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Summary 

The aim of the presented Internal Report 2001 is to analyse the temporal 
development of defoliation of Picea abies in Europe by means of the transnational 
Level I data set. Additional external deposition and meteorological data are used to 
describe the influence of single stress factors. 
Evaluations are conducted using multivariate linear models in a two step analysis. 
Step 1 evaluates variables that were available in annual or higher time resolution in 
relation to annual mean plot defoliation for the years 1994 to 2000. The regression 
coefficient for the interaction term 'year*plotid’ is interpreted as plot-wise time trend. It 
is presented in maps and after a geostatistical analysis detecting spatial 
autocorrelation interpolated by the geostatistical method “kriging”. Rooted mean 
squared errors (RMSE) are calculated for all plots. They give a sensitive measure for 
the discontinuity of defoliation development and serve as a conservative estimate for 
the accuracy of the linear models offering a tool for quality control when interpreting 
the time trends. 
Results of step 1 show significant influences of insects, age and country as well as 
their interaction terms on annual mean defoliation. Time trends were only significant 
for plots and countries, which shows that for Picea abies there is no significant mean 
European wide trend. Fungi gave implausible results, whereas summer precipitation 
showed insignificant but mostly plausible effects. Larger regions with deteriorating 
defoliation are observed in southern Sweden and Finland, in Estonia as well as in 
alpine regions of Switzerland, Austria, and Slovenia. Improving crown condition is 
observed in northern Scandinavia, Lithuania, southern Poland, and in Slovakia. 
The analysis of the RMSE reveals single plots with extreme defoliation values, these 
could however only be partly explained by information available from the Level I data 
base. The interpretation of time trends at these plots has to be conducted with care.  
Step 2 of the analysis is the explanation of plot-wise time trends and RMSE values by 
predictors of low temporal resolution. Preliminary results show that trends of 
defoliation are correlated with the difference in SOx deposition between 1998 and 
1997, with water availability and base saturation. The promising results for sulphur 
deposition underline the necessity to include annual deposition values into step 1 of 
the analysis in the future. Site characteristics may show closer correlation when 
combined with meteorological data of higher time resolution. 
After discussion of the results in an editorial group the evaluations are foreseen to be 
extended and applied to other main tree species for a presentation in the Forest 
Condition Report of UN/ECE and EU in 2002. 
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1 Introduction 

Under the UNECE Convention on Long-range Transboundary Air Pollution the 
International Cooperative Programme on the Assessment and Monitoring of Air 
Pollution Effects on Forests (ICP Forests) is operated under the Lead of Germany 
with a participation of 39 countries. The Programme Co-ordinating Centre (PCC) of 
the ICP Forests is hosted by the Federal Research Centre for Forestry and Forest 
Products in Germany. The crown condition survey is conducted on a large-scale 
transnational gridnet (Level I) of the ICP Forests, which was established in 1986. It is 
conducted in close co-operation with the European Union's "Scheme on the 
Protection of Forests against Atmospheric Pollution". The survey aims to assess the 
spatial and temporal variation of forest condition in relation to natural and 
anthropogenic factors, particularly air pollution.  
The spatial distribution of crown condition can be expressed by the medium-term 
mean defoliation. This derived variable was introduced already in the Technical 
Report 2001 (Lorenz et al. 2001), where the possibility of a preliminary adjustment for 
methodologically caused variation was analysed. As a result of this study the 
preliminarily adjusted defoliation (PAD) for the six main tree species in Europe was 
calculated. It expresses the deviation of defoliation from the respective age and 
country specific mean defoliation. It is a measure for the level of defoliation at a given 
point or region, preliminarily reduced by methodologically caused variation. 
The aim of the analysis in the present report is to describe the temporal development 
of defoliation and its correlation with environmental factors. The temporal 
development of crown condition is described in a first step using predictor variables 
varying over time and those variables (age, country, and their interaction), which are 
useful to clean defoliation data from methodological differences (Lorenz et al., 2001). 
A serious drawback in this context is data availability. Only for a few potentially 
influencing factors time varying predictor variables were available. Many factors could 
only be described by time constant predictor variables in a second step. A two-step 
analysis was selected to use both types of predictor variables, time varying as well as 
time constant ones. Statistical and geostatistical methods are used to detect regions 
where a significant temporal development was observed and to indicate those 
variables and factors, which are expected to be responsible for this with high 
probability. 
The presented work report is the unmodified version of the Internal Report 2001. 
 
Richard Fischer is deputy Head of the Programme Co-ordinating Centre of ICP 
Forests which is hosted by the Institute for World Forestry. Dr. Volker Mues is 
scientist at the same institute. 
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2 Data and Methods 

2.1 Data 

In the 2001 Technical Forest Condition Report (Lorenz et al. 2001) spatial variation of 
crown condition was described as the so-called preliminarily adjusted defoliation 
(PAD). This parameter accounts for methodological differences between the 
countries. Results were presented for the six main tree species Fagus sylvatica, 
Picea abies, Pinus pinaster, Pinus sylvestris, Quercus ilex, and Quercus robur et 
petraea. 
In general, for all main tree species spatio-temporal analyses of defoliation are 
planned in the Technical Report 2002. In this respect first evaluations focussing on 
Picea abies are presented in the present Internal Report 2001. The analyses focus 
on Picea abies because of mainly two reasons: (i) this tree species is observed at a 
very high number of plots so that even models with a higher number of degrees of 
freedom can be calculated and (ii) Picea abies shows no clear deviation from the 
linear correlation with age (Lorenz et al., 2001, pp. 56 f.). Furthermore the spatial 
distribution of Picea abies reaches from the north of Norway to Italy and from Spain 
to the east of Europe. The data from France and Italy were not used because of 
methodological changes from 1996 to 1997 in both countries, which would influence 
analysis of temporal development. 
The study is based on data from all plots, for which continuous observations from 
1994 to 2000 were available on average for more than 2 trees of Picea abies. Target 
variable of the first step of the analysis was annual mean defoliation with 7 
observations for the years 1994 to 2000 for each survey plot. 

2.1.1 Time-varying predictor variables  

In a first step of the analysis (s. Figure 1, page 7) mainly variables of high temporal 
resolution with annual or monthly values for the whole observation period were used 
as predictors. These "time-varying" variables are: 

• Precipitation (monthly mean precipitation; Global Precipitation Climatology 
Centre, GPCC; spatial resolution 1°). Summer precipitation was calculated as 
sum of precipitation from April to September 

• mfungi (plot-wise mean occurrence of fungi, values range from 0 to 1 indicating 
0% to 100% of plot trees are influenced by fungi; derived from the Level I 
database, T3) 
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• minsect (plot-wise mean occurrence of insects, values range from 0 to 1 
indicating 0% to 100% of plot trees are influenced by insects; derived from the 
Level I database, T2) 

mfungi and minsect are calculated from assessed values of the Level-I survey. They 
express the relative frequency of trees affected by insects or fungi, respectively. The 
precipitation values were calculated for each plot by a bilinear interpolation from a 
gridnet of the Global Precipitation Climatology Centre (GPCC) of low spatial 
resolution. 
Additionally, a variable expressing the flow of time was introduced as a 
transformation of the year of observation. As the variation of the original variable 
(range: 2000-1994+1=7, standard deviation: 2) is very low compared with the mean 
(1997) its explaining power is also rather low. This difficulty can be solved by deriving 
the variable year1994 as  

• year1994 = year – 1994 . (1) 

The regression coefficient for year1994 can be interpreted in the same way as that of 
year would be. It is the mean difference of defoliation from one year to the previous 
year. 
Time trend of defoliation can be modelled by several factors1): 

• year1994 (time trend of defoliation in Europe) 

• year1994*country (country-wise mean deviation from European time trend of 
defoliation; methodological and/or real time trends of defoliation per country) 

• year1994*plotid2) (plot specific time trend, which can not be explained by other 
compartments of time trend) 

Table 1: descriptive statistics for time varying variables 

  1994 1995 1996 1997 1998 1999 2000 
mean 0.0137 0.0093 0.0079 0.0092 0.0091 0.0079 0.0105 
std dev 0.0874 0.0672 0.0526 0.0625 0.0617 0.0466 0.0563 
min 0 0 0 0 0 0 0 

minsect 

max 1.00 0.92 0.80 1.00 0.98 0.94 0.77 
mean 0.0264 0.0158 0.0288 0.0323 0.0272 0.0273 0.0265 
std dev 0.1210 0.0837 0.1316 0.1362 0.1148 0.1145 0.1092 
min 0 0 0 0 0 0 0 

mfungi 

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
mean 415 447 413 417 469 415 408 
std dev 116 125 144 121 94 149 110 
min 187 210 202 176 234 180 171 

precipitation
summer 
 
[mm] max 799 809 771 765 793 932 823 

mean 759 787 693 727 815 782 812 
std dev 188 213 200 187 169 240 236 
min 380 481 394 372 476 452 279 

precipitation
year 
 
[mm] max 2086 2071 1412 1942 2059 2214 2065 

The descriptive statistics of the time-varying variables (s. Table 1) show limitations of 
the indices minsect and mfungi. Their distributions are both right skewed in all years 
of the observed period (low mean relative to centre of range, mean–std.dev. 
                                                      
1) Additionally the interaction year1994*age was tested but was not significant in any model/combination of 

predictor variables 
2) Plotid is used as categorical (class) variable in this study 
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negative!). For most years 90% of the plots had the value 0%. In 1995 and 1996 
even the 95% quantile is 0%. The precipitation variables indicate interesting 
differences between the years: Whereas 1998 was a year with high precipitation, e.g. 
for 1996 low precipitation with a high standard deviation was calculated for the Picea 
abies plots. 

2.1.2 Time-constant predictor variables 

Besides the time-varying variables there are time-constant variables with only one or 
two available values in the evaluation period. These are: 

• e.g. water availability and soil type from Level I crown condition assessment  

• e.g. pH, base saturation, and cation exchange capacity (CEC) from Level I soil 
survey 

• meteorological data: long term (1961-1990) mean monthly air temperature and 
mean monthly sum of precipitation 

• Depositions are available from the EMEP Eulerian model for the years 1997 and 
1998 (spatial resolution 50 x 50 km); further indices can be calculated (e.g. 
differences of depositions) 

These variables can be used directly or indirectly by developing derived explanatory 
variables for a statistical analysis of the spatio-temporal development of defoliation. 
An example for transformation, in this case a grouping of a classification variable, is 
shown for soil type (grouping s. Table 2).  57 FAO soil types occurring at the 
evaluated Picea abies plots were grouped into 9 groups. The absolute frequencies of 
these groups (Table 2) are sufficiently high to calculate meaningful statistics e.g. of 
the respective mean defoliation. 

Table 2: frequency distribution of soilgroup 

soilgroup frequency percent 
1 Podzols 285 29.66 
2 Cambisols 268 27.89 
3 Leptosols 73 7.60 
4 Arenosols 70 7.28 
5 Regosols 52 5.41 
6 Luvisols 60 6.24 
7 Histosols 44 4.58 
8 Gleysols 39 4.06 
9 Other 70 7.28 
missing 86  

In order to estimate the risk of soil water deficiencies the 57 FAO soil types were 
classified into two groups. Soil draught group 1 comprises Regosols, Leptosols, 
Arenosols (without gleyic Arenosols), Vertisols, vertic Luvisols. They are regarded as 
soil types with low water holding capacity and thus an elevated risk of water stress in 
periods with low precipitation. Group 2 comprises all the other soil types, where 
increased soil dependent drought risk (sdr) is not expected.  
Whereas the time varying parts of the models of step1 are to be tested with respect 
to their contribution to variance explanation there are the time-constant variables age, 
country, their interaction, and plotid. They are used to explain methodological 
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differences of the age-effect (Lorenz et al., 2001) or to enable the quantification of 
that part of variance of annual mean defoliation, which can be explained by the 
interpretation of plots as subplots of the study area (compare 2.2). The explanation of 
defoliation by plotid combines the explanation by all time constant variables. 

2.2 Analyses 

In a preliminary investigation auto-correlative structures for defoliation were detected 
only for very few plots (PROC AUTOREG, PROC ARIMA, SAS 8.1 online 
documentation). This is probably due to the shortness of the studied time series and 
high temporal variance of defoliation values. Thus, auto-correlative effects were not 
modelled directly.  
Instead, a split-plot analysis (Diggle et al., 1994; Hendriks et al., 2000) was 
calculated. The split plot analysis takes into account that the (7) observations of a 
single plot are expected to react more similar to an incoming factor than those of 
different plots. The test, if a predictor variable is contributing significantly to a model's 
explanation of the target variable's variance. Split-plot test for significance are more 
conservative compared to normal ANOVA tests which are conducted under the 
assumption of statistically independent observations. 
Following the character of the predictors, which can be divided into time-varying and 
time-constant variables a two step analysis was conducted (Figure 1). In the first step 
the time-varying predictor variables (year1994, precipitation, minsects, mfungi) and 
time-constant variables (age, country, their interaction, and plotid), which describe 
mainly methodological differences, were used to explain annual mean plot 
defoliation. The resulting plot-wise regression coefficient of the interaction term 
year1994*plotid can be interpreted as the time trend for each plot. It quantifies the 
plot specific mean change in defoliation from one year to the following. As an 
important result of the models, its spatial variation is presented in maps. In Figure 2 it 
is graphically  presented as the slope of the regression line. In models, which 
additionally include year1994  and the interaction term year1994*country the plot-
wise regression coefficient (for year1994*plotid) does not describe those parts of the 
defoliation trend, which can be explained by European or country-wise mean trends. 
The plot-wise calculated RMSE value is the rooted mean of the squared vertical 
differences between the annual mean defoliation values and the regression line. 
Extreme deviations from the regression line (years 1995 and 1996 in Figure 2) lead 
to significant high values of the plot-wise RMSE. It is a sensitive measure for 
discontinuities of annual defoliation values. 
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model with explanatory
variables, which are

NOT varying over time

plot-wise variation
of defoliation over time

(regress. coefficient) and
RMSE as target variable

geostat. analysis and
mapping of plot-wise RMSE

and regress. coefficient
for year1994*plotid

model with explanatory
variables, which are

varying over time
and time (year1994) itself

mean defoliation
per plot
per year

 

Figure 1: two-step analysis of temporal development of defoliation 

 

Figure 2: mean defoliation at plot 560 in Lithuania over time (year1994) with linear regression showing heavy 
discontinuity 



8 

  

Linearity of the relations between defoliation and its predictors was assumed. For the 
relation between defoliation and age this assumption could be supported for Spruce 
by Lorenz et al. (2001). Generally, deviations from the linear assumption of the 
models can be identified by high values of the rooted mean squared error (RMSE). 
The RMSE is known as usual statistic quantifying accuracy of regression or ANOVA 
models. Here it is calculated for each plot to enable a geo-referenced representation 
of model accuracy. 

High RMSE values are caused by discontinuous temporal development of defoliation 
or simply by a high variance of defoliation. Such discontinuities are additionally 
detected by plot-wise scatter plots of defoliation over time (e.g. Figure 2). The 
reasons for these discontinuities can be manifold. They may be caused by extreme 
weather conditions, insect pests, fungi infections, damages by timber harvest or other 
forest management action. In most cases the Level I data set only allows for a limited 
interpretation of these discontinuities. Nevertheless, high RSME values indicating a 
discontinuous development demand for a cautious interpretation of the time trends at 
the respective plots. In this sense they are an important tool for quality control and 
are presented in maps.  

In the second step the plot-wise regression coefficient of year1994*plotid is used as 
target variable ("derived variable", Diggle et al., 1994) for a second model in which its 
correlation with time constant variables (e.g. deposition level, long time mean 
precipitation, soil and stand parameters) is used. 

2.2.1 geostatistics 

The fundamental assumption of geostatistics is, that a regionalised variable may 
consist of a deterministic, a correlative and a random component (Ripley, 1981; see 
also Schall 1999). The deterministic component, the "drift", can be described e.g. by 
regression or covariance models (step 1 in Figure 1). The correlative component 
expresses, that points located close together show smaller differences concerning 
the regionalised variable than points with a large spatial distance. Because this is a 
spatial correlation of values of one variable, it is called spatial (intra-variable) 
autocorrelation. This component can be used, to calculate weights for an inter-
polation by the data themselves instead of those subjectively chosen, like e.g. 
inverse squared distance weighted interpolations. The random part is that part of the 
target variable's variance, which is neither determined by predictor variables nor 
influenced by the target variable itself in terms of (spatial) autocorrelation. 
The spatial autocorrelation of the regionalised variable can be described by an 
empirical semivariogram which expresses the dissimilarity increasing with distance h 
between (sample) points xi and xi + h (Fig. 2.4.5.2-1). Each point in the empirical 
semivariogram is calculated using equation (5) for the particular distance or class 
(lag) of distance h. The semi-variance is the mean squared difference between i pairs 
of values of the regionalised variable from i pairs of points/locations within the spatial 
distance h. 
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(2)

 

N(h) – number of point pairs with distance h 
z(xi) – regionalised variable at sample point xi 
 

Figure 3: experimental semivariogram of average dissimilarities over spatial distance |h| [m] and a modelled 
spherical semivariogram: nugget: 25.5 sill: 31.0 range: 136 km. 

Three parameters are usually used to describe the shape of the variogram: nugget, 
sill and range. The nugget is the semi-variance, which is observed for the distance h 
= 0. It can be interpreted as the random component of the regionalised variable. 
Mainly two conditions lead to a nugget value greater than zero: 

• The underlying measurement grid net has a too low density, so that the spatial 
structure/autocorrelation could not be detected completely. 

• The underlying spatial structures are covered by inaccuracies of data assessment 
or other reasons of "noise". 

The sill is quantifying the auto-correlative component of the regionalised variable. 
The range is the distance, in which spatial autocorrelation is observed. The closer a 
plot is lying to an estimation (target) point xi, the lower is the particular value of the 
semivariogram γ(h) and the higher is – in general – the (kriging-) weight of this plot 
for the interpolation (kriging) of the regionalised variable at any estimation point z*(xi). 
The result of modelling the empirical semivariogram is the so-called theoretical semi-
variogram. A popular function of the theoretical semivariogram is the spherical model, 
defined by the following equation: 

 

(3)

Spherical semivariograms are used in the present study due to their good 
interpretability. General introductions to applied geostatistics are given by e.g. Ripley 
(1981). 
Only for those points a value of the regionalised variable was estimated, for which at 
least 12 Level I plot values are available in a radius of 800 km and for which at least 
4 plot values are available within a radius of 100 km. The latter precondition was 
defined in order to reduce the area of extrapolation beyond the sample area. For the 
calculation of the kriging values however plots within the 800 km radius were used. 
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Another application of semivariography is the detection of outliers. Plots with 
residuals, which do not fit to the spatial pattern lead to very high variogram values 
and can be identified e.g. by calculating so called variogram clouds. This is of main 
interest when conducting the geostatistical analysis of the residuals of the first step of 
analysis (Figure 1). 
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3 Results 

According to the two-step analysis (Figure 1) the results are presented in two parts. 
Whereas the resulting models of step one describe the time-trend by time-varying 
predictor variables, the results of step 2 show the possibility to explain regression 
parameters of step 1 as derived variable by time-constant predictor variables. 

3.1 Step 1 

The first part of the statistical analysis resulted in a number of multivariate models 
explaining mean plot defoliation for Picea abies as target variable. Their 
corresponding values for R2 and RMSE as well as their predictor variables are 
presented in Table 3. Each model was calculated with plotid as predictor variable 
(line a) as well as without plotid (line b). Split plot analyses (signifcance tests) could 
only be conducted for the full models (first line), whereas the R2 values of the second 
line give a more realistic picture about the explaining potential of the included 
predictor variables. A reference model (ref.) is included into the table in order to show 
how much variance of defoliation can be explained without using any time varying 
predictor variable. 

Table 3: results of analysis of annual mean defoliation (step 1 in Figure 1) 

model R2 RMSE  
mfungi 

 
minsect 

prec.
summer

 
y 

inter.
y*c 

 
a 

 
c 

inter. 
a*c 

inter. 
y*p 

 
p 

I    a 90.34 4.88 o x x x x x x x x x 
 b 49.44 9.48 o x x x x x x x   
II   a 90.34 4.88  x x x x x x x x x 
 b 49.39 9.48  x o x x x x x   
III  a 90.35 4.88  x  x x x x x x x 
 b 49.41 9.48  x  x x x x x   
IV a 90.35 4.88  x    x x x x x 
 b 48.61 9.54  x    x x x   
ref. a 90.27 4.90      x x x x x 
 b 48.03 9.60      x x x   

x – included      y – year1994  inter. – interaction 
o – implausible coefficient   c – country  p – plotid 
x – significant (split-plot analysis)  a – age    

In the first model the index for fungi had an implausible negative regression 
coefficient (the higher the index the less defoliation) and was therefore excluded in 
the following models. Model II shows a plausible negative regression coefficient for 
precipitation in summer only as long as the plot-wise parameters year1994*plotid and 
plotid are included in the model. Model III only includes predictor variables that show 
plausible regression coefficients and which are mostly significant (split-plot analysis). 
There is no significance for an European trend of defoliation but there are 
significantly different trends in some countries (compare Table 4). Because it is still 
not possible to determine whether these differences between countries are caused 
by inconsistencies in the assessment or by real changes in defoliation, the further 
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analysis of step 2 (Figure 1) were conducted with the plot-wise time trend, calculated 
with model IV a. The regression coefficient for minsects is 8.77% for this model. 

Table 4: descriptive statistics for plot-wise time trends (regression coefficients for year1994*plotid; model IVa, 
Table 3) 

n plots mean std dev min max  
  [% defol. / year] 

all plots 1047 0.15 1.62 -9.5 9.4 
Austria 66 0.41 1.02 -4.6 3.0 
Belgium 7 -1.32 3.88 -9.5 2.1 
Denmark 8 -0.61 2.43 -4.4 3.3 
Finland 148 0.29 1.40 -6.6 5.3 
Germany 180 0.04 1.47 -8.1 4.9 
Ireland 3 1.95 2.04 0.5 4.3 
Luxembourg 2 0.51 1.99 -0.9 1.9 
Spain 1 0.93 . 0.9 0.9 
Sweden 162 0.57 1.51 -5.7 9.4 
United Kingdom 11 0.35 1.18 -2.8 1.6 
Bulgaria 3 1.00 0.82 0.1 1.6 
Croatia 1 2.05 . 2.1 2.1 
Czech Republic 83 0.13 1.40 -3.2 3.6 
Estonia 31 1.37 1.67 -1.7 5.6 
Lativia 38 0.47 1.48 -3.3 4.4 
Lithuania 24 -0.44 1.99 -7.8 2.5 
Norway 130 -0.22 1.71 -5.8 5.4 
Poland 26 -1.82 1.77 -6.0 1.1 
Romania 33 0.20 1.59 -1.7 4.8 
Slovak Republic 44 -1.06 1.47 -5.2 0.9 
Slovenia 21 1.31 1.47 -1.3 4.9 
Switzerland 25 0.40 1.33 -2.3 3.6 

The means of plot-wise time trends show marked differences between the countries. 
From the countries with more than 10 plots Estonia shows a mean annual worsening 
of 1.37% defoliation, which equals a mean deterioration of 8.22% defoliation in the 
evaluation period. Highest improvements were reported for the Slovak Republic and 
especially Poland. 

3.1.1 Spatial distribution of plot-wise trend 

The regression coefficient for year1994*plotid represents the plot-wise linear time 
trend in the years from 1994 to 2000. The spatial distribution underlines 
comparatively large variations throughout Europe (Figure 5). A few plots in southern 
Scandinavia, Latvia and Estonia show an annual deterioration between 5% and 10% 
defoliation, which gives a mean deterioration between 30% and 60% in the 6 years 
from 1994 to 2000. Clusters of improving plots are located in south and middle 
Norway as well as in Poland and Slovakia. Border effects seem to appear between 
Czech Republic and Poland but are not confirmed by a closer view, which shows an 
increasing improvement of crown condition going from the north of the Czech 
Republic to the south of Poland. 
The spatial interpolation (kriging) of the regression coefficients (plot-wise time trends) 
levels out the large variations and thus results in a lower maximum and a higher 
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minimum for the 32*32 km grid (Figure 6) compared with the plot values (Figure 5). 
On the other hand the clusters of plots with similar trends become more evident. 
Large areas with deteriorating crown condition of Picea abies are located around the 
Baltic sea (southern Finland, south-eastern Sweden, Estonia and Latvia). Also in 
alpine areas of Switzerland, Austria and Slovenia a deterioration prevails. Intra-
country gradients appear in Romania, Czech Republic, Norway and Finland. 
Predominantly improving trends are found in Slovakia, Poland, and Lithuania. 
The empirical and the modelled theoretical semivariogram for plot-wise time 
trend/regression coefficient is presented in Figure 4. The decrease of spatial auto-
correlation is slower between the first and second range at 97.2km and 520km, 
respectively. This can indicate the occurrence of at least two unexplained factors 
influencing the temporal development of defoliation. 

0
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1.5
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0 100 200 300 400 500 600

|h|

γ(|h|)

 

Figure 4: empirical variogram (dots) and modelled nested spherical variogram (line) for plot-wise time trend;  
|h| = distance in km; nugget: 1.7, sill1: 0.4, range1: 97.2 km, sill2: 0.53, range2: 520 km. 
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Figure 5: plot-wise time trend of defoliation for the years1994 – 2000 
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Figure 6: kriged plot-wise time trend of defoliation for the years1994 – 2000 
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3.1.2 Spatial distribution of plot-wise RMSE 

The plot-wise rooted mean squared error is a measure for the accuracy of the linear 
model explaining the time trends. It gives valuable background information for an 
interpretation of the modelled time trends and is particularly sensitive to 
discontinuities. Results show RMSE values of < 10% for the large majority of the 
plots.  
Only a few plots are characterised by high errors. The map of plot-wise values 
(Figure 9) shows namely two red plots of very high RMSE-values: A scatter plot of 
the survey-plot in Lithuania (Figure 2) shows very high values for the years 1995 and 
1996. In both years the value for minsect is with 0.75 very high (75% of the trees are 

assessed as influenced by 
insects). For the other years 
the respective value always is 
0.  
The Swedish plot 1716 also 
shows heavy discontinuities. 
The scatter plot of this survey-
plot is showing an un-
explained discontinuity from 
1999 to 2000 (Figure 7). The 
defoliation of 100% in 2000 
can yet not be explained by 
the data.  
The semivariogram analysis 
shows a hole effect at 300km 
(Figure 8). In this distance 
from the two extreme values 

the density of plots is lower 
compared to the rest of the 
evaluated area (low density in 
Poland, Baltic sea; see Figure 
9). Therefore, for these 
distances less pairs of 
observations with partici-
pation of one of the two 
extreme values could be used 
for the calculation of the 
empirical semivariogram.  
The map of kriged RMSE 
values (Figure 10) shows only 
for the region in Lithuania a 
very high discontinuity. This is 
mainly but not only due to plot 
560 and its southern 
neighbour plot. 

 
Figure 7: scatter plot of annual mean defoliation for plot 1716 in 

Sweden 
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Figure 8: Empirical variogram (dots) and modelled spherical 

variogram (line) for plot-wise RMSE; |h| = distance in km; 
nugget: 3.51, sill: 1.35, range: 186.3km. 
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Figure 9: plot-wise rooted mean squared error (RMSE) of model for time trend of defoliation for the years 
1994 – 2000 
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Figure 10: kriged plot-wise rooted mean squared error (RMSE) of model for time trend of defoliation for the 
years 1994 – 2000 
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3.2 Step 2 

Two parameters derived from the analysis of step 1 are used as target variables for 
step2: (i) the plot-wise time trend (or regression coefficient) and the plot-wise rooted 
means of squared error (RMSE). Both of them were presented above (Figure 5 and 
Figure 9 respectively). 
Until now the results for both are very preliminary but the following results seem to be 
significant for the two derived variables: 

3.2.1 plot-wise time trend 

There are three factors influencing the time trend: 
1. deposition (diffSOx = depSOx98 – depSOx97) 
2. water availability (WATER) 
3. tree nutrition (base saturation 10 – 30 cm) 

All these factors until now can be described only by time-constant variables. 
Nevertheless, especially the highly significant correlation between plot-wise time 
trend and diffSOx emphasises the necessity of including time-varying information 
about the deposition situation into the analysis of step 1.  
The R2 values of all reasonable models tested yet were below 5%. 

3.2.2 plot-wise RMSE 

Mainly two variables were detected, which are influencing the plot-wise RMSE. The 
positive correlation of long-time mean precipitation in summer and that of base 
saturation (10 – 30 cm) with the RMSE is plausible because discontinuities should be 
more probable in regions where in normal years a good nutrition and water 
availability is given. Extreme weather conditions should lead to more exposed 
discontinuity. 
Nevertheless, the strong inter-correlation between some of the predictor variables 
has to be analysed more intensively.  
Also for the plot-wise RMSE all the R2 values of all reasonable models tested yet 
were below 5%. 
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4 Interpretation of results 

The two-step approach for an analysis of temporal development of annual mean 
defoliation leads to a good explanation of the variance. The part of variance, which is 
explained by methodological differences (reference model b in Table 3, page 11, R2: 
48.0%), is very high. The additional explanation with plotid can increase the R2 to 
84.2% (not in Table 3). The further inclusion of its interaction with time (year1994) 
leads to an R2 of 90.3% (reference model a in Table 3). 
The inclusion of plotid in a model of defoliation means the description of the plot-
specific combination of time-constant stand and site properties. Its interaction with 
year1994 (year1994*plotid) describes the mean plot-wise time trend. A further 
improvement of the model is only possible by including time-varying variables, which 
can explain deviations from this mean time trend. A significant improvement was until 
now only possible by the inclusion of the variable minsect (model IV in Table 3) 
describing the mean occurrence of insects on trees of the respective plot in the 
respective year. The contribution of minsect to the model was significantly but R2 
could be increased only by 0.08%. 
The models built during step1 of the analyses show that for the defoliation data a 
meaningful model can not be built without an explanation of methodologically caused 
differences between the data values. These variables explain a big part of 
defoliation's variance. An additional big part can be explained by plotid and the plot-
wise time trend of defoliation. It is not astonishing that further significant influences 
like e.g. minsect will only lead to comparatively low increases of R2. Nevertheless, 
their importance should not be underestimated (see also Hendriks et al., 2000). 
The predictor variables minsect and mfungi additionally are limited in their 
explanation power by their binary definition (occurrence of absence of insects or 
fungi, respectively). Transformed into percentages of damaged trees per plot, the 
variables are metric on the one hand, but do not quantify the degree of defoliation by 
the abiotic damage. This is the reason for an unsatisfactory description of extreme 
damage as it was e.g. observed for plot 560 in Lithuania (Figure 2, page 7). The 
regression coefficient of minsect (8.77%), which was calculated as mean influence of 
minsect over all plots, can not fully explain the discontinuous increase in defoliation of 
more than 50%. The example from Lithuania demonstrates, that a much higher 
increase of defoliation can be associated with the occurrence of insects. 
The right skewed distribution of both variables, minsect and mfungi, was to be 
expected. Nevertheless there is a danger of confounding effects as only a few plots 
with extreme values might be the basis for high correlations, which are not caused by 
some kind of cause-effect relationship. Plausibility tests of the resulting regression 
coefficients, thus, are a very important task.  
In step 1 minsect was the only time-varying variable, which could contribute to the 
model significantly with a plausible regression coefficient. The other variables, like 
e.g. annual summer precipitation did not contribute as clearly. Nevertheless it is 
expected, that transformations of annual precipitation (e.g. its relation to the long-
term mean value, relations to threshold values, or interactions with variables, which 
express soil water availability) will correlate more clearly with defoliation. This 
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expectation is supported by the results of step 2 concerning the further analysis of 
the plot-wise time trends (regression coefficients). Only those time-constant variables 
seem to be considerably correlated with the plot-wise time trend, that are expressing 
factors, which do vary over time in reality. Especially the correlation between plot-
wise time trend and diffSOx emphasises the necessity of including time-varying 
deposition information into the analysis of step 1. 
Perhaps more promising than the further analysis of the plot-wise time trend is the 
analysis of the coefficients for plotid. As explained above, this variable describes the 
plot-specific combination of time-constant stand and site properties. Thus, it is logical 
to analyse, whether its values can be explained by time-constant variables, which 
describe stand and site properties. 
Calculation and analysis of the plot-wise RMSE gives information about deviation 
from the assumed linearity in the sense of discontinuity. This information is valuable 
as on plots with high RMSE values the time trends have to be interpreted with care 
and a further analysing seems to be a promising task. The RMSE is a conservative 
estimator of model accuracy. In contrast e.g. to the mean absolute error, high 
deviations from the model are weighted over-proportional. That is exactly the 
property, which is needed to detect discontinuities.  
On the other hand values of about 5% should not be taken as a mean model error. 
Thus, perhaps the kriged maps of RMSE, where the plot-wise values are smoothed, 
show values, which are a little more realistic in the sense of model accuracy.  
The assumption of time consistency of assessments can be analysed only if future 
ICCs allow an exact quantification of this task. For assessments in the past a clear 
deviation between real mean trend of defoliation and methodologically caused trend 
(time in-consistence) of defoliation will not be possible. Today it is not expected that a 
time in-consistence of significant quantity occurred in the participating countries. The 
high variability of time trends within countries is an additional statistical document for 
the assumption of time consistency. 
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5 Recommendations 

The mulitvariate statistical approach of step 1 has delivered conclusive results by the 
inclusion of predictor variables changing over time. The presented statistical models 
may still be improved if additional variables are included. In this respect, annual 
deposition values will be of specific interest (EMEP, EDACS). 
Further improvement is expected by inclusion of interaction terms between 
meteorology and stand and soil properties as predicting variables. 
The applied split-plot analysis into account the correlation between plot specific 
defoliation values. Temporal autocorrelation will be examined in future approaches, if 
longer time series are available. The evaluation of time series beginning in the 
eighties might reveal a more significant influence of sulphur depositions on 
defoliation, as the deposition values were higher at these times. On the other hand 
the database is not as comprehensive for the first years of the crown condition 
assessments. 
In future evaluations all variables expressing influences changing over time are 
recommended to be included in step 1 of the analysis. Step 2 on the other hand 
might deliver more conclusive results when focussing on the target variable ‘plotid’. 
As this variable describes plot-specific combinations of time-constant stand and site 
properties, predictor variables should be chosen which also express stand and site 
properties. 
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