLT”. In: SIGSOFT Softw.
Eng. Notes. doi: 10.1145/1921532.1921563.

P77 Kusel, A. et al. (2015). “Reuse in model-to-model transformation languages: are we there yet?”
In: Software & Systems Modeling. doi: 10.1007/s10270-013-0343-7 (cit. on p. 132).

P78 Wimmer, Manuel et al. (2011). “Reusing Model Transformations across Heterogeneous Meta-
models”. In: ECEASST. doi: 10.14279/tuj.eceasst.50.722.

P80 Křikava, Filip et al. (2014). “SIGMA: Scala Internal Domain-Specific Languages for Model
Manipulations”. In: Model-Driven Engineering Languages and Systems. MODELS 2014. doi:
10.1007/978-3-319-11653-2_35 (cit. on pp. 47, 55).

https://doi.org/10.1109/NTIC.2015.7368755
https://doi.org/10.1016/j.jvlc.2009.04.005
https://doi.org/10.1007/978-3-642-21732-6_5
https://doi.org/10.1007/978-3-642-21732-6_5
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-61470-0_12
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.9439
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.9439
https://doi.org/10.1145/1244002.1244216
https://doi.org/10.1145/2428516.2428522
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1007/978-3-642-04425-0_58
https://doi.org/10.1007/978-3-642-12107-4_10
https://doi.org/10.1007/978-3-642-12107-4_10
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3239372.3239377
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.1016/j.scico.2007.05.003
https://doi.org/10.1007/978-3-540-70881-0_10
https://doi.org/10.1109/MODELS.2015.7338245
https://doi.org/10.1145/1921532.1921563
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.14279/tuj.eceasst.50.722
https://doi.org/10.1007/978-3-319-11653-2_35

SLR results 209

P81 Akehurst, D. H. et al. (2006). “SiTra: Simple Transformations in Java”. In: Model Driven
Engineering Languages and Systems. MODELS 2006. doi: 10.1007/11880240_25 (cit. on
pp. 190, 193).

P86 Kolovos, Dimitrios S. et al. (2008). “The Epsilon Transformation Language”. In: Theory and
Practice of Model Transformations. ICMT 2008. doi: 10.1007/978-3-540-69927-9_4 (cit.
on pp. 35, 64, 113, 140).

P90 Sánchez Cuadrado, Jesús et al. (2014). “Towards the Systematic Construction of Domain-
Specific Transformation Languages”. In: Modelling Foundations and Applications. ECMFA
2014. doi: 10.1007/978-3-319-09195-2_13.

P94 George, Lars et al. (2012). “Type-Safe Model Transformation Languages as Internal DSLs in
Scala”. In: Theory and Practice of Model Transformations. ICMT 2012. doi: 10.1007/978-
3-642-30476-7_11 (cit. on pp. 64, 113).

P95 Hinkel, Georg et al. (2019b). “Using internal domain-specific languages to inherit tool support
and modularity for model transformations”. In: Software & Systems Modeling. doi: 10.1007/
s10270-017-0578-9 (cit. on pp. 20, 37, 62, 102, 140, 190).

P664 Agrawal, Aditya et al. (2002). “Generative programming via graph transformations in the
model-driven architecture”. In: In OOPSLA 2002 Workshop in Generative Techniques in the
context of Model Driven Architecture. OOPSLA ’02. url: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.70.4824.

P665 Aßmann, Uwe (1996). “How to uniformly specify program analysis and transformation with
graph rewrite systems”. In: Compiler Construction. CC 1996. doi: 10.1007/3-540-61053-
7_57.

P667 Radermacher, Ansgar (2000). “Support for Design Patterns through Graph Transformation
Tools”. In: Applications of Graph Transformations with Industrial Relevance. AGTIVE 1999.
doi: 10.1007/3-540-45104-8_9.

P669 Mohagheghi, Parastoo et al. (2013a). “An empirical study of the state of the practice and
acceptance of model-driven engineering in four industrial cases”. In: Empirical Software Engi-
neering. doi: 10.1007/s10664-012-9196-x (cit. on pp. 10, 55, 95, 100, 106).

P670 Staron, Miroslaw (2006). “Adopting Model Driven Software Development in Industry – A
Case Study at Two Companies”. In: Model Driven Engineering Languages and Systems. MOD-
ELS 2006. doi: 10.1007/11880240_5 (cit. on pp. 10, 100, 105).

P671 Panach, José Ignacio et al. (2011). “A Model for Dealing with Usability in a Holistic MDD
Method”. In: User Interface Description Language, Lisbon, Portugal. UIDL ’11.

P672 Amelunxen, Carsten et al. (2008). “Checking and Enforcement of Modeling Guidelines with
Graph Transformations”. In: Applications of Graph Transformations with Industrial Relevance.
AGTIVE 2007. doi: 10.1007/978-3-540-89020-1_22.

P673 Schmidt, Douglas (2006). “Guest Editor’s Introduction: Model-Driven Engineering”. In: Com-
puter - IEEE Computer Society. doi: 10.1109/MC.2006.58 (cit. on pp. 2, 62, 63, 110, 113,
140).

P674 Chafi, Hassan et al. (2010). “Language Virtualization for Heterogeneous Parallel Computing”.
In: ACM Sigplan Notices. doi: 10.1145/1932682.1869527.

P675 Mernik, Marjan et al. (2005). “When and How to Develop Domain-specific Languages”. In:
ACM computing surveys (CSUR). doi: 10.1145/1118890.1118892 (cit. on pp. 1, 34, 47, 48).

P676 Gorp, Pieter Van et al. (2013). The Petri-Nets to Statecharts Transformation Case. doi:
10.4204/EPTCS.135.3.

P677 Mens, Tom et al. (2006). “A Taxonomy of Model Transformation”. In: Electronic Notes in
Theoretical Computer Science (GraMoT 2005). doi: 10.1016/j.entcs.2005.10.021 (cit. on
pp. 3, 10, 35, 56, 64, 114).

P800 Herndon, R. M. et al. (1988). “The realizable benefits of a language prototyping language”.
In: IEEE Transactions on Software Engineering. doi: 10.1109/32.6159.

P801 Batory, Don et al. (1994). “Reengineering a Complex Application Using a Scalable Data
Structure Compiler”. In: Proceedings of the 2Nd ACM SIGSOFT Symposium on Foundations
of Software Engineering. SIGSOFT ’94. doi: 10.1145/193173.195299.

P803 Kieburtz, Richard B. et al. (1996). “A Software Engineering Experiment in Software Compo-
nent Generation”. In: Proceedings of the 18th International Conference on Software Engineer-
ing. ICSE’96. doi: 10.1109/ICSE.1996.493448 (cit. on p. 42).

P804 Gray, J. et al. (2003). “An examination of DSLs for concisely representing model traversals
and transformations”. In: 36th Annual Hawaii International Conference on System Sciences,

https://doi.org/10.1007/11880240_25
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-319-09195-2_13
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4824
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4824
https://doi.org/10.1007/3-540-61053-7_57
https://doi.org/10.1007/3-540-61053-7_57
https://doi.org/10.1007/3-540-45104-8_9
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/11880240_5
https://doi.org/10.1007/978-3-540-89020-1_22
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/1932682.1869527
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.4204/EPTCS.135.3
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1109/32.6159
https://doi.org/10.1145/193173.195299
https://doi.org/10.1109/ICSE.1996.493448

210 SLR results

2003. Proceedings of the. HICSS ’03. doi: 10.1109/HICSS.2003.1174892 (cit. on pp. 20, 140,
158).

A.2 Overview over all extracted claims
See Table A.1.

https://doi.org/10.1109/HICSS.2003.1174892

A
.2.

O
verview

over
allextracted

claim
s

211

Table A.1: Overview over claims per category.

Category Valuation CID Claim Publication Evidence

Analysability positive C1 Declarative MTLs lend themselves to automatic analysis. P45 -

Comprehen-
sibility

positive

C2 Based on user feedback it was identified that visual syntax is beneficial when reading
a transformation program. P43 Experience

C3 Bidirectional transformation languages have an advantage in comprehensibility. P44 -

C4 Rule written in a declarative MTL are more easily understood in isolation and in
combination. P45 -

C5 An observation made from the empirical data is, that context selection and identifi-
cation is easier for subjects working with MTLs than with GPLs. P59 Empirical study

C6
There are perceived cognitive gains of graphical representations compared to fully
textual representations of transformations shown by for example the appeal of UMLs
graphical representation of models.

P63 -

C7 Model transformation languages incorporate high-level abstractions that make them
more understandable than GPLs. P95 -

negative

C8
Comprehensibility of transformation logic is hampered as current transformation
languages provide only a limited view on a transformation problem. For example
graph transformation approaches only reveal parts of the meta-model.

P22 -

C9 Most MTLs lack convenient facilities for understanding the transformation logic. P22 -

C10 Model transformation languages require specific skills and as a result are hard to
understand for many stakeholders. P27 -

C11 Large and heterogeneous models lead to poorly understandable transformation code
due to missing language concepts to master complexity. P29 -

C12 Graph transformations defined on abstract syntax are hard to read because the user
has to be familiar with meta-model that defines the abstract syntax. P70 -

C13 Purely graph based transformation languages can become complex and hard to read. P70 -

Conciseness positive

C14 General purpose languages lack simplicity because of how transformations are de-
fined. P3 Examples

C15 GPLs do not allow developers to conveniently express model manipulation concepts
and the loss of abstraction in GPLs may give rise to accidental complexities. P52 Cites P673

C16 Transformations implemented in the pre-study using rule-based MTLs were up ot
48% smaller than corresponding Java variants. P59 Preliminary study

C17 Declarative approaches make language more concise. P63 -

212
SLR

results

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

Conciseness positive

C18 Graphical notation in MTLs is concise. P75 -

C19 GPLs do not conveniently express model manipulation concepts and the loss of ab-
straction can give rise to accidental complexities. P80 Cites 673

C20 Model transformation languages incorporate high-level abstractions that make them
more concise than GPLs. P95 -

C21 Model transformation languages are more concise. P95 -
C22 MDE and model transformation languages such as QVT help to reduce complexity. P673 -

Debugging

positive C23
Debuggers for MTLs are likely better than those for GPLs for debugging transforma-
tions since it is questionable whether the call stacks produced by debuggers of GPLs
are meaningful for the developer.

P95 -

negative

C24 Although numerous transformation languages exist, they lack convenient facilities for
supporting debugging and understanding of the transformation logic. P22 -

C25
In ATL, TGGs and QVT-R correspondence is defined on a higher level of abstraction
compared to on what execution engines operate. Thus debugging is limited on the
lower level of the execution engines not on the level of the language definition.

P22 -

C26 In declarative model transformation languages debugging is more difficult than in
imperative ones. P45 -

C27 Model transformation languages lack proper debugging support since implementation
cost is high. P90 -

Ease of
writing a
transformation

positive

C28 We found graphical rule definition far more intuitive than syntax-based definition. P3 Experience

C29 Model transformation languages ease development efforts by offering succinct syntax
to query from and map model elements between different modelling domains. P29 -

C30 Model transformation languages make it easy to work with models. P50 -

C31 Imperative transformation approaches offer a familiar paradigm, that is, sequence,
selection, and iteration. P63 -

C32
It is our impression that, in general, graph transformations offer significantly better
support for the specification and implementation of modelling guidelines and refac-
torings.

P672 Experience

negative C33 Imperative MTLs induce overhead code because many issues have to be accomplished
explicitly, e.g., specification of control flow. P22 -

C34 Traditional transformation languages require specific skills to be able to write trans-
formations. P27 -

A
.2.

O
verview

over
allextracted

claim
s

213

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

Ease of
writing a
transformation

negative

C35 To be able to write transformations one has to be a transformation expert. P28 -

C36 Based on user feedback we identified that writing a transformation program with a
graphical syntax can be complicated. P43 Experience

C37 The syntax of declarative MTLs is unfamiliar for many developers. P45 -

C38 Model transformation languages that define transformations on meta-model level
require deep understanding of the meta-model. P56 -

C39 There is no sufficient (statistically significant) evidence of a general advantage of spe-
cialized model transformation languages (ATL, QVT-O) over a modern GPL (Xtend). P59 Empirical study

C40 Developers are generally more comfortable with encoding complicated (transforma-
tion) algorithms in procedural languages. P63 -

C41

First of all some of us are not convinced that the usage of a visual notation has
significant advantages compared to a textual notation. A textual notation is more
compact, simplifies all kinds of version and configuration management tasks, and
does not force its users to spend hours beautifying the layout of huge diagrams.

P672 -

Expressiveness positive

C42 Rule-based approaches seems to be less error-prone compared to a manual implemen-
tation of pattern matching for each transformation in a general-purpose language. P2 -

C43 Model transformation languages can hide details like traversing behind simple syntax. P15 -
C44 Model transformation languages can hide traces behind simple syntax. P15 -
C45 Model transformation languages can hide rule triggering behind simple syntax. P15 -
C46 Model transformation languages can hide rule ordering behind simple syntax. P15 -

C47 Model transformation languages can hide complex transformation algorithms behind
a simple syntax. P15 -

C48 Model transformation languages hide transformation complexity and burden from
user. P27 Cites P671

C49 Graph transformations generally offer a significantly better support for the specifi-
cation and implementation of modelling guidelines and refactorings. P40 Cites P672

C50 Declarative MTLs allow automatic traceability management. P45 Cites P677

C51 Declarative model transformation languages allow for implicit rule ordering lessening
the load on developer. P45 Cites P677

C52 Declarative MTLs can do implicit target object creation. P45 Cites P677
C53 Declarative MTLs allow for implicit source model traversal. P45 Cites P677
C54 Model transformation languages syntax is more specific. P52 -
C55 GPLs do not allow developers to conveniently express model manipulation concepts. P52 -

214
SLR

results

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

C56 We found that copying complex structures is more effective in MTLs. P59 Empirical study
C57 General purpose languages lack suitable abstractions for specifying transformations. P63 -
C58 Graph based MTLs are especially popular due to their high expressive power. P70 -
C59 Model transformation languages have more specific language constructs. P80 -

C60 Model transformation languages have a higher level of abstraction which leads to
gains in expressiveness over GPLs. P80 Cites P675

Expressiveness

positive

C61 Model transformation languages are easier to use than GPLs. P80 Cites P675
C62 Model transformation languages transformation constructs are more specific. P94 -

C63
From our perspective, automatic handling/resolution of traces by transformation
engine is one of the major features that make existing MTLs better suited for model
transformations than GPLs.

P95 -

C64 General purpose languages lack sufficient transformation concepts. P95 -
C1D DSLs trade expressiveness in a limited domain for generality. P675 Cites P804
C65 GPLs lack suitable abstractions for specifying transformations. P677 Cites P63

C66
With a DSL/MTL a programmer can express their objective in a concise manner
using a language that is much higher in expressiveness than that typically offered in
a transitional programming language.

P804 -

negative

C67

Having written several transformation we have identified that current MTLs are too
low a level of abstraction for succinctly expressing transformations between DSLs
because they demonstrate several recurring patterns that have to be reimplemented
each time.

P10 Experience

C68
Having written several transformation we have identified that mapping a single el-
ement to fragments of multiple elements has to be done programmatically which is
counter intuitive and error-prone.

P10 Experience

C69 OCL constraints cannot be transformed in MTLs. P32 Empirical Study

C70 There is no mechanism for describing and/or storing information about the properties
of a transformation. P33 -

Extendability negative C71 Extending model transformation languages is difficult. P50 -

Just
better positive

C72 GGT (graph gammar and graph transformation) are a powerful technique for speci-
fying complex transformations. P9 Cites P664-P666

C73 General purpose programming languages are not suitable for defining model trans-
formations. P23 Cites P63

A
.2.

O
verview

over
allextracted

claim
s

215

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

C74 GPLs are not well-suited for model migration. P34 Examples

C75 Dedicated MTLs offer the most potential transformation approach because the lan-
guages can be tailored for the purpose P63 -

Just
better

positive

C76

In order to transform models in a GPL one has to add increasing amounts of ma-
chinery e.g. to keep track of which elements have already been transformed. This
leads to the assumption that model transformations cannot be sensibly written in a
standard programming language.

P64 Examples

C77 Model transformations present a number of problems which imply that dedicated
approaches are required. P66 Cites P64

C78 The current consensus is that specialized languages with a mixture of declarative and
imperative constructs are most suitable for specifying model transformations. P86 -

C79 With the help of an example we have shown that GGT (graph gammar and graph
transformation) can be used to transform PIMs into PSMs. P664 Examples

C2D DSLs open up the application domain to a larger group of developers P675 Cites P803
C3D Domain specific languages increase the ease of use. P675 Cites P803
C4D When using DSLs less errors are made. P803 Empirical Study

negative C80 General purpose MTLs are not well suited for model migration since there is addi-
tional overhead but dedicated migration languages are. P34 Examples

Learnability negative

C81 The generality of General purpose MTLs can have the effect of making them less
approachable and create a steep learning curve for non-expert users. P30 -

C82 Users have to learn multiple similar, but not always consistent, languages, which
requires considerable time to learn. P52 -

C83 Model transformation languages have a steep learning curve. P58 -
C84 One has to learn a completely new language to transform models with MTLs. P81 -

Performance

positive
C85 Model transformation languages are more performant. P95 Cites P676
C86 GrGen shows a better performance of transformations than Java. P676 Samples
C5D DSLs have better performance. P801 -

negative
C87 Declarative MTLs have performance problems. P45 -

C88 The performance of model transformation languages is a shortcoming that may make
users feel limited. P52 -

C89 MTLs have worse performance. P80 -

216
SLR

results

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

Productivity
positive

C90 Model transformation languages being DSLs improve the productivity. P29 -
C91 Declarative MTLs increase programmer productivity. P45 -
C6D DSLs increase productivity. P675 Cites P801, P803
C7D Using DSLs increases productivity. P801 Examples
C8D Using DSLs increases productivity. P803 Empirical Study

negative C92 The perceived effectiveness of model transformation languages is bad. P32 Empirical Study

C93 Productivity of GPL development might be higher since expert users for GPLs are
easier to hire. P59 -

Reuse
and
Maintainability

positive
C94 Bidirectional model transformations have an advantage in maintainability P44 -
C95 There exists a plethora of reuse mechanisms for MTLs. P77 Literature review
C9D Domain specific languages reduce the maintenance costs. P675 Cites P800

negative

C96 Reuse is sparse, transformations are written from scratch every time because meta-
models differ slightly. P4 Cites P77

C97 Having written several transformation we have identified that recurring patterns have
to be implemented from scratch every time. P10 Experience

C98
There exists no module concept for model transformation languages that allows pro-
grammers to control information hiding and strictly declare model and code depen-
dencies at module interface.

P29 -

C99 Model transformation languages lack sophisticated reuse mechanisms. P33 -

C100 Unfortunately the definition of model transformations is normally a type-centric ac-
tivity, thus making their reuse for other meta-models difficult. P41 -

C101 Evolving and maintaining MTL requires effort. P52 Cites P674

C102

The emphasis of MDE on using DSLs has caused a proliferation of meta-models. In
this scenario, developing a transformation for a new meta-model is usually performed
manually with no reuse, even if comparable transformations for similar meta-models
exist.

P60 -

C103 There are barriers such as insufficient abstraction of reuse mechanisms from meta-
models that hamper reuse. P77 Literature review

C104 There is little support for reusing model transformations in different contexts since
they are tightly coupled to the meta-models they are defined upon. P78 -

C105 Reuse of model transformations is hardly established in practice. P95 Cites P77

A
.2.

O
verview

over
allextracted

claim
s

217

Table A.1 – continued from previous page
Category Valuation CID Claim Publication Evidence

R & M negative C106 Developing these new languages to a sufficient degree of maturity is an enormous
effort which includes for example construction and optimisation of compilers. P674 -

Semantics
and
Verification

positive C107 Bidirectional transformation languages have an advantage in verification. P44 -

negative

C108
For existing relational model transformation approaches, it is usually not really clear
under which constraints particular implementations really conform to the formal
semantics.

P21 -

C109 Comprehensive verification support of model transformations is missing. P22 -

C110 There is a semantic difference between a typical programming language and for-
malisms that support bi-directionality and change propagation such as TGGs. P23 -

C111 Most transformation languages have no formal semantics to add detailed specifica-
tions on the expected behaviour. P39 -

C112 The semantics of many model transformation languages is not formally defined. P58 -

Tool
Support

positive
C113 Internal MTLs can inherit tool support of general purpose host language. P23 -

C114 Tool suport for external transformation languages is potentially more powerful than
for internal MTL or GPL because it can be tailored to the DSL. P44 -

C115 Declarative MTLs provide opportunities for specialized tool support. P45 -

negative

C116 Model transformation languages lack tool support. P23 Cites P669,P670
C117 Declarative MTLs lack libraries and tool support. P45 -
C118 Model transformation languages lack tool support. P52 -
C119 Supporting tools for MTLs have not the same level of maturity as for GPLs. P74 -
C120 Model transformation languages have worse tool support. P80 Cites P94
C121 Tool support for external MTLs has to be developed which entails extra effort. P94 -
C122 Tool support for model transformations is not as mature as subjects would like. P669 Empirical study
C123 Tool support for model transformations is not great. P670 Empirical study

Versatility negative

C124 The syntax of model transformation languages is less versatile. P52 -
C125 Model transformation languages are less versatile than GPLs. P80 -
C126 Model transformation languages have less versatile language constructs. P80 -
C127 Model transformation languages constructs are less versatile. P94 -
C10D DSLs are less general than general purpose programming languages P675 -

219

Appendix B

Appendix - Paper B

B.1 Interview Questions

Demographic Questions
• In what context have you used model transformation languages? Research, industrial projects

or other?

• How much experience do you have in using model transformation languages? Rough estimate
in years is sufficient.

• What model transformation languages have you used to date?

Question Set 1
Ease of Writing

The use of MTLs increases the ease of writing model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages ease development efforts by offering succinct syntax
to query from and map model elements between different modelling domains.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages require specific skills to be able to write model
transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Comprehensibility

The use of MTLs increases the comprehensibility of model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages incorporate high-level abstractions that make them
more understandable than GPLs.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

220 Appendix B. Appendix - Paper B

• What is the reasoning behind your answer?

Most MTLs lack convenient facilities for understanding the transformation logic.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Question Set 2
Tool Support

There is sufficient tool support for the use of MTLs for writing model
transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Tool support for external transformation languages is potentially more powerful than
for internal MTL or GPL because it can be tailored to the DSL.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages lack tool support.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Productivity

The use of MTLs increases the productivity of writing model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages, being DSLs, improve the productivity.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Productivity of GPL development might be higher since expert users for GPLs are
easier to hire.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

B.2. Mail Templates 221

Question Set 3
Reuseability & Maintainability

The use of MTLs increases the reusability and maintainability of model
transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Bidirectional model transformations have an advantage in maintainability.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages lack sophisticated reuse mechanisms.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Expressiveness

The use of MTLs increases the expressiveness of model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages hide transformation complexity and burden from the
user.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

Having written several transformations we have identified that current MTLs are too
low a level of abstraction for succinctly expressing transformations between DSLs
because they demonstrate several recurring patterns that have to be reimplemented
each time.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how would
you rate your agreement with the statement?

• What is the reasoning behind your answer?

B.2 Mail Templates

Mail Template
Dear ${Author Name},

I’m a PhD student with Matthias Tichy at Ulm University. We recently conducted an SLR about
the advantages and disadvantages of model transformation languages as claimed in literature. Our
results have been published in the software and systems modelling journal here http://dx.doi.
org/10.1007/s10270-020-00815-4. One of our main takeaways from the study was that a large
portion of claims about model transformation languages is never substantiated. One main reason
for this, we believe, is implicit knowledge authors tend to omit for different reasons.

http://dx.doi.org/10.1007/s10270-020-00815-4
http://dx.doi.org/10.1007/s10270-020-00815-4

222 Appendix B. Appendix - Paper B

Since you are an author of one of the publications we considered during our SLR it would be great
to talk to you about your experiences and stance with regard to model transformation languages
and the claims we extracted from literature. We would need max. 30 minutes of your time. The
interview would be conducted by me via an online conferencing system.

In order to organize the interview dates I would like to ask you to chose a suitable date, under
the following link https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA. Please note that the times
are given in UTC. The password for the poll is "claims". Your response will not be visible to anyone
other than myself. If none of the dates is suitable for you, you are welcome to contact me to find
another date for the interview.

Before your interview I would like to ask you to agree to the data protection agreement under
the following link https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=
en. I have also attached a copy of how we handle the interview data to this mail.

Best regards
Stefan Götz

Reminder Mail Template
Dear ${Author Name},

If you already filled out our organization poll please ignore this mail.
I wanted to remind you to maybe take part in our interview study about the implicit knowledge

of users with regards to advantages and disadvantages of model transformation languages. It would
be great to talk to you about your experiences and stance with regard to model transformation
languages and the claims we extracted from literature. We would need max. 30 minutes of your
time.

In order to organize the interview dates I would like to ask you to chose a suitable date, under
the following link https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA. Please note that the times
are given in UTC. Please also note that you need to press the SAVE button at the right hand side
of the poll. The password for the poll is "claims". Your response will not be visible to anyone other
than myself. If none of the dates is suitable for you, you are welcome to contact me to find another
date for the interview.

Before your interview I would like to ask you to agree to the data protection agreement under
the following link https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=
en. I have also attached a copy of how we handle the interview data to this mail.

Best regards
Stefan Götz

B.3 Demographics
See Table B.1.

Table B.1: Overview over the interviewee demographic data

PID Background Experience in years Language types used for
writing transformations

P1 Research >10 GPLs
P2 Research 10-15 dedicated MTLs
P3 Research 8 dedicated MTLs

P4 Research 7 dedicated MTLs & internal
MTLs

P5 Research >5 dedicated MTLs & GPLs
P6 Research & Industry Projects 13 dedicated MTLs & GPLs
P7 Research & Industry Projects 10 dedicated MTLs & GPLs
P8 Research & Industry Projects 18 dedicated MTLs & GPLs
P9 Industry 20 dedicated MTLs
P10 Research 4 dedicated MTLs & GPLs
P11 Research 5-6 dedicated MTLs
P12 Research & Industry Projects 8 dedicated MTLs

https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA
https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=en
https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=en
https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA
https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=en
https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?lang=en

B.3. Demographics 223

Table B.1 – continued from previous page

PID Background Experience in years Language types used for
writing transformations

P13 Industry with History in Research 6 dedicated MTLs & internal
MTLs

P14 Research & Industry Projects 15 dedicated MTLs & internal
MTLs & GPLs

P15 Research & Industry Projects 5 dedicated MTLs & GPLs
P16 Research 7 dedicated MTLs & GPLs
P17 Research & Industry Projects 18 dedicated MTLs & GPLs
P18 Research & Industry Projects 10 dedicated MTLs & GPLs
P19 Research 7 dedicated MTLs
P20 Research & Industry Projects 3 dedicated MTLs & GPLs
P21 Research & Industry Projects 15 dedicated MTLs & GPLs
P22 Research & Industry Projects 8 dedicated MTLs & GPLs
P23 Research 13 dedicated MTLs
P24 Research & Industry Projects 15 dedicated MTLs & GPLs
P25 Research 8 dedicated MTLs
P26 Industry >10 dedicated MTLs
P27 Industry with History in Research 10-12 dedicated MTLs & GPLs
P28 Research 15 dedicated MTLs & GPLs
P29 Research & Industry Projects 12 dedicated MTLs
P30 Research & Industry Projects 17 dedicated MTLs & GPLs
P31 Research 8 dedicated MTLs
P32 Research & Industry Projects 15 dedicated MTLs & GPLs
P33 Research 5-6 dedicated MTLs & GPLs
P34 Research 5-6 GPLs
P35 Research 10 dedicated MTLs
P36 Research 10 dedicated MTLs & GPLs
P37 Research & Industry Projects 10-11 dedicated MTLs
P38 Research 4-5 dedicated MTLs
P39 Industry 28 dedicated MTLs & GPLs
P40 Research 9 dedicated MTLs
P41 Research 7-8 dedicated MTLs

P42 Industry with History in Research 13 dedicated MTLs & internal
MTLs & GPLs

P43 Research & Industry Projects 8-10 dedicated MTLs
P44 Research & Industry Projects 10 dedicated MTLs
P45 Research 1-2 dedicated MTLs
P46 Research & Industry Projects 9 dedicated MTLs
P47 Research 4 dedicated MTLs

P48 Research 7-8 dedicated MTLs & internal
MTLs

P49 Research & Industry Projects 10 dedicated MTLs & GPLs
P50 Research 20 dedicated MTLs
P51 Research & Industry Projects 3 dedicated MTLs
P52 Research 13-14 dedicated MTLs
P53 Research 12 dedicated MTLs & GPLs
P54 Research 7 dedicated MTLs
P55 Research & Industry Projects 16 dedicated MTLs & GPLs
P56 Research 16 dedicated MTLs

General information, declaration of consent

General information about the interviews about claims about model transfor-

mation languages of the Institute for Software Engineering and Programming

Languages of Ulm University.

At the Institute for Software Engineering and Programming Languages of Ulm Uni-

versity model transformation languages are being examined. This includes claims

about the advantages and disadvantages and evidence thereof. Within one work

package of the doctoral thesis of Stefan Götz, researchers and practitioners are be-

ing surveyed about their opinions on certain claims.

The goal of this work package is to gain a deeper understanding of the reasoning

people use for believing certain claims about model transformation languages.

1 Procedure

 If you decide to participate in our interview study, please fill out the poll at https://

terminplaner4.dfn.de/F1mIEEwSSkTwh8XA so we can set up a date for the inter-

view.

 We will contact you about one week in advance of the chosen date to arrange the

interview.

 The interview will take place using an online conferencing tool hosted at Ulm Uni-

versity or via Skype depending on your preference.

 Please fill out the consent form at https://pmx.informatik.uni-ulm.de/limesurvey/in-

dex.php/924713 before the interview.

 At the beginning of the interview we will ask you questions about your experience

level with regards to model transformation languages such as the languages you

have used.

 During the interview we will show you different claims from literature about model

transformation languages for which we would like you to tell us if you agree with

them or not and your reasoning behind the decision.

 An audio recording of the interview will be made if you consent to it.

 The audio recordings will be transcribed after the interview and deleted as soon

as transcribing has been completed.

2 Conditions of participation:

• You have some for of experience with model transformation languages.

 Created based on a template by ZENDAS Page 1 of 3 Status of the template: 05.04.2019

224 Appendix B. Appendix - Paper B

B.4 Data Privacy Agreement

3 Handling the data in the research project

1. Your interview will be recorded on audio and notes will be taken. The proce-
dure described in 2-5 is followed for anonymizing your interview.

2. The non-anonymous raw data (first name, last name, e-mail address, notes
and the audio recording of your interview) is only shared between the project
partners (Stefan Götz, Yves Haas and Matthias Tichy from Ulm University) for
transcribing and analyzing the answers.

3. We will anonymize your interview by transcribing it and delete the information
about your first name, last name, e-mail and the audio recording of your inter-
view as soon as possible and not later than 30 October 2020. Which means
that individuals cannot be deduced from their interview.

4. For scientific publication, anonymized answers to this interview (transcribed in-
terview and notes) will be further processed, e.g., coded or aggregated. Speci-
al risks for your person are not apparent with the processed results because
individual persons cannot be inferred.

5. We strongly believe in open data to allow replication of our results as well as
enabling further research. The anonymized answers (unprocessed and pro-
cessed) to this interview (transcribed interview and notes) will be made availa-
ble online to the public to accompany publications and stored in open data re-
positories. Please note that such published data can no longer be completely
deleted and can be accessed and used by any person. Special risks for your
person are not apparent with the anonymized answers, because individual
persons cannot be inferred.

Contact person

If you have any questions, concerns or doubts, please do not hesitate to contact us:

Stefan Götz

Ulm University

Institute of Software Engineering and Programming Languages

89081 Ulm

E-Mail: stefan.goetz@uni-ulm.de

 Created based on a template by ZENDAS Page 2 of 3 Status of the template: 05.04.2019

B.4. Data Privacy Agreement 225

Declaration of consent

...

(Name, Surname of the participating person)

I have read the general information on the interview study and agree to participate in

the research project and the associated data processing.

(You can also give the following consent:)

I have read the general information on the interview, which is conducted as

part of a research project. I consent to participate in the interview and I con-

sent to the related data processing as described in 1-4.

I hereby consent to the publication of my anonymized answers (unprocessed

and processed) to this interview (transcribed interview, notes and linked ques-

tionnaire) as described in 5.

I am aware that the consents are voluntary and can be refused without disadvan-

tages (even individually) or revoked at any time without giving reasons. I am aware

that in case of revocation, the legality of the processing carried out on the basis of

the consent until revocation is not affected. I understand that I can simply contact the

contact person named in the information for a revocation and that no disadvantages

arise from the refusal of consent or its revocation.

I was informed and provided with the information on the collection of personal data

during the interview study. I have also received a copy of this consent form.

 Created based on a template by ZENDAS Page 3 of 3 Status of the template: 05.04.2019

226 Appendix B. Appendix - Paper B

B.5. Quotations 227

B.5 Quotations
See Table B.2.

Table B.2: Selection of quotations from interview participants for specific factors

Factor QID PID Quotation

GPL Capabilities
Qgpl1 P42

“[General purpose languages are] very good at con-
structing objects and filling in their fields [...] and
computing ’simple’ expressions.”

Qgpl2 P14 “I think that in the end you have more tools for de-
velopment. And I feel more productive.”

Qgpl3 P8

“[...] when you reach the maintenance phase, maybe
the [original] developers are gone. And you have an
[MTL] program that might be more difficult to un-
derstand for [new] developers”

Domain Focus

Qdf1 P6

“What is better by using MTLs instead of GPLs is
the fact that you are on the same abstraction level
of the modelling language. You are basically treating
apples with apples.”

Qdf2 P19 “[...] you are gonna cut away all those unneeded code
and complexity and focus on your problem.”

Qdf3 P23

“Once you have things like rules and helpers and
things like left hand side and right hand side and all
these patterns then [it is] easier to create things like
meta-rules to take rules from one version to another
version [...]”

Qdf4 P13

“To do this [tool support for analysing rule depen-
dencies] [...] you have to resolve parameter depen-
dencies and I immediately run into Turing complete-
ness. And I don’t have that with an external lan-
guage [...]”

Qdf5 P6
“They have existing infrastructure and people and ev-
erything that is based on established languages which
is hard to change.”

Bidirectionality

Qbx1 P42
“in a general purpose programming language you
would have to add a bit of clutter, a bit of distrac-
tion, from the real heart of the matter”

Qbx2 P40

“So either you write your own program to create uni-
directional transformations in both directions or you
write both directions by hand and that has the dis-
advantage that if, in the future, something changes
in the transformation, then you have to rework both
directions”

Qbx3 P41
“[...] That makes it harder for them to see whether
something is correct or not and to master the com-
plexity of these transformations.”

Qbx4 P11

“And as soon as I am at bidirectional transforma-
tions and there is somehow a loss of information.
[...] And then [the question is] how difficult it is to
access e.g. context elements that I have already cre-
ated and need again later, because I want to refer to
them.”

Incrementality Qinc1 P56
“Declarative MTLs may have different computation
paradigms which may be unfamiliar for developers
used to imperative languages”

228 Appendix B. Appendix - Paper B

Table B.2 – continued from previous page
Factor QID PID Quotation

Qinc2 P42

“[...] do not try to do it manually, because you
will definitely have bugs,[...] because there will be
some specific kind of change trajectory that you have
missed, [...] this is a super hard problem.”

Mappings

Qmap1 P24
“They hide those dimensions that reflect how graph-
wise it would be computationally complex to interpret
the problem to transform one model into another ”

Qmap2 P25 “So it restricts you in the way you can work and that
makes it easier because that is what you need to do.”

Qmap3 P55

“This means that you can write the rules indepen-
dently of the execution sequence, you can define them
more declaratively and, at least in my experience,
you can still manage to define these rule blocks in a
comprehensible way for large transformations.”

Qmap4 P5

“I mentioned language engineering because a lot of
the transformation difficulties are understanding the
syntactical and semantic differences between two do-
main specific languages.”

Qmap5 P30
“[...] Hidden mechanisms or built in mechanisms
may be more difficult to understand [thus] learning
the language may be a bit more difficult.”

Qmap6 P38

“[...] you have a formal correspondence between the
two models. And if you can transform in both di-
rections, then you can practically keep both models,
between which you want to transform back and forth,
synchronous.”

Qmap7 P16

“Whereas when you need to do some more elaborate
business logic or when you need to hook some ex-
ternal services or other sources of information into
your transformation then I am saying that MTLs
can start to be a little bit of a limit”

Qmap8 P3

“If I want to reuse this model transformation just
changing 2 words in ATL [is enough], if I wanted to
do the same in Java instead of changing something
in 2 places I have to do it in 5 or 6.”

Traceability
Qtrc1 P22

“So that is something you often have to do manually
in a GPL. So you have to maintain the trace infor-
mation yourself and kind of re-implement that.”

Qtrc2 P32
“You have to know what a trace is. [...] And at
some point, at the latest when you do something
more complex, you need this stuff. ”

Qtrc3 P31

“[...] a model transformation rule only [contains] the
domain transformation, so which domain object of
the source domain is mapped to an object and how
the object is mapped to the target domain. And that
is what someone who tries to understand the model
transformation is trying to get [...] out of the source
code.”

Automatic Traversal Qtrv1 P49

“That means abstracting away from the order of
traversal and then also knowing in which context this
thing came up, that is a bit of a double-edged sword
for me, [...] it has the potential to mask serious er-
rors.”

B.5. Quotations 229

Table B.2 – continued from previous page
Factor QID PID Quotation

Pattern-Matching Qpm1 P14

“[...] all the complexity of pattern matching is in the
engine, but if you try to implement a mapping then
all the complexity of keeping the traces you have to
do that manually.”

Model Navigation Qnav1 P41

“[...] you don’t have to worry about the efficiency
of the procedure, just figures out the optimal way of
kind of traversing it. For me that is the biggest thing
actually, they go and get me the data, if we can hide
that from the user, that is great.”

Qnav2 P11 “[...] I do not have to iterate over the model. I only
say, I need this or that.”

Model Management Qman1 P2 “[...] this technical level, how I access a model, [...]I
get the elements out. That gets abstracted away.”

Reuse Mechanism
Qrm1 P51

“[...] we usually use object oriented programming
languages and those already have some pretty strong
tools for reusability in the appropriate contexts. So i
think the bar here, that would we want model trans-
formation languages to jump over, is to provide
something more targeted towards modeling [...]”

Qrm2 P30 “[...] for ATL there are things like module superim-
position, and other kinds, we have helper libraries.”

Qrm3 P27

“[...] in the case of VIATRA one of the main goals of
the pattern language we are using there is to allow
reusing previously defined patterns. Basically any
pattern can be included. So there is a lot of stuff you
can do to reuse the element.”

Learnability Qler1 P23
“So the learning curve is pretty steep when trying to
use MTLs. You need to learn a lot of stuff before
you can use them properly.”

Qler2 P6

“You can take 10 Java developers and out of them
probably 2 would understand what a MTL is. They
don’t have experience in modelling. Not because they
are dumb, because they are not used to that.”

Debugging Tooling Qdb1 P51

“Well I think one of the other important points would
be to [be] able to prove properties of transformations
or check properties of transformations, [...] but we
don’t really have that for model transformations.”

Ecosystem
Qeco1 P49 “people from industry have a hard time when they

are required to use multiple languages.”

Qeco2 P49
“It is often on a technical level that the integration
into the overall ecosystem of tools you have is not so
great.”

Qeco3 P31

“Something I see as a problem with some model
transformation languages, which limit the applica-
bility, is the coupling to Eclipse. This is what will
cause us as a research community big problems some
day [...].”

Interoperability Qint1 P36 “But the technologies, to combine them, it is difficult
[...]”

Tooling Awareness Qawa1 P35
“And, I think, it is hard for new users to see, for ex-
ample, what, which tool to use. Or which technology
you should work with.”

230 Appendix B. Appendix - Paper B

Table B.2 – continued from previous page
Factor QID PID Quotation

Tool Creation Effort Qtce1 P01

“I am keenly aware of the cost to being able to develop
a good programming language, the cost of maintain-
ing it and the cost of adding debuggers and refactor-
ing engines. It is enormous.”

Qtce2 P6

“But it is definitely easier and faster to build the
tool support and it allows you to do more advanced
stuff. You can play around with your domain specific
concepts in a lot of different ways.”

Tool Learnability Qtle1 P34

“Because when i started to work with model trans-
formation languages and to hear about them, [...] I
do not think that [...] there was like initial go-to
documentation.”

Tool Usability Quse1 P22

“Basically all the good aids you see in a Java envi-
ronment should be there even better in a MTL tool
because model transformation is so much more ab-
stract and more relevant that you should be having
tools that are again more abstract and more rele-
vant.”

Quse2 P48
“There are quite a few corner cases, which are often
not quite fixed and especially the usability is often
very bad.”

Tool Maturity Qmat1 P23

“Because [MTLs] have been around for like 30 years.
And other languages and frameworks, they are cre-
ated in 2-3 years, and they are good to go. And
MTLs have been around for so long. And I think its
mostly because industry has not taken it in. And it’s
just a problem of manpower put into the languages.”

Validation Tooling Qval1 P8
“For example I can not remember any tool that of-
fers reasonable support for testing. In Java you have
JUnit and other. In ATL there is nothing.”

Language Skills Qskl1 P1 “[...] this is the way you have to think in terms of
formulating your problem”

Qskl2 P12 “And then you [need to] learn a language, the MTL.”

User Experience/
Knowledge

Qexp1 P21

“One of the reasons why Ada is virtually extinct is
that developers preferred to have C++ on their CVs.
Simply because there were more job postings with
C++. And that develops a momentum of its own,
which of course makes languages suffer. That also
applies to DSLs.”

Qexp2 P06

“Many MDSE courses are just given too late, when
people are too acquainted with GPLs, and then its
really hard for students to see the point of using mod-
els, modelling and MTLs, because it’s comparable
with languages and stuff they have already learned
and worked with.”

Involved (meta-) models Qmod1 P28
“As soon as you venture into eGenericType there is
a lot of pain to be had and there is poor documenta-
tion.”

I/O Semantic gap Qgap1 P22

“[...] as soon as I wanted to do something a bit more
complex, I have often found that I was not able to
express what I wanted to do easily and I had to re-
sort to advanced features of the language in order to
achieve what I want to do.”

B.5. Quotations 231

Table B.2 – continued from previous page
Factor QID PID Quotation

Size Qsiz1 P55

“The size is a good point. I would reduce that now
to rules. But if I have several rules that then build
on each other, then it will probably be easier with an
MTL. Especially if you have a lot of dependencies
between the rules.”

233

Appendix C

Appendix - Paper C

C.1 USM Results for Moderation Effects
See Tables C.1 to C.10.

234 Appendix C. Appendix - Paper C

Table C.1: Overview of moderation effects of meta-model size

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.0009 0.1644 0.0004 0.0341 0.0247 0.0197 0.0218

Incre-
mentality 0.0174 0.0003 0.0086 0.0335 0 0.0224 0.0054

Map-
pings 0.018 0.0309 0.0058 0.0049 0 0.0012 0.0106

Model
Manage-
ment

0.1389 0.0264 0.0006 0.023 0 0.0177 0.0199

Model
Naviga-
tion

0.001 0.0438 0.0019 0.0128 0.0032 0.0422 0.018

Model
Traversal 0.0382 0.059 0 0.0422 0.0023 0.037 0.0106

Pattern
Matching 0.0091 0 0.0003 0.03 0.0028 0.0418 0.0093

Reuse
Mecha-
nisms

0.0495 0 0.0077 0.0542 0.0693 0.0943 0.0021

Trace-
ability 0.0778 0.0464 0.00001 0.0714 0.021 0.076 0.0223

Table C.2: Overview of moderation effects of model size

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.1 0.066 0.036 0.048 0.03 0.069 0.012

Incre-
mentality 0.065 0.14 0.019 0.036 0.031 0.052 0.009

Map-
pings 0.085 0.033 0.076 0.042 0.032 0.083 0.003

Model
Manage-
ment

0.36 0.089 0.059 0.023 0.047 0.079 0.04

Model
Naviga-
tion

0.074 0.007 0.04 0.053 0.05 0.072 0.011

Model
Traversal 0.125 0.069 0.038 0.048 0.031 0.104 0.008

Pattern
Matching 0.133 0.052 0.038 0.056 0.024 0.036 0.014

Reuse
Mecha-
nisms

0.096 0.00009 0.029 0.005 0.11 0.093 0.036

Trace-
ability 0.078 0.173 0.02 0.048 0.096 0.108 0.016

C.1. USM Results for Moderation Effects 235

Table C.3: Overview of moderation effects of transformation size

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.1 0.15 0 0.27 0.033 0.097 0.044

Incre-
mentality 0.086 0.0075 0.0086 0.33 0.043 0.092 0.050

Map-
pings 0.13 0.0055 0 0.17 0.042 0.16 0.034

Model
Manage-
ment

0.32 0.094 0.021 0.23 0.012 0.13 0.056

Model
Naviga-
tion

0.15 0.058 0.0022 0.25 0.049 0.13 0.064

Model
Traversal 0.069 0.045 0.0038 0.21 0.061 0.15 0.015

Pattern
Matching 0.16 0.055 0.040 0.28 0.075 0.12 0.055

Reuse
Mecha-
nisms

0.21 0.019 0.0077 0.16 0.27 0.23 0.087

Trace-
ability 0.11 0.11 0 0.25 0.067 0.12 0.040

Table C.4: Overview of moderation effects of the amount of bidirectional use-cases

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.067 0.011 0.136 0.101 0.026 0.092 0.010

Incre-
mentality 0.036 0.005 0.120 0.115 0.003 0.099 0.019

Map-
pings 0.029 0.034 0.065 0.084 0.002 0.072 0.001

Model
Manage-
ment

0.143 0.048 0.175 0.066 0.010 0.053 0.014

Model
Naviga-
tion

0.058 0.003 0.155 0.049 0.037 0.071 0.020

Model
Traversal 0.024 0.068 0.142 0.071 0.023 0.117 0.012

Pattern
Matching 0.045 0.006 0.110 0.092 0.002 0.058 0.002

Reuse
Mecha-
nisms

0.040 0.026 0.130 0.220 0.100 0.190 0.013

Trace-
ability 0.065 0.120 0.150 0.160 0.060 0.150 0.012

236 Appendix C. Appendix - Paper C

Table C.5: Overview of moderation effects of developer experience

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.05 8.4E-06 0.011 0.08 0.037 0.084 0.033

Incre-
mentality 0.045 0.0003 0.007 0.083 0.032 0.055 0.046

Map-
pings 0.00032 0 0.0013 0.072 0.052 0.1 0.039

Model
Manage-
ment

0.15 0.025 0.032 0.085 0.05 0.073 0.034

Model
Naviga-
tion

0.053 0.043 0.013 0.08 0.032 0.074 0.05

Model
Traversal 0.045 0.0008 0.011 0.1 0.024 0.14 0.054

Pattern
Matching 0.013 0.024 0.0052 0.081 0.032 0.078 0.048

Reuse
Mecha-
nisms

0.047 0 0.0015 0.08 0.077 0.055 0.022

Trace-
ability 0.072 0.017 0.011 0.055 0.042 0.066 0.04

C.1. USM Results for Moderation Effects 237

Table C.6: Overview of moderation effects of the semantic gap between input
and output

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.01 0.033 0.008 0 0.089 0.056 0.041

Incre-
mentality 0.006 0.067 0.009 0 0.119 0.046 0.045

Map-
pings 0.013 0.033 0.002 0 0.053 0.049 0.043

Model
Manage-
ment

0.1 0.023 0.021 0.009 0.163 0.052 0.054

Model
Naviga-
tion

0.027 0.01 0.001 0.007 0.112 0.1 0.043

Model
Traversal 0.023 0.032 0 0.002 0.194 0.067 0.029

Pattern
Matching 0.032 0.033 0 0.029 0.239 0.096 0.032

Reuse
Mecha-
nisms

0.016 0.033 0.008 0.007 0.237 0.068 0.033

Trace-
ability 0.032 0.027 0.0003 0.012 0.184 0.058 0.038

238 Appendix C. Appendix - Paper C

Table C.7: Overview of moderation effects of the sanity of involved meta-models

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0.2 0.0001 0.00002 0.035 0.025 0.074 0.045

Incre-
mentality 0.06 0.06 0.001 0.03 0.013 0.097 0.047

Map-
pings 0.09 0.03 0.03 0.07 0.005 0.074 0.059

Model
Manage-
ment

0.21 0.02 0.02 0.006 0.03 0.086 0.073

Model
Naviga-
tion

0.11 0.12 0.002 0.06 0.04 0.099 0.044

Model
Traversal 0.1 0.08 0 0.08 0.02 0.13 0.069

Pattern
Matching 0.09 0 0.01 0.05 0.01 0.07 0.081

Reuse
Mecha-
nisms

0.11 0 0.008 0.03 0.05 0.094 0.059

Trace-
ability 0.11 0.001 0 0.05 0.05 0.14 0.079

Table C.8: Overview of moderation effects of the amount of incremental use-cases

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0 0.06 0.039 0.0045 0.034 0 0.00031

Incre-
mentality 0 0.00067 0.012 0.0042 0.079 0 0.006

Map-
pings 0 0.017 0.079 0.0018 0.061 0.0072 0.017

Model
Manage-
ment

0.13 0.027 0.068 0.016 0.062 0.00038 0.039

Model
Naviga-
tion

0 0.24 0.066 0.037 0.098 0.033 0.023

Model
Traversal 0 0.047 0.025 0.028 0.083 0 0.0091

Pattern
Matching 0.052 0 0.024 0.00048 0.073 0.032 0.034

Reuse
Mecha-
nisms

0.047 0 0.024 0.0036 0.14 0.051 0.034

Trace-
ability 0.059 0 0.088 0.005 0.13 0 0.029

C.1. USM Results for Moderation Effects 239

Table C.9: Overview of moderation effects of the choice of language

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0 0 0.045 0 0.022 0 0

Incre-
mentality 0 0 0.058 0 0.0035 0 0

Map-
pings 0 0.0063 0.043 0 0.0047 0.0052 0

Model
Manage-
ment

0.080 0 0.0050 0.0084 0.0077 0.0058 0

Model
Naviga-
tion

0 0.031 0.051 0.022 0.038 0.027 0.0015

Model
Traversal 0 0.00081 0.049 0.0075 0.040 0 0

Pattern
Matching 0.028 0.00081 0.018 3.4E-05 0.019 0.0076 0.0065

Reuse
Mecha-
nisms

0.037 6.2E-09 0.042 0.0015 0.102 0.027 0.029

Trace-
ability 0.036 0.022 0.0042 0.026 0.024 0 0.041

240 Appendix C. Appendix - Paper C

Table C.10: Overview of moderation effects of the experience in the used lan-
guages

Compre-
hensibil-

ity

Ease of
Writing

Expres-
siveness

Tool
Support

Main-
tainabil-

ity

Produc-
tivity

Reusabil-
ity

Bidirec-
tionality 0 0 0 0 0.0006 0 0

Incre-
mentality 0 0 0.0086 0 0 0 0

Map-
pings 0 2.4E-17 4E-07 0 0 0.0006 0

Model
Manage-
ment

0.090 0 0.021 0.024 0 0.0012 0

Model
Naviga-
tion

0 0.008 0.0022 0.0088 0.0014 0.043 0.015

Model
Traversal 0 0.0008 0 0.0065 0.0001 0 0

Pattern
Matching 0.0005 1.5E-19 4.4E-05 0.00049 0.00069 0.0011 0.0065

Reuse
Mecha-
nisms

0.0056 0.0014 0.0077 0.0071 0.018 0.025 0.0022

Trace-
ability 0.022 2E-17 4E-06 0.028 0.014 0 0.016

The Impact of Model Transformation
Language Capabilities on the Perception
of Language Quality Properties
In a prior interview study (https://doi.org/10.1007/s10664-022-10194-7 (https://doi.org/10.1007

/s10664-022-10194-7)), we elicited expert opinions on what advantages result from what factors surrounding

model transformation languages as well as a number of moderating factors that moderate the influence.

We now aim to quantitatively asses the interview results to confirm or reject the influences and moderation

effects posed by different factors and to gain insights into how valuable different factors are to the discussion.

As an expert in the field of model2model transformations your opinion is of high value for us because your

answers can provide meaningful insights.

Participating in the survey will take about 25 minutes.

There are 3 pages in this survey.

There are 35 questions in this survey.

Quality properties of Model Transformation
Languages
In the following you will assess quality attributes of model transformations and the languages

used for writing them.

Each question presents a description of the quality attribute that is being assessed.

How Incomprehensible or Comprehensible are model
transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Incomprehensible

 Incomprehensible

 Neither Incomprehensible nor Comprehensible

 Comprehensible

 Very Comprehensible

Comprehensibility describes the degree of effectiveness and efficiency with which the

purpose and functionality of a transformation can be understood.

C.2. Survey Overview 241

C.2 Survey Overview

How Hard or Easy is it to write model transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Hard

 Hard

 Neither Hard nor Easy

 Easy

 Very Easy

Ease of writing describes the degree of effectiveness and efficiency with which a

developer can produce a transformation for a specific purpose.

How Inexpressive or Expressive are the languages used
for writing model transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Inexpressive

 Inexpressive

 Neither Inexpressive nor Expressive

 Expressive

 Very Expressive

Expressiveness describes the degree of effectiveness and efficiency with which

language constructs support transformation development.

242 Appendix C. Appendix - Paper C

How Unmaintainable or Maintainable are model
transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Unmaintainable

 Unmaintainable

 Neither Unmaintainable nor Maintainable

 Maintainable

 Very Maintainable

Maintainability describes the degree of effectiveness and efficiency with which a

transformation can be modified.

How Unproductive or Productive is developing model
transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Unproductive

 Unproductive

 Neither Unproductive nor Productive

 Productive

 Very Productive

Productivity describes the degree of effectiveness and efficiency with which

transformations can be developed and used.

C.2. Survey Overview 243

How Constrained or Reusable are parts of transformations
in the languages used for writing model transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Constrained

 Constrained

 Neither Constrained nor Reusable

 Reusable

 Very Reusable

Reuseability describes the degree of effectiveness and efficiency with which parts of a

transformation can be reused to create new transformations (with different purpose).

How Bad or Good is the tool support for languages used
for writing model transformations?

 Choose one of the following answers

Please choose only one of the following:

 Very Bad

 Bad

 Neither Bad nor Good

 Good

 Very Good

Tool Support describes the degree of effectiveness and efficiency with which tools

support developers in their effort.

Capability utilisation of Model Transformation
Languages
In the following you will be asked to estimate how often you use certain capabilities of model

transformation languages.

Each question presents a description of the language capability that is being assessed.

244 Appendix C. Appendix - Paper C

What percentage of your transformations utilise
Bidirectionality functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to define transformations from source to target and target to source in one

transformation rule. E.g. relations defined in QvTR can be executed in both directions.

What percentage of your transformations utilise
Incrementality functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to define transformations that are applied whenever the source model

changes and only manipulate those parts that did change.

What percentage of your transformations utilise Mapping
functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to explicitly define correspondence between input and output elements. E.g.

ATL rules require specification of input type and output type(s).

C.2. Survey Overview 245

What percentage of your transformations utilise Model
Management functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to automatically read and write models from and to files or other sources.

E.g. for transformation languages built on EMF you can specify the input model and

output path without having to handle reading and writing manually.

What percentage of your transformations utilise Model
Navigation functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to seamlessly navigate a given model structure. E.g. OCL provides

dedicated model navigation.

What percentage of your transformations utilise Model
Traversal functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to automatically find and apply transformations to model elements. E.g. in

ATL you do not have to specify where the elements on which a rule is applied to are

taken from. The transformation engine selects those from the input model automatically.

246 Appendix C. Appendix - Paper C

What percentage of your transformations utilise Pattern
Matching functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to automatically match patterns of model elements and apply

transformations to them. E.g. Henshin allows you to define a graph structure that is

matched in the source model during transformation.

What percentage of your transformations utilise Reuse
functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to enable reusing whole transformations or parts of transformations. E.g. any

type of rule inheritance. Copying parts of your code does not constitute reuse.

What percentage of your transformations utilise Tracing
functionality of the used languages?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Capabilities to (automatically) generate and maintain trace links between source and

target elements. E.g. ATL automatically resolves traces to the corresponding output

model element when an input model element is referenced as the value for an attribute.

Experience

C.2. Survey Overview 247

How many years have you worked on developing model
transformations?

 Only numbers may be entered in this field.

Please write your answer here:

How many hours do you work on developing model
transformations per month?

 Only numbers may be entered in this field.

Please write your answer here:

248 Appendix C. Appendix - Paper C

Which 5 of the following languages do you use most often
to develop model transformations?

 Check all that apply

 Please select at most 5 answers

Please choose all that apply:

 AGG

 ATL

 eMoflon

 ETL

 Fujaba

 GReAT

 GrGen

 Henshin

 Java

 JavaScript

 JTL

 Kermeta

 QVTo

 QVTr

 Ruby

 RubyTL

 Tefkat

 Viatra

 Xtend

 Other 1

 Other 2

 Other 3

 Other 4

 Other 5

C.2. Survey Overview 249

Name the first other language you are using for developing
model transformations.

Only answer this question if the following conditions are met:

((LANGS_Other1.NAOK (/limesurvey/index.php/questionAdministration/view/surveyid

/112652/gid/121/qid/1722) == "Y"))

Please write your answer here:

Name the second other language you are using for
developing model transformations.

Only answer this question if the following conditions are met:

((LANGS_Other2.NAOK (/limesurvey/index.php/questionAdministration/view/surveyid

/112652/gid/121/qid/1722) == "Y"))

Please write your answer here:

Name the third other language you are using for
developing model transformations.

Only answer this question if the following conditions are met:

((LANGS_Other3.NAOK (/limesurvey/index.php/questionAdministration/view/surveyid

/112652/gid/121/qid/1722) == "Y"))

Please write your answer here:

250 Appendix C. Appendix - Paper C

Name the fourth other language you are using for
developing model transformations.

Only answer this question if the following conditions are met:

((LANGS_Other4.NAOK (/limesurvey/index.php/questionAdministration/view/surveyid

/112652/gid/121/qid/1722) == "Y"))

Please write your answer here:

Name the fifth other language you are using for developing
model transformations.

Only answer this question if the following conditions are met:

((LANGS_Other5.NAOK (/limesurvey/index.php/questionAdministration/view/surveyid

/112652/gid/121/qid/1722) == "Y"))

Please write your answer here:

C.2. Survey Overview 251

For how many years have you used these languages?

 Only numbers may be entered in these fields.

 Each answer must be at least 0

Please write your answer(s) here:

AGG

ATL

eMoflon

ETL

Fujaba

GReAT

GrGen

Henshin

Java

JavaScript

JTL

Kermeta

QVTo

252 Appendix C. Appendix - Paper C

QVTr

Ruby

RubyTL

Tefkat

Viatra

Xtend

Other1

Other2

Other3

Other4

Other5

C.2. Survey Overview 253

For how many hours do you use these languages per
month?

 Only numbers may be entered in these fields.

 Each answer must be at least 0

Please write your answer(s) here:

AGG

ATL

eMoflon

ETL

Fujaba

GReAT

GrGen

Henshin

Java

JavaScript

JTL

Kermeta

QVTo

254 Appendix C. Appendix - Paper C

QVTr

Ruby

RubyTL

Tefkat

Viatra

Xtend

Other1

Other2

Other3

Other4

Other5

C.2. Survey Overview 255

How many elements do the meta-models involved in your
transformations have? Please estimate the percentage of
your use cases that fall in the following ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

E.g. If half of the meta-models in your transformations have 25 elements and the other

half are meta-models with 4 elements, you would put 50 for #elements ≤ 10 and 50 for

20 < #elements ≤ 50.

#elements ≤ 10

10 < #elements ≤ 20

20 < #elements ≤ 50

50 < #elements ≤ 100

100 < #elements ≤ 1.000

#elements > 1.000

256 Appendix C. Appendix - Paper C

How large are the models you transform measured in
number of model elements? Please estimate the
percentage of your use cases that fall in the following
ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

E.g. if 1/3 of all models you tranform contain 200 elements and the rest are larger than

100.000 elements, you would put 33 for 100 < #elements ≤ 1.000 and 66 for #elements >

100.000.

#elements ≤ 10

10 < #elements ≤ 100

100 < #elements ≤ 1.000

1.000 < #elements ≤ 10.000

10.000 < #elements ≤ 100.000

#elements > 100.000

C.2. Survey Overview 257

How Small or Large are your transfomrations? Please
estimate the percentage of your use cases that fall in the
following ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

Tiny (e.g. LOC ≤ 100)

Small (e.g.100 < LOC ≤ 500)

Medium (e.g. 500 < LOC ≤ 1.000)

Large (e.g. 1.000 < LOC ≤ 5.000)

Very Large (e.g. 5.000 < LOC ≤ 10.000)

Huge (e.g. LOC : 10.000)

258 Appendix C. Appendix - Paper C

How Dissimilar or Similar in structure are input and output
meta-models in your transformations? Please estimate the
percentage of your use cases that fall in the following
ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

The structure of a meta-model is define by the number of elements and their

associations with each other.

very dissimilar

dissimilar

neither similar nor dissimilar

similar

very similar

C.2. Survey Overview 259

How Dissimilar or Similar are the attribute types of input
and output elements that are related to each other in your
transformations? Please estimate the percentage of your
use cases that fall in the following ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

E.g. when mapping a Class to a Table and assigning the ClassName as the TableName

the attribute types are identical when both are Strings.

very dissimilar

dissimilar

neither similar nor dissimilar

similar

very similar

260 Appendix C. Appendix - Paper C

How Bad or Well structured are the meta-models in your
transformations? Please estimate the percentage of your
use cases that fall in the following ranges.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

A well structured meta-model does for example not split related data over a large

number of meta-model elements if it can be avoided.

very bad

bad

neither well nor bad

well

very well

C.2. Survey Overview 261

How Bad or Well documented are the meta-models in your
transformations? Please estimate the percentage of your
use cases that fall in the following ranges. Only consider
documentation of the meta-model itself not documentation
in you code.

 Each answer must be between 0 and 100

 The sum must be at most 100

 Only integer values may be entered in these fields.

Please write your answer(s) here:

Documentation means description of the meta-model elements, their attributes and

associations as well as any invariants on them.

What percentage of your use cases require
Synchronization between "input" and "output".

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

very bad

bad

neither well nor bad

well

very well

262 Appendix C. Appendix - Paper C

What percentage of your use cases require Incrementality?

 Only numbers may be entered in this field.

 Your answer must be between 0 and 100

Please write your answer here:

Thank you very much for participating in this survey! We appreciate you took the time.

Good bye and have a nice day!

02.02.2023 – 12:56

Submit your survey.

Thank you for completing this survey.

C.2. Survey Overview 263

264 Appendix C. Appendix - Paper C

C.3 Mail Templates
Dear ${Author Name},

We found your contact information while conducting a structured literature search on model-to-
model transformations. We seek your expertise on that topic.

We invite you to participate in our study ‘The Impact of Model Transformation Language Capa-
bilities on the Perception of Language Quality Properties‘ (see below for the URL). It will only take
about 20-25 minutes to complete our online survey. We believe your answers can provide meaningful
insights and help drive the field further.

Our survey is based on a large-scale interview study that qualitatively assessed what the com-
munity believes to be the main factors that drive the advantages and disadvantages of Model Trans-
formation Languages for model-to-model transformations. Our results have been published in the
Empirical Software Engineering journal https://doi.org/10.1007/s10664-022-10194-7

Our survey now quantifies our results to provide a clear picture of which of our identified factors
are most important. The methodology for this survey has been peer reviewed at the Registered
Reports track at ESEM’22 and is available under https://doi.org/10.48550/arXiv.2209.06570

The survey is available at
https://sp2.informatik.uni-ulm.de/limesurvey/index.php/112652?lang=en
It will be open till January 15, 2023.
All responses are completely anonymous.
Many thanks for supporting our research!
Best regards
Stefan Höppner

C.4 Data Privacy Agreement
To invite people to participate in this survey, we used author information (first name, last name and
email address) from published academic papers in the domain of model driven software engineering.
We will delete your personal information 2 months after you received the invitation.

The participation in this online survey is anonymous. Your name and email address are only
used to invite you.

For future publications, we will publish and further process the anonymous raw data collected in
this survey. This includes aggregating and statistical analysis of answers provided by participants.
We will perform this in a way that does not allow inferring the identity of individual participants
(e.g., by stripping free text answers of information that could identify a participant). Contact
Information

If you have any questions about this survey or the data you provided, please contact us:
Stefan Höppner

stefan.hoeppner@uni-ulm.de
Institute of Software Engineering and Programming Languages,
Ulm University,
James-Franck-Ring, 89069 Ulm, Germany

https://doi.org/10.1007/s10664-022-10194-7
https://doi.org/10.48550/arXiv.2209.06570
https://sp2.informatik.uni-ulm.de/limesurvey/index.php/112652?lang=en

265

Appendix D

Appendix - Paper D

Paper D does not have an associated appendix. This page ensures consistency between the paper
identifiers and their associated appendix.

267

Appendix E

Appendix - Paper E

E.1 OCL expression translations in Java SE5� �
1 Collection<Type> newCollection = new Collection<>();
2 for (Type t: collection) {
3 if (e) {
4 newCollection.add(t);
5 }
6 }� �

List. E.1: Translation of collection->select(e) in Java SE5.� �
1 Collection<ResultType> newCollection = new Collection<>();
2 for (Type t: collection) {
3 ResultType r = ...; //manipulate t in accordance with e
4 newCollection.add(r);
5 }� �

List. E.2: Translation of collection->collect(e) in Java SE5.� �
1 boolean includes = false;
2 for (Type t: collection) {
3 includes |= t == x;
4 }� �

List. E.3: Translation of collection->includes(x) in Java SE5.� �
1 element.getAttribute();� �

List. E.4: Translation of element.attribute in Java SE5.� �
1 Collection<AttributeType> newCollection = new Collection<>();
2 for (Type t: collection) {
3 if (e) {
4 newCollection.add(t.getAttribute());
5 }
6 }� �

List. E.5: Translation of collection.attribute in Java SE5.� �
1 if (i > 5) {}� �

List. E.6: Translation of i | i > 5 in Java SE5.

269

Appendix F

Published Versions of included
Articles

F.1. Paper A 271

F.1 Paper A
Claimed advantages and disadvantages of (dedicated) model transformation languages:
a systematic literature review

S. Götz, M. Tichy, R. Groner

International Journal on Software and Systems Modeling (SoSyM), volume 20, pages 469–503, 2021
Springer Nature

DOI: 10.1007/s10270-020-00815-4

CC BY 4.0, http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s10270-020-00815-4
http://creativecommons.org/licenses/by/4.0/

Software and Systems Modeling (2021) 20:469–503
https://doi.org/10.1007/s10270-020-00815-4

REGULAR PAPER

Claimed advantages and disadvantages of (dedicated) model
transformation languages: a systematic literature review

Stefan Götz1 ·Matthias Tichy2 · Raffaela Groner2

Received: 20 November 2019 / Revised: 9 June 2020 / Accepted: 16 June 2020 / Published online: 14 July 2020
© The Author(s) 2020

Abstract
There exists a plethora of claims about the advantages and disadvantages of model transformation languages compared to
general-purpose programming languages. With this work, we aim to create an overview over these claims in the literature and
systematize evidence thereof. For this purpose, we conducted a systematic literature review by following a systematic process
for searching and selecting relevant publications and extracting data. We selected a total of 58 publications, categorized
claims about model transformation languages into 14 separate groups and conceived a representation to track claims and
evidence through the literature. From our results, we conclude that: (i) the current literature claims many advantages of model
transformation languages but also points towards certain deficits and (ii) there is insufficient evidence for claimed advantages
and disadvantages and (iii) there is a lack of research interest into the verification of claims.

Keywords Model transformation language · DSL · Model transformation · MDSE · Advantages · Disadvantages

1 Introduction

Ever since the dawn of model-driven engineering at the
beginning of the century, model transformations, supported
by dedicated transformation languages [31], have been an
integral part of model-driven development. Model transfor-
mation languages (MTLs), being domain-specific languages,
have ever since been associated with advantages in areas
like productivity, expressiveness and comprehensibility com-
pared to general-purpose programming languages (GPLs)
[50,55,60]. Such claims are reiterated time and time again
in the literature, often without any actual evidence. Nowa-
days, such an abundance of claims runs through the whole
literature body that one can be forgiven when losing track

Communicated by Alfonso Pierantonio.

B Stefan Götz
stefan.goetz@uni-ulm.de

Matthias Tichy
matthias.tichy@uni-ulm.de

Raffaela Groner
raffaela.groner@uni-ulm.de

1 Ulm University, 89081 Ulm, Germany

2 Ulm University, 80901 Ulm, Germany

of which claims verifiably apply and which are still purely
visionary.

The goal of this study is to identify and categorize claims
about advantages and disadvantages ofmodel transformation
languages made throughout the literature and to gather avail-
able evidence thereof.We do not intend to provide a complete
overview over the current state of the art in research. For this
purpose, we performed a systematic review of claims and
evidence in the literature.

The main contributions of our study are:

– a systematic review and overview over the advantages
and disadvantages of model transformation languages as
claimed in the literature;

– insights into the state of verification of aforementioned
advantages and disadvantages;

This study is intended for researchers to (i) raise awareness
for the current state of research and (ii) incentivise further
research in areaswherewe identified gaps. The study can also
be of interest to practitioners who wish to gain an overview
over what research claims about MTLs compared to a prac-
titioners view of the matter.

To systematize information from the literature, we per-
formed a systematic literature review [14,41] based on the
research questions we defined (see Sect. 3.1). As a first step,

123

470 S. Götz et al.

during the review we selected 58 publications from which
to extract claims and evidence for advantages and disad-
vantages of model transformation languages. Afterwards,
we categorized claims and systematized the evidence to
produce (i) a categorization of claimed advantages and disad-
vantages into 15 separate categories (namely analysability,
comprehensibility, conciseness, debugging, ease of writing
a transformation, expressiveness, extendability, just better,
learnability, performance, productivity, reuse and maintain-
ability, tool support, semantics and verification, versatility)
and (ii) a systematic representation of which claims are ver-
ified through what means. From our results, we conclude
that:

1. The current literature claims many advantages and disad-
vantages of model transformation languages.

2. A large portion of claims are very broad.
3. There is insufficient or no evidence for a large portion of

claims.
4. There is a number of claims that originate in claims about

DSLs without proper evidence why they hold for MTLs
too.

5. There is a lack of research interest in evaluation and
especially verification of claimed advantages and disad-
vantages.

Wehope our results can provide an overviewoverwhatMTLs
are envisioned to achieve, what current research suggests
they do and where further research to validate the claimed
properties is necessary.

The remainder of this paper is structured as follows: Sect. 2
introduces the background of this research, model-driven
engineering and model transformation languages. In Sect. 3,
we will detail the methodology used for the conducted liter-
ature review. We present our findings in Sect. 4. Afterwards,
in Sect. 5, we discuss the results of our findings. This section
will also include propositions for much needed validation
of claims about model transformation languages synthesized
from the literature review. Section 6 contains information
about related work, and in Sect. 7 potential threats to the
validity of this research are discussed. Lastly, Sect. 8 draws
a conclusion for our research.

2 Background

In this section, we provide the necessary background for our
study and explain the context in which our study integrates.

2.1 Model-driven engineering

In 2001, the Object Management Group published the soft-
ware design approach calledModel-Driven Architecture [52]

as a means to cope with the ever-growing complexity of
software systems. MDA placed models at the centre of
development rather than using them as mere documentation
artefacts. The approach envisions an automated, continuous
specialization from abstract models towards code. Starting
with the so-calledComputation IndependentModels (CIMs),
each specialization step should provide themodelswithmore
specific information about the intended system, transforming
them from CIM into Platform Independent Models (PIMs)
and then into Platform Specific Models (PSMs) and finally
into production ready source code.

The different abstraction levels were designed to enable
practitioners to be as platform, system and language indepen-
dent as possible. The notion of using models as the central
artefact during development is what is commonly referred to
asModel-Driven (Software-) Engineering (MDE/MDSE) or
Model-Based (Software-) Engineering (MBE/MBSE) [20].

The structure of a model is defined by a so-called meta-
model whose structure is then also defined by meta-models
of their own.

2.2 Domain-specific languages

“A domain-specific language (DSL) provides a notation
tailored towards an application domain and is based on
relevant concepts and features of that domain” [61]. The id-
ea behind this design philosophy is to increase expressiveness
and ease of use through more specific syntax. As such, DSLs
provide an auspicious alternative for solving tasks associated
with a specific domain. Representative DSLs include HTML
for designing Web pages or SQL for database querying and
manipulation.

2.3 Model transformation languages

Models are transformed into different models of the same
or a different meta-model via the so-called model trans-
formations. Driven by the appeal of DSLs, a plethora of
dedicated MTLs have been introduced since the emergence
of MDE as a software development approach [3,7,38,43].
Unlike general-purpose programming languages, MTLs are
designed for the sole purpose of enabling developers to trans-
form models. As a result, model transformation languages
provide explicit language constructs for tasks performed dur-
ing model transformation such as model matching. Similar
to GPLs, model transformation languages can differ vastly
in several aspects, starting with features that can be found
in GPLs as well like language paradigm and typing all the
way to transformation-specific features such as directionality
[22]. There are numerous of features that can be used to dis-
tinguish model transformation languages from one another.
For a complete classification of these features, please refer

123

Claimed advantages and disadvantages of model transformation languages: a SLR 471

to Kahani et al. [39], Mens and Gorp [49] or Czarnecki and
Helsen [22].

Model transformation languages, being DSLs, promise
dedicated syntax tailored to enhance the development of
model transformations.

3 Methodology

Our review procedures are based on the descriptions of
literature and mapping reviews from Boot, Sutton and
Papaioannou [14]. First of all, a protocol for the review
was defined. The protocol, as defined in Boot, Sutton and
Papaioannou [14], describes (I) the research background (see
Sect. 2), (II) the objective of the review and review questions
(see Sect. 3.1), (III) the search strategy (see Sect. 3.2), (IV)
selection criteria for the studies (see Sect. 3.3), (V) a qual-
ity assessment checklist and procedures (see Sect. 3.4), (VI)
the strategy for data extraction and (VII) a description of
the planned synthesis procedures (see Sect. 3.5). A complete
overview of all steps of our literature review can be found
in Sect. 1.

The remainder of this section will describe in detail each
of the introduced protocol elements, with the exemption of
the research backgroundwhichwe already covered in Sect. 2.

3.1 Objective and research questions

To formulate the objective as well as to derive the research
questions for our review, we first applied theGoal-Question-
Metric approach [11] which splits the overall goal into four
separate concerns, namely purpose, issue, object and view-
point.

Purpose Find and categorize
Issue claims of and evidence for advantages and

disadvantages
Object of model transformation languages
Viewpoint from the standpoint of researchers and prac-

titioners.

Based on the described goal, we then extracted the two
main research questions for our literature review:

RQ1 What advantages and disadvantages of model
transformation languages are claimed in the
literature?

RQ2 What advantages and disadvantages of model
transformation languages are validated throu-
gh empirical studies or by other means?

The aim of RQ1 is to provide an extensive overview over
what kinds of advantages or disadvantages are explicitly

attributed to using dedicatedmodel transformation languages
compared to using general-purpose programming languages.
We consider such an overview to be necessary, because the
number of claims and their repetition in the literature to date
makes it difficult to keep track of which claims verifiably
apply and which are still purely visionary. Naturally to be
able to distinguish between substantiated and unsubstanti-
ated claims, it is also required to record which claims are
supported by evidence. With RQ2, we aim to do exactly that.
Combining the results of RQ1 and RQ2 then makes it pos-
sible to determine if, and how, a positive or negative claim
about MTLs is verified. Additionally, this also enables us to
identify those claims that have yet to be investigated.

3.2 Search strategy

Our search strategy consists of seven consecutive steps. A
visual overview of the complete search process is shown
in Fig. 3. The figure visualizes steps Database search to
Snowballing from Fig. 1 in more detail.

In the first step, we defined the search string to be used
for automatic database searches. For this, we identifiedmajor
terms concerning our research questions. Each new termwas
mademore specific than the previous one.The resulting terms
and justifications for including them were:

– Model-driven engineering The overall context we are
concerned with. This was included to ensure only papers
from the relevant context were found.

– Model transformation The more specific context we are
concerned with.

– Model transformation language Since our focus is on the
languages to express model transformations.

Weused a thesaurus to identify relevant synonyms for each
term in order to enhance our search string. In addition, we
included one representative model transformation language
with graphical syntax, one imperative language, one declar-
ative language and one hybrid language as well as the term
domain-specific language and its synonyms. The selection of
the representative languages was made on the basis of their
widespread use, active development and in the case of QVT
because it is the standard for model transformations adopted
by the ObjectManagement Group. All these additional terms
were included as synonyms for themodel transformation lan-
guage term.

We dropped the terms advantage and disadvantage after
initial searches, because they resulted in a too narrow of a
result set which excluded key publications [29,33] manually
identified by the authors.

To combine all keywords, we followed the advice of
Kofod-Petersen [42] to use the Boolean (∨) to group together
synonyms and the Boolean (∧) to link ourmajor term groups.

123

472 S. Götz et al.

Fig. 1 Protocol overview

Fig. 2 Search string used for automatic database searches

This resulted in the search string shown in Fig. 2 which
was applied in full text searches.

We decided on the following four search engines to use
for automated literature search:

– ACM Digital Library

Fig. 3 The search and selection process

123

Claimed advantages and disadvantages of model transformation languages: a SLR 473

– IEEE Xplore
– Springer Link
– Web Of Science

Search engines were chosen based on their overall cover-
age, completeness, the availability of accessible publications
and usage in other literature reviews in this field such as
Loniewski, Insfran, and Abrahão [8,48]. The online library
Science Direct, which is often used in this domain, was
excluded from our list due to us only having limited access
to the publications in the database. We decided that the over-
head of requesting access to all publications for which our
proceedings would require a full text review (see step 4)
would take up toomuch time; thus, we excluded the database
from our automatic search process. Badampudi, Wohlin, and
Petersen [6] also show that combining the automatic database
searches with an additional snowballing process can make
up for a reduced list of searched databases. We also decided
against using Google Scholar as a search engine due to our
experience with it producing too many irrelevant results and
having a large overlap with ACM Digital Library and IEEE.

We conducted several preliminary searches on all four
databases during the construction of the search string, to val-
idate the resulting publications included key publications.

After the definition and validation of the search string,
the second step consisted of full text searches using the
search engines of ACMDigital Library, IEEE Xplore Digital
Library and Web of Science.

For the Springer Link database, we realized early on that a
full text searchwould result in toomanyhits and insteadopted
to query only the titles for the keyword model transforma-
tion language and its synonyms and filtered these results by
applying a full text search based on the remaining keywords
and their synonyms. The remaining results still far exceeded
those of all other databases combined. We further realized
during preliminary sifting that neither title nor abstracts of
publications beyond the first 200 results suggested a rele-
vance to our study. For that reason, we decided to cap our
search at 500 publications, doubling the size of results from
the point where the relevance of publications started to slide.
This decision is supported by the fact that any publication
which ended up in our data extraction set was found within
the first 200 results.

All automated database searches were conducted between
June 17 and June 28, 2019.

In the third step, all duplicates that resulted from using
multiple search engines were filtered out based on the pub-
lication title and date. This also included the removal of
publications that had extended versions published in a jour-
nal. This resulted in a total of 935 publications.

During the fourth step, two researchers independently
used the selection criteria (see Sect. 3.3) on the titles
and abstracts to select a set of relevant publications. The

researchers categorized literature as either relevant or irrele-
vant. And in cases where they could not deduce the relevance
based on the title and abstract, the publication was marked
as undecidable.

Afterwards, in step 5 the results for each publication of
the independent selection processes were compared. In cases
where the two researchers agreed on relevant or irrelevant,
the paper was included or excluded from the final set of
publications. In cases of either a disparity between the cate-
gorizations or an agreement on undecidable, the full text of
the publications was consulted using adaptive reading tech-
niques to decide whether it should be included or excluded.
Adaptive reading in this context meant going from reading
the introduction to reading the conclusion and if a decision
was still not reached reading the paper from start to finish
until a decision could be reached. The step resulted in a total
of 99 publications to use as a start set for the sixth step.

In the sixth step, we applied exhaustive backward and for-
ward snowballing, meaning, as described in many previous
studies [5,59], until no new publication was selected. The
snowballing procedures followed the guidelines laid out by
Wohlin [67]. Our start set was comprised of all 99 publica-
tions from step 5. We then applied backward and forward
snowballing to the set. For backward snowballing, we used
the reference lists contained in the publications, and for for-
ward snowballing we used Google Scholar as suggested by
Wohlin [67] and because from our experience it provides the
most reliable source for the cited by statistic. To the cited
and citing publications, we then applied our inclusion and
exclusion criteria as described in step 4. All publications that
were deemed as relevant were then used as the starting set
for the next round of snowballing until no new publications
were selected as relevant. The result of this step was a set of
107 relevant publications.

Lastly, in step 7, we filtered out all publications that did
not explicitly mention advantages or disadvantages of model
transformation languages by reading the full text of all pub-
lications. This step was introduced to filter out the noise that
arose from a broader search string and less restrictive inclu-
sion criteria (see Sect. 3.3). The remaining 58 publications
form our final set on which data synthesis was performed on.
(A list of all included publications with an unique assigned
ID can be found in “Appendix B”.)

3.3 Selection criteria

We decided that a publication be marked as relevant, if it
satisfies at least one inclusion criteria and does not satisfy
any exclusion criteria. The inclusion criteria were chosen to
include as many papers that potentially contain advantages
or disadvantages as possible. A publication was included if:

123

474 S. Götz et al.

IC1 The publication introduces a model transfor-
mation language.

IC2 The publication analyses or evaluates proper-
ties of one or multiple model transformation
languages.

IC3 The publication describes the application of
one or multiple model transformation lan-
guages.

IC1 is an inclusion criteria, because the introduction of a
new language should include a motivation for the language
and possibly even a section on potential shortcomings of the
language. Such shortcomings can be attributed either to the
design of the language or to the concept of model transfor-
mation languages as a whole.

A publication that is covered by IC2 can help answer both
RQ1 and RQ2 depending on the analysed/evaluated proper-
ties.

IC3 forms our third inclusion criteria since experience
reports can be a good source for both strengths and weak-
nesses of any applied technique or tool.

Our exclusion criteria were:

EC1: Publicationswritten in a language other than
English.

EC2: Publications that are tutorial papers, poster
papers or lecture slides.

EC3: Publications that are a Doctoral/Bachelor
/Master thesis.

EC1 ensures that the scientific community is able to verify
our extracted data from publications.

Because tutorial papers, poster papers and lecture slides
are less reliable and do not provide enough information to
work with, they are excluded with EC2.

Lastly, to reduce the required workload, we excluded all
thesis publications with EC3 as full text reviews would take
up too much time. We also argue that relevant thesis findings
aremost likely also published in journal or conferencepapers.

3.4 Quality assessment checklist and procedures

Assessing the quality of publications found during the selec-
tion process is an essential part of a literature review [14].

For that reason, we adopted a list of six quality attributes
for studies. The quality attributes (seen in Table 1) are taken
from Shevtsov et al. [57] which adapted quality criteria from
Weyns et al. [64]. Each quality item has a set of three char-
acteristics for which a value between 0 and 2 is assigned.
The quality score of a publication is calculated by summing
up the values for each characteristic, making 12 the maxi-
mum quality score for a publication. The quality score did
not influence the decision to include or exclude a publication.

3.5 Data extraction strategy

Based on our research questions, and general documentation
concerns, we devised a total of eight data items to extract
from each selected publication. Table 2 lists all extracted
data items.

Data items D1–D3 are recorded for documentation pur-
poses.

To gather explicitly, claimed advantages and disadvan-
tages of model transformation languages D4 and D5 are
necessary items to include.

Another goal of our literature review is to find out which
advantages or disadvantages are empirically verified. It is
therefore necessary to extract information about whether
empirical evidence exists and which advantage or disadvan-
tage it is concerned with (D6). Similarly, citations used to
back up claimed advantages or disadvantages are also docu-
mented (D7). Our goal is it to either track down references
that provide evidence and find sources of common claims
about advantages and disadvantages of model transforma-
tion languages.

Lastly, in order to evaluate the quality of publications the
quality score D8 for each publication is recorded.

All data items were extracted during full text reviews of
all selected publications.

3.6 Synthesis procedures

The synthesis of the collected data was split into multiple
parts with multiple results for each research question.

3.6.1 RQ1: What advantages and disadvantages of model
transformation languages are claimed in the
literature?

The first part of the synthesis forRQ1was a simple collection
of all claimed advantages and disadvantages. This was done
in order to create a basic overview.

Next, an analysis of all collected items was performed
in order to devise categories for the advantages and dis-
advantages. To develop categories, we used initial coding
and focused coding as described by Charmaz [19]. First,
all claims were analysed claim by claim to extract common
phrases or similar topics. These were then used to group
together claims and develop descriptive terms when then
served as the name for the category formed by the grouped
claims. The categories themselves were split into a positive
section and a negative section to contrast negative and posi-
tive mentions with each other.

Using the devised categorization allows for quick identi-
fication of contradictory claims. Such claims then have to be
further analysed in terms of origin, context and supporting
evidence.

123

Claimed advantages and disadvantages of model transformation languages: a SLR 475

Ta
bl
e
1

Q
ua
lit
y
as
se
ss
m
en
tc
ri
te
ri
a
[6
4]

Q
1:

P
ro
bl
em

de
fin
it
io
n

2
T
he

au
th
or
s
pr
ov
id
e
an

ex
pl
ic
it
pr
ob
le
m

de
sc
ri
pt
io
n

1
T
he

au
th
or
s
pr
ov
id
e
a
ge
ne
ra
lp

ro
bl
em

de
sc
ri
pt
io
n

0
T
he
re

is
no

pr
ob
le
m

de
sc
ri
pt
io
n

Q
2:

P
ro
bl
em

co
nt
ex
t

2
If
th
er
e
is
an

ex
pl
ic
it
pr
ob

le
m

de
sc
ri
pt
io
n
fo
r
th
e
re
se
ar
ch
,t
hi
s
pr
ob

le
m

de
sc
ri
pt
io
n
is
su
pp

or
te
d
by

re
fe
re
nc
es

1
If
th
er
e
is
a
ge
ne
ra
lp

ro
bl
em

de
sc
ri
pt
io
n,

th
is
pr
ob
le
m

de
sc
ri
pt
io
n
is
su
pp
or
te
d
by

re
fe
re
nc
es

0
T
he
re

is
no

de
sc
ri
pt
io
n
of

th
e
pr
ob
le
m

co
nt
ex
t

Q
3:

R
es
ea
rc
h
de
si
gn

2
T
he

au
th
or
s
ex
pl
ic
itl
y
de
sc
ri
be

th
e
pl
an

(d
if
fe
re
nt

st
ep
s,
tim

in
g,
et
c.
)
th
ey

ha
ve

us
ed

to
pe
rf
or
m

th
e
re
se
ar
ch
,o
r
th
e
w
ay

th
e
re
se
ar
ch

w
as

or
ga
ni
ze
d

1
T
he

au
th
or
s
pr
ov
id
e
so
m
e
ge
ne
ra
lw

or
ds

ab
ou
tt
he

re
se
ar
ch

pl
an

or
th
e
w
ay

th
e
re
se
ar
ch

w
as

or
ga
ni
ze
d

0
T
he
re

is
no

de
sc
ri
pt
io
n
of

ho
w
th
e
re
se
ar
ch

w
as

pl
an
ne
d/
or
ga
ni
ze
d

Q
4:

C
on
tr
ib
ut
io
ns

2
T
he

au
th
or
s
ex
pl
ic
itl
y
lis
tt
he

co
nt
ri
bu
tio

ns
/r
es
ul
ts

1
T
he

au
th
or
s
pr
ov
id
e
so
m
e
ge
ne
ra
lw

or
ds

ab
ou
tt
he

re
su
lts

0
T
he
re

is
no

de
sc
ri
pt
io
n
of

th
e
re
se
ar
ch

re
su
lts

Q
5:

In
si
gh
ts

2
T
he

au
th
or
s
ex
pl
ic
itl
y
lis
ti
ns
ig
ht
s/
le
ss
on

s
le
ar
ne
d

1
T
he

au
th
or
s
pr
ov
id
e
so
m
e
ge
ne
ra
lw

or
ds

ab
ou
ti
ns
ig
ht
s/
le
ss
on
s
le
ar
ne
d

0
T
he
re

is
no

de
sc
ri
pt
io
n
of

th
e
de
ri
ve
d
in
si
gh
ts

Q
6:

L
im
it
at
io
ns

2
T
he

au
th
or
s
ex
pl
ic
itl
y
lis
tp

ro
bl
em

s
an
d/
or

lim
ita

tio
ns

1
T
he

au
th
or
s
pr
ov
id
e
so
m
e
ge
ne
ra
lw

or
ds

ab
ou
tl
im

ita
tio

ns
an
d/
or

pr
ob
le
m
s

0
T
he
re

is
no

de
sc
ri
pt
io
n
of

th
e
lim

ita
tio

ns

123

476 S. Götz et al.

Table 2 Data items ID Data Purpose

D1 Author(s) Documentation

D2 Publication year Documentation

D3 Title Documentation

D4 Named advantage(s) of MTL(s) RQ1

D5 Named disadvantage(s) MTL(s) RQ1

D6 Empirical evidence of advantage(s) or disadvantage(s) RQ2

D7 Cited evidence RQ2

D8 Quality score Documentation

3.6.2 RQ2: What advantages and disadvantages of model
transformation languages are validated through
empirical studies or by other means?

To analyse evidence of claimed advantages and disadvan-
tage, we started by assessing the quality of each respective
publication using the quality score system from Sect. 3.4.

Afterwards, we devised a visual representation for claims
and evidence thereof in publications. The representation
allows a straightforward identification of substantiated and
unsubstantiated claims and tracking of citations back to the
origin of cited claims. This in turn enabled us to easily
identify whether citations back up stated claims or serve as
nothing more than a reference to a publication which claims
the same thing.

4 Findings

In this section, we provide a summary of the synthesized
data as well as an analysis of the demographics and qual-
ity of publications. The summary will be in narrative form,
supported by plots and graphs as suggested by Boot, Sutton
and Papaioannou [14]. Before describing our findings with
regard to the research questions from Sect. 3.1, we first offer
statistics and information about the demographic data of the
collected literature as well as an overview over their quality
which we assessed using the quality criteria from Sect. 3.4.

4.1 Demographics

Figure 4 provides an overview over the quantity of included
publications per year. An interesting thing to note is that
it took only two years from the introduction of the Model-
Driven Architecture in 2001 to the first mentions of advan-
tages of model transformation languages. One of the most
cited papers about model transformations in our literature
review was published that year too (P63). Its title shapes
introductions of publications in the community even today:

1988 1992 1996 2000 2004 2008 2012 2016
year

pu

bl
ic

at
io

ns

0
2

4
6

8
10

Fig. 4 Number of publications that mention or evaluate advantages or
disadvantages of MTLs per year

Model transformation: The heart and soul of model-driven
software development.

Scrutinizing claims about MTLs, however, just recently
started to be a focus of research, with the first study (P59)
dedicated to evaluating advantages ofMTLs being published
in 2018. To us, this suggests that research might be slowly
catching on to the fact that evaluation of specific properties of
MTLs is necessary instead of relying onbroad claims. Simply
relying on the fact that model transformation languages are
DSLs and that DSLs in general fare better compared to non-
domain-specific languages [12,28,40] is not enough.

Industrial case studies about the adoption of MDSE have
been performed much earlier than 2018, but such studies
mainly focus on the complete MDSE workbench and do not
analyse the impact of the usedMTLs in great detail. The case
study P670 for example, while stating that “The technology
used in the company should provide advanced features for
developing and executing model transformations”, does not
go into detail about neither current shortcomings nor any

123

Claimed advantages and disadvantages of model transformation languages: a SLR 477

Table 3 Number of publications that mention specific MTLs

Model transformation language # of mentions

ATL 16

EMT 1

ETL 3

GreAT 1

Henshin 1

Iquery 1

JTL 1

MOFLON 1

MT 1

NTL 2

QVT-O 4

QVT-R 2

SDM 1

SIGMA 1

SiTra 1

Tefkat 1

TGG 1

TN 1

VMTL 1

other specifics of model transformation languages used dur-
ing the development process.

Overall, there are 32 publications that mention advantages
and 36 publications that mention disadvantages. More-
over, four publications provide empirical evidence for either
advantages or disadvantages, while 12 publications use cita-
tions to support their claims and 14 publications use other
means such as examples and experience (more on this in
Sect. 4.4).

Lastly, Table 3 shows which transformation languages
were directly involved in publications used in our data extrac-
tion.We counted a transformation language as being involved
if it was used, analysed or introduced in the publication. Sim-
ply being mentioned during enumerations of example MTLs
was not sufficient.

The table paints an interesting picture. ATL far exceeds
all othermodel transformation languages in involvement, and
most languages are only discussed in a single publication.

4.2 Quality of publications

The results from the quality assessment, summarized in
Fig. 5, shows that both the problem context and definition as
well as the overall contributions arewell defined in amajority
of publications. Insights drawn from the work described in
these publications, while less comprehensive in many cases,
are also described most often. However, thorough descrip-
tions of the research design, the used methods or steps taken

P
ro

bl
em

 D
ef

in
iti

on

P
ro

bl
em

 C
on

te
xt

R
es

ea
rc

h
D

es
ig

n

C
on

tri
bu

tio
ns

In
si

gh
ts

Li
m

ita
tio

ns

0 points
1 point
2 points

pu

bl
ic

at
io

ns

0

10

20

30

40

50

Fig. 5 Quality score distribution

are less common, a trend which is even more prominent for
the presentation and discussion of limitations that act upon
the studies. Similar observations have already been made by
other literature reviews in different domains [26,57].

4.3 RQ1: Advantages and disadvantages of model
transformation languages

We used data items D4 and D5 to answer our first research
question, namely which advantages or disadvantages of ded-
icated model transformation languages are claimed in the
literature. The resulting statements were sorted into 15 dif-
ferent categories (seen in Fig. 6) which arose naturally from
the collected statements. An overview over all claims sorted
into the different categories is given in Table 4. The table
ascribes each claim with a unique ID (Cxx) for reference
throughout this work. The table also contains evidence used
to support a claim (if existent) to which we will come
back later in Sect. 4.4. For almost all categories, there exist
papers that describemodel transformation languages as being
advantageous as well as publications that describe them as
disadvantageous in the category. In the following, we discuss
the statements made in publications for each category.

4.3.1 Analysability

Throughout our gathered literature, there is only one pub-
lication, P45, that mentions analysability. According to
them, a declarative transformation language comes with the
added advantage of being automatically analysable which

123

478 S. Götz et al.

A
na

ly
za

bi
lit

y

C
om

pr
eh

en
si

bi
lit

y

C
on

ci
se

ne
ss

D
eb

ug
gi

ng

E
as

e
of

 w
rit

in
g

a
tra

ns
fo

rm
at

io
n

E
xp

re
ss

iv
en

es
s

E
xt

en
da

bi
lit

y

Ju
st

 b
et

te
r

Le
ar

na
bi

lit
y

Pe
rfo

rm
an

ce

P
ro

du
ct

iv
ity

R
eu

se
 a

nd
 M

ai
nt

ai
na

bi
lit

y

To
ol

 S
up

po
rt

S
em

an
tic

s
an

d
Ve

rif
ic

at
io

n

Ve
rs

at
ili

ty

positive
negative

pu

bl
ic

at
io

ns

0

5

10

15

20

Fig. 6 Number of publications that claim an advantage or disadvantage
of MTLs in a category

enables optimizations and specialized tool support (C1).
While a detailed discussion of this claim within the publi-
cation remains owed, the authors provide examples of how
static analysis allows the engine to implicitly construct an
execution order. While our literature review found only a
single publication that explicitly mentions analysability as
an advantage of model transformation languages, there do
exist multiple publications [2,3,63] that contain analysis pro-
cedures for model transformations.

4.3.2 Comprehensibility

Comprehensibility is a much disputed andmultifaceted issue
for model transformation languages. A total of eleven publi-
cations touch on several different aspects of how the use of
MTLs influences the understandability of written transfor-
mations.

The first aspect is the use of graphical syntax compared
to a textual one which is typically used in general-purpose
programming languages. In P63, the authors talk about
“perceived cognitive gains” of graphical representations of
models when compared to textual ones (C6). A pronounce-
ment that is echoed in P43 states that graphical syntax for
transformations ismore intuitive and beneficialwhen reading
transformation programs (C2).

While all these claims about graphical notation increasing
the comprehensibility of transformations stand undisputed
in our gathered literature, there are other facets in which
graphical notation is said to be disadvantageous. We will
come back to them later on in Sect. 4.3.5.

Declarative textual syntax is another commonly used syn-
tax for defining model transformations. The authors of P45
contend that a declarative syntax makes it easy to under-
stand transformation rules in isolation and combination (C3).
However, declarative transformation languages are typically
based ongraph transformation approacheswhich canbecome
complex and hard to read according to P70 (C13). They
additionally assert that the use of abstract syntax hampers
the comprehensibility of transformation rules (C12). Fur-
thermore, P22 insist that the use of graph patterns results in
only parts of a meta-model being revealed in the transforma-
tion rules and that current transformation languages exhibit
a general lack of facilities for understanding transformations
(C8). P22 also reports that understanding transformations in
current model transformation languages is hampered, spe-
cially by the fact that many of the involved artefacts such as
meta-models, models and transformation rules are scattered
across multiple views (C9). P29 brings forward the concern
that large models are also a factor that hampers comprehen-
sibility since there exist no language concepts to master this
complexity (C11).Adding to this point,P27 describes that for
non-experts (e.g. stakeholders) transformations written in a
traditionalmodel transformation language are“very complex
to understand” because they lack the necessary skills (C10).
The authors of P95 on the other hand claim that the usage of
dedicated MTLs, which incorporate high-level abstractions,
produces transformations that are more concise and more
understandable (C7). This sentiment is shared in P44 which
explains the belief that using GPLs for defining synchroniza-
tions brings disadvantages in comprehensibility compared to
model transformation languages (C3).

Understanding a transformation requires, among other
things, understanding which elements are affected by it and
in which context a transformation is placed. Using a model
transformation language is beneficial for this as shown in the
study described in P59 (C5).

4.3.3 Conciseness

Interestingly, there seems to be a consensus on the concise-
ness of model transformation languages compared to GPLs.

In general, dedicated model transformation languages are
seen as more concise (P63 C17, P95 C21) which, apart from
textual languages, is also stated for graphical languages in
P75 (C18).

The fact that MTLs are more abstract making them more
concise and thus better is claimed multiple times in P80
(C19), P52 (C15), P3 (C14) and P95 (C20), while P673
claims that the abstraction in MTLs helps to reduce their
overall complexity (C22).

The SLOC metric has also been drawn from as a way to
compare MTLs with other MTLs and even GPLs. According
to an experiment described in P59, using a rule-based model

123

Claimed advantages and disadvantages of model transformation languages: a SLR 479

transformation reduces the transformation code by up to 48%
(C16). Whether or not this is any indication of superiority is
a disputed subject [9].

4.3.4 Debugging

Debugging support is much less disputed than comprehen-
sibility. Of the five publications that talk about debugging
in model transformation languages, none praise the current
state of debugging support.

P22 (C24, C25) and P90 (C27) both describe that cur-
rently no sufficient debugging support exist for MTLs. And
while in P95 it is stated that debugging of transformations in
a dedicated languages is likely better than when the transfor-
mation is written in a general-purpose language (C23) they
fail to bring forth a single example for their assertion.

Lastly, P45 lauded declarative syntax for its benefit in
comprehension but also note that imperative syntax is easier
to debug in general (C26).

4.3.5 Ease of writing a transformation

The main purpose of model transformation languages is to
improve the ease with which developers are able to define
transformations. Hence, this should also be a main benefit
when compared to general-purpose languages. However, the
authors of the study described in P59 found:“no sufficient
(statistically significant evidence) of general advantage of
the specialized model transformation language QVTO over
the modern GPL Xtend” (C39). This is not to say that there
are none as the authors admit the conclusions were “made
under narrow conditions” but is still a concerning finding.
Much more so because claims about such benefits of using
MTLs persist through the literature. Claims such as those
described in P29 (C29), P672 (C32) and P50 (C30) state that
their simpler syntax makes it easier to handle and transform
models. These claims draw from statements about the expres-
siveness, to which we will come to in the next section, and
reason that better expressiveness must lead to an easier time
in writing transformations. A potential reason that hampers
model transformation languages from evidentially being bet-
ter for writing transformations is cited in P27 (C34) and P28
(C35). They both state that using amodel transformation lan-
guage requires skill, experience and a deep knowledge of the
meta-models involved (P56 C38). In our opinion, however,
this holds true regardless of the language used to transform
models.

Moreover, many model transformation languages use
declarative syntax which can be unfamiliar for many pro-
grammers, according to P45 (C37) and P63 (C40), which
are much more familiar with the status quo, i.e. impera-
tive languages. The authors of P22, on the other hand, state
that imperative MTLs often require additional code since

many issues have to be accomplished explicitly compared to
implicitly in declarative languages (C33).

Lastly, graphical syntax is said to make writing model
transformations easier as the syntax is purported to be more
intuitive for this task compared to a textual one in P3. In
P43 (C36) and P672 (C41), however, the authors claim that
graphical syntax can be complicated to use and that textual
syntax is more compact and does not force users to spend
time to beautify the layout of diagrams.

4.3.6 Expressiveness

As described in Sect. 2.2, the idea behind domain-specific
languages is to design languages around a specific domain,
thus making it more expressive for tasks within the domain
[50]. Since model transformation languages are DSLs, it
should not be a surprise that their expressiveness in the
domain of model transformations is mentioned almost exclu-
sively positive by a total of 19 different publications found
in our literature review.

A large portion (P95, P80, P94, P63, P15, P40, P52, P70)
of publications refer to expressiveness state that the higher
level of abstraction that results from specific language con-
structs for model manipulation increases the conciseness and
expressiveness of MTLs. P80 additionally asserts that model
transformation languages are just easier to use (C61).

Another portion (P2,P15,P45,P677,P27,P63,P95,P27)
explains that the expressiveness is increased by the fact that
model transformation engines can hide complexity from the
developer. One such complex task is patternmatching and the
source model traversal as mentioned in P2 (C42), P15 (C43)
and P45 (C53), respectively. According to them, not having
towrite thematching algorithms increases the expressiveness
and ease of writing transformations in MTLs. Implicit rule
ordering and rule triggering is another aspect that P15 (C46),
P45 (C51) and P677 (C65) claim increases the expressive-
ness of a transformation language. Related to rule ordering
is the internal management and resolution of trace informa-
tion which is stated by P15 (C44), P45 (C50), P677 (C65)
and P95 (C64) to be a major advantage of model transforma-
tion languages. Furthermore, P45 asserts that implicit target
creation is another expressiveness advantage that MTLs can
have over general-purpose languages (C52). Lastly, the study
described in P59 observed that copying complex structures
can be done more effectively in MTLs (C56).

However, we also uncovered some shortcomings in cur-
rent syntaxes. P10 argues that the lack of expressions for
transforming a single element into fragments of multiple tar-
gets is a detriment to the expressiveness of transformation
languages, going as far as to allege that without such con-
structs model transformation languages are not expressive
enough (C68). P32 implies that MTLs are unable to trans-
form OCL constraints on source model elements to target

123

480 S. Götz et al.

model elements (C69). And lastly P33 critiques that model
transformation languages lack mechanisms for describing
and storing information about the properties of transforma-
tions (C70).

4.3.7 Extendability

Being able to extend the capabilities of a model transforma-
tion language seems to be less of a concern to the community.
This can be seen by the fact that only P50 touches this issue.
They explain that externalMTLs can only be extended (“if at
all”) with a specific general-purpose language (C71). Inter-
nal model transformation languages of course do not suffer
from this problem since they can be extended using the host
language [21,32,46].

4.3.8 Just better

Apart from specific aspects in which the literature ascribes
advantages or disadvantages to model transformation lan-
guages, there are also several instanceswhere amuch broader
claim is made.

P86 for example states that there exists a consensus that
MTLs are most suitable for defining model transformations
(C78). This claim is also reiterated in several other pub-
lications using statements such as “the only sensible way”
or “most potential due to being tailored to the purpose” (P9,
P23, P63, P64, P66). However, one publication claims that
both GPLs and MTLs are not well suited for model migra-
tions and that instead dedicated migration languages are
required (P34 C80).

4.3.9 Learnability

The learnability issues of tools have been shown to positively
correlate with usability defects [1] and thus their general
acceptance.

However, the learnability of model transformation lan-
guages is rarely discussed in detail.P30 (C81),P58 (C83) and
P81 (C84) all express concerns about the steep learning curve
of model transformation languages, and P52 explain that
transformation developers are often required to learn mul-
tiple languages, which requires both time and effort (C82).

4.3.10 Performance

The execution performance of transformations is an impor-
tant aspect of model transformations. Often times, the goal
is to trigger a chain of multiple transformations with each
change to a model. Hence, good transformation performance
is paramount to the success of model transformation lan-
guages.

Opinion on performance in the literature is divided. On
the one hand, there are publications such as P52 (C88) and
P80 (C89) which describe that the performance of dedicated
MTLs is worse than that of compiled general-purpose pro-
gramming languages, while on the other hand there is P95
which states that some introduced transformation languages
are more performant (C85), citing articles from the Trans-
formation Tool Contest (TTC), and P675 which shows a
performance comparison of transformations written in Java
and GrGen where GrGen performs better than Java (C86).
There are also more nuanced views on the subject. P45
describes that practitioners sometimes perceive the perfor-
mance as worse and that there exist factors that hamper the
performance (C87). The listed factors are the fact that the
transformation languages are often interpreted, a mismatch
with hardware and less control over the algorithms that are
used. However, they also describe that specialized optimiza-
tions can bridge the performance gap.

4.3.11 Productivity

Increased productivity through the use of DSLs is a much
cited advantage [50] (C6D). Unsurprisingly, it resurfaces in
various forms in the context of model transformation lan-
guages as well. For instance, in P45 it is described that the
use of declarative MTLs improves the productivity of devel-
opers (C91). P29 goes even further, claiming that the use of
any model transformation language results in higher produc-
tivity (C90).

This is contrasted by the hypothesis that productivity in
general-purpose programming languages might be higher
due to the fact that it is easier to hire expert users, which
was put forward in P59 (C93). Lastly, P32 raises the concern
that some of the interviewed subjects perceive model trans-
formation languages as not effective, i.e. not helpful for the
productivity of developers (C92).

4.3.12 Reuse andmaintainability

In our gathered literature, maintainability is used as a moti-
vation for modularization and reuse concepts. P29,P60 and
P95 all claim that reuse mechanisms are necessary to keep
model transformations maintainable. Combined with a total
of eight (P4, P10, P29, P33, P41, P60, P95, P78) publica-
tions that state that reuse is hardly, if at all, established in
current model transformation languages, this paints a bleak
picture for bothmaintainability and reuse. The need for reuse
mechanisms has already been recognized in the research
community as stated byP77 in which the authors explain that
a plethora ofmechanisms have been introduced (C95) but are
hindered by several barriers such as insufficient abstraction
from meta-models and platform or missing repositories of
reusable artefacts (C103).

123

Claimed advantages and disadvantages of model transformation languages: a SLR 481

There exists only a single claim that directly addresses
maintainability. P44 states that bidirectional model trans-
formation languages have an advantage when it comes to
maintenance (C94).

Apart from the maintainability of written code, there is
also the maintainability of languages and their ecosystems.
Surprisingly, this is hardly discussed in the literature at all.
Only P52 explains that evolving and maintaining a model
transformation language is difficult and time-consuming
(C101).

4.3.13 Semantics and verification

Three publications (P39, P23, P58) all suggest that most
model transformation languages do not have well-defined
semantics which in turn makes verification and verification
support difficult (P22 C109). P44, however, explains that
bidirectional transformations are advantageous with regards
to verification (C107).

4.3.14 Tool support

Tools are another important aspect in the MDE life cycle
according to Hailpern and Tarr [28]. They are essential
for efficient transformation development. Regrettably,MTLs
lack good tool support according to P23, P45, P52 and P80
and if tools exist, they are not close to as mature as those of
general-purpose languages as stated in P74 (C119). Addi-
tionally, the authors of P94 explain that developers of MTLs
need to put extra effort into the creation of tool support for
the language (C121). This might, however, be worthwhile,
because P44 presumes that dedicated tools for model trans-
formation languages have the potential to be more powerful
than tools for GPLs in the context of transformations (C114).
And due to the high analysability ofMTLs,P45 explains that
tool support could potentially thrive (C115). Internal MTLs,
on the other hand, are able to inherit tool support from their
host languages as reported by P23 (C113). This helps to mit-
igate the overall lack of tool support, at least for internal
MTLs.

An interesting discussion to be held is how important tool
support for the acceptance of MTLs actually is. Whittle et al.
[65] describe that organizational effects are far more impact-
ful on the adoption of MDE, while the results of Cabot and
Gérard [16] contradict this observation citing interviewees
from commercial tool vendors that stopped the development
of tools due to lack of customer interest.

4.3.15 Versatility

It should be self-evident that languages that are designed for
a special purpose do not possess the same level of versatil-
ity and area of applicability than general-purpose languages.

Hence, it is not surprising that all mentions of versatility
of model transformation languages in our gathered literature
paintMTLs as less versatile compared to GPLs (P52 (C124),
P80 (C125), P94 (C127)).

4.4 RQ2: Supporting evidence for advantages and
disadvantages of MTLs

We found a number of different ways used by authors of our
gathered literature to support their assertions. The largest por-
tion of “supporting evidence” is made up of cited literature,
i.e. a claim is followed by a citation that supposedly supports
the claim.

The second way claims are supported is by example, i.e.
authors implemented transformations in MTLs and/or GPLs
and reported on their findings. Another aspect of this is rely-
ing on experience, i.e. authors state that from experience it
is clear that some pronouncement is true or that it is a well-
established fact within the community that a claim is true.

Third, there is empirical evidence, i.e. studies designed to
measure specific effects of model transformation languages
or case studies designed to gather the state of MTL usage in
industry.

Last, there are those assertions that are not supported by
any means. Authors simply suggest that an advantage or dis-
advantage exists. We assume that some claims made in this
way implicitly rely on experience but do not state so. Never-
theless, since there is no way of testing this assumption we
have to record such claims exactly the way they are made,
without any evidence.

In the following sections, we will talk in detail about how
each group of evidence is used in the literature to support
claims about advantages or disadvantages of model transfor-
mation languages. Asmentioned previously, Table 4 contains
a complete overview over each claim and through what evi-
dence the claim is supported.

4.4.1 Citation as evidence

Using citations to support statements is a core principle in
research. It should therefore come as no surprise that cita-
tions are used to support claims about model transformation
languages. An interesting aspect to explore for uswas to trace
how the cited literature supports the claim. For that, as stated
in Sect. 3, we created a graphical representation to trace cita-
tions used as evidence through literature. The graph is shown
in Fig. 7. It is inspired by UML syntax for object diagrams.
The head of an “object” contains a publication id, while the
body contains the categories for which advantages (+) or dis-
advantages (–) are claimed in the publication. Each category
within the body is accompanied by an IDwhich can be used to
find the corresponding claimwithin Table 4.We use different
borders around publications to denote the type of evidence

123

482 S. Götz et al.

provided by the publication and arrows from one category
within a publication to a different publication stand for the
use of a citation to support a claim. Lastly, if the content of
a publication does not concern itself with model transforma-
tion languages but instead with DSLs, the publication id is
followed by “(DSL)”.

Our graph allows to easily gauge information about the
following things:

– What publication claims an advantage or disadvantage of
MTLs in which category?

– What type of evidence (if any) is used to support claims
in a publication?

– Which exact claims are supported through the citation of
what publication?

In the following, we discuss observations about citations
as evidence that can be made with help from the citation
graphs.

First, only a total of 25 citations, split among 12 out of the
58 gathered publications, are used to support claims. This
constitutes less than ten percent of all assertions found dur-
ing our literature review. Seven of the 25 citations cite a
publication that itself only states claims without any evi-
dence thereof (P63, P94, P673, P674, P800). A further 11
end in a publication that uses examples or experience (see
also Sect. 4.4.3) (P664,P665,P667,P671,P672,P676,P77,
P64, P804, P801). Next, there are 3 citations that cite pub-
lications which in turn cite further publications to support
their claims (P677, P675), leaving only 4 citations that cite
empirical studies (P669, P670, P803) (see also Sect. 4.4.2).
To us, this is worrying because the practice of citing litera-
ture that only restates an assertion corrodes the confidence
readers can have in citations as supporting evidence.

From the graph, it is clearly evident that there exists no
single cited source for claims about model transformation
languages. This is clearly indicated by the fact that only five
publications (P63, P77, P673, P675, P803) are cited more
than once; twice to be exact. And no publication is cited
more than two times. Moreover, of those five publications
P675 and P803 are each cited by a single publication, respec-
tively.P675 is cited twice by P80 and P803 by P675. Related
thereto, nearly each claim, even within the same category, is
being supported through different citations.

Furthermore, only claims about conciseness, expressive-
ness, reuse&maintainability, tool support, performance and
statements that MTLs are just better are supported using
citations. It is interesting to note that claimswithin these cate-
gories which are supported by citations are either all positive
or all negative. This is not to say that there are no contrasting
claims, see for example C113 and C116 in P23, only that,
if citations are used for a category the supported claims are
either all positive or all negative.

Another thing to note is that in some instances claims
about model transformation languages are being supported
by citing publications on domain-specific languages in gen-
eral. This can be seen in P80. The claims C60 and C61 are
both supported by a citation of P675 which is a publication
that concerns itself with DSLs. Interestingly, P675 itself then
cites both publications about DSLs (P800, P801, 803) and a
publication about model transformation languages (P804) to
support claims stated within the publication.

Coming back to citations of empirical studies, we have to
report that while there exist 4 citations of empirical studies
only a single claim about model transformation languages
(C116 in P23) is actually supported thereby. This is due to
P803 being an empirical study about DSLs and P669 and
P670 both being cited as evidence for C116.

Lastly, apart from those publications that only make a
single claim, no publication supports all their claims using
citations. Extreme cases of this can be seen in P45 and P52
which make a total of 16 claims, only supporting three of
them with citations while leaving the other 13 unsubstanti-
ated.

4.4.2 Empirical evidence

To our disappointment, we have to report a lack of overall
empirical evidence for properties of model transformation
languages. Only four publications (P32,P59,P669,P670) in
our gathered literature assess characteristics of model trans-
formations using empirical means (see Fig. 7 and Table 4).
Of those four, only P59 focuses on MTLs as its central
research object, while the other three are case studies about
MDA that happen to contain results about transformation
languages. P803 too is an empirical study, but as mentioned
in Sect. 4.4.1 focuses on domain-specific languages in gen-
eral not on MTLs. In order to provide the necessary context
for scrutinizing the claims extracted from the publications,
we provide a short overview over the central aspects of P32,
P59, P669, P670 in the following.

The study described in P59 was comprised of a large-
scale controlled experiment with over 78 subjects from two
universities as well as a preliminary study with a single indi-
vidual. Subjects had to solve 231 tasks using three different
languages (ATL, QVT-O and Xtend). The tasks focused on
one of three aspects in transformation development, namely
comprehending an existing transformation, changing a trans-
formation and creating a transformation from scratch. After
analysing the results, the authors come to the disillusioning
conclusion that there is “no statistically significant benefit
of using a dedicated transformation language over a modern
general-purpose language”.

The authors of P32 report on an empirical study on the
efficiency and effectiveness of MDA. A total of 38 subjects,
selected from amodel-driven engineering course, were asked

123

Claimed advantages and disadvantages of model transformation languages: a SLR 483

Fig. 7 Graph tracking citations of claims of various categories through literature

123

484 S. Götz et al.

to implement the book-purchasing functionality of an e-book
store system. Afterwards, the subjects evaluated the per-
ceived efficiency and effectiveness of the used methodology.
This also included questions about the used QVT language
which was perceived as only marginally efficient.

Both P669 and 670 are reports of industrial case studies.
The objective of the study in P669was to investigate the state
of practice of applying MDSE in industry. To achieve this,
they collected data from tool evaluations, interviews and a
survey. Four different companies were consulted to collect
the data. Again while some reported results concerned them-
selveswith transformations,model transformation languages
were not explicitly discussed. Similarly, P670 reports on an
industrial case study involving two companies aiming to col-
lect factors that influence the decision to adoptMDE. For that
purpose, multiple preselected individuals at both companies
were interviewed. Just as P669, the study did not directly
focus on transformations or transformation languages.

As evident from Fig. 7, the results from P32 and P59 have
yet to be used in the literature for supporting claims about
MTLs. Since both of them have only been published recently,
we are, however, optimistic about this prospect.

4.4.3 Evidence by example/experience

Using examples to demonstrate shortcomings of any kind
has a long-standing tradition not only in informatics. Using
examples to demonstrate an advantage, however, can result
in less robust claims (especially toy or textbook examples
Shaw [56]). As such, it is important to differentiate whether
a claim is made by demonstrating a shortcoming or benefit.

In our gathered literature, ten publications use examples
to support a claim. Interestingly, examples aremainly used to
support broad claims about model transformation languages.
This can be observed by the fact that P34 and P64 use exam-
ples to try and demonstrate that GPLs are not well suited
for transforming models, while P664, P665, P667, P672,
P804 and P676 try to demonstrate the general superiority
of MTLs by showing examples of transformations written
in MTLs. Other claims that are supported through examples
are a demonstration of the reduction in code size when using
rule-based MTLs in P59 and statements about the extensive
amount of reuse mechanisms for MTLs through listing gath-
ered publications about the proposed mechanisms in P77.

Long-time practitioners of model transformation lan-
guages or programming languages in general often rely on
their experience to make assertions about aspects of the lan-
guage. And while the experience of long-term users can
create valuable insights, it is still subjective and can there-
fore vary in accuracy. In our case, six publications directly
state that their assertions come from experience. P3 report
on their experiences using different languages to implement
transformations, coming to the conclusion that graphical rule

definition is more intuitive, an experience shared by P40.
P43 name user feedback as grounds for claiming that visual
syntax has advantages in comprehension but makes writing
transformations more difficult. And P672 share that they are
under the impression that graph transformations are the supe-
rior method for defining refactorings.

Since experience is subjective, contradicting experiences
are bound to occur sometime. While the authors of P10
believe from experience that current MTLs are not abstract
enough for expressing transformations, P671 feel that the
difficulty of writing transformations in a MTL does stem
from the chosen MDD method rather than the syntax of the
language.

4.4.4 No evidence

Figure 7 and especially Table 4 make it clear that a large
portion of both positive and negative claims about model
transformations are never substantiated. In fact, of the 127
claims ~69% are unsubstantiated. Adding those that are sup-
ported by a citation that in the end turns out to be unsupported
as well brings the number up to ~77%. Particularly, the
categories concerning the usability ofMTLs such as compre-
hensibility, ease of writing a transformation and productivity
lack meaningful evidence. All three of them being corner-
stones of language engineers arguments for the superiority
ofmodel transformation languagesmake this especially wor-
risome.

We believe that a realization in the community about this
fact is necessary. The necessity or superiority of model trans-
formations has to be properly motivated. This means that it
is not sufficient to claim advantages or disadvantages with-
out providing at least some form of explanation on why this
claim is valid (more on this in Sect. 5.3).

5 Discussion

In this section, we reflect on the previously presented find-
ings. Our focus for this is fourfold. First, we feel it is
necessary to draw parallels between our categorization and
attributes of product quality. Next, we want to briefly discuss
how claims are made in regards to transformation language
features. Afterwards, a discussion about lack of empirical
studies about properties of model transformation languages
is warranted. And last we feel a discussion about the research
direction for the community is also necessary.

5.1 Claims about model transformation languages
in context of software quality

There are undeniable parallels between the categories we
developed for claims and characteristics of software quality

123

Claimed advantages and disadvantages of model transformation languages: a SLR 485

as defined by ISO/IEC 25010:2011 [35]. This can be seen by
the fact that many of our categories can be directly placed
within the characteristics of the software product quality
model (namely functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability,
portability).

Both expressiveness and semantics and verification are
part of functional suitability. Performance and productivity
can be classified under performance efficiency. Furthermore
are comprehensibility, conciseness, debugging, ease of writ-
ing a transformation, learnability and tool support part of
Usability. Maintainability covers analysability and reuse &
maintainability. And lastly, extendability and versatility can
be classified under portability. This leaves only our generic
category just better without a corresponding characteristic
which is to be expected.

However, there are also compatibility, reliability and
security which have no corresponding categories from our
categorization. This does not necessarily mean that the cur-
rent research is not focused on aspects related to these quality
criteria. It instead suggests a lack of concrete statements
regarding them. And while security is justifiably less of a
concern for model transformation languages, both the com-
patibility of different approaches and their reliability should
definitely be focused on (see also Sect. 5.4).

Lastly, even though most claims we collected during our
reviewcould be categorizedwithin the software product qual-
ity model we opted to develop a classification based on the
claims alone since we believe the resulting categories to be
more specialized and allow for a more nuanced view on
the subject matter than the generic characteristics defined
by ISO/IEC 25010:2011 [35].

5.2 Claims about model transformation languages
in context of language features

An effort by us to categorize the extracted claims along an
existing taxonomy of model transformation language fea-
tures such as the one by Czarnecki and Helsen [22] failed
because a large portion of claims (~70%) are made broadly
without reference to specific features of MTLs that aid the
advantage or disadvantage.

We suggest that claims on benefits and disadvantages of
model transformation languages be made more specific and
include mentions of the features that aid or hamper the ben-
efits. For example, incrementality aids the performance of
model transformations since only parts of a transformation
have to be re-executed and bidirectional transformation lan-
guages provide special support for incremental execution
giving them an edge in performance.

5.3 Lack of evidence for MTL advantages and
disadvantages

The current literature exhibits a deficit in evidence (empirical
or otherwise) for asserted properties of model transformation
languages. We believe there to be several factors which can
explain this lack of evidence.

First, designing and conducting rigorous studies to exam-
ine model transformation languages requires a substantial
amount of time and effort. Studies are further complicated
by the lack of easily available study subjects due to the
community being relatively small compared to the body
of general-purpose programming language users. The study
described in P59, for example, had to be conducted over
the timespan of three semesters and at two universities just
to attain 78 subjects. And even when a pertinent number of
study subjects is found, ensuring comparable levels of expe-
rience within the subjects is another challenge, even more so
when collaborating with industrial partners [58].

Relying on the fact that transformation languages are
DSLs and hence bear all the benefits that are proclaimed
for those might also be a factor. Describing the advantages of
DSLs in the introduction of a paper about transformation lan-
guages is far from uncommon in the literature. And while we
toobelieve that there are benefitswhenusingDSLs,wewould
caution against broad usage of the fact that model transfor-
mation languages are DSLs to claim them advantageous over
general-purpose languages (as is done in publications such
as P29, P63 or P804), especially because the manpower that
goes into the development of the ecosystems of GPLs far
exceeds that of MTLs.

Another problem is that statements can become “estab-
lished” facts by virtue of being cited by a paper which is in
turn cited. Suppose one author claims that model transfor-
mation languages are more expressive than GPLs. A second
author claims the same thing and references the first author
to provide context. Next, a third author, assuming that the
second author verifies their claim via the citation, cites the
second author to support a similar claim. Over time, this can
lead to the statement being treated as a fact rather than an
assumption made multiple times. This can be seen on multi-
ple occasions in Fig. 7. P63 makes an unsubstantiated claim
(C57) that the expressiveness of MTLs is superior to that of
GPLs. This claim is then reiterated byP677 (C65) citingP67.
Lastly, P677 is cited by P45 to support their assertion about
the expressiveness of model transformation languages (C50-
53). Such a chain is not even theworst case in our results. The
chain P80 → P675 → P801-804 is even more worrisome,
in that some of the claims stated in P80 (C75) actually orig-
inate in claims about domain-specific languages from 675
(C1D). P80 claims two advantages of MTLs using P675 as
reference. P675 again uses citations to support their claims.
However, the papers cited by P675 do not make statements

123

486 S. Götz et al.

about model transformation languages but DSLs in general.
This shows how such chains can create a blurred factual pic-
ture. Moreover, in the presented cases it is still possible to
find the origin of claims and realize how the claims were
changed throughout the citation chains. If authors deemed
it unnecessary to support claims that are “established” facts,
this is no longer possible. Quite likely this is the case for a
non-negligible number of publications (see Table 4) where
no citations or any other substantiation for claimed properties
of MTLs is given.

As previously described, it is not uncommon for authors to
ascribe properties to model transformation languages due to
them being DSLs. However, a language does not necessarily
have to be more expressive, easier to use or easier to main-
tain simply by being domain specific. In fact we believe that
everything about aDSLstands and fallswith the domain itself
as well as the design of the language. As a result, all advan-
tages and disadvantages for DSLs, described in the literature,
only define potential properties. Thus, it is necessary to eval-
uate advantages and disadvantages anew for each domain,
especially in complex domains such as model transforma-
tions.

5.4 Research direction

In our opinion, the research community has to acknowl-
edge that the current way of language development is not
expedient. There needs to be a shift away from constant
development of new features and transformation languages
with, at best, prototypical evaluation. Tomaž Kosar, Bohra
and Mernik [44] share this sentiment after a mapping study
on the development of DSLs in general (see Sect. 6).

Instead, it is necessary to extensively evaluate cur-
rent transformation languages, first to identify their actual
strengths and weaknesses and then to compare these results
with the expected (and desired) results to determine which
aspects of MTLs still need improving.

We believe the categories from Sect. 4 to be a good refer-
ence for possible areas to evaluate.

It is not necessary to evaluate each category empiri-
cally: For some categories, empirical evaluation might not
be sensible at all. Such categories include analysability, and
semantics and verification for example, since there exist no
universally accepted measures to base evaluation on. Addi-
tional literature reviews are also conceivable. Analogous to
how P77 gathered different reuse mechanisms, a compre-
hensive review of verification and analysis approaches can
be useful to assess the analysability and verifiability ofmodel
transformation languages.

Designing and executing appropriate studies also entails
significant effort which is why it becomes necessary to
carefully weigh up which properties should be evaluated.

Additionally, some categories should also be examined more
urgently than others.

The ease of writing a transformation and comprehensi-
bility are two such categories for which evaluation is most
pressing. Also given that in the domain of programming
languages (especially object-oriented programming), many
studies exploring the comprehensibility and ease of use, such
as Burkhardt et al. [15], Rein et al. [54], and Kurniawan
and Xue [47], already exist. Study designs similar to the one
described in P59 are in our opinion most suitable for this
purpose. This is supported by the fact that many studies for
comparing programming languages follow a similar struc-
ture in that a common problem or task is solved in multiple
languages and the resulting code is analysed [4,30,53]. It
may also be useful to design the cases in such a way that the
complete capabilities of the used transformation languages
have to be used. In the study described in P59, for example
advanced features such as QVTs late resolvewere not part of
the evaluation. Such a design can help to better understand
if the most “advanced” features of transformation languages
have practical value and how complex a GPL for these fea-
tures is.

Comprehensibility can also be tested in isolation by
requiring subjects to describe functionality of given trans-
formations written in both a dedicated model transformation
language and a GPL.

According to Mohagheghi et al. [51], one of the main
motivations for adopting MDE in industry is to improve
productivity; hence, we believe that evaluation of the pro-
ductivitywhen usingmodel transformation languages should
be a focus too. Admittedly measuring productivity is a chal-
lenging task, a fact that has been observed as early as 1978
[37]. But since then, numerous ways have been proposed
and tested out in practice [10,13] which should allow for
productivity studies on MTLs to be carried out. A potential
study into the productivity could require subjects to develop
transformations in either a model transformation language
or a general-purpose language within a certain time frame
followed by measuring and comparing how productive the
subjects were in both cases. Researchers can also draw from
the large corpus of productivity studies on different aspects of
programming, such as Wiger and Ab [66], Frakes and Succi
[25] and Dieste et al. [23].

The performance of model transformations can have huge
impact on development, especially when multiple transfor-
mations have to be executed in succession. Many language
engineers already pay tribute to that fact by providing perfor-
mance comparisons between their languages and otherMTLs
or general-purpose languages such as Java [32,46]. And
the Transformation Tool Contest (TTC) provides a venue
for comparing MTLs. However, we believe extensive com-
parisons between the performance of model transformation
languages and general-purpose programming languages to

123

Claimed advantages and disadvantages of model transformation languages: a SLR 487

be necessary to abolish the prejudice that dedicated trans-
formation languages cannot outperform current compilers.
Comparison of performance between different programming
languages that are used for the same purpose is a well-
established practice demonstrated by comparisons between
Java and C++ for robotics programming done by Gherardi,
Brugali and Comotti [27] or C++ and F90 for scientific pro-
gramming by Cary et al. [18]. Performance comparisons are
also common practice in other domains such as GPU pro-
grammingwhere specializedDSLs are used and performance
is of high importance (Karimi et al. [24]). It is conceiv-
able to compare the performance of transformations written
in dedicated MTLs and GPLs by either manually solving
the same tasks as described previously or by using existing
mechanisms (for example Calvar et al. [17]) for transforming
transformation scripts written in a MTL into GPL code.

We also believe that special focus needs to be given to
the question of what model transformation languages are
expected to achieve (such as easy synchronization of mul-
tiple artefacts or fast transformations through incremental
transformations): first, because this can allow to direct more
resources on evaluating relevant aspects of MTLs; and sec-
ond, because model transformation languages will appear
more streamlined andmature when the focus of development
lies in improving their core features instead of overloading
themwith “experimental” features. An opinion Tomaž Kosar
et al. [44] share is that this can enable practitioners to truly
understand the effectiveness and efficiencies of DSLs.

6 Related work

To the best of our knowledge, there exists no other literature
review that explores advantages and disadvantages of model
transformation languages. There does, however, exist some
literature that can be related to our work.

A closely related survey and open discussion about the
future of model transformation languages was held by Cabot
and Gérard [16]. They report on the results of an online
survey and subsequent open discussion during the 12th
edition of the International Conference on Model Transfor-
mations (ICMT’2019). The survey was designed to gather
information about why developers used MTLs or why they
hesitate to do so andwhat their predictions about the future of
these languages were. An open discussion was held after the
results of the online survey were presented to the audience
at ICMT’2019. The results of the study point towards MTLs
becoming less popular not only because of technical issues
but also due to tooling and social issues as well as the fact
that some GPLs have assimilated ideas from MTLs and thus
making them less bad alternatives to writing transformations
in dedicated languages.

Hutchinson et al. [34] conducted an empirical study into
MDSE in industry. The authors used questionnaires and inter-
views to explore different factors that influence the success
of MDSE in organizations and attempt to provide empirical
evidence for hailed benefits of MDSE. They report on a total
of over 250 questionnaire responses as well as interviews
with 22 practitioners from 17 different companies. While the
main focus of the study was on MDSE adoption in general,
the authors do report on somefindings regardingmodel trans-
formations, such as negative influences of writing and testing
transformations on the productivity and influences of trans-
formations on the portability. However, no results regarding
used transformation languages are included.

Mens and Gorp [49] propose a taxonomy for model
transformation languages. They define groups of transforma-
tion languages based on answers to a set of questions. The
answers are split into multiple subgroups themselves. The
authors describe in great detail different possible character-
istics within the groups. In part, this also includes listings
of properties for transformation languages that fall into spe-
cific groups. The authors, however, have not provided any
evidence or more precise explanations. Similarly, Czarnecki
andHelsen [22] propose a classification framework formodel
transformation approaches based on several approaches such
as VIATRA, ATL and QVT. The framework is given as a fea-
ture diagram to allow to explicitly highlight different design
choices for transformations. At the top level, the feature
model contains features such as rule organization, incre-
mentality, directionality and tracing. Each feature and its
sub-components are extensively discussed and demonstrated
with examples of transformation tools that boast different
aspects of the features. In contrast to the two described clas-
sifications, our study categorizes claims about MTLs on a
qualitative dimension rather than on language features.

Kahani et al. [39] describe a classification and comparison
of a total of 60 model transformation tools. Their classifica-
tion differentiates tools based on two levels. The first level
describes whether the tool is a model-to-model (M2M) or
model-to-text (M2T) tool. The second level differentiates
M2M tools based on their transformation approach meaning
whether the approach is relational, operational or graph-
based andM2T tools basedon theunderlying implementation
approach meaning visitor-based, template-based or hybrid.
Unlike our study, the described comparison focuses on com-
paring different model transformation tools on a technical
basis based on six categories (general, model level, transfor-
mation, user experience, collaboration support and runtime
requirements), while we focus on qualitative aspects of
claims made throughout literature about any kind of dedi-
cated model transformation language.

Van Deursen et al. [62] gathered an annotated bibliog-
raphy on the premise of domain-specific languages versus
generic programming languages. The bibliography con-

123

488 S. Götz et al.

tains 73 different DSLs differentiated by their application
domains: Software Engineering, Systems Software, Multi-
Media,Telecommunication andMiscellaneous.Additionally,
they provide a discussion of terminology as well as risks and
benefits of DSLs. And while parts of the listed risks and
benefits such as enhanced productivity or cost of education
can be found in the listed advantages and disadvantages of
our literature review, their bibliography does not contain any
model transformation languages.

Tomaž Kosar et al. [44] report on the results of a system-
atic mapping study they conducted to understand the DSL
research field, to identify research trends and to detect open
issues. Their data comprised a total of 1153 candidates which
they condensed into 390 publications for classification. The
results from the study corroborate observations made dur-
ing our literature review. The research community is mainly
concerned with the development of new techniques, while
research into the effectiveness of languages and empirical
evaluations is lacking.

Tomaz Kosar et al. [45] describe an empirical study com-
paring a domain-specific language with a general-purpose
language with a focus on learning, perceiving and evolving
programs. The two languages considered were XAML as a
DSL representative and the GPL C#. The experiment is com-
prised of 36 programmers which were asked to construct a
graphical interface using both XAML and C# Forms. After-
wards, the subjects had to answer a questionnaire. In contrast
to the results of P59, their results show a statistically signif-
icant advantage of DSLs for learning, comprehending and
evolving programs.

Jakumeit et al. [36] provide an extensive overview over
and comparison of 13 state-of-the-art transformation tools
used in the TTC 2011. The authors give detailed descrip-
tions of the tools based on a “Hello World” case posed at
the contest. They also describe for what use cases the indi-
vidual tools are best suited and provide a novel taxonomy
based on which the tools are compared. The introduced tax-
onomy features many of the same categories we synthesized
from the claims in our literature review, such as expressive-
ness, extendability, learnability, reuse and verification, but
also other categories such as maturity and license.

7 Threats to validity

To ensure reproducibility and a high quality of the results, we
followed a systematic approach as detailed in Sect. 3. How-
ever, possible threats to validity still remain. In this section
we discuss these threats.

7.1 Internal validity

Internal validity describes the extent to which a casual con-
clusion based on the study is warranted. This validity is

threatened by possible differences in the interpretation of
our selection criteria. To alleviate the potential threat, two
researchers independently applied the selection criteria and
in cases of different decisions about the inclusion of a publi-
cation, full text cross-reading was applied.

A threat to the internal validity we could not meet with
prevention measures was the fact that our categorization is
based on certain defining expressions like “expressive” and
“versatile”. It is possible that different authors ascribe dif-
ferent meanings to these phrases. While we believe that for
most cases this is less of a problem, it is still a problem that
we could not fully solve since not every publication defines
their understanding of used phrases.

7.2 External validity

External validity describes the extent to which the findings of
a study can be generalized. For structured literature reviews,
a threat to this validity arises from the existence of relevant
but undetected or excluded publications [20]. To mitigate
this threat as much as possible, we used both automatic
searches and exhaustive backward and forward snowballing.
The automatic search was also conducted on multiple lit-
erature databases to broaden the field of searched literature.
Furthermore, we employed a “when uncertain include” strat-
egy for including publications, as well as less strict inclusion
criteria which helped prevent relevant publications from
being overlooked.

7.3 Construct validity

Construct validity describes the extent to which the right
measures were obtained and whether the right scope was
defined in relation to our research questions. The construct
validity of our research is not under threat since the research
questions define easily producible results. Cited advantages
or disadvantages of model transformation languages can be
directly extracted, and the same also holds for used evidence
for claims.

7.4 Conclusion validity

Conclusionvalidity describes the extent towhich conclusions
based on data are reproducible.

Prior to the execution of our literature review, we defined a
review protocol for all phases of the review. We followed the
protocol rigorously to ensure reproducibility of the study.The
protocol did not only include descriptions of how the review
had to be conducted but also detailed how data should be
extracted from the selected literature (see Sect. 3). It is of
course possible that, with the passage of time, a repetition of
the literature review can draw different conclusions due to
the added body of literature between then and now.

123

Claimed advantages and disadvantages of model transformation languages: a SLR 489

8 Conclusion

In this study, we have reported on a systematic literature
review intended to extract and categorize claims about model
transformation languages as well as the current state of
evaluation thereof. The goal of the study was to compile
a comprehensive list and the categorization of positive and
negative claims about model transformation languages. We
further wanted to investigate the current state of evaluation
of claims as well as identify gaps in the area of evaluation of
MTLs.

We combed over 4000 publications for that purpose, 58
of which we selected for the study. To this end, we fol-
lowed a rigorous process byusing a combination of automatic
searches on literature databases, exhaustive backward and
forward snowballing and multiple researchers during the
selection phase. The selected publications were combed for
mentions of advantages and disadvantages of MTLs and evi-
dence of the stated claims. Lastly, we analysed and discussed
the extracted claims and evidence to: (i) provide an overview
over claimed advantages and disadvantages and their origin,
(ii) the current state of evidence thereof and (iii) identify
areas where further research is necessary.

We conclude that: (i) the current literature claims many
advantages of MTLs but also points towards deficits owed
to the mostly experimental nature of the languages and its
limited domain, (ii) there is insufficient evidence for and (iii)
research about properties ofmodel transformation languages.

The results of our study suggest that there is much to
be done in terms of evaluation of model transformation lan-
guages and that effort that is currently being invested into the
development of new featuresmight be better spent evaluating
the state of the art in hopes of ascertaining both what current
MTLs are lacking most and where their strengths really lie.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Overview over all extracted claims

See Table 4.

Ta
bl
e
4

O
ve
rv
ie
w
ov
er

cl
ai
m
s
pe
r
ca
te
go

ry

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

A
na
ly
sa
bi
lit
y

Po
si
tiv

e
C
1

D
ec
la
ra
tiv

e
M
T
L
s
le
nd

th
em

se
lv
es

to
au
to
m
at
ic

an
al
ys
is

P
45

–

C
om

pr
eh
en
si
bi
lit
y

Po
si
tiv

e
C
2

B
as
ed

on
us
er

fe
ed
ba
ck
,i
tw

as
id
en
tifi

ed
th
at
vi
su
al

sy
nt
ax

is
be
ne
fic

ia
lw

he
n
re
ad
in
g
a
tr
an
sf
or
m
at
io
n

pr
og
ra
m

P
43

E
xp
er
ie
nc
e

C
3

B
id
ir
ec
tio

na
lt
ra
ns
fo
rm

at
io
n
la
ng

ua
ge
s
ha
ve

an
ad
va
nt
ag
e
in

co
m
pr
eh
en
si
bi
lit
y

P
44

–

C
4

R
ul
es

w
ri
tte

n
in

a
de
cl
ar
at
iv
e
M
T
L
ar
e
m
or
e
ea
si
ly

un
de
rs
to
od

in
is
ol
at
io
n
an
d
in

co
m
bi
na
tio

n
P
45

–

C
5

A
n
ob

se
rv
at
io
n
m
ad
e
fr
om

th
e
em

pi
ri
ca
ld

at
a
is
th
at

co
nt
ex
ts
el
ec
tio

n
an
d
id
en
tifi

ca
tio

n
ar
e
ea
si
er

fo
r

su
bj
ec
ts
w
or
ki
ng

w
ith

M
T
L
s
th
an

w
ith

G
PL

s

P
59

E
m
pi
ri
ca
ls
tu
dy

123

490 S. Götz et al.
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
6

T
he
re

ar
e
pe
rc
ei
ve
d
co
gn

iti
ve

ga
in
s
of

gr
ap
hi
ca
l

re
pr
es
en
ta
tio

ns
co
m
pa
re
d
to

fu
lly

te
xt
ua
l

re
pr
es
en
ta
tio

ns
of

tr
an
sf
or
m
at
io
ns

sh
ow

n
by

fo
r

ex
am

pl
e
th
e
ap
pe
al
of

U
M
L
s
gr
ap
hi
ca
l

re
pr
es
en
ta
tio

n
of

m
od
el
s

P
63

–

C
7

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
in
co
rp
or
at
e

hi
gh

-l
ev
el
ab
st
ra
ct
io
ns

th
at
m
ak
e
th
em

m
or
e

un
de
rs
ta
nd
ab
le
th
an

G
PL

s

P
95

–

N
eg
at
iv
e

C
8

C
om

pr
eh
en
si
bi
lit
y
of

tr
an
sf
or
m
at
io
n
lo
gi
c
is

ha
m
pe
re
d
as

cu
rr
en
tt
ra
ns
fo
rm

at
io
n
la
ng
ua
ge
s

pr
ov
id
e
on

ly
a
lim

ite
d
vi
ew

on
a
tr
an
sf
or
m
at
io
n

pr
ob
le
m
.F

or
ex
am

pl
e,
gr
ap
h
tr
an
sf
or
m
at
io
n

ap
pr
oa
ch
es

on
ly

re
ve
al
pa
rt
s
of

th
e
m
et
a-
m
od
el

P
22

–

C
9

M
os
tM

T
L
s
la
ck

co
nv
en
ie
nt

fa
ci
lit
ie
s
fo
r

un
de
rs
ta
nd
in
g
th
e
tr
an
sf
or
m
at
io
n
lo
gi
c

P
22

–

C
10

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
re
qu
ir
e
sp
ec
ifi
c

sk
ill
s
an
d
as

a
re
su
lt
ar
e
ha
rd

to
un
de
rs
ta
nd

fo
r

m
an
y
st
ak
eh
ol
de
rs

P
27

–

C
11

L
ar
ge

an
d
he
te
ro
ge
ne
ou
s
m
od
el
s
le
ad

to
po
or
ly

un
de
rs
ta
nd
ab
le
tr
an
sf
or
m
at
io
n
co
de

du
e
to

m
is
si
ng

la
ng

ua
ge

co
nc
ep
ts
to

m
as
te
r
co
m
pl
ex
ity

P
29

–

C
12

G
ra
ph

tr
an
sf
or
m
at
io
ns

de
fin

ed
on

ab
st
ra
ct
sy
nt
ax

ar
e

ha
rd

to
re
ad

be
ca
us
e
th
e
us
er

ha
s
to

be
fa
m
ili
ar

w
ith

m
et
a-
m
od

el
th
at
de
fin

es
th
e
ab
st
ra
ct
sy
nt
ax

P
70

–

C
13

Pu
re
ly

gr
ap
h-
ba
se
d
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ca
n

be
co
m
e
co
m
pl
ex

an
d
ha
rd

to
re
ad

P
70

–

C
on

ci
se
ne
ss

Po
si
tiv

e
C
14

G
en
er
al
-p
ur
po

se
la
ng

ua
ge
s
la
ck

si
m
pl
ic
ity

be
ca
us
e

of
ho
w
tr
an
sf
or
m
at
io
ns

ar
e
de
fin

ed
P
3

E
xa
m
pl
es

C
15

G
PL

s
do

no
ta
llo

w
de
ve
lo
pe
rs
to

co
nv
en
ie
nt
ly

ex
pr
es
s
m
od
el
m
an
ip
ul
at
io
n
co
nc
ep
ts
an
d
th
e
lo
ss

of
ab
st
ra
ct
io
n
in

G
PL

s
m
ay

gi
ve

ri
se

to
ac
ci
de
nt
al

co
m
pl
ex
iti
es

P
52

C
ite

s
P
67
3

C
16

T
ra
ns
fo
rm

at
io
ns

im
pl
em

en
te
d
in

th
e
pr
e-
st
ud
y
us
in
g

ru
le
-b
as
ed

M
T
L
s
w
er
e
up

to
48
%

sm
al
le
r
th
an

co
rr
es
po
nd
in
g
Ja
va

va
ri
an
ts

P
59

Pr
el
im

in
ar
y
st
ud
y

C
17

D
ec
la
ra
tiv

e
ap
pr
oa
ch
es

m
ak
e
la
ng
ua
ge

m
or
e
co
nc
is
e

P
63

–

C
18

G
ra
ph

ic
al
no

ta
tio

n
in

M
T
L
s
is
co
nc
is
e

P
75

–

123

Claimed advantages and disadvantages of model transformation languages: a SLR 491
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
19

G
PL

s
do

no
tc
on
ve
ni
en
tly

ex
pr
es
s
m
od
el

m
an
ip
ul
at
io
n
co
nc
ep
ts
an
d
th
e
lo
ss

of
ab
st
ra
ct
io
n

ca
n
gi
ve

ri
se

to
ac
ci
de
nt
al
co
m
pl
ex
iti
es

P
80

C
ite

s
67
3

C
20

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
in
co
rp
or
at
e

hi
gh

-l
ev
el
ab
st
ra
ct
io
ns

th
at
m
ak
e
th
em

m
or
e

co
nc
is
e
th
an

G
PL

s

P
95

–

C
21

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ar
e
m
or
e
co
nc
is
e

P
95

–

C
22

M
D
E
an
d
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
su
ch

as
Q
V
T
he
lp

to
re
du

ce
co
m
pl
ex
ity

P
67
3

–

D
eb
ug
gi
ng

Po
si
tiv

e
C
23

D
eb
ug
ge
rs
fo
r
M
T
L
s
ar
e
lik

el
y
be
tte
r
th
an

th
os
e
fo
r

G
PL

s
fo
r
de
bu
gg
in
g
tr
an
sf
or
m
at
io
ns

si
nc
e
it
is

qu
es
tio

na
bl
e
w
he
th
er

th
e
ca
ll
st
ac
ks

pr
od
uc
ed

by
de
bu
gg
er
s
of

G
PL

s
ar
e
m
ea
ni
ng
fu
lf
or

th
e

de
ve
lo
pe
r

P
95

–

N
eg
at
iv
e

C
24

A
lth

ou
gh

nu
m
er
ou
s
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ex
is
t,

th
ey

la
ck

co
nv
en
ie
nt

fa
ci
lit
ie
s
fo
r
su
pp

or
tin

g
de
bu
gg
in
g
an
d
un
de
rs
ta
nd
in
g
of

th
e
tr
an
sf
or
m
at
io
n

lo
gi
c

P
22

–

C
25

In
A
T
L
,T

G
G
s
an
d
Q
V
T-
R
co
rr
es
po
nd
en
ce

is
de
fin

ed
on

a
hi
gh
er

le
ve
lo

f
ab
st
ra
ct
io
n
co
m
pa
re
d
to

on
w
ha
te
xe
cu
tio

n
en
gi
ne
s
op
er
at
e
T
hu
s
de
bu
gg
in
g
is

lim
ite

d
on

th
e
lo
w
er

le
ve
lo

f
th
e
ex
ec
ut
io
n
en
gi
ne
s

no
to

n
th
e
le
ve
lo

f
th
e
la
ng
ua
ge

de
fin

iti
on

P
22

–

C
26

In
de
cl
ar
at
iv
e
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s

de
bu
gg

in
g
is
m
or
e
di
ffi
cu
lt
th
an

in
im

pe
ra
tiv

e
on

es
P
45

–

C
27

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
la
ck

pr
op
er

de
bu
gg
in
g
su
pp
or
ts
in
ce

im
pl
em

en
ta
tio

n
co
st
is

hi
gh

P
90

–

E
as
e
of

w
ri
tin

g
a
tr
an
sf
or
m
at
io
n

Po
si
tiv

e
C
28

W
e
fo
un
d
gr
ap
hi
ca
lr
ul
e
de
fin

iti
on

fa
r
m
or
e
in
tu
iti
ve

th
an

sy
nt
ax
-b
as
ed

de
fin

iti
on

P
3

E
xp
er
ie
nc
e

C
29

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ea
se

de
ve
lo
pm

en
t

ef
fo
rt
s
by

of
fe
ri
ng

su
cc
in
ct
sy
nt
ax

to
qu
er
y
fr
om

an
d
m
ap

m
od

el
el
em

en
ts
be
tw

ee
n
di
ff
er
en
t

m
od
el
lin

g
do
m
ai
ns

P
29

–

C
30

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
m
ak
e
it
ea
sy

to
w
or
k
w
ith

m
od

el
s

P
50

–

C
31

Im
pe
ra
tiv

e
tr
an
sf
or
m
at
io
n
ap
pr
oa
ch
es

of
fe
r
a

fa
m
ili
ar

pa
ra
di
gm

,t
ha
ti
s,
se
qu

en
ce
,s
el
ec
tio

n,
an
d

ite
ra
tio

n

P
63

–

123

492 S. Götz et al.
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
32

It
is
ou
r
im

pr
es
si
on

th
at
,i
n
ge
ne
ra
l,
gr
ap
h

tr
an
sf
or
m
at
io
ns

of
fe
r
si
gn
ifi
ca
nt
ly

be
tte
r
su
pp
or
t

fo
r
th
e
sp
ec
ifi
ca
tio

n
an
d
im

pl
em

en
ta
tio

n
of

m
od

el
lin

g
gu

id
el
in
es

an
d
re
fa
ct
or
in
gs

P
67
2

E
xp
er
ie
nc
e

N
eg
at
iv
e

C
33

Im
pe
ra
tiv

e
M
T
L
s
in
du
ce

ov
er
he
ad

co
de

be
ca
us
e

m
an
y
is
su
es

ha
ve

to
be

ac
co
m
pl
is
he
d
ex
pl
ic
itl
y,

e.
g.

sp
ec
ifi
ca
tio

n
of

co
nt
ro
lfl

ow

P
22

–

C
34

T
ra
di
tio

na
lt
ra
ns
fo
rm

at
io
n
la
ng
ua
ge
s
re
qu
ir
e
sp
ec
ifi
c

sk
ill
s
to

be
ab
le
to

w
ri
te
tr
an
sf
or
m
at
io
ns

P
27

–

C
35

To
be

ab
le
to

w
ri
te
tr
an
sf
or
m
at
io
ns
,o

ne
ha
s
to

be
a

tr
an
sf
or
m
at
io
n
ex
pe
rt

P
28

–

C
36

B
as
ed

on
us
er

fe
ed
ba
ck

w
e
id
en
tifi

ed
th
at
w
ri
tin

g
a

tr
an
sf
or
m
at
io
n
pr
og

ra
m

w
ith

a
gr
ap
hi
ca
ls
yn

ta
x

ca
n
be

co
m
pl
ic
at
ed

P
43

E
xp

er
ie
nc
e

C
37

T
he

sy
nt
ax

of
de
cl
ar
at
iv
e
M
T
L
s
is
un

fa
m
ili
ar

fo
r

m
an
y
de
ve
lo
pe
rs

P
45

–

C
38

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
th
at
de
fin

e
tr
an
sf
or
m
at
io
ns

on
m
et
a-
m
od
el
le
ve
lr
eq
ui
re

de
ep

un
de
rs
ta
nd
in
g
of

th
e
m
et
a-
m
od
el

P
56

–

C
39

T
he
re

is
no

su
ffi
ci
en
t(
st
at
is
tic

al
ly

si
gn

ifi
ca
nt
)

ev
id
en
ce

of
a
ge
ne
ra
la
dv
an
ta
ge

of
sp
ec
ia
liz

ed
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
(A
T
L
,Q

V
T-
O
)

ov
er

a
m
od
er
n
G
PL

(X
te
nd
)

P
59

E
m
pi
ri
ca
ls
tu
dy

C
40

D
ev
el
op

er
s
ar
e
ge
ne
ra
lly

m
or
e
co
m
fo
rt
ab
le
w
ith

en
co
di
ng

co
m
pl
ic
at
ed

(t
ra
ns
fo
rm

at
io
n)

al
go
ri
th
m
s

in
pr
oc
ed
ur
al
la
ng
ua
ge
s

P
63

–

C
41

Fi
rs
to

f
al
l,
so
m
e
of

us
ar
e
no
tc
on
vi
nc
ed

th
at
th
e

us
ag
e
of

a
vi
su
al
no

ta
tio

n
ha
s
si
gn

ifi
ca
nt

ad
va
nt
ag
es

co
m
pa
re
d
to

a
te
xt
ua
ln

ot
at
io
n.

A
te
xt
ua
ln

ot
at
io
n
is
m
or
e
co
m
pa
ct
,s
im

pl
ifi
es

al
l

ki
nd
s
of

ve
rs
io
n
an
d
co
nfi

gu
ra
tio

n
m
an
ag
em

en
t

ta
sk
s,
an
d
do
es

no
tf
or
ce

its
us
er
s
to

sp
en
d
ho
ur
s

be
au
tif
yi
ng

th
e
la
yo
ut

of
hu
ge

di
ag
ra
m
s

P
67
2

–

E
xp
re
ss
iv
en
es
s

Po
si
tiv

e
C
42

R
ul
e-
ba
se
d
ap
pr
oa
ch
es

se
em

to
be

le
ss

er
ro
r-
pr
on
e

co
m
pa
re
d
to

a
m
an
ua
li
m
pl
em

en
ta
tio

n
of

pa
tte

rn
m
at
ch
in
g
fo
r
ea
ch

tr
an
sf
or
m
at
io
n
in

a
ge
ne
ra
l-
pu
rp
os
e
la
ng
ua
ge

P
2

–

C
43

M
od

el
tr
an
sf
or
m
at
io
n
la
ng

ua
ge
s
ca
n
hi
de

de
ta
ils

lik
e

tr
av
er
si
ng

be
hi
nd

si
m
pl
e
sy
nt
ax

P
15

–

123

Claimed advantages and disadvantages of model transformation languages: a SLR 493
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
44

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ca
n
hi
de

tr
ac
es

be
hi
nd

si
m
pl
e
sy
nt
ax

P
15

–

C
45

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ca
n
hi
de

ru
le

tr
ig
ge
ri
ng

be
hi
nd

si
m
pl
e
sy
nt
ax

P
15

–

C
46

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ca
n
hi
de

ru
le

or
de
ri
ng

be
hi
nd

si
m
pl
e
sy
nt
ax

P
15

–

C
47

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ca
n
hi
de

co
m
pl
ex

tr
an
sf
or
m
at
io
n
al
go

ri
th
m
s
be
hi
nd

a
si
m
pl
e
sy
nt
ax

P
15

–

C
48

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
hi
de

tr
an
sf
or
m
at
io
n

co
m
pl
ex
ity

an
d
bu
rd
en

fr
om

us
er

P
27

C
ite

s
P
67
1

C
49

G
ra
ph

tr
an
sf
or
m
at
io
ns

ge
ne
ra
lly

of
fe
r
a
si
gn
ifi
ca
nt
ly

be
tte
r
su
pp
or
tf
or

th
e
sp
ec
ifi
ca
tio

n
an
d

im
pl
em

en
ta
tio

n
of

m
od

el
lin

g
gu

id
el
in
es

an
d

re
fa
ct
or
in
gs

P
40

C
ite

s
P
67
2

C
50

D
ec
la
ra
tiv

e
M
T
L
s
al
lo
w
au
to
m
at
ic
tr
ac
ea
bi
lit
y

m
an
ag
em

en
t

P
45

C
ite

s
P
67
7

C
51

D
ec
la
ra
tiv

e
m
od

el
tr
an
sf
or
m
at
io
n
la
ng

ua
ge
s
al
lo
w

fo
r
im

pl
ic
it
ru
le
or
de
ri
ng

le
ss
en
in
g
th
e
lo
ad

on
de
ve
lo
pe
r

P
45

C
ite

s
P
67
7

C
52

D
ec
la
ra
tiv

e
M
T
L
s
ca
n
do

im
pl
ic
it
ta
rg
et
ob

je
ct

cr
ea
tio

n
P
45

C
ite

s
P
67
7

C
53

D
ec
la
ra
tiv

e
M
T
L
s
al
lo
w
fo
r
im

pl
ic
it
so
ur
ce

m
od

el
tr
av
er
sa
l

P
45

C
ite

s
P
67
7

C
54

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
sy
nt
ax

is
m
or
e

sp
ec
ifi
c

P
52

–

C
55

G
PL

s
do

no
ta
llo

w
de
ve
lo
pe
rs
to

co
nv
en
ie
nt
ly

ex
pr
es
s
m
od
el
m
an
ip
ul
at
io
n
co
nc
ep
ts

P
52

–

C
56

W
e
fo
un
d
th
at
co
py
in
g
co
m
pl
ex

st
ru
ct
ur
es

is
m
or
e

ef
fe
ct
iv
e
in

M
T
L
s

P
59

E
m
pi
ri
ca
ls
tu
dy

E
xp
re
ss
iv
en
es
s

Po
si
tiv

e
C
57

G
en
er
al
-p
ur
po
se

la
ng
ua
ge
s
la
ck

su
ita
bl
e
ab
st
ra
ct
io
ns

fo
r
sp
ec
if
yi
ng

tr
an
sf
or
m
at
io
ns

P
63

–

C
58

G
ra
ph

-b
as
ed

M
T
L
s
ar
e
es
pe
ci
al
ly

po
pu

la
r
du

e
to

th
ei
r
hi
gh

ex
pr
es
si
ve

po
w
er

P
70

–

C
59

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ha
ve

m
or
e
sp
ec
ifi
c

la
ng
ua
ge

co
ns
tr
uc
ts

P
80

–

C
60

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ha
ve

a
hi
gh
er

le
ve
l

of
ab
st
ra
ct
io
n
w
hi
ch

le
ad
s
to

ga
in
s
in

ex
pr
es
si
ve
ne
ss

ov
er

G
PL

s

P
80

C
ite

s
P
67
5

C
61

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ar
e
ea
si
er

to
us
e

th
an

G
PL

s
P
80

C
ite

s
P
67
5

123

494 S. Götz et al.
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
62

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
tr
an
sf
or
m
at
io
n

co
ns
tr
uc
ts
ar
e
m
or
e
sp
ec
ifi
c

P
94

–

C
63

Fr
om

ou
r
pe
rs
pe
ct
iv
e,
au
to
m
at
ic
ha
nd

lin
g/
re
so
lu
tio

n
of

tr
ac
es

by
tr
an
sf
or
m
at
io
n
en
gi
ne

is
on
e
of

th
e

m
aj
or

fe
at
ur
es

th
at
m
ak
e
ex
is
tin

g
M
T
L
s
be
tte

r
su
ite
d
fo
r
m
od
el
tr
an
sf
or
m
at
io
ns

th
an

G
PL

s

P
95

–

C
64

G
en
er
al
-p
ur
po
se

la
ng
ua
ge
s
la
ck

su
ffi
ci
en
t

tr
an
sf
or
m
at
io
n
co
nc
ep
ts

P
95

–

C
1D

D
SL

s
tr
ad
e
ex
pr
es
si
ve
ne
ss

in
a
lim

ite
d
do

m
ai
n
fo
r

ge
ne
ra
lit
y

P
67
5

C
ite

s
P
80
4

C
65

G
PL

s
la
ck

su
ita

bl
e
ab
st
ra
ct
io
ns

fo
r
sp
ec
if
yi
ng

tr
an
sf
or
m
at
io
ns

P
67
7

C
ite

s
P
63

C
66

W
ith

a
D
SL

/M
T
L
,a

pr
og

ra
m
m
er

ca
n
ex
pr
es
s
th
ei
r

ob
je
ct
iv
e
in

a
co
nc
is
e
m
an
ne
r
us
in
g
a
la
ng
ua
ge

th
at

is
m
uc
h
hi
gh

er
in

ex
pr
es
si
ve
ne
ss

th
an

th
at
ty
pi
ca
lly

of
fe
re
d
in

a
tr
an
si
tio

na
lp

ro
gr
am

m
in
g
la
ng
ua
ge

P
80
4

–

N
eg
at
iv
e

C
67

H
av
in
g
w
ri
tte
n
se
ve
ra
lt
ra
ns
fo
rm

at
io
n,

w
e
ha
ve

id
en
tifi

ed
th
at
cu
rr
en
tM

T
L
s
ar
e
to
o
lo
w
a
le
ve
lo

f
ab
st
ra
ct
io
n
fo
r
su
cc
in
ct
ly

ex
pr
es
si
ng

tr
an
sf
or
m
at
io
ns

be
tw
ee
n
D
SL

s
be
ca
us
e
th
ey

de
m
on

st
ra
te
se
ve
ra
lr
ec
ur
ri
ng

pa
tte

rn
s
th
at
ha
ve

to
be

re
im

pl
em

en
te
d
ea
ch

tim
e

P
10

E
xp
er
ie
nc
e

C
68

H
av
in
g
w
ri
tte
n
se
ve
ra
lt
ra
ns
fo
rm

at
io
n,

w
e
ha
ve

id
en
tifi

ed
th
at
m
ap
pi
ng

a
si
ng

le
el
em

en
tt
o

fr
ag
m
en
ts
of

m
ul
tip

le
el
em

en
ts
ha
s
to

be
do

ne
pr
og

ra
m
m
at
ic
al
ly

w
hi
ch

is
co
un

te
ri
nt
ui
tiv

e
an
d

er
ro
r-
pr
on
e

P
10

E
xp
er
ie
nc
e

C
69

O
C
L
co
ns
tr
ai
nt
s
ca
nn
ot

be
tr
an
sf
or
m
ed

in
M
T
L
s

P
32

E
m
pi
ri
ca
lS

tu
dy

C
70

T
he
re

is
no

m
ec
ha
ni
sm

fo
r
de
sc
ri
bi
ng

an
d/
or

st
or
in
g

in
fo
rm

at
io
n
ab
ou
tt
he

pr
op
er
tie
s
of

a
tr
an
sf
or
m
at
io
n

P
33

–

E
xt
en
da
bi
lit
y

N
eg
at
iv
e

C
71

E
xt
en
di
ng

m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
is

di
ffi
cu
lt

P
50

–

Ju
st
be
tte
r

Po
si
tiv

e
C
72

G
G
T
(g
ra
ph

gr
am

m
ar

an
d
gr
ap
h
tr
an
sf
or
m
at
io
n)

ar
e

a
po
w
er
fu
lt
ec
hn
iq
ue

fo
r
sp
ec
if
yi
ng

co
m
pl
ex

tr
an
sf
or
m
at
io
ns

P
9

C
ite

s
P
66
4-
P
66
6

C
73

G
en
er
al
-p
ur
po
se

pr
og
ra
m
m
in
g
la
ng
ua
ge
s
ar
e
no
t

su
ita
bl
e
fo
r
de
fin

in
g
m
od
el
tr
an
sf
or
m
at
io
ns

P
23

C
ite

s
P
63

123

Claimed advantages and disadvantages of model transformation languages: a SLR 495
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
74

G
PL

s
ar
e
no
tw

el
ls
ui
te
d
fo
r
m
od
el
m
ig
ra
tio

n
P
34

E
xa
m
pl
es

C
75

D
ed
ic
at
ed

M
T
L
s
of
fe
r
th
e
m
os
tp

ot
en
tia

l
tr
an
sf
or
m
at
io
n
ap
pr
oa
ch

be
ca
us
e
th
e
la
ng
ua
ge
s

ca
n
be

ta
ilo

re
d
fo
r
th
e
pu
rp
os
e

P
63

–

C
76

In
or
de
r
to

tr
an
sf
or
m

m
od
el
s
in

a
G
PL

,o
ne

ha
s
to

ad
d
in
cr
ea
si
ng

am
ou

nt
s
of

m
ac
hi
ne
ry
,e
.g
.t
o
ke
ep

tr
ac
k
of

w
hi
ch

el
em

en
ts
ha
ve

al
re
ad
y
be
en

tr
an
sf
or
m
ed
.T

hi
s
le
ad
s
to

th
e
as
su
m
pt
io
n
th
at

m
od
el
tr
an
sf
or
m
at
io
ns

ca
nn
ot

be
se
ns
ib
ly

w
ri
tte
n

in
a
st
an
da
rd

pr
og
ra
m
m
in
g
la
ng
ua
ge

P
64

E
xa
m
pl
es

C
77

M
od
el
tr
an
sf
or
m
at
io
ns

pr
es
en
ta

nu
m
be
r
of

pr
ob
le
m
s

w
hi
ch

im
pl
y
th
at
de
di
ca
te
d
ap
pr
oa
ch
es

ar
e
re
qu

ir
ed

P
66

C
ite

s
P
64

C
78

T
he

cu
rr
en
tc
on
se
ns
us

is
th
at
sp
ec
ia
liz
ed

la
ng
ua
ge
s

w
ith

a
m
ix
tu
re

of
de
cl
ar
at
iv
e
an
d
im

pe
ra
tiv

e
co
ns
tr
uc
ts
ar
e
m
os
ts
ui
ta
bl
e
fo
r
sp
ec
if
yi
ng

m
od
el

tr
an
sf
or
m
at
io
ns

P
86

–

C
79

W
ith

th
e
he
lp

of
an

ex
am

pl
e,
w
e
ha
ve

sh
ow

n
th
at

G
G
T
(g
ra
ph

gr
am

m
ar

an
d
gr
ap
h
tr
an
sf
or
m
at
io
n)

ca
n
be

us
ed

to
tr
an
sf
or
m

PI
M
s
in
to

PS
M
s

P
66
4

E
xa
m
pl
es

C
2D

D
SL

s
op

en
up

th
e
ap
pl
ic
at
io
n
do

m
ai
n
to

a
la
rg
er

gr
ou
p
of

de
ve
lo
pe
rs

P
67
5

C
ite

s
P
80
3

C
3D

D
om

ai
n-
sp
ec
ifi
c
la
ng
ua
ge
s
in
cr
ea
se

th
e
ea
se

of
us
e

P
67
5

C
ite

s
P
80
3

C
4D

W
he
n
us
in
g
D
SL

s,
le
ss

er
ro
rs
ar
e
m
ad
e

P
80
3

E
m
pi
ri
ca
lS

tu
dy

N
eg
at
iv
e

C
80

G
en
er
al
-p
ur
po
se

M
T
L
s
ar
e
no
tw

el
ls
ui
te
d
fo
r
m
od
el

m
ig
ra
tio

n
si
nc
e
th
er
e
is
ad
di
tio

na
lo

ve
rh
ea
d
bu
t

de
di
ca
te
d
m
ig
ra
tio

n
la
ng

ua
ge
s
ar
e

P
34

E
xa
m
pl
es

L
ea
rn
ab
ili
ty

N
eg
at
iv
e

C
81

T
he

ge
ne
ra
lit
y
of

ge
ne
ra
l-
pu

rp
os
e
M
T
L
s
ca
n
ha
ve

th
e
ef
fe
ct
of

m
ak
in
g
th
em

le
ss

ap
pr
oa
ch
ab
le
an
d

cr
ea
te
a
st
ee
p
le
ar
ni
ng

cu
rv
e
fo
r
no
n-
ex
pe
rt
us
er
s

P
30

–

C
82

U
se
rs
ha
ve

to
le
ar
n
m
ul
tip

le
si
m
ila

r,
bu
tn

ot
al
w
ay
s

co
ns
is
te
nt
,l
an
gu
ag
es
,w

hi
ch

re
qu
ir
es

co
ns
id
er
ab
le

tim
e
to

le
ar
n

P
52

–

C
83

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ha
ve

a
st
ee
p

le
ar
ni
ng

cu
rv
e

P
58

–

C
84

O
ne

ha
s
to

le
ar
n
a
co
m
pl
et
el
y
ne
w
la
ng
ua
ge

to
tr
an
sf
or
m

m
od

el
s
w
ith

M
T
L
s

P
81

–

Pe
rf
or
m
an
ce

Po
si
tiv

e
C
85

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ar
e
m
or
e

pe
rf
or
m
an
t

P
95

C
ite

s
P
67
6

C
86

G
rG

en
sh
ow

s
a
be
tte
r
pe
rf
or
m
an
ce

of
tr
an
sf
or
m
at
io
ns

th
an

Ja
va

P
67
6

Sa
m
pl
es

C
5D

D
SL

s
ha
ve

be
tte

r
pe
rf
or
m
an
ce

P
80
1

–

123

496 S. Götz et al.
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

N
eg
at
iv
e

C
87

D
ec
la
ra
tiv

e
M
T
L
s
ha
ve

pe
rf
or
m
an
ce

pr
ob
le
m
s

P
45

–

C
88

T
he

pe
rf
or
m
an
ce

of
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s

is
a
sh
or
tc
om

in
g
th
at
m
ay

m
ak
e
us
er
s
fe
el
lim

ite
d

P
52

–

C
89

M
T
L
s
ha
ve

w
or
se

pe
rf
or
m
an
ce

P
80

–

Pr
od
uc
tiv

ity
Po

si
tiv

e
C
90

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
be
in
g
D
SL

s
im

pr
ov
e
th
e
pr
od

uc
tiv

ity
P
29

–

C
91

D
ec
la
ra
tiv

e
M
T
L
s
in
cr
ea
se

pr
og

ra
m
m
er

pr
od

uc
tiv

ity
P
45

–

C
6D

D
SL

s
in
cr
ea
se

pr
od

uc
tiv

ity
P
67
5

C
ite

s
P
80
1,

P
80
3

C
7D

U
si
ng

D
SL

s
in
cr
ea
se
s
pr
od

uc
tiv

ity
P
80
1

E
xa
m
pl
es

C
8D

U
si
ng

D
SL

s
in
cr
ea
se
s
pr
od

uc
tiv

ity
P
80
3

E
m
pi
ri
ca
lS

tu
dy

N
eg
at
iv
e

C
92

T
he

pe
rc
ei
ve
d
ef
fe
ct
iv
en
es
s
of

m
od
el
tr
an
sf
or
m
at
io
n

la
ng
ua
ge
s
is
ba
d

P
32

E
m
pi
ri
ca
lS

tu
dy

C
93

Pr
od
uc
tiv

ity
of

G
PL

de
ve
lo
pm

en
tm

ig
ht

be
hi
gh
er

si
nc
e
ex
pe
rt
us
er
s
fo
r
G
PL

s
ar
e
ea
si
er

to
hi
re

P
59

–

R
eu
se

an
d
M
ai
nt
ai
na
bi
lit
y

Po
si
tiv

e
C
94

B
id
ir
ec
tio

na
lm

od
el
tr
an
sf
or
m
at
io
ns

ha
ve

an
ad
va
nt
ag
e
in

m
ai
nt
ai
na
bi
lit
y

P
44

–

C
95

T
he
re

ex
is
ts
a
pl
et
ho

ra
of

re
us
e
m
ec
ha
ni
sm

s
fo
r

M
T
L
s

P
77

L
ite

ra
tu
re

re
vi
ew

C
9D

D
om

ai
n-
sp
ec
ifi
c
la
ng
ua
ge
s
re
du
ce

th
e
m
ai
nt
en
an
ce

co
st
s

P
67
5

C
ite

s
P
80
0

N
eg
at
iv
e

C
96

R
eu
se

is
sp
ar
se
,t
ra
ns
fo
rm

at
io
ns

ar
e
w
ri
tte
n
fr
om

sc
ra
tc
h
ev
er
y
tim

e
be
ca
us
e
m
et
a-
m
od

el
s
di
ff
er

sl
ig
ht
ly

P
4

C
ite

s
P
77

C
97

H
av
in
g
w
ri
tte
n
se
ve
ra
lt
ra
ns
fo
rm

at
io
n,

w
e
ha
ve

id
en
tifi

ed
th
at
re
cu
rr
in
g
pa
tte

rn
s
ha
ve

to
be

im
pl
em

en
te
d
fr
om

sc
ra
tc
h
ev
er
y
tim

e

P
10

E
xp
er
ie
nc
e

C
98

T
he
re

ex
is
ts
no

m
od
ul
e
co
nc
ep
tf
or

m
od
el

tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
th
at
al
lo
w
s
pr
og
ra
m
m
er
s

to
co
nt
ro
li
nf
or
m
at
io
n
hi
di
ng

an
d
st
ri
ct
ly

de
cl
ar
e

m
od
el
an
d
co
de

de
pe
nd
en
ci
es

at
m
od
ul
e
in
te
rf
ac
e

P
29

–

C
99

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
la
ck

so
ph
is
tic
at
ed

re
us
e
m
ec
ha
ni
sm

s
P
33

–

C
10
0

U
nf
or
tu
na
te
ly
,t
he

de
fin

iti
on

of
m
od
el

tr
an
sf
or
m
at
io
ns

is
no

rm
al
ly

a
ty
pe
-c
en
tr
ic
ac
tiv

ity
,

th
us

m
ak
in
g
th
ei
r
re
us
e
fo
r
ot
he
r
m
et
a-
m
od

el
s

di
ffi
cu
lt

P
41

–

C
10
1

E
vo
lv
in
g
an
d
m
ai
nt
ai
ni
ng

M
T
L
re
qu
ir
es

ef
fo
rt

P
52

C
ite

s
P
67
4

123

Claimed advantages and disadvantages of model transformation languages: a SLR 497
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

C
10
2

T
he

em
ph
as
is
of

M
D
E
on

us
in
g
D
SL

s
ha
s
ca
us
ed

a
pr
ol
if
er
at
io
n
of

m
et
a-
m
od

el
s.
In

th
is
sc
en
ar
io
,

de
ve
lo
pi
ng

a
tr
an
sf
or
m
at
io
n
fo
r
a
ne
w
m
et
a-
m
od
el

is
us
ua
lly

pe
rf
or
m
ed

m
an
ua
lly

w
ith

no
re
us
e,
ev
en

if
co
m
pa
ra
bl
e
tr
an
sf
or
m
at
io
ns

fo
r
si
m
ila

r
m
et
a-
m
od

el
s
ex
is
t

P
60

–

C
10
3

T
he
re

ar
e
ba
rr
ie
rs
su
ch

as
in
su
ffi
ci
en
ta
bs
tr
ac
tio

n
of

re
us
e
m
ec
ha
ni
sm

s
fr
om

m
et
a-
m
od

el
s
th
at
ha
m
pe
r

re
us
e

P
77

L
ite

ra
tu
re

re
vi
ew

C
10
4

T
he
re

is
lit
tle

su
pp
or
tf
or

re
us
in
g
m
od
el

tr
an
sf
or
m
at
io
ns

in
di
ff
er
en
tc
on
te
xt
s
si
nc
e
th
ey

ar
e

tig
ht
ly

co
up

le
d
to

th
e
m
et
a-
m
od

el
s
th
ey

ar
e
de
fin

ed
up
on

P
78

–

C
10

5
R
eu
se

of
m
od

el
tr
an
sf
or
m
at
io
ns

is
ha
rd
ly

es
ta
bl
is
he
d

in
pr
ac
tic

e
P
95

C
ite

s
P
77

C
10
6

D
ev
el
op
in
g
th
es
e
ne
w
la
ng
ua
ge
s
to

a
su
ffi
ci
en
t

de
gr
ee

of
m
at
ur
ity

is
an

en
or
m
ou
s
ef
fo
rt
w
hi
ch

in
cl
ud

es
fo
r
ex
am

pl
e
co
ns
tr
uc
tio

n
an
d
op

tim
is
at
io
n

of
co
m
pi
le
rs

P
67
4

–

Se
m
an
tic

s
an
d
V
er
ifi
ca
tio

n
Po

si
tiv

e
C
10

7
B
id
ir
ec
tio

na
lt
ra
ns
fo
rm

at
io
n
la
ng

ua
ge
s
ha
ve

an
ad
va
nt
ag
e
in

ve
ri
fic

at
io
n

P
44

–

N
eg
at
iv
e

C
10

8
Fo

r
ex
is
tin

g
re
la
tio

na
lm

od
el
tr
an
sf
or
m
at
io
n

ap
pr
oa
ch
es
,i
ti
s
us
ua
lly

no
tr
ea
lly

cl
ea
r
un

de
r

w
hi
ch

co
ns
tr
ai
nt
s
pa
rt
ic
ul
ar

im
pl
em

en
ta
tio

ns
re
al
ly

co
nf
or
m

to
th
e
fo
rm

al
se
m
an
tic

s

P
21

–

C
10
9

C
om

pr
eh
en
si
ve

ve
ri
fic
at
io
n
su
pp
or
to

f
m
od
el

tr
an
sf
or
m
at
io
ns

is
m
is
si
ng

P
22

–

C
11

0
T
he
re

is
a
se
m
an
tic

di
ff
er
en
ce

be
tw

ee
n
a
ty
pi
ca
l

pr
og
ra
m
m
in
g
la
ng
ua
ge

an
d
fo
rm

al
is
m
s
th
at

su
pp
or
tb

id
ir
ec
tio

na
lit
y
an
d
ch
an
ge

pr
op
ag
at
io
n

su
ch

as
T
G
G
s

P
23

–

C
11
1

M
os
tt
ra
ns
fo
rm

at
io
n
la
ng
ua
ge
s
ha
ve

no
fo
rm

al
se
m
an
tic

s
to

ad
d
de
ta
ile

d
sp
ec
ifi
ca
tio

ns
on

th
e

ex
pe
ct
ed

be
ha
vi
ou
r

P
39

–

C
11
2

T
he

se
m
an
tic
s
of

m
an
y
m
od
el
tr
an
sf
or
m
at
io
n

la
ng
ua
ge
s
is
no
tf
or
m
al
ly

de
fin

ed
P
58

–

123

498 S. Götz et al.
Ta
bl
e
4

co
nt
in
ue
d

C
at
eg
or
y

V
al
ua
tio

n
C
ID

C
la
im

Pu
bl
ic
at
io
n

E
vi
de
nc
e

To
ol

Su
pp
or
t

Po
si
tiv

e
C
11
3

In
te
rn
al
M
T
L
s
ca
n
in
he
ri
tt
oo
ls
up
po
rt
of

ge
ne
ra
l-
pu
rp
os
e
ho
st
la
ng
ua
ge

P
23

–

C
11
4

To
ol

su
pp
or
tf
or

ex
te
rn
al
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
is

po
te
nt
ia
lly

m
or
e
po
w
er
fu
lt
ha
n
fo
r
in
te
rn
al
M
T
L
or

G
PL

be
ca
us
e
it
ca
n
be

ta
ilo

re
d
to

th
e
D
SL

P
44

–

C
11
5

D
ec
la
ra
tiv

e
M
T
L
s
pr
ov
id
e
op
po
rt
un
iti
es

fo
r

sp
ec
ia
liz
ed

to
ol

su
pp
or
t

P
45

–

N
eg
at
iv
e

C
11
6

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
la
ck

to
ol

su
pp
or
t

P
23

C
ite

s
P
66
9,
P
67
0

C
11

7
D
ec
la
ra
tiv

e
M
T
L
s
la
ck

lib
ra
ri
es

an
d
to
ol

su
pp

or
t

P
45

–

C
11
8

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
la
ck

to
ol

su
pp
or
t

P
52

–

C
11
9

Su
pp
or
tin

g
to
ol
s
fo
r
M
T
L
s
ha
ve

no
tt
he

sa
m
e
le
ve
l

of
m
at
ur
ity

as
fo
r
G
PL

s
P
74

–

C
12
0

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ha
ve

w
or
se

to
ol

su
pp
or
t

P
80

C
ite

s
P
94

C
12
1

To
ol

su
pp
or
tf
or

ex
te
rn
al
M
T
L
s
ha
s
to

be
de
ve
lo
pe
d

w
hi
ch

en
ta
ils

ex
tr
a
ef
fo
rt

P
94

–

C
12
2

To
ol

su
pp
or
tf
or

m
od
el
tr
an
sf
or
m
at
io
ns

is
no
ta
s

m
at
ur
e
as

su
bj
ec
ts
w
ou

ld
lik

e
P
66
9

E
m
pi
ri
ca
ls
tu
dy

C
12
3

To
ol

su
pp
or
tf
or

m
od
el
tr
an
sf
or
m
at
io
ns

is
no
tg

re
at

P
67
0

E
m
pi
ri
ca
ls
tu
dy

V
er
sa
til
ity

N
eg
at
iv
e

C
12
4

T
he

sy
nt
ax

of
m
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
is
le
ss

ve
rs
at
ile

P
52

–

C
12
5

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ar
e
le
ss

ve
rs
at
ile

th
an

G
PL

s
P
80

–

C
12
6

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
ha
ve

le
ss

ve
rs
at
ile

la
ng
ua
ge

co
ns
tr
uc
ts

P
80

–

C
12
7

M
od
el
tr
an
sf
or
m
at
io
n
la
ng
ua
ge
s
co
ns
tr
uc
ts
ar
e
le
ss

ve
rs
at
ile

P
94

–

C
10
D

D
SL

s
ar
e
le
ss

ge
ne
ra
lt
ha
n
ge
ne
ra
l-
pu
rp
os
e

pr
og
ra
m
m
in
g
la
ng
ua
ge
s

P
67
5

–

123

Claimed advantages and disadvantages of model transformation languages: a SLR 499

B SLR results

P2 Patzina, Sven and Lars Patzina (2012). “A Case
Study Based Comparison of ATL and SDM”. In:
Proceedings of the 4th International Conference on
Applications of Graph Transformations with Indus-
trial Relevance. AGTIVE 2011. DOI: https://doi.org/
10.1007/978-3-642-34176-2_18.

P3 Stephan, Matthew and Andrew Stevenson (2009). A
Comparative Look at Model Transformation Lan-
guages. Tech. rep. Software Technology Labora-
tory at Queens University. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.712.2983.

P4 Cuadrado, J. S., E. Guerra, and J. de Lara (2014).
“A Component Model for Model Transformations”.
In: IEEE Transactions on Software Engineering. DOI:
https://doi.org/10.1109/TSE.2014.2339852.

P9 Agrawal, Aditya, Gabor Karsai, and Feng Shi (2003).
“A UML-based graph transformation approach for
implementingdomain-specificmodel transformations”.
In: International Journal on Software and Systems
Modeling. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.152.1226.

P10 Johannes, Jendrik et al. (2009). “Abstracting Com-
plex Languages through Transformation and Com-
position”. In: Model Driven Engineering Languages
and Systems. MODELS 2009. DOI: https://doi.org/
10.1007/978-3-642-04425-0_41.

P15 Jouault, Frédéric et al. (2008). “ATL: A model trans-
formation tool”. In: Science of Computer Program-
ming. DOI: https://doi.org/10.1016/j.scico.2007.08.
002.

P21 Giese, Holger, Stephan Hildebrandt, and Leen Lam-
bers (2014). “Bridging the gap between formal seman-
tics and implementation of triple graph grammars”. In:
Software & Systems Modeling. DOI: https://doi.org/
10.1007/s10270-012-0247-y.

P22 Schoenboeck, Johannes et al. (2010). “Catch Me If
You Can - Debugging Support for Model Trans-
formations”. In: Models in Software Engineering.
MODELS 2009. DOI: https://doi.org/10.1007/978-3-
642-12261-3_2.

P23 Hinkel, Georg and Erik Burger (2019). “Change
propagation and bidirectionality in internal transfor-
mation DSLs”. In: Software & Systems Modeling.
DOI: https://doi.org/10.1007/s10270-017-0617-6.

P27 Sottet, J. and A. Vagner (2014). “Defining Domain
Specific Transformations in Human-Computer inter-
faces development”. In: 2014 2nd International Con-
ference on Model-Driven Engineering and Software
Development. MODELSWARD ’14. URL: https://
ieeexplore.ieee.org/abstract/document/7018471.

P28 Acretoaie, Vlad (2013). Delivering the Next Gen-
eration of Model Transformation Languages and
Tools. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.708.6612.

P29 Rentschler, Andreas et al. (2014). “Designing Infor-
mation Hiding Modularity for Model Transformation
Languages”. In: Proceedings of the 13th Interna-
tional Conference on Modularity. MODULARITY
’14. DOI: https://doi.org/10.1145/2577080.2577094.

P30 Steel, Jim and Robin Drogemuller (2011). “Domain-
Specific Model Transformation in Building Quantity
Take-Off”. In:Model Driven Engineering Languages
and Systems. MODELS 2011. DOI: https://doi.org/
10.1007/978-3-642-24485-8_15.

P32 Shin, Shin-Shing (2019). “Empirical study on the
effectiveness and efficiency of model-driven architec-
ture techniques”. In: Software & Systems Modeling.
DOI: https://doi.org/10.1007/s10270-018-00711-y.

P33 Criado, Javier et al. (2015). “Enabling the Reuse
of Stored Model Transformations Through Annota-
tions”. In: Theory and Practice of Model Transforma-
tions. ICMT 2015. DOI: https://doi.org/10.1007/978-
3-319-21155-8_4.

P34 Rose, Louis M. et al. (2014). “Epsilon Flock: a model
migration language”. In: Software & Systems Model-
ing. DOI: https://doi.org/10.1007/s10270-012-0296-
2.

P39 Berramla, K., E. A. Deba, and M. Senouci (2015).
“Formal validation of model transformation with Coq
proof assistant”. In: 2015 First International Con-
ference on New Technologies of Information and
Communication. NTIC 2015. DOI: https://doi.org/10.
1109/NTIC.2015.7368755.

P40 Legros, Elodie et al. (2009). “Generic and reflective
graph transformations for checking and enforcement
of modeling guidelines”. In: Journal of Visual Lan-
guages &Computing 4. DOI: https://doi.org/10.1016/
j.jvlc.2009.04.005.

P41 Sánchez Cuadrado, Jesús, Esther Guerra, and Juan de
Lara (2011). “Generic Model Transformations: Write
Once, Reuse Everywhere”. In: Theory and Practice
of Model Transformations. ICMT 2011. DOI: https://
doi.org/10.1007/978-3-642-21732-6_5.

P43 Strüber, Daniel et al. (2017). “Henshin: A Usability-
Focused Framework for EMF Model Transforma-
tion Development”. In: Graph Transformation. ICGT
2017.DOI: https://doi.org/10.1007/978-3-319-61470-
0_12.

P44 Wider, Arif (2014). “Implementing a Bidirectional
Model Transformation Language as an Internal DSL
in Scala”. In: EDBT/ICDT Workshops. URL: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.
9439.

123

500 S. Götz et al.

P45 Lawley, Michael and Kerry Raymond (2007). “Imple-
menting a Practical Declarative Logic-based Model
Transformation Engine”. In: Proceedings of the 2007
ACM Symposium on Applied Computing. SAC ’07.
DOI: https://doi.org/10.1145/1244002.1244216.

P50 Liepinš, Renārs (2012). “Library for Model Query-
ing: IQuery”. In:Proceedings of the 12thWorkshop on
OCL and Textual Modelling. OCL ’12. DOI: https://
doi.org/10.1145/2428516.2428522.

P52 Krikava, Filip, Philippe Collet, and Robert France
(2014). “ManipulatingModelsUsing InternalDomain-
Specific Languages”. In: Symposium On Applied
Computing. SAC ’14. DOI: https://doi.org/10.1145/
2554850.2555127.

P56 Sun, Yu, Jules White, and Jeff Gray (2009). “Model
Transformation by Demonstration”. In:Model Driven
EngineeringLanguages andSystems.MODELS2009.
DOI: https://doi.org/10.1007/978-3-642-04425-0_58.

P58 Irazábal, Jerónimo and Claudia Pons (2010). “Model
Transformation Languages Relying on Models as
ADTs”. In: Software Language Engineering. SLE
2009.DOI: https://doi.org/10.1007/978-3-642-12107-
4_10.

P59 Hebig, Regina et al. (2018). “Model Transformation
Languages Under a Magnifying Glass: A Controlled
Experiment with Xtend, ATL, and QVT”. In: Pro-
ceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineer-
ing. ESEC/FSE 2018. DOI: https://doi.org/10.1145/
3236024.3236046.

P60 Lara, Juan de et al. (2018). “Model Transforma-
tion Product Lines”. In: Proceedings of the 21th
ACM/IEEE InternationalConferenceonModelDriven
Engineering Languages and Systems. MODELS ’18.
DOI: https://doi.org/10.1145/3239372.3239377.

P63 Sendall, S. andW. Kozaczynski (2003). “Model trans-
formation: the heart and soul ofmodel-driven software
development”. In: IEEE Software. DOI: https://doi.
org/10.1109/MS.2003.1231150.

P64 Tratt, Laurence (2005). “Model transformations and
tool integration”. In: Software & Systems Modeling.
DOI: https://doi.org/10.1007/s10270-004-0070-1.

P66 — (2007). “Model transformations in MT”. In: Sci-
ence of Computer Programming. DOI: https://doi.org/
10.1016/j.scico.2007.05.003.

P70 Baar, Thomas and Jon Whittle (2007). “On the
Usage of Concrete Syntax in Model Transforma-
tion Rules”. In: Perspectives of Systems Informatics.
PSI 2006. DOI: https://doi.org/10.1007/978-3-540-
70881-0_10.

P74 Sánchez Cuadrado, J., E. Guerra, and J. de Lara
(2015). “Quick fixing ATL model transformations”.

In: 2015 ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Sys-
tems. MODELS ’15. DOI: https://doi.org/10.1109/
MODELS.2015.7338245.

P75 Li, Dan, Xiaoshan Li, and Volker Stolz (2011).
“QVT-basedModel Transformation UsingXSLT”. In:
SIGSOFT Softw. Eng. Notes. DOI: https://doi.org/10.
1145/1921532.1921563.

P77 Kusel, A. et al. (2015). “Reuse in model-to-model
transformation languages: are we there yet?” In: Soft-
ware & Systems Modeling. DOI: https://doi.org/10.
1007/s10270-013-0343-7.

P78 Wimmer,Manuel et al. (2011). “ReusingModelTrans-
formations across Heterogeneous Metamodels”. In:
ECEASST. DOI: https://doi.org/10.14279/tuj.eceasst.
50.722.

P80 Křikava, Filip, Philippe Collet, and Robert B. France
(2014). “SIGMA: Scala Internal Domain-Specific
Languages for Model Manipulations”. In: Model-
Driven Engineering Languages and Systems. MOD-
ELS 2014. DOI: https://doi.org/10.1007/978-3-319-
11653-2_35.

P81 Akehurst, D. H. et al. (2006). “SiTra: Simple Transfor-
mations in Java”. In:Model Driven Engineering Lan-
guages and Systems. MODELS 2006. DOI: https://
doi.org/10.1007/11880240_25.

P86 Kolovos, Dimitrios S., Richard F. Paige, and Fiona A.
C. Polack (2008). “The Epsilon Transformation Lan-
guage”. In: Theory and Practice of Model Transfor-
mations. ICMT 2008. DOI: https://doi.org/10.1007/
978-3-540-69927-9_4.

P90 Sánchez Cuadrado, Jesús, Esther Guerra, and Juan
de Lara (2014). “Towards the Systematic Construc-
tion of Domain-Specific Transformation Languages”.
In:Modelling Foundations and Applications. ECMFA
2014.DOI: https://doi.org/10.1007/978-3-319-09195-
2_13.

P94 George, Lars, Arif Wider, and Markus Scheidgen
(2012). “Type-SafeModel Transformation Languages
as Internal DSLs in Scala”. In: Theory and Practice
of Model Transformations. ICMT 2012. DOI: https://
doi.org/10.1007/978-3-642-30476-7_11.

P95 Hinkel, Georg, Thomas Goldschmidt, et al. (2019).
“Using internal domain-specific languages to inherit
tool support and modularity for model transforma-
tions”. In: Software&SystemsModeling. DOI: https://
doi.org/10.1007/s10270-017-0578-9.

P664 Agrawal,Aditya,TihamerLevendovszky, et al. (2002).
“Generative programming via graph transformations
in the model-driven architecture”. In: In OOPSLA
2002 Workshop in Generative Techniques in the con-
text of Model Driven Architecture. OOPSLA ’02.

123

Claimed advantages and disadvantages of model transformation languages: a SLR 501

URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.70.4824.

P665 Afimann,Uwe (1996). “How to uniformly specify pro-
gram analysis and transformation with graph rewrite
systems”. In: Compiler Construction. CC 1996. DOI:
https://doi.org/10.1007/3-540-61053-7_57.

P667 Radermacher, Ansgar (2000). “Support for Design
Patterns through Graph Transformation Tools”. In:
Applications of Graph Transformations with Indus-
trial Relevance. AGTIVE 1999. DOI: https://doi.org/
10.1007/3-540-45104-8_9.

P669 Mohagheghi, Parastoo et al. (2013). “An empirical
study of the state of the practice and acceptance of
model-driven engineering in four industrial cases”.
In: Empirical Software Engineering. DOI: https://doi.
org/10.1007/s10664-012-9196-x.

P670 Staron, Miroslaw (2006). “Adopting Model Driven
Software Development in Industry – A Case Study at
TwoCompanies”. In:Model Driven Engineering Lan-
guages and Systems. MODELS 2006. DOI: https://
doi.org/10.1007/11880240_5.

P671 Panach, José Ignacio, Óscar Pastor, and Nathalie
Aquino (2011). “A Model for Dealing with Usabil-
ity in a Holistic MDD Method”. In: User Interface
Description Language, Lisbon, Portugal. UIDL ’11.

P672 Amelunxen, Carsten et al. (2008). “Checking and
Enforcement of Modeling Guidelines with Graph
Transformations”. In: Applications of Graph Trans-
formations with Industrial Relevance. AGTIVE 2007.
DOI: https://doi.org/10.1007/978-3-540-89020-1_22.

P673 Schmidt, Douglas (2006). “Guest Editor’s Introduc-
tion: Model-Driven Engineering”. In: COMPUTER-
IEEE COMPUTER SOCIETY. DOI: https://doi.org/
10.1109/MC.2006.58.

P674 Chafi, Hassan et al. (2010). “Language Virtualization
for Heterogeneous Parallel Computing”. In: ACMSig-
plan Notices. DOI: https://doi.org/10.1145/1932682.
1869527.

P675 Mernik, Marjan, Jan Heering, and AnthonyM. Sloane
(2005). “When and How to Develop Domain-specific
Languages”. In: ACM computing surveys (CSUR).
DOI: https://doi.org/10.1145/1118890.1118892.

P676 Gorp, Pieter Van and LouisM. Rose (2013). The Petri-
Nets to Statecharts Transformation Case. DOI: https://
doi.org/10.4204/EPTCS.135.3.

P677 Mens, Tom and Pieter VanGorp (2006). “ATaxonomy
of Model Transformation”. In: Electronic Notes in
Theoretical Computer Science (GraMoT 2005). DOI:
https://doi.org/10.1016/j.entcs.2005.10.021.

P800 Herndon, R. M. and V. A. Berzins (1988). “The real-
izable benefits of a language prototyping language”.
In: IEEE Transactions on Software Engineering. DOI:
https://doi.org/10.1109/32.6159.

P801 Batory, Don, Jeff Thomas, and Marty Sirkin (1994).
“Reengineering a Complex Application Using a Scal-
able Data Structure Compiler”. In: Proceedings of the
2Nd ACM SIGSOFT Symposium on Foundations of
Software Engineering. SIGSOFT ’94. DOI: https://
doi.org/10.1145/193173.195299.

P803 Kieburtz, Richard B. et al. (1996). “A Software
EngineeringExperiment inSoftwareComponentGen-
eration”. In: Proceedings of the 18th International
Conference on Software Engineering. ICSE’96. DOI:
https://doi.org/10.1109/ICSE.1996.493448.

P804 Gray, J. and G. Karsai (2003). “An examination
of DSLs for concisely representing model traver-
sals and transformations”. In: 36th Annual Hawaii
International Conference on System Sciences, 2003.
Proceedings of the. HICSS ’03. DOI: https://doi.org/
10.1109/HICSS.2003.1174892.

References

1. Alves, R., Nunes, N.J.: Ceiling and threshold of paas tools: the
role of learnability in tool adoption. In: International Conference
on Human-Centred Software Engineering. HESSD 2016. (2016).
https://doi.org/10.1007/978-3-319-44902-9_21

2. van Amstel, M.F., van den Brand, M.G.J.: Model transformation
analysis: staying ahead of the maintenance nightmare. In: Theory
and practice ofmodel transformations. ICMT2011. (2011). https://
doi.org/10.1007/978-3-642-21732-6_8

3. Arendt, T. et al.: Henshin: advanced concepts and tools for in-
place EMF model transformations. In: Model Driven Engineering
Languages and Systems. MODELS 2010. (2010). https://doi.org/
10.1007/978-3-642-16145-2_9

4. Aruoba, S.B., Fernandez-Villaverde, J.: A comparison of program-
ming languages in economics. Technical report National Bureau
of Economic Research, Inc. (2014). https://EconPapers.repec.org/
RePEc:nbr:nberwo:20263

5. Auer, F., Felderer, M.: Current state of research on continu-
ous experimentation: a systematic mapping study. In: 2018 44th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). (2018). https://doi.org/10.1109/SEAA.
2018.00062

6. Badampudi, D., Wohlin, C., Petersen, K.: Experiences from using
snowballing and database searches in systematic literature studies.
In: Proceedings of the 19th International Conference on Evalua-
tion and Assessment in Software Engineering. EASE ’15. (2015).
https://doi.org/10.1145/2745802.2745818

7. Balogh, A., Varro, D.: Advanced model transformation language
constructs in the VIATRA2 framework. In: Proceedings of the
2006 ACM Symposium on Applied Computing. SAC ’06. (2006).
https://doi.org/10.1145/1141277.1141575

8. Barat, S. et al.: A model-based approach to systematic review of
research literature. In: Proceedings of the 10th Innovations in Soft-
ware Engineering Conference. ISEC ’17. (2017). https://doi.org/
10.1145/3021460.3021462

9. Barb, A.S., et al.: A statistical study of the relevance of lines
of code measures in software projects. In: Innovations in Sys-
tems and Software Engineering. (2014). https://doi.org/10.1007/
s11334-014-0231-5

123

502 S. Götz et al.

10. Basili, V., Reiter, R.: An investigation of human factors in software
development. In: Computer. (1979). https://doi.org/10.1109/MC.
1979.1658573

11. Basili, V.R., Caldiera, G., Dieter R.H.: The goal question metric
approach. In: Encyclopedia of Software Engineering (1994)

12. Batory, D., Johnson, C., et al.: Achieving extensibility through
product-lines and domain-specific languages: a case study. In:
ACM Transactions on Software Engineering and Methodology
(2002). https://doi.org/10.1145/505145.505147

13. Boehm, B., et al.: Cost models for future software life cycle pro-
cesses: COCOMO2.0. In: Annals of Software Engineering (1995).
https://doi.org/10.1007/BF02249046

14. Boot, A., Sutton, A., Papaioannou, D.: Systematic Approaches to
a Successful Literature Review. Sage, Thousand Oaks (2016)

15. Burkhardt, J.-M., Detiénne, F., Wiedenbeck, S.: Object-oriented
program comprehension: effect of expertise, task and phase. In:
Empirical Software Engineering (2002). https://doi.org/10.1023/
A:1015297914742

16. Cabot, L., Burgueño, J., Gérard, S.: The future of model transfor-
mation languages: an open community discussion. In: Journal of
Object Technology (2019). https://doi.org/10.5381/jot.2019.18.3.
a7

17. Calvar, T., et al.: Efficient ATL incremental transformations. In:
Journal of Object Technology (2019). https://doi.org/10.5381/jot.
2019.18.3.a2

18. Cary, J.R., Shasharina, S.G., Cummings, J.C., Reynders, J.V.,
Hinker, P.J., et al.: Comparison of C++ and Fortran 90 for object-
oriented scientific programming. Comput. Phys. Commun. 105(1),
20–36 (1997)

19. Charmaz, K.: Constructing Grounded Theory. Sage, Thousand
Oaks (2014)

20. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of UML models: a
systematic review of research and practice. In: Software&Systems
Modeling (2019). https://doi.org/10.1007/s10270-018-0675-4

21. Cuadrado, J., Molina, J.G., Tortosa, M.M.: RubyTL: a prac-
tical, extensible transformation language. In: Model Driven
Architecture–Foundations and Applications. ECMDA-FA 2006
(2006). https://doi.org/10.1007/11787044_13

22. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. In: IBM Systems Journal (2006). https://doi.
org/10.1147/sj.453.0621

23. Dieste, O., et al.: Empirical evaluation of the effects of experi-
ence on code quality and programmer productivity: an exploratory
study. In: Empirical Software Engineering (2017). https://doi.org/
10.1007/s10664-016-9471-3

24. Fang, J., Varbanescu,A.L., Sips,H.:A comprehensive performance
comparison of CUDA and OpenCL. In: 2011 International Confer-
ence on Parallel Processing. ICPP 2011 (2011). https://doi.org/10.
1109/ICPP.2011.45

25. Frakes, W.B., Succi, G.: An industrial study of reuse, quality, and
productivity. In: Journal of Systems and Software (2001). https://
doi.org/10.1016/S0164-1212(00)00121-7

26. Galster, M., et al.: Variability in software systems—a systematic
literature review. In: IEEE Transactions on Software Engineering
(2014). https://doi.org/10.1109/TSE.2013.56

27. Gherardi, L., Brugali, D., Comotti D.: A Java vs. C++ performance
evaluation: a 3D modeling benchmark. In: International Confer-
ence on Simulation, Modeling, and Programming for Autonomous
Robots. SIMPAR 2012 (2012). https://doi.org/10.1007/978-3-
642-34327-8_17

28. Hailpern, B., Tarr, P.: Model-driven development: the good, the
bad, and the ugly. In: IBM Systems Journal (2006). https://doi.org/
10.1147/sj.453.0451

29. Hebig, R., et al.: Model transformation languages under a magni-
fying glass: a controlled experiment with Xtend, ATL, and QVT.
In: Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ESEC/FSE 2018 (2018). https://
doi.org/10.1145/3236024.3236046

30. Henderson, R., Zorn, B.: A comparison of object-oriented pro-
gramming in four modern languages. In: Software: Practice and
Experience (1994). https://doi.org/10.1002/spe.4380241106

31. Hinkel, G.: An approach to maintainable model transformations
with an internal DSL. PhD thesis. National Research Center (2013)

32. Hinkel, G., Burger, E.: Change propagation and bidirectionality in
internal transformation DSLs. In: Software & Systems Modeling
(2019). https://doi.org/10.1007/s10270-017-0617-6

33. Hinkel, G., Goldschmidt, T., et al.: Using internal domain-specific
languages to inherit tool support and modularity for model trans-
formations. In: Software & Systems Modeling (2019). https://doi.
org/10.1007/s10270-017-0578-9

34. Hutchinson, John, et al.: Empirical assessment ofMDE in industry.
In: Proceedings of the 33rd International Conference on Software
Engineering. ICSE ’11 (2011). https://doi.org/10.1145/1985793.
1985858

35. ISO/IEC 25010:2011 (2011). ISO/IEC. URL: https://www.iso.org/
standard/22749.html

36. Jakumeit, E., et al.: A survey and comparison of transformation
tools based on the transformation tool contest. In: Science of Com-
puter Programming (2014). https://doi.org/10.1016/j.scico.2013.
10.009

37. Jones, T.C.: Measuring programming quality and productivity. In:
IBM Systems Journal (1978). https://doi.org/10.1147/sj.171.0039

38. Jouault, F., et al.: ATL: A QVT-like transformation language. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications.
OOPSLA ’06 (2006). https://doi.org/10.1145/1176617.1176691

39. Kahani, N., et al.:. Survey and classification of model transforma-
tion tools. In: Software & Systems Modeling (2019). https://doi.
org/10.1007/s10270-018-0665-6

40. Kieburtz, R.B., et al.: A software engineering experiment in
software component generation. In: Proceedings of the 18th Inter-
national Conference on Software Engineering. ICSE’96 (1996).
https://doi.org/10.1109/ICSE.1996.493448

41. Kitchenham, B., Charters, S.: Guidelines for performing System-
atic Literature Reviews in Software Engineering (2007). https://
www.researchgate.net/publication/302924724_Guidelines_for_
performing_Systematic_Literature_Reviews_in_Software_Engin
eering

42. Kofod-Petersen, A.: How to do a Structured Literature Review in
computer science (2015). https://www.researchgate.net/publica
tion/265158913_How_to_do_a_Structured_Literature_Review_
in_computer_science

43. Kolovos,D.S., Paige,R.F., Polack, F.A.C.: TheEpsilon transforma-
tion language. In: Theory and Practice of Model Transformations,
ICMT 2008 (2008). https://doi.org/10.1007/978-3-540-69927-
9_4

44. Kosar, T., Bohra, S.,Mernik,M.:Domain-specific languages: a sys-
tematic mapping study. In: Information and Software Technology
(2016). https://doi.org/10.1016/j.infsof.2015.11.001

45. Kosar, T., et al.: Comparing general-purpose and domain-specific
languages: an empirical study. In: ComSIS–Computer Science
an Information Systems Journal (2010). https://doi.org/10.2298/
CSIS1002247K

46. Kfikava, F., Collet, P., France, R.B.: SIGMA: Scala internal
domain-specific languages for model manipulations. In: Model-
Driven Engineering Languages and Systems. MODELS 2014
(2014). https://doi.org/10.1007/978-3-319-11653-2_35

47. Kurniawan, B., Xue, J.: A comparative study of web application
design models using the java technologies. In: Asia-Pacific Web
Conference. APWeb 2004 (2004). https://doi.org/10.1007/978-3-
540-24655-8_77

123

Claimed advantages and disadvantages of model transformation languages: a SLR 503

48. Loniewski, G., Insfran, E., Abrahão, S.: A systematic review of
the use of requirements engineering techniques in model-driven
development. In: Model Driven Engineering Languages and Sys-
tems (2010). https://doi.org/10.1007/978-3-642-16129-2_16

49. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In:
Electronic Notes in Theoretical Computer Science (GraMoT 2005)
(2006). https://doi.org/10.1016/j.entcs.2005.10.021

50. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. In: ACM Computing Surveys (CSUR)
(2005). https://doi.org/10.1145/1118890.1118892

51. Mohagheghi, P., et al.: An empirical study of the state of the prac-
tice and acceptance of model-driven engineering in four industrial
cases. In: Empirical Software Engineering (2013). https://doi.org/
10.1007/s10664-012-9196-x

52. OMG (2001). Model Driven Architecture (MDA), ormsc/2001-07-
01

53. Prechelt, L.: An empirical comparison of seven programming lan-
guages. In: Computer (2000). https://doi.org/10.1109/2.876288

54. Rein, P., Taeumel, M., Hirschfeld, R.: Towards empirical evidence
on the comprehensibility of natural language versus programming
language. In: Design Thinking Research (2019). https://doi.org/10.
1007/978-3-030-28960-7_7

55. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. In: IEEE Software
(2003). https://doi.org/10.1109/MS.2003.1231150

56. Shaw, M.: Writing good software engineering research papers. In:
25th International Conference onSoftwareEngineering, 2003. Pro-
ceedings (2003). https://doi.org/10.1109/ICSE.2003.1201262

57. Shevtsov, S., et al.: Control-theoretical software adaptation: a
systematic literature review. In: IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2017.2704579

58. Sjoberg,D.I.K., et al.: Conducting realistic experiments in software
engineering. In: Proceedings International Symposium on Empir-
ical Software Engineering. ISESE ’02 (2002). https://doi.org/10.
1109/ISESE.2002.1166921

59. Somasundaram, R., Karlsbjerg, J.: Research philosophies in the
IOS adoption field. In: ECIS 2003 Proceedings, pp. 53 (2003)

60. Tratt, L.: Model transformations and tool integration. In: Software
&SystemsModeling (2005). https://doi.org/10.1007/s10270-004-
0070-1

61. Van Deursen, A., Klint, P.: Domain-specific language design
requires feature descriptions. In: Journal of Computing and Infor-
mation Technology (2002). https://doi.org/10.2498/cit.2002.01.01

62. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages:
an annotated bibliography. In: ACM Sigplan Notices (2000).
https://doi.org/10.1145/352029.352035

63. Varro, D., et al.: Termination analysis of model transformations by
Petri Nets. In: Graph Transformations. ICGT 2006 (2006). https://
doi.org/10.1007/11841883_19

64. Weyns, D., et al.: Claims and supporting evidence for self-adaptive
systems: a literature study. In: Proceedings of the 7th Interna-
tional Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS ’12 (2012). https://doi.org/10.
1109/SEAMS.2012.6224395

65. Whittle, J., et al.: Industrial adoption of model-driven engineering:
are the tools really the problem?. In: Model-Driven Engineering
Languages and Systems. MODELS 2013 (2013). https://doi.org/
10.1007/978-3-642-41533-3_1

66. Wiger, U., Telecom Ab, E.: Four-fold Increase in Productivity and
Quality -Industrial-Strength Functional Programming in Telecom-
Class Products (2001)

67. Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings
of the 18th International Conference onEvaluation andAssessment
in Software Engineering. EASE ’14. Association for Computing
Machinery (2014). https://doi.org/10.1145/2601248.2601268

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Stefan Götz is a PhD student at
the Ulm University. His research
is focused on topics surrounding
the development and evaluation of
model transformation languages.
Prior to his work as a PhD stu-
dent, he was a student of software
engineering at the Ulm University
where he received his M.Sc. in.

Proof. DrMathias Tichy is full pro-
fessor for software engineering at
the Ulm University and director of
Institute of Software Engineering
and Programming Languages. His
main research focus is on model-
driven software engineering, par-
ticularly for cyber-physical sys-
tems. He works on requirements
engineering, dependability, and
validation and verification com-
plemented by empirical research
techniques. He is a regular mem-
ber of programme committees for
conferences and workshops in the

area of software engineering and model-driven development. He is a
co-author of over 110 peer-reviewed publications.

Raffaela Groner is a PhD stu-
dent at the Ulm University. Her
research is focused on the perfor-
mance of model transformations.
Prior, she studied computer sci-
ence at the Ulm University.

123

F.2. Paper B 309

F.2 Paper B
Advantages and disadvantages of (dedicated) model transformation languages: A Qual-
itative Interview Study

S. Höppner, Y. Haas, M. Tichy, K. Juhnke

Empirical Software Engineering (EMSE), volume 27, article number 159, 2022
Springer Nature

DOI: 10.1007/s10664-022-10194-7

CC BY 4.0, http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s10664-022-10194-7
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2022) 27:159
https://doi.org/10.1007/s10664-022-10194-7

Advantages and disadvantages of (dedicated) model
transformation languages

A qualitative interview study

Stefan Höppner1 ·Yves Haas1 ·Matthias Tichy1 ·Katharina Juhnke1

Accepted: 15 June 2022
© The Author(s) 2022

Abstract
Context Model driven development envisages the use of model transformations to evolve
models. Model transformation languages, developed for this task, are touted with many
benefits over general purpose programming languages. However, a large number of these
claims have not yet been substantiated. They are also made without the context necessary
to be able to critically assess their merit or built meaningful empirical studies around them.

Objective The objective of our work is to elicit the reasoning, influences and background
knowledge that lead people to assume benefits or drawbacks of model transformation
languages.

Method We conducted a large-scale interview study involving 56 participants from research
and industry. Interviewees were presented with claims about model transformation lan-
guages and were asked to provide reasons for their assessment thereof. We qualitatively
analysed the responses to find factors that influence the properties of model transformation
languages as well as explanations as to how exactly they do so.

Results Our interviews show, that general purpose expressiveness of GPLs, domain specific
capabilities of MTLs as well as tooling all have strong influences on how people view
properties of model transformation languages. Moreover, the Choice of MTL, the Use Case
for which a transformation should be developed as well as the Skills of involved stakeholders
have a moderating effect on the influences, by changing the context to consider.

Conclusion There is a broad body of experience, that suggests positive and negative influ-
ences for properties of MTLs. Our data suggests, that much needs to be done in order to
convey the viability of model transformation languages. Efforts to provide more empirical
substance need to be undergone and lacklustre language capabilities and tooling need to be
improved upon. We suggest several approaches for this that can be based on the results of
the presented study.

Communicated by: Alexander Serebrenik

� Stefan Höppner
stefan.hoeppner@uni-ulm.de

Extended author information available on the last page of the article.

 159 Page 2 of 71 Empir Software Eng (2022) 27:159

Keywords Interview · Interview Study · Model Transformation Language · DSL ·
Model Transformation · MDSE · advantages · disadvantages · Qualitative Analysis

1 Introduction

Model transformations are at the heart of model-driven engineering (MDE) (Sendall and
Kozaczynski 2003; Metzger 2005). They provide a way to consistently and automatically
derive a multitude of artefacts such as source code, simulation inputs or different views
from system models (Schmidt 2006). Model transformations also allow to analyse system
aspects on the basis of models (Schmidt 2006) and can provide interoperability between
different modelling languages, e.g. architecture description languages like those described
by Malavolta et al. (2010). Since the emergence of the MDE paradigm at the beginning of
the century numerous dedicated model transformation languages (MTLs) have been devel-
oped to support engineers in their endeavours (Jouault et al. 2006; Arendt et al. 2010; OMG
2016b). Their appeal is driven by the promise of many advantages such as increased pro-
ductivity, comprehensibility and domain specificity associated with using domain specific
languages (Hermans et al. 2009; Johannes et al. 2009).

A recent literature study of us revealed, that, while a large number of such advantages
and also disadvantages are claimed in literature, there exist only a few studies investigating
to what extend these claims actually hold (Götz et al. 2021). The study presents 15 prop-
erties of MTLs for which literature claims advantages or disadvantages. In this context, a
claimed positive effect on one of the properties means an advantage whereas a negative
influence means a disadvantage. The properties identified in the study are: Analysability,
Comprehensibility, Conciseness, Debugging, Ease of Writing (a transformation), Expres-
siveness, Extendability, (being) Just Better, Learnability, Performance, Productivity, Reuse
& Maintainability, Tool Support, Semantics & Verification and Versatility.

Our study also revealed, that most claims in literature are made broadly and without much
explanation as to where the claim originates from (Götz et al. 2021). Claims such as “Model
transformation languages make it easy to work with models.” (Liepiņš 2012), “Declarative
MTLs increase programmer productivity” (Lawley and Raymond 2007) or “Model trans-
formation languages are more concise” (Hinkel and Goldschmidt 2019) illustrate this. We
assume that authors make such claims while having certain context and background in mind,
but choose to omit it for unspecified reasons. Some likely reason for omission of the context
are, that authors believe it to not be worth mentioning or to preserve space which is often
sparse in publications.

Regardless of the concrete reasons, a result of this practice is a lack of cause and effect
relations in the context of model transformation languages that explain both why and when
certain advantages or disadvantages hold. Claims are thus easily dismissed based on anec-
dotal evidence. Furthermore, setting up proper evaluation is also difficult because the claims
do not provide the necessary background to do so.

To close this gap, we executed a large-scale empirical study using semi-structured
interviews. It involved a total of 56 researchers and practitioners in the field of model trans-
formations. The goal of our study was to compile a comprehensive list of influences on
properties of model transformation languages guided by the following research questions:

RQ 1: What are the factors that influence properties of model transformation languages?

Empir Software Eng (2022) 27:159 Page 3 of 71 159

RQ 2: How do the identified factors influence MTL properties?

To concentrate our efforts and best utilize all available resources, we decided to focus on
6 of the 15 properties of model transformation languages identified by us in the preceding
SLR (Götz et al. 2021). The 6 properties investigated in this study are: Comprehensibility,
Ease of Writing, (practical) Expressiveness, Productivity, Reuse and Maintainability and
Tool support. We have chosen these six because they all play a major role in providing
reasons for the adoption of model transformation languages.

Interviewees were presented with a number of claims about MTLs from literature and
asked to reveal their views on the matter, as well as assumptions and reasons that lead them
to agree or disagree with the presented claims. We qualitatively analysed the interviews to
understand the participants perceived influence factors and reasons for the advantages or
disadvantages stated in the claims. The extracted data was then analysed to find common-
alities between interviewees. This was done for single claims as well as for overarching
factors and reasons that influence a variety of aspects of MTLs.

We present a comprehensive explanation of factors that, according to experts, play an
essential role in the discussion of advantages and disadvantages of model transformation
languages for the investigated properties. This is accompanied by a detailed exposition of
how factors are relevant for the properties given above. Lastly, we discuss the most salient
factors and argue actionable results for the community and further research.

As the first study of this type, we make the following contributions:

1. A comprehensive categorisation and listing of factors resulting in advantages or
disadvantages of MTLs in the 6 properties studied.

2. A detailed description of why and how each identified factor exerts an influence on
different properties.

3. Suggestions for how the presented information can be utilised to empirically investigate
MTL properties.

4. Procedural proposals for improving current model transformation languages based on
the presented data.

The results of our study show, that there is a large number of factors that influence prop-
erties of model transformation languages. There is also a number of factors on which this
influence depends on, i.e. factors that have a moderation effect on the influence of other
factors. These factors provide a solid basis that allows further studies to be conducted with
more focus. They also enable precise decisions on where improvements and adjustments in
or for model transformation languages can be made.

The remainder of this paper is structured as follows: Section 2 introduces model-driven
engineering and model transformation languages, the context in which our study integrates.
Section 3 will detail our methodology for preparing and conducting the interviews and
the procedures used to analyse the data accumulated through the interviews. Afterwards
Section 4 gives an overview over demographic data of our interview participants while 5
presents our code system and details the findings for each code based on the interviews
and analysis thereof. In Section 6 we present overarching findings and in Section 7, we dis-
cuss actionable results that can be drawn from our study that indicate avenues to focus on
for the research community. Section 8 contains a detailed discussion of the validity threats
of this research, and in Section 9 related efforts are presented. Lastly, Section 10 draws a
conclusion for our research and proposes future work.

 159 Page 4 of 71 Empir Software Eng (2022) 27:159

2 Background

This section will provide the necessary background for the context in which our study is
integrated in.

2.1 Model-Driven Engineering

The Model-Driven Architecture (MDA) paradigm was first introduced by the Object Man-
agement Group in 2001 (OMG 2001). It forms the basis for an approach commonly referred
to as Model-driven development (MDD) (Brown et al. 2005), introduced as means to cope
with the ever growing complexity associated with software development. At the core of
it lies the notion of using models as the central artefact for development. In essence this
means, that models are used both to describe and reason about the problem domain as well
as to develop solutions (Brown et al. 2005). An advantage ascribed to this approach that
arises from the use of models in this way, is that they can be expressed with concepts closer
to the related domain than when using regular programming languages (Selic 2003).

When fully utilized, MDD envisions automatic generation of executable solutions spe-
cialized from abstract models (Selic 2003; Schmidt 2006). To be able to achieve this, the
structure of models needs to be known. This is achieved through so called meta-models
which define the structure of models. The structure of meta-models themselves is then
defined through meta-models of their own. For this setup, the OMG developed a modelling
standard called Meta-object Facility (MOF) (OMG 2016a) on the basis of which a number
of modelling frameworks such as the Eclipse Modelling Framework (EMF) (Steinberg et al.
2008) and the .NET Modelling Framework (Hinkel 2016) have been developed.

2.2 Domain-Specific Languages

Domain-specific languages (DSLs) are languages designed with a notation that is tailored
for a specific domain by focusing on relevant features of the domain (Van Deursen and
Klint 2002). In doing so DSLs aim to provide domain specific language constructs, that
let developers feel like working directly with domain concepts thus increasing speed and
ease of development (Sprinkle et al. 2009). Because of these potential advantages, a well
defined DSL can provide a promising alternative to using general purpose tools for solving
problems in a specific domain. Examples of this include languages such as shell scripts
in Unix operating systems (Kernighan and Pike 1984), HTML (Raggett et al. 1999) for
designing web pages or AADL an architecture design language (SAEMobilus 2004).

2.3 Model Transformation Languages

The process of (automatically) transforming one model into another model of the same or
different meta-model is called model transformation (MT). They are regarded as being at
the heart of Model Driven Software Development (Sendall and Kozaczynski 2003; Metzger
2005), thus making the process of developing them an integral part of MDD. Since the intro-
duction of MDE at the beginning of the century, a plethora of domain specific languages for
developing model transformations, so called model transformation languages (MTLs), have
been developed (Arendt et al. 2010; Balogh and Varró 2006; Jouault et al. 2006; Kolovos
et al. 2008; Horn 2013; George et al. 2012; Hinkel and Burger 2019). Model transformation

Empir Software Eng (2022) 27:159 Page 5 of 71 159

languages are DSLs designed to support developers in writing model transformations. For
this purpose, they provide explicit language constructs for tasks involved in model transfor-
mations such as model matching. There are various features, such as directionality or rule
organization (Czarnecki and Helsen 2006), by which model transformation languages can
be distinguished. For the purpose of this paper, we will only be explaining those features
that are relevant to our study and discussion in Sections 2.3.1 to 2.3.7. Table 1 provides an
overview over the presented features.

Please refer to Czarnecki and Helsen (2006), Kahani et al. (2019), and Mens and Gorp
(2006) for complete classifications.

2.3.1 External and Internal Transformation Languages

Domain specific languages, and MTLs by extension, can be distinguished on whether they
are embedded into another language, the so called host language, or whether they are fully
independent languages that come with their own compiler or virtual machine.

Languages embedded in a host language are called internal languages. Prominent
representatives among model transformation languages are FunnyQT (Horn 2013) a
language embedded in Clojure, NMF Synchronizations and the .NET transformation lan-
guage (Hinkel and Burger 2019) embedded in C#, and RubyTL (Cuadrado et al. 2006)
embedded in Ruby.

Fully independent languages are called external languages. Examples of external model
transformation languages include one of the most widely known languages such as the Atlas
transformation language (ATL) (Jouault et al. 2006), the graphical transformation language
Henshin (Arendt et al. 2010) as well as a complete model transformation framework called
VIATRA (Balogh and Varró 2006).

2.3.2 Transformation Rules

Czarnecki and Helsen (2006) describe rules as being “understood as a broad term that
describes the smallest units of [a] transformation [definition]”. Examples for transforma-
tion rules are the rules that make up transformation modules in ATL, but also functions,
methods or procedures that implement a transformation from input elements to output
elements.

The fundamental difference between model transformation languages and general-
purpose languages that originates in this definition, lies in dedicated constructs that
represent rules. The difference between a transformation rule and any other function,
method or procedure is not clear cut when looking at GPLs. It can only be made based on
the contents thereof. An example of this can be seen in Listing 1, which contains exem-
plary Java methods. Without detailed inspection of the two methods it is not apparent which
method does some form of transformation and which does not.

In a MTL on the other hand transformation rules tend to be dedicated constructs within
the language that allow a definition of a mapping between input and output (elements).
The example rules written in the model transformation language ATL in Listing 2 make
this apparent. They define mappings between model elements of type Member and model
elements of type Male as well as between Member and Female using rules, a dedicated
language construct for defining transformation mappings. The transformation is a modified
version of the well known Families2Persons transformation case (Anjorin et al. 2017).

 159 Page 6 of 71 Empir Software Eng (2022) 27:159

Ta
bl
e
1

M
T

L
fe

at
ur

e
ov

er
vi

ew

Fe
at

ur
e

C
ha

ra
ct

er
is

tic
R

ep
re

se
nt

at
iv

e
L

an
gu

ag
e

E
m

be
dd

ed
ne

ss
In

te
rn

al
Fu

nn
yQ

T
(C

lo
ju

re
),

R
ub

yT
L

(R
ub

y)
,N

M
F

Sy
nc

hr
on

iz
at

io
ns

(C
#)

E
xt

er
na

l
A

T
L

,H
en

sh
in

,Q
V

T

R
ul

es
E

xp
lic

it
Sy

nt
ax

C
on

st
ru

ct
A

T
L

,H
en

sh
in

,Q
V

T

R
ep

ur
po

se
d

Sy
nt

ax
C

on
st

ru
ct

N
M

F
Sy

nc
hr

on
iz

at
io

ns
(C

la
ss

es
),

Fu
nn

yQ
T

(M
ac

ro
s)

L
oc

at
io

n
D

et
er

m
in

at
io

n
A

ut
om

at
ic

T
ra

ve
rs

al
A

T
L

,Q
V

T

Pa
tte

rn
M

at
ch

in
g

H
en

sh
in

D
ir

ec
tio

na
lit

y
U

ni
di

re
ct

io
na

l
A

T
L

,Q
V

T-
O

B
id

ir
ec

tio
na

l
Q

V
T-

R
,N

M
F

Sy
nc

hr
on

is
at

io
ns

In
cr

em
en

ta
lit

y
Y

es
N

M
F

Sy
nc

hr
on

iz
at

io
ns

N
o

Q
V

T-
O

T
ra

ci
ng

A
ut

om
at

ic
A

T
L

,Q
V

T

M
an

ua
l

N
M

F
Sy

nc
hr

on
iz

at
io

ns

D
ed

ic
at

ed
M

od
el

N
av

ig
at

io
n

Sy
nt

ax
Y

es
A

T
L

(O
C

L
),

Q
V

T
(O

C
L

),
H

en
sh

in
(i

m
pl

ic
it

in
ru

le
s)

N
o

N
M

F
Sy

nc
hr

on
iz

at
io

ns
,F

un
ny

Q
T,

R
ub

yT
L

Empir Software Eng (2022) 27:159 Page 7 of 71 159

2.3.3 Rule Application Control: Location Determination

Location determination describes the strategy that is applied for determining the ele-
ments within a model onto which a transformation rule should be applied (Czarnecki and
Helsen 2006). Most model transformation languages such as ATL, Henshin, VIATRA or
QVT (OMG 2016b), rely on some form of automatic traversal strategy to determine where
to apply rules.

We differentiate two forms of location determination, based on the kind of matching that
takes place during traversal. There is the basic automatic traversal in languages such as
ATL or QVT, where single elements are matched to which transformation rules are applied.
The other form of location determination, used in languages like Henshin, is based on pat-
tern matching, meaning a model- or graph-pattern is matched to which rules are applied.
This does allow developers to define sub-graphs consisting of several model elements and
references between them which are then manipulated by a rule.

The automatic traversal of ATL applied to the example from Listing 2 will result
in the transformation engine automatically executing the Member2Male on all model

 159 Page 8 of 71 Empir Software Eng (2022) 27:159

elements of type Member where the function isFemale() returns false and the
Member2Female on all other model elements of type Member.

The pattern matching of Henshin can be demonstrated using Fig. 1, a modified ver-
sion of the transformation examples by Krause et al. (2014). It describes a transformation
that creates a couple connection between two actors that play in two films together. When
the transformation is executed the transformation engine will try and find instances of the
defined graph pattern and apply the changes on the found matches.

This highlights the main difference between automatic traversal and pattern matching as
the engine will search for a sub graph within the model instead of applying a rule to single
elements within the model.

2.3.4 Directionality

The directionality of a model transformation describes whether it can be executed in
one direction, called a unidirectional transformation or in multiple directions, called a
multidirectional transformation (Czarnecki and Helsen 2006).

For the purpose of our study the distinction between unidirectional and bidirectional
transformations is relevant. Some languages allow dedicated support for executing a trans-
formation both ways based on only one transformation definition, while other require
users to define transformation rules for both directions. General-purpose languages can not
provide bidirectional support and also require both directions to be implemented explicitly.

The ATL transformation from Listing 2 defines a unidirectional transformation. Input
and output are defined and the transformation can only be executed in that direction.

The QVT-R relation defined in Listing 3 is an example of a bidirectional transformation
definition (For simplicity reasons the transformation omits the condition that males are only
created from members that are not female). Instead of a declaration of input and output, it
defines how two elements from different domains relate to one another. As a result given a
Member element its corresponding Male elements can be inferred, and vice versa.

Fig. 1 Example Henshin transformation

Empir Software Eng (2022) 27:159 Page 9 of 71 159

2.3.5 Incrementality

Incrementality of a transformation describes whether existing models can be updated based
on changes in the source models without rerunning the complete transformation (Czarnecki
and Helsen 2006). This feature is sometimes also called model synchronisation.

Providing incrementality for transformations requires active monitoring of input and/or
output models as well as information which rules affect what parts of the models. When
a change is detected the corresponding rules can then be executed. It can also require
additional management tasks to be executed to keep models valid and consistent.

2.3.6 Tracing

According to Czarnecki and Helsen (2006) tracing “is concerned with the mechanisms for
recording different aspects of transformation execution, such as creating and maintaining
trace links between source and target model elements”.

Several model transformation languages, such as ATL and QVT have automated mech-
anisms for trace management. This means that traces are automatically created during
runtime. Some of the trace information can be accessed through special syntax constructs
while some of it is automatically resolved to provide seamless access to the target elements
based on their sources.

An example of tracing in action can be seen in line 16 of Listing 2. Here
the partner attribute of a Female element that is being created, is assigned to
s.companion. The s.companion reference points towards a element of type Member
within the input model. When creating a Female or Male element from a Member
element, the ATL engine will resolve this reference into the corresponding element,
that was created from the referred Member element via either the Member2Male or
Member2Female rule. ATL achieves this by automatically tracing which target model
elements are created from which source model elements.

2.3.7 Dedicated Model Navigation Syntax

Languages or syntax constructs for navigating models is not part of any feature classification
for model transformation languages. However, it was often discussed in our interviews and
thus requires an explanation as to what interviewees refer to.

Languages such as OCL (OMG 2014), which is used in transformation languages like
ATL, provide dedicated syntax for querying and navigating models. As such they provide
syntactical constructs that aid users in navigation tasks. Different model transformation

 159 Page 10 of 71 Empir Software Eng (2022) 27:159

languages provide different syntax for this purpose. The aim is to provide specific syntax so
users do not have to manually implement queries using loops or other general purpose con-
structs. OCL provides a functional approach for accumulating and querying data based on
collections while Henshin uses graph patterns for expressing the relationship of sought-after
model elements.

3 Methodology

To collect data for our research question, we decided on using semi-structured inter-
views and a subsequent qualitative content analysis that follows the guidelines detailed
by Kuckartz (2014). Semi-structured interviews were chosen as a data collection method
because they present a versatile approach to eliciting information from experts. They pro-
vide a framework that allows to get insights into opinions, thoughts and knowledge of
experts (Meyer and Booker 1990; Hove and Anda 2005; Kallio et al. 2016). The qualita-
tive content analysis guidelines by Kuckartz (2014) were chosen because of their detailed
descriptions for all steps of the analysis process. As such they provide a more detailed and
modern framework compared to the procedures introduced by Mayring (1994), which have
long been a gold standard in qualitative content analysis.

An overview over our complete study design can be found in Fig. 2. It shows the order of
activities that were planned and executed as well as the artefacts produced and used through-
out the study. Each activity is annotated with the section number in which we detail the
activity. We split our approach into three main-phases: Preparation (detailed in Section 3.1),
Operation (detailed in Section 3.2) and Coding & Analysis (detailed in Section 3.3).

For the preparation phase, we used a subset of the claimed properties of model trans-
formation languages identified by us (Götz et al. 2021) to develop an interview guide. The
guide focuses around asking participants whether they agree with a claim from one of the
properties and then envisages the usage of why questions to gain a deeper understanding of
their opinions on the matter. After identifying and contacting participants based on the pub-
lications considered during our previous literature review (Götz et al. 2021), we conducted
54 interviews with 55 interviewees (at the request of two participants, one interview was

Analysis

... 3.3.6

Material
Preparation

3.3.1

Coding
3.3.2

Analysis
3.3.7

Coded
Transcripts

Preparation

Interview Guide

Preliminary
Interview Guide

Method selection
3.1.1

Retrieving
previous

knowledge 3.1.2

Creating
Interview

Guide 3.1.3

Pilot Interviews
3.1.3

Participant
selection &
contacting 3.1.4

Operation

54 recordings

55 Transcripts

Interview
Conduction

3.2

Interview
Transcription 3.2

Results Literature
Review

Structured
Literature
Review

Activity Artefact
Activity Flow Artifact Flow

Fig. 2 Overview over the study design

Empir Software Eng (2022) 27:159 Page 11 of 71 159

conducted with both of them together) and collected one additional written response. Dur-
ing the Coding & Analysis phase, we coded and analysed all 54 transcripts, as well as the
written response, guided by the framework detailed by Kuckartz. In doing so, we focused
first on factors and reasons for the individual properties and then on common factors and
reasons between them.

The remainder of this section will describe in detail how each of the three phases of our
study was conducted.

3.1 Interview Preparation

Our interview preparation phase consists of the creation of an interview guide plus selecting
and contacting appropriate interview participants. We use the guidelines by Kallio et al.
(2016) for the creation of our interview guide and expand the steps detailed there with steps
for selecting and contacting participants. In addition, we use the guidance from Newcomer
et al. (2015) to construct our study in the best possible way.

According to Kallio et al. (2016) the creation of an interview guide consists of five
consecutive steps. First, researchers are urged to evaluate how appropriate semi-structured
interviews are as a data collection method for the posed research questions. Then, existing
knowledge about the topic should be retrieved by means of a literature review. Based on the
knowledge from the knowledge retrieval phase, a preliminary interview guide can then be
formulated and in another step be pilot tested. Lastly the complete interview guide can then
be presented and used. As previously stated, we enhance these steps with two additional
steps for selecting and contacting potential interview participants.

In the following, we detail how the presented steps were executed and the results thereof.

3.1.1 Identifying the Appropriateness of Semi-Structured Interviews

The goal of our study, outlined in our research questions, is to collect and analyse reasons
and background information of why people believe claims about model transformation lan-
guages to be true. Data such as this is qualitative by nature and hence requires a research
method capable of producing qualitative data. According to Hove and Anda (2005) and
Meyer and Booker (1990) expert interviews are one of the most widely used research
methodologies in the technical field for this purpose. They allow to ascertain qualitative data
such as opinions and estimates. Interviews also enable qualitative interpretation of already
available data (Meyer and Booker 1990) which perfectly aligns with our goal. Moreover
the opportunity to ask further questions about specific statements made by the participants
(Newcomer et al. 2015) fits the open ended nature of our research question. For these reasons,
we believe semi-structured interviews to be a well suited to answer our research questions.

3.1.2 Retrieving Previous Knowledge

In our previous publication (Götz et al. 2021), we detailed the preparation, execution and
results of an extensive structured literature review on the topic of claims about model trans-
formation languages. The literature review resulted in a categorization of 127 claims into
15 different categories (i.e. properties of MTLs) namely Analysability, Comprehensibility,
Conciseness, Debugging, Ease of Writing a transformation, Expressiveness, Extendability,
Just better, Learnability, Performance, Productivity, Reuse & Maintainability, Tool Sup-
port, Semantics and Verification and lastly Versatility. These properties and the claims about
them serve as the basis for the design of our interview study presented here.

 159 Page 12 of 71 Empir Software Eng (2022) 27:159

3.1.3 Interview Guide

The interview guide involves presenting each interview participant with several claims on
model transformation languages. We use claims from literature instead of formulating our
own statements, to make them more accessible. This also prevents any bias from the authors
to be introduced at this step. Participants are first asked to assess their agreement with a
claim before transitioning into a discussion on what the reasons for their decision are based
on an open-ended question. This style of using close-ended questions as a prerequisite for
open-ended or probe questions has been suggested by multiple guides (Newcomer et al.
2015; Hove and Anda 2005).

We focus on a subset of six properties. This is due to the aim of keeping the length of
interviews within an acceptable range for participants. According to Newcomer et al. (2015)
semi-structured interviews should not exceed a maximum length of one hour. As a result,
only a number of properties can be discussed per interview. In order to still talk with enough
participants about each property, the number of properties examined must be reduced. The
properties we discuss in the interviews and the reasons why they are relevant are as follows:

• Comprehensibility: Is an important property when transformations are being developed
as part of a team effort or evolve over time.

• Ease of Writing: Is a decisive property that influences whether developers want to use
a languages to write transformations in.

• Expressiveness: Is one of the most cited properties in literature (Götz et al. 2021) and
main selling point of domain specific languages in general.

• Productivity: Is a property that is highly relevant for industrial adoption.
• Reuse & Maintainability: Is another property that enables wider adoption of model

transformation languages in project settings.
• Tools: High-quality tools can provide huge improvements to the development.

The list consists of the 5 most claimed properties form the previous literature
review (Götz et al. 2021) and is supplemented with Productivity, because we believe this
attribute to be the most relevant for industry adoption.

To maximize the response rate of contacted persons, we aim for an interview length of 30
minutes. This decision is based on experiences from previous interview studies conducted
at our research group (Groner et al. 2020; Juhnke et al. 2020) and fits within the maximum
interview length suggested by Newcomer et al. (2015).

To best utilize the limited time per interview, the six properties are split into three sets of
two properties each. In each interview one of the three sets is discussed.

For each property, one non-specific, one specific and one negative claim is used to struc-
ture all interviews involving this property around. A complete overview over all selected
claims can be found in Table 2.

We consider non-specific claims to be those that do not provide any rationale as to
why the claimed property holds, e.g. “Model transformation languages ease the writing of
model transformations.”. The non-specific claims chosen simply reflect the property itself.
They serve the purpose of getting participants to state their assumptions and beliefs for the
property without any influence exerted by the discussed claim.

We consider those claims as specific, that provide a rationale or reason for why the
claimed property holds, e.g. “Model transformation languages, being DSLs, improve the
productivity.”. And we consider negative claims to be those, that state a negative property of
model transformation languages, e.g. “Model transformation languages lack sophisticated

Empir Software Eng (2022) 27:159 Page 13 of 71 159

Table 2 Properties and Claims

Property Claim

Comprehensibility

The use of model transformation languages increases the comprehensi-
bility of model transformations.

Model transformation languages incorporate high-level abstractions
that make them more understandable than general purpose languages.

Most model transformation languages lack convenient facilities for
understanding the transformation logic.

Ease of Writing

The use of model transformation languages increases the ease of writing
model transformations.

Model transformation languages ease development efforts by offer-
ing succinct syntax to query from and map model elements between
different modelling domains.

Model transformation languages require specific skills to be able to
write model transformations.

Expressiveness

The use of model transformation languages increases the expressive-
ness of model transformations.

Model transformation languages hide transformation complexity and
burden from the user.

Having written several transformations we have identified that cur-
rent model transformation languages are too low a level of abstraction
for succinctly expressing transformations between DSLs because they
demonstrate several recurring patterns that have to be reimplemented
each time.

Productivity

The use of model transformation languages increases the productivity
of writing model transformations.

Model transformation languages, being DSLs, improve the productivity.

Productivity of GPL development might be higher since expert users
for general purpose languages are easier to hire.

Reuse &
Maintainability

The use of model transformation languages increases the reusability
and maintainability of model transformations.

Bidirectional model transformations have an advantage in maintainability.

Model transformation languages lack sophisticated reuse mechanisms.

Tool Support

There is sufficient tool support for the use of model transformation
languages for writing model transformations.

Tool support for external transformation languages is potentially more
powerful than for internal MTL or GPL because it can be tailored to the
DSL.

Model transformation languages lack tool support.

reuse mechanisms.”. Generally, we use claims where we believe the discussions about the
reasons to provide useful insights.

There exist several reasons why we believe this setup of using the same three none-
specific, specific and negative claims for each property to be appropriate. First, the
non-specific claim allows participants to provide any and all factors or reasons that they
believe influence a claimed property. The specific claim then allows us to introduce a rea-
son, that participants might not have thought about. It also prompts a discussion about a
particular reason or factor that is shared between all participants. This ensures at least one
area for cross comparison between answers. The negative claim forces participants to also

 159 Page 14 of 71 Empir Software Eng (2022) 27:159

deliberate negative aspects, providing a counterbalance that counteracts bias. Furthermore,
the non-specific claim provides an easy introduction into the discussion about a specific
MTL property that can present the interviewer with an overview of the participants thoughts
on the matter. It also allows participants to provide other influence factors not specifically
covered through the discussed claims or even new factors and reasons not present in the
collection of claims from our literature review (Götz et al. 2021).

The complete interview guide resulting from the aforementioned considerations can be
seen in Fig. 3. After introductory pleasantries we start all interviews of with demographic
questions. Although some sources discourage asking demographic questions early in the
interview due to their sensitive nature (Newcomer et al. 2015), we use them to break the ice
between the interviewer and interviewee because our demographic questions do not probe
any sensitive information.

After this initial get-to-know each other phase, the interviewer then proceeds to explain
the research intentions, goals and the procedure of the remaining interview. Depending on
the property-set selected for the interview, participants are then presented with a claim about
a property. They are asked to rate their agreement with the claim based on a 5-point likert
scale (5: completely agree, 4: agree, 3: neither agree nor disagree, 2: disagree, 1: completely
disagree). The likert scale is used to allow the interviewer to better assess the participants
tendency compared to a simple yes or no question. This part of the interview is intended
solely to get a first impression of the view of the participant and not for a quantitative
analysis. It also creates a casual point of entry for the interviewee to think about the topic
under consideration. We communicate this to all participants to reduce any pressure they
might feel to answer the question correctly. Afterwards an open-ended question inquiring
about the reasons for the interviewees assessment is asked.

Some terms used within the discussed claims have ambiguous definitions. We tried to
ask participants to explain their understanding of such terms, to prevent errors in analysis
due to interviewees having different interpretations thereof. This allows for better assess-
ment during analysis. The terms we have deemed to be ambiguous are: ‘succinct syntax’,

Introductory
Pleasantries

Demographic
Questions

Research Intention
Explanations

Questions +
Discussion 2nd

Property

Acknowledgements &
Farewell

Claim presentation

Agreement Query

Reasoning Query

Claims left?

No

Yes
Questions +

Discussion 1st
Property

Fig. 3 Interview guide

Empir Software Eng (2022) 27:159 Page 15 of 71 159

‘mapping’, ‘specific skills’, ‘high-level abstractions’, ‘convenient facilities’, ‘sufficient tool
support’, ‘powerful tool support’, ‘sophisticated reuse mechanisms’ and ‘expressiveness’.
We provide a definition for the term expressiveness. This is, because we are only interested
in a specific type of expressiveness, i.e. how concisely and readily developers can express
something. We are not interested in expressiveness in a theoretical sense, i.e. the closeness
to Turing completeness.

This process of presenting a claim, querying the participants agreement before discussing
their reasons for the assessment is repeated for all 3 claims about both properties. After
discussing all claims, it is explained to the participants that the formal part of the interview
is finished and that they are allowed to make final remarks about all discussed topics or
other properties they want to address. After this phase of the interview acknowledgements
on the part of the interviewer are expressed before saying goodbye. The complete question
catalogue for the interviews can be found in Appendix A.

The interview guide was tested in a pilot study by the main author with one co-author that
was not involved in its creation. After pilot testing, we changed the question about agree-
ment with a claim from a yes-no question to one that uses a likert scale. We also extended the
question sets with non-specific claims that do not contain any reasoning. Before adding the
non specific claim, discussions focused too much on the narrow view within the presented
claims.

3.1.4 Selecting & Contacting Participants

The target population for our study consists of all users of model transformation languages.
To select potential participants for our study we rely on data from our previous literature
review (Götz et al. 2021). The literature review produced a list of publications that address
the topic of model transformations and model transformation languages. Because search
terms such as ‘model to text’ and the like were not used in the study, using this list limits
our results to model to model transformation languages. We discuss this limitation more
thoroughly in Section 8.2.

All authors of the resulting publications are deemed to be potential interview partici-
pants. We assume, that people using MTLs in industry do have some research background
and thus have published work in the field. There is also no other systematic way to find
industry users. We also assume that people who are still active in the field have published
within the last 5 years. This limits outreach but makes the set of potential participants more
manageable. For this reason, the list was shortened to publications more recent than 2015
before the authors of all publications was compiled. This resulted in a total of 645 potential
participants.

After selection, the authors were contacted via mail. First, everyone was contacted once
and then, after a week, everyone who had not responded by then was contacted again. The
texts we use for both mails can be found in Appendix B. Ten potential participants, from the
list of potential participants, were not contacted through this channel but via personalised
emails, as they are personal contacts of the authors.

Within the contact mails, potential participants are asked to select a suitable date for the
interview and fill out a data consent form allowing us to record and transcribe the interviews.

Overall of the 645 contacted authors, 55 agreed to participate in our interview study
resulting in a response rate of 8.53%1.

1when including the written response in this statistic, the resulting response rate is 8.68%.

 159 Page 16 of 71 Empir Software Eng (2022) 27:159

3.2 Interview Conduction and Transcription

All but one interview were conducted by the first author using the online conferencing tool
WebEx and lasted between 20 and 80 minutes. Due to scheduling issues, one interview had
to be conducted by the second author, who had a preparatory mock interview with the main
interviewer. Additionally, at the request of two participants, one interview was conducted
with both of them together. Since our main focus for all interviews is on discussions, we
do not believe this to have any effect on its results. WebEx is the chosen conferencing
tool, due to its availability to the authors and its integrated recording tool which is used to
record all interviews. For data privacy reasons and for easier in-depth analysis later on, all
recordings are transcribed by two authors. To increase the readability of heavily fragmented
sentences they are shortened to only contain the actual content without interruptions. In case
of audibility issues the transcribing authors consulted with each other to try and resolve the
issue. Altogether the interviews produced just over 32 hours of audio and about 162.100
words of transcriptions.

Each day, the main author decided on which question sets to use for all participants that
had agreed to partake in the interviews. The question sets had to be chosen daily, as many
participants only responded to the invitation after interviews had already taken place.

The goal of the decision process was, to ensure an even spread of participants over the
question sets based on relevant demographic backgrounds, namely research, industry, MTL
developer and MTL user. We consider those relevant because each group has a different
view point on model transformation languages and their usage for writing transformations.
It is therefore important to have answers from each group for each set of questions, to reduce
the risk of missing relevant opinions.

We were able to ensure that at least one representative for each demographic group pro-
vided answers for each question set. A complete uniform distribution was not possible due
to overlaps in the demographic groups.

3.3 Coding & Analysis

Coding and analysing the interview transcripts is done in accordance with the guidelines for
content structuring content analysis suggested by Kuckartz (2014). The guideline recom-
mends a seven step process (depicted in Fig. 4) for coding and analysing qualitative data.
All steps are carried out with tool support provided by the MAXQDA2 software. In the fol-
lowing, we explain how each process step is conducted in detail. We will use the following
statement as a running example to show how codes and sub-codes are assigned and how
the coding of text segments evolved throughout the process: “Of course some MTLs use
explicit traceability for instance. But even then you have a mechanism to access it. And if
you have a MTL with implicit traceability where the trace links are created automatically
then of course you gain a lot of expressivity because you don’t have to write something that
you would otherwise have to write for almost every rule.” (P30)

3.3.1 Initial Text Work

The initial text work step initiates our qualitative analysis. Kuckartz (2014) suggests to read
through all the material and highlight important segments as well as to write notes for the

2https://www.maxqda.com/

Empir Software Eng (2022) 27:159 Page 17 of 71 159

Fig. 4 Process of a content structuring content analysis as presented by Kuckartz (2014)

transcripts using memos. Following these suggestions, we apply initial coding from con-
structivist grounded theory (Charmaz 2014; Vollstedt and Rezat 2019; Stol et al. 2016) to
mark and summarize all text segments where interviewees reason about their beliefs on
influence factors about the discussed properties. To do so, the two authors, which conducted
and transcribed the interviews, read through all transcripts and mark all relevant text seg-
ments with codes that preferably represented the segment word for word. The codes allow
for easier reference in later steps and, due to tooling, we are still able to quickly read the
underlying text segment if necessary.

During this step, the example statement was labelled with the code automatic
tracing increases expressiveness because no manual overhead.

3.3.2 Developing Thematic Main Codes

For developing the thematic main codes for our study we follow the common practice of
inferring them from our research questions as suggested by Kuckartz (2014). Since the
goal of our research is to investigate implicit assumptions, and factors that influence the
assessment of experts about properties of model transformation languages three main codes
arise:

• Properties: Denoting which property is being discussed (e.g. Comprehensibility).
• Factors: Denoting what influences a discussed property according to an interviewee

(e.g. Bidirectional functionality of a MTL).
• Factor assessment: Denoting an evaluation of how a factor influences a property (e.g.

positive or negative or mixed depending on other factors).

The sub-codes for the property code can be directly defined based on the six proper-
ties from our previous literature review (Götz et al. 2021). As such they are deductive

 159 Page 18 of 71 Empir Software Eng (2022) 27:159

(a-priori) codes that are intended to mark text segments based on the properties that are
being discussed in them.

3.3.3 Coding of All the Material with Main Codes

In order to code of all the material with the main codes one author analyses all interview
transcripts. While doing so, the conversations about a discussed claim are marked with the
code that is based on the property stated in the claim. To exemplify this, all discussions on
the claim ”The use of MTLs increases the comprehensibility of model transformations.” are
coded with the main code comprehensibility.

This realisation of the process step breaks with Kuckartz’s specifications in multiple
ways. First, we do not code the material with the main codes Factors and Factor assess-
ment, because all factors and factor assessments are already coded with the summarising
initial codes. These will be refined into actual sub-codes of Factors and Factor assessment in a
later step. Second, we directly code segments with the sub-codes for the Property main code,
because the differentiation comes naturally with the structure of the interviews and delaying
this refinement makes no sense. And third, this way of coding makes it possible that unim-
portant segments are also coded, something that Kuckartz suggests not to do. However, we
actively decided in favour of this, because it accelerates the coding process enormously.
Furthermore, only overlaps of the property codes with the other codes are considered, in
later steps, thus automatically excluding unimportant text segments from consideration.

During this step, the coding for the example text segment was extended with the code
Expressiveness. While this does not look like much of an enhancement on the surface,
it is paramount to allow for systematic analysis in later steps.

After this step the example segment had its initial code, summarising the essence of
the statement, and the explicit property sub-code Expressiveness, providing the first
systematic categorisation of the segment.

3.3.4 Compilation of All Text Passages Coded with the SameMain Code

This step forms the basis for the subsequent iterative process of inductively developing sub-
codes for each main code. Due to the use of the MAXQDA tool, this step is purely technical
and does not require any special procedure outside of the selection of the main code that is
being considered in the tool.

3.3.5 Inductive Development of Sub-Codes

The inductive development of sub-codes forms the most important coding step in our study.
Inductive development here means that the sub-codes are developed based on the transcripts
contents.

Kuckartz suggests to read through all segments coded with a main code to iteratively refine
the code into several sub-codes that define the main category more precisely (Kuckartz
2014). We optimize this step by analysing all the initial codes from the Initial Text Work step,
to construct concise and comprehensive codes for similar initial codes that could be used
as sub-codes for the Factor or Factor assessment main codes. In doing so we follow the
focused coding procedure of constructivist grounded theory to refine the initial code system.

All sub-codes of the Factor main code, that are refined using this process, are thematic
codes, meaning they denote a specific topic or argument made within the transcripts. As a
result, the sub-codes represent factors explicitly named by interviewees that influence the

Empir Software Eng (2022) 27:159 Page 19 of 71 159

different properties. In contrast, all sub-codes of the Factor assessment main code, that are
refined using this process, are evaluative codes, meaning they represent an evaluation, made
by the authors, about an effect. More specifically, the codes represent an evaluation of how
participants believe factors influence various properties.

Because of the importance of this coding step, the sub code refinement is created in a
joint effort by three of the authors. First, over a period of three meetings, the authors develop
comprehensive codes based on the initial codes of 18 interviews through discussions. Then
the main author complements the resulting code system by analysing the remaining set
of interview transcripts, while the two other authors each analyse half of them. In a final
meeting any new sub code, devised by one of the authors, is discussed and a consensus for
the complete code system is established.

During this step no code segment is extended with additional codes. Instead new codes
derived from the initial codes are saved for usage in the following steps.

From the example code segment and its initial code, a sub-code automatic tracing for
the Factors code was derived. The finalised sub-code Traceability was decided upon
based on the combination with other derived codes of similar meaning, like traces.

3.3.6 Coding of All the Material with Complete Code System

After the final code system is established, the main author processes all transcripts to replace
the initial codes with codes from the final code system. For this, each coded statement is
re-coded with codes indicating the influence factors expressed by the interviewees as well
as a factor assessment, if possible. This final coding step is done by the main author while
all three co-authors each check 10 coded transcripts to validate the correct and consistent
use of all codes and to make sure all relevant statements are considered. The results from
the reviews are discussed in pairwise meetings between the main author and the reviewing
co-author before being incorporated in a final coding approved by all authors.

During this step, the initial code for the example segment was dropped and replaced by
the codes MTL advantage and Traceability.

The final codes assigned to the example text segment thus were: Expressiveness, Trace-
ability and MTL advantage. The reasoning given within the statement as to why automatic
tracing provides an expressiveness advantage, are manually extracted during analysis using
tooling provided by MAXQDA.

3.3.7 Simple and Complex Analysis and Visualisation

The resulting coding and the coded text segments are then used as the basis for our analysis
which, in accordance with our research question, focuses on identifying and evaluating
factors that influence the properties of MTLs. As recommended by Kuckartz (2014), this is
first done for each Property individually before analysis across all properties is conducted
(as shown in Fig. 5).

For analysing the influence factors of an individual property, we use the MAXQDA
tooling to find segments coded with both a factor and the considered property. Using this
approach we first compile a list of all factors relevant for a property, before then doing an
in-depth analysis of all the gathered statements for each factor. Here the goal is to elicit
commonalities and contradictions between the opinions of our interviewees that can be used
to establish a theory on how each factor influences each property individually.

In terms of our example text segment, the segment and all other segments coded with
Expressiveness and Traceability were read and analysed. The goal was to see

 159 Page 20 of 71 Empir Software Eng (2022) 27:159

Fig. 5 Analysis forms in a content structuring content analysis as presented by Kuckartz (2014)

if reduced overhead from implicit trace capabilities played a role in the argumentation of
other participants and to gather all the other mentioned reasons.

For the analysis over all properties combined we apply the theoretical coding process
of constructivist grounded theory (Charmaz 2014; Stol et al. 2016) to develop a model of
influences. To do so, the Factor assessments are used to examine how the factors influence
the respective properties, what the commonalities between properties are and where the
differences lie. The goal here is to develop a cohesive theory which explains the influences
of factors on the individual properties but also on the properties as a whole and potential
influences between the factors themselves.

In terms of our example text segment, the results from analysing Expressiveness
and Traceability segments were compared to results from analysing segments coded
with other property codes and Traceability. The goal was to find commonalities and
differences between the analysed groups.

3.3.8 Privacy and Ethical concerns

All interview participants were informed of the data collection procedure, the handling of
the data and their rights surrounding the process, prior to the interview.

During selection of potential participants the following data was collected and processed.

• First & last name.
• E-Mail address.

For participants that agreed to the partake in the interview study the following additional
data was collected and processed during the course of the study.

• Non anonymised audio recording of the interview.
• Transcripts of the audio recordings.

All data collected during the study was not shared with any person outside of the group
of authors. Audio recordings were handled only by the first and second author.

Empir Software Eng (2022) 27:159 Page 21 of 71 159

The complete information and consent form can be found in Appendix D. All partic-
ipants have consented to having their interview recorded, transcribed and analysed based
on this information. All interview recordings were stored on a single device with hardware
encryption and deleted as soon as transcriptions were finalised. The interview transcripts
were processed to prevent identification of participants. For this, identifying statements and
names were removed.

Apart from the voice recordings and names, no sensitive information about the intervie-
wees was collected.

The study design was not presented to an ethical board. The basis for this decision are the
rules of the German Research Foundation (DFG) on when to use a ethical board in human-
ities and social sciences3. We refer to these guidelines because there are none specifically
for software engineering research and humanities and social sciences are the closest related
branch of science for our research.

4 Demographics

We interviewed, and got one written response, from a total of 56 experts from 16 different
countries with varied backgrounds and experience levels and collected one comprehensive
written response. Table 4 in Appendix C presents an overview of the demographic data about
all interview participants. Experts and their statements are distinguished via an anonymous
ID (P1 to P56).

4.1 Background

As evident from Fig. 6 participants with a research background constitute the largest por-
tion of our interviewees. Overall there is an even split between participants solely from
research and those that have at least some degree of industrial contact (either through indus-
try projects or by working in industry). Only 3 participants stated to have used model
transformations solely in an industrial context. This is in part offset by the fact that 25 of
interviewees have executed research projects in cooperation with industry or have worked
both in research and industry (22 and 3 respectively). While there is a definitive lack of
industry practitioners present in our study, a large portion of interviewees are still able to
provide insights into model transformations and model transformation languages with an
industry view.

Lastly, 10 of our participants are, in some capacity, involved in the development of model
transformation languages. They can provide a different angle on advantages or disadvan-
tages of MTLs compared to the 46 participants that use them solely for transformation
purposes.

4.2 Experience

50 interviewees expressed to have 5 or more years of experience in using model transforma-
tions. Moreover, 24 of the participants have over 10 years of experience in the field. Lastly
there was a single participant that had only used model transformations for a brief amount
of time during their masters thesis.

3https://www.dfg.de/foerderung/faq/geistes sozialwissenschaften/

 159 Page 22 of 71 Empir Software Eng (2022) 27:159

Fig. 6 Distribution of participants background

4.3 Used Languages for Transformation Development

To better assess our participants and to qualify their answers with respect to their back-
ground we asked all interviewees to list languages they used to develop model transforma-
tions. Figure 7 summarises the answers given by participants while categorizing languages
in one of three categories namely dedicated MTL, internal MTL and GPL. This differen-
tiation is based on the classifications from Czarnecki and Helsen (2006) and Kahani et al.
(2019).

The distinction between GPL and dedicated/internal MTL is made, to gain an overview
over how large the portion of users of general purpose languages for the development is,
compared to the users of model transformation languages. Furthermore, it also allows for
comprehending the viewpoint participants will take when answering questions throughout
the interview, i.e. do they compare general purpose languages with model transformation
languages based on their experience with both or do they give specific insights into their

dedicated

MTL
GPL

internal

MTL

25 4

0

4

1

0

22

Fig. 7 Venn diagram depicting the language usage of participants

Empir Software Eng (2022) 27:159 Page 23 of 71 159

Fig. 8 Number of participants using a specific dedicated MTL

experiences with one of the two approaches. Internal MTL is separated from dedicated MTL
because one claim within the interview protocol specifically explores the topic of internal
model transformation languages.

52 participants have used dedicated model transformation languages such as ATL, Hen-
shin or Viatra for transforming models. Only half as many (27) stated to have used general
purpose languages for this goal. Lastly, only 5 indicated the use of internal MTLs.

When looking at the specific dedicated MTLs used ATL is by far the most prominent
one used by interviewees. A total of 37 participants mention having used ATL. This is more
than double the amount of the second most used language namely Henshin which is only
mentioned by 17 interviewees. The QVT family then follows in third place with QvT-R
having been used by 13 participants, QvT-O by 11. A complete overview over all dedicated
model transformation languages used by our interviewees can be found in Fig. 8. Note that
several interviewees mentioned using more than one language, making the total number of
data points in this figure larger than 52.

In the group of GPL languages used for model transformation (summarised in Fig. 9),
Java is the most used language with 14 participants stating so. Note that several intervie-
wees mentioned using more than one language, making the total number of data points in

Fig. 9 Number of participants using a specific GPL

 159 Page 24 of 71 Empir Software Eng (2022) 27:159

this figure larger than 27. Java is closely followed by Xtend which is mentioned by 12 inter-
viewees. Then follows a steep drop of in popularity with Java Emitter Templates having
been used by only four participants.

Lastly, only four internal model transformation languages, namely RubyTL, NTL, NMF
Synchronizations and FunnyQT, are mentioned. This shows a lack of prominence thereof.
Moreover none of the languages is used by more than two interviewees.

5 Findings

Based on the responses of our interviewees and our analysis, we developed a framework
to classify influence factors. It allows us to categorize how factors influence properties of
MLTs and each other according to our interviewees. Note that we split the property Reuse
& Maintainability into two properties for the purpose of reporting. This is done because
interviewees chose to consider them separately. Thus reporting on them separately allows
for presenting more nuanced results.

The factors themselves are split into six top-level factors namely GPL Capabilities, MTL
Capabilities, Tooling, Choice of MTL, Skills and Use Case. The first factor, GPL Capabil-
ities, encompasses sub-factors related to writing model transformations in general purpose
languages. MTL Capabilities encompasses sub-factors that originate from transformation
specific features of model transformation languages. Tooling contains factors surrounding
tool support for MTLs. Choice of MTL details how the choice of language asserts its influ-
ence. The factor Skills encompasses sub-factors associated with skills. Lastly, the Use Cases
factor contains sub-factors that relate to the involved use case an its influences.

Within the framework we differentiate between two kinds of factors. The first kind are
factors, that have a positive or negative impact on properties of MTLs. These include the
factors GPL Capabilities, MTL Capabilities and Tooling as well as their sub-factors. The
second kind are factors that, depending on their characteristic, moderate how other factors
influence properties, e.g. depending on the language, its syntax might have a positive or neg-
ative influence on the comprehensibility of written code. We call such factors moderating
factors. These include the factors Choice of MTL, Skills and Use Case and their sub-factors.

Table 3 provides an overview over the answers given by our interviewees. The table
shows factors on its rows and MTL properties on its columns. A + in a cell denotes, that
interviewees mentioned the factor to have a positive effect on their view of the MTL prop-
erty. A - means interviewees saw a negative influence and +/- describes that there have
been mentions of both positive and negative influences. Lastly, a M in a cell denotes, that the
factor represents a moderating factor for the MTL property, according to some interviewees.
The detailed extent of the influence of each factor is described throughout Sections 5 and 6.

In the following we present all top-level factors and their sub-factors and describe their
place within our framework. For each factor we detail its influence on properties of model trans-
formation languages or on other factors, based on the statements made by our interviewees.
All statements referred to in this section can be found verbatim in Table 5 in Appendix E.

5.1 GPL Capabilities

Using general purpose languages for developing model transformations, as an alternative to
using dedicated languages was extensively discussed in our interviews. Interviewees men-
tioned both advantages and disadvantages that GPLs have compared to MTLs that made
them view MTLs more or less favourably.

Empir Software Eng (2022) 27:159 Page 25 of 71 159

Ta
bl
e
3

O
ve

rv
ie

w
ov

er
qu

al
ity

at
tr

ib
ut

e
in

fl
ue

nc
es

pe
r

fa
ct

or

To
p-

le
ve

lF
ac

to
r

Su
b-

Fa
ct

or
C

om
pr

eh
en

si
bi

lit
y

E
as

e
of

W
rit

in
g

E
xp

re
ss

iv
en

es
s

M
ai

nt
ai

na
bi

lit
y

Pr
od

uc
tiv

ity
R

eu
se

ab
ili

ty
To

ol
Su

pp
or

t

G
PL

C
ap

ab
ili

tie
s

+
/-

+
/-

-
-

+
/-

+
+

/-

M
T

L
C

a-
pa

bi
lit

ie
s

D
om

ai
n

Fo
cu

s
+

+
+

/-
+

+
/-

+
B

id
ir

ec
tio

na
lit

y
+

/-
+

/-
+

+
/-

+
In

cr
em

en
ta

lit
y

+
+

/-
+

M
ap

pi
ng

s
+

+
/-

+
+

+
/-

T
ra

ce
ab

ili
ty

+
+

/-
+

/-
+

M
od

el
T

ra
ve

rs
al

+
+

+
+

Pa
tte

rn
M

at
ch

in
g

+
+

+
M

od
el

N
av

ig
at

io
n

+
+

+
M

od
el

M
an

ag
em

en
t

+
+

+
R

eu
se

M
ec

ha
ni

sm
s

+
/-

L
ea

rn
ab

ili
ty

-

To
ol

in
g

A
na

ly
si

s
To

ol
in

g
+

+
+

/-
C

od
e

R
ep

os
ito

ri
es

-
-

D
eb

ug
gi

ng
To

ol
in

g
+

/-
+

/-
E

co
sy

st
em

-
-

-
ID

E
To

ol
in

g
+

/-
-

-
In

te
ro

pe
ra

bi
lit

y
-

To
ol

in
g

A
w

ar
en

es
s

-
To

ol
C

re
at

io
n

E
ff

or
t

-
To

ol
L

ea
rn

ab
ili

ty
-

-
To

ol
U

sa
bi

lit
y

-
-

-
To

ol
M

at
ur

ity
-

V
al

id
at

io
n

To
ol

in
g

-
C

ho
ic

e
of

M
T

L
M

M
M

M
M

M
M

Sk
ill

s
L

an
gu

ag
e

Sk
ill

s
M

M
M

M
U

se
r

E
xp

er
ie

nc
e/

K
no

w
le

dg
e

M
M

M

U
se

C
as

e

(M
et

a-
)

M
od

el
s

M
I/

O
Se

m
an

tic
ga

p
M

M
M

Si
ze

M
M

 159 Page 26 of 71 Empir Software Eng (2022) 27:159

The disadvantages of GPLs compared to MTLs stem from additional features and
abstractions that MTLs bring with them and will be discussed later in Section 5.2. The
advantages of GPLs on the other hand can not be placed within the MTL Capability factors.
These will instead be presented separately in this section.

According to our interviewees, advantages of GPLs are a relevant factor for all properties
of MTLs.

General purpose languages are better suited for writing transformations that require
lots of computations. This is because they were streamlined for these kinds of activities
and designed for this task, with language features like streams, generics and lambdas. As
a result, general purpose languages are far more advanced for such situations compared
to model transformation languages, which sacrifice this for more domain expressiveness
[Qgpl1].

Much like the language design for GPLs, their tools and ecosystems are mature and
designed to integrate well with each other. Moreover, according to several interviewees,
their tools are of high quality making developers feel more Productive [Qgpl2].

Lastly, multiple participants noted, that there are much more GPL developers readily
available for companies to hire, thus making GPLs more attractive for them. This helps
the Maintainability of existing code as such experts are more likely to Comprehend GPL
code [Qgpl3]. Whether this aspect also improves the overall Productivity of transformation
development in a GPL was disagreed upon, because it might be that developers trained in a
MTL could produce similar results with less resources.

It was also mentioned, that much more training resources are available for GPL
development, making it easier to start learning and using a new GPL compared to a MTL.

5.2 MTL Capabilities

The capabilities that model transformation languages provide that are not present in GPLs,
are important factors that influence properties of the languages. This view is shared by
our interviewees that raised many different aspects and abstractions present in model
transformation languages.

The influence of capabilities specifically introduced in MTLs is diverse and depends on
the concrete implementation in a specific language, the skills of the developers using the
MTL and the use case in which the MTL is to be applied. We will discuss all the implications
raised by our interviewees regarding the transformation specific capabilities of MTLs for
the properties attributed to MTLs in detail, in this section.

5.2.1 Domain Focus

Domain Focus describes the fact that model transformation languages provide transfor-
mation specific constructs, abstractions or workflows. Interviewees remarked the domain
focus, provided by MTLs, as influencing Comprehensibility, Ease of Writing, Expressive-
ness, Maintainability, Productivity and Tool Support. But the effects can differ depending
on the specific MTL in question.

There exists a consensus that MTLs can provide better domain specificity than GPLs by
introducing domain specific language constructs and abstractions. This increases Expres-
siveness by lifting the problem onto the same level as the involved models allowing
developers to express more while writing less. MTLs allow developers to treat the transfor-
mation problem on the same abstraction level as the involved modelling languages [Qdf 1].
This also improves the ease of development.

Empir Software Eng (2022) 27:159 Page 27 of 71 159

Several interviewees argued, that when moving towards domain specific concepts the
Comprehensibility of written code is greatly increased. The reason for this is, that because
transformation logic is written in terms of domain elements, unnecessary parts are omitted
(compared to GPLs) and one can focus solely on the transformation aspect [Qdf 2].

Having domain specific constructs was also raised as facilitating better Maintainabil-
ity. Co-evolving transformations written in MTLs together with hardware-, technology-,
platform- or model changes is said to be easier than in GPLs because “Once you have things
like rules and helpers and things like left hand side and right hand side and all these pat-
terns then [it is] easier to create things like meta-rules to take rules from one version to
another version [...]” (P23).

Domain focus also enforces a stricter code structure on model transformations. This
reduces the amount of variety in which they can be expressed in MTLs. As a result, devel-
oping Tool Support for analysing transformation scripts gets easier. Achieving similarly
powerful tool support for general purpose languages, and even for internal MTLs, can be a
lot harder or even impossible because much less is known solely based on the structure of the
code. Analysis of GPL transformations has to deal with the complete array of functionality
of general purpose language constructs [Qdf 4]. While MTLs can be Turing complete too,
they tend to limit this capability to specific sections of the transformation code. They also
make more information about the transformation explicit compared to GPLs. This allows
for easier analysis of properties of the transformation scripts which reduces the amount of
work required to develop analysis tooling.

The influence of domain abstractions on Productivity was heavily discussed in our inter-
views. Interviewees agreed that, depending on the used language, Productivity gains are
likely, due to their domain focus. However, one interviewee explained that precisely because
of Productivity concerns companies in the industry might use general purpose languages.
The reason for this boils down to the Use Case and project context. Infrastructure for gen-
eral purpose languages might already be set up and developers do not need to be trained in
other languages [Qdf 5]. Moreover, different tasks might require different model transfor-
mation languages to fully utilise their benefits, which, from an organisational standpoint,
does not make sense for a company. So instead one GPL is used for all tasks.

5.2.2 Bidirectionality

According to our interviewees bidirectional functionality in a model transformation lan-
guage influences its Comprehensibility, Ease of Writing, Expressiveness and Maintain-
ability and Productivity. Its effects on these properties then depends on the concrete
implementation of the functionality in a MTL. It also depends on the Skills of the developers
and the concrete Use Case.

Our interviewees mentioned that the problem of bidirectional transformations is inher-
ently difficult and that high level formalisms are required to concisely define all aspects
of such transformations. Many believe that because of this solutions using general purpose
languages can never be sufficient. Statements in the vein of “in a general purpose program-
ming language you would have to add a bit of clutter, a bit of distraction, from the real
heart of the matter” (P42) were made several times. This, combined with having less opti-
mal querying syntax, then shifts focus away from the actual transformation and decreases
both the Comprehensibility and Maintainability of the written code.

Maintainability is also hampered because GPL solutions scatter the implementation
throughout two or more rules (or methods or files) that have to be adapted in case of

 159 Page 28 of 71 Empir Software Eng (2022) 27:159

changes [Qbx2]. Expressive and high level syntax in MTLs helps alleviate these problems
and increases the ease at which developers can write bidirectional model transformations.

Interviewees also commented on the fact that, thanks to bidirectional functionalities,
consistency definitions and synchronisations between both sides of the transformation can
be achieved easier. This improves the Maintainability of modelling projects as a whole and
allows for more Productive workflows. Manual attempts to do so have been stated to be
error-prone and labour-intensive.

It was also pointed out that the inherent complexity of bidirectionality leads to several
problems that have to be considered. MTLs that offer syntax for defining bidirectional trans-
formations are mentioned to be more complex to use as their unidirectional counterparts.
They should thus only be used in cases where bidirectionality is a requirement. Moreover,
one interviewee mentioned that developers are not generally used to thinking in bidirectional
way [Qbx3].

Lastly, the models involved in bidirectional transformations also play a role regardless of
the language used to define the transformation. Often the models are not equally powerful
making it hard to actually achieve bidirectionality between them, because of information
loss from one side to the other [Qbx4].

5.2.3 Incrementality

Dedicated functionality in MTLs for executing incremental transformations has been dis-
cussed as influencing Comprehensibility, Ease of Writing and Expressiveness. Similar
to bidirectionality its influence is again heavily dependent on the Use Case in which
incremental languages are applied as well as the Skills of the involved developers.

Declarative languages have been mentioned to facilitate incrementality because the exe-
cution semantics are already hidden and thus completely up to the execution engine. This
increases the Expressiveness of language constructs. It can, however, hamper the Compre-
hensibility of transformation scripts for developers inexperienced with the language because
there is no direct way of knowing in which order transformation steps are executed [Qinc1].

On the other hand interviewees also explained that writing incremental transformations
in a GPL is unfeasible. Manual implementations are error-prone because too many kinds of
changes have to be considered and chances are high that developers miss some specific kind.
Due to the high level of complexity that the problem of incrementality inherently posses
interviewees argued that writing such transformations in MTLs is much easier [Qinc2].

The same argumentation also applied for the Comprehensibility of transformations.
All the additional code required to introduce incrementality to GPL transformations is
argued to clutter the code so much that developers “[will be] in way over their head[s]”
(P13).

As with bidirectionality interviewees agreed, that the Use Case needs to be carefully
considered when arguing over incremental functionality. Only when ad-hoc incrementality
is really needed should developers consider using incremental languages. In cases where
transformations are executed in batches, maybe even over night, no actual incrementality
is necessary and then “general purpose programming languages are very much contenders
for implementing model transformations” (P42). It was also explained that using gen-
eral purpose languages for simple transformations is common practice in industry as they
are “very good in expressing [the required] control flow” (P42) and because none of the
aforementioned problems for GPLs have a strong impact in these cases.

Empir Software Eng (2022) 27:159 Page 29 of 71 159

5.2.4 Mappings

The ability of a MTL to define mappings influences that languages Comprehensibility, Ease
of Writing, Expressiveness, Maintainability and Reuse of model transformations. Developer
Skills, the used Language and concrete Use Case also play an important role in the kind of
influence.

Interviewees agreed, that the Expressiveness of transformation languages utilising syntax
for mapping is increased due to them hiding low level operations [Qmap1]. However, as
remarked by one participant, the semantic complexity of transformations can not be hidden
by mappings, only the computational complexity.

According our interviewees mappings form a natural way of how people think about
transformations. They impose a strict structure on how transformations need to be defined,
making it easy for developers to start of writing transformations. The structure also aids
general development, because all elements of a transformation have a predetermined place
within a mapping. Being this restrictive has the advantage of directing ones thoughts and
focus solely on the elements that should be transformed [Qmap2]. To transform an element,
developers only need to write down the element and what it should be mapped to.

The simple structure expressed by mappings also benefits the Comprehensibility of trans-
formations. It allows to easily grasp which elements are involved in a transformation, even
by people that are not experienced in the used language. Trying to understand the same
transformation in GPLs would be much harder because “[one] would not recognize [the
involved elements] in Java code any more” (P32). Instead, they are hidden in between all
the other instructions necessary to perform transformations in the language. Interviewees
also mentioned that, due to the natural fit of mappings for transformations, it is much easier
to find entry points from where to start and understand a transformation and to reconstruct
relationships between input and output. This is aided by the fact that the order of mappings
within a transformation does not need to conform with its execution sequence and thus
enables developers to order them in a comprehensible way [Qmap3].

One interviewee explained that, from their experience, mappings lead to less code being
written which makes the transformations both easier to comprehend and to maintain. How-
ever, they conceded that the competence of the involved developers is a crucial factor as
well. According to them, language features alone do not make code maintainable. Develop-
ers need to have language engineering skills and intricate domain knowledge to be able to
design well maintainable transformations [Qmap4]. Both are skills that too little developers
posses.

Moreover, several interviewees raised the concern, that complex Use Cases can hamper
the Comprehensibility of transformations. Understanding which elements are being mapped
can be hard to grasp if several auxiliary functions are used for selecting the elements. Here
one interviewee suggested that a standardized way of annotating such selections could help
alleviate the problem.

It was also mentioned that, while mappings and other MTL features increase the Expres-
siveness of the language, they might make it harder for developers to start learning the
languages. Because a lot of semantics are hidden behind keywords, developers need to first
understand the hidden concepts to be able to utilise them correctly [Qmap5].

Other features that highlight how much Expressiveness is gained from mappings have
also been mentioned. Mappings hide how relations between input and output are defined.
This creates a formal and predictable correspondence between them and thus enables

 159 Page 30 of 71 Empir Software Eng (2022) 27:159

Tracing. Moreover, the correspondence between elements allows languages to provide
functionality such as Bidirectionality and Incrementality [Qmap6].

Because many languages that utilise mappings can forgo definitions of explicit control
flow, mappings allow transformation engines to do execution optimisations. However, one
interviewee explained that they encountered Use Cases where developers want to influence
the execution order, forcing them to introduce imperative elements into their code effec-
tively hampering this advantage. It has also been mentioned that in complex cases the code
within mappings can get complicated to the point where non experts are unable to compre-
hend the transformation again. This problem also exists for writing transformations as well.
According to one interviewee mappings are great for linear transformations and are thus
very dependent on the involved (meta-)models. Also in cases where complex interactions
needs to be defined mappings do not present any advantage over GPL syntax and sometimes
it can even be easier to define such logic in GPLs [Qmap7].

Lastly, mappings enable more modular code to be written. This in turn facilitates reuse,
because reusing and changing code results in local changes instead of several changes
throughout different parts of GPL code [Qmap8].

5.2.5 Traceability

The ability in model transformation languages to automatically create and handle trace
information about the transformation has been discussed by our interviewees to influence
Comprehensibility, Ease of writing, Expressiveness and Productivity. However, the concrete
effect depends on the MTL and the skill of users.

All interviewees talking about automatic tracing agreed that it increases the Expressive-
ness of the language utilising it. In GPLs this functionality would need to be manually
implemented using structures like hash maps. Code to set up traces would then also need to
be added to all transformation rules [Qtrc1].

However, interviewees disagreed on how much this actually impacts the overall trans-
formation development. Most interviewees felt like automatic trace handling Eases Writing
transformations and even increases Productivity since no manual workarounds need to be
implemented. This is because manual implementation requires developers to think about
when and in which cases traces need to be created and how to access them correctly. It
also enables languages that allow developers to define rules independent from the execution
sequence. One interviewee however felt like this was not as effort intensive as commonly
claimed and thus automatic trace handling to them is more of a nice to have feature than
a requirement for writing transformations effectively. Moreover, for complex Use Cases of
tracing such as QvTs late resolve, the Users are required to understand the principle of trac-
ing [Qtrc2]. And according to another interviewee teaching how tracing and trace models
work is hard.

Comprehending written transformations can also be aided by automatic trace manage-
ment. Manual implementations introduce unnecessary clutter into transformation code that
needs to be understood to be able to understand a whole transformation. This is especially
true if effort has been put into making tracing work efficiently, according to one interviewee.
Understanding a transformation is much more straight forward when only the established
relationships between the input and output domains need to be considered, without any
additional code to setup and use traces [Qtrc3].

Lastly, one interviewee raised the issue that manual trace handling might be necessary
to write complex transformations involving multiple source and target models, as current
engines are not intended for such Use Cases.

Empir Software Eng (2022) 27:159 Page 31 of 71 159

5.2.6 Automatic Model Traversal

According to our interviewees, the automatic traversal of the input model to apply trans-
formations influences Ease of Writing, Expressiveness, Comprehensibility and Productivity.
They also explain that depending on the implementation in a concrete MTL the effects can
differ. Use Cases are also mentioned to be relevant to the influence of automatic traversal.

Automatic model traversal hides the traversal of the input model and how and when
transformations are applied to the input model elements. Because of this many interviewees
expressed that this feature in MTLs increases their Expressiveness. The reduced code clutter
also helps with Comprehensibility.

It also Eases the Writing of transformations because developers do not need to worry
about traversing the input and finding all relevant elements, a task that has been described as
complicated by interviewees. This can be of significant help to developers. One interviewee
explained, that they ran an experiment with several participants where they observed model
traversal to be “one of the biggest problems for test persons” (P49).

Not having to manually define traversal reduces the amount of code that needs to be
written and thus increases the overall Productivity of development, according to one inter-
viewee. However, there can also be drawbacks from this practice. Hiding the traversal
automatically leads to the context of model elements to be hidden from the developer. In
cases where the context contains relevant information this can be detrimental and even mask
errors that are hard to track down [Qtrv1].

Lastly, automatic input traversal enables transformation engines to optimize the order of
execution in declarative MTLs. And MTLs where no automatic execution ordering can be
performed have been described as being “close to plain GPLs” (P52).

5.2.7 Pattern-Matching

Some model transformation languages, such as Henshin, allow developers to define sub-
graphs of the model graph, often using a graphical syntax, to be matched and transformed.
This pattern-matching functionality influences the Comprehensibility, Expressiveness and
Productivity, according to our interviewees. It is, however, strongly dependent on the spe-
cific language and Use Case. The feature is only present in a small portion of MTLs and
brings with it its own set of restrictions depending on the concrete implementation in the
language.

Pattern-matching functionality greatly increases the Expressiveness of MTLs. Similar to
the basic model traversal no extra code has to be written to implement this semantic. How-
ever, the complexity of the abstracted functionality is even higher, since it is required to
perform sub-graph matching to find all the relevant elements in a model. These patterns can
also become arbitrarily complex and thus all interviewees talking about pattern-matching
agreed that manual implementations are nearly impossible. Nevertheless one interviewee
mentioned, that all languages they used that provided pattern-matching functionality (Hen-
shin and TGG) had the drawback of providing no abstractions for resolving traces which
takes away from its overall usefulness for certain Use Cases [Qpm1].

Not having to implement complex pattern-matching algorithms manually is also men-
tioned to increase the Productivity of writing transformations because this task is labour-
intensive and error-prone.

Improvements for the Comprehensibility of transformations have also been recognized
by some interviewees. They explained that the, often times graphical, syntax of languages
with pattern-matching functionality allows to directly see the connection between involved

 159 Page 32 of 71 Empir Software Eng (2022) 27:159

elements. In GPLs this would be hidden behind all the code required to find and collect
the elements. As such MTL code is “less polluted” (P52) than GPL code. Moreover, the
Comprehensibility is also promoted by the fact that in some languages the graphical syntax
shows the involved elements as they would be represented in the abstract syntax of the
model.

5.2.8 Model Navigation

Dedicated syntax for expressing model navigation has influence on the Comprehensibility
and Ease of Writing of model transformations as well as on the Expressiveness of the MTL
that utilises it.

Having dedicated syntax for model navigation helps to ease development as it allows
transformation engineers to simply express which elements or data they want to query from
a model while the engine takes care of everything else. Furthermore, it has been mentioned
that this has a positive effect on transformation development because developers do not need
to consider the efficiency of the query compared to when defining such queries using nested
loops in general purpose languages [Qnav1].

Because languages like OCL abstract from how a model is navigated to compute the
results of a query, interviewees attributed a higher Expressiveness to them than GPL solu-
tions and described code written in these languages as more concise. Several interviewees
attribute a better Comprehensibility to OCL as a result of this conciseness, arguing that well
designed conditions and queries written in OCL are easy to read [Qnav2].

OCL has however also been criticised by an interviewee. According to them, the lan-
guage is too practically oriented, misses a good theoretical foundation and lacks elegance to
properly express ones intent. They explain that because of this, the worth of learning such a
language compared to using a more common language is uncertain.

5.2.9 Model Management

The impact of having to read and write models from and to files, i.e., model management,
has been discussed by several interviewees. Automatic model management was discussed
in our interviews as influencing the Comprehensibility, Ease of Writing and Expressiveness
of model transformations in MTLs.

The argument for all three properties boils down to developers not having to write code
for reading input models or writing output models, as well as the automatic creation of out-
put elements and the order thereof. Interviewees agreed that implicit language functionality
for these aspects raised the Expressiveness of languages. It reduces clutter when reading a
written transformation and thus improving the Comprehensibility. Finally, developers do not
have to deal with model management tasks, e.g. using the right format, that are not relevant
to the actual transformation which helps with writing transformations [Qman1].

5.2.10 Reuse Mechanism

Mechanisms to reuse model transformations mostly influence the Reusability of model
transformations in MTLs. Their concrete influence depends on the used Language and how
reuse is handled in it. Interviewees also reported on cases where the users Skills with the lan-
guage was relevant because novices might not be familiar with how the provided facilities
can be utilised to achieve reuse.

Empir Software Eng (2022) 27:159 Page 33 of 71 159

There exists discourse between the interviewees about reuse mechanisms and their use-
fulness in model transformation languages. Several interviewees argued that MTLs do not
have any reuse mechanisms that go beyond what is already present in general purpose
languages. They believe that most, if not all, the reuse mechanisms that exist in MTLs
are already present in GPLs and as such MTLs do not provide any reuse advantages
[Qrm1]. According to them such reuse mechanisms include things like rule inheritance from
languages like ATL or modules and libraries.

Other interviewees on the other hand suggested that while the aforementioned mecha-
nisms stem from general purpose languages, they are still more transformation specific than
their GPL counterpart. This is, because the mechanisms work on transformation specific
parts in MTLs rather than generic constructs in GPLs [Qrm2, Qrm3]. Because of this focus,
interviewees argue that they are more straight forward to use and thus improve Reusability
in MTLs.

Interviewees also explained that there exist many languages that do not provide any use-
ful reuse or modularisation mechanisms and that even in those that do it can be hard to
achieve Reusability in a useful manner. However, one participant acknowledged that in their
case, the reason for this might also relate to the inability of the Users to properly utilize the
available mechanisms.

It has also been mentioned that reuse in model transformations is an inherently complex
problem to solve. Transferring needs between two transformations which apply on different
meta-models is difficult to do. As such, model transformation are often tightly tied to the
domain in which they are used which makes reuse hard to achieve and most reuse between
domains is currently done via copy & paste. This argument can present a reason why, as
criticised by several interviewees, no advanced reuse mechanisms are broadly available.

The desire for advanced mechanisms has been expressed several times. One interviewee
would like to see a mechanism that allows to define transformations to adapt to different
input and output models to really feel like MTLs provide better reusability than GPLs.
Another mentioned, that all reuse mechanisms conferred from object orientation rely on the
tree like structure present in class structures while models are often more graph like and
cyclic in nature. They believe that mechanisms that address this difference could be useful
in MTLs.

Another disadvantage in some MTLs that was raised, is the granularity on which reuse
can be defined. In languages like Henshin, for example, reuse is defined on a much coarser
level than what is possible in GPLs.

Not having a central catalogue, similar to maven for Java, from which transformations or
libraries can be reused, has also been critiqued as hindering reuse in model transformation
languages.

5.2.11 Learnability

The learnability of model transformation languages has been discussed as influencing the
Ease of Writing model transformations.

It has been criticised by several interviewees, that the learning curve for MTLs is steep.
This is, in part, due to the fact that users not only need to learn the languages themselves, but
also accompanying concepts from MDE which are often required to be able to fully utilise
model transformation languages. The learning curve makes it difficult for users to get started
and therefore hampers the Ease of Writing transformations [Qler1]. This effect could be
observed among computer science students at several of the universities of our interviewees.

 159 Page 34 of 71 Empir Software Eng (2022) 27:159

The students were described to having difficulties adapting to the vastly different approach
to development compared to more traditional methods. A potential reason for this could
be that people come into contact with MDE principles too late, as noted by an interviewee
[Qler2].

5.3 Tooling

While Tool Support is a MTL property that was investigated in our study, the tooling pro-
vided for MTLs, as well as several functional properties thereof, have been raised many
times as factors that influence other properties attributed to model transformation languages
as well. Most of the time this influence is negative, as tooling is seen as one of the greatest
weak points of model transformation languages by our interviewees.

Many interviewees explained, that the most common languages do in fact have tools. The
problem, however, lies in the fact that some helpful tools only exist for one language while
others only exist for another language. As a result there is always some tool missing for any
specific language. This leads people to feel like Tool Support for MTLs is bad compared to
GPLs. Though there was one interviewee that explained that for their Use Cases, all tools
required to be productive were present.

In the following, we will present several functional properties and tools that interviewees
expressed as influential for Tool Support as well as other properties of MTLs.

5.3.1 Analysis Tooling

Analysis tools are seen as a strong suit of MTLs. Their existence in MTLs is said to impact
Productivity, Comprehensibility and perceived Tool Support.

According to the interviewees, some analyses can only be carried out on MTLs, as
the abstraction in transformations in GPLs is not high enough and too much information
is represented by the program logic and not in analysable constructs. As one interviewee
explained, this comes from the fact that for complex analysis, such as validating correctness,
languages need to be more structured. Nevertheless, participants mainly mentioned analyses
they would like to see, which is an indication that, while the potential for analysis tools for
MTLs is high, they do not yet see usable solutions for it, or are unaware of it. This is high-
lighted by one interviewee that explained that they are missing ways to check properties of
model transformations, even though such solutions exist for certain MTLs [Qdb1].

A desired analysis tool mentioned in the interviews is rule dependency analysis and visu-
alisation. They believe that such a tool would provide valuable insights into the structure
of written transformations and help to better comprehend them and their intent. “What I
would need for QVT-R, for example, in more complex cases, would be a kind of depen-
dency graph.” (P32). Moreover two interviewees expressed the desire for tools to verify
that transformations uphold certain properties or preserve certain properties of the involved
models.

5.3.2 Code Repositories

A gap in Tool Support that has been brought up several times, is a central platform to share
transformation libraries, much like maven-central for Java or npm for JavaScript. This tool
influences Tool Support and the Reusability of MTLs.

According to two interviewees, not having a central repository where transformations,
written by other developers, can be browsed or downloaded, greatly hinders their view

Empir Software Eng (2022) 27:159 Page 35 of 71 159

on the Reusability of model transformation languages. This is because it creates a barrier
for reuse. For one thing, it is difficult to find model transformations that can be reused.
Secondly, mechanisms that would simplify such reuse are then also missing. “I think
what is currently missing is a catalogue or a tool like maven for having repositories for
transformations so you can possibly find transformations to reuse.” (P14)

5.3.3 Debugging Tooling

Debuggers have been raised as essential tools that help with the Comprehensibility of writ-
ten model transformations. The existence of a debugger for a given language therefore
influences its Tool Support as well as its Comprehensibility.

One interviewee explained that, especially for declarative languages, where the execu-
tion deviates greatly from the definition, debugging tools would be a tremendous help in
understanding what is going on. In this context, opinions were also expressed that more
information is needed for debugging model transformations than for traditional program-
ming and that the tools should therefore be able to do more. Interviewees mentioned the
desire to be able to see how matchings arise or why expected matches are not produced as
well as the ability to challenge their transformations with assertions to see when and why
expressions evaluate to certain values. “Demonstrate to me that this is true, show me the
section of the transformation in which this OCL constraint is true or false.” (P28).

Valuable debugging of model transformations is mainly possible in dedicated MTLs,
according to one interviewee. They argue that debugging model transformations in GPLs
is cumbersome because much of the code does not relate to the actual transformation thus
hampering a developers ability to grasp problems in their code.

5.3.4 Ecosystem

The ecosystems around a language, as well as existing ecosystems, in which model trans-
formations languages would have to be incorporated into, were remarked as mostly limiting
factors for Productivity, Maintainability as well as the perceived amount of Tool Support.

One interviewee explained, that for many companies, adopting a model transformation
language for their modelling concerns is out of the question because it would negatively
impact their Productivity. The reason for this are existing ecosystems, which are designed
for GPL usage. Moreover, it was noted that, to fully utilise the benefits of dedicated lan-
guages many companies would need to adopt several languages to properly utilise their
benefits. This is seen as hard to implement as “people from industry have a hard time when
they are required to use multiple languages” (P49) making it hard for them to maintain
code in such ecosystems.

Ecosystems surrounding MTLs have also been criticised in hampering Productivity and
perceived Tool Support. Several interviewees mentioned, that developers tend to favour
ecosystems where many activities can be done in one place, something they see as lacking
in MTL ecosystems. One interviewee even referred to this problem as the reason why they
turned away from using model transformation languages completely [Qeco2].

This issue somewhat contrasts a concern raised by a different group of interviewees.
They felt that the coupling of much of MDE tooling to Eclipse is a problem that hampers
the adoption of MTLs and MDE. This coupling allows many tools to be available within the
Eclipse IDE but, according to them, the problem lies in the fact that Eclipse is developed at
a faster pace than what tool developers are able to keep up with, leaving much of the Tool
Support for MTLs in an outdated state, limiting their exposure and usability [Qeco3].

 159 Page 36 of 71 Empir Software Eng (2022) 27:159

5.3.5 IDE Tooling

One essential tool for Tool Support, Ease of Writing and Maintainability of MTLs are
language specific editors in IDEs.

Several interviewees mentioned, that languages without basic IDE support are likely
to be unusable, because developers are used to all the quality-of-life improvements, with
autocompletion and syntax highlighting being the two most important features offered by
such tools. Refactoring capabilities in IDEs, like renaming, have also been raised as crucial,
especially for easing the Maintainability of transformations.

5.3.6 Interoperability

How well tools can be integrated with each other has been raised as a concern for the Tool
Support of MTLs by several interviewees.

Interviewees see a clear advantage for GPLs when talking about interoperability between
different MTL tools. They believe, that due to the majority of tools being research projects,
little effort is spent into standardizing those in a way that allows for interoperability on
the level that is currently provided for GPLs. “But the technologies, to combine them, it is
difficult [...]” (P36). One interviewee described their first hand experience with this. They
could not get a MTL to process models they generated with a software architecture tool
because it produced non standard UML models which could not be used by the MTL. This
problem has been echoed by another interviewee who explained that many MTLs do not
work with non EMF compatible models.

5.3.7 Tooling Awareness

A few interviewees talked about the availability of information about tools and the general
awareness of which tools for MTLs exist. According to them, this strongly influences the
perceived lack of Tool Support for model transformation languages in general.

When starting out with model transformations it can be hard to find out which tools
one should use or even which tools are available at all. Two interview participants mention
experiencing this first hand. They further explain that there exists no central starting point
when looking for tools and tools are generally not well communicated to potential users
outside of research [Qawa1].

Another interviewee suspected that the same problem also happens the other way around.
They believe that some well designed MTL tools are completely unknown outside of the
companies that developed them for internal use.

5.3.8 Tool Creation Effort

The amount of effort, that is required to be put into the development of MTL tools, has been
raised by many interviewees as a reason why Tool Support for MTLs is seen as lacking.

All interviewees talking about the effort involved in creating tools for MTLs agree that
there is a lot of effort involved in developing tools. This is not a problem in and of itself but,
when comparing tooling with GPLs interviewees felt like MTLs being at a disadvantage.
The disadvantage stems from the community for MTLs being much smaller and thus having
less man power to develop tools which limits the amount of tools that can be developed.

Empir Software Eng (2022) 27:159 Page 37 of 71 159

Several interviewees noted, that the only solution they see for this problem is industrial
backing or commercial tool vendors because “I am keenly aware of the cost to being able
to develop a good programming language, the cost of maintaining it and the cost of adding
debuggers and refactoring engines. It is enormous.” (P1).

When comparing the actual effort for creating transformation specific tools, some inter-
viewees explained that their experience suggests easier tool development for MTLs than
for GPLs. They explained that, extracting the transformation specific information necessary
for such tools out of GPL code complicates the whole process, whereas dedicated MTLs
with their small and focused language core provide much easier access to such information
[Qtce2].

5.3.9 Tool Learnability

The learning curve for someone starting off with MTLs and MTL tools is discussed as a
heavy burden to the perceived effectiveness of Tools and even influences Ease of Writing.

Several interviewees criticised the fact that when starting off with a new MTL and its
accompanying tools there is little support for users. Many tools lack basic documentation
on how to set them up properly and how to use them. As a result users feel lost and find it
difficult to start off writing transformations [Qtle1].

5.3.10 Tool Usability

Related to the topic of learnability, the usability of tools for model transformation languages
is discussed as influencing the quality of Tool Support for the languages as well as the Ease
of Writing and Productivity.

To fully utilise the potential of MTLs useable tools are essential. Due to their higher level
of abstraction, high quality tools are necessary to properly work with them and Write well
rounded transformations [Quse1].

This is currently not the case when looking at the opinions of our interviewees talking
about the topic of tool usability. There are tools available for people to start off with devel-
oping transformations but they are not well rounded and thus not ready for professional
use, according to one interviewee. This is supported by several other interviewees opinions,
many tools are faulty, which hinders the workflow and reduces Productivity [Quse2]. It has
also been stated that if there were high quality useable tools available, they would be used.
The reality for many users is, however, more in line with the experience of one interviewee
who stated that they were unable to get many tools (for bidirectional languages) to even
work at all.

5.3.11 Tool Maturity

A reason given for many of the criticised points surrounding MTL tools is their maturity. It
is said to be a pivotal factor for everything related to Tool Support.

The maturity of tools for model transformation languages was commented on a lot. Tools
need to be refined more in order to raze many of their current faults. The fact that this is not
currently done relates back to the effort that is involved with it and the limited personnel
available to do so. This is highlighted in an argument made by one of the interviewees who
feels, that the community should not be hiding behind the argument of maturity [Qmat1].

 159 Page 38 of 71 Empir Software Eng (2022) 27:159

5.3.12 Validation Tooling

Tools or frameworks to support the validation and testing of transformations written in
MTLs have been discussed to influence the perceived Tool Support for nearly all MTLs.

Too much of the available tool support focuses solely on the writing phase of transforma-
tion development. There is little tool support for testing developed transformations, which
has been raised as an area where much progress can, and has to be, made. Especially when
comparing the current state of the art with GPLs, MTLs are seen as lacking [Qval1]. Not
only are there little to no tools like unit testing frameworks, there is also too few trans-
formation specific support such as tools to specifically verify binding or helper code in
ATL.

5.4 Choice of MTL

The choice of MTL is an obvious factor that influences how other factors, such as the
MTL Capabilities, influence the properties of model transformation languages. However, it
should be explicitly mentioned, because it has been brought up countless times by inter-
viewees while not often being considered in literature. Depending on the chosen model
transformation language its capabilities and whole makeup changes, which has strong
implications on all aspects of model transformation development.

A large number of the interviewees have commented on this. They either directly raised
the concern, by prefacing a discussion with a statement such as “[...] it depends on the
MTL”, or indirectly raised the concern, when comparing specific languages that do or do
not exhibit certain capabilities and properties.

5.5 Skills

Skills of involved stakeholders is another group of factors that does not have a direct influ-
ence on how MTLs are perceived but instead plays a passive role. Many interviewees
cited skills as a limiting factor to other influence factors. They argue that insufficient user
skills could hinder advantages that MTLs can provide and might even create disadvantages
compared to the more well-known and commonly used GPLs.

In this section we present the different types of skills mentioned by our interviewees as
being relevant to the discussion of properties of model transformation languages.

5.5.1 Language Skills

The skill of developers in a specific model transformation language was raised by several
interviewees as critical in facilitating many of the advantages provided through the lan-
guages capabilities. So much so that, according to them, the ability of developers to use
and read a language can make or break any and all advantages and disadvantages of MTLs
related to Comprehensibility, Ease of Writing, Maintainability and Reuseability.

Basic skills in any language are a prerequisite to being able to use it. They are also
necessary to understand written code. There is no difference between GPLs and MTLs.
It was however mentioned, that developers are generally more used to the development
style in general purpose languages. Thus users need to learn how to solve a problem with
the functionality of the model transformation language to be able to successfully develop
transformations in a MTL [Qskl1]. This is especially relevant for complex transformations,
where users are required to know of abstractions such as tracing or automatic traversal.

Empir Software Eng (2022) 27:159 Page 39 of 71 159

Following on on this, one interviewee explained, that while learning the language is a
requirement, using a new library, e.g. one for developing model transformations, in a GPL
also entails learning and as such this must not be regarded as a disadvantage.

For reuse it is also paramount for users to know what elements of a transformation can
be reused through language functionality. As a result the Reuseability is again limited by
the knowledge of users in the specific language.

Lastly, being able to maintain a transformation written in an MTL also requires users to
know the language to be able to understand where changes need to be made [Qskl2].

5.5.2 User Experience/Knowledge

Apart from mastering a used language, the amount of experience users have with said
languages and techniques also play a vital role in bringing out the full potential of
said languages. Our interviewees discussed this for Ease of Writing, Maintainability and
Productivity.

One interviewee explained that, from their experience, the amount of experience devel-
opers have with a language greatly impacts their Productivity when using said language.
The problem for MTLs that results from this is the fact that there is little incentive for a per-
son that is trying to build up their CV to spend much time on dedicated languages such as
MTLs [Qexp1]. Developers are more inclined to learning and accumulating experience in
languages that are commonly used in different companies to improve their chances of land-
ing jobs. As a result people tend to have little to no experience in using MTLs. This in turn
results in them having a harder time developing transformations in these languages, and the
final product being of lower quality than what they could achieve using a GPL in which
they have more experience in.

The problem is further exacerbated in teaching. “Many MDSE courses are just given too
late, when people are too acquainted with GPLs, and then its really hard for students to see
the point of using models, modelling and MTLs, because it’s comparable with languages
and stuff they have already learned and worked with.” (P6).

5.6 Use Case

Similar as the MTL itself and stakeholder Skills, the concrete Use Case in which model
transformations are being developed is another factor that does not directly influence how
properties of MTLs are being assessed. Instead, interviewees often mention that, depending
on the Use Case, other influence factors could either have a positive or negative effect.

Use cases are distinguished along three dimensions. The complexity of involved mod-
els based on their structure, the complexity of the transformation based on the semantic
gap between source and target, and the size of the transformation based on the use case.
Depending on which differentiation is referred to by the interviewees, the considerations
look differently.

5.6.1 Involved (Meta-) Models

The involved models and meta-models can have a large impact on the transformation and
can hence heavily influence the advantages or disadvantages that MTLs exhibit.

Writing transformations for well behaved models, meaning models that are well struc-
tured and documented, can be immensely productive in a MTL while ‘badly’ behaved
models bring out problems that require well trained experts to properly solve in a MTL. The

 159 Page 40 of 71 Empir Software Eng (2022) 27:159

UML meta-model was put forth as an example for such a badly behaved meta-model by one
interviewee. According to them, transformations involving UML models can be problematic
due to templates, which are model elements that are parametrized by other model elements,
and eGenericType. The problem with these complex model elements is often worsened
by low-quality documentation [Qmod1]. In cases where these badly behaved models are
involved, many of the advantages from advanced features of MTLs can not be properly
utilised without powerful tooling.

5.6.2 Semantic Gap Between Input and Output

Many interviewees formulate considerations based on the differentiation between ‘simple’
and ‘complex’ transformations in terms of the semantic gap that needs to be overcome.
Transformations are considered simple when there is little semantic difference between
the source and target models. Common comparisons read like: “transforming boxes into
circles” (P32).

For simple transformations, model transformation languages are regarded as taking a
lot of work off of the developers through the different language features discussed in
Section 5.2. In more complex cases, transformations will get more complex and the devel-
opers experience gets more and more relevant, as more advanced language features need to
be utilised, which can favour GPLs [Qgap1].

Others argue that the advantages of MTLs only really come into play in more complex
cases or when high level features, such as bidirectionality or incrementality, are required.
The reasoning for this argument is, that in simple cases the overhead of GPLs is not that
prominent. Moreover, for writing complex transformations, dedicated query languages in
MTLs are regarded by some to be much better than having to manually define complex
conditions and loops in a GPL.

5.6.3 Size

The Size of the transformation based on the Use Case is considered by some interviewees
to be a relevant factor as well. In cases with many rules that depend on each other, MTLs
are seen as having advantages [Qsiz1]. The size of transformations has been said to be
a limiting factor for the use of graphical languages as enormous transformations would
make graphical notations confusing. Modularisation mechanisms of languages also become
a relevant feature in these cases.

6 Cross-Factor Findings

Based on interview responses, we developed a structure model from structural equation
modeling (Weiber and Mühlhaus 2021) that models interactions between the presented
influence factors and the properties of model transformation languages.

Structure models depict assumed relationships between variables (Weiber and Mühlhaus
2021). They divide their components into endogenous and exogenous variables. The
endogenous variables are explained by the causal influences assumed in the model. The
exogenous variables serve as explanatory variables, but are not themselves explained by the
causal model. Exogenous variables either directly influence a endogenous variable or they
moderate an influence of another exogenous variable on an endogenous variable.

Empir Software Eng (2022) 27:159 Page 41 of 71 159

Structure models are therefore well suited to provide a theoretical framework for the
findings of our work. Factors identified during analysis constitute exogenous variables
while MTL properties constitute endogenous variables. Moderating factors also consti-
tute exogenous variables, with the caveat of only having moderating influences on other
influences.

A graphical overview over the influences identified by us can be found in Fig. 10. The
detailed structure model is depicted in Fig. 11.

The structure model depicts which MTL properties are influenced by which of the iden-
tified factors. For each MTL property the model also illustrates which factors moderate the
influence on the property. Rectangles represent factors, rounded rectangles represent MTL
properties. Below each MTL property the moderating factors for the property are displayed.
Arrows between a factor and a MTL property represent the factor having an influence on the
MTL property. Each influence on a MTL property is moderated by its moderating factors.
The graphical representation deviates from standard presentation due to its size.

The capabilities of model transformation languages based on domain specific abstrac-
tions are aimed at providing advantages over general purpose languages. Whether these
advantages are realised or whether disadvantages emerge is moderated by the Skills of
the users, the concrete MTL chosen as well as the Use Case for which transformations
are applied. Depending on these organisational factors the versatility provided by general
purpose languages may overshadow advantages provided by MTLs.

Tooling can aid the usage of advanced features of MTLs by supporting developers in
their endeavours beyond simple syntax highlighting. As a result, tools can further promote
the advantages that stem from the domain specific abstractions. The biggest problem that
tools for MTLs face is their availability and quality.

In the following we will present thorough discussions of the most salient observations
based on our interviews and the presented structure model. Note that, as will be thoroughly
discussed in Section 8.2, the observations have a limited applicability for industry use cases
due to the lack of interviewees that use MTLs in an industry setting.

promotes

(dis-) advantages in

MTL properties

result in

MTL Capabilities facilitates Tooling

Choice of

MTL

Skills

overshadow

GPL Capabilities

Factor
Moderating

Factor Influence Moderation

Use Case

5.1

5.4

5.2

5.6

5.3

5.5

Fig. 10 Graphical overview over factor influences and moderations

 159 Page 42 of 71 Empir Software Eng (2022) 27:159

Fig. 11 Structure model of influence and moderation effects of factors on MTL properties (Due to its size,
the model has been made interactive. Please refer to the supplementary materials for the interactive version.)

Empir Software Eng (2022) 27:159 Page 43 of 71 159

6.1 The Effects of MTL Capabilities

Capabilities of model transformation languages that go beyond what general purpose
languages can offer, are regarded as opportunities for better support in development of
transformations. The advantage often boils down to not having to manually implement the
functionality in question when it is required. It also helps reduce clutter in transforma-
tion code, putting the mapping of input and output at the centre of attention. Moreover,
they aid developers in handling problems specific to the transformation domain, such as
synchronisations and the relationship of input and output values.

This does however come with its own set of limitations. Model transformation languages
favour a different way of problem solving that is well suited to the problem at hand, but
is unfamiliar for the common programmer. This is amplified by an education that is heav-
ily focused on imperative programming and lacks deeper exposure to logical and functional
programming. Knowledge and understanding of functional concepts would help developers
when using query languages such as OCL, while logical concepts often find application in
graph based transformation languages. The domain specific mechanisms in model transfor-
mation languages also make generalisations harder. This is highlighted in the discussions
regarding reusability. Interviewees commonly referred to transformations as conceptionally
hard to reuse because of their specificity that makes them applicable only to the use case for
which they were developed.

6.2 Tooling Impact on Properties Other than Tool Support

Tooling, or the lack thereof, is a main factor that influences how people perceive the quality
and availability of usable model transformation languages. However, our interviews show
that tooling also facilitates many other properties. This is because tools are not developed
as an end in themselves. Tools are intended to support developers in their efforts to develop
and maintain their code.

As a result, the quality of available tools is a major factor that impacts all aspects of
a MTL. “Basically all the good aids you see in a Java environment should be there even
better in a MTL tool, because model transformation is so much more abstract and more
relevant that you should be having tools that are again more abstract and more relevant.”
(P28). Problems in the area of Usability, Maturity and Interoperability of tools have also
been reported on in empirical studies on MDE in general (Whittle et al. 2013; Mohagheghi
et al. 2013).

Herein also lies the biggest problem for model transformation languages. The quality of
tools is inadequate. While there do exist good and useable tools, they are far and between,
only exist for certain languages and are not integrated with each other. This greatly dimin-
ishes the potential of model transformation languages because, compared to general purpose
languages, developing with them can often be scattered over multiple separate workflows
and tools. There do exist many tools, but most of them are prototypical in nature and only
available for individual languages. This makes it hard to fully utilise the capabilities of a
MTL when suitable tools only exist in theory.

The lack of good tools can be attributed mainly to the amount of work required to develop
them and the comparatively small community. Moreover, there are no large commercial
vendors, that could put in the required resources to develop tools of a commercially viable
quality.

 159 Page 44 of 71 Empir Software Eng (2022) 27:159

6.3 The Importance of Moderating Factors

The saying “Use the right tool for the job” also applies to the context of model transforma-
tions. One of the most important things to note is that depending on the context, such as Use
Case and developer Skills, the right language to use can differ greatly. This was highlighted
time and time again in our interviews.

Interviewees insisted that the combination of use case and the concrete implementation
of a language feature significantly change how well a feature supports properties such as
Comprehensibility or Productivity, i.e. the influence of factors is moderated by ‘contex-
tual’ factors. For one, the implementation of a feature in a language might not fit well for
the problem that needs to be solved. Or the feature is not required at all and thus could
impose effort on developers that is seen as unnecessary. In our opinion, this stems from the
use cases language developers intended the language for. For example, a language such as
Henshin is intended for cases where patterns of model elements need to be matched and
manipulated. In such cases, the features provided by Henshin can bring significant advan-
tages over implementing the intended transformation in general purpose languages. Other
use cases, where these features are not required, bring no advantage. They can even have
negative effects as the language design around them might hinder users from developing a
straight forward solution.

The skills and background knowledge of users is relevant, as it can greatly influence
how comfortable people are in using a language. This in turn reflects on how well they can
perform. This is problematic for the adoption of model transformation languages, as pro-
grammers tend to be trained in imperative, general purpose languages. As a result, a gentle
learning curve is essential and the initial costs of learning need to bear fruit in adequate
time. The choice of using an MTL is therefore a long term investment that is not necessarily
suited for only a single project.

The considerations around Use Case, Skills and the Choice of MTL are not novel, but
they are rarely discussed explicitly. This is concerning because almost any decision pro-
cess will come back to these three factors and their sub-factors, as seen in the fact that the
influence on each MTL property in Fig. 11 is moderated by at least one of them. They
provide organisational considerations that come into play before transformation develop-
ment begins. Moreover, organisational concerns have already been identified as relevant
factors for general MDE adoption (Whittle et al. 2013; Hutchinson et al. 2011; Hutchinson
et al. 2011). As such they have to be at the centre of attention of researchers and language
developers too.

7 Actionable Results

In this section we present and discuss actionable results that arise from the responses made
by our interviewees and analysis thereof. Results will largely focus on actions that can be
taken by researchers, because they make up the largest portion of our interview participants.

7.1 Evaluation and Development of MTL Capabilities

Our interviewees mentioned a large number of model transformation language capabilities
and reasoned about their implications for the investigated properties of MTL. We believe

Empir Software Eng (2022) 27:159 Page 45 of 71 159

the detailed results of the interviews can form a basis for further research into two key
aspects:

(I) backing up the expert opinions with empirical data
(II) improving existing model transformation languages

7.1.1 Evaluation of MTL Capabilities and Properties

In our interviews, experts voiced many opinions on how and why factors influence the var-
ious MTL aspects examined in our study. The opinions were always based on personal
experiences, experiences of colleagues and reasoning. We therefore believe, that our results
provide a good insight into the communities sentiment and show that there exists consen-
sus between the experts in many aspects. Model transformation language capabilities are
considered largely beneficial, except for certain edge cases. However, empirical data to sup-
port this consensus is still missing. The lack of empirical studies into the topic of model
transformation languages has already been highlighted in our preceding study (Götz et al.
2021).

We are firmly convinced that researchers within the community need to carry out exten-
sive empirical studies, to back up the expert opinions and to explore the exact limits that
interviewees hinted at.

We envision two main types of studies, experiments and case studies. Setting up experi-
ments that consider real-world examples with a large number of suitable participants would
be optimal but is hard to achieve. Introducing large transformation examples in experiments
is very time-consuming and requires that all participants are experts in the languages used.
In addition, recruiting appropriate participants is a generally difficult in software engineer-
ing studies (Rainer and Wohlin 2021). We recommend using existing transformations as
the object of study in experiments instead. This enables the analysis of complex systems to
generate quantitative data without involving human subjects.

If the assessments and experiences of developers are to be the central object of study, we
recommend to set up case studies. This allows researchers to study effects in complex, real-
world settings over a longer period of time. This is important because the exact effects of,
for example, the use of a certain language feature often only become apparent to developers
after a long period of use. Case studies of research projects or even industrial transforma-
tion systems can thus be used to obtain detailed information on the impact of the applied
technologies.

To design such studies, our results can form an important basis.

(a) Empirical factor evaluation. How and under which circumstances the factors we have
identified affect MTL properties needs to be comprehensively evaluated. Here we envision
both qualitative and quantitative studies that focus on the impact of a single factor or a
group of related factors. These could, for example, make comparisons between cases where
a factor does or does not apply. The results of such studies can help language developers
make decisions about features to include in their MTLs.

Our interviews provide extensive context that should be taken into account in the study
design and interpretation of results. For example, our interviews show that the semantic gap
between input and output defines a relevant context that needs to be considered. For this
reason, when investigating the advantages and disadvantages of mappings, transformations
involving models with different levels of semantic gaps between input and output have to be

 159 Page 46 of 71 Empir Software Eng (2022) 27:159

used, to be able to fully evaluate all relevant use cases. Some transformations need to contain
complicated selection conditions or complex calculations for attributes while others need
to have less complicated expressions. Researchers can then evaluate how well mappings in
a language fit the different scenarios to aid in providing a clear picture of their advantages
and disadvantages.

(b) Empirical MTL property evaluation. What advantages or disadvantages MTLs really
have is still up for debate. We believe that the credibility of research efforts on MTL can
be greatly improved with studies that provide empirical substantiation to the speculated
properties. Advances like those made by Hebig et al. (2018) are rare and further ones, based
on real world examples, must be carried out.

Our results can also make a valuable contribution to such studies. The factors we have
identified as influencing a property can be taken into account in studies from the outset.
They can be used to formulate null hypotheses on why a MTL is superior or inferior to a
GPL when considering one specific property.

For example, a study that is interested in investigating the Comprehensibility of MTLs
compared to GPLs can find a number of factors in our results that need to be taken into
account. Such factors include tracing mechanisms, mappings or pattern matching capabili-
ties. Researchers can consciously decide which of them are relevant for the transformations
used in the study and what impact their presence or absence has on the study results. Based
on these considerations hypotheses can be formed.

A recent study we conducted provides an example of how these considerations can be
used to expand the body of empirical studies on this topic (Höppner et al. 2021). By focus-
ing the investigation on Mappings, Model Navigation and Tracing we were able to present
clear and focused results for comparing and explaining differences in the expressiveness of
transformation code written in ATL and Java. We concentrated our analysis on these factors
because they all influence Expressiveness according to our interviews.

Such considerations should of course be part of any proper study, but our results provide
a basis that can be useful in ensuring that no relevant factors are overlooked.

(c) Influence Quantification. Lastly, the results of this study should be quantified. The
design of the reported study makes quantification of the importance of factors and their
influence strengths impossible. However, such quantification is necessary to prioritise which
factors to focus on first, both for assessment and for improvement. We intend to design and
execute such a study as future work to this study.

We can use structural equation modelling methods (Weiber and Mühlhaus 2021) to quan-
tify the factors and their influences because we already have a structure model. We plan to
use an online survey to query users of MTLs from research and industry about the amount
they use different language features, their perception of qualitative properties of their
transformations and demographic data surrounding use-case, skills & experience and used
languages. The responses are used as input for universal structure modelling (USM) (Buck-
ler and Hennig-Thurau 2008) based on the structural equation model developed from the
interview responses.

USM is used to estimate the influence and moderation weights of all variables within
the structure model. We can therefore use it to produce quantified data on the influence and
moderation effects of identified factors.

We are confident that the approach of using a survey to quantify interview results, can
complement the current results, because several of the authors have had positive experiences
applying it (Liebel et al. 2018; Juhnke et al. 2020).

Empir Software Eng (2022) 27:159 Page 47 of 71 159

7.1.2 Improving MTL Capabilities

To improve current model transformation languages the criticisms articulated by intervie-
wees can be used as starting points for enhancements and innovation. There are several
aspects that are considered to be problematic by our interviewees.

(d) Improve reuse mechanism adoption. Reuse mechanisms in model transforma-
tion languages are one aspect where interviewees saw potential for improvement (see
Section 5.2.10). Languages that do not currently possess mature reuse mechanisms can
adopt them to become more usable. For the adoption of mature reuse mechanisms in MTLs
we see the languages developers as responsible.

(e) Reusemechanism innovation. Innovation towards transformation specific reuse mech-
anisms, as has been requested by some participants (see Section 5.2.10), should also be
advanced. This topic was discussed at length during the interviews on the statement “Having
written several transformations, we have identified that current MTLs are too low a level of
abstraction for succinctly expressing transformations between DSLs, because they demon-
strate several recurring patterns that have to be reimplemented each time.” in Question
Set 3.

Interviewees pointed out a need for reuse mechanisms that allow transformations to adapt
to differing inputs and outputs. It would be conceivable to define transformation rules, or
parts of them, independently of concrete model types, similar to generics in GPLs. This
would allow development of generic transformation ‘templates’ of common transformation
patterns. One pattern, for example, could be finding and manipulating specific model struc-
tures, like cliques, independent of the concrete model elements involved. Such templates
can then be reused and adapted in all transformations where the pattern is required.

We believe, that innovating such new transformation specific reuse mechanisms is a
community wide effort that needs to be taken on in order to make them more widely usable.

(f) Improving MDSE education. The Learnability of MTLs has also been a point of criti-
cism. We believe, that more effort needs to be put into the transfer of knowledge for MDSE
and its techniques like model transformations and MTLs. This believe is supported by the
findings of Hutchinson et al. (2011). They also identified the lack of MDSE knowledge as
a limiting factor for the adoption of the approach.

People need to come into contact with the principles earlier so that the inhibition thresh-
old to apply them is lower. This was also remarked by interviewees when discussing the
Learnability (see Section 5.2.11). More focus needs to be given to modelling and modelling
techniques in software engineering courses. This is especially important since the skill of
users has been said to be a largely impactful factor upon which many of the advantages from
other MTL capabilities rely. Furthermore, there exist studies such as the one by Dieste et al.
(2017), which detected a connection between the experience of developers with a language
and their productivity as well as the code quality of the resulting programs.

To achieve this, we believe, that the researchers from the community, in their role as
higher education teachers and university staff, need to become active. They should advo-
cate for teaching the concepts of MDSE and the advantages/disadvantages in undergraduate
studies in computer science study programmes. This view is shared by Samiee et al.
(2018). Particularly, it should be taught that models can be used for more than documenta-
tion purposes, e.g., code generation, simulations early in the development cycle, test case

 159 Page 48 of 71 Empir Software Eng (2022) 27:159

generation. These other uses are widely and successfully employed in the domain of cyber-
physical systems according to Bucchiarone et al. (2021). Hence, it might be beneficial to
include industrial modelling tools like Matlab/Simulink/Stateflow from this domain in addi-
tion to standard UML tools in undergraduate courses. Furthermore, we successfully used
simulation frameworks for autonomous cars, like Carla (Dosovitskiy et al. 2017), in the
past as targets for student projects when teaching courses on the development of modeling
languages and model transformations. For example, the students devised a state machine
language and code generator targeting the simulation framework to develop an automatic
parking functionality. Model transformations were developed to flatten hierarchical state
machines to non-hierarchical state machines prior to code generation.

(g) Increase knowledge retention. It is also difficult to get to grips with the subject matter
in general, as information on it is much harder to obtain than on general purpose program-
ming (see Section 5.3.7). This starts with the fact that, we found websites on MTLs to
often be outdated or unappealing and lack good tutorials and comprehensible documenta-
tion. These points need to be fixed, by the language developers, to provide potential users
with better resources to combat the perceived steepness of the learning curve. More active
community involvement is also conceivable here. Users of MTLs could invest time in creat-
ing documentation and keeping it up-to-date. The possibility of this working and producing
good results can be seen in examples such as the arch-linux wiki4.

(h) Improve community outwards presentation. The model transformation community
is small. In our opinion this leads to less innovation and poses the danger of entrenched
practices. The problem is not limited to small communities as seen by, for example, the
risk averse movie industry or low innovation automotive industry. An improved outwards
presentation of the technology of model transformations can help alleviate the problem of
limited human resources. The current hype surrounding low-code-platforms can be used
to inspire young and aspiring researchers to contribute to its underlying concepts such as
model transformations.

(i) Improve industry outreach and cooperation. We think it is also paramount to pursue
industry cooperation to gauge industrial needs in order to facilitate more industrial adop-
tion of MTLs. Here ambitious studies are required that attempt to provide the community
with clear requirements specific domains of industry have for MDE and transformation lan-
guages, as well as to show for which domains application is reasonable at all. There exist
some field studies by Staron (2006), Mohagheghi and Dehlen (2008), and Mohagheghi et al.
(2013) but they are far and in between and do not focus on the transformation languages
involved. The research community can attempt to organize solutions for these requirements
based on such field study and industry research. However, for such industry cooperation to
be possible, a focused community outreach is required. There are notable advancements in
this direction e.g. MDENet5, but they are still in their infancy and require more involvement
by the research community.

(j) Provide representative model transformation languages. To provide reasonable evi-
dence that model transformation languages can be competitive against GPLs there also

4wiki.archlinux.org
5community.mde-network.org

Empir Software Eng (2022) 27:159 Page 49 of 71 159

needs to be heavy focus on providing less prototypical and more pragmatic and useable
transformation languages (see Section 6.2). To that end only a few selected languages should
be attempted to be made production ready, potentially through further industry cooperation.
MTLs could be integrated into commercial modelling tools in order to be able to process
models programmatically in the tool.

Alternatively, few modern standardised MTLs could be promoted by the community.
Since such a decision has far-reaching effects, a central, community wide respected body
is needed. The OMG could possibly take action for this as they are already deciding on
community impacting standards.

The QVT standard was an ambitious push in this direction. However, we believe that the
initiative needs a fresh take, given the findings of the last 20 years of research. This idea is
supported by several interviewees who considered QVT to be bloated and outdated. Espe-
cially in the areas of bidirectional and incremental transformations we see huge potential.
Furthermore, relying more on declarative approaches for defining uni-directional transfor-
mations should also be considered. This trend can also be observed in the field of GPLs
with the introduction of more and more functional concepts into them.

Innovation in prototypical languages should then be thoroughly evaluated for its useful-
ness before adoption into one of the flagship languages. It is not the task of research to
produce industry ready languages, but setting up the environment and using these languages
should not be more complicated than for any general purpose programming language.

(k) Research legacy integration. The integration of MTLs into existing legacy systems
has been remarked as a huge entry barrier for industry adoption (see Sections 5.2.1 and
5.3.4). We believe this stems from a lack of techniques that facilitate gradual integration
of modelling technology into existing systems and infrastructure. This is highlighted by
the fact that basic literature such as that by Brambilla et al. (2017) does not contain any
suggestions to this end. To combat this, we propose a dedicated branch of MDE research
focused on developing tools and processes to integrate model driven techniques into legacy
systems.

We envision distinct guidelines and processes on how to integrate transformations and
transformation concepts into existing systems. There should be terms of reference as to
which types of system components lend themselves to the use of model transformations.
Furthermore, descriptions of which transformations and which transformation languages
are suitable for which type of use case are also required. Having such guides can reduce the
barrier of entry, because they provide a clear course of action when trying to (gradually)
adopt the paradigm.

This also includes accessible GPL bindings for applying model transformation concepts.
They can be used to gradually replace system components that can benefit from the use of
transformations. This can be done without the overhead of integrating a new language and
intermediate models. One example for this is DresdenOCL, a OCL dialect that can be used
on Java code (Demuth and Wilke 2009).

7.2 Steps Towards Solving the Tooling Problem

From our interviews, we have to conclude that the biggest weak point of model transforma-
tion languages is their Tool Support.

The two biggest tooling gaps that we were able to identify are:

(I) many necessary tools do not exist

 159 Page 50 of 71 Empir Software Eng (2022) 27:159

(II) existing tools lack user-friendliness and are not compatible with each other

We hope that our work can be a starting point in counteracting these drawbacks.

(l) Provide essential tooling. In our view, tooling of flagship model transformation lan-
guages needs to be extended to include all the essential tools mentioned in the interviews to
make MTLs production and industry ready. This includes useable Editors, Debuggers and
Validation or Analysis tools. At best all such tools for a language should be useable within
one IDE. One way language developers can help with this task is by implementing the
Language Server Protocol (LSP) (Microsoft) or its graphical counterpart GLSP (Eclipse
Foundation) for their MTL. This would greatly improve the ability of tool developers to
create and distribute tooling.

(m) Develop transformation specific debugging. As mentioned by our interviewees, for
debuggers there is a need for model transformation specific techniques. Troya et al. (2022)
showed that there are numerous advances in this area like those by Wimmer et al. (2009),
Hibberd et al. (2007), and Ege and Tichy (2019) but none of them have led to well rounded
debuggers yet. Further effort by researchers active in this area is therefore required. They
should strive to develop their approaches to a point where they can be productively used to
demonstrate their usefulness for a productive transformation development.

(n) Improve tool usability. Most importantly, a lot of effort needs to be put into improving
the usability of MTL tools. Our interviews have shown, that unusable tools are the most off
putting factor that hampers wider adoption. To combat this, we believe usability studies to be
essential. Studies to identify usability issues in the likeness of what is proposed by Pietron
et al. (2018) can be used to gain insights into where problems originate from and how to
improve them. Such studies have already been successfully utilised for other MDE related
tooling (Stegmaier et al. 2019). We therefore need more researchers from the community to
get involved in designing and conducting usability studies for tooling surrounding MTLs.

We think the results of usability studies can also provide useful lessons learned for tool
developers to make tools more usable from the beginning. The overall goal must be to find
out what needs to be changed or improved in MTL tools to make their adoption significant.
Industrial efforts to provide proper tool support can then be based on these results and the
existing, usable, tools. This adoption is necessary because, in our view, the human resources
required for providing adequate long-term support for the tools can only be provided by
commercially operating companies. Such long term support is necessary so that model
transformation languages, and their accompanying tools, can gain a foothold in the fast-
moving industrial world. The industrialisation of MTL tooling was also proposed during an
open community discussion detailed by Burgueño et al. (2019).

The goal should be to provide well rounded, all-in-one solutions that integrate all neces-
sary tooling in one place, to make development as seamless as possible. The appropriateness
of this has been shown by Jonkers et al. (2006).

(o) Limit-test internal MTLs. A different approach that should be further explored is the
attempt to thoroughly embed an internal model transformation language in a main stream
GPL as done by Hinkel and Goldschmidt (2019). The advantage of this approach is the
ability to inherit tooling of the host language (Hinkel and Goldschmidt 2019) and it allows
general purpose developers to apply their rich pool of experience. However, there are some
drawbacks to this approach, as discussed in Section 5. The amount of tooling that can be

Empir Software Eng (2022) 27:159 Page 51 of 71 159

properly integrated is limited and it is more difficult to develop transformation specific
tooling for internal languages as it is hard to extract the required information from the
code. For this reason, we think, the required tools should be known at design time and the
language has to be designed to expose all the required information while not imposing this
as an additional burden on developers. Researchers that plan to develop an internal model
transformation language should therefore thoroughly asses the tool requirements for the use
case for which they intend to develop their language.

8 Threats to Validity

Our interview study was carefully designed, and followed reputable guidelines for prepara-
tion, conduction and analysis. Nonetheless there are some threats to validity that need to be
discussed to provide a complete picture of our study and its results.

8.1 Internal Validity

Internal validity describes the extent to which a casual conclusion based on the study is
warranted. The validity is threatened by manual errors and biases of the involved researchers
throughout the study process.

Errors could have been introduced during the transcription phase and during the analysis
of the data since both steps were conducted by a single author at a time.

To prevent transcription errors, all transcripts were re-examined after completion to
ensure consistency between the transcripts and audio recordings.

To minimize possible confirmation biases introduced during analysis and categorisation
of interviewee statements, random samples were checked by other authors to find possible
discrepancies between the authors assessments on statements. In cases where such discrep-
ancies were encountered, thorough discussions between all authors were conducted to find
a consensus that was then applied to all transcripts containing similar considerations.

Lastly there is the potential of misinterpretation of interviewees responses during analy-
sis. While we carefully stuck to interpret statements literally during coding, there are words
and phrases that have overloaded meanings. During the interviews, it would always be
necessary to ask exactly what meaning interviewees used, but this was not always possi-
ble. Therefore the threat could not be mitigated completely as contextual information was
required to interpret interviewees responses in some cases.

8.2 External Validity

External validity describes the extent to which the results of a study can be generalised. In
our interview study this validity is threatened by our interview participant assortment ,which
is a result of our sampling and selection method.

We utilise convenience sampling interviewing any and all people that respond to our
emails. This can limit how representative the final group of interviewees is of the target
population. The issue here is that we do not know much about the makeup of the target
population. It is therefore difficult to assess how much the group of participants deviates
from a representative set.

Using research publications as the starting point for participant selection also introduces
a bias towards users from research. This can be clearly seen in Fig. 6. There is an apparent
lack of participants from industry which limits the applicability of our results to industrial

 159 Page 52 of 71 Empir Software Eng (2022) 27:159

cases. This threat is somewhat mitigated by the fact that half of all participants do have
at least some contact with industry, either through research projects in conjunction with
industry or by having worked in industry.

Another threat to external validity relates to model to text (M2T) transformations. Only a
few of our participants stated to have experience in applying M2T transformations. This is a
result of how the initial set of potential participants was constructed. The search terms used
in the SLR miss terms that relate to M2T such as ‘code generation’ or ‘model to text’. This
limitation was opted into to avoid having to differentiate between the two transformation
approaches during analysis. Moreover, the consensus during discussions was that we were
talking about model to model transformations. As such, our results can not be applied to the
field of model to text languages.

Lastly, there is the threat of participation bias. Participants may disproportionately posses
a trait that reduces the generalisability of their responses. People that view model transfor-
mation languages positively might be more inclined to participate than critics. We can not
preclude this threat, but, the amount of critique we were able to elicit from the interviews
suggests the effects from this bias to be weak. Other impacts of this bias are discussed in
Section 8.4.

8.3 Construct Validity

Construct validity describes the extent to which the right method was applied to find answers
for the research question. This validity is threatened by an inappropriate method that allows
for errors.

Prior to conducting our research much work went into designing a proper framework to
use. Here we relied on reputable existing guidelines for both the interview and analysis parts
of this work. We used open ended questions to facilitate an open space for participants to
bring forth any and all their opinions and considerations for the topic at hand. The statements
used as guidance can however present a potential threat since their wording could introduce
an unconscious bias in our interviewees. To combat this we selected broad statements as
well as used both a negative and a positive statement for each discussed property. However,
there is a chance that these measures were not fully sufficient.

Lastly, it can not be excluded that some relevant factors have not been raised during
our interviews. We have interviewed a large number of people, but this threat cannot be
overcome because of the study design and the open nature of our research question.

8.4 Conclusion Validity

Conclusion validity describes the extent to which our results stem from the investigated
variables and are reproducible. Here, the biases of our participants represent the biggest
threat.

It is safe to assume that people who do research on a subject are more likely to see it
in a positive light and less likely to find anything negative about it. As such there is the
possibility that too little negative impact factors were considered and presented. However,
we found that the people we interviewed were also able to deal with the topic in a very
critical way. We therefore conclude that the statements may have been somewhat more
positively loaded, but that the results themselves are meaningful.

Empir Software Eng (2022) 27:159 Page 53 of 71 159

9 RelatedWork

To the best of our knowledge, there exists no other interview study that focuses on influence
factors on the advantages and disadvantages of model transformation languages. Nonethe-
less there exist several works that can be related to our study. The related work is divided
into empirical studies on model transformation languages, empirical studies on model
transformations in general and interview studies on MDE.

9.1 Empirical Studies onModel Transformation Languages

A structured literature review we conducted (Götz et al. 2021) forms the basis for the work
presented in this paper. The goal of the reported literature review was to extract and catego-
rize claims about the advantages and disadvantages of model transformation languages as
well as to learn and report on the current state of evaluation thereof. The authors searched
over 4000 publications to extract a total of 58 publications that directly claim properties of
model transformation languages. In total the authors found 137 claims and categorized them
into 15 properties. From their work the authors conclude that while many advantages and
disadvantages are claimed little to no studies have been executed to verify them. They also
point out a general lack of context and background information on the claimed properties
that hinders evaluation and prompts scepticism.

Burgueño et al. report on a online survey, as well as a subsequent open discussion, at the
12th edition of the International Conference on Model Transformations (ICMT’2019) about
the future of model transformation languages (Burgueño et al. 2019). Their goal for the sur-
vey was to identify reasons as to why developers decided for or against the use of model
transformation languages and what their opinion on the future of these languages was. At
ICMT’2019 where the results of the survey were presented they then moderated an open
discussion on the same topic. The results of the study indicate that MTLs have fallen in pop-
ularity compared to at the beginning of the decade which they attribute to technical issues,
tooling issues, social issues and the fact that general purpose languages have assimilated
ideas from MTLs making GPLs a more viable option for defining model transformations.
While their methodology differed from our interview study, the results of both studies sup-
port each other. However the results of our study are more detailed and provide a larger
body of background knowledge that is relevant for future studies on the subject.

The notion of general purpose programming languages as alternatives to MTLs for writ-
ing model transformations has been explored by Hebig et al. (2018) and by us (Götz et al.
2021). Hebig et al. (2018) report on a controlled experiment where student participants had
to complete three tasks involved in the development of model transformations. One task was
to comprehend an existing transformation, one task involved modifying an existing trans-
formation and one task required the participants to develop a transformation from scratch.
The authors compare how the use of ATL, QVT-O and the general purpose language Xtend
affect the outcome of the three tasks. Their results show no clear evidence of an advantage
when using a MTL compared to a GPL but concede the narrow conditions under which
the observation was made. The study provides a rare example of empirical evaluation of
MTLs of which we suggest that more be made. The narrow conditions the authors struggled
with could be alleviated by follow-up studies that draw from our results for defining their
boundaries.

In a recent study by us (Götz et al. 2021) we put the value of model transformation
language into a historical perspective and drew from the preliminary results of the interview
study for the study setup. We compare the complexity of a set of 10 model transformations

 159 Page 54 of 71 Empir Software Eng (2022) 27:159

written in ATL with their counterparts written in Java SE5, which was current around 2006
when ATL was first introduced, and Java SE14. The Java transformations were translated
from the ATL modules based on a predefined translation schema. The findings support the
assumptions from Burgueño et al. (2019) in part. While we found that newer Java features
such as Streams allow for a significant reduction in cyclomatic complexity and lines of code
the relative amount of complexity of aspects that ATL can hide stays the same between the
two Java versions.

Gerpheide et al. use an exploratory study with expert interviews, a literature review and
introspection to formalize a quality model for the QVTo model transformation standard by
the OMG (Gerpheide et al. 2016). They validate their quality model using a survey and
afterwards use the quality model to identify tool support need of transformation developers.
In a final step the authors design and evaluate a code test coverage tool for QVTo. Their
study is similar to ours in that they also relied on expert interviews for their goal. The end
goal of the study however differs from ours as they used the interviews to design a quality
model for QvTo while we used it to formulate influence factors on quality attributes of
model transformation languages

Lastly there are two study templates for evaluating model transformation languages
which have yet to be used for executing actual studies. Kramer et al. present a template for a
controlled experiment to evaluate the comprehensibility of model transformation languages
(Kramer et al. 2016). Their approach suggests the use of a paper-based questionnaire to let
participants prove their ability to understand what a transformation code snippet does. The
influence of the language in which the code is written on comprehension speed and quality
is then measured by comparing the average number of correct answers and the average time
spent to fill out the questionnaires. Strüber and Anjorin propose a controlled experiment
for comparing the benefits and drawbacks of the reusability mechanisms rule refinement
and variability-based rules (Strüber and Anjorin 2016). They suggest that the value of the
reusability of an approach can be measured by looking at the comprehensibility of the two
mechanisms as well their changeability, which is measured through bug-fixing and mod-
ification tasks. The results of studies executed based on both study templates could draw
from our results for their final design and would provide valuable empirical data, a gap we
identified in this and the preceding literature review.

9.2 Empirical Studies onModel Transformations

Tehrani et al. executed an interview based study on requirements engineering for model trans-
formation development (Tehrani et al. 2016). Their goal was to identify and understand the
contexts and manner in which model transformations are applied as well as how requirements
for them are established. To this end they interviewed 5 industry experts. From the interviews
the authors found that out of 7 transformation projects only a single project was developed in
an already existing project while all other projects were created from scratch. Their findings
are relevant to our work since participants in our study agreed that it is hard to integrate MTLs
in existing infrastructures. Whether the fact that MTLs are hard to integrate was an influence
factor for the projects considered in the interview study by them is however not clear.

Groner et al. utilize an exploratory mixed method study consisting of a survey and
subsequent interviews with a selection of the survey participants to try and evaluate how
developers deal with performance issues in their model transformations (Groner et al. 2020).
They also asses the causes and solutions that developers experienced. The survey results
show that over half of all developers have experienced performance issues in their transfor-
mations. While the interviews allowed the authors to identify and categorize performance

Empir Software Eng (2022) 27:159 Page 55 of 71 159

causes and solutions into 3 categories: Engine related, Transformation definition related and
Model related. From the interviews they were also able to identify that tools such as useable
profilers and static analyses would help developers in managing performance issues. The
results of their study highlight that some of the factors identified by us are also relevant for
other MTL properties not directly investigated in our study.

9.3 Interview Studies onModel Driven Software Engineering

There are numerous publications and several groups of researchers that have carried out
large scale, in-depth empirical studies on model driven engineering as a whole. We focus
on a selection of those that have relation to our study in terms of findings.

Whittle, Hutchinson, Rouncefield et al. used questionnaires (Hutchinson et al. 2011;
Hutchinson et al. 2014) and interviews (Whittle et al. 2013; Hutchinson et al. 2011; Hutchin-
son et al. 2011; Hutchinson et al. 2014) to elicit positive and negative consequences of
the usage of MDE in industrial settings. Apart from technical factors related to tooling
they also found organisational and social factors that impact the adoption and efficacy of
MDE. Several of their findings for MDE in general coincide with results from our study.
Related to tooling they too found the factors of Interoperability, Maturity and Usability to
be influential. Moreover, on the organisational side, the small amount of people that are
knowledgable in MDE techniques and the problem of integrating into existing infrastruc-
ture are also results Whittle et al. found. Lastly, developers being more interested in using
techniques that help build their CV was identified by them as a limiting factor too.

Staron analyses data collected from a case study of MDE adoption at two companies
where one company withdrew from adopting MDE while the other was in the process of
adoption (Staron 2006). Their findings suggest that legacy code was a main influence factor
on whether a cost efficient MDE adoption was possible. This observation is consistent with
our findings that integrating MTLs into existing infrastructures has a negative impact on the
Productivity that can be achieved with MTLs.

The research group surrounding Mohagheghi also carried out multiple empirical studies
on MDE, focusing on factors for and consequences of adoption thereof. They use surveys
and interviews at several companies (Mohagheghi et al. 2013; Mohagheghi et al. 2013) as
well as a literature review (Mohagheghi and Dehlen 2008) for this purpose. In addition to
mature tooling, factors identified by the authors are usefulness, ease of use and compatibility
with existing tools. Similar to statements by our interviewees, they also found that MDE is
seen as a long term investment. It is not well suited for single projects.

Lastly, Akdur et al. report on a large online survey of people from the domain of embedded
systems industry (Akdur et al. 2018). They too found tools surrounding MDE to be a major
factor. Another interesting finding by them was that UML models are by far the most com-
monly used models. This is of relevance to our results since one of our interviewees pointed out,
that the makeup of some UML models can have detrimental effects on the usefulness of MTLs.

The results of all presented research groups show, that many of the factors we identified
for MTLs also apply to MDE in general which provides additional confidence in our results
and shows that advancements in these areas would have a high impact.

10 Conclusion

There are many claims about the advantages and disadvantages of model transformation
languages. In this paper, we presented and argued the detailed factors that play a role for

 159 Page 56 of 71 Empir Software Eng (2022) 27:159

such claims. Based on interviews with 56 participants from research and industry we present
a structure model of relevant factors for the Ease of writing, Expressiveness, Compre-
hensibility, Tool Support, Productivity, Reuse and Maintainability of model transformation
languages. For each factor we detail which properties they influence and how they influ-
ence them. We have identified two types of factors. There are factors that have a direct
impact on said properties, e.g. different capabilities of model transformation languages like
automatic trace handling. And there are factors that define a context whose characteristics
moderate the the impact of the former factors, e.g. the Skills of developers.

Based on the interview results we suggest a number of tangible actions that need to
be taken in order to convey the viability of model transformation languages and MDSE.
For one, empirical studies need to be executed to provide proper substantiation to claimed
properties. We also need to see more innovation for transformation specific reuse, legacy
integration and need to improve outreach and presentation to both industry and academia.
Lastly, efforts must be made to improve tool support and especially tool usability for MTLs.

For all of the suggested actions, our results can provide detailed data to draw from.

Appendix A: Interview Questions

Demographic Questions

• In what context have you used model transformation languages? Research, industrial
projects or other?

• How much experience do you have in using model transformation languages? Rough
estimate in years is sufficient.

• What model transformation languages have you used to date?

Question Set 1

Ease of Writing

The use of MTLs increases the ease of writing model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages ease development efforts by offering succinct
syntax to query from and map model elements between different modelling domains.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages require specific skills to be able to write model
transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Empir Software Eng (2022) 27:159 Page 57 of 71 159

Comprehensibility

The use of MTLs increases the comprehensibility of model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages incorporate high-level abstractions that make
them more understandable than GPLs.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Most MTLs lack convenient facilities for understanding the transformation logic.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Question Set 2

Tool Support

There is sufficient tool support for the use of MTLs for writing model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Tool support for external transformation languages is potentially more powerful
than for internal MTL or GPL because it can be tailored to the DSL.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages lack tool support.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Productivity

The use of MTLs increases the productivity of writing model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages, being DSLs, improve the productivity.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

 159 Page 58 of 71 Empir Software Eng (2022) 27:159

• What is the reasoning behind your answer?

Productivity of GPL development might be higher since expert users for GPLs are
easier to hire.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Question Set 3

Reuseability & Maintainability

The use of MTLs increases the reusability and maintainability of model transforma-
tions.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Bidirectional model transformations have an advantage in maintainability.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages lack sophisticated reuse mechanisms.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Expressiveness

The use of MTLs increases the expressiveness of model transformations.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Model transformation languages hide transformation complexity and burden from
the user.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Having written several transformations we have identified that current MTLs are
too low a level of abstraction for succinctly expressing transformations between DSLs
because they demonstrate several recurring patterns that have to be reimplemented
each time.

• On a scale of 1 to 5, with 1 being strongly disagree and 5 being strongly agree, how
would you rate your agreement with the statement?

• What is the reasoning behind your answer?

Empir Software Eng (2022) 27:159 Page 59 of 71 159

Appendix B: Mail Templates

Mail Template

Dear ${Author Name},
I’m a PhD student with Matthias Tichy at Ulm University. We recently conducted an

SLR about the advantages and disadvantages of model transformation languages as claimed
in literature. Our results have been published in the software and systems modelling journal
here http://dx.doi.org/10.1007/s10270-020-00815-4. One of our main takeaways from the
study was that a large portion of claims about model transformation languages is never
substantiated. One main reason for this, we believe, is implicit knowledge authors tend to
omit for different reasons.

Since you are an author of one of the publications we considered during our SLR it would
be great to talk to you about your experiences and stance with regard to model transforma-
tion languages and the claims we extracted from literature. We would need max. 30 minutes
of your time. The interview would be conducted by me via an online conferencing system.

In order to organize the interview dates I would like to ask you to chose a suitable date,
under the following link https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA. Please note
that the times are given in UTC. The password for the poll is ”claims”. Your response will
not be visible to anyone other than myself. If none of the dates is suitable for you, you are
welcome to contact me to find another date for the interview.

Before your interview I would like to ask you to agree to the data protection agreement
under the following link https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?
lang=en. I have also attached a copy of how we handle the interview data to this mail.

Best regards
Stefan Götz

Reminder Mail Template

Dear ${Author Name},
If you already filled out our organization poll please ignore this mail.
I wanted to remind you to maybe take part in our interview study about the implicit

knowledge of users with regards to advantages and disadvantages of model transformation
languages. It would be great to talk to you about your experiences and stance with regard
to model transformation languages and the claims we extracted from literature. We would
need max. 30 minutes of your time.

In order to organize the interview dates I would like to ask you to chose a suitable date,
under the following link https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA. Please note
that the times are given in UTC. Please also note that you need to press the SAVE button
at the right hand side of the poll. The password for the poll is ”claims”. Your response will
not be visible to anyone other than myself. If none of the dates is suitable for you, you are
welcome to contact me to find another date for the interview.

Before your interview I would like to ask you to agree to the data protection agreement
under the following link https://pmx.informatik.uni-ulm.de/limesurvey/index.php/924713?
lang=en. I have also attached a copy of how we handle the interview data to this mail.

Best regards
Stefan Götz

 159 Page 60 of 71 Empir Software Eng (2022) 27:159

Appendix C: Demographics

See Table 4.

Table 4 Overview over the interviewee demographic data

PID Background Experience in years Language types used for writing

transformations

P1 Research > 10 GPLs

P2 Research 10-15 dedicated MTLs

P3 Research 8 dedicated MTLs

P4 Research 7 dedicated MTLs & internal MTLs

P5 Research > 5 dedicated MTLs & GPLs

P6 Research & Industry Projects 13 dedicated MTLs & GPLs

P7 Research & Industry Projects 10 dedicated MTLs & GPLs

P8 Research & Industry Projects 18 dedicated MTLs & GPLs

P9 Industry 20 dedicated MTLs

P10 Research 4 dedicated MTLs & GPLs

P11 Research 5-6 dedicated MTLs

P12 Research & Industry Projects 8 dedicated MTLs

P13 Industry with History in Research 6 dedicated MTLs & internal MTLs

P14 Research & Industry Projects 15 dedicated MTLs & internal MTLs

& GPLs

P15 Research & Industry Projects 5 dedicated MTLs & GPLs

P16 Research 7 dedicated MTLs & GPLs

P17 Research & Industry Projects 18 dedicated MTLs & GPLs

P18 Research & Industry Projects 10 dedicated MTLs & GPLs

P19 Research 7 dedicated MTLs

P20 Research & Industry Projects 3 dedicated MTLs & GPLs

P21 Research & Industry Projects 15 dedicated MTLs & GPLs

P22 Research & Industry Projects 8 dedicated MTLs & GPLs

P23 Research 13 dedicated MTLs

P24 Research & Industry Projects 15 dedicated MTLs & GPLs

P25 Research 8 dedicated MTLs

P26 Industry > 10 dedicated MTLs

P27 Industry with History in Research 10-12 dedicated MTLs & GPLs

P28 Research 15 dedicated MTLs & GPLs

P29 Research & Industry Projects 12 dedicated MTLs

P30 Research & Industry Projects 17 dedicated MTLs & GPLs

P31 Research 8 dedicated MTLs

P32 Research & Industry Projects 15 dedicated MTLs & GPLs

P33 Research 5-6 dedicated MTLs & GPLs

P34 Research 5-6 GPLs

P35 Research 10 dedicated MTLs

P36 Research 10 dedicated MTLs & GPLs

Empir Software Eng (2022) 27:159 Page 61 of 71 159

Table 4 (continued)

PID Background Experience in years Language types used for writing transformations

P37 Research & Industry Projects 10-11 dedicated MTLs

P38 Research 4-5 dedicated MTLs

P39 Industry 28 dedicated MTLs & GPLs

P40 Research 9 dedicated MTLs

P41 Research 7-8 dedicated MTLs

P42 Industry with History in Research 13 dedicated MTLs & internal MTLs & GPLs

P43 Research & Industry Projects 8-10 dedicated MTLs

P44 Research & Industry Projects 10 dedicated MTLs

P45 Research 1-2 dedicated MTLs

P46 Research & Industry Projects 9 dedicated MTLs

P47 Research 4 dedicated MTLs

P48 Research 7-8 dedicated MTLs & internal MTLs

P49 Research & Industry Projects 10 dedicated MTLs & GPLs

P50 Research 20 dedicated MTLs

P51 Research & Industry Projects 3 dedicated MTLs

P52 Research 13-14 dedicated MTLs

P53 Research 12 dedicated MTLs & GPLs

P54 Research 7 dedicated MTLs

P55 Research & Industry Projects 16 dedicated MTLs & GPLs

P56 Research 16 dedicated MTLs

Appendix D: Data Privacy Agreement

General information, declaration of consent
General information about the interviews about claims about model transformation

languages of the Institute for Software Engineering and Programming Languages of
Ulm University.

At the Institute for Software Engineering and Programming Languages of Ulm Univer-
sity model transformation languages are being examined. This includes claims about the
advantages and disadvantages and evidence thereof. Within one work package of the doc-
toral thesis of Stefan Götz, researchers and practitioners are being surveyed about their
opinions on certain claims.

The goal of this work package is to gain a deeper understanding of the reasoning people
use for believing certain claims about model transformation languages.

1 Procedure

• If you decide to participate in our interview study, please fill out the poll at
https://terminplaner4.dfn.de/F1mIEEwSSkTwh8XA so we can set up a date for the
interview.

• We will contact you about one week in advance of the chosen date to arrange the
interview.

• The interview will take place using an online conferencing tool hosted at Ulm
University or via Skype depending on your preference.

 159 Page 62 of 71 Empir Software Eng (2022) 27:159

• Please fill out the consent form at https://pmx.informatik.uni-ulm.de/limesurvey/
index.php/924713 before the interview.

• At the beginning of the interview we will ask you questions about your experience
level with regards to model transformation languages such as the languages you
have used.

• During the interview we will show you different claims from literature about model
transformation languages for which we would like you to tell us if you agree with
them or not and your reasoning behind the decision.

• An audio recording of the interview will be made if you consent to it.
• The audio recordings will be transcribed after the interview and deleted as soon as

transcribing has been completed.

2 Conditions of participation:

• You have some for of experience with model transformation languages.

3 Handling the data in the research project

1. Your interview will be recorded on audio and notes will be taken. The procedure
described in 2-5 is followed for anonymizing your interview.

2. The non-anonymous raw data (first name, last name, e-mail address, notes and
the audio recording of your interview) is only shared between the project partners
(Stefan Götz, Yves Haas and Matthias Tichy from Ulm University) for transcribing
and analyzing the answers.

3. We will anonymize your interview by transcribing it and delete the information
about your first name, last name, e-mail and the audio recording of your inter-
view as soon as possible and not later than 30 October 2020. Which means that
individuals cannot be deduced from their interview.

4. For scientific publication, anonymized answers to this interview (transcribed inter-
view and notes) will be further processed, e.g., coded or aggregated. Special risks
for your person are not apparent with the processed results because individual
persons cannot be inferred.

5. We strongly believe in open data to allow replication of our results as well as
enabling further research. The anonymized answers (unprocessed and processed)
to this interview (transcribed interview and notes) will be made available online to
the public to accompany publications and stored in open data repositories. Please
note that such published data can no longer be completely deleted and can be
accessed and used by any person. Special risks for your person are not apparent
with the anonymized answers, because individual persons cannot be inferred.

Contact person
If you have any questions, concerns or doubts, please do not hesitate to contact us:
Stefan Götz Ulm University Institute of Software Engineering and Programming Lan-

guages 89081 Ulm E-Mail: stefan.goetz@uni-ulm.de

Declaration of Consent

(Name, Surname of the participating person)
I have read the general information on the interview study and agree to participate in the

research project and the associated data processing.

Empir Software Eng (2022) 27:159 Page 63 of 71 159

(You can also give the following consent:)

I have read the general information on the interview, which is conducted as part of a
research project. I consent to participate in the interview and I consent to the related
data processing as described in 1-4.
I hereby consent to the publication of my anonymized answers (unprocessed and
processed) to this interview (transcribed interview, notes and linked questionnaire)
as described in 5.

I am aware that the consents are voluntary and can be refused without disadvantages (even
individually) or revoked at any time without giving reasons. I am aware that in case of revo-
cation, the legality of the processing carried out on the basis of the consent until revocation
is not affected. I understand that I can simply contact the contact person named in the infor-
mation for a revocation and that no disadvantages arise from the refusal of consent or its
revocation.

I was informed and provided with the information on the collection of personal data
during the interview study. I have also received a copy of this consent form.

Appendix E: Quotations

Table 5 Selection of quotations from interview participants for specific factors

Factor QID PID Quotation

GPL Capabilities

Qgpl1 P42 “[General purpose languages are] very good at constructing
objects and filling in their fields [...] and computing ‘simple’
expressions.”

Qgpl2 P14 “I think that in the end you have more tools for development. And
I feel more productive.”

Qgpl3 P8 “[...] when you reach the maintenance phase, maybe the [original]
developers are gone. And you have an [MTL] program that might
be more difficult to understand for [new] developers”

Domain Focus

Qdf 1 P6 “What is better by using MTLs instead of GPLs is the fact that you
are on the same abstraction level of the modelling language. You
are basically treating apples with apples.”

Qdf 2 P19 “[...] you are gonna cut away all those unneeded code and
complexity and focus on your problem.”

Qdf 3 P23 “Once you have things like rules and helpers and things like left
hand side and right hand side and all these patterns then [it is] eas-
ier to create things like meta-rules to take rules from one version
to another version [...]”

Qdf 4 P13 “To do this [tool support for analysing rule dependencies] [...]
you have to resolve parameter dependencies and I immediately run
into Turing completeness. And I don’t have that with an external
language [...]”

Qdf 5 P6 “They have existing infrastructure and people and everything that
is based on established languages which is hard to change.”

 159 Page 64 of 71 Empir Software Eng (2022) 27:159

Table 5 (continued)

Factor QID PID Quotation

Bidirectionality

Qbx1 P42 “in a general purpose programming language you would have to
add a bit of clutter, a bit of distraction, from the real heart of the
matter”

Qbx2 P40 “So either you write your own program to create unidirectional
transformations in both directions or you write both directions by
hand and that has the disadvantage that if, in the future, some-
thing changes in the transformation, then you have to rework both
directions”

Qbx3 P41 “[...] That makes it harder for them to see whether something is
correct or not and to master the complexity of these transforma-
tions.”

Qbx4 P11 “And as soon as I am at bidirectional transformations and there
is somehow a loss of information. [...] And then [the question is]
how difficult it is to access e.g. context elements that I have already
created and need again later, because I want to refer to them.”

Incrementality
Qinc1 P56 “Declarative MTLs may have different computation paradigms

which may be unfamiliar for developers used to imperative lan-
guages”

Qinc2 P42 “[...] do not try to do it manually, because you will definitely
have bugs,[...] because there will be some specific kind of change
trajectory that you have missed, [...] this is a super hard problem.”

Qtrc2 P32 “You have to know what a trace is. [...] And at some point, at the
latest when you do something more complex, you need this stuff. ”

Qtrc3 P31 “[...] a model transformation rule only [contains] the domain
transformation, so which domain object of the source domain is
mapped to an object and how the object is mapped to the target
domain. And that is what someone who tries to understand the
model transformation is trying to get [...] out of the source code.”

Automatic
Traversal

Qtrv1 P49 “That means abstracting away from the order of traversal and then
also knowing in which context this thing came up, that is a bit of a
double-edged sword for me, [...] it has the potential to mask serious
errors.”

Pattern-Matching Qpm1 P14 “[...] all the complexity of pattern matching is in the engine, but if
you try to implement a mapping then all the complexity of keeping
the traces you have to do that manually.”

Model
Navigation

Qnav1 P41 “[...] you don’t have to worry about the efficiency of the procedure,
just figures out the optimal way of kind of traversing it. For me that
is the biggest thing actually, they go and get me the data, if we can
hide that from the user, that is great.”

Qnav2 P11 “[...] I do not have to iterate over the model. I only say, I need this
or that.”

Model
Management

Qman1 P2 “[...] this technical level, how I access a model, [...]I get the
elements out. That gets abstracted away.”

Reuse
Mechanism

Qrm1 P51 “[...] we usually use object oriented programming languages and
those already have some pretty strong tools for reusability in
the appropriate contexts. So i think the bar here, that would we
want model transformation languages to jump over, is to provide
something more targeted towards modeling [...]”

Empir Software Eng (2022) 27:159 Page 65 of 71 159

Table 5 (continued)

Factor QID PID Quotation

Mappings

Qmap1 P24 “They hide those dimensions that reflect how graph-wise it would
be computationally complex to interpret the problem to transform
one model into another”

Qmap2 P25 “So it restricts you in the way you can work and that makes it easier
because that is what you need to do.”

Qmap3 P55 “This means that you can write the rules independently of the exe-
cution sequence, you can define them more declaratively and, at
least in my experience, you can still manage to define these rule
blocks in a comprehensible way for large transformations.”

Qmap4 P5 “I mentioned language engineering because a lot of the transfor-
mation difficulties are understanding the syntactical and semantic
differences between two domain specific languages.”

Qmap5 P30 “[...] Hidden mechanisms or built in mechanisms may be more dif-
ficult to understand [thus] learning the language may be a bit more
difficult.”

Qmap6 P38 “[...] you have a formal correspondence between the two models.
And if you can transform in both directions, then you can practi-
cally keep both models, between which you want to transform back
and forth, synchronous.”

Qmap7 P16 “Whereas when you need to do some more elaborate business logic
or when you need to hook some external services or other sources
of information into your transformation then I am saying that MTLs
can start to be a little bit of a limit”

Qmap8 P3 “If I want to reuse this model transformation just changing 2 words
in ATL [is enough], if I wanted to do the same in Java instead of
changing something in 2 places I have to do it in 5 or 6.”

Tooling
Awareness

Qawa1 P35 “And, I think, it is hard for new users to see, for example, what,
which tool to use. Or which technology you should work with.”

Tool Creation
Effort

Qtce1 P1 “I am keenly aware of the cost to being able to develop a good
programming language, the cost of maintaining it and the cost of
adding debuggers and refactoring engines. It is enormous.”

Qtce2 P6 “But it is definitely easier and faster to build the tool support and
it allows you to do more advanced stuff. You can play around with
your domain specific concepts in a lot of different ways.”

Tool Learnability Qtle1 P34 “Because when i started to work with model transformation lan-
guages and to hear about them, [...] I do not think that [...] there
was like initial go-to documentation.”

Tool Usability
Quse1 P22 “Basically all the good aids you see in a Java environment should

be there even better in a MTL tool because model transformation
is so much more abstract and more relevant that you should be
having tools that are again more abstract and more relevant.”

Quse2 P48 “There are quite a few corner cases, which are often not quite fixed
and especially the usability is often very bad.”

Tool Maturity Qmat 1 P23 “Because [MTLs] have been around for like 30 years. And other
languages and frameworks, they are created in 2-3 years, and they
are good to go. And MTLs have been around for so long. And I
think its mostly because industry has not taken it in. And it’s just a
problem of manpower put into the languages.”

Validation
Tooling

Qval1 P8 “For example I can not remember any tool that offers reasonable
support for testing. In Java you have JUnit and other. In ATL there
is nothing.”

 159 Page 66 of 71 Empir Software Eng (2022) 27:159

Table 5 (continued)

Factor QID PID Quotation

Traceability

Qtrc1 P22 “So that is something you often have to do manually in a GPL.
So you have to maintain the trace information yourself and kind of
re-implement that.”

Qrm2 P30 “[...] for ATL there are things like module superimposition, and
other kinds, we have helper libraries.”

Qrm3 P27 “[...] in the case of VIATRA one of the main goals of the pattern
language we are using there is to allow reusing previously defined
patterns. Basically any pattern can be included. So there is a lot of
stuff you can do to reuse the element.”

Learnability
Qler1 P23 “So the learning curve is pretty steep when trying to use MTLs. You

need to learn a lot of stuff before you can use them properly.”

Qler2 P6 “You can take 10 Java developers and out of them probably 2 would
understand what a MTL is. They don’t have experience in mod-
elling. Not because they are dumb, because they are not used to
that.”

Debugging
Tooling

Qdb1 P51 “Well I think one of the other important points would be to [be]
able to prove properties of transformations or check properties
of transformations, [...] but we don’t really have that for model
transformations.”

Ecosystem

Qeco1 P49 “people from industry have a hard time when they are required to
use multiple languages.”

Qeco2 P49 “It is often on a technical level that the integration into the overall
ecosystem of tools you have is not so great.”

Qeco3 P31 “Something I see as a problem with some model transformation
languages, which limit the applicability, is the coupling to Eclipse.
This is what will cause us as a research community big problems
some day [...].”

Interoperability Qint 1 P36 “But the technologies, to combine them, it is difficult [...]”

Language Skills Qskl1 P1 “[...] this is the way you have to think in terms of formulating your
problem”

Qskl2 P12 “And then you [need to] learn a language, the MTL.”

User Experience/
Knowledge

Qexp1 P21 “One of the reasons why Ada is virtually extinct is that developers
preferred to have C++ on their CVs. Simply because there were
more job postings with C++. And that develops a momentum of its
own, which of course makes languages suffer. That also applies to
DSLs.”

Qexp2 P6 “Many MDSE courses are just given too late, when people are too
acquainted with GPLs, and then its really hard for students to see
the point of using models, modelling and MTLs, because it’s com-
parable with languages and stuff they have already learned and
worked with.”

Empir Software Eng (2022) 27:159 Page 67 of 71 159

Table 5 (continued)

Factor QID PID Quotation

Involved (meta-)
models

Qmod1 P28 “As soon as you venture into eGenericType there is a lot of pain to
be had and there is poor documentation.”

I/O Semantic gap Qgap1 P22 “[...] as soon as I wanted to do something a bit more complex, I
have often found that I was not able to express what I wanted to do
easily and I had to resort to advanced features of the language in
order to achieve what I want to do.”

Size Qsiz1 P55 “The size is a good point. I would reduce that now to rules. But
if I have several rules that then build on each other, then it will
probably be easier with an MTL. Especially if you have a lot of
dependencies between the rules.”

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/s10664-022-10194-7.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of Interests The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akdur D, Garousi V, Demirörs O (2018) A survey on modeling and model-driven engineering practices
in the embedded software industry. J Syst Architect 91:62–82. https://doi.org/10.1016/j.sysarc.2018.09.
007. https://www.sciencedirect.com/science/article/pii/S1383762118302455

Anjorin A, Buchmann T, Westfechtel B (2017) The families to persons case. In: Transformation Tool Contest
2017, CEUR-WS, pp. 15–30

Arendt T, Biermann E, Jurack S, Krause C, Taentzer G (2010) Henshin: Advanced concepts and tools for
in-place EMF model transformations. 10.1007/978-3-642-16145-2 9

Balogh A, Varró D (2006) Advanced model transformation language constructs in the VIATRA2
framework. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06.
10.1145/1141277.1141575

Brambilla M, Cabot J, Wimmer M (2017) Model-driven software engineering in practice. Synthesis Lect
Soft Eng 3(1):1–207

Brown AW, Conallen J, Tropeano D (2005) Introduction: Models, modeling, and model-driven architecture
(MDA). In: Model-Driven Software Development, Springer, pp 1–16. 10.1007/3-540-28554-7 1

Bucchiarone A, Ciccozzi F, Lambers L, Pierantonio A, Tichy M, Tisi M, Wortmann A, Zaytsev V (2021)
What is the future of modeling? IEEE Softw 38(2):119–127. https://doi.org/10.1109/MS.2020.3041522,
https://doi.org/10.1109/MS.2020.3041522

 159 Page 68 of 71 Empir Software Eng (2022) 27:159

Buckler F, Hennig-Thurau T (2008) Identifying hidden structures in marketings structural models through
universal structure modeling. In: Marketing ZFP 30.JRM 2, pp. 47?66

Burgueño L, Cabot J, Gérard S (2019) The future of model transformation languages: An open community
discussion. https://doi.org/10.5381/jot.2019.18.3.a7

Charmaz K (2014) Constructing grounded theory. Sage, ISBN: 9780857029140
Cuadrado JS, Molina JG, Tortosa MM (2006) Rubytl: a practical, extensible transformation language.

10.1007/11787044 13
Czarnecki K, Helsen S (2006) Feature-based survey of model transformation approaches.

10.1147/sj.453.0621
Demuth B, Wilke C (2009) Model and object verification by using dresden OCL. In: Proceedings of the

Russian-German Workshop Innovation Information Technologies: Theory and Practice, Ufa. Citeseer,
Russia, pp 687-690

Dieste O, Aranda AM, Uyaguari F, Turhan B, Tosun A, Fucci D, Oivo M, Juristo N (2017) Empirical eval-
uation of the effects of experience on code quality and programmer productivity: an exploratory study.
https://doi.org/10.1007/s10664-016-9471-3

Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An open urban driving simulator.
In: Proceedings of the 1st Annual Conference on Robot Learning, Proceedings of Machine Learning
Research 78:1–16 Available from https://proceedings.mlr.press/v78/dosovitskiy17a.html

Eclipse Foundation Eclipse graphical language server platform (GLSP). https://www.eclipse.org/glsp/
Ege F, Tichy M (2019) A proposal of features to support analysis and debugging of declarative model

transformations with graphical syntax by embedded visualizations. In: 2019 ACM/IEEE 22nd Interna-
tional Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp
326–330. https://doi.org/10.1109/MODELS-C.2019.00051

George L, Wider A, Scheidgen M (2012) Type-safe model transformation languages as internal DSLs
in scala. In: Theory and Practice of Model Transformations, ICMT 2012. https://doi.org/10.1007/
978-3-642-30476-7 11

Gerpheide CM, Schiffelers RRH, Serebrenik A (2016) Assessing and improving quality of QVTo model
transformations. Softw Qual J 24(3):797–834. https://doi.org/10.1007/s11219-015-9280-8. https://doi.
org/10.1007/s11219-015-9280-8

Götz S, Tichy M, Kehrer T (2021) Dedicated model transformation languages vs. general-purpose languages:
a historical perspective on ATL vs Java. In: MODELSWARD (pp. 122–135)

Groner R, Beaucamp L, Tichy M, Becker S (2020) An exploratory study on performance engineering in
model transformations. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, Association for Computing Machinery, New York, NY,
USA, MODELS ’20, p 308–319. https://doi.org/10.1145/3365438.3410950

Götz S, Tichy M, Groner R (2021) Claimed advantages and disadvantages of (dedicated) model
transformation languages: a systematic literature review. Softw Syst Model 20(2):469–503.
https://doi.org/10.1007/s10270-020-00815-4. https://doi.org/10.1007/s10270-020-00815-4

Hebig R, Seidl C, Berger T, Pedersen JK, Wa̧sowski A (2018) Model transformation languages under a
magnifying glass: A controlled experiment with Xtend, ATL, and QVT. In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2018. https://doi.org/10.1145/3236024.3236046

Hermans F, Pinzger M, van Deursen A (2009) Domain-specific languages in practice: A user study
on the success factors. In: Model Driven Engineering Languages and Systems, MODELS 2009.
https://doi.org/10.1007/978-3-642-04425-0 33

Hibberd M, Lawley M, Raymond K (2007) Forensic debugging of model transformations. In: Engels G,
Opdyke B, Schmidt DC, Weil F (eds) Model Driven Engineering Languages and Systems. Springer,
Berlin, Heidelberg, pp 589–604. ISBN: 978-3-540-75209-7

Hinkel G (2016) NMF: A Modeling Framework for the. NET Platform. KIT
Hinkel G, Burger E (2019) Change propagation and bidirectionality in internal transformation DSLs. In:

Software & Systems Modeling. 18.1, pp. 249–278. https://doi.org/10.1007/s10270-017-0617-6
Hinkel G, Goldschmidt T (2019) Using internal domain-specific languages to inherit tool sup-

port and modularity for model transformations. In: Software & Systems Modeling, Reussner R.
https://doi.org/10.1007/s10270-017-0578-9

Horn T (2013) Model querying with FunnyQT. In: International Conference on Theory and Practice of Model
Transformations, Springer, pp 56–57. https://doi.org/10.1007/978-3-642-38883-5 7

Hove SE, Anda B (2005) Experiences from conducting semi-structured interviews in empirical software
engineering research. In: 11th IEEE International Software Metrics Symposium (METRICS’05), 10
pp.–23. https://doi.org/10.1109/METRICS.2005.24

Empir Software Eng (2022) 27:159 Page 69 of 71 159

Höppner S, Kehrer T, Tichy M (2021) Contrasting dedicated model transformation languages vs. general
purpose languages: A historical perspective on ATL vs. Java based on complexity and size. In: Software
and Systems Modeling. https://doi.org/10.1007/s10270-021-00937-3

Hutchinson J, Rouncefield M, Whittle J (2011) Model-driven engineering practices in industry. In: Pro-
ceedings of the 33rd International Conference on Software Engineering, Association for Computing
Machinery, New York, NY, USA, ICSE ’11, p 633–642. https://doi.org/10.1145/1985793.1985882.
https://doi.org/10.1145/1985793.1985882

Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of MDE in industry.
In: Proceedings of the 33rd International Conference on Software Engineering, Association for Comput-
ing Machinery, New York, NY, USA, ICSE ’11, p 471–480. https://doi.org/10.1145/1985793.1985858.
https://doi.org/10.1145/1985793.1985858

Hutchinson J, Whittle J, Rouncefield M (2014) Model-driven engineering practices in industry: Social, orga-
nizational and managerial factors that lead to success or failure. In: Science of Computer Programming
89. Special issue on Success Stories in Model Driven Engineering pp. 144–161. https://doi.org/10.1016/
j.scico.2013.03.017. https://www.sciencedirect.com/science/article/pii/S0167642313000786

Johannes J, Zschaler S, Fernández MA, Castillo A, Kolovos DS, Paige RF (2009) Abstracting complex lan-
guages through transformation and composition. In: Model Driven Engineering Languages and Systems.
MODELS 2009. https://doi.org/10.1007/978-3-642-04425-0 41

Jonkers H, Stroucken M, Vdovjak R, Campus HT (2006) Bootstrapping domain-specific model-driven soft-
ware development within philips. In: 6th OOPSLA Workshop on Domain Specific Modeling (DSM
2006), Citeseer, p 10

Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P (2006) ATL: A QVT-like transformation language.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications, OOPSLA ’06. https://doi.org/10.1145/1176617.1176691

Juhnke K, Tichy M, Houdek F (2020) Challenges concerning test case specifications in automotive software
testing: assessment of frequency and criticality. https://doi.org/10.1007/s11219-020-09523-0. https://doi.
org/10.1007/s11219-020-09523-0

Kahani N, Bagherzadeh M, Cordy JR, Dingel J, Varró D (2019) Survey and classification of model
transformation tools. https://doi.org/10.1007/s10270-018-0665-6

Kallio H, Pietilä A-M, Johnson M, Kangasniemi M (2016) Systematic methodological review: developing a
framework for a qualitative semi-structured interview guide. In: Journal of Advanced Nursing 72.12, pp.
2954?2965. https://doi.org/10.1111/jan.13031

Kernighan BW, Pike R (1984) The unix programming environment. Prentice hall. Englewood Cliffs, NJ
Kolovos DS, Paige RF, Polack FAC (2008) The epsilon transformation language. In: Theory and Practice of

Model Transformations. ICMT 2008. https://doi.org/10.1007/978-3-540-69927-9 4
Kramer ME, Hinkel G, Klare H, Langhammer M, Burger E (2016) A controlled experiment template for

evaluating the understandability of model transformation languages. In: 2nd International Workshop on
Human Factors in Modeling, HuFaMo 2016; Saint Malo; France; 4 October 2016 through. Ed. : M.
Goulao. Vol. 1805. CEUR Workshop Proceedings. CEUR Workshop Proceedings, pp. 11?18

Krause C, Tichy M, Giese H (2014) Implementing graph transformations in the BulkăSynchronousăParallel
model. In: Gnesi S, Rensink A (eds) Fundamental Approaches to Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 325–339

Kuckartz U (2014) Qualitative text analysis: A guide to methods, practice and using software. Sage, ISBN:
978-1-4462-6774-5

Lawley M, Raymond K (2007) Implementing a practical declarative logic-based model transforma-
tion engine. In: Proceedings of the 2007 ACM Symposium on Applied Computing, SAC ’07.
https://doi.org/10.1145/1244002.1244216

Liebel G, Tichy M, Knauss E, Ljungkrantz O, Stieglbauer G (2018) Organisation and communication
problems in automotive requirements engineering. In: Requirements Engineering 23.1, pp. 145–167.
https://doi.org/10.1007/s00766-016-0261-7. https://doi.org/10.1007/s00766-016-0261-7

Liepiņš R (2012) Library for model querying: Iquery. In: Proceedings of the 12th Workshop on OCL and
Textual Modelling, OCL ’12. https://doi.org/10.1145/2428516.2428522

Malavolta I, Muccini H, Pelliccione P, Tamburri D (2010) Providing architectural languages and tools inter-
operability through model transformation technologies. In: IEEE Transactions on Software Engineering
36.1, pp. 119?140. https://doi.org/10.1109/TSE.2009.51

Mayring P (1994) Qualitative Inhaltsanalyse. IVK Univ.-Verl. Konstanz, ISBN: 3-87940-503-4
Mens T, Gorp PV (2006) A taxonomy of model transformation. In: Electronic Notes in Theoretical Computer

Science (GraMoT 2005). https://doi.org/10.1016/j.entcs.2005.10.021
Metzger A (2005) A systematic look at model transformations. In: Model-driven Software Development,

Springer, pp 19–33. https://doi.org/10.1007/3-540-28554-7 2

 159 Page 70 of 71 Empir Software Eng (2022) 27:159

Meyer MA, Booker JM (1990) Eliciting and analyzing expert judgment: A practical guide.
https://doi.org/10.2172/5088782

Microsoft Language server protocol specification. https://microsoft.github.io/language-server-protocol/
specifications/specification-current/

Mohagheghi P, Dehlen V (2008) Where Is the Proof? - A Review of Experiences from Applying MDE in
Industry. In: Schieferdecker I (ed) Model Driven Architecture ? Foundations and Applications. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 432–443

Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA (2013) An empirical study of the state of the practice
and acceptance of model-driven engineering in four industrial cases. In: Empirical Software Engineering.
https://doi.org/10.1007/s10664-012-9196-x

Mohagheghi P, Gilani W, Stefanescu A, Fernandez MA, Nordmoen B, Fritzsche M (2013) Where
does model-driven engineering help? experiences from three industrial cases. In: Software & Sys-
tems Modeling 12.3, pp. 619–639. https://doi.org/10.1007/s10270-011-0219-7. https://doi.org/10.1007/
s10270-011-0219-7

Newcomer KE, Hatry HP, Wholey JS (eds) (2015) Handbook of practical program evaluation (p. 492). USA:
John Wiley & Sons, https://doi.org/10.1002/9781119171386

OMG (2001) Model driven architecture (MDA), ormsc/2001-07-01
OMG (2014) Object contraint language. https://www.omg.org/spec/OCL/2.4/About-OCL/
OMG (2016) Meta Object Facility (MOF). https://www.omg.org/spec/MOF
OMG (2016) Meta object facility (MOF) 2.0 query/view/transformation specification. https://www.omg.org/

spec/QVT/About-QVT/
Pietron J, Raschke A, Stegmaier M, Tichy M, Rukzio E (2018) A study design template for identifying

usability issues in graphical modeling tools. In: MODELS Workshops, pp 336–345
Raggett D, Le Hors A, Jacobs I et al (1999) HTML 4.01 Specification. In: W3C recommendation 24
Rainer A, Wohlin C (2021) Recruiting credible participants for field studies in software engineering research.

https://doi.org/10.48550/ARXIV.2112.14186
SAEMobilus (2004) Architecture analysis and design language (AADL)
Samiee A, Tiefnig N, Sahu JP, Wagner M, Baumgartner A, Juhász L (2018) Model-driven-engineering in

education. In: 2018 18th International Conference on Mechatronics - Mechatronika (ME), pp 1–6
Schmidt D (2006) Guest editor’s introduction: Model-driven engineering. In: Computer-IEEE Computer

Society. https://doi.org/10.1109/MC.2006.58
Selic B (2003) The pragmatics of model-driven development. In: IEEE Software 20.5, pp. 19?25.

https://doi.org/10.1109/MS.2003.1231146
Sendall S, Kozaczynski W (2003) Model transformation: the heart and soul of model-driven software

development. In: IEEE Software. https://doi.org/10.1109/MS.2003.1231150
Sprinkle J, Mernik M, Tolvanen J, Spinellis D (2009) Guest editors’ introduction: What kinds of nails need

a domain-specific hammer? In: IEEE Software 26.4, pp. 15?18. https://doi.org/10.1109/MS.2009.92
Staron M (2006) Adopting model driven software development in industry – a case study

at two companies. In: Model Driven Engineering Languages and Systems, MODELS 2006.
https://doi.org/10.1007/11880240 5

Stegmaier M, Raschke A, Tichy M, Meßner EM, Hajian S, Feldengut A (2019). In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C). https://doi.org/10.1109/MODELS-C.2019.00063

Steinberg D, Budinsky F, Merks E, Paternostro M (2008) EMF: eclipse modeling framework. Pearson
Education

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: A critical
review and guidelines. In: Proceedings of the 38th International Conference on Software Engi-
neering, Association for Computing Machinery, New York, NY, USA, ICSE ’16, p 120–131.
https://doi.org/10.1145/2884781.2884833, https://doi.org/10.1145/2884781.2884833

Strüber D, Anjorin A (2016) Comparing reuse mechanisms for model transformation languages: Design for
an empirical study. In: HuFaMo@ MoDELS, Citeseer, pp 27–32

Tehrani SY, Zschaler S, Lano K (2016) Requirements engineering in model-transformation development: An
interview-based study. In: International Conference on Theory and Practice of Model Transformations,
Springer, pp 123–137. https://doi.org/10.1007/978-3-319-42064-6 9

Troya J, Segura S, Burgueño L, Wimmer M (2022) Model transformation testing and debugging: A survey.
In: ACM Computing Surveys (CSUR). https://doi.org/10.1145/3523056

Van Deursen A, Klint P (2002) Domain-specific language design requires feature descriptions. In: Journal of
Computing and Information Technology. https://doi.org/10.2498/cit.2002.01.01

Vollstedt M, Rezat S (2019) An introduction to grounded theory with a special focus on axial cod-
ing and the coding paradigm. In: Kaiser G, Presmeg N (eds) Compendium for Early Career

Empir Software Eng (2022) 27:159 Page 71 of 71 159

Researchers in Mathematics Education. Springer International Publishing, Cham, pp 81–100.
https://doi.org/10.1007/978-3-030-15636-7 4

Weiber R, Mühlhaus D (2021). In: Strukturgleichungsmodellierung: Eine anwendungsorientierte Einführung
in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS, 3rd edn. Springer-Verlag.
https://doi.org/10.1007/978-3-658-32660-9

Whittle J, Hutchinson J, Rouncefield M, Burden H, Heldal R (2013) Industrial adoption of model-driven
engineering: Are the tools really the problem? In: Model-Driven Engineering Languages and Systems,
MODELS 2013. https://doi.org/10.1007/978-3-642-41533-3 1

Wimmer M, Kusel A, Schoenboeck J, Kappel G, Retschitzegger W, Schwinger W (2009) Reviving qvt
relations: Model-based debugging using colored petri nets. In: Schürr A, Selic B (eds) Model Driven
Engineering Languages and Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 727–732

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Stefan Höppner1 ·Yves Haas1 ·Matthias Tichy1 ·Katharina Juhnke1

Yves Haas
yves.haas@uni-ulm.de

Matthias Tichy
matthias.tichy@uni-ulm.de

Katharina Juhnke
katharina.juhnke@uni-ulm.de

1 Ulm University, James-Franck-Ring 1, Ulm 89081, Germany

F.3. Paper D 383

F.3 Paper D
Investigating the Origins of Complexity and Expressiveness in ATL Transformations

S. Götz, M. Tichy

Journal of Object Technology (JoT), volume 19, article number 2, July 2020
AITO — Association Internationale pour les Technologies Objets

DOI: doi:10.5381/jot.2020.19.2.a12

CC BY 4.0, http://creativecommons.org/licenses/by/4.0/

http://dx.doi.org/10.5381/jot.2020.19.2.a12
http://creativecommons.org/licenses/by/4.0/

Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Investigating the origins of complexity
and expressiveness in ATL

transformations
Stefan Götza Matthias Tichya

a. Institute of Software Engineering and Programming Languages, Ulm
University, Germany

Abstract Model transformations provide an essential element to the model
driven engineering approach. Over the years, many languages tailored
to this special task, so-called model transformation languages, have been
developed. A multitude of advantages have been proclaimed as reasons to
why these dedicated languages are better suited to the task of transforming
models than general purpose programming languages. However, little
work has been done to confirm many of these claims. In this paper, we
analyse ATL transformation scripts from various sources to investigate
three common claims about the expressiveness of model transformation
languages. The claims we are interested in assert that automatic trace
handling and implicit rule ordering are huge advantages for model transfor-
mation languages and that model transformation languages are able to hide
complex semantics behind simple syntax. We use complexity measures
to analyse the distribution of complexity over transformation modules
and to gain insights about what this means for the abstractions used by
ATL. We found that a large portion of the complexity of transformations
stem from simple attribute assignments. We also found indications for the
usefulness of conditioning on types, implicit rule ordering and automatic
trace resolution.

Keywords ATL; Complexity; Expressiveness; Model Transformation Lan-
guages; Analysis.

1 Introduction

Model transformations are a pivotal part of model-driven engineering (MDE) [SK03,
Sch06]. This is also evident from the amount of transformation languages that have
been proposed, i.e. ATL [JAB+06], Henshin [ABJ+10], ETL [KPP08], Viatra [BV06]
and QVT [Kur07] just to name a few.

While the number of transformation languages and their features is ever increasing,
little time is spent on empirical studies on the use of said languages [SCD17]. A fact

Stefan Götz, Matthias Tichy. Investigating the origins of complexity and expressiveness in ATL
transformations. Licensed under Attribution 4.0 International (CC BY 4.0). In Journal of Object
Technology, vol. 19, no. 2, 2020, pages 12:1–21. doi:10.5381/jot.2020.19.2.a12

2 · Stefan Götz et al.

that is true not only for model transformation languages but any kind of DSL as
evident from the results of [KBM16].

The authors of [SCD17], have shown that studying the use of transformation
languages on code repositories such as the ATL Zoo 1 can provide insights into how a
transformation language is used which can help developers with language evolution.

Such studies are also necessary because there is continual debate about whether
dedicated model transformation languages are necessary at all [HSB+18, BCG19] since
GPLs like Java can also be used for writing transformations and have been discussed
as an alternative since the introduction of model transformations [SK03].

In the study described here, we apply these goals to the Atlas model Transfor-
mation Language (ATL) [JAB+06]. We are particularly interested in investigating
transformation scripts to gather data concerning the following claims which have been
made multiple times in literature:

H1 : Model transformation languages hide complex semantics behind simple syn-
tax [JABK08, KCF14, SK03, GK03].

H2 : Automatic handling and resolution of trace information by the transformation
engines is a huge advantage of model transformation languages [JABK08, LR07,
HGBR19].

H3 : Model transformation languages allow for implicit rule ordering which can lessen
the load on developers [JABK08, LR07].

One thing that immediately stands out from the three claims is that they are
intertwined. Automatic handling of traces and implicit rule ordering are both concepts
that can hide certain semantics within the transformation engine. So to investigate
their impact and provide insights into the complexity within model transformations
as a whole we devised 5 research questions to focus our research on:

RQ1 : How is the complexity of ATL transformations distributed over multiple trans-
formations and transformation components? This question forms a basis data
set for the following investigations. Its results can provide useful insights into
where the complexity in ATL transformations originates from to provide starting
points for more focused investigations. It can also help to uncover potential
strengths and weaknesses of the abstractions used by ATL (H1).

RQ2 : When looking at the complexity distributions of individual transformation
components, are there any salient characteristics? ATL components such as the
out-pattern consist of a set of bindings that assign values to the attributes of
the output model. The question that arises from such structures is, whether
the complexity of out-patterns stems largely from single complex bindings or a
number of simpler bindings. With this research question we aim to investigate
such effects which can indicate points where ATL does a good job of hiding
complexity (H1)

RQ3 : How does the usage of refining mode impact the complexities of ATL modules?
ATLs refining mode was introduced to ease refinement transformations by
allowing developers to only focus on the code generating modified elements
while leaving all other elements unchanged. Accordingly, the complexity of

1https://www.eclipse.org/atl/atlTransformations/

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 3

refining mode transformations should originate to large parts in refining activities.
Otherwise it would indicate that the refining mode fails in supporting developers
with model refinements. This in turn would be a counterexample to the claims
made in H1.

RQ4: How large is the percentage of bindings that require trace-based binding reso-
lution? Before being able to argue about the usefulness of trace information
(H2) for model transformations it should be investigated to what extent their
existence influences a model transformation script. If only a small proportion
of transformations utilize traces then maybe the development effort for implicit
trace handling is not worth it.

RQ5: What portion of ATL transformations use implicit rule ordering? The amount
of implicitly ordered rules compared to manual rule ordering can be a good
indication into whether the feature is well liked by developers hinting at an
advantage over manual ordering.

To answer the research questions we selected a total of 33 ATL transformations
from various sources to analyse. We use two sets of complexity measures based
on [LKRSA18] to measure the complexity of ATL transformations. A meta-model
representing the basic components of ATL modules is used to compile the complexity
values together. Information about trace usage and rule ordering is taken directly
from the models representing the ATL transformations.

The remainder of this paper is structured as follows: First in Section 2 an intro-
duction into relevant aspects of ATL is given. Section 3 defines the used complexity
measures. Afterwards in Section 4 we present our extraction and analysis procedures.
The results of our analysis are then presented in Section 5. Section 7 discusses potential
threats to the validity of the described proceedings while Section 6 places the approach
in the context of existing work. Lastly Section 8 concludes and proposes potential
future work.

2 The Atlas Transformation Language (ATL)

Specifications in ATL are organized in one of three kinds of so called Units. A unit is
either a module, a library or a query. Depending on their type, units can consist of
rules, helpers and attributes, which are a special kind of helper.

ATL uses the Object Constraint language (OCL) [OMG06] for both data types
and expressions.

2.1 Modules

Modules are used to define transformations. ATL modules are made up of three
segments (see Listing 1): the module header which defines the modules name as well
as the types of the input and output meta-models, a number of optional imports and
a set of helper and rule definitions.� �

1 module NAME
2 create OUT1:OUTTYPE1 , ...
3 [from|refining] IN1:INTYPE1 , ...
4

5 [uses LIBRARY]*

Journal of Object Technology, vol. 19, no. 2, 2020

4 · Stefan Götz et al.

6 [RULEDEF|HELPERDEF]*� �
Listing 1 – Structure of an ATL module

Libraries consist of a set of helper definitions. Libraries can be imported into
modules.

Lastly, Queries are comprised of an import section, a query element and a set of
helper definitions. Queries are used to define transformations from models to simple
OCL types rather than output models.

2.2 Helpers and Attributes

Helpers allow developers to define outsourced expressions that can be called from within
rules. Helper definitions can define a data type for which the helper is specified, called
context. ATL also allows developers to define so called Attribute helpers. The main
difference between attributes and helpers is that attributes do not accept parameters.
Attributes serve as constants that are defined for a specific context.

The definition of both traditional helpers and attribute helpers follow the same
syntax patterns (see Listing 2). The only difference lies in whether input parameters
are defined.� �

1 helper [context CONTEXTTYPE]? def : NAME[(PARAMETERS)]? : TYPE =
EXPR;� �

Listing 2 – Syntax to define Helpers

2.3 Rules

In ATL, rules are used to specify the transformation of input models into output
models. There exist two main types of rules: called rules and matched rules. Matched
rules enable a declarative way to define how a model element of a specific type is
transformed into output model elements, while called Rules enable generation of target
model elements from imperative code. Matched rules are executed automatically on
all matching input model elements by the ATL engine.

Matched rules are comprised of four main sections (see Listing 3):
An In-Pattern which defines source model elements that are being transformed.

In-Patterns can contain a filter expression which defines a condition that must be met
for the rule to be applied.

An optional Using-Block that allows to define local variables.
The Out-Pattern which defines a number of output model elements that are created

for the model element defined in the in-pattern when the rule is applied. Each output
model element is defined by an Out-Pattern element which contains so called bindings
that assign values to attributes of the model element.

And lastly an optional Action-Block which allows the specification of imperative
code that is executed once the target elements have been created.� �

1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : INTYPE [(CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR ;]+

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 5

6 }]?
7 to
8 [OUTVAR : OUTTYPE {
9 [ATR <- EXPR ,]+

10 },]+
11 [do {
12 [STATEMENT ;]*
13 }]?
14 }� �

Listing 3 – Syntax to define matched rules

Apart from regular matched rules there are also lazy rules. They are defined
by adding the key word lazy in front of a matched rule definition. Lazy rules are
executed only when explicitly called for a specific model element that matches the
rules type and filter expression. Lazy rules can be called multiple times on the same
model element to produce multiple distinct output elements.

Unique lazy rules, defined through the unique lazy key words, change this
behaviour. Instead of producing a new model element for each call, unique lazy rules
always return the same output element when called on the same input model element.

Lastly, called rules are defined in a similar fashion to matched rules (see
Listing 4). The main difference between the two being that called rules do not
contain an In-Pattern and allow the definition of required parameters.� �

1 rule NAME([PARAMETER ,]*) {
2 [using {
3 [VAR : VARTYPE = EXPR ;]+
4 }]?
5 to
6 [OUTVAR : OUTTYPE {
7 [ATR <- EXPR ,]+
8 },]+
9 [do {

10 [STATEMENT ;]*
11 }]?
12 }� �

Listing 4 – Syntax to define called rules

2.4 Refining mode

The refining mode is a special execution mode for ATL rules which is intended to
assist developers with refactoring models, i.e., endogenous transformations.

Normally, the ATL engine only produces output model elements for input elements
on which rules are executed on. When using the refining mode however, the ATL
engine executes all rules on matching input elements and produces a copy of all
unmatched elements. This way developers are able to focus solely on the refining part
of their refactoring efforts according to the language developers.

Journal of Object Technology, vol. 19, no. 2, 2020

6 · Stefan Götz et al.

3 Complexity Measures

There exist several approaches for measuring complexity of model transformation lan-
guages and ATL in particular ([DRDRIP15, Vig09, TSMGD+11, KGBH10, LKRSA18]).
Most of these approaches use a simple metric that relates the number of transformation
components such as rules or helpers to the complexity of a transformation module.
In our opinion, however, the number of rules or helpers alone does not capture the
complexity of model transformations well enough. For that reason, we opted to adopt
the complexity measure proposed by [LKRSA18] which includes not only the number
of transformation components but also the complexity of expressions used within the
transformation.

In the following, the complexity measures will be explained.

3.1 Syntactic complexity

The syntactic complexity c(τ) of a transformation specification τ is defined based on the
complexity of expressions and activities within the defined transformation [LKRSA18].
The general idea behind it being that the complexity of each construct is comprised of
a static value for the construct itself plus the sum of the complexities of its contained
elements.

The complexity of a module as defined in Listing 1 would be comprised of the
sum of the complexities for its contained helper definitions and rule definitions. The
complexity of rules, defined as shown in Listings 3 and 4, is then comprised of the
complexity of their contained from-block (In-Pattern), the to-block (Out-Pattern),
the using-block and do-block plus a static value of 1 for the rule itself.

The complexity of In-Patterns is defined by their contained filter expression and a
static value for the construct itself, while the complexity of Out-Patterns is defined by
a static value for the construct as well as the sum of the complexities of all contained
Out-Pattern elements and their contained bindings. An overview over the most
important complexity measure definitions can be found in Table 1 for expressions and
Table 2 for activities/structural elements2.

We adopted the complexity measure with slight modifications since we disagreed
with certain defined values. The following adjustments were made to the definition
from [LKRSA18]:

First, the complexity of helpers was adapted to also include the complexity of their
context. The reason for this change being the fact that the context of a helper has to
be considered when trying to understand its function. Furthermore, in our opinion
there is no difference between attribute and operation helpers, the additional, static
complexity attributed to both types of helper definitions was aligned at 1. For this the
static complexity of attribute helpers was reduced from 3 to 1 and that of operation
helpers was increased from 0 to 1.

Action blocks were given an additional static complexity value of 1 which was
missing from the definitions of [LKRSA18]. This aligns it with the static complexity
that is attributed to all elements contained within rules, i.e. In-Patterns, Out-Patterns
and Using-blocks.

The complexity attributed to operation calls was increased to 1 to align it with that
of attribute and navigation calls. In our opinion calling an operation on an object is

2Full definitions can be found in https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-c
omplexities/blob/master/ATL/transformations/qvt/transforms/complexity.qvto

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 7

just as complex as accessing one of its attributes. For the same reason the complexity
for collection operation calls was also increased to 1 as well.

Table 1 – Definitions of expression complexity measure based on [LKRSA18].

Expression e Complexity c(e)

Numeric, boolean or String value 0

Identifier iden 1

Attribute call source.attr c(source) + 2

Operation call source.op(p1, ..) 2 + c(source) +
∑

i c(pi)

Operator call e1 op e2 c(e1) + c(e2)

CollectionOperation call source− > op(p1, ..) 2 + c(source) +
∑

i c(pi)

if e1 then e2 else e3 endif c(e1) + c(e2) + c(e3) + 1

let v : t = e1 in e2 c(t) + c(e1) + c(e2) + 4

CollectionExpression Col{e1, ..} 1 +
∑

i c(ei)

Primitive Type (Integer,String,...) 1

Collection Type Col(t) 1 + c(t)

3.2 Computational complexity

The computational complexity is an extension of the syntactic complexity. Its goal
is to more closely capture the underlying complexity of transformation definition
with respect to outsourced expressions and called transformation rules. To achieve
this, the complexity of Operation Calls is calculated by taking the complexity of
the called operation into account instead of adding a static value regardless of the
called operation. For example given a helper sample of syntactic complexity 12, the
call sample() has a syntactic complexity of 2 whereas its computational complexity
amounts to 12.

Moreover the complexity of used variables is also resolved by taking the definition
expression of the variable into account instead of using a static value of 1.

4 Methodology

Apart from the selection of the ATL transformation modules to analyse, we strongly
oriented our proceedings along the research questions from section 1.

4.1 Module Selection

The selection of ATL modules was aimed to achieve a wide spread of transformations
based on their source, purpose and size in terms of lines of code. We also aimed to
achieve an even distribution of modules that use the refining mode and modules that
do not.

For this purpose, we searched GitHub for ATL projects by using the search string
‘ATL transformation‘ and included all novel (meaning not present in the ATL zoo)
transformations for which we were also able to find the input and output meta-models

Journal of Object Technology, vol. 19, no. 2, 2020

8 · Stefan Götz et al.

Table 2 – Definitions of complexity measure for ATL elements/activities based
on [LKRSA18]. ATL elements are capitalized while expression elements are written
in lower case.

ATL element A Complexity c(A)

Module H1, .., R1, ..
∑

i c(Hi) +
∑

i c(Ri)

Helper helper context c def : n : t = e c(c) + c(t) + c(e)

MatchedRule rule N {From Using To Do} c(From) + c(To) + c(Do) + c(Using)

CalledRule rule N(p) {Using To Do} c(To) + c(Do) + c(Using)

VariableDefinition n : t = e c(t) + c(e) + 3

InPattern from s : t (f) c(f) + c(t) + 3

OutPattern o : t {B1, ..} c(t) +
∑

i c(Bi) + 2

Binding n <- e c(e) + 2

ActionBlock do {S} c(S)

S1;S2 c(S1) + c(S2)

if e then S1 else S2 c(e) + c(S1) + c(S2) + 1

for v : e do S c(e) + c(S) + 1

Binding Statement v <- e c(v) + c(e) + 1

Table 3 – Meta-data about the analysed transformation modules.

Data minimum average maximum total

LOC 39 408 1364 13455
Rules 1 14 55 460
Helpers 0 11 74 376
Bindings 2 112 487 3695

since those were required for parts of our analysis(see Section 4.4). This resulted
in a total of 16 transformation modules. Additionally we included the R2ML2XML
transformation from [vAvdB11] and the families2persons transformation from the
ATL zoo because it is a widely used example for model transformations. We then
supplemented the set of transformations with transformations from the ATL zoo to
try and achieve an even distribution between modules that use the refining mode and
modules that do not.

The result was a set of 33 ATL transformations (some meta-data about the
transformations can be found in Table 3). Of those 33 transformations, 15 use the
refining mode of ATL while 18 are exogenous transformations. A complete overview
over the selected transformations, including names and sources can be found under
https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-complexities/blob
/master/ATL/resources/input/cases/justifications.

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 9

4.2 RQ1,2: How is the complexity of ATL transformations distributed over
multiple transformations and transformation components and are there
any salient characteristics?

To be able to collect and analyse complexity data of ATL transformations and relevant
elements thereof a meta-model was constructed 3. Its structure was designed to be
able to break down the full representation of an ATL transformation into the basic
components that make up ATL transformations as described in Section 2. With this
structure it is also possible to investigate where the complexity of entire ATL modules
and rules originate from, e.g. whether a rule is complex because of its size or due to a
few complex contents like filter expressions. The design of the meta-model followed
the principles of abstraction and pragmatics. Compared to the ATL meta-model our
developed meta-model focuses solely on those parts of the ATL transformations we
are interested in and provides an easy way to track their complexity and the origin
thereof.

To transform transformation modules into a model of the presented meta-model and
to calculate the complexities of its components along the way, a QVT-o transformation 4

was defined. Its correctness was evaluated using unit tests: A test module containing at
least one of each activities/expressions for which a complexity value can be calculated
was defined. The complexity values for each element was calculated manually based
on the previously introduced complexity definition. Afterwards the results of the
transformation were manually compared with the manually calculated complexity
values. Discrepancies between the complexity values were investigated and corrected.

In order to collect data for analysis, the tested transformation was applied to the
33 ATL transformations.

Apart from the raw complexity data, we resorted to using several diagrams such
as histograms, violin and alluvial plots as well as code snippets to investigate the
complexity distribution, both syntactical and computational, of ATL transformations.

In order to better understand the meaning behind the complexity values example
code snippets for each component were extracted from the 33 selected transformation
modules. The code snippets were selected so that their complexity values correspond
to the components median complexity within the data set. One such code snippet can
be seen in Listing 5. All used snippets can be found under https://spgit.informat
ik.uni-ulm.de/stefan.goetz/mtl-complexities/tree/master/ATL/resources/
input/medians.� �

1 helper context SimpleClass!Class def: associations: Sequence(
SimpleClass!Association)=

2 SimpleClass!Association.allInstances () -> select(asso | asso.
value = 1);� �

Listing 5 – Helper with a syntactic complexity corresponding to the median of all helper
complexities.

3the meta-model can be found under https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl
-complexities/-/tree/master/ATL/metamodels/ATLComplexity/model

4https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-complexities/blob/master/ATL/
transformations/qvt/transforms/complexity.qvto

Journal of Object Technology, vol. 19, no. 2, 2020

10 · Stefan Götz et al.

4.3 RQ3: How does the usage of refining mode impact the complexities of
ATL modules?

As explained in Section 1, we also intended to analysed ATL modules using the refining
mode as a example of how transformation languages hide semantics.

To do so, we used the 15 selected transformation modules that use refining mode
and analysed their complexities separately and in comparison to those modules not
using the refining mode.

4.4 RQ4: How large is the percentage of bindings that require trace-based
binding resolution?

To investigate the usefulness of trace-based binding resolution (and thus to an extent
that of implicit trace management) we resorted to analysing how often it is used in
transformation modules. A high proportion of trace-based resolutions used would then
indicate their usefulness. Since trace-based binding resolution only happens along
reference types of the input and output elements we extracted all reference types per
module element for all output meta-models. For this we used a simple Java-program
that given an Ecore-file would produce a list of reference types for each contained
EClass.

Afterwards the bindings within all selected transformation modules were analysed
for usage of the extracted reference types. The amount of bindings that use traces
compared to simple assignments was then analysed on the basis of these results.

4.5 RQ5: What portion of ATL transformations use implicit rule ordering?

Similar to the trace usage, the usefulness of implicit rule ordering can be indicated by
the distribution of implicitly ordered transformation elements compared to explicitly
ordered ones.

Called and lazy matched rules all get explicitly ordered by developers when calling
them while matched rules enable the ATL transformation engine to traverse the source
model and implicitly order their execution. Thus the ratio of matched rules to called
and lazy rules gives an indication into how relevant implicit rule ordering is for model
transformations.

Data for this analysis can be gathered from both the complexity distributions from
RQ 1 as well as directly from the number of definitions.

5 Result Summary and Analysis

We present the results of our analysis in this section in accordance with the research
questions posed in Section 1.

5.1 RQ1: How is the complexity of ATL transformations distributed over
multiple transformations and transformation components?

Figures 1 and 2 show alluvial plots over the distribution of syntactic complexity and
computational complexity respectively of module elements within ATL transformation
modules. They display how much of the complexity of all investigated transformations
originate in which components beginning with the modules themselves following the

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 11

definitions down to the contained expressions and the static value associated with
each component.

Interestingly, while making up nearly 45% of all top level definitions, Helpers
only contribute to roughly 18% of the total complexity of a transformation module 5.
The largest portion of complexity is attributed to matched rules which contribute
to over 3/4 of the total complexity of transformation rules while accounting for 53% of
all top level definitions. And lastly called Rules, which are not widely represented in
our data sets, while making up about 1% contribute to 5% of the overall complexity
of modules.

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

0
10
00
0

20
00
0

30
00
0

40
00
0

Module Top Level Rule Content Definitions Binding Source
Level

C
om

pl
ex
it
y

Top Level CalledRule Helper LMatchedRule MatchedRule

Figure 1 – Distribution of syntactic complexity over all ATL modules.

Another observation that can be made from Figure 1, is that about 80% of
the syntactic complexity of (lazy) Matched-rules stems from their Out-Patterns
while only 15% come from In-Patterns and a nearly negligible 5% originate in
action- and using blocks. Following this trend downwards 73% of the complex-
ity of these rules stems from their contained bindings, i.e assigning a value to

5the raw data can be found under https://spgit.informatik.uni-ulm.de/stefan.goetz/mtl-c
omplexities/tree/master/ATL/data

Journal of Object Technology, vol. 19, no. 2, 2020

12 · Stefan Götz et al.

attributes of the output model element. Meaning most effort in transformations
is spent not in selecting the correct model elements to transform but simply as-
signing the output values (see Section 5.2 for a more detailed discussion). This
effect is still present when looking at the computational complexity distribution
(as shown in Figure 2) which rules out the possibility that the effect is created
by outsourcing of filter conditions in In-Patterns through helpers. This leads us to:
Observation 1: Over half of the effort spent in writing ATL transformations is spent
assigning values to the output model.

Module

MatchedRule

LMatchedRule

Helper

CalledRule

UsingBlock

OutPattern

InPattern

ActionBlock

VarDec

Statement

OPatElement

Binding

StaticValue

Expression

0
20
00
00

40
00
00

60
00
00

80
00
00

Module Top Level Rule Content Definitions Binding Source
Level

C
om

pl
ex
it
y

Top Level CalledRule Helper LMatchedRule MatchedRule

Figure 2 – Distribution of computational complexity over all ATL modules.
Furthermore the 15% of matched rules syntactic complexity that comes from

In-Patterns shows that conditioning the application of transformation is a relevant
task for model transformations. The low proportion especially when considering
the computational complexity rather suggests that the conditioning on types (as
opposed to filter conditions without pre conditioning on types) which ATL does for
all matched rules by default alone already provides a useful abstraction for model
transformations. This assumption is supported by the fact that about 25% of all
matched rules get by with only using the standard type conditioning without any

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 13

additional filter expression in the In-Pattern. Of those 25% only 12% (which there-
fore constitute only 3% of all matched rules) are trivial transformation rules. Simple
transformations in the context of this paper mean transformations that contain no
filter condition and only assign attributes from the input model element to the output
model element without doing any additional operations. The fact that a large portion
of transformations get by with only the default conditioning on types in ATL leads us to:
Observation 2: Conditioning on types provides an abstraction well suited for model
transformations.

5.2 RQ2: When looking at the complexity distributions of individual trans-
formation components, are there any salient characteristics?

16
25

6
40

96
65

53
6

Binding

C
om

pl
ex

iti
y

Complexity Type computationalComplexity syntacticComplexity

Figure 3 – Syntactic complexity distribution of Bindings.

As previously mentioned, the proportion of the complexity of bindings within
transformations also stands out in Figure 1. Bindings alone make up over half of
the complexity of transformations, a trend, that persists even when looking at the
computational complexity of transformation modules. Interestingly, the complexity
within bindings is very unevenly distributed. Figure 3, which shows a violin and box
plot for the syntactic complexity distribution of bindings (note the logarithmic scale of
the y axis), illustrates this. The majority of all bindings have a syntactic complexity
5 (b5 = 60%). This corresponds to directly accessing an attribute of an object as
shown in Listing 6, calling a helper on said object or accessing a global attribute
(thisModule.attribute).

Further analysis shows that a total of 93% of all bindings with a syntactic com-
plexity of 5 do indeed stem from direct accesses of attributes of the input model
element (b5a = 93%). Only 2% are global attribute accesses and the last 5% orig-
inate from helper calls on the source model element. This is also indicated by the

Journal of Object Technology, vol. 19, no. 2, 2020

14 · Stefan Götz et al.

fact that a majority of bindings have a computational complexity of 7 which can
only correspond to accessing attributes on input elements. In summary, this leads us to:
Observation 3: Over half (b5 ∗ b5a = 56%) of all bindings are used to map one attribute
of an input model element to one attribute of an output model element.

Adding to this point, only 5% of bindings with a syntactic complexity of 5 stem
from trivial transformations, i.e., transformations that simply map attributes from
an input element to an output element without doing any meaningful filtering or
modification of the content. This reinforces Observation 3 since we can rule out that
the majority of bindings with complexity of 5 stem from trivial transformations which
do by definition only contain bindings of this or lower complexity .

Looking at ATL modules as a whole Observation 3 means that 33% of their total
syntactic complexity comes from the activity of copying input model attributes to
output model attributes.� �

1 rule MedianBinding {
2 from s : Families!Member
3 to t : Persons!Female (
4 fullName <- s.firstName
5)
6 }� �

Listing 6 – Rule containing a binding with a syntactic (computational) complexity of 5 (7)

That much of the complexity of transformation modules comes from bindings
means that the main effort when writing model transformations in ATL consists
of defining how the output should look which is actually one of the main goals of
model transformation languages. This in turn suggests that ATL does a good job
in abstracting away other tasks in model transformation such as model traversal,
conditioning on types as shown in Section 5.1, tracing and rule ordering to which we
will come in Sections 5.4 and 5.5.

5.3 RQ3: How does the usage of refining mode impact the complexities of
ATL modules?

Given the observations from the previous sections we would expect that the syntactic
complexity distribution of bindings to deviate away from 5 (and the computational
complexity form 7) since the refining mode is designed to enable developers in focusing
only on the refining part of the transformation.

In the transformations investigated for this paper this is however not the case as
can be seen in Figure 4, the median syntactic complexity of bindings remains 5 and
that of computational complexity remains 7.

This indicates the usefulness of the changes made to the refining mode with the
introduction of the 2010 ATL compiler. Since 2010 refining mode allows real in-place
transformations which means that rules only need to specify changes to elements
while all the other elements remain untouched. And because the main effort in the
investigated transformations, which were all defined for ATL compilers prior to 2010,
is spent on copying attributes from the input model element (98% of all bindings) to
its output counterpart, newer versions of the ATL compiler would heavily reduce this
necessary overhead, allowing developers to focus solely on actually refining models.
To us this suggests that the current versions of ATLs refining mode can significantly
reduce unnecessary overhead for refining transformations. There is also an observation

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 15

to be made from this:
Observation 4: GitHub and especially the ATL Zoo lack samples of ATL transformations
using the refining mode with compiler versions at least as current as 2010.

4
16

64

Binding

C
om

pl
ex

iti
y

Complexity Type computationalComplexity syntacticComplexity

Figure 4 – Complexity distribution of Bindings in refining mode.
Furthermore, Injjj Patterns in refining mode are, on average about twice as complex

as in non refining modules. Moreover only a small portion (∼ 7%) of In-Patterns do
not contain a filter expression at all compared to 1/3 of In-Patterns in non refining
mode.

This leads us to two additional observations:
Observation 5: When refining models, filters are more heavily used than when trans-
forming between different meta-models.

Observation 6: Filter expressions are more complex in refining mode due to having to
select elements with more specific properties.

5.4 RQ4: How large is the percentage of bindings that require trace-based
binding resolution?

About 15% of all bindings in the analysed transformation modules require traces.
While this makes it apparent that traces are less frequently required than one would
expect, it still demonstrates their necessity since 15% is not a negligible proportion.
This leads us to:
Observation 7: Bindings that require traces constitute a significant part of the model
transformations considered.

It is also worth mentioning that while such trace resolution can save developers
substantial amounts of time they can also be a source of errors.

Considering the complexity of the bindings that require traces also reveals something
interesting. About half of all bindings that require traces have a syntactic complexity

Journal of Object Technology, vol. 19, no. 2, 2020

16 · Stefan Götz et al.

of 5 and computational complexity of 7. This shows how well automatic trace handling
can hide complexity. The developer can simply access the input model element
that is supposed to be transformed into the correct output model element and the
transformation engine handles resolving and referencing. Would the developer have
to take care of this process manually both syntactic and computational complexity
would be significantly higher since this would require identifying and accessing the
corresponding output model element through additional code.

5.5 RQ5: What portion of ATL transformations use implicit rule ordering?

In the ATL modules analysed for this study, a total of 460 rules are defined. Of those
364 or 79% are matched rules, 84 or 18% are lazy matched rules which need to be
invoked to transform model elements and only 12 or 2% are called rules.

Our results, deviate slightly from the results found by [SCD17] but still reveal the
same preference trend of ATL developers:
Observation 8: Developers strongly prefer matched rules over lazy matched rules and
called rules.

Since matched rules allow for implicit model traversal and rule ordering this can
indicate that these concepts provide good support for transformation developers. This
is also evident from the fact that the proportion of Out Pattern complexity (both
syntactic and computational) to Action Block complexity is far more balanced in
called rules than in (lazy) matched rules (see Figures 1 and 2) again indicating that
called rules require more structural code such as calling other rules and conditioning.

6 Related Work

In [DRDRIP15], the authors analyse the impact of input and output meta-models
on, amongst other things, the complexity of ATL transformations. For this purpose
they use a number of meta-model metrics and correlate these with metrics for ATL
transformations using Spearman’s rank correlation coefficient. Their findings include a
high correlation between the number of structural features of the output meta-models
and the number of used bindings in an ATL transformation module. An insight which
can be reflected upon in our results. In contrast to the complexity measures applied in
this work however, the measures proposed for complexity in their work is confined to
the number of structural features such as bindings or helpers of ATL transformations
rather than the complexity of their structure and contained expressions. Which is not
to say that the applied measure is not indicative of the complexity of transformations
rather that it is only part of what makes a transformation complex in our opinion.

The authors of [vAvdB11] propose the usage of cyclomatic complexity to measure
the complexity of helpers. They also envision incorporating the complexity of the
contained OCL expression into its complexity measure. Similarly to [DRDRIP15], they
also use the number of different transformation components as metrics for measuring
ATL transformations. The described metrics are applied to seven transformations.
And the resulting values are then related to quality attributes, based on the assessment
of nineteen experts, such as understandability, maintainability and conciseness using
Kendall’s τb correlations. Notable results include a significant correlation between the
number of transformation rules and conciseness and the number of out-patterns and
understandability. In comparison to this, we try to draw direct conclusions about the

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 17

structure and structure of transformations from our gathered data instead of about
quality features.

In [Vig09] the complexity of ATL transformations is related to a variety of intro-
duced metrics. Most of the related metrics are once again quantifications of different
components within ATL modules such as the number of matched rules or average
number of filters used in rules. They also relate the cyclomatic complexity to com-
plexity much like [vAvdB11]. As previously mentioned we believe that the number of
components are only part of what makes transformations complex which is why the
used complexity measure in this paper also incorporates the complexity of expressions.

The numbers of ATL transformation components have also been used in [TSMGD+11]
to make comparisons between several transformation modules to investigate the feasi-
bility of applying transformations to transformation modules. The authors concede
that the applied metrics need further research and development and predict that such
measures could assist with identifying aspects of ATL transformations to optimize.

Similarly [KSW+13] analysed the ATL Zoo with the goal to gain insights about the
frequency of use of reuse mechanisms. For this the authors devised a semi-automated
process to extract and analyse projects from the ATL zoo. They found that reuse
mechanisms are exclusively used within a transformation and that helpers are the
most frequently used reuse mechanism while only little rule inheritance is used. In
contrast to their work, our focus does not directly relate to reuse mechanisms although
the computational complexity was introduced in part to account for the outsourcing
of complexity due to reuse mechanisms.

7 Threats to validity

This section addresses the potential threats to validity identified for the performed
study.

The transformations evaluated for the purpose of this study were chosen from
various sources to reduce the influence of programming habits of individual transforma-
tion engineers. Consequently the purposes and characteristics of the transformations
vary immensely. To be able to compare transformation modules using refining mode
with modules that do not use refining mode we also aimed to use a similar amount
of respective transformation modules. While this strengthens the external validity
of our comparison it can potentially lead to a reduction in the external validity of
our other findings since an even distribution of refining and non refining modules is
potentially less representative of the overall ATL ecosystem. Given the selection of
transformation modules it is also not possible to draw representative conclusions about
model transformation languages in general but rather for ATL specifically.

There is of course a discussion to be held about the complexity measure used.
As discussed in Section 6 most research uses the number of elements as basis for
complexity measures. We and [LKRSA18] argue that this alone does not fully cover
the complexity of transformations. The syntactic complexity measure used in this
study uses the complexity of expressions and activities as defined in Tables 2 and 1.
The number of elements are also taken into account in these definitions but do not
constitute the majority of the complexity value of an ATL transformation this is
reserved to the complexity of expressions used within the transformation modules as
evident from Figure 1. While we are missing a formal validation of the measures used
we believe that this indicates their overall usefulness. The computational complexity
is then a natural extension of the syntactic complexity to more closely resemble the

Journal of Object Technology, vol. 19, no. 2, 2020

18 · Stefan Götz et al.

actual complexity that is hidden in operation calls in expressions.

8 Conclusion and Future Work

In this work we presented our results of analysing ATL modules to provide insights
into three common claims about the advantages of model transformation languages,
namely that transformation languages hide complex semantics behind simple syntax,
that automatic trace handling in transformation languages is advantageous and that
implicit rule ordering supports developers in defining transformations.

For this purpose we used two complexity measures to investigate how complexity
is distributed over ATL transformation modules which we applied to a total of 33
modules. We also analysed the proportions of matched rules compared to other types
of rules and the proportion of bindings that require trace information to be resolved.

We found, that while transformations can get complex, the complexity originates
mainly in definitions of how the output models should be populated rather than how
the transformation should be executed. To us this provides an indication for how well
ATL abstracts away from certain tasks necessary for model transformation such as
model traversal, rule ordering and trace handling.

We have also shown that conditioning on types is well suited for model transforma-
tions since a total of 22% of all non-trivial matched rules get by with only filtering on
types. This also provides a clear example why implicit rule ordering can be beneficial
for model transformation definitions since developers can simply define to which kind
of input model element a transformation should apply and the transformation engine
handles execution.

This is further supported by the fact that we found that nearly 80% of all defined
rules are matched rules which make use of exactly this mechanism.

Next we analysed required trace information in bindings. We came to the conclusion
that while bindings that do require trace information are outweighed by those that do
not, they still constitute a significant portion of model transformations. And while this
suggests that automatic trace handling is advantageous further research is necessary
to more precisely capture its impact.

Lastly we compared the complexities of transformation modules using the refining
mode with those that do not. We found that while the complexity of matched rules
defined in a refining module is much higher, the increase in complexity can be attributed
to an increase in simple bindings. A fact we were able to attribute to the use of older
ATL compilers which did not allow in-place refinements.

For future work, we are interested in repeating the described proceedings on
transformations written in general purpose programming languages. While the resulting
values can not be compared directly, the complexity distributions can be used to gain
insights into where the complexity in these transformation definitions lie. Which we
believe can produce further contributions to the discussion of GPLs vs MTLs for
defining model transformations.

References

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools for
in-place emf model transformations. In Model Driven Engineering

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 19

Languages and Systems, Berlin, Heidelberg, 2010. doi:https://doi.
org/10.1007/978-3-642-16145-2_9.

[BCG19] Loli Burgueño, Jordi Cabot, and Sébastien Gérard. The future of
model transformation languages: An open community discussion.
Journal of Object Technology, July 2019. doi:10.5381/jot.2019.18.
3.a7.

[BV06] András Balogh and Dániel Varró. Advanced model transformation
language constructs in the viatra2 framework. In Proceedings of the
2006 ACM Symposium on Applied Computing, New York, NY, USA,
2006. doi:10.1145/1141277.1141575.

[DRDRIP15] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio. Mining correlations of atl model transformation and
metamodel metrics. In 2015 IEEE/ACM 7th International Workshop
on Modeling in Software Engineering, 2015. doi:10.1109/MiSE.2015.
17.

[GK03] J. Gray and G. Karsai. An examination of dsls for concisely repre-
senting model traversals and transformations. In 36th Annual Hawaii
International Conference on System Sciences, 2003. Proceedings of
the, Jan 2003. doi:10.1109/HICSS.2003.1174892.

[HGBR19] Georg Hinkel, Thomas Goldschmidt, Erik Burger, and Ralf Reussner.
Using internal domain-specific languages to inherit tool support and
modularity for model transformations. Software & Systems Modeling,
Feb 2019. doi:https://doi.org/10.1007/s10270-017-0578-9.

[HSB+18] Regina Hebig, Christoph Seidl, Thorsten Berger, John Kook Ped-
ersen, and Andrzej Wąsowski. Model transformation languages
under a magnifying glass: A controlled experiment with xtend, atl,
and qvt. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, New York, NY, USA, 2018.
doi:10.1145/3236024.3236046.

[JAB+06] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and
Patrick Valduriez. Atl: A qvt-like transformation language. In Com-
panion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, New York, NY,
USA, 2006. doi:10.1145/1176617.1176691.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl:
A model transformation tool. Science of Computer Programming,
2008. doi:https://doi.org/10.1016/j.scico.2007.08.002.

[KBM16] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific
languages: A systematic mapping study. Information and Software
Technology, 2016. doi:https://doi.org/10.1016/j.infsof.2015.
11.001.

[KCF14] Filip Krikava, Philippe Collet, and Robert France. Manipulating
Models Using Internal Domain-Specific Languages. In Symposium
On Applied Computing, Gyeongju, South Korea, March 2014. doi:
10.1145/2554850.2555127.

Journal of Object Technology, vol. 19, no. 2, 2020

20 · Stefan Götz et al.

[KGBH10] Lucia Kapová, Thomas Goldschmidt, Steffen Becker, and Jörg Henss.
Evaluating maintainability with code metrics for model-to-model
transformations. In International Conference on the Quality of Soft-
ware Architectures, 2010. doi:https://doi.org/10.1007/978-3-64
2-13821-8_12.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The
epsilon transformation language. In Theory and Practice of Model
Transformations, Berlin, Heidelberg, 2008. doi:https://doi.org/10
.1007/978-3-540-69927-9_4.

[KSW+13] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Werner Rets-
chitzegger, Wieland Schwinger, and Gerti Kappel. Reality check for
model transformation reuse: The atl transformation zoo case study. In
Amt@ models, pages 1–11, 2013.

[Kur07] Ivan Kurtev. State of the art of qvt: A model transformation language
standard. In International Symposium on Applications of Graph
Transformations with Industrial Relevance, 2007. doi:https://doi.
org/10.1007/978-3-540-89020-1_26.

[LKRSA18] Kevin Lano, Shekoufeh Kolahdouz-Rahimi, Mohammadreza Sharbaf,
and Hessa Alfraihi. Technical debt in model transformation specifica-
tions. In Theory and Practice of Model Transformation, Cham, 2018.
Publishing. doi:10.1007/978-3-319-93317-7_6.

[LR07] Michael Lawley and Kerry Raymond. Implementing a practical
declarative logic-based model transformation engine. In Proceedings
of the 2007 ACM Symposium on Applied Computing, New York, NY,
USA, 2007. doi:10.1145/1244002.1244216.

[OMG06] OMG. Object constraint language (ocl), April 2006.

[SCD17] Gehan MK Selim, James R Cordy, and Juergen Dingel. How is atl
really used? language feature use in the atl zoo. In 2017 ACM/IEEE
20th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), 2017. doi:10.1109/MODELS.2017.
20.

[Sch06] Douglas Schmidt. Guest editor’s introduction: Model-driven en-
gineering. COMPUTER-IEEE COMPUTER SOCIETY, 03 2006.
doi:10.1109/MC.2006.58.

[SK03] S. Sendall and W. Kozaczynski. Model transformation: the heart and
soul of model-driven software development. IEEE Software, Sep. 2003.
doi:10.1109/MS.2003.1231150.

[TSMGD+11] José Barranquero Tolosa, Oscar Sanjuán-Martínez, Vicente García-
Díaz, B Cristina Pelayo G-Bustelo, and Juan Manuel Cueva Lovelle.
Towards the systematic measurement of atl transformation models.
Software: Practice and Experience, 2011. doi:https://doi.org/10.1
002/spe.1033.

[vAvdB11] Marcel F van Amstel and MGJ van den Brand. Using metrics for
assessing the quality of atl model transformations. In MtATL@
TOOLS, 2011.

Journal of Object Technology, vol. 19, no. 2, 2020

Complexity in ATL · 21

[Vig09] Andrés Vignaga. Metrics for measuring atl model transformations.
MaTE, Department of Computer Science, Universidad de Chile,
Tech. Rep, 2009.

About the authors

Stefan Götz is a PhD student at Ulm University. His research
is focused on topics surrounding the development and evaluation
of model transformation languages. Prior to his work as a PhD
student he was a student of Software Engineering at Ulm University.
Contact him at stefan.goetz@uni-ulm.de.

Matthias Tichy is full professor for software engineering at the
University of Ulm and director of the institute of software en-
gineering and programming languages. His main research focus
is on model-driven software engineering, particularly for cyber-
physical systems. He works on requirements engineering, de-
pendability, and validation and verification complemented by
empirical research techniques. He is a regular member of pro-
gramme committees for conferences and workshops in the area
of software engineering and model driven development. He is co-
author of over 110 peer-reviewed publications. Contact him at
matthias.tichy@uni-ulm.de.

Acknowledgments This work was partially funded through the MICE project
of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Ti
803/4-1.

Journal of Object Technology, vol. 19, no. 2, 2020

F.4. Paper E 407

F.4 Paper E
Contrasting Dedicated Model Transformation Languages Versus General Purpose Lan-
guages: A Historical Perspective on ATL Versus Java Based on Complexity and Size

S. Höppner, M. Tichy, T. Kehrer

International Journal on Software and Systems Modeling (SoSyM), volume 21, pages 805–837, 2022
Springer Nature

DOI: 10.1007/s10270-021-00937-3

CC BY 4.0, http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s10270-021-00937-3
http://creativecommons.org/licenses/by/4.0/

Software and Systems Modeling (2022) 21:805–837
https://doi.org/10.1007/s10270-021-00937-3

REGULAR PAPER

Contrasting dedicated model transformation languages versus
general purpose languages: a historical perspective on ATL versus Java
based on complexity and size

Stefan Höppner1 · Timo Kehrer2 ·Matthias Tichy1

Received: 17 June 2021 / Revised: 19 August 2021 / Accepted: 15 September 2021 / Published online: 17 November 2021
© The Author(s) 2021

Abstract
Model transformations are among the key concepts of model-driven engineering (MDE), and dedicated model transformation
languages (MTLs) emerged with the popularity of the MDE pssaradigm about 15 to 20 years ago. MTLs claim to increase
the ease of development of model transformations by abstracting from recurring transformation aspects and hiding complex
semantics behind a simple and intuitive syntax. Nonetheless, MTLs are rarely adopted in practice, there is still no empirical
evidence for the claim of easier development, and the argument of abstraction deserves a fresh look in the light of modern
general purpose languages (GPLs) which have undergone a significant evolution in the last two decades. In this paper,
we report about a study in which we compare the complexity and size of model transformations written in three different
languages, namely (i) the Atlas Transformation Language (ATL), (ii) Java SE5 (2004–2009), and (iii) Java SE14 (2020);
the Java transformations are derived from an ATL specification using a translation schema we developed for our study. In a
nutshell, we found that some of the new features in Java SE14 compared to Java SE5 help to significantly reduce the complexity
of transformations written in Java by as much as 45%. At the same time, however, the relative amount of complexity that
stems from aspects that ATL can hide from the developer, which is about 40% of the total complexity, stays about the same.
Furthermore we discovered that while transformation code in Java SE14 requires up to 25% less lines of code, the number
of words written in both versions stays about the same. And while the written number of words stays about the same their
distribution throughout the code changes significantly. Based on these results, we discuss the concrete advancements in newer
Java versions. We also discuss to which extent new language advancements justify writing transformations in a general
purpose language rather than a dedicated transformation language. We further indicate potential avenues for future research
on the comparison of MTLs and GPLs in a model transformation context.

Keywords ATL · Java · Model transformations · Model transformation language · General purpose language · Comparison ·
MTL versus GPL · Historical perspective · Complexity measure · Size measure

Communicated by Esther Guerra.

B Stefan Höppner
stefan.hoeppner@uni-ulm.de

Timo Kehrer
timo.kehrer@informatik.hu-berlin.de

Matthias Tichy
matthias.tichy@uni-ulm.de

1 Ulm University, 89081 Ulm, Germany

2 Humboldt University Berlin, 10099 Berlin, Germany

1 Introduction

Model transformations are among the key concepts of the
model-driven engineering (MDE) paradigm [1]. They are a
particular kindof softwarewhichneeds to be developed along
with an MDE tool chain or development environment. With
the aim of supporting the development of model transfor-
mations, dedicated model transformation languages (MTLs)
have been proposed and implemented shortly after the MDE
paradigm gained a foothold in software engineering.

123

806 S. Höppner et al.

1.1 Context andmotivation

In the literature, many advantages are ascribed to model
transformation languages, such as better analysability, com-
prehensibility or expressiveness [2]. Moreover, model trans-
formation languages aimat abstracting fromcertain recurring
aspects of amodel transformation such as traversing the input
model or creating and managing trace information, claiming
to hide complex semantics behind a simple and intuitive syn-
tax [1,3–5].

Nowadays, however, such claims have two main flaws.
First, as discussed by Götz et al., there is a lack of actual
evidence to have confidence in their genuineness [2]. Sec-
ond, we argue that most of these claims emerged together
with the first MTLs around 15 years ago. The Atlas Trans-
formation Language (ATL) [6], for example, was first
introduced in 2006, at a time when third-generation gen-
eral purpose languages (GPLs) were still in their infancy.
Arguably, these flaws are underpinned by the observa-
tion that MTLs have been rarely adopted in practical
MDE [7].

Within our research group as well as in conversations
with other researchers, the presumption that transformations
can just as well be written in a GPL such as Java has been
discussed frequently. In fact, in our own research, we have
implemented various model transformations using a GPL;
examples of this include the meta-tooling facilities of estab-
lished research tools like SiLift [8] and SERGe [9,10], or the
implementation of model refactorings and model mutations
in experimental setups of more recent empirical evalua-
tions [11,12]. The presumption that model transformations
can just as well be written in a GPL has been confirmed by
a community discussion on the future of model transforma-
tion languages [7], and, at least partially, by an empirical
study conducted by Hebig et al. [13]. Our argumentation
for specifying model transformations using a modern GPL
is mainly rooted in the idea that new language features
allow developers to heavily reduce the boilerplate code that
MTLs claim to abstract away from. There are also other
features that certain model transformation languages can
provide such as graph pattern matching, incrementality, bidi-
rectionality or advanced analysis, but for now our study
focuses solely on the abstraction and ease of writing argu-
ment.

1.2 Research goals and questions

To validate and better understand this argumentation, we
elected to compare ATL, one of the most widely known
MTLs, with Java, a widespread GPL. More specifically, we
compare ATL with Java in one of its recent iterations (Java
SE14) as well as at the level of 2006 (Java SE5) when ATL

was introduced.1 The goal of this approach is twofold. First,
we intend to investigate how transformation code written
in Java SE14 can be improved compared to the Java code
using the Java version SE5 that was timely when ATL was
released. Second, we want to contextualize these improve-
ments by relating them to transformation code written in
ATL. We opted to use both size and complexity measures
for this purpose because both can provide useful insights for
this discussion.

In order to achieve these goals,we developed four research
questions to guide our research efforts:

RQ1How much can the complexity and size of transforma-
tions written in Java SE14 be improved compared to
Java SE5?

RQ2How is the complexity of transformations written in
Java SE5 & SE14 distributed over the different aspects
of the transformation process compared to each other
and ATL?

RQ3How is the size of transformationswritten in Java SE5&
SE14 distributed over the different aspects of the trans-
formation process compared to each other and ATL?

RQ4How does the size of query aspects of transformations
written in Java SE5 & SE14 compare to each other and
ATL?

RQ1 aims to provide a general overview of how both
size and complexity of transformations in Java might be
improved using language features provided in newer Java
versions. For a more detailed discussion and comparison it
is then necessary to inspect and compare how the transfor-
mation code based is associated to the different aspects of
a transformation, e.g. model traversal, tracing or the actual
transformation of elements. This is the goal of RQ2 and
RQ3 for complexity and size, respectively. With these two
research questions we aim to investigate for which aspects
new language features of Java help to reduce size and com-
plexity of the associated code segments and what this means
compared to ATL. Lastly, it is often assumed that querying
aided by language constructs in MTLs is one key factor for
their suitability over GPLs [14]. With RQ4 we aim to inves-
tigate this assumptions via an explicit comparison between
queries written in Java and ATL.

1.3 Researchmethodology

The process to answer the discussed research questions was
structured around four consecutive steps. First, we selected
a total of 12 existing ATL transformations taken from the

1 Interestingly, there was no significant evolution of the ATL language
since its initial introduction in 2006 [7].

123

Contrasting dedicated model transformation languages versus general purpose languages:… 807

Table 1 Meta-data about the selected transformation modules

Transformation name LOC # rules # helpers

ATL2BindingDebugger 41 2 0

ATL2Tracer 96 2 0

DDSM2TOSCA 582 19 2

ExtendedPN2ClassicalPN 86 7 0

Families2Persons 49 2 2

istar2archi 99 6 1

Modelodatos2FormHTML 127 9 3

Palladio2UML 189 19 0

R2ML2XML 1125 60 1

ResourcePN2ResourceM 44 3 1

SimpleClass2RDBMS 63 4 3

UML22Measure 371 27 11

Average 236.25 13.3 2

ATL Zoo2 and several projects from GitHub3 to the basis for
our study. References to all included transformations can be
found in our supplementary material in Höppner, Tichy, and
Kehrer [15]. The selection of ATL modules was done with
several goals inmind. First, wewanted to include transforma-
tions of different size and purpose. We also aimed to include
both transformations using ATLs’ refining mode and normal
transformations. Lastly, due to the fact that our translations
would be donemanually, we decided to limit the total number
of transformations to 12 and the maximum size of a single
transformation to around 1000 LOC. Since our work is, in
part, based on the work presented in Götz and Tichy [16] and
their selection criteria align with ours, we opted to make the
selection ofmodules from the set of transformations analysed
by them. The module selection process resulted in a total of
12 ATL transformations, from a variety of sources including
the ATL Zoo. Basic meta-data about the transformations can
be found in Table 1, while further details can be found in the
supplementary materials.

Next, we devised, and tested, a schema to translate the
selected ATL transformations to Java. To develop the trans-
lation schema, we followed the design science research
methodology [17] using an iterative pattern for designing
and enhancing the schema until it fit our purpose. To validate
the correctness of the translated transformations, we used the
input and output models that were provided within the ATL
transformation projects. The input models were used as input
for the Java transformations, and the outputmodelswere then
compared with the output of the ATL transformations.

Afterwards, we developed a classification schema to
divide Java code into its components and relate each com-

2 https://www.eclipse.org/atl/atlTransformations.
3 https://www.github.com.

ponent to the different aspects of the transformation process,
i.e. transforming, tracing, and traversing. All Java code was
then labelled based on the classification schema. For ATL, a
similar schema from Götz et al. [16] already exists which we
adopted and applied to the selected ATL transformations.

Lastly, we decided on and applied several code measures
to allow us to compare the transformations. For comparing
transformations specified in Java SE5 and SE 14, we use a
combination of fourmetrics formeasuring size and complex-
ity, namely lines of code (LOC), word count (# words) [18],
McCabe’s cyclomatic complexity [19], andweightedmethod
count (WMC). We use WMC based on McCabe complexity,
i.e. the sum of the McCabe complexities of all elements, as
the complexity measure in cases where the complexities of
several elements need to be grouped together. Word count is
used to supplement the standard code size measure LOC as
a measure that is less influenced by code style and indepen-
dent from keyword andmethod name size [18]. Furthermore,
word count allows a direct size comparison betweenATL and
Java,which is hardly possiblewithLOCdue to the languages’
significantly different structure.

Our comparison of complexity and size distributions is
thus based on LOC, word count, McCabe’s cyclomatic com-
plexity, and WMC, and we incorporate the findings of Götz
et al. on how code is distributed within ATL transforma-
tions [16].

1.4 Results

Our analysis for RQ1 shows that newer Java versions allow
for a significant reduction in code complexity and lines of
code, while the number of required words stays about the
same. We attribute this to a more information dense style of
writing single statements in the more functional program-
ming style enabled by Java SE8 (2014) and newer.

The results for RQ2 reflect the reduction in complexity
overhead mainly in the methods involving model traversal.
We also conclude that in newer language versions the most
prominent remaining complexity overhead stems from man-
ual trace management in Java compared to ATL.

The more detailed investigation done for RQ3 supports
these observations. We show that tracing is not only a promi-
nent part in the methods dedicated to trace management but
also in the methods that are dedicated to actually transform-
ing input into output elements.

Overall the results for RQ2 and RQ3 suggest that still,
a lot of complexity and size overhead for traversal, trac-
ing, and supplementary code is required in Java even though
newer Java versions improve the overall process of writing
transformations. Of these, tracing is the biggest obstacle for
efficiently developing transformations in a general purpose
language. The overhead associated with this transformation
aspect is the most significant and, arguably, most error-prone

123

808 S. Höppner et al.

one. A large portion of the advancements of Java SE14 over
Java SE5 stem from the inclusion of more recent language
aspects such as streams and functional interfaces. This fact is
highlighted in our results from RQ4where those two aspects
are the main factors for improvements in the size of OCL
expressions written in Java.

1.5 Contributions and paper structure

This paper extends prior work on comparing Java and ATL
transformations [20]. The extension consists of (i) a more
detailed description of the applied translation schema from
ATL to Java, (ii) the inclusion of an additional measure,
namely number of words, for comparison, and (iii) the con-
sideration of a larger set of transformations. Furthermore,
we (iv) greatly expanded our discussion of overhead intro-
duced by using Java for transformations based on the results
from the newly included measure. This includes a more
detailed inspection of Java code as well as a direct compar-
ison between Java and ATL. Additionally, based on all the
results and our own experiences, we (v) are now able to dis-
cuss more explicitly what newer Java versions improve over
older ones and where the language is still lacking compared
to ATL. Finally, we (vi) present a description of scenarios
where these advancements are enough to justify Java over
ATL and (vii) consider other features of model transforma-
tion languages not present in ATL and their impact on the
suitability of general purpose languages.

The remainder of this paper is structured as follows: First,
Sect. 2 introduces the relevant aspects of ATL as well as the
relevant differences between Java 5 and Java 14. Afterwards,
in Sect. 3, we give an overview of how we translate ATL
transformations to Java. Because the discussions forRQ2&3
require a precise classification of how code segments in Java
are associated to the different transformation aspects, we pro-
vide an explanation for this in Sect. 4. In Sect. 5, we present
our detailed method for analysing the size and complexity
of the translated transformations. The results of our analysis
and extensive comparison between the different transforma-
tion approaches are then presented in Sect. 6. Based on these
results, Sect. 7 discusses our take-aways for what newer Java
versions improve over older ones, where the language did not
advance, and when these advancements are enough to justify
Java over ATL. Section 8 then discusses potential threats to
the validity of our work, while related work is considered
in Sect. 9. Lastly, Sect. 10 concludes the paper and presents
potential avenues for future research.

2 Background

In this section, we briefly introduce the relevant background
knowledge required for this paper. First, since model trans-

formations can only be specified precisely based on some
concrete model representation, we introduce the structural
representation of models inMDEwhich is typically assumed
by all mainstream model transformation languages, includ-
ing ATL. Afterwards, since our work builds on ATL as well
as the technological advancement of Java, it is necessary to
introduce the relevant background knowledge on ATL and to
present the important differences between Java SE5 and Java
SE14, respectively.

2.1 Models in MDE

In MDE, the conceptual model elements of a modelling lan-
guage are typically defined by a meta-model. The Eclipse
Modeling Framework (EMF) [21], a Java-based reference
implementation of OMG’s Essential Meta Object Facility
(EMOF) [22], has evolved into a de-facto standard technol-
ogy to define meta-models that prescribe the valid structures
that instance models of the defined modelling language may
exhibit. It follows an object-oriented approach in which
model elements and their structural relationships are rep-
resented by objects (EObjects) and references whose types
are defined by classes (EClasses) and associations (ERefer-
ences), respectively. Local properties of model elements are
represented and defined by object attributes (EAttributes).
A specific kind of references are containments. In a valid
EMF model, each object must not have more than one con-
tainer and cycles of containments must not occur. Typically,
an EMF model has a dedicated root object that contains all
other objects of the model directly or transitively.

2.2 ATL

ATL distinguishes among three kinds of so-called Units,
being either a module, a library or a query. Depending on
the type of unit, they consist of rules, helpers and attributes.
For data types and expressions, ATL uses the Object Con-
straint Language (OCL) [23].

2.2.1 Units

As illustrated in Listing 1, transformations are defined in
Modules, taking a set of input models (line 3) which are
transformed to a set of output models (line 2) by rule and
helper definitions whichmake up the transformation (line 6).

Libraries do not define transformations but only consist
of a set of helper definitions. Libraries can be imported into
modules to enhance their functionality (line 5).

Queries are special types of libraries that are used to define
transformations from model elements to simple OCL types.
They are comprised of a query element and a set of helper
definitions.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 809� �
1 module NAME
2 create OUT1:MetaModelB, ...
3 [from|refining] IN1:MetaModelA, ...
4

5 [uses LIBRARY]*
6 [RULEDEF|HELPERDEF]*� �
List. 1 Structure of an ATL module.

� �
1 helper [context MODELTYPE]? def :

NAME[(PARAMETERS)]? :TYPE = EXPR;� �
List. 2 Syntax to define Helpers.

2.2.2 Helpers and attributes

Helpers allow outsourcing of expressions that can be called
from within rules, similar to simple functions in general pur-
pose languages. Helper definitions can specify a so-called
context which defines the data type for which the helper is
defined as well as parameters passed to the helper. ATL also
allows the definition of attribute helpers. Attribute helpers
differ from helpers in that they do not accept any parameter
and always require a context data type. They serve as con-
stants for the specified context. Listing 2 shows the syntax to
define helpers and attribute helpers.

2.2.3 Rules

In ATL, transformations of input models into output models
are defined using rules. There are two main types of rules:
matched rules and called rules.

Matched rules The declarative part of an ATL transforma-
tion is comprised by matched rules which are automatically
executed on all matching input model elements, thus allow-
ing to define type-specific transformations into output model
elements. For this, the ATL engine traverses the input model
in an optimized order. Furthermore, matched rules generate
traceability links (trace links for short) between the source
and target elements. These links can be navigated through-
out the transformation specification to access references to
elements created from a source element. Matched rules are
comprised of four sections (see Listing 3):

– The In-Pattern (lines 2 to 3) defines the type of source
model elements that are to be matched and transformed.
An optional filter expression allows the definition of a
condition that must be met for the rule to be applied.

– An optional Using-Block (lines 4 to 6) allows to define
local variables based on the input element.

– The Out-Pattern (lines 7 to 10) then defines a number
of output model elements that are to be created from
the input element when the rule is applied. Each output

� �
1 [lazy| unique lazy]? rule NAME {
2 from
3 INVAR : MODELATYPE [(CONDITION)]*
4 [using {
5 [VAR : VARTYPE = EXPR;]+
6 }]?
7 to
8 [OUTVAR : MODELBTYPE {
9 [ATR <- EXPR,]+

10 },]+
11 [do {
12 [STATEMENT;]*
13 }]?
14 }� �
List. 3 Syntax to define matched rules.

model element is defined using a set of so-called bind-
ings for assigning values to attributes of the output model
element.

– Lastly, an optional Action-Block (lines 11 to 13) can be
definedwhich allows the specification of imperative code
that is executed once the target elements have been cre-
ated.

Matched rules can also be defined as lazy rules by adding
the keyword lazy to the rule definition (line 1). In contrast
to regular matched rules, lazy rules are only executed when
explicitly called for a specific model element that matches
both the rule’s type and its filter expression. They can be
called multiple times on the same model element to produce
multiple distinct output elements. To change the behaviour
of lazy rules to always produce one and the same output
element for the same source model element, lazy rules can
be declared as unique (line 1).

Called rules As opposed to matched rules, called rules
enable an explicit generation of target model elements in an
imperative way. Called rules can be called from within the
imperative code defined in the Action-Block of rules. They
are defined similarly to matched rules. The main difference
is that they do not contain an In-Pattern but instead allow
the definition of required parameters. These parameters can
then be used in the Out-Pattern and Action-Block to produce
output model elements.

2.2.4 Refiningmode

The refining mode is a special execution mode for ATL
modules which aims at supporting an easy definition of in-
place transformations [24,25]. Normally, the ATL engine
only creates new output model elements from input model
elements matched by the rules defined in a module. How-
ever, in the refining mode, the ATL engine instead executes
all rules on matching input elements and produces a copy

123

810 S. Höppner et al.� �
1 public interface Function<T,R> {
2 public R apply(T par);
3 }� �
List. 4 Definition of the Function interface.

� �
1 Function<Integer, Integer> doubleIt = (value)

-> value * 2;� �
List. 5 Lambda expression definition based on Function.

� �
1 List<String> myList =

Arrays.asList(1,2,3,4,5,6);
2 myList.stream().filter(i -> i % 2 ==

0).forEach(System.out::println);� �
List. 6 Finding and printing all even numbers in a list.

of all unmatched input elements automatically. This aims to
allow developers to focus solely on local modifications such
as model refactorings rather than also having to manually
produce copies of all other model elements.

2.3 Technological advancements in Java SE14
compared to Java SE5

Since the release of J2SE 5 in September of 2004, there have
been a lot of improvements made to the Java language. In
this section, however, we will only cover the ones relevant in
the context of this paper. All the relevant features relate to a
more functional programming style as they allow developers
to express some key aspects of a transformation specification
more concisely.

2.3.1 Functional interfaces

With the introduction of the functional interfaces in Java
SE8, Java made an important step towards embracing the
functional programming paradigm, paving the way to define
lambda expressions in arbitrary Java code. Lambda expres-

sions, also called anonymous functions, are functions that
are defined without being bound to an identifier. This allows
developers to pass them as arguments.

In essence, a functional interface is an interface contain-
ing only a single abstract method. One example of this is the
interface called Function<T,R> (see Listing 4). It repre-
sents a function which takes a single parameter and returns
a value. This abstract method can then be implemented by
means of a Java lambda expression (see Listing 5).

Lambdas definedwith the interface Function<T,R> as
their type are then nothing more than objects with their def-
inition as the implementation of the apply method wrapped
in a more functional syntax (see Listing 5).

Java provides a number of predefined functional inter-
faces, such as the aforementioned Function<T,R>, or
Consumer<T> which takes one argument and has void as
its return value.

2.3.2 Streams

Streams represent a sequence of elements and allow a number
of different operations to beperformedon the elementswithin
the sequence. Stream operations can either be intermediate or
terminal. This means that the operations can either produce
another stream as their result or a non-stream result which
therefore terminates the computation on the stream. This also
means that intermediate operations work with all elements
within the stream without the developer having to define a
loop over it.

The example in Listing 6 shows howone can find and print
all even numbers in a list using streams.

3 Translation schema

In the following, we will present a detailed description of,
first, how the translation schema was developed (see Sect.
3.1), before then describing the translation schema itself
(Sects. 3.2 to 3.6).

123

Contrasting dedicated model transformation languages versus general purpose languages:… 811

Fig. 1 The Families and Persons meta-models from the families2persons case taken from the ATL wiki [27]

The description of the translation schema is split into five
parts. In Sect. 3.2, we describe the general setup used to
emulate ATL semantics in Java and the basic structure that
all translated modules follow. Then, in Sect. 3.3, we intro-
duce and describe three libraries to reduce repetitive code
between translated modules, one for trace handling, one for
model traversal, and one for model loading and persisting.
Sections 3.4 and 3.5 describe how the essential building
blocks, namely matched rules and called rules, of ATL trans-
formations are translated into Java. And lastly, in Sect. 3.6
we explain how helpers and general OCL expressions are
translated.

All descriptions are illustrated by the use of a running
example. For this, we use an ATL solution found in the ATL
Zoo for the families2persons case from the TTC’17 [26] the
code of which can be found in Listing 7, while its Java SE14
counterpart can be found in Listing 8. The meta-models for
the transformation case are shown in Fig. 1. The exam-
ple illustrates how different ATL elements are translated
into their corresponding Java code based on the described
schemata. Our descriptions will focus on the Java SE 14
translation schemata. Notable differences between the Java
SE 14 and Java SE5 translation schemata are highlighted as
such.

3.1 Schema development

To develop the translation schema, we followed the design
science research methodology [17]. We used the ATL solu-
tion found in the ATLZoo for the families2persons case from
the TTC’17 [26] as our initial test input for the translation
scheme and focused on developing the schema for Java SE14.

The development process followed a simple, iterative pat-
tern. A translation schema was developed by the main author
and applied to theFamilies2Persons case. The resulting trans-
formation was then reviewed by one co-author, focusing on
completeness and meaningfulness. Afterwards, the results of
the review were used as input for reiterating the process.

In a final evolution step, the preliminary transformation
schema was applied to all 12 selected ATL transformations.
Afterwards, both co-authors reviewed the resulting trans-
formations separately based on a predefined code review
protocol. In a joint meeting, the results of the reviews were
discussed and final adjustments to the transformation schema
were decided. These were then used to create a final transla-
tion of all 12 ATL transformations.

Lastly we ported the developed transformations to Java
SE5by forking the project, reducing the compiler compliance
level, and re-implementing the parts that were not compatible
with older compiler versions.

123

812 S. Höppner et al.

To validate the correctness of the translated transforma-
tions,we used the input and outputmodels thatwere provided
within the ATL transformation projects. The input models
were used as input for the Java transformations and the output
models were then compared with the output of the trans-
formations. Since neither an input nor an output model was
available for the R2ML2XML transformation, we had to rely
solely on the results of our code reviews for its validation.
This validation approach is similar to howSanchez Cuadrado
et al. [28] validate their generated code.

Our translation schema allows us to translate any ATL
module into corresponding Java code. The only assumption
wemake is that all the meta-models of input and output mod-
els are explicitly available. The reason for this is that wework
with EMFmodels in so-called static mode, which means that
all model element types defined by a meta-model are trans-
lated into corresponding Java classes using the EMF built-in
code generator.

3.2 General setup andmodule translation

In our translation scheme, we generally assume that each
model contains a single root element. This is standard for
EMF but could be easily extended by using lists as input and
output.

An ATL module is represented by a Java class which
contains a single point of entry method that takes the root
element of the input model as its input and returns the root
element of the output model. The transform method in
line 13 of Listing 8 represents this entry point for the fami-
lies2persons transformation. It takes the root model element
of type Family from the input model and returns a List
of type Person which serves as the root element for the
Persons meta-model.4

4 In reality the Personsmeta-model does not have a root element and
the list is used as a substitute for the transformation to conform with
the translation schema as well as general EMF standards. To produce
this list from the transformed elements the Family2List method in
lines 36-42 is introduced which does not have a counterpart in ATL.

� �
1 module Families2Persons;
2 create OUT : Persons from IN : Families;
3

4 helper context Families!Member def: familyName :
String =

5 if not self.familyFather.oclIsUndefined() then
6 self.familyFather.lastName
7 else
8 if not self.familyMother.oclIsUndefined()

then
9 self.familyMother.lastName

10 else
11 if not self.familySon.oclIsUndefined()
12 then
13 self.familySon.lastName
14 else
15 self.familyDaughter.lastName
16 endif
17 endif
18 endif;
19

20 helper context Families!Member def: isFemale()
21 : Boolean =
22 if not self.familyMother.oclIsUndefined() then
23 true
24 else
25 if not

self.familyDaughter.oclIsUndefined()
26 then
27 true
28 else
29 false
30 endif
31 endif;
32

33 rule Member2Male {
34 from
35 s : Families!Member (not s.isFemale())
36 to
37 t : Persons!Male (
38 fullName <- s.firstName + ’ ’ + s.familyName
39)
40 }
41

42 rule Member2Female {
43 from
44 s : Families!Member (s.isFemale())
45 to
46 t : Persons!Female (
47 fullName <- s.firstName + ’ ’ + s.familyName
48)
49 }� �
List. 7 Families2Persons ATL solution.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 813

Additionally, some setup code is needed for extracting a
model and its root element from a given source file, calling
the entry point of the actual transformation class, and serial-
izing the resulting output model. The code required for our
running example is shown in Listing 9. We utilize one of
our developed libraries, namely IO, for reading an xmi-file
containing a Familiesmodel, extracting the root object of
type Family and passing it to the transform method of
the Families2Persons class to initiate the actual trans-
formation. The resulting output of type List<Person> is
then written to an xmi-file, again, utilizing our IO library.

Because traceability links need to be created before
they can be used, we split the transformation process into
two separate runs. The first run creates all target elements
as well as all traceability links between them and their
source elements, while the second run can safely traverse
over model references and populate the created elements
by utilizing the traceability links when needed. Conse-
quently, the corresponding Java transformation class com-
prises two separate methods, dedicated to each run and being
called by the entry point method. In our example in List-
ing 8, themethodspreTransform(Family root) and
actualTransform(Family root) in lines 18 and
25 represent these two runs. Their implementation will be
explained later throughout Sect. 3.4.

3.3 Libraries

For both model traversal as well as trace generation and
resolving, we developed generic libraries which can be
reused across all transformation classes. Additionally, we
also required a library to outsource the reading and writing
of models from and into files. The remainder of this section
will describe these libraries in more detail.

3.3.1 IO library

The IO library contains methods used for reading and
writing models from and to files. The library exposes
two methods, namely readModel(String uri) and
persistModel(EObject root, String uri)
which both bundle together several EMF and file-IOmethods
to achieve the desired effects. To do so the library utilizes the
Resource5 type which represents a “persisted document”
in EMF and allows to read and write EObjects from and to
it. To be able to read and write different file types such as xmi
or ecore, a corresponding ResourceFactory needs to be
registered in theExtensionToFactoryMap of the ResourceFa-
cotry registry. For this reason, we opted to only support xmi,

5 https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/
eclipse/emf/ecore/resource/Resource.html.

ecore and uml files since EMF provides default Resource-
Factory implementations for all three.

The persistModel method takes a root element of a
model as well as a desired output path, and creates a resource
containing the root element (and all its children) which is
then saved to the specified path. The readModelsmethod
reverses this approach by extracting the resource pointed to
by the passed path and returning all contents of the referenced
resource to the caller. Due to the makeup of EMF compliant
files such as xmi, ecore or uml the first elementwithin the con-
tents will then always contain the root element of the model
within the file which can then be used as seen in Listing 9.

3.3.2 Traversal library

The traversal library allows us to outsource the traver-
sal of the source model and thus reduce the amount of
boilerplate code written for each translated transformation.
It builds upon a HashMap that maps a Class<?> to
a Consumer<EObject>. The Consumer<EObject>
interface represents a function that takes an input object
of type EObject and has a return type of void. Dur-
ing traversal, which is encapsulated within the library, the
Consumer function that corresponds to an EObject can be
retrieved from the HashMap by using the class of the EOb-
ject as key. To achieve this, the library exposes the methods
addFunction and traverseAndAccept.

TheaddFunctionmethod allows us to add a key-value-
pair to the encapsulated hashmap. The traverseAnd
Accept method then takes an Iterable collection con-
taining EObjects, iterates over all contained objects,
fetches the function that corresponds to the concrete class
of the EObject, and executes it. This way, we only have
to write code that adds the required key-value-pairs to the
traverser, while the code for traversing the input model as
well as resolving the correct function which is to be called is
completely outsourced. Note that adding such function calls
is only necessary formatched rules since lazy and called rules
are called within the transformation code and not automati-
cally executed based on element- typematching. An example
of how the traversal library is used can be found in lines 19-
22 and 28-31 of Listing 8 andwill be explained inmore detail
in Sect. 3.4.

For the Java SE5 solution we decided on an alternative
solution using the conditional dispatcher pattern instead of
outsourcing the traversal. The reason for this was a weighing
of alternatives. Outsourcing the traversal in Java SE5 would
require the utilisation of anonymous classes. This in turn
would offer a similar workflow and an equal McCabe com-
plexity for defining model traversal as with the functional
interface solution in Java SE14. It would however signifi-
cantly increase the required number of words and lines of
code compared to the conditional dispatcher solution. Only

123

814 S. Höppner et al.� �
1 public class Families2Persons {
2 private static final PersonsFactory PERSONSFACTORY = PersonsFactory.eINSTANCE;
3 private static final Tracer TRACER = new Tracer();
4

5 private static boolean isFemale(Member member) {
6 return member.getFamilyDaughter() != null || member.getFamilyMother() != null;
7 }
8

9 private static String familyName(Member member) {
10 return ((Family) member.eContainer()).getLastName();
11 }
12

13 public static List<Person> transform(Family family) {
14 preTransform(family);
15 return actualTransform(family);
16 }
17

18 private static void preTransform(Family root) {
19 var iterator = root.eAllContents();
20 var traverser = new Traverser(TRACER);
21 traverser.addFunction(Member.class, x −> {Member2MalePre((Member) x);Member2FemalePre((Member) x);});
22 traverser.traverseAndAcceptPre(iterator);
23 }
24

25 private static List<Person> actualTransform(Family root) {
26 var newRoot = Family2List(root);
27

28 var iterator = root.eAllContents();
29 var traverser = new Traverser(TRACER);
30 traverser.addFunction(Member.class, x −> {Member2Male((Member) x);Member2Female((Member) x);});
31 traverser.traverseAndAccept(iterator);
32

33 return newRoot;
34 }
35

36 private static List<Person> Family2List(Family root) {
37 var persons = new LinkedList<Person>();
38 persons.add(TRACER.resolve(root.getFather(), Male.class));
39 persons.add(TRACER.resolve(root.getMother(), Female.class));
40 persons.addAll(root.getDaughters().stream().map($ −> TRACER.resolve($, Female.class)).collect(Collectors.toList()));
41 persons.addAll(root.getSons().stream().map($ −> TRACER.resolve($, Male.class)).collect(Collectors.toList()));
42 return persons;
43 }
44

45 private static void Member2MalePre(Member m) {
46 if (!isFemale(m)) {
47 TRACER.addTrace(m, PERSONSFACTORY.createMale());
48 }
49 }
50 private static void Member2Male(Member m) {
51 var t = TRACER.resolve(m, PERSONSFACTORY.createMale());
52 t.setFullName(m.getFirstName() + " " + familyName(m));
53 }
54

55 private static void Member2FemalePre(Member m) {
56 if (isFemale(m)) {
57 TRACER.addTrace(m, PERSONSFACTORY.createFemale());
58 }
59 }
60 private static void Member2Female(Member m) {
61 var t = TRACER.resolve(m, PERSONSFACTORY.createFemale());
62 t.setFullName(m.getFirstName() + " " + familyName(m));
63 }
64 }� �
List. 8 The Families2Persons solution translated in Java SE14.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 815

with the improved syntax provided through the functional
interfaces in Java SE8 could a decrease of the McCabe com-
plexity be accompanied with an uniform word count and
lines of code. Overall, the decision leads to an increase in
the McCabe complexity of the traversal code in Java SE5 but
allows for word count and LOC to remain stagnant. We will
come back and discuss the impact of this decision (in the
relevant parts of our results discussion| in Sect. 7.1) later on.

This designdecision affects themethodspreTransform
and actualTransform. Their implementation in Java
SE5 is shown in Listing 10. Instead of populating the tra-
verser objects we instead manually iterate over the whole
model and decide which methods to call based on the type
of the currently visited object.

� �
1 List<EObject> ins =

IO.readModel(’’Family.xmi’’);
2 Family family = (Family) ins.get(0);
3 List<Person> persons =

Families2Persons.transform(family);
4 IO.persistModel(persons, ’’persons.xmi’’);� �
List. 9 Setup code for the Families2Persons transformation.

� �
1 //...
2 private static void preTransform(Family root) {
3 TreeIterator<EObject> iterator =

root.eAllContents();
4 while (iterator.hasNext()) {
5 EObject next = iterator.next();
6 if (next instanceof Member) {
7 Member m = (Member) next;
8 Member2MalePre(m);
9 Member2FemalePre(m);

10 }
11 }
12 }
13

14 private static List<Person>
actualTransform(Family root) {

15 List<Person> newRoot = Family2List(root);
16

17 TreeIterator<EObject> iterator =
root.eAllContents();

18 while (iterator.hasNext()) {
19 EObject next = iterator.next();
20 if (next instanceof Member) {
21 Member m = (Member) next;
22 Member2Male(m);
23 Member2Female(m);
24 }
25 }
26 return newRoot;
27 }
28 //...� �
List. 10 Translated model traversal in Java SE5.

3.3.3 Trace library

The trace library emulates the management of traceability
links of ATL. Similar to the traversal library, the trace library
is built based on a HashMap. In this case, however, the
HashMapmaps source EObjects to target EObjects and
thus can be used both in Java SE5 and Java SE14.

In essence, the trace library exposes two methods. First,
for adding a trace (addTrace), thus requiring the source
and target objects to be passed as parameters. Second, for
resolving a trace based on a source object named resolve.
To achieve type consistencyresolve also requires the class
of the intended target object to be passed as parameter. An
example of how the trace library is used can be found in line
51 of Listing 8 and will be explained in more detail in Sect.
3.4.

Formore advanced tracemanagement, additionalmethods
exist that take an additional String parameter to be able to add
and distinguish multiple target objects for a single source
object. This functionality is sometimes required to access
not the direct target object but another object that was created
during the translation of a source object.

3.4 Matched rule translation

Matched rules are translated into two methods within the
transformation class. One method is responsible for creat-
ing a target object and its corresponding trace link, and one
method is responsible for populating the created target object
in accordance with the bindings in its corresponding ATL
rule. The second method will also incorporate all code corre-
sponding to the imperative code written in the Action-Block
of the translated rule. As already indicated in Sect. 3.2 when
introducing our two-step transformation process, the main
idea behind this separation is that all traces and referenced
objects can be safely resolved by the second method (called
during the second traversal) because they are created by the
firstmethod (called during thefirst traversal). That is, calls for
the object and trace creation are put by the preTransform
method, while calls for the second method are put into the
body of the actualTransform method.

For the rules Member2Male and Member2Female,
this is illustrated in lines 45 and 50 of Listing 8. The
rule Member2Male from Listing 7 is translated into the
methods Member2MalePre (in line 45 of Listing 8) and
Member2Male (in line50 ofListing8).Member2MalePre
creates an emptyMale object aswell as a trace from the input
Member, and method Member2Male fills the correspond-
ing Male object with data as defined through the bindings
from the ATL rule. To actually perform the transformation
on all Member objects, the methods preTransform and
actualTransform define for which type of object which
method should be executed. This is done usingmethods from

123

816 S. Höppner et al.� �
1 private static Female lazyMember2Female(Member

m) {
2 if (isFemale(m)) {
3 Female t = TRACER.add(m,

PERSONSFACTORY.createFemale());
4 t.setFullName(m.getFirstName() + " " +

familyName(m));
5 return t;
6 }
7 return null;
8 }� �
List. 11 Example translated lazy rule.

the traversal library to add the corresponding function calls
for theMember class as shown in lines 21 and 30 ofListing 8.

A special feature that comes from using our traversal
library is that we only need to translate the condition whether
a rule should be applied in the pre method that is translated
from it. This is because thetraverseAndAcceptmethod
only executes the corresponding function for an object after
it verified that an associated target object can be found via
a trace. If no target object can be found, the function is not
executed. An example of this can be found in the translation
of the Member2Male rule. Line 32 of Listing 7 states that
Member2Male is only executed under the condition that
not s.isFemale(). In the Java code in Listing 8, this is
only translated into the Member2MalePre method in line
46, whereas Member2Male in line 50 does not contain this
condition.

Lazy rules and unique lazy rules do not require as much
overhead as matched rules since they are called directly from
within other rules/methods and thus do not need to be inte-
grated into the traversal order. However, they do require
traces to be created and added to the global tracer. Addi-
tionally, methods translated from these types of rules have
the target object as their return value rather than the return
type being void. Suppose Member2Female was a lazy
matched rule. In that case, instead of the code in lines 21,
30, and 59-63 for Member2Female, only the code shown
in Listing 11 would be added to the Families2Persons
class. ThemethodlazyMember2Female returns anobject
of type Female while also creating a trace from the passed
Member to the returnedFemale. In caseMember2Female
was a unique lazy matched rule, a precondition using trace
links is added to the translated Java code that ensures that the
method always returns the same object when called for the
same input object. This is illustrated in Listing 12.

3.5 Called rule translation

Called rules, much like lazy rules, can be translated into a
single method that creates the output object, populates it
in accordance with the bindings of the ATL rule, and then
returns it. Other than the methods created for matched rules,

� �
1 private static B uniqueLazyMember2Female(A a) {
2 Female t = TRACER.resolve(m,

PERSONSFACTORY.createFemale());
3 if (t == null) {
4 if (isFemale(m)) {
5 t.setFullName(m.getFirstName() + "

" + familyName(m));
6 return t;
7 }
8 return null;
9 }

10 return t;
11 }� �
List. 12 Example translated unique lazy rule.

� �
1 rule calledMember2Female(Member m, String name)

{
2 to
3 t : Female (
4 fullName <- name
5)
6 }� �
List. 13 Example ATL called rule.

� �
1 private static Female

calledMember2Female(Member m, String name) {
2 Female t = PERSONSFACTORY.createFemale();
3 t.setFullName(name);
4 return t;
5 }� �
List. 14 Example translated called rule.

the methods for called rules can take more than one parame-
ter as input since called rules in ATL can define an arbitrary
amount of parameters of varying types. Moreover, called
rules do not create or use trace links. A sample called rule
translated into Java can be found in Listings 13 and 14.

3.6 Helper and OCL expression translation

Helpers can be translated intomethodsmuch like called rules.
The contained OCL expressions can easily be translated into
semantically equivalent Java code. Examples of such seman-
tically equivalent translations can be found in lines 9-11 of
Listing 8 which correspond to the OCL code in lines 4-
17 of Listing 7. One distinction that can be made here is
again between the different Java versions used in terms of
our study. Streams can be used to simulate the syntax of
OCL, in particular the arrow symbol for implicitly navigat-
ing over collections, while older Java versions need to use
loops instead. Table 2 shows a number of OCL expressions
and their Java SE14 counterpart using streams. Note that in
contrast to OCL, Java requires all collections to be converted
to streams and back to be able to manage them in a func-

123

Contrasting dedicated model transformation languages versus general purpose languages:… 817

Table 2 A selection of OCL expressions translated to Java SE14

OCL Java SE14

collection->select(e) collection.stream().filter(e).collect(Collectors.toCollection())

collection->collect(e) collection.stream().map(x -> e.apply(x)).collect(Collectors.toCollection())

collection->includes(x) collection.stream().anyMatch(a -> x == a).collect(Collectors.toCollection())

element.attribute element.getAttribute()

collection.attribute collection.stream().map(x -> x.getAttribute()).collect(Collectors.toCollection())

i | i > 5 i -> i > 5

tional programming style. The same expressions written in
Java SE5 without streams can be found in Listings 24 to 29
in Appendix A.

4 Code classification schema

In this section we introduce the classifications of Java and
ATL code used throughout RQ2 and RQ3. The ATL classi-
fication described in Sect. 4.1 is taken from [16] and is based
on the hierarchical structure of ATL. The classification of
Java code described in Sect. 4.2 was developed specifically
for the analysis of this research. It is based in the structure of
Java code and its components as well as the relation thereof
to general transformation aspects and ATL. We will again
use the families2persons example to illustrate how the clas-
sification schemas are applied.

4.1 ATL

The hierarchy for the ATL classification was already estab-
lished by Götz and Tichy [16] and consists of the following
levels and their corresponding categories:

1. Module Level
2. Rule Type & Helper Level
3. Rule Blocks Level
4. Content Level
5. Binding Level

The aim of this classification system is to differentiate
the different components and their contained subcomponents
within anATLmodule. As such, this classification represents
a way to indicate how a syntax element is contained within
the complete structure of the ATL code. This allows us to
make precise observations on the structure of ATL modules
based on their components and, for example, the distribu-
tion of number of words required to write each component.
An overview of the classification hierarchy can be found in
Fig. 2. And the complete labelling for the ATL solution of
Families2Persons can be found in Fig. 3.

Fig. 2 Overview of the ATL classification from Götz and Tichy ([16]

The Module Level defines the belonging of all elements
within a module to said module. Below it on the Rule Type
&Helper Level a distinction between helpers and the differ-
ent types of rules is made. In the Families2Persons example
from Listing 7 and Fig. 3 the helpers in lines 4 & 19 are
labelled as Helper, while both rules Member2Male and
Member2Female in lines 30 & 39 are labelled asMatched
Rule. All elements within the rules and helpers again inherit
the respective classification for this level from their parent
elements.

The Rule Blocks Level distinguishes between the dif-
ferent types of blocks that make up rules, i.e. Using Block,
OutPattern, InPattern, and Action Block. A more specific
distinction of helper contents is not done due to them
only containing OCL expressions. The rules in the Fami-
lies2Persons example only contain InPatterns (lines 31-32,
40-41) and OutPatterns (lines 33-36, 42-45).

Below the Rule Blocks Level the Content Level then
allows a more precise description of the elements con-
tained within the rule blocks. The potential classifications
on this level are: OutPatternElement, Statement, and Vari-

123

818 S. Höppner et al.

able Declaration. Lines 43-45 for example are labelled as an
OutPatternElement.

Lastly, the Binding Level again only contains one char-
acteristic and allows to label bindings as exactly that. Lines
35 and 44 are bindings and thus labelled as such as seen in
Fig. 3.

4.2 Java

In order to draw parallels between transformation code writ-
ten in Java and ATL, it is necessary to relate all code
components in the Java code to the transformation aspects
they implement. For this purpose, we developed a hierar-
chical classification for Java code. The hierarchy follows
the natural structure of Java code much like the classifica-
tion for ATL. However, contrary to ATL, the code structure
of Java does not allow us to directly break it down into
transformation-related components. This is due to the fact
that Java is focused around object-oriented and imperative
components rather than transformation-specific ones. As a
result, the classification schema breaks Java code down into
its OO and imperative components and then relates those
components to transformation aspects. The hierarchy levels
of the classification are as follows:

1. Class Level
2. Attribute & Method Level
3. Statement-Type Level
4. ATL Counterpart Level

An overview of the classification levels and the charac-
teristics attributed to each level can be found in Fig. 4. A
sample labelling for the Java solution of Families2Persons
can be found in Fig. 5.

The Class Level stands on top of the hierarchy. The class
level itself is made up of only one type of characteristic, the
Class itself. In the Families2Persons example from Listing 8
the class definition and all elements containedwithin the class
body is thus labelled as belonging to the class characteristic
of the Class Level (as seen in Fig. 5). This also indirectly
represents a relation between the class and the transformation
module from which it was translated from, indicating that
the class and all its components relate to the transformation
module and its components. More specific relation between
the contained components is thendescribed through the lower
levels within the classification system.

Below the Class Level lies the Attribute & Method
Level in which we classify to which transformation aspect
an attribute or method is related. The characteristics that can
be attributed on this level are: Traversal when a method is
used for the traversal of the input model. Transformation
when a method contains code for the actual transforma-
tion of one model element to another. Tracing for all

Fig. 3 Labelled ATL solution for the Families2Persons case

123

Contrasting dedicated model transformation languages versus general purpose languages:… 819

Fig. 4 Overview of the makeup of our Java classification

methods that are related to the creation or resolution of
traces. Helper when a method corresponds to a helper
and lastly Setup for all attributes that are required to exist
for access throughout the transformation. The isFemale
method in lines 5-7 from Fig. 5 is thus assigned the label
Helper for the Attribute & Method Level in addition
to its Class label on the Class Level. The transform,
preTransform and actualTransform methods all
get assigned the Traversal label, while Family2List,
Member2Male and Member2Female are all labelled as
Transformation related on the Attribute & Method Level.
Lastly, Member2MalePre and Member2FemalePre
both relate to Tracing and are thus characterized as such.
All statements within the methods again inherit the classifi-
cation of the Class Level and the Attribute & Method level
from their respective parents in which they are contained
in and get more specialized again through the lower levels
within the system.

Below the Attribute & Method Level then lies the
Statement-Type Level in which all statements within meth-
ods are characterized based onwhether they areControl Flow
statements (i.e. conditions or loops), Variable Declarations
or any other type of Statement. The categorization on this
level does not directly relate to any transformation aspect
but rather allows us to differentiate between different types
of statements in Java that are relevant for highlighting dif-
ferences between the structure of Java and ATL code. The
condition defined in line 46 of Fig. 5 is labelled as belong-
ing to Control Flow on this level while again inheriting its
Class Level and Attribute &Method Level from its container
Method Member2MalePre.

The next lower level is the ATL counterpart Level. On
this level, we categorize whether a statement fulfils the role

of a Binding in ATL or if it contains code to create or resolve
Traces or if it is any Other type of Java code that does not
directly relate to transformation aspects. At this level, one
would expect that the categorization of statements is depen-
dent on the categorization of theAttribute &Method Level
of the methods they are contained in, i.e. a statement within
a Transformation method should either be categorized as
Binding or Other. However, in Java transformations these
boundaries become somewhat blurred due to the fact that
traces need to be explicitly resolved to access the correspond-
ing output model elements when assigning them to output
attributes. This can for example be seen for line 51 of Fig.
5. The classification comes from it being a variable declara-
tion that assigns the result of a trace resolution call within a
method that performs the transformation of a Member into
a Male.

Lastly,we can also label different parts of a single linewith
different labels based on their functionality. Line 38 of Fig.
5, for example, has elements that perform assignments, i.e.
bindings translated to Java, and elements that perform addi-
tional tracing operations. The labelling of this line reflects
these different functionalitieswithin the line by labelling sub-
statements within the line instead of the whole line.

5 Size and complexity analysis methodology

Our analysis of the transformation specifications is guided
by the research questions introduced in Sect. 1.2.

5.1 RQ1: Howmuch can the complexity and size of
transformations written in Java SE14 be
improved compared to Java SE5?

To compare the transformations written in Java SE14 and
Java SE5, we decided to use code measures focused on code
complexity and size. For this reason, we chose McCabe’s
cyclomatic complexity and LOC which are shown to corre-
late with the complexity and size of software [29]. To keep
the LOC count as fair as possible, all Java code was devel-
oped by the same researcher and we used the same standard
code formatter for all Java code. Furthermore, we supple-
ment LOC with an additional measure for code size based
on word count, the combination of these two measures also
allowed additional insights.Word countmeans the number of
words that are separated either bywhitespaces or other delim-
iters used in the languages, such as a dot (.) and different
kinds of parentheses (()[]{}). This measure supplements
LOC because it is less influenced by code style and inde-
pendent from keyword and method name size [18]. This
method for calculating transformation code size has already
been successfully used by Anjorin, Buchmann, Westfechtel,
et al. [18] to compare several (bidirectional) transformation

123

820 S. Höppner et al.

Fig. 5 Partially labelled Java solution for the Families2Persons case

123

Contrasting dedicated model transformation languages versus general purpose languages:… 821

languages including eMoflon [30], JTL [31], NMF Synchro-
nizations [32] and their own language BXtend [33]. Their
argument for using word count is that because it approxi-
mates the number of lexical units itmore accuratelymeasures
the size of a solution than lines of code.

We applied the Java code metrics calculator (CK) [34]
on all 24 transformations (12 Java SE5 + 12 Java SE14) to
calculate both metrics and used a program developed by us
to calculate the word count measure. For a basic overview
we then compare the total size between Java SE5 and Java
SE14 based on both LOC and word count and discuss obser-
vations as well as possible discrepancies between the two
measures. The same is done for McCabe complexity as well.
Because CK calculates metrics on the level of classes, meth-
ods, fields and variables we opted to additionally use the
values calculated on the level ofmethods, i.e. the LOC, word
count and McCabe complexity of the method bodies, to gain
a more detailed understanding of where differences in size
and complexity arise from. Since neither the fields level nor
the variables level contained values for McCabe complex-
ity and no interesting values for LOC and word count we
decided to omit data from those in our analysis. The metric
values calculated by CK were then analysed and compared
based on maximum, minimum, median, and average values.

RQ1 serves the purpose of providing a general overview
of the differences between the code size and complexity
between Java SE5 and Java SE14. The results from this
research question are analysed and discussed in more detail
in RQ2&3.

5.2 RQ2: How is the complexity of transformations
written in Java SE5 & SE14 distributed over the
different aspects of the transformation process
compared to each other and ATL?

To answer RQ2, we compare the distribution of complexity
within the Java code with regard to the different steps within
the transformation process. In particular, we want to see how
much effort needs to be put into writing those aspects that
ATL can abstract away from. To be able to analyse the com-
plexity distribution in Java transformations, it is necessary
to differentiate the different steps within the Java code, i.e.
model traversal, transformation, tracing, setup and helper.
Since cyclomatic complexity can not be calculated for each
line but only for set of instructions we decided to fall back
on the granularity of methods and use the classification and
labelling given to each method in Sect. 4.

Based on the classification introduced in Sect. 4.2, all Java
transformations were labelled by one author. The labelling
was verified by the other two authors with one of them cross-
checking 2 transformations and the other one checking 4. The
checked transformations were istar2archi, Palladio2UML,
and R2ML2XML all in both Java SE5 and Java SE14 which

in total meant that about 51%of the total Java code lines were
reviewed.

We then used the measures calculated for RQ1 to create
plots of the complexity distribution. The distribution shown
in the resulting plots was then analysed taking into account
the results of Götz and Tichy [16] regarding the distribution
of different transformation aspects in ATL. The goal in this
step was to see how the complexity in Java transformations
is distributed onto transformation aspects, such as tracing
and input model traversal, that are abstracted or hidden away
in ATL as well as to see the evolution of this distribution
between the two different Java versions.

5.3 RQ3: How is the size of transformations written
in Java SE5 & SE14 distributed over the different
aspects of the transformation process compared
to each other and ATL?

The approach for this research question is twofold and
follows a top down methodology. First, we compare the dis-
tribution of code size within the Java code over the different
transformation aspects using the classification from Sect. 4.
Afterwards, we focus on the actual code. Here, we compare
how code written in ATL compares to the Java code that
represents the same aspect within a transformation.

We opted to use word count as a measure for the detailed
discussion of code size. The reason why we use word count
and not lines of code lies in their granularity. For some parts
of our analysis, it is necessary to split the value of single
statements up into that of their components. This is much
easier to dowhen usingword count as ameasure and does not
require code to be rewritten in an unintuitive way. Moreover,
the finer granularity also allows a more detailed look into the
structure of methods that was not possible in RQ2 due to the
limitation of cyclomatic complexity.

The idea behind our approach is to calculate the word
count for all transformationswritten in Java andATLand then
compare both the total count ofwords aswell as the number of
words required for specific aspects within the transformation
process. While the word count for Java transformations is
calculated specifically for this study, the data for the ATL
transformations are taken from the results of Götz and Tichy
[16].� �
1 rule SimpleBinding {
2 from s : Member
3 to t : Female (
4 name <- s.firstName
5)
6 }� �
List. 15 A rule with a simple binding.

Based on the introduced categorizations, we then create
Sankey diagrams for the distribution of word count in both

123

822 S. Höppner et al.� �
1 rule Trace {
2 from s : Member
3 to t : Male (
4 father <- s.familyFather
5)
6 }� �
List. 16 A rule with a binding using traces.

� �
1 helper context Class def: associations:

Sequence(Association) =
Association.allInstances() ->
select(asso | asso.value = 1);� �

List. 17 A typical helper in ATL.

Java and ATL. These graphs then form the basis for our
comparison. Here, we compare both the distributions of the
individual transformation aspects in Java with ATL as well
as the concrete sizes on the basis of the numbers. When com-
paring the size distribution, we analyse how the distribution
of the transformation aspects in Java differs from ATL, i.e.
which aspects are disproportionally large or small compared
to ATL.We also explicitly look at howmuch code is required
for tracing in Java. For this, we look at the proportion of the
transformations that require traces and how that compares to
the total size of Java code related to traces. Lastly, the total
number of words between Java and ATL are also directly
compared to see which language allows for shorter transfor-
mation code based on this measure.

To illustrate where the observed effects originate from,
we use a selection of three ATL fragments representing code
which is often written in ATL transformations. The first frag-
ment (see Listing 15) represents code that copies the value of
an input attribute to an attribute of the resulting output model
element, an action which constitutes 56% of all bindings in
the set analysed by [16]. The second fragment (see Listing
16) represents code that requiresATL touse traceability links,
which [16] found to constitute 15% of all bindings. Because
the attribute s.familyFather does not contain a primi-
tive data type, but a reference to another element within the
source model, the contained value cannot simply be copied
to the output element. Instead, ATL needs to follow the trace-
ability link created for the referenced input element to find its
corresponding output element which can then be referenced
in the model element created from s. The last code fragment
(see Listing 17) is a helper definition of average size and
complexity.

We use those code fragments and compare them with the
Java code that they are translated to in order to highlight
differences between the languages.

5.4 RQ4: How does the size of query aspects of
transformations written in Java SE5 & SE14
compare to each other and ATL?

As previously discussed, the goal of this research question
is to investigate the claim that writing queries for models
was improved with the introduction of model transformation
languages such as ATL and to check if this is still the case
when utilizing new languages features in general purpose
languages today. This discussion of Java vs OCL has already
been raised approaches to replace OCL with Java [35]. The
data basis for this analysis is formed by all helpers and their
corresponding Java translations in form of methods within
the 12 transformation modules subject in this study. Because
this set only contains a total of 15 helpers, we complement it
with a large collection of helpers and their translations from
a set of supplemental libraries used in the UML2Measure
transformation.

In our analysis, we compare Java and ATL helpers first
based on their total word count and then by contrasting each
ATL helper with its Java counterpart using regression analy-
sis. All observations in this analysis are supplemented with
code segments that highlight them. The regression analysis
uses a linear regression model to predict the word count of
Java methods (J5WC , J14WC) based on the word count
of ATL Helpers (HelperWC). This was chosen based on
an hypothesis that Java code entails an additional fix cost
compared to OCL expressions as well as an increase by
some factor due to the more verbose syntax of Java. This
approach allows us to both verify the hypothesis and identify
an approximation of the interrelationship between the code
sizes.

6 Results

In this section, we present the results of our analysis in accor-
dance with the research questions from Sect. 1.

6.1 RQ1: Howmuch can the complexity and size of
transformations written in Java SE14 be
improved compared to Java SE5?

Table 3 presents an overview of lines of code (LoC), word
count (# words) and the sum of McCabe complexities of
all methods contained in the transformation classes (WMC).
Looking at the total lines of code and WMC, the numbers
display an expected decrease in both size and complexity.
Our transformations written in Java SE5 total 3252 lines of
code and have a WMC of 792. The same transformations
written in Java SE14 require only 2425 lines of code and have
aWMC of 411. Based on these measures, the size reduces by
about 25%, while the cyclomatic complexity is cut in half to

123

Contrasting dedicated model transformation languages versus general purpose languages:… 823

about 52% of its Java SE5 counterpart. This decreasedWMC
can be attributed to the improvements made through utilizing
streams for handling collections. The traversal library also
contributes to this by removing all control flow branching
for the transformmethods and thus reducing theMcCabe
complexity of these methods.

The word count measure, however, shows a different pic-
ture. While the Java SE5 implementation uses 13007 words,
the Java SE14 implementations use nearly the same amount
of words, 13118 to be exact. When combining this with the
reduced number of code lines provides and interesting obser-
vation. Transformation code written in Java SE14 for our
transformation set is more dense, i.e. a single line of code
contains a lot more words and thus more information about
the transformation.

Overall, both the total number of lines of code as well as
the WMC of transformations in the newer Java version are
greatly reduced. However, there is no notable change in the
number of requiredwords, which hints at amore information-
dense code rather than simply less code.

Table 4 summarises the calculated size (LOC and word
count) and complexity (McCabe) measurements on the
method level for both the Java SE5 and Java SE14 trans-
formation code.

As expected from the total numbers, the average and
median length, measured in LoC, of methods in Java SE14 is
reduced by about 30%. The already low minimum of 3 lines
has not been further reduced in the newer version, but the
longest method is now 51 lines shorter.

Contrasting the numbers for lines of codewithword count,
we see a small increase in both the average and median
method sizes in Java SE14 compared to Java SE5. How-
ever, the maximum number of words for a method is about
43% shorter in Java SE14 than in Java SE5. This means that
while on average (or median) the number of words required
to implement transformation-related methods in Java SE14
increased compared to Java SE5, newer Java versions help
to reduce the size of methods that required large number of
words in older Java versions.

The reduction in cyclomatic complexity seen in the total
numbers is also reflected for the more detailed consideration
onmethod level. The average transformations written in Java
SE14 are 45% less complex than in Java SE5. A result also
reflected in the median. Furthermore, the maximumMcCabe
complexity is reduced from 44 to 11, which is a significant
decrease as this suggests that even highly complex methods
within the transformations can be expressed a lot less com-
plex in newer Java versions. This, again, can be attributed
to the utilization of streams and functional interfaces which
help to remove the requirement to manually implement large
amounts of loops and nested conditions.

Themore detailed results reflectwhatwas already shownona
coarse-grained level. Compared to Java SE5, new language
features in Java SE14 help to reduce the required number
of code lines, while the number of words stays about the
same. The cyclomatic complexity is significantly reduced,
most prominently seen in the fact that the most complex
method in Java SE14 is only 1/4th of the complexity of the
most complex method in Java SE5.

6.2 RQ2: How is the complexity of transformations
written in Java SE5 & SE14 distributed over the
different aspects of the transformation process
compared to ATL?

The results for this research question are split up into two
parts. We first report on our findings for Java SE5 and its
comparison to ATL in Sect. 6.2.1, before reporting the find-
ings for Java SE14 and its comparison to ATL and Java SE5
in Sect. 6.2.2.

6.2.1 Java SE5

Figure 6 shows a plot over the distribution of WMC split up
into the different transformation aspects involved in a trans-
formation written in Java SE5 and Java SE14. It shows that
about 60% of the complexity involved in writing a transfor-
mation in Java SE5 stems from the actual code representing
the transformations and helpers. The other 40% are dis-
tributed among the model traversal, tracing, and setup code.
In ATL, these three aspects are completely hidden behind
ATL’s syntax. In other words, this means that 40% of the
complexity within the transformations written in Java SE5
stems from overhead code.

Overall, the results support the consensus from back when
ATL was introduced that a significant portion of complexity
can be avoided when using a dedicated MTL for writing
model transformations.

6.2.2 Java SE14

Given the observations fromRQ1 combinedwith the gen-
eral improvements that Java SE14 brings to the translation
scheme, one would expect better results for the complexity
distribution of transformations written in that Java version.
However, when looking in Fig. 6, which again shows a plot
over the distribution of McCabe complexity split up into the
different transformation aspects involved in a transformation
written in Java, there is still a significant portion of complex-
ity associated with the model traversal, tracing, and setup
code in Java SE14.

While the complexity associated with model traversal is
greatly reduced by the use of the traversal library, the overall

123

824 S. Höppner et al.

Table 3 Measurement data on the translated transformation modules

Transformation Name LOC # words WMC

Java SE5 Java SE14 Java SE5 Java SE14 Java SE5 Java SE14

ATL2BindingDebugger 22 19 93 88 4 2

ATL2Tracer 74 17 285 283 7 5

DDSM2TOSCA 509 339 2137 2036 103 44

ExtendedPN2ClassicalPN 147 107 569 553 37 19

Families2Persons 72 62 273 297 22 14

istart2archi 184 115 689 714 57 24

Modelodatos2FormHTML 215 178 761 750 58 40

Palladio2UML 303 253 1066 1100 70 47

R2ML2XML 1181 855 4720 4966 303 139

ResourcePN2ResourceM 99 67 380 389 29 13

SimpleClass2RDBMS 163 111 629 581 50 26

UML22Measure 283 249 1405 1356 52 38

Total 3252 2425 13007 13118 792 411

Median 173.5 113 599 647 51 25

Average 271 202.1 1088.9 1092.75 66 34.25

Table 4 Measurement data on the methods in the translated transformation modules

Measure Minimum Median Average Maximum

Java SE5 Java SE14 Java SE5 Java SE14 Java SE5 Java SE14 Java SE5 Java SE14

LoC 3 3 7 6 12.5 9.4 135 105

words 1 2 5 6 5.2 6.4 64 37

McCabe complexity 1 1 2 1 3 1.6 44 11

Fig. 6 Distribution of WMC over transformation aspects in Java SE5
and SE14

distribution between the actual code representing the trans-
formations and helpers and the model traversal, tracing, and
setup code does not change much. About 40% of the over-
all transformation specification complexity still stems from
overhead code. Moreover, not only did this ratio stay sim-
ilar compared to Java SE5, also the ratio between helper
code complexity and transformation code complexity stayed
about the same. One potential reason for this is that while
newer Java features help to reduce complexity, they do so for
all aspects of the transformation, thus the distribution stays
about the same.

The reason that the code related to trace management
experiences an increase in its complexity ratio compared to
other parts of the transformation can be explained by the fact
that this code stayed the same between the different Java ver-
sions. Thus, while the complexity of all other components
shrank, the complexity of trace management methods stayed
the same, leading to higher relative complexity.

Overall, the results point towards even newer versions of
Java still having to deal with the complexity overhead that
ATL is able to hide. Specifically, handling traces still entails
a large overhead.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 825

(a) (b)

Fig. 7 Distribution of word count over transformation aspects in Java SE5 and SE14

6.3 RQ3: How is the size of transformations written
in Java SE5 & SE14 distributed over the different
aspects of the transformation process compared
to ATL?

The reporting of results for this research question follows the
same structure as Sect. 6.2. First in Sect. 6.3.1 the results of
our analysis of Java SE5 and its comparison with ATL are
reported. Afterwards in Sect. 6.3.2 the results for Java SE14
and its comparison with ATL are discussed. This section also
contains a comparison to the results of Java SE5.

6.3.1 Java SE5

The total size of Java SE5 transformations compared to ATL
transformations is much larger when using word count as a
measure. All ATL transformations in our set together amount
to 7890 words, while the Java SE5 code needs 13007. This
is an increase of 64.8%. Figure 7a allows us to look at the
distribution of written words over the transformation aspects
introduced in Sect. 4. The x-axis of the graph describes the
hierarchy levels from Sect. 4. The word count is depicted on
the y-axis, and on each hierarchy level on the x-axis the word
count distribution of its different aspects is shown. How each
level is made up of its sub-levels is then shown by means of
the alluvial lines flowing from left to right. The flow lines
are coloured according to the Attribute & Method level as it
represents the top level of separation and eases readability.

Looking at the graph we see a large portion of the number
of words is actually associated with the transformation code
itself. Overhead from tracing, traversal, and setup exists, but
it is not as prevalent as expected from the results presented
in Sect. 6.3. However looking more closely into each of the
aspects and their makeup reveals that there is more overhead
still hidden in the transformation-related code. In the follow-
ing, we will look at the individual aspects and their more
precise breakdown and what this means for transformations
written in Java SE5, also in comparison with ATL.

The number of words required to express Helper code for
our transformation set is low. It constitutes 2.9% of all words
within the transformation class which is in line with the size
of helpers in ATL as seen in Fig. 8.

Similarly, the number of words required for setup code is
also of little consequence as it constitutes only about 2.2%
of the total word count in the transformations considered in
this work. However, even though the amount is small, the
code still has to be written and maintained when evolving
the transformation.

Another part of the code within the transformation classes
that represents overhead in Java SE5 compared to ATL is the
code related to tracing.WhileATLabstracts away tracing and
does target element creation implicitly, in Java this behaviour
has to be recreated by hand. The library for tracing introduced
in Sect. 3.3 helps reduce the implied overhead, but the cre-
ation of target objects as well as traces for them still has to be
initiated manually. The methods involved in this constitute
for 9.9% of words used in our translated transformations and

123

826 S. Höppner et al.

Fig. 8 Distribution of word count “complexity” measure over transfor-
mation aspects in ATL calculated based on Götz and Tichy[16]

are made up of methods in style of what is described in Sect.
3.4.

As previously stated, a large portion (65.8%) of the word
count comes frommethods and attributes related to the actual
transformation. This however changes when looking at the
lower levels of classification within those methods. In ATL
60% of the total number of words and 61% of the words
within rules stem from bindings, i.e. the core part responsible
for transforming input into output. In our Java SE5 translation
this differs greatly. The translated binding code only makes
up 22% of the total word count or 33.5% within the trans-
formation methods. This points to the fact that much less of
what is written in Java SE5 actually relates to actual trans-
formation activities. In Java many more words are spent on
code not directly transformation-related but rather on tasks
necessary for the transformation to work. Three such types
of code stand out.

One is statements that resolve traces built up in the trac-
ing methods discussed in the last section (as seen by the flow
from Transformation over Statement and Variable Declara-
tions towards Tracing in Fig. 7a). Examples of such code in
the Families2Persons example from Fig. 5 and Listing 8 can
be found in lines 38,39 and 51.

The second one is code to initialise temporary variables
used for processing steps within the transformation (as seen
by the flow from Transformation over Variable Declarations
into Other in Figure 7a).

And lastly there are a large number of words associated
with control flow via loops and conditions to process col-
lections in order to bind their transformed contents onto
attributes of the current output object (as seen by the flow

� �
1 private void simpleBinding(Member s) {
2 ...
3 t.setName(s.getFirstName());
4 }� �
List. 18 A rule with a simple binding in Java SE5.

� �
1 private void simpleBinding(Member s) {
2 ...
3 t.setName(TRACER.resolve(

s.familyFather, Male.class));
4 }� �
List. 19 A rule with a binding using traces in Java SE5.

from Transformation over Control Flow towards Other in
Fig. 7a).

Code relating to traversal is again overhead introduced due
to the usage of Java over ATL. The number of words required
forwriting traversal-related code for our set of transformation
constitutes 18.9% of the total word count of transformation
classes.

Overall, the overhead produced by Tracing, Traversal and
Setup code amounts to 31% of the total number of words for
our Java SE5 transformations. Furthermore, while 65.8%
of words within the transformation classes are related to the
process of transformation, many of them are again overhead
from manual trace resolving, model traversal and supple-
mental code.

When comparing a simple binding (see Listing 15) writ-
ten in ATL with its translation in Java SE5 (see Listing 18),
there is not much difference. Both require nothing more than
their language constructs for accessing attribute values and
assigning them to a different attribute.

This is not the case when traces are involved. While ATL
allows developers to treat source elements as if they were
their translated target element (see Listing 16), some explicit
code needs to be written in Java (see Listing 19). As a result,
the transformation specification gets larger since it is not only
required to call the trace resolution functionality, but it is also
necessary to put some additional type information in so the
Java compiler can handle the resulting object correctly. The
type information is necessary since, as described in Sect.
3.3.3, the trace library holds EObjects which have to be
converted to the correct type after they have been retrieved
based on the source object.

The increase in size is even more prevalent when looking
at the translation of a typical helper. The helper in Listing 17
requires OCL code that works with collections which, thanks
to OCL’s “→ syntax”, can be expressed in a concise manner.
In Java SE5, however, as seen in Listing 20, the code gets a

123

Contrasting dedicated model transformation languages versus general purpose languages:… 827� �
1 private List<Association>

associations(Class self) {
2 List<Association> list = new

LinkedList<Association>();
3 for (Association asso :

ALLASSOCIATIONS) {
4 if (asso.getValue() == 1) {
5 list.add(asso);
6 }
7 }
8 return list;
9 }� �
List. 20 A typical helper in Java SE5.

lot more complex and bloated. This is due to, as previously
stated in Sect. 6.3, the fact that the only way to implement the
selection is to iterate over the collection through an explicit
loop (lines 3 to 9) and to use an if-condition within the loop
(lines 4 to 6). We investigate and discuss this in more detail
later in Sect. 6.4.

Overall, the examples show that simple bindings can be
expressed easily in both ATL and Java SE5. Bindings involv-
ing trace resolution require some additional effort in Java
SE5 while ATL can handle those like any other binding. The
most significant difference, however, comes from expressions
involving collections. Due to the required usage of explicit
loops, the Java SE5 code blows up in size and complexity
compared to the more compact ATL notation.

6.3.2 Java SE14

Comparing the total number of words in Java SE14 transfor-
mations with ATL, a similar picture as for Java SE5 arises.
The translated transformations require 13118 words, while
ATL only requires 7890. Surprisingly, as also discussed in
Sect. 6.1, the number of words in Java SE14 is higher than
that of Java SE5, although only by around 100 words, despite
requiring less lines of code and cyclotomic complexity. We
believe this to be the result of two effects. One, using streams
for processing collections reduces the lines of code and cyclo-
matic complexity because they are single statements and are
thus not split over as many lines as when using loops. But,
setting up streams and transforming them back into the origi-
nal collection requires several additional method calls which
offset the overall reduction of number of words.

The distribution of the number of words between Java
SE5 and Java SE14 also differs immensely, especially around
the makeup of transformation methods, as evident from Fig.
7b. It also again highlights key differences between the ATL
transformations and their Java counterparts.

� �
1 for (InElement i : input.getInElements()) {
2 output.getOutElements()
3 .add(TRACER.resolve(i, OutElement.class));
4 }� �
List. 21 Trace resolution example of a collection in Java SE5.

The portion of words required for writing Setup and
Helper code has slightly reduced compared to Java SE5,
while the proportion ofwords for Transformation andTraver-
sal methods increased. The Methods & Attributes for setting
up helpers does not change which is due to the fact that the
underlying code does not change between Java SE5 and Java
SE14.

Thus, more can be concluded from how the number of
words are distributed within the Transformation and Traver-
sal methods in Java SE14.

For Traversal, it is noticeable that almost no control flow
statements are used anymore. Instead,most words now come
from simple statements. This is because in Java SE14 we
make use of the Traversal library, which allows us to pass
only the classes to be matched and the methods to be called
to the traverser instead of having to write loops and condi-
tions manually. This evidently does not reduce the number
of words, but it creates a different way of defining traversal.

Similarly, the transformation-related methods in Java
SE14 also contain much less words that define control flow.
The number of words for other statements not directly per-
forming transformation tasks is also reduced. Instead, the
translated bindings now make up a larger proportion of the
word count. In our Java SE14 transformations, the code for
translated bindings now makes up 27.8% of all words com-
pared to the 22% in Java SE5 and 41.9% of words within
the transformation methods. This stems from the usage of
streams for processing collections of input elements rather
than explicit loops and conditions. As a result the Java SE14
implementation is less control flow driven and focuses more
on the data involved. However, while this allows for less lines
of code and a reduction in cyclomatic complexity as shown in
Sect. 6.1, it does not improve the required number of words.
This is because in some cases, the setup overhead for streams
counteracts their conciseness gain when using number of
words as a measure. An example of this can be seen when
comparing Listings 21 and 22. Both code segments resolve
all InElements from the input into their corresponding
OutElements and add them to the OutElements list of
the output. The number of words required in Java SE5 for
this totals 14, whereas the number of words in Java SE14
amounts to 17.

123

828 S. Höppner et al.� �
1 output.getOutElements()
2 .addAll(input.getInElements().stream()
3 .map(i -> TRACER.resolve(i, OutElement.class))
4 .collect(Collectors.toList()));� �
List. 22 Trace resolution example of a collection in Java SE14.

Overall, our translated transformations in Java SE14 do
not reduce the number of words compared to their Java
SE5 counterpart. Newer language features do however help
in reducing the amount of explicit control flow statements
and supplemental code required. Most of this is now done
directly in translated bindings which more closely follows
the ATL-style. In this sense, Java SE14 helps to take a more
data-oriented approach to transformation development com-
pared to Java SE5.However, there is stillmuch overhead from
manual traversal, tracing and supplemental code compared
to ATL.

When comparing the code segments for writing simple
bindings and bindings involving traces in Java SE14 with
ATL, there is no difference to the findings from comparing
Java SE5 to ATL. This is due to the fact that no Java features
introduced since SE5 help in reducing the complexity of code
that needs to be written here.� �
1 private List<Association>

associations(Class self) {
2 return ALLASSOCIATIONS.stream()
3 .filter(asso -> asso.getValue()==1)
4 .collect(Collectors.toList());
5 }� �
List. 23 A typical helper in Java SE14.

Comparing translated helper code, however, does show
some improvements of Java SE14 over Java SE5. Because
of the introduction of the streams API, Java SE14 (see List-
ing 23) can now handle expressions involving collections
nearly as seamless asATL (seeListing 17).Only the overhead
of calling stream() and .collect(Collectors.to
List()) remains. This and other observations regarding
OCL expressions translated to Java are discussed in more
detail later in Sect. 6.4.

Overall, the examples show that code for both simple bind-
ings and bindings involving traces in Java SE14 stays just as
complex in comparison toATLas in JavaSE5.Code involving
collections, however, can now be expressed nearly as seam-
less as in ATL due to the introduction of the streams API in
Java which offers a notation that is close to OCL notation.

6.4 RQ4: How does the size of query aspects of
transformations written in Java SE5 & SE14
compare to each other and ATL?

Comparing the word count numbers of helpers from the
transformation modules and libraries with their translated
counterparts we can once again observe an increase in Java.
While all helpers in ATL combined total 2299 words the
Java SE5 code totals 3801 words which is an increase of
about 65.3%. This was to be expected since Java SE5 is
more verbose, especially when handling collections which
are required for all helpers within the libraries. This becomes
clearwhen looking at the Java SE5 translation of Listing 17 in
Listing 20. Not only does Java require a loop and if-condition
to filter out the desired association subset, a new results list
also has to be created and filled with values. Compared to
OCLs “→ syntax” this increases the number of required
words to produce the same result drastically.

Next, as described in Sect. 5.4 a linear regression was cal-
culated to predict theword count of JavaSE5code forHelpers
based on their word count. We were able to find a significant
regression model (p < 2.2e − 16) with an adjusted R2 of
0.649. The predicted word count of Java SE5 expressions
for OCL expressions is estimated as 4.85364 + 1.31554 *
HelperWC . The hypothesis of a linear relationship is also
supported by a Pearson coefficient of 0.81 indicating this
linear relationship.

Overall, we see a linear relationship between OCL expres-
sion code and the translated Java SE5 code. The factor with
which the Java code increases in size more quickly is 1.53.
This combined with the subjectively less clear way of han-
dling collections through loops leads to the observation that
Java5 was not well suited for defining expressions onmodels.

Looking at the number of words of Java SE14 Helpers
compared with their ATL counterparts we see a similar
but slightly smaller size than with Java SE5. As stated
earlier all ATL library helpers total 2299 words and with
3350 words their Java SE14 counterpart is only about
45.8% larger compared to the 65.3% of Java SE5. This
fits well into our observation that the verbose handling
of collections is responsible for large portions of the size
increase. The streams API, introduced in Java SE8, allows
developers a less verbose way of handling collections as
can be seen when comparing Listings 20 and 23. While
there is still some overhead compared to the OCL coun-
terpart, namely the necessary calls to stream() and
.collect(Collectors.toList()), the total over-
head is greatly reduced. Moreover, this difference could in
principal be eliminated by using an alternative GPL. The
Scala programming language, for example, does not require
a conversion between streams and collections.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 829

Fig. 9 Comparison of actual Java SE5 and SE14 helper size with pre-
dicted size based on linear the regression models

The decrease in size can also be observed in our linear
regression model that predicts the word count of Java SE14
code for OCL expressions based on the word count of those
expressions. The model we were able to find is significant
(p < 2.2e−16) and has an adjusted R2 of 0.64. The predicted
word count of Java SE14 expressions for OCL expressions
is estimated as 5.26631 + 1.09064 * HelperWC . And the
hypothesis of a linear relationship is again supported by a
Pearson coefficient of 0.8. Figure 9 shows how well both the
regression models fit the data. It also highlights the decrease
of words required for translated helpers in Java SE14 com-
pared to Java SE5.

The x-axis depicts the word count value of OCL expres-
sions, while the y-axis depicts the word count of Java SE5
codes. The dotswithin the graph then show the corresponding
Java SE5 code word count for each translated OCL expres-
sion. Lastly, the red line shows the predicted correspondence
based on our regression model.

Overall, we still see a linear relationship between OCL
expression code and the translated Java SE14 code.However,
the factor with which the Java code increases in size more
quickly is only approximately 1.1. This leads us to believe
that a well trained Java developer should be able to express
OCL queries in Java without much difficulties.

7 Discussion

In this section we discuss our findings from Sect. 6 as well as
our experiences from the process of translating and using
transformations in Java. Our discussion revolves around
two main topics. First, we want to discuss the impact that
the design decision to not use anonymous classes to out-
source traversal in our Java SE5 solution, explained in Sect.
3.3.2, has on the presented data. Then we discuss how the
advancements that have been achieved in newer Java versions
influence the ability for developers to efficiently develop
transformations in Java. This also includes a conversation
about what shortcomings still exist. And second we present
a guide that suggests inwhat cases general purpose languages
such as Java can be used in place of ATL.We also show cases
where we would advise against writing transformations in
Java because of its disadvantages. The argumentation of this
part is based on the results presented in this publication as
well as our experiences, both from this study as well as previ-
ous works [8–12]. Finally, wewant to have a short discussion
beyond the results of our study. Here we want to talk about
other features that MTLs can provide and what those could
mean for the comparison of MTLs vs. GPLs.

7.1 The impact of not outsourcingmodel traversal in
Java SE 5

As explained in Sect. 3.3.2, we decided on using the condi-
tional dispatcher pattern to implement traversal in our Java
SE5 solution as opposed to implementing a traversal library,
similar to the one used in Java SE14, using anonymous
classes. This design decision has implications for the data
presented throughout Sect. 6 which we discuss here.

As mentioned, using the presented approach leads to an
increased McCabe complexity for the traversal implementa-
tion in Java SE5, while it reduces the LOC and number of
words. This has concrete implications for the numbers dis-
cussed in Sections 6.1 to 6.3.

For one, this means that when comparing the concrete
numbers as done in Sect. 6.1, the stagnation of number of
words observed between the Java SE 5 and Java SE 14
variants, would not be present with the alternative Java SE
5 implementation. This is because it would be 812 words
longer (making the total number of words 13819) than
the presented implementation and thus one would instead
observe the expected decrease in number of words in the
Java SE 14 implementation. It would still not be as signif-
icant, because only the traversal part of all transformations
are affected, but it would be more in line with the reduction
in code size observed with the LOCmeasure in the presented
implementations. Moreover, the LOC reduction itself would
also be more pronounced because the alternative traversal
implementation does require more lines of code per rule.

123

830 S. Höppner et al.

Specifically the total of the Java SE 5 implementation would
be increased by 1020 LOC to a total of 4272 as opposed to
3252.

The difference in WMC between the Java SE 5 and Java
SE 14 implementation on the other hand would be less clear-
cut. As shown in Fig. 6 a significant portion of the WMC
in the presented Java SE5 implementation stems from model
traversal. In the alternative implementation this complexity
would be significantly reduced by 152 to a total of 640 as
opposed to 792. The overall WMC of the Java SE 5 trans-
formations would still be higher, because the utilisation of
streams in Java SE 14 reduces the McCabe complexity of
other parts of the transformation as well, but it would no
longer be nearly halved.

Our observations regarding thedifferences between imple-
mentations in the two different Java versionswould, however,
not change significantly with the alternative Java SE 5 imple-
mentation. Thanks to the functional interfaces and streams,
in newer Java versions, a more declarative style for defining
transformations can still utilised. The WMC of the code is
also still reduced, and the general focus can be directed a
more towards the actual transformation aspects. In addition,
the observations regarding the comparison of Java and ATL
do not change.

7.2 Language advancements and their influence on
the ability to write transformations: a historical
perspective

The overall number of words required to write transforma-
tions in Java SE14 compared to Java SE5 has not reduced, as
shown in Sections 6.1 and 6.3. However, we have also seen
that less explicit control flow needs to be written and the
focus shifts more to the binding expressions. This shows in
the results discussed in Sections 6.1 and 6.2 as the cyclomatic
complexity of transformationswritten in Java SE14 is greatly
reduced. In principle, a shift towards more data-driven devel-
opment of transformations is therefore possible.Whether this
brings an overall advantage or not is still a debated topic [2]
and in our eyes depends on the experience and preference of
the developers. However, there are many studies in the field
of object-oriented programming that establish a connection
between cyclomatic complexity and reliability [36–40], i.e.
fault-proneness and error rate, as well as some that establish
a connection between cyclomatic complexity and maintain-
ability [41,42], i.e. change frequency and change size.

It has been our experience that newer Java features such as
streams and the functional interfaces make the development
process easier because less work has to be put into building
the traversal, and the assignments within the transformation
methods are now a more prominent part of them, i.e. they are
less hidden in loops and conditions. Whether these advance-

ments justify writing transformations in Java compared to
ATL is discussed in the next section.

7.3 A guideline for when and when not to use Java
or similar GPLs

As shown in Sections 6.2 and 6.3, while newer Java fea-
tures shift the focus more towards a transformation-centric
development, there is still significant overhead from setup,
manual traversal, and especially tracing. Of those three, we
believe the setup overhead to be of least relevance. That is
because the total overhead for setup is small and it is only an
initial overhead that, for the most part, does not need to be
maintained throughout the lifecycle of a transformation. The
situation is similar for traversal overhead. The code required
to be added for all rules or transformation methods, while
more significant in its size still only needs to be written once
and can be ignored for most of the remaining development.
There is little to no room for errors to be introduced , in any
Java implementation that follows a style similar to our imple-
mentations, as each new rule requires nearly identical code
to be added.

Tracing is where, in our opinion, most of the difficult over-
head arises from. It is thus the main argument for writing
transformations in ATL or similar MTLs compared to gen-
eral purpose languages. Managing traces and implementing
their complete semantics cannot be outsourced into a library,
but we can only use a library to reduce the required effort. For
many of the advanced use cases, the mapping semantic relies
on String constants that are passed to both the creation and
resolution methods, which is error-prone. Such cases arise
when traces to objects are needed that were only a side effect
of a transformation rule and not its primary output.

There is also little support through type-checking since
the only way to store traces for all elements is to use the
most generic type possible (i.e. EObject). This results in
the burden of creating and fetching objects of the correct
type to be shifted to the developer , which constitutes a clear
disadvantage compared to ATL, where trace resolution is
type-safe. In simple cases, this problem is less conspicuous,
but in cases where advanced tracing is required, much of
the described difficulties arise and can lead to errors that are
hard to track to its origin. It also forces developers to be
more aware of all parts of the transformation at all times, to
make sure not to miss any possible object types that could
be returned from resolving a trace. There are approaches,
such as Goldschmidt, et al. [43], that bring type safety to
GPL transformations, but they also come with their own set
of limitations when considering advanced features such as
incrementality and reusability of the introduced templates,
that developers need to be aware of, as well as other boiler-
plate code that is required to set it up.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 831

Based on the presented reflection, we believe that general
purpose languages largely excel in transformations where
little to no tracing and especially no advanced tracing is
required. The overhead for setup and traversal is manage-
able in these cases. Moreover, when no traces are required
for the transformation, we can scrap the two-phase mecha-
nism completely and thus half the total overhead of traversal
is required.

There is also an argument to be made about the expres-
siveness of Java for complex algorithms compared to the
limited capabilities of OCL. We were faced with such a
concrete case during the development of a model differenc-
ing tool called SiLift [8]. SiLift takes a so-called difference
model as input and aims at lifting the given input to a higher
level of abstraction by applying in-place transformations to
group together interrelated changes. To achieve this low-level
changes comprised by the given difference model are first
grouped to so-called semantic change sets in a greedy fash-
ion. This greedy strategy, however, can lead to too many
change sets. Specifically, we need to get rid of overlapping
change sets in a second phase of the transformation, referred
to as post-processing in Kelter, and Taentzer [44]. The post-
processing poses a set partitioning problem which may be
framed as an optimization problem:Wewant to cover all low-
level changes by a minimum amount of semantic change sets
which are mutually disjoint. We implemented the heuristics
presented in Kehrer, Kelter, and Taentzer [44] in Java. This
can be hardly expressed in OCL, which was developed as
a language for querying object structures but not for imple-
menting complex algorithms like the post-processing step of
the in-place model transformation scenario described above.

Lastly, related to the previously discussed point of expres-
siveness, the heterogeneity of Java code compared to ATL
code also sticks out. The structure of ATL rules, enforced
by ATL’s strict syntax, allows for writing consistent code
across different transformations. This means that developers
can quickly see the basic intent of a rule. The same can-
not be said for Java methods. While our translation scheme,
combined with the developed libraries, produces an internal
DSL for transformations, Java code is far less homogeneous
due to the absence of any dedicated structure within meth-
ods that perform transformations. This can also be seen in
our classification from Sect. 4.2. Each Java statement can
either have transformation-specific semantics (i.e. Binding
or Tracing) or perform any other transformation-unrelated
task. This problem of intermixed transformation and non-
transformation code within GPLs also persists throughout
other internal transformation DSLs such as the NMF trans-
formation languages [45], YAMTL [46], RubyTL [47], or
SiTra [48]. But this does not only bring disadvantages. The
strict structure of ATL allows to easily designmappings from
one input type to one output type. This can suffice in many
cases as highlighted by Götz and Tichy [16]. However, in

cases where several different input types need to be matched
to the same output type (n-to-1), one input type needs to be
matched to several output types (1-to-n), or a combination of
the twocases (n-to-m), codeduplicates are oftenunavoidable.
In heterogeneous Java code, such situations can be handled
more easily. All in all, the relationship between the input and
output meta-models should also be considered when decid-
ing between using an MTL or a GPL.

7.4 Limits of our results in the context of the
research field

Up till now our discussion of MTL vs. GPL largely boiled
down to the abstraction of model traversal and tracing pro-
vided by ATL. This is of course by design as our study
focused on the comparison of Java and ATL. ATL being the
most used model transformation language and Java being
one of the most dominant programming languages of the last
decade. Nonetheless, there are more model transformation-
specific features that other model transformation languages
provide. Depending on the situation these features could also
influence the decision of using a specific model transforma-
tion language over general purpose languages.

An extension of the model traversal and matching fea-
tures of ATL comes in the form of graph pattern matching in
graph-based model transformation languages such as Hen-
shin [25]. This allows transformation developers to define
complex model element relationships that are automatically
searched and matched by advanced matching engines. There
exist some advances of trying to replicate this behaviour in
general purpose languages for example FunnyQT [49] or
SDMLib/Fujaba [50], but even in those cases DSLs are used
for defining the graph patterns.

Some model transformation languages allow to run anal-
ysis on the written transformations such as critical pair
analysis [51] or even verify property preservation by a trans-
formation [52], both of which are not easily accessible for
transformations written in general purpose languages. The
better analysability of MTLs stems from their syntax being
transformation-specific, as also seen in the structure of our
classification schemata from Sect. 4.

Being able to design bidirectional transformations based
on only one transformation script is also a unique prop-
erty of model transformation languages. Examples of such
languages are detailed and compared in Anjorin, Buch-
mann, Westfechtel, et al. [18] or [53]. Some languages like
eMoflon Leblebici et al.[30], NMF Synchronizations [45],
or Viatra [54] extend this further by providing the ability
to perform incremental transformations both being features
that are hard to reproduce in general purpose languages in our
experience. Even ATL now has several extensions allowing
it to run incremental transformations [55,56].

123

832 S. Höppner et al.

Currently, for general purpose languages to be considered
for writing transformations, all the stated advanced features
such as graph pattern matching, bidirectional and incremen-
tal transformations as well as transformation analysis and
verification should not be an essential requirement of the
development. This is because none of them can be imple-
mented with justifiable effort in GPLs.

8 Threats to validity

This section addresses potential threats to the validity of the
presented work.

8.1 Internal validity

Themanual steps done throughout our study pose some threat
to the internal validity of our study. Both the translation based
on our translation schema and the labelling of the Java code
were done manually and thus open the possibility of human
error. Furthermore the program we developed to calculate
the word count of the Java code could also contain errors.
We counteracted these threats by testing the correctness of
the resulting transformations to the extent that was possible
based on available resources. This was done by testing the
output of the translated transformations against the output
of the ATL transformations from which they originated as
well as through rigorous peer reviews. We further verified
the correctness of our labels and the produced word counts
through reviews as detailed in Sect. 5.

All assumptions we make about cause and effect of
increase or decrease of size and complexity as well as of
overhead is supported by more detailed investigations and
analysis throughout our research.

8.2 External validity

To mitigate a potential threat to the external validity of our
work due to a bias in the selected transformation modules
we chose the analysed transformations from a variety of
sources and different authors. Moreover, both the purpose
and involved meta-models differ between each transforma-
tion module, thus providing a diverse sample set.

However, the transformations chosen for evaluation in our
work were subject to a number of constraints which poses a
threat to the generalizability of our results. While we aimed
to select a variety of transformation modules w.r.t. scope and
size, the limitation of LOC may introduce a threat to the
external validity of our work.

Due to the study setup of selecting ATL transformations
and translating those into Java, there is the possibility of a
bias in favour of ATL. It is potentially more likely for an ATL
solution to exist, if the problem it solves is well suited for

being developed in ATL. As a result the results of our study
might not be applicable to all model transformations. How-
ever, our study does not try to confirm thatATL is the superior
language for developing transformations, but discusses based
on the presented observations, which advantages a dedicated
language like ATL can offer. In order to be able to recognise
why ATL is a good solution for certain cases, it is necessary
to look at precisely such cases. In order to validate our results,
a further study should be carried out. There, the study design
should be reversed so that ATL solutions are derived from
existing Java solutions.

Lastly, all our observations are limited to the comparison
between ATL and Java which limits their generalizability.
While the observations might also hold for comparing Java
or similar languageswith transformation languages similar to
ATL, e.g. QvT-O, they cannot be transferred to graph-based
transformation languages such as Henshin or even QvT-R.

8.3 Construct validity

The next threat concerns the appropriateness and correctness
of our translation schema and the resulting transformations.
We tried to mitigate this threat by following the design sci-
ence research method and using two separate reviewers for
the proposed transformation schema.

The used metrics for measuring complexity and size need
also be discussed. We opted to use cyclomatic complex-
ity for measuring the complexity of Java transformations
because it is one of the most widely used measures for
object-oriented languages and has been shown in numerous
publications to relate both to the maintainability and reliabil-
ity of code [29]. Because both quality attributes are of interest
in the discussion of MTLs vs. GPLs, we believe the cyclo-
matic complexity to be a good measure to assess the impact
that overhead Java code has on the quality of transformations.
Likewise lines of code are a popular measure for size in all of
programming but has also been criticized due to its disregard
for the difference in programming styles and formatting. To
counteract this problem, all Java code was developed by the
same researcher using the same standard code formatter. To
further counterbalance issues with lines of code as a solitary
size measure, we supplemented it with the additional mea-
sure word count that has been argued to be more accurate in
measuring the size of a programmed solution [18]. In cases
where their ranking differs, we then investigated the cause
of the discrepancy and discussed what this means for our
observations and analysis.

8.4 Conclusion validity

To ensure reproducible results, we provide all the data and
tools used for our study in the supplementary materials for
this work. A repetition of our approach using the provided

123

Contrasting dedicated model transformation languages versus general purpose languages:… 833

materials will end with the same results as those presented
here. However, more than one way of translating ATL con-
structs into Java constructs and thus multiple translation
schemas are possible. This impacts the conclusion validity
of our study because different design decisions for the trans-
lation schema may impact the reproducibility of our results.

9 Related work

To the best of our knowledge, there exists no research that
relates the size and complexity of transformations written in
a MTL with that of transformations written in a GPL. How-
ever, there do exist several publications that provide relevant
context for our work.

Hebig et al. investigate the benefit of using special-
ized model transformation languages compared to general
purpose languages by means of a controlled experiment
where participants had to complete a comprehension task,
a change task, and they had to write one transformation
from scratch [13]. They compare ATL, QVT-O, and the GPL
Xtend, and they found no clear evidence for an advantage
when using MTLs. In comparison with their setup, we focus
on a larger number of transformations. Furthermore, exam-
ples shown in the publication also suggest that they did not
consider ATLs refining mode for their refactoring task nor
did their examples focus on advanced transformation aspects
such as tracing.

As previously described, parts of our research build upon
the work presented in Götz and Tichy [16]. Here, the authors
use a complexity measure for ATL proposed in the literature
to investigate how the complexity of ATL transformations
is distributed over different ATL constructs such as matched
rules and helpers. Their results provide a relevant data set to
compare our complexity distributions in Java transformations
to.

In Amstel and Brand [57] the authors use McCabe com-
plexity to measure the complexity of ATL helpers. Among
others, this is also done in Vignaga [58]. Similar to this, we
use McCabe complexity on transformations written in Java,
which includes translated helpers, to measure the complexity
of the code.

The Model Transformation Tool Contest (TTC)6 aims to
evaluate and compare various quality attributes of model
transformation tools. While some of these quality attributes
(e.g. readability of a transformation specification) are related
to theMTL used by the tool, most of the attributes are related
to tooling issues (such as usability or performance) which
are out of the scope of our study. Moreover, the contest
is about comparing different MTLs with each other rather
than comparing them with a GPL. Nonetheless, some cases
have been presented along with a reference implementation

6 https://www.transformation-tool-contest.eu/.

in Java [59,60], which could serve as another source for com-
paring MTLs and GPLs more widely, including tooling- and
execution-related aspects.

Sanchez Cuadrado et al. [28] propose A2L, a compiler for
parallel execution of ATL model transformations. A2L takes
ATL transformations as input and generates Java code that
can be run from within their self-developed engine. Their
data-oriented ATL algorithm describes how ATL transfor-
mations are executed by their code and closely resembles the
structure embodied in our translation schema.

Our approach to utilise libraries and define certain restric-
tions on the structure of code in Java defines an internal DSL
for developing transformations. There exists a large body of
research into the topic of the design of internal transformation
languages for several general purpose languages. It would be
impossible to list them all here. For this reason, we will limit
our discussion to a small selection of internal DSLs which
have points of contact with our Java DSL.

The Simple Transformation Library in Java (SiTra) intro-
duced in Akehurst et al. [48] provides a simple set of
interfaces for defining transformations in Java. Their inter-
faces abstract rules and traversal in which they follow an
approach similar to ours. However, they do not provide ways
for trace management.

Another JVM-based transformation DSL is presented by
Boronat [46]. The language YAMTL is a declarative internal
language forXtend. In contrast to our approach, this language
breaks with the imperative concepts of its host language and
offers an ATL-like syntax for defining transformations.

Batory and Altoyan [61] describe Aocl, an implementa-
tion of OCLs underlying relational algebra for Java. Much
like OCL, Aocl allows developers to define constraints and
queries for a givenmodel using a straightforward syntax. The
authors further argue that, if expanded, Aocl could be used
to write model-to-model transformations, but currently this
feature does not exist. Using a MDE tool it is possible to
generate a Java package that allows to use Aocl for a class
diagram passed to the tool.

In Hinkel and Burger [45] the authors introduce NMF-
Synchronisations, an internal DSL for C# for developing
bidirectional transformations. The language is built with the
intention to reuse as much of the tool support from its host
language as possible. Much like our Java SE14 approach,
they utilise functional language constructs added to C# to
allow a more declarative way of defining transformations
while still retaining the full potential of the host language.

10 Conclusion

In this work, we presented how we developed and applied a
translation schema to translate ATL transformations to Java.
We also described our results of analysing the complex-
ity and size as well as their distribution over the different

123

834 S. Höppner et al.

transformation aspects. For this purpose, we used McCabe
complexity, LOC, and word count to measure the size and
complexity of 12 transformations translated to Java SE5 and
Java SE14, respectively. Based on our findings, we then dis-
cussed improvements of Java over the years as well as how
well suited these newer language iterations are for writing
model transformations.

We found that new features introduced into Java since
2006 help to significantly reduce the complexity of transfor-
mations written in Java. Moreover, while they also help to
reduce the size of transformations when measured in lines of
code, we saw no decrease in the number of words required to
write the transformations. This suggests an ability to express
more information dense code in newer Java versions.We also
showed that, while the overall complexity of transformations
is reduced, the distribution of how much of that complex-
ity stems from code that implements functionality that ATL
and other model transformation languages can hide from the
developer stays about the same. This observation is further
supported by the analysis of code size distribution. Here,
we found that while large parts of the transformation classes
relate to the transformation process itself, within those parts
there is still significant overhead from tracing as well as
general supplemental code required for the transformations
to work. We conclude that while the overall complexity is
reduced with newer Java versions, the overhead entailed by
using a general purpose language for writing model transfor-
mations is still present.

Our regression models for predicting Java code size based
on OCL expressions suggest a linear relationship for both
Java SE5 and Java SE14 with the newer Java version having
a slightly lower growth factor.

Overall we find that the more recent Java version makes
development of transformations easier because less work is
required to set up a working transformation, and the creation
of output elements and the assignment of their attributes are
now a more prominent aspect within the code. From our
results and experience with this and other projects, we also
conclude that general purpose languages aremost suitable for
transformations where little to no tracing is required because
the overhead associated with this transformation aspect is the
most prominent one and holds the most potential for errors.
However, while we do not see them as prominently used, we
believe that advanced features such as property preservation
verification or bidirectional and incremental transformation
development cannot currently be implemented with justifi-
able effort in a general purpose language.

For future work, we propose to also look at the trans-
formation development process as a whole, instead of only
at the resulting transformations. In particular, we are inter-
ested in investigating how the maintenance effort differs
between transformations written in a GPL and those writ-
ten in a MTL. For this purpose, the presented artefacts can

be reused. Simple modifications to the ATL transformations
can be compared to what needs to be adjusted in the cor-
responding Java code. Furthermore, because developers are
the first to be impacted by the languages, it is also important
to include users into such studies. For this reason, we pro-
pose to focus on user-centric study setups to be able to better
study the impact of the language choice on developers. Such
studies could also investigate several other relevant aspects.
For example, how well users are aided by tool support or the
impact of previous knowledge of the languages or involved
models on the resulting GPL or MTL code. Moreover, the
impact of language choice on transformation performance,
an aspect that gets more relevant with the ever increasing size
of models [62], can also be investigated with our setup. Here,
we envision the use of run-timemeasures like execution time
and memory or CPU utilization to compare MTL solutions
with their GPL counterparts, to investigate the scalability of
the underlying technologies.

Another potential avenue to explore is the comparison
with a general purpose language that has a more complete
support for functional programming such as Scala. Addi-
tional features such as pattern matching and easier use of
functional syntax for translating OCL expressions could
potentially help to further reduce the complexity of the result-
ing transformation code.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

AOCL expression translations in Java SE5

� �
1 Collection<Type> newCollection = new

Collection<>();
2 for (Type t: collection) {
3 if (e) {
4 newCollection.add(t);
5 }
6 }� �
List. 24 Translation of collection->select(e) in Java SE5.

123

Contrasting dedicated model transformation languages versus general purpose languages:… 835� �
1 Collection<ResultType> newCollection = new Collection<>();

2 for (Type t: collection) {

3 ResultType r = ...; //manipulate t in accordance with e

4 newCollection.add(r);

5 }� �
List. 25 Translation of collection->collect(e) in Java SE5.

� �
1 boolean includes = false;
2 for (Type t: collection) {
3 includes |= t == x;
4 }� �
List. 26 Translation of collection->includes(x) in Java SE5.

� �
1 element.getAttribute();� �
List. 27 Translation of element.attribute in Java SE5.

� �
1 Collection<AttributeType> newCollection =

new Collection<>();
2 for (Type t: collection) {
3 if (e) {
4 newCollection.add(t.getAttribute());
5 }
6 }� �
List. 28 Translation of collection.attribute in Java SE5.

� �
1 if (i > 5) {}� �
List. 29 Translation of i | i > 5 in Java SE5.

References

1. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. (2003).
https://doi.org/10.1109/MS.2003.1231150

2. Götz, S., Tichy, Matthias, Groner, R.: Claimed advantages and
disadvantages of (dedicated) model transformation languages: a
systematic literature review. Softw. Syst. Model. 20(2), 469–503
(2021). https://doi.org/10.1007/s10270-020-00815-4

3. Jouault, Frédéric., et al.: ATL: a model transformation tool. Sci.
Comput. Program. (2008). https://doi.org/10.1016/j.scico.2007.
08.002

4. Krikava, F., Collet, P., France, R.: Manipulating models using
internal domain-specific languages. In: Symposium On Applied
Computing. Gyeongju, South Korea (2014). https://doi.org/10.
1145/2554850.2555127

5. Gray, J., Karsai, G.: An examination of DSLs for concisely rep-
resenting model traversals and transformations’. In: Proceedings
of the 36th Annual Hawaii International Conference on System
Sciences (2003). https://doi.org/10.1109/HICSS.2003.1174892

6. Jouault, F. et al.: ATL: a QVT-like transformation language. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications
(2006). https://doi.org/10.1145/1176617.1176691

7. Burgueño, L., Cabot, J., Gerard, S.: The future of model trans-
formation languages: an open community discussion. In: Journal
of Object Technology 18.3. Ed. by Anthony Anjorin and Regina
Hebig. The 12th International Conference on Model Transforma-
tions, 7:1-11. ISSN: 1660-1769 (2019). https://doi.org/10.5381/
jot.2019.18.3.a7

8. Kehrer, T., Kelter, U., Ohrndorf, M. et al.: Understanding model
evolution through semantically lifting model differences with
SiLift. In: 28th IEEE International Conference on Software Main-
tenance (ICSM), pp. 638–641. IEEE (2012)

9. Kehrer, T., Taentzer, G. et al.: Automatically deriving the spec-
ification of model editing operations from meta-models. In:
International Conference on Theory and Practice of Model Trans-
formations, pp. 173–188. Springer (2016)

10. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of
consistency-preserving edit operations for MDE tools. In:
Demos@ MODELS 14 (2014)

11. Schultheiß, A., Bittner, P.M. et al.: On the use of product-line vari-
ants as experimental subjects for clone-and-own research: a case
study. In: SPLC ’20: 24thACMInternational Systems andSoftware
Product Line Conference, Montreal, Quebec, Canada, October 19–
23, 2020, Volume A. ACM, 27:1–27:6 (2020)

12. Schultheiß, A., Boll, A., Kehrer, T.: Comparison of graph-based
model transformation rules. J. Object Technol. 19(2), 1–21 (2020)

13. Hebig, R. et al.: Model transformation languages under a magni-
fying glass: a controlled experiment with Xtend, ATL, and QVT.
In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering.NewYork,NY,USA (2018). https://
doi.org/10.1145/3236024.3236046

14. Rentschler, A. et al.: Designing information hiding modularity for
model transformation languages. In: Proceedings of the 13th Inter-
national Conference on Modularity. MODULARITY ’14 (2014).
https://doi.org/10.1145/2577080.2577094

15. Höppner, S., Tichy, M., Kehrer, T.: Contrasting Dedicated Model
Transformation Languages vs. General Purpose Languages: AHis-
torical Perspective on ATL vs. Java based on Complexity and
Size: Supplementary Materials (2021). https://doi.org/10.18725/
OPARU-38923

16. Götz, S., Tichy, M.: Investigating the origins of complexity and
expressiveness in ATL transformations. In: The 16th European
Conference on Modelling Foundations and Applications (ECMFA
2020) Journal of Object Technology 19.2. Ed. by Richard Paige
and Antonio Vallecillo, 12:1-21 (2020). https://doi.org/10.5381/
jot.2020.19.2.a12

17. Wieringa, R.J.: Design science methodology for information sys-
tems and software engineering. Undefined (2014). https://doi.org/
10.1007/978-3-662-43839-8

18. Anjorin, A., Buchmann, T., Westfechtel, B., et al.: Benchmarking
bidirectional transformations: theory, implementation, application,
and assessment. Softw. Syst. Model. (SoSyM). (2019). https://doi.
org/10.1007/s10270-019-00752-x

19. McCabe, T.J.:A complexitymeasure. IEEETrans. Softw.Eng.SE–
2(4), 308–320 (1976). https://doi.org/10.1109/TSE.1976.233837

20. Götz, S., Tichy, M., Kehrer, T.: Dedicated model transformation
languages vs. general-purpose languages: a historical perspective
on ATL vs. java. In: Proceedings of the 9th International Confer-
ence on Model-Driven Engineering and Software Development—

123

836 S. Höppner et al.

Volume 1: MODELSWARD, INSTICC. SciTePress, pp. 122–135
(2021). https://doi.org/10.5220/0010340801220135

21. Steinberg, D., et al.: EMF: Eclipse Modeling Framework. Pearson
Education (2008)

22. OMG.:Meta Object Facility (MOF) (2016). https://www.omg.org/
spec/MOF

23. OMG.: Object Constraint Language (OCL) (2014). https://www.
omg.org/spec/OCL/2.4/PDF

24. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

25. Strüber, D. et al.: Henshin: a usability-focused framework for emf
model transformation development. In: International Conference
on Graph Transformation, pp. 196–208. Springer (2017)

26. Anjorin,A., Buchmann, T.,Westfechtel, B.: The families to persons
case. In: TTC’17 (2017)

27. Jouault, F.: ATL/Tutorials—Create a simple ATL transforma-
tion (2013). https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_
simple_ATL_transformation. Accessed 12 June 2021

28. SanchezCuadrado, J., et al.: Efficient execution of ATL model
transformations using static analysis and parallelism. IEEE Trans.
Softw. Eng. (2020). https://doi.org/10.1109/TSE.2020.3011388

29. Jabangwe, R., et al.: Empirical evidence on the link between
object-oriented measures and external quality attributes: a system-
atic literature review. Empir. Softw. Eng. 20(3), 640–693 (2015).
https://doi.org/10.1007/s10664-013-9291-7

30. Weidmann, N. et al.: Incremental (unidirectional) model trans-
formation with eMoflon::IBeX. In: Transformation, Graph (ed.)
Esther Guerra and Fernando Orejas, pp. 131–140. Springer, Cham
(2019) 978-3-030-23611-3

31. Cicchetti, A., et al.: JTL: a bidirectional and change propagating
transformation language. In: Malloy, B., Staab, S., van den Brand,
M. (eds.) Software Language Engineering, pp. 183–202. Springer,
Berlin (2011)

32. Hinkel, G.: NMF: A Modeling Framework for the. NET Platform,
KIT (2016)

33. Buchmann, T.: BXtend-a framework for (bidirectional) incremen-
tal model transformations. In: MODELSWARD, pp. 336–345
(2018)

34. Aniche, M.: Java code metrics calculator (CK) (2015). https://
github.com/mauricioaniche/ck

35. Batory, D.S., Altoyan, N.: Aocl: a pure-java constraint and trans-
formation language for MDE. In: MODELSWARD, pp. 319–327
(2020)

36. Singh, Y., Kaur, A.,Malhotra, R.: Application of logistic regression
and artificial neural network for predicting software quality mod-
els. In: Software Engineering Research and Practice, pp. 664–670
(2007)

37. Aggarwal, K.K., et al.: Investigating effect of design metrics on
fault proneness in object-oriented systems. J. Object Technol.
6(10), 127–141 (2007)

38. Pai, J.G., BechtaDugan, J.: Empirical analysis of software fault
content and fault proneness using bayesian methods. IEEE Trans.
Softw. Eng. 33(10), 675–686 (2007). https://doi.org/10.1109/TSE.
2007.70722

39. Guo, Y. et al.: An empirical validation of the benefits of adhering to
the law of demeter. In: 2011 18th Working Conference on Reverse
Engineering, pp. 239–243 (2011). https://doi.org/10.1109/WCRE.
2011.36

40. GopalakrishnanNair, T.R., Selvarani, R.: Defect proneness estima-
tion and feedback approach for software design quality improve-
ment. Inf. Softw. Technol. 54(3), 274–285 (2012). https://doi.org/
10.1016/j.infsof.2011.10.001

41. Olbrich, S. et al.: The evolution and impact of code smells: a case
study of two open source systems. In: 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement, pp.
390–400 (2009). https://doi.org/10.1109/ESEM.2009.5314231

42. Alshayeb, M., Li, W.: An empirical validation of object-oriented
metrics in two different iterative software processes. IEEE Trans.
Softw. Eng. 29(11), 1043–1049 (2003). https://doi.org/10.1109/
TSE.2003.1245305

43. Hinkel, G., Goldschmidt, T., et al.: Using internal domain-specific
languages to inherit tool support and modularity for model trans-
formations. Softw. Syst. Model. 18(1), 129–155 (2019). https://
doi.org/10.1007/s10270-017-0578-9

44. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the
semantic lifting of model differences in the context of model ver-
sioning. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pp. 163–172. IEEE
(2011)

45. Hinkel, G., Burger, E.: Change propagation and bidirectionality in
internal transformation DSLs. Softw. Syst. Model. 18(1), 249–278
(2019). https://doi.org/10.1007/s10270-017-0617-6

46. Boronat, A.: Expressive and efficient model transformation with
an internal DSL of Xtend. In: Proceedings of the 21th ACM/IEEE
International Conference onModel Driven Engineering Languages
and Systems. MODELS ’18. Copenhagen, Denmark: Associa-
tion for Computing Machinery, pp. 78–88. ISBN: 9781450349499
(2018). https://doi.org/10.1145/3239372.3239386

47. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical,
extensible transformation language. In: Rensink, A., Warmer, J.
(eds.) Model Driven Architecture-Foundations and Applications,
pp. 158–172. Springer, Berlin (2006)

48. Akehurst, D.H. et al.: SiTra: simple transformations in java. In:
Model Driven Engineering Languages and Systems, pp. 351–364.
Springer (2006), ISBN: 978-3-540-45773-2

49. Horn, T.:Model queryingwith FunnyQT. In:Duddy,K., Kappel, G.
(eds.) Theory and Practice of Model Transformations, pp. 56–57.
Springer, Berlin (2013)

50. Zündorf, A. et al.: Story driven modeling libary (SDMLib): an
Inline DSL for modeling and model transformations, the Petrinet-
Statechart case. In: SixthTransformationToolContest (TTC2013),
ser. EPTCS (2013)

51. Born, K., et al.: Analyzing conflicts and dependencies of rule-
based transformations in henshin. In: Egyed, A., Schaefer, I. (eds.)
Fundamental Approaches to Software Engineering, pp. 165–168.
Springer, Berlin (2015)

52. Ehrig, H., Ermel, C., et al.: Semantical correctness and complete-
ness ofmodel transformations using graph and rule transformation.
In: Ehrig, H. (ed.) Graph Transformations, pp. 194–210. Springer,
Berlin (2008)

53. Leblebici, E. et al.: A comparison of incremental triple graph gram-
mar tools. In: Electronic Communications of the EASST67 (2014).
https://doi.org/10.14279/tuj.eceasst.67.939

54. Bergmann, G., et al.: Viatra 3: a reactive model transformation
platform. In: Kolovos, D., Wimmer, M. (eds.) Theory and Practice
of Model Transformations, pp. 101–110. Springer, Cham (2015)

55. Martínez, S., Tisi, M., Douence, R.: Reactive model trans-
formation with ATL. In: Science of Computer Program-
ming 136, pp. 1–16 (2017). ISSN: 0167-6423. https://doi.
org/10.1016/j.scico.2016.08.006. https://www.sciencedirect.com/
science/article/pii/S016764231630106X

56. Le Calvar, T., et al.: Efficient ATL incremental transformations. J.
Object Technol. 18(3), 1–2 (2019)

57. van Amstel, M.F., van den Brand, M.G.J.: Using metrics for
assessing the quality of ATL model transformations. In: MtATL@
TOOLS (2011)

58. Vignaga, A.: Metrics for measuring ATL model transformations.
In:MaTE,Department ofComputer Science,Universidad deChile,
Tech. Rep (2009)

59. Getir, S. et al.: State elimination as model transformation problem.
In: Transformation Tool Contest at the Conference on Software

123

Contrasting dedicated model transformation languages versus general purpose languages:… 837

Technologies: Applications and Foundations (TTC@STAF), pp.
65–73 (2017)

60. Beurer-Kellner, L., von Pilgrim, J., Kehrer, T.: Round-trip migra-
tion of object-oriented data model instances. In: Transformation
Tool Contest at the Conference on Software Technologies: Appli-
cations and Foundations (TTC@STAF) (2020)

61. Batory, D.S., Altoyan, N.: Aocl: a pure-java constraint and trans-
formation language for MDE. In: MODELSWARD, pp. 319–327
(2020)

62. Groner, R., et al.: A survey on the relevance of the performance
of model transformations. J. Object Technol. 20(2), 1–27 (2021).
https://doi.org/10.5381/jot.2021.20.2.a5

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

StefanHöppner is a Ph.D. student
at Ulm University. His research
is focused on topics surrounding
the development and evaluation of
model transformation languages.
In particular, he is interested in
the advantages and disadvantages
that these languages offer in con-
trast to general purpose languages.
Prior to his work as a Ph.D. stu-
dent he was a student of Soft-
ware Engineering at Ulm Univer-
sity where he received his M.Sc.
in.

Timo Kehrer is professor at Hum
boldt-Universität zu Berlin (Ger-
many), heading the Model-Driven
Software Engineering Group at the
Department of Computer Science.
Before that, Kehrer was working
as research assistant in the Soft-
ware Engineering and Database
Systems Group at University of
Siegen (Germany) from 2011 to
2015, and as postdoctoral research
fellow in the Dependable Evolv-
able Pervasive Software Engineer-
ing Group at Politecnico di Milano
(Italy) from 2015 to 2016. He has

active research interests in various fields of model-driven and model-
based software and system engineering, with a particular focus on
model evolution.

Matthias Tichy is full professor for
software engineering at the Uni-
versity of Ulm and director of the
institute of software engineering
and programming languages. His
main research focus is on model-
driven software engineering, par-
ticularly for cyber-physical sys-
tems. He works on requirements
engineering, dependability, and val-
idation and verification comple-
mented by empirical research tech-
niques. He is a regular member of
programme committees for con-
ferences and workshops in the area

of software engineering and model driven development. He is co-
author of over 110 peer-reviewed publications.

123

	Abstract
	Acknowledgements
	List of Publications
	Personal Contribution
	Introduction
	Background
	Model-Driven Engineering
	Domain-specific Languages
	Model Transformation Languages
	External and Internal Transformation Languages
	Transformation Rules
	Rule Application Control: Location Determination
	Directionality
	Incrementality
	Tracing
	Dedicated Model Navigation Syntax

	Goals and Scope
	Related Work
	Classifications of Model Transformation Languages
	Studies on Domain Specific Languages
	Studies on Model Driven Software Engineering
	Studies on Model Transformation Languages

	Research Methodology
	Contribution
	Paper A: Claims and Evidence in Literature
	Paper B: Factors for Advantages and Disadvantages
	Paper C: Quantification of Influence Weights of Factors
	Paper D: The Suitability of ATL for Expressing Model Transformations
	Paper E: A Historical Perspective on ATL Versus Java Based on Complexity and Size

	Discussion
	The State of Claims in Literature and How We Got There
	The Tooling Problem
	The Problem With Empirical Research
	MTL vs. GPL: a guide
	Cyclomatic Complexity in Data-Driven Programming

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion and Future Work

	Paper A
	Introduction
	Background
	Model-Driven Engineering
	Domain specific languages
	Model transformation languages

	Methodology
	Objective and Research Questions
	Search Strategy
	Selection Criteria
	Quality Assessment Checklist and Procedures
	Data Extraction Strategy
	Synthesis Procedures
	RQ1: What advantages and disadvantages of model transformation languages are claimed in literature?
	RQ2: What advantages and disadvantages of model transformation languages are validated through empirical studies or by other means?

	Findings
	Demographics
	Quality of publications
	RQ1: Advantages and Disadvantages of Model Transformation Languages
	Analysability
	Comprehensibility
	Conciseness
	Debugging
	Ease of writing a transformation
	Expressiveness
	Extendability
	Just better
	Learnability
	Performance
	Productivity
	Reuse and Maintainability
	Semantics and Verification
	Tool support
	Versatility

	RQ2: Supporting evidence for Advantages and Disadvantages of MTLs
	Citation as evidence
	Empirical evidence
	Evidence by example/experience
	No evidence

	Discussion
	Claims about model transformation languages in context of software quality
	Claims about model transformation languages in context of language features
	Lack of evidence for MTL advantages and disadvantages
	Research direction

	Related Work
	Threats to validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion

	Paper B
	Introduction
	Background
	Model-driven engineering
	Domain-specific languages
	Model transformation languages
	External and Internal transformation languages
	Transformation Rules
	Rule Application Control: Location Determination
	Directionality
	Incrementality
	Tracing
	Dedicated Model Navigation Syntax

	Methodology
	Interview Preparation
	Identifying the appropriateness of semi-structured interviews
	Retrieving previous knowledge
	Interview guide
	Selecting & contacting participants

	Interview Conduction and Transcription
	Coding & Analysis
	Initial Text Work
	Developing thematic main codes
	Coding of all the material with main codes
	Compilation of all text passages coded with the same main code
	Inductive development of sub-codes
	Coding of all the material with complete code system
	Simple and complex analysis and visualisation
	Privacy and Ethical concerns

	Demographics
	Background
	Experience
	Used languages for transformation development

	Findings
	GPL Capabilities
	MTL Capabilities
	Domain Focus
	Bidirectionality
	Incrementality
	Mappings
	Traceability
	Automatic Model Traversal
	Pattern-Matching
	Model Navigation
	Model Management
	Reuse Mechanism
	Learnability

	Tooling
	Analysis Tooling
	Code Repositories
	Debugging Tooling
	Ecosystem
	IDE Tooling
	Interoperability
	Tooling Awareness
	Tool Creation Effort
	Tool Learnability
	Tool Usability
	Tool Maturity
	Validation Tooling

	Choice of MTL
	Skills
	Language Skills
	User Experience/Knowledge

	Use Case
	Involved (meta-) models
	Semantic gap between input and output
	Size

	Cross-Factor Findings
	The Effects of MTL Capabilities
	Tooling Impact on Properties other than Tool Support
	The Importance of Moderating Factors

	Actionable Results
	Evaluation and Development of MTL Capabilities
	Evaluation of MTL Capabilities and Properties
	Improving MTL Capabilities

	Steps Towards Solving the Tooling Problem

	Threats to validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Related Work
	Empirical studies on model transformation languages
	Empirical studies on model transformations
	Interview studies on model driven software engineering

	Conclusion

	Paper C
	Introduction
	Background
	Model-driven engineering
	Domain-specific languages
	Model transformation languages
	External and Internal transformation languages
	Transformation Rules
	Rule Application Control: Location Determination
	Directionality
	Incrementality
	Tracing
	Dedicated Model Navigation Syntax

	Structural equation modelling and (Universal) Structural Equation Modelling
	MTL Quality Properties

	Methodology
	Survey Design
	Questionnaire
	Pilot Study
	Target Subjects & Distribution

	Data Analysis
	Privacy and Ethical concerns

	Demographics
	Experience in developing model transformations (12)
	Languages used for developing model transformations (10) and experience therein (11)
	Sizes (12,14)
	Conceptual distance between meta-models (16)
	Meta-model quality (17)

	Results
	RQ1: Which of the hypothesised interdependencies withstands a test of significance? & RQ4: What additional interdependencies arise from the analysis that were not initially hypothesised?
	RQ2: How strong are the influences of model transformation language capabilities on the properties thereof?
	RQ3: How strong are moderation effects expressed by the contextual factors use-case, skills & experience and MTL choice?

	Discussion
	Implications of results
	Suggestions for further empirical evaluation studies
	Suggestions on language development

	Interesting observations outside of USM
	Critical Assessment of the used methodology

	Threats to validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Related Work
	Studies on the Properties of Model Transformation Languages
	Empirical Studies on Model Transformation Languages

	Conclusion

	Paper D
	Introduction
	The Atlas Transformation Language (ATL)
	Modules
	Helpers and Attributes
	Rules
	Refining mode

	Complexity Measures
	Syntactic complexity
	Computational complexity

	Methodology
	Module Selection
	RQ1,2: How is the complexity of ATL transformations distributed over multiple transformations and transformation components and are there any salient characteristics?
	RQ3: How does the usage of refining mode impact the complexities of ATL modules?
	RQ4: How large is the percentage of bindings that require trace-based binding resolution?
	RQ5: What portion of ATL transformations use implicit rule ordering?

	Result Summary and Analysis
	RQ1: How is the complexity of ATL transformations distributed over multiple transformations and transformation components?
	RQ2: When looking at the complexity distributions of individual transformation components, are there any salient characteristics?
	RQ3: How does the usage of refining mode impact the complexities of ATL modules?
	RQ4: How large is the percentage of bindings that require trace-based binding resolution?
	RQ5: What portion of ATL transformations use implicit rule ordering?

	Related Work
	Threats to validity
	Conclusion and Future Work

	Paper E
	Introduction
	Context & Motivation
	Research Goals and Questions
	Research Methodology
	Results
	Contributions and Paper Structure

	Background
	Models in MDE
	ATL
	Units
	Helpers and Attributes
	Rules
	Refining Mode

	Technological advancements in Java SE14 compared to Java SE5
	Functional Interfaces
	Streams

	Translation Schema
	Schema Development
	General Setup and Module Translation
	Libraries
	IO Library
	Traversal Library
	Trace Library

	Matched Rule Translation
	Called Rule Translation
	Helper and OCL Expression Translation

	Code Classification Schema
	ATL
	Java

	Size and Complexity Analysis Methodology
	RQ1: How much can the complexity and size of transformations written in Java SE14 be improved compared to Java SE5?
	RQ2: How is the complexity of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to each other and ATL?
	RQ3: How is the size of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to each other and ATL?
	RQ4: How does the size of query aspects of transformations written in Java SE5 & SE14 compare to each other and ATL?

	Results
	RQ1: How much can the complexity and size of transformations written in Java SE14 be improved compared to Java SE5?
	RQ2: How is the complexity of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to ATL?
	Java SE5
	Java SE14

	RQ3: How is the size of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to ATL?
	Java SE5
	Java SE14

	RQ4: How does the size of query aspects of transformations written in Java SE5 & SE14 compare to each other and ATL?

	Discussion
	The impact of not outsourcing model traversal in Java SE 5
	Language Advancements and Their Influence on the Ability to Write Transformations: A Historical Perspective
	A Guideline for When and When Not to Use Java or similar GPLs
	Limits of our Results in the Context of the Research Field

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Related work
	Conclusion

	Bibliography
	Appendix - Paper A
	SLR results
	Overview over all extracted claims

	Appendix - Paper B
	Interview Questions
	Mail Templates
	Demographics
	Data Privacy Agreement
	Quotations

	Appendix - Paper C
	USM Results for Moderation Effects
	Survey Overview
	Mail Templates
	Data Privacy Agreement

	Appendix - Paper D
	Appendix - Paper E
	OCL expression translations in Java SE5

	Published Versions of included Articles
	Paper A
	Paper B
	Paper D
	Paper E

