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 Abstract 

 

 

The soluble adenylyl cyclase (sAC) catalyzes the generation of cAMP in specified 

microdomains of the cytoplasm and the nucleus. In the current study we demonstrated 

that sAC is involved in aldosterone-mediated gene expression of cAMP-regulated genes 

such as the epithelial Na+ channel (ENaC) and the Na+/K+-ATPase, both mediating the 

aldosterone-induced increase of Na+ currents across the membrane. We identified sAC as 

a co-factor of the cAMP response element binding protein (CREB), binding directly to 

DNA with regulative impact on transcriptional activity mediated by cAMP response 

elements using co-immunoprecipitation, chromatin immunoprecipitation and reporter gene 

assays.  

We identified two distinct promoter regions by reporter gene assays to drive sAC 

transcription: the 5´-flanking region in combination with exon 1, harboring the core 

promoter (5´-promoter) and an intronic promoter located within intron 4. We demonstrated 

that these two alternative promoter regions regulate sAC transcription in a cell type- and 

differentiation-specific manner. The intronic promoter displayed the strongest 

transcriptional activity in vascular endothelial cells (EA.hy926) whereas in kidney cells 

(IHKE and HEK293T), the 5´-promoter was transcriptionally more active. The intronic 

promoter was specifically activated by aldosterone, while the 5´-promoter was activated 

by the cAMP-dependent transcription factors CREB and sAC itself. We defined the 

transcription factors C/EBP alpha and beta as cell type-specific modulators of sAC 

transcription in endothelial and kidney cells. Accordingly, we identified three isoforms of 

sAC (50, 70 and 80 kDa) via western blot analysis with different expression patterns in 

endothelial and kidney cells.  

Screening of 4 kb of the sAC 5'-flanking region in 60 patients with cardiovascular disease 

(MolProMD study) led to the identification of seven genetic variants, three of which are in 

a strong linkage disequilibrium resulting in two molecular haplotypes: MolHap1                     

[Ins-2356 – C-2181 – T-2092] and MolHap2 [Del-2356 – T-2181 – G-2092]. Using reporter gene 

assays, we demonstrated allele-specific transcriptional activity of MolHap1 and MolHap2. 

SP1 was identified as a factor that modulates this allele-specific transcriptional activity.  

Our results indicate that the sAC gene promoter is polymorphic in CVD patients, leading 

to altered sAC expression. This may result in a dysregulation of aldosterone-mediated 

gene expression by sAC acting as a co-factor of CREB. 

To evaluate the genetic impact of sAC gene variants at the population level a large, well 

characterized study population should be genotyped. 
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1 Introduction 

 

 

1.1 Blood pressure regulation 

 

1.1.1 Blood pressure 

 

Blood pressure is one of the principal vital signs. It is defined as the pressure exerted by 

circulating blood upon the walls of arteries at the level of the heart. Since systolic blood 

pressure (SBP) is defined as the peak of cardiac contraction and diastolic blood pressure 

(DBP) as the peak of cardiac relaxation, SBP displays the maximal value, dependent on 

the intensity of the heart deflating, whereas DBP displays the minimal value, dependent 

on arterial elasticity and blood volume. Blood pressure continually adapts to differing 

requirements during the day, such as exercise, stress, diet, disease, and sleep. The 

physiological factors which regulate blood pressure are especially the heart rate, blood 

volume and arterial stiffness. Average daily blood pressure is tightly regulated by several 

organs, such as the hypothalamic-pituitary-adrenocortical axis, lung, kidney, heart, and 

vasculature and fluctuates substantially with behavior. The complex regulation is 

dependent on various factors and interaction between the nervous system and hormonal 

control feedback loops (Guyenet, 2006), as well as the interaction of genes and 

environment. As a result, blood pressure regulation is not completely understood (Herrera 

and Coffman, 2012). Pathophysiological dysregulation of blood pressure leads to 

hypertension and, therefore, to an increased risk of cardiovascular disease, which was 

initially shown in the 1951s by the population based “Framingham heart study” (Dawber et 

al., 1951). 

 

 

1.1.2  Hypertension 

 

Hypertension is one of the predominant health problems worldwide (Whitworth, 2003; 

Wolf-Meier et al., 2003). It is a frequent, chronic and age-related disorder of the vascular 

system, in which the blood pressure value is to high. Hypertension is defined as SBP 

≥140 mmHg and/or DBP  ≥90 mmHg (table 1, Mancia et al., 2007).  
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Table 1: Systolic and diastolic blood pressure thresholds 

Classification of blood pressure values (Adapted from Mancia et al., 2007)  

Category SBP (mmHg) DBP (mmHg) 

Optimum <120 <80 

Normal 120-129 80-84 

High-normal 130-139 85-89 

Hypertension grade 1 (mild) 140-159 90-99 

Hypertension grade 2 (moderate) 160-179 100-109 

Hypertension grade 3 (severe) >180 <110 

Isolated systolic hypertension 140-149 <90 

SBP: systolic blood pressure, DBP: diastolic blood pressure, mmHg: millimetres of mercury 

 

Hypertension is classified into three different grades dependent on blood pressure values 

(table 1). Both, systolic and diastolic blood pressure levels are associated with 

cardiovascular morbidity and mortality (Lewington et al., 2002). Slight increases in blood 

pressure constitute a higher risk for cardiovascular diseases, whereas reduction of SBP 

by 10 mmHg and DBP by 5 mmHg is associated with 40% lower risk of fatal stroke and 

30% lower risk of fatal myocardial infarction (Rosendorff et al., 2007).  

Hypertension is classified as primary or essential hypertension and secondary 

hypertension. In the case of essential hypertension, which is true for 90% of hypertensives 

an organic reason is not observable (Staessen et al., 2003). 10% of hypertensives suffer 

from secondary hypertension, which is characterized by organic diseases or genetic 

mutations in single genes, which lead to high blood pressure.  

Hypertension leads to arteriosclerosis, stroke and myocardial infarction, as well as renal 

and myocardial failure (Lewington et al., 2002; Staessen et al., 2003). One billion people 

worldwide suffer from hypertension, whereas by 2025 this number will increase to 1.56 

billion people. Nearly 8 million people die worldwide from hypertension-related diseases 

(Lee and Cooper, 2009). Overall hypertension concerns 25% to 35% of the adult 

population. Furthermore the prevalence of hypertension increases with age, affecting 

between 60% to 70% of those beyond the seventh decade of life (Staessen et al., 2003). 

SBP continues to rise until the eight decade of life, whereas DBP only rises until the age 

of 50 years (Staessen et al., 2003).  

The substantial influence of lifestyle, inheritance and environmental factors on blood 

pressure was shown in the 1951 by the “Framingham heart study”. Hypertension is 

inducible through stress, alcohol consumption, smoking, high caloric diet, drugs, and 

pregnancy (Dawber et al., 1951). Additionally numerous risk factors for developing 
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hypertension are known, including insufficient physical exercise, high body mass index, 

high salt intake and the individual genetic background.  

In summary, hypertension arises from heterogeneous environmental and genetic factors, 

which are not completely understood yet (Staessen et al., 2003). 

 

 

1.1.3 Genetics of hypertension 

 

The importance of the genetic background of hypertension was shown by several family-

based and twin studies, in which the inheritance of hypertension has been estimated to be 

30% to 50% (Luft, 2001). These studies also illustrate that even individuals with the same 

environmental and genetic background show different phenotypes, as justified by 

epigenetic modifications to the related genes (Drewell et al., 2000). 

Since the genetic background of blood pressure contributes 30% to 50% of the risk to be 

affected, it is important to identify the involved genes, which may predict the risk for 

developing the disease and help to develop antihypertensive drugs (Tanira and Balushi, 

2005). Mostly, hypertension is a polygenic disease, i.e. it depends on a large number of 

genes, each of which takes part in the regulation of blood pressure, with exception of 

monogenic forms, such as glucocorticoid remediable aldosteronism (GRA, Pizzolo et al., 

2005) or liddle disease (Hansson et al., 1995). Apart from spontaneous mutations, genetic 

variants display the heterogeneity of the gene pool of a species. The genome is 

polymorphic to facilitate phenotypic differences between the individuals. Different genetic 

variants, with different frequencies, influence gene expression according to their position 

within the gene.  

A widely used approach to identify genetic variants associated with hypertension is to 

sequence a specific gene from diseased individuals and search for variants existing with a 

higher frequency in affected individuals (Tabor et al., 2002).  

Linkage analysis is used to explain the inheritance of genotype and phenotype of the 

disease in pedigrees, representing information on gene frequency, mode of inheritance 

and penetrance (Tabor et al., 2002).  

Association analysis is performed with large study collectives, comparing cases and 

controls for probable risk alleles. The advantage of such studies is based on the greater 

statistical power to detect genes even those with smaller effects (Tabor et al., 2002). 

Genome-wide association studies (GWAS) are non-hypothesis driven approaches giving 

the possibility to identify previously unknown genetic loci. 

Several recently unidentified genetic variants, which influence systolic and diastolic blood 

pressure, were identified in a genome-wide association study of 200,000 European 
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individuals (International Consortium for Blood Pressure Genome-Wide Association 

Studies, 2011). If these genetic variants are located in coding regions of the gene, the 

function of the protein can be affected, as shown for the “mineralocorticoid receptor 

activating mutation”, which leads to hypertension by a higher constitutive mineralocorticoid 

receptor (MR) activity, caused by a mutation in the coding region of the MR (Geller et al., 

2000). Additionally, variants in the regulatory regions of a gene, which lead to 

hypertension by affecting the amount of the protein, were illustrated for the 

angiotensinogen gene promoter (Brand-Herrmann et al., 2004). Since hypertension is a 

polygenic trait, where the factors and signaling pathways involved are not completely 

understood, it remains important to gain new insights into the molecular basis of blood 

pressure regulation and potential new therapeutic pathways.  

 

 

1.1.4 Pathophysiology of hypertension 

 

As already mentioned, blood pressure is regulated by various genetic and environmental 

factors (Franklin, 2001). The kidneys play a pivotal role in blood pressure regulation 

(Guyton, 1990; Keller et al., 2003), shown e.g. for the hypertensive rat model, in which 

renal sodium excretion is impaired (Bianchi and Ferrari, 1992). Transplantation of a kidney 

from a normotensive to a hypertensive rat reduces the blood pressure of the hypertensive 

rat, pointing to the fundamental role of the kidney in blood pressure regulation (Rettig et 

al., 1990). Salt sensitivity is a common finding in hypertensives, resulting from 

dysregulation of sodium excretion by the kidneys modified by endocrine or neurocrine 

factors (DiBona, 2000) or various mutations in membrane proteins, such as cytoskeleton 

proteins or ion transporters (Manunta et al., 2001). 

The complete set of mechanisms regulating blood pressure is not fully understood, but 

depends mainly on vasoconstriction and vasodilation, sodium and fluid balance, which are 

regulated on various levels.  

 

 

1.1.5 Renin angiotensin aldosterone system (RAAS) 

 

In the kidney, the RAAS is an important system for blood pressure regulation (Brewster 

and Perazella, 2004). Changes in blood pressure are sensed in the glomerular afferent 

arterioles, so that renin is released from the juxtaglomerular apparatus when blood 

pressure decreases. Renin enzymatically cleaves angiotensinogen into the decapeptide 

angiotensin I. The proteolytic angiotensin-converting enzyme (ACE) is localized in the 
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vascular endothelium and cell membranes of the kidneys, brain, heart, and lung, where it 

converts angiotensin I into the octapeptide angiotensin II. Angiotensin II acts primarily via 

the angiotensin II receptor type 1 (AT1), which leads to an increase in Na+ reabsorption 

and arteriolar vasoconstriction, thereby leading to blood pressure elevation (figure 1).  

Additionally angiotensin II induces aldosterone secretion from the zona glomerulosa of the 

adrenal gland (Laragh et al., 1960) and other tissues (Garty, 1992).  

The mechanism of aldosterone signaling is not fully elucidated. Which effects are 

mediated by genomic pathways is still controversial, involving transcription and 

translation, and non-genomic pathways, such as second messengers and kinase 

cascades (Funder, 2006). The MR mediates the genomic pathway of aldosterone 

signaling (Bonvalet, 1998). However, MR downstream signaling is not completely defined. 

In porcine coronary vascular smooth muscle cells, aldosterone induces a Ca2+-dependent 

increase of intracellular cAMP and a time-dependent phosphorylation of CREB, which can 

not be blocked by inhibition of the MR (Christ et al., 1999). In the genomic pathway 

aldosterone-activated MR leads to the expression of genes, which are involved in Na+-

reabsorption in the distal tubule of the kidney. This is mediated by increased expression of 

Na+/K+-ATPase and Na+/H+-exchanger in renal distal tubule cells (Reilly and Ellison, 

2000). The MR can also act via non-genomic pathways, by direct stimulation of 

membrane translocation of ENaC, in addition to the increasing effect on ENaC expression 

on the genomic pathway. ENaC is expressed in the apical membrane of renal tubule 

principal cells. Active ENaC permits Na+ transport between the lumen of the renal 

collecting duct and the blood. Increasing Na+ concentration leads to activation of the 

Na+/K+-ATPase, which exchanges two Na+ ions from the cytosol for three K+ ions from the 

extracellular lumen (Rossier and Stutts, 2009). This depolarization of the apical 

membrane through opened ENaC leads to reabsorption of NaCl and, therefore, increases 

blood pressure. In addition, ENaC is proposed to be the key mediator of aldosterone-

dependent blood pressure control in the vascular endothelium (Kusche-Vihrog et al., 

2008). 
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Figure 1: Schematic representation of the renin angiotensin aldosterone system (RAAS) 

Angiotensinogen is produced in the liver, cleaved by renin into angiotensin I and subsequently to 

angiotensin II by the angiotensinogen converting enzyme (ACE). Angiotensin II leads to the release 

of aldosterone and together with aldosterone has several vasoconstrictive effects, which 

consequently lead to an increase in blood pressure.  

 

 

1.2 sAC and blood pressure regulation 

 

1.2.1 Crosstalk between aldosterone- and cAMP-signaling 

 

The mechanism of aldosterone signaling has not been fully elucidated, but there is 

evidence of a crosstalk with the cyclic adenosine monophosphate (cAMP) signaling 

pathway (Le Menuet et al., 2001; Ouvrard-Pascaud et al., 2005), depending on the cell 

system and the context in which it is examined (Grossmann et al., 2010). A 

Ca2+-dependent increase in intracellular cAMP concentration and of CREB 

phosphorylation was found in vascular smooth muscle cells after incubation with 

aldosterone (Christ et al., 1999). Aldosterone also stimulated cAMP production in rat inner 

medullar collecting ducts (Sheader et al., 2002) and in bovine endothelial aortic cells 

(Leopold et al., 2007). It has been suggested, that stimulation of an adenylate cyclase 

mediates the aldosterone-stimulated cAMP generation (Sheader et al., 2002), potentially 

linking aldosterone to sAC signaling. 
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Another potential influence of aldosterone on CREB-mediated gene expression was 

shown in juxtaglomerular cells, where aldosterone activated the gene expression of renin. 

Renin and aldosterone form a part of the RAAS system (Klar et al., 2002).  

In HeLa cells, a MR-dependent effect of cAMP on Na+/K+-ATPase expression was shown. 

Na+/K+-ATPase expression is regulated via a promoter involving a cAMP response 

element (CRE) and, therefore, can be upregulated via cAMP. This activation can be 

repressed by the MR, probably through the interaction of aldosterone with cAMP-inducible 

transcription factors (Ahmad and Medford, 1995). In contrast, in MR-knockout mice, 

treatment with aldosterone led to enhanced cAMP concentrations (Haseroth et al., 1999). 

Comparable results were shown regarding the vasopressin-inducible gene expression of 

hepatocyte nuclear factor-3 alpha (HNF-3 alpha), in which aldosterone inhibited the 

cAMP-induced activation (González-Núñez et al., 2004).  

In the zona glomerulosa of the adrenal gland, aldosterone secretion is stimulated via Ca2+ 

or cAMP. Additionally, MR-mediated activating effects on gene expression were shown to 

be inducible by cAMP (Nordeen et al., 1994; Nordeen et al., 1995; Lim-Tio and Fuller 

1998). This enhanced MR effect on gene expression seems to be dependent on the basal 

promoter structure and increases with the number of glucocorticoid response element 

(GRE) motifs. Consequently, cAMP and aldosterone act synergistically on GRE motifs 

(Massaad et al., 1999). 

Furthermore, expression of the serum and glucocorticoid-inducible kinase (sgk), which is 

important in activation of certain K+, Na+, and Cl- channels, was enhanced by stimulation 

with cAMP or aldosterone, but the combination of both did not yield an additive effect 

(Snyder et al., 2004).  

To summarize, there is a crosstalk between aldosterone and cAMP signaling in many cell 

system pathways. Nevertheless, numerous aspects of this crosstalk remain unclear and 

which factors are involved still needs to be examined. 

 

 

1.2.2 sAC protein function 

 

cAMP signaling is the most widely used cellular signaling pathway. In 1971, Earl 

Sutherland was awarded the Nobel Prize for identifying cAMP as a mediator of cellular 

regulation of metabolic processes. cAMP mediates cellular responses to external stimuli, 

modulates cell growth and differentiation, and modulates several physiological pathways, 

including metabolism, apoptosis, migration, development, ion transport, pH regulation, 

and gene expression (Robison et al., 1968).  
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In the mid 1990s, a family of nine membrane-associated adenylyl cyclases (ADCY1-9), 

which catalyze the accumulation of cAMP out of adenosine triphosphate (ATP), was 

characterized. These transmembrane adenylyl cyclases (tmACs) differ in their expression 

patterns. Furthermore they are differentially regulated by G-proteins in response to 

hormones and neurotransmitters and could be activated by forskolin (Taussig and Gilman, 

1995; Sunahara et al., 1996). Forskolin is applied to increase intracellular cAMP levels via 

stimulation of tmACs. tmACs are expressed in organisms from prokaryotes to higher 

eukaryotes and their catalytic domain is highly conserved. In 1999 an additional soluble 

form of adenylyl cyclase (ADCY10, sAC) was characterized in mammals, which is 

independent of forskolin or G proteins (Buck et al., 1999). sAC is the only enzyme that can 

sense differences in CO2 concentrations in mammals and acts, therefore, as a catalytic 

sensor. Its catalytic domains show higher conservation to cyanobacterial adenylyl cyclase 

than to mammalian tmACs (Chen et al., 2000).  

Two isoforms of sAC are currently described in rats, a full length (187 kDa) and a 

truncated form (50 kDa) with a 10 to 20-fold higher activity compared to the full length 

form (Buck et al., 1999), arising from alternative splicing (Jaiswal and Conti, 2001). Both 

isoforms comprise two heterologous catalytic domains (C1 and C2), whereas the C-

terminus of the full length form additionally comprises several putative regulatory domains, 

such as an autoinhibitory region (Gordeladze et al., 1981), a conical P-loop, and a leucine 

zipper sequence (Buck et al., 1999, figure 2).  

 

 

C1 C2 P L-Zip

C1 C2

187 kDa isoform

50 kDa isoform

C1 C2 P L-Zip

C1 C2

187 kDa isoform

50 kDa isoform
 

 

Figure 2: Isoforms of rat sAC  

The 187 kDa isoform of sAC contains two catalytic domains (C1, C2), a P-loop (P) sequence, and 

a leucin zipper (L-Zip). The truncated 50 kDa isoform of sAC consists only of the catalytic domains.  

 

Since there are several isoform predictions, which contain only the C2 domain, it remains 

to be investigated whether they are generated via alternative splicing or alternative 

promoter usage in different tissues (Farrell et al., 2008; Geng et al., 2005; Schmid et al., 

2007). A knockout mouse model of sAC exists, in which the exons encoding C1 were 

removed, but still retains the C2 domain and the non-catalytic C-terminus (Esposito et al., 

2004). This mutation was sufficient to induce male infertility, since sAC function is 
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important in sperm capacitation (Sinclair et al., 2000; Xie et al., 2006; Hess et al., 2005; 

Farrell et al., 2008). In addition, female mice exhibited increased cholesterol and 

triglyceride levels and both sexes exhibited a slight increase in the heart rate. Lack of both 

catalytic isoforms is lethal (Esposito et al., 2004). From this result it may be inferred that in 

order to function in tissues, apart from testis, it is sufficient for sAC to contain the C2 

domain.   

To catalyze cyclization of ATP to cAMP, sAC needs two divalent metal cations in its 

catalytic center. Ca2+ increases the enzyme affinity for ATP (Jaiswal and Conti, 2003) and 

HCO3
- stimulates sAC activity by allosteric changes of the enzyme that lead to closure of 

the active site, recruitment of Mg2+, and rearrangement of the phosphates of substrate 

ATP (Neer, 1978). In the primary step of cAMP generation, the first divalent metal cation 

Ca2+ binds to the gamma-phosphate of ATP. This interacts with specific residues of the 

catalytic center, resulting in an “open state”. Furthermore, the second divalent metal 

cation Mg2+ binds to the alpha-phosphate of ATP. This interaction of a set of catalytic 

residues leads to a “closed state”. This conformation change from open to close induces 

esterification of the alpha-phosphate of the ribose and cyclisation takes part by release of 

the beta- and gamma-phosphate (Tresguerres et al., 2011). 

cAMP mediates a large composite of functions and, therefore, needs to be locally 

regulated. sAC plays an important role in this regulation, since it generates the local 

demand of cAMP in special microdomains that are in close proximity to cAMP targets 

throughout the cell (Chen et al., 2000; Zippin et al., 2004, figure 3). For this regulation, A-

kinase-anchoring proteins are necessary, which tether protein kinase A (PKA) to the 

specific microdomains (Beene and Scott, 2007; Carnegie et al., 2009). 

Phosphodiesterases (PDEs) avoid cAMP cross communication between the 

microdomains by degradation of cAMP (Houslay, 2010; Calebiro et al., 2010 a; Calebiro et 

al., 2010 b).  

In the kidney, cAMP regulates several ion-transport processes in the nephron. Several 

studies suggested the appearance of different sAC isoforms in the kidney, which 

potentially mediate different processes (Farrell et al., 2008; Geng et al., 2005; Paunescu 

et al., 2008; Pastor-Soler et al., 2003; Hallows et al., 2009). sAC location is mostly 

distributed in cells of the medullary and cortical thick ascending loop of henle, cells of the 

distal tubule, and cells of the collecting duct (Pastor-Soler et al., 2003; Hallows et al., 

2009). In the thick ascending loop of henle, Na+/K+-ATPase, which was shown to be 

regulated by sAC (Hallows et al., 2009), supplies the energy for the apical Na+/K+/2Cl- 

cotransporter  (NKCC, Fenton and Knepper, 2007). In response to cAMP, phosphorylated 

NKCC2 has been shown to be located in the apical membrane of the thick ascending loop 

of henle (Ortiz, 2006; Caceres et al., 2009). High amounts of HCO3
- may stimulate NaCl 
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and water absorption (Loon and Wilcox, 1998). In the distal tubule, reabsorption of NaCl, 

Mg2+, Ca2+ and K+ and also secretion of K+ takes place. sAC senses elevations in luminal 

pH and HCO3
- concentrations and restores the original low pH (Pastor-Soler et al., 2003). 

A potential role of sAC in transepithelial Na+ transport was shown (Hallows et al., 2009) in 

mouse cortical collecting duct cells (mpkCCDc14). Due to their expression of ENaC and 

Na+/K+-ATPase in their apical and basolateral membrane, mpkCCDc14 cells are 

considered to be most similar to distal tubule principal cells (Bens et al., 1999; 

Vandewalle, 2002). Besides the effects of sAC in the kidney, sAC also plays an important 

role in inflammation. In immune cells, sAC signaling is important for activation of the small 

GTPase Rap1, which regulates qualitative T cell responses (Bivona et al., 2004). An 

abundance of sAC was found in leukocytes (Geng et al., 2005) and neutrophils (Han et 

al., 2005), in which sAC mediates tumor necrosis factor-induced release of H2O2, which 

induces cell death (Ho et al., 2011).  

To gain new insights into the regulation of sAC and to find possible explanations for sAC 

dysfunction, the regulation of the level of transcription needs to be investigated. 

 

 

CRE
CREB

p

CRE
CREB

p

 

Figure 3: sAC signaling in special 

microdomains  

sAC is localized in the cytoplasm, the 

nucleus (e) and in mitochondria (f). sAC can 

be activated by Ca
2+

 (d) or HCO3
−
 derived 

from carbonic anhydrase (CA)-dependent 

hydration of (a) external and (b) metabolic 

CO2 and HCO3
−
 that enter via membrane 

transporters (c). Active sAC can mediate 

phospohorylation of the transcription factor 

CREB in the nucleus (e). In mitochondria, 

sAC has been shown to be activated by 

metabolically generated CO2 via CA (f). 

(Adapted from Tresguerres et al., 2011, with 

kind permission) 
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1.2.3 sAC gene structure 

 

The sAC gene spans a large domain of 105 kb on chromosome 1 (figure 4). The exon 

structure is conserved in mammals. It consists of 33 exons, of which a region in exon 5 

and upstream of exon 24 is alternatively transcribed. The 5´-untranslated region (5´-UTR) 

includes exon 1 and a part of exon 2. The 3´-untranslated region (3´-UTR) includes the 

back of exon 33. Three possible alternative translational start sites are located in exon 2, 

exon 5 and upstream of exon 24 (http://www.ensembl.org/index.html). In rats, the 

existence of two different sAC transcript variants is described, the full length transcript and 

a splice variant in which exon 11 is spliced out leading to a reading frame shift and a stop 

codon in exon 11. The full length transcript is translated into the full length protein form 

(187 kDa) and the spliced transcript is translated into the truncated isoform (50 kDa).  

 

* * *
~105 kb

1    2    3    4  5     6    7    8             9    10 11 12   13     14         15 16   17 18      19  20 21        22 23    24  25     26      27 28  29  30 31        32 33

* * *
~105 kb

1    2    3    4  5     6    7    8             9    10 11 12   13     14         15 16   17 18      19  20 21        22 23    24  25     26      27 28  29  30 31        32 33  

Figure 4: sAC gene structure 

The human sAC gene contains 33 exons and spans 105 kb on chromosome 1. Asterisks mark 

potential translational start sites. Two alternative transcripts exist, which result from alternative 

splicing. In the upper section exon 11 is spliced out, leading to a reading frame shift and an 

alternative stop codon in exon 12. Grey boxes: untranslated regions, black boxes: alternatively 

transcribed regions, kb: kilobasepairs 

 

 

1.2.4 CREB as target of sAC signaling 

 

In mammals, the most comprehensively characterized transcriptional response to cAMP is 

mediated by the transcription factor CREB. CREB is highly conserved in mammals, which 

is indicative of the importance of its function (Mayr and Montminy, 2001). Dysfunction of 

CREB is involved in many diseases, such as cancer (Drozdov et al., 2011) and dementia 

(Müller et al., 2011). Furthermore CREB plays a role in inflammation (Chava et al., 2012) 

and was shown to be downregulated in vascular disease (Lösel et al., 2004). 

CREB belongs to the basic leucine zipper (bZIP) transcription factor superfamily, which 

binds to CRE motifs with the recognition sequence 5´-TGACGTCA-3´. It mediates both, 

basal and PKA-inducible transcription through two separate and independently active 

domains. These are the kinase-inducible domain (Q1) and the constitutive activation 
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domain (Q2/CAD), both of which interact with the basal transcription factor (TF) TAF130, 

a component of the TFIID and TFIIB complex. For the activation of CREB, interaction with 

the CREB-binding protein (CBP) is required (Kim et al., 2000). 

The kinase-inducible domain Q1 can be activated via phosphorylation of serin at position 

133. Phosphorylation can be operated through signaling of transmembrane adenylyl 

cyclase, which produces cAMP leading to activation of cytosolic PKA and translocation of 

the catalytic units of PKA into the nucleus. However, the sAC also plays an essential role 

in CREB phosphorylation, which is not completely elucidated until now (Zippin et al., 2010; 

Xu et al., 2011). Members of the CREB/ATF (activating transcription factor) family and 

Fos/Jun family are leucine zipper containing proteins with sequence similarity in their 

DNA-binding domain and can produce different transcriptional regulators by 

heterodimerization (Brindle and Montminy, 1992). CREB can dimerize with itself, with 

other proteins without leucine zipper domains or with the transcription factor CCAAT-

enhancer-binding protein (C/EBP) beta, which contains a leucine zipper domain (Park et 

al., 1993). 

 

 

1.3 Gene expression control 

 

1.3.1 Levels of expression regulation 

 

Phenotypic differences of cells, as well as response and adaptation to environmental 

impact are regulated on the level of gene transcription and post-transcriptional and 

translational modifications.  

Under- or overproduction of one ore more proteins can cause several diseases, such as 

cancer, immune disorders or hypertension. This shows the importance of a specific gene 

regulation. 

The human genome exhibits 22,500 protein coding genes, whereas almost every gene is 

regulated by distinct promoter regions (Dübel et al., 2010). Gene promoters are defined as 

a specific DNA sequence, to which the RNA polymerase binds and signals, where 

transcription should begin (Roberts, 1969). For most human genes the exact and 

complete localization of the promoter regions remains unknown (Eckhardt et al., 2006). It 

can be located in the 5´-flanking region, the 5´-UTR or intronic regions of the gene over 

long distances. In eukaryotes, 90% of the gene regions are intronic, which often harbor 

regulatory elements, whereas only 10% of the gene regions consist of coding exonic 

regions. 
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In addition to gene regulation, there are several levels to control the amount and 

functionality of proteins in the cell. 1) Transcription can only take place in active 

euchromatin and not in condensed heterochromatin, densely packed around histones. 

Recruitment by transcription factors and chromatin modifying complexes can lead to 

accessibility of transcriptional start sites (TSSs). 2) Genes can be epigenetically modified 

by histone acetylation or methylation, which leads to transcriptional activity or inactivity. 3) 

mRNA can be processed by splicing events or degraded by RNA interference (Kornblihtt, 

2006; Lin et al., 2008). 4) The last step of control is the regulation of the amount of protein 

itself, due to posttranslational modifications including phosphorylation, glycosylation, 

ubiquitinylation and several other processes (Shenoy and Rockman, 2011). These 

modifications can influence both the protein function and its localization. All of these 

processes are connected via negative or positive feedback loops. 

 

 

1.3.2 Cis- and trans-regulatory elements 

 

Elements which are located and coded by the DNA and influence transcriptional activity of 

promoter sequences are called cis-regulatory elements. These include enhancers, 

silencers and insulators (Riethoven, 2010). Enhancer and silencer elements can act 

independently of position and distance to the promoters they control (Atchison, 1988; 

Kermekchiev et al., 1991). They are able to mediate their activating or repressing effects 

when trans-regulatory elements, such as transcription factors bind to cis-regulatory 

elements. Insulators are able to block undesirable promoter enhancer interaction and 

enable the compartmentalization of the genome in differentially active domains (Lutz et 

al., 2003). There are two different insulators according to their function (Geyer, 1997, 

figure 5). Enhancer blocking insulators are sequences between promoter and enhancer or 

promoter and silencer, on which the insulator can bind to block the interaction between 

the promoter and the corresponding gene (Geyer and Corces, 1992; Kellum and Schedl, 

1992). This may be caused by chromatin loops with insulator elements and factors on the 

basis of these loops (de Laat and Grosveld, 2003). Based on this sterical distance, 

interactions between promoter and enhancer or promoter and silencer are prevented 

(Schedl and Broach, 2003). The impact of the enhancer on the corresponding promoter 

may be mediated by histone modification, which will be passed along the DNA strand and 

blocked by insulator binding (Felsenfeld et al., 2004). Barrier insulators isolate genes from 

the repressing effect of bordering heterochromatin (Sun and Elgin, 1999). In mammals, all 

insulator elements are associated with the CCCTC-binding factor (CTCF, Ohlsson et al., 

2001). 
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Figure 5: Schematic representation of barrier insulator function and enhancer blocking 

insulator function 

A Barrier insulators isolate active chromatin and inactive chromatin domains from each other.        

B Enhancer can activate non-directionally transcription (enhancer 2/gene b) of different genes. 

Insulator factors, which are bound between enhancer (enhancer 1) and promoter of ascertained 

genes (gene b) block the enhancing function.  

 

The functionality of enhancers and silencers depends on both, their accessibility and the 

relative amount of active transcription factors. Transcription factors are proteins that bind 

specifically to short DNA sequences of 5 to 20 bp and influence the transcription rate of 

definite genes. They can activate or repress the recruitment of RNA polymerase II (Pol II) 

to promoter regions. One promoter region typically contains 10 to 50 binding sites for 5 to 

15 different transcription factors (Arnone and Davidson, 1997), which are the elementary 

units of promoter regulation. These modules are highly variable between different genes 

to ensure specificity of transcription (Wray et al., 2003) and are related to gene function 

(Lee et al., 2005). Genes that code for proteins involved in complex processes present a 

large amount of conserved transcription factor binding sites. On the other hand 

housekeeping genes, genes that are expressed in all tissues under various conditions, 

present restricted transcription factor binding sites as they underlie a less specific 

regulation (Farré et al., 2007). 

In most cases, transcription factors interact in synergy. In other cases, they interact 

antagonistically, when different transcription factors recognize the same recognition site 

with different affinities or overlapping sites (Masquilier and Sassone-Corsi, 1992). Hence, 

the repression of gene transcription occurs when repressors compete with activators by 

blocking the activation site (Wang et al., 1997) or by direct interaction with general 

transcription factors (Song et al., 1995). The activity of transcription factors can be 

regulated by controlling the synthesis and degradation of the factor or by regulating its 

activation. Rapid regulation of transcription factors is mediated by phosphorylation, ligand 

binding, and interaction with other proteins (Dadarlat and Skeel, 2011). 
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It is important that regulation of gene transcription can be adapted to environmental 

processes (Titze and Machnik, 2010). To ensure appropriate and correct gene 

expression, interaction of transcription factors with their recognition site should be tightly 

regulated. Genetic variations, such as single nucleotide polymorphisms (SNPs) in these 

recognition sites can lead to default gene regulation and probably influence the amount of 

protein with potential disease causing effects. 

 

 

1.3.3 Promoter assembling 

 

Transcriptional regulation is dependent on cis-acting factors (DNA and Chromatin), trans-

acting factors (transcription factors and associated proteins), the basal transcription 

machinery including TATA binding proteins and Pol II, three dimensional structures and 

time (van Driel et al., 2003).  

Transcriptional initiation, characterized most completely for TATA promoters, starts with  

the binding of the basal transcription factor II D (TFIID), which binds to sequences that 

contain TATA boxes and initiator elements (INR) at a given distance range (figure 6). 

TFIID recruits the TATA-box binding protein (TBP) and eight to twelve different TBP-

associated factors (TAFs), to build the Pol II initiation complex. The N-terminal domain of 

TFIIB helps to position the DNA on the surface of the polymerase. Next, TFIIE enters and 

recruits TFIIH, which acts as helicase and ATPase to help unwind the DNA double strand. 

TFIIF captures the wrapping of the DNA around the preinition complex. Finally, the DNA 

strand can enter the active site of the polymerase, which synthesizes the RNA strand and 

at the end of synthesis rewinds the DNA strand (Kim et al., 2005, Baumann et al., 2010).  

There are two functional components of promoter assembling, the basal core promoter 

and the proximal promoter. The basal core promoter, where RNA polymerase complex is 

recruited, typically comprises 70 to 80 bp, harboring core promoter elements, such as the 

TATA-box, INR, downstream promoter element (DPE) or B recognition element (BRE), 

which are located within a given distance to the TSS (table 2).  
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Table 2: Sequence and frequency of core promoter element in vertebrates 

Core element 

Bp position relative to 

TSS consensus sequence frequency in promoters 

TATA < -31 to -26 TATAWAAR 10 to 16% 

INR -2 to +4 YYANWYY 55% 

DPE +28 to +32 RGWYV 48% 

BRE -37 to -32 SSRCGCC 12 to 62% 

INR: initiator element, DPE: downstream promoter element, BRE: B recognition element, TSS: 

transcriptional start site, nucleotide abbreviation: T: thymine, A: adenosine, G: guanine, C: 

cytosine, W: weak (A or T), R: purine (A or G), Y: pyrimidine, V: not T (A, C or G), S: strong (C or 

G). (Adapted from Heintzman and Ren, 2007) 

 

In contradiction to earlier reports on promoter elements, only 10% to 16% of all promoters 

harbor a TATA box, comprising the sequence TATAAA 26 to 30 bp upstream of the TSS 

(Bajic et al., 2004; Butler and Kadonaga, 2002). BRE promoters harbour an upstream 

extension of a subset of TATA boxes. TATA less promoters typically contain an INR and a 

DPE 30 nucleotides downstream of the TSS (Burke and Kadonga, 1997; Gershenzon and 

Ioshikhes, 2005) and several CpG repeats, called CpG islands. Transcription from CpG 

islands initiates from multiple weak start sites, often distributed over a region of 100 

nucleotides, in contrast to transcription from a single site, bound by the majority of 

transcription factors. Since TATA-less promoters have no intrinsic specificity for TFIID 

recruitment, activators like SP1 bind to the GC rich regions and recruit the TFIID complex 

(Pugh and Tijan, 1991; Butler and Kadonaga, 2002; Hilton and Wang, 2003; Wierstra, 

2008). 

Most core promoters do not contain a single TSS but rather an array of closely located 

initiation sites. Alternative TSS can be localized in other exons or alternative first exons 

are included. Differentially regulated alternative promoter systems are the basis of cell 

type-specific transcription of genes (Carninci et al., 2006). This leads to differences in the 

N-terminus of the proteins, and may lead to alterations in protein levels, functions, and 

localization (Ayoubi and Van De Ven, 1996). The proximal promoter located upstream of 

the core promoter is related to transcription factors that confer specificity of transcription. 

In eukaryotes, there is no transcriptional activity from a promoter in absence of specific 

transcription factors. The interaction of transcription factors with the basal transcription 

machinery is mediated by co-activator proteins (Heintzman and Ren, 2007).  
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endocrine, paracrine, neurocrine signalingendocrine, paracrine, neurocrine signaling

 

 

Figure 6: Control levels of eukaryotic transcription at TATA promoters  

Endocrine, paracrine, and neurocrine factors lead to activation of trans-regulatory factors, which 

bind to cis-regulatory elements, such as enhancers or silencers. Binding of activating factors (red) 

leads to DNA looping and interaction with RNA polymerase II co-activators (green, named 

according to their molecular masses in kilodalton). Initially, the basal transcription factor TFIID 

enters TATA box sequences in the core promoter and recruits the TATA binding protein. Next, 

basal transcription factors TFIIB, TFIIE, TFIIH, and TFIIF assemble to form the TFII complex, which 

interacts with RNA polymerase II to initiate basal transcription (blue). TF: transcription factor. 

(Adapted from Tjian, 1995, with kind permission)  
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1.4 Aim and design of the study 

 

The steroid hormone aldosterone contributes to blood pressure regulation by activating 

the MR, thereby enhancing sodium reabsorption in the distal tubule of the kidney. In the 

vascular endothelium, aldosterone is a pivotal regulator of blood pressure by the RAAS. 

Since sAC has been reported to hamper the aldosterone effect in kidney collecting duct 

cells (Hallows et al., 2009), a transferable regulative effect of sAC on blood pressure in 

the kidney and the vascular endothelium was postulated. Thereby sAC could potentially 

act via the genomic or the non-genomic aldosterone pathway. 

In this study, special emphasis was put on the role of sAC as a co-activator of the 

transcription factor CREB and the regulation of genes that are under transcriptional 

control of aldosterone. Therefore, the interaction of sAC with CREB was studied via co-

immunoprezipitation (Co-IP). Determination of the sAC contribution on CRE motifs in 

different cell types were analyzed by chromatin immunoprecipitation (ChIP). By use of a 

CRE control luciferase reporter vector, a specific inhibitor of sAC (KH7), and a sAC 

expression vector, the modifying effect of sAC action on CRE elements were examined. 

The effect on downstream target genes of sAC signaling was analyzed by quantitative 

reverse transcription real time PCR. 

Since several studies suggested multiple forms of sAC protein, appearance of these 

isoforms were analyzed in kidney and endothelial cells and the cellular localization of sAC 

isoforms were defined.  

To elucidate the molecular basis of sAC promoter function and regulation, which was 

unknown prior to this study, the promoter of sAC was characterized in kidney cells 

(immortalized human kidney epithelial cell line [IHKE], and human embryonic kidney cell 

line [HEK293T]), and in human vascular endothelial cells (EA.hy926). Reporter gene 

assays of the 5´-flanking region, a part of the 5´-UTR (exon 1), and intron 4 were 

performed to detect cis-regulatory regions. Potential cis-regulatory elements were 

identified by in silico analysis of transcriptionally active regions. Cotransfection with 

cis-active factors was performed and the obtained results confirmed by ChIP assay. 

Furthermore, patients with cardiovascular disease were screened for variants in the 5´-

flanking region, which were tested for their impact on transcriptional activity. 

 



2 Material  

 19 

2 Material 

 

 

2.1  Chemicals 

 

Acidic acid 

Acrylamide-Bisacrylamide 30% (37, 5:1) (AA/BA) 

Roth, Karlsruhe 

Merck, Darmstadt 

Acetylsalicylic acid Sigma-Aldrich, Steinheim 

Agar (BactoTM) BD Bioscience, Heidelberg 

Agarose 

Aldosterone 

Biozym Scientific, Oldendorf 

Sigma-Aldrich, Steinheim 

Ammonium persulfate (APS) Sigma-Aldrich, Steinheim 

Betaine Sigma-Aldrich, Steinheim 

Boridic acid  

Bromphenol blue 

Roth, Karlsruhe  

Sigma-Aldrich, Steinheim 

8-Bromoadenosine-3´,5´-cyclic monophosphate  

(8-Br-cAMP) 
Biolog, Bremen 

Calcium chloride (CaCl2) Sigma-Aldrich, Steinheim 

Caseine Sigma-Aldrich, Steinheim 

Chloroform Fluka Reidel.de Haën, Seelze 

Coomassie Brilliant Blue R-250 Roth, Karlsruhe 

Cobalt(II) chloride (CoCl2) Merck, Darmstadt 

Deoxycholic acid Sigma-Aldrich, Steinheim 

4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich, Steinheim 

Dimethyl sulfoxide (DMSO) Merck, Darmstadt 

dNTPs (dATP, dCTP, dGTP, dTTP) Fermentas, St. Leon-Rot 

1,4 Dithiothreitol (DTT) Roth, Karlsruhe 

Ethanol Merck, Darmstadt 

Ethidium bromide Roth, Karlsruhe 

Ethylenediamine-tetraacetic acid (EDTA) Merck, Darmstadt 

Ethyleneglycol-tetraacetic acid (EGTA) Merck, Darmstadt 

Ficoll Fluka Reidel.de Haën, Seelze 

Formaldehyde 37% 

Formamide 

Roth, Karlsruhe 

AppliChem, Darmstadt 

Gelatin Sigma-Aldrich, Steinheim 

Glacial acetic acid Roth, Karlsruhe 

L-Glutamine Sigma-Aldrich, Steinheim 



2 Material  

 20 

Glycerol Roth, Karlsruhe 

Glycine Roth, Karlsruhe 

HEPES  

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 
Roth, Karlsruhe 

2-hydroxyestradiol (HE) Steraloids, Newport, USA 

Imidazole Roth, Karlsruhe 

Interleukin-1β (IL-1 β) Calbiochem, Darmstadt 

Isopropylalcohol 

KH7 

Merck, Darmstadt 

Sigma-Aldrich, Steinheim 

Lithium chloride (LiCl) Merck, Darmstadt 

Magnesium chloride hexahydrate (MgCl2) Roth, Karlsruhe 

Manganese(II) chloride (MnCl2) Sigma-Aldrich, Steinheim 

β-Mercaptoethanol Serva, Heidelberg 

Methanol Roth, Karlsruhe 

3-(N-Morpholino)propanesulfonic acid (MOPS) Sigma-Aldrich, Steinheim 

N’,N’,N’,N’-Tetramethylendiamine (TEMED) Roth, Karlsruhe 

Nonidet P-40  Sigma-Aldrich, Steinheim 

Paraformaldehyde, powder (95%) (PFA) Sigma-Aldrich, Steinheim 

Phenylmethylsulphonyl fluoride (PMSF) Roth, Karlsruhe 

Phorbol-12-myristate-13-acetate (PMA) Sigma-Aldrich, Steinheim 

Potassium chloride (KCl) Merck, Darmstadt 

Protease inhibitor cocktail with EDTA (Complete) Roche Diagnostics, Mannheim 

Sodium acetate (NaAc) Merck, Darmstadt 

Sodium bicarbonate (NaHCO3) Sigma-Aldrich 

Sodium chloride (NaCl) Roth, Karlsruhe 

Sodium deoxycholate Simga-Aldrich 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe 

Tris-(hydroxymethyl)-aminomethane (Tris-base) Roth, Karlsruhe 

Triton X-100 Roth, Karlsruhe 

Tryptone (BactoTM) BD Bioscience, Heidelberg 

Tween-20 Roth, Karlsruhe 

Xylene xyanole Roth, Karlsruhe 

Yeast extract (BactoTM) BD Bioscience, Heidelberg 
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2.2  Sera and media 

 

Dulbecco’s modified eagle’s medium (DMEM) Sigma-Aldrich, Steinheim 

Dulbecco’s phosphate buffered saline (PBS) PAA, Pasching 

Fetal bovine serum (conditioned) (FBS)  PAA, Pasching 

Fetal calf serum (FCS), iron-supplemented 

Roswell Park Memorial Institute 1640 medium (RPMI) 

Cell Concepts, Umkirch 

Sigma-Aldrich, Steinheim 

 

 

2.3  DNA and protein marker 

 

GeneRuler 100 bp DNA ladder Fermentas, St. Leon-Rot 

GeneRuler 1 kb DNA ladder Fermentas, St. Leon-Rot 

Precision Plus Protein Dual Color Standard Plus BioRad, Munich 

Precision Plus Protein Western C BioRad, Munich 

 

 

2.4  Enzymes and antibiotics 

 

Ampicillin Roth, Karlsruhe 

BigDye3.1 
Applied Biosystems, Foster City, 

USA 

GoTaq DNA Polymerase Promega, Mannheim 

Penicillin/Streptomycin PAA, Pasching 

Proteinase K Fermentas, St. Leon-Rot 

Restriction endonucleases Fermentas, St. Leon-Rot 

RiboLock RNase inhibitor Fermentas, St. Leon-Rot 

Shrimp Alkaline Phosphatase Fermentas, St. Leon-Rot 

Spectinomycin Sigma-Aldrich, Steinheim 

TdT terminal transferase Roche Diagnostics, Mannheim 

Trypsine-EDTA (0.05%)   Gibco, Karlsruhe 

 

 

2.5  Consumables and kits 

 

BCA protein Assay Kit Thermo Fischer, Bonn 

ChIP-IT® Control qPCR Kit – Human Active Motif, Tegernheim 
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CL-X PosureTM Film Thermo Fischer, Bonn 

Gateway LR Clonase II Enzyme Mix Invitrogen, Karlsruhe 

High Pure PCR Product Purification Kit  Roche Diagnostics, Mannheim 

KAPA-HiFi PCR Kit PEQLAB, Erlangen  

Immobilon-P Transfer Membrane (PVDF) Millipore, Bedford, USA 

LightShift Chemiluminescent EMSA Detection Kit Thermo Fischer, Bonn 

LR Clonase II Enzyme Mix 

LipofectamineTM 2000 

Invitrogen, Karlsruhe 

Invitrogen, Karlsruhe 

Luciferase Assay System Promega, Mannheim 

Magnetic Protein-G beads   Invitrogen, Karlsruhe 

M-MuLV Reverse Transcriptase Fermentas, St. Leon-Rot 

Nanofectin PAA, Pasching 

NucleoSpin Plasmid   Macherey-Nagel, Düren 

NucleoSpin RNA II Macherey-Nagel, Düren 

Passive Lysis Buffer (5 x) Promega, Mannheim 

pCR8/GW/TOPO TA Cloning Invitrogen, Karlsruhe 

PureLinkTM HiPure Plasmid DNA Purification Kit Invitrogen, Karlsruhe 

QIAamp DNA Blood Mini Kit   Qiagen, Hilden 

QIAquick Gel Extraction Kit 

QuikChange site-directed mutagenesis 

Qiagen, Hilden 

Agilent Technologies, 

Waldbronn 

siRNA control duplex (low GC) Invitrogen, Karlsruhe 

SuperScript III Reverse Transcriptase Invitrogen, Karlsruhe 

SuperSignal West Chemiluminescent Substrate 

Pico/Femto 
Thermo Fischer, Bonn 

tRNA Roche Diagnostics, Mannheim 

Whatman Paper 3MM Chr.   Biometra, Göttingen 

Pipette tips 0.1 µl - 1000 µl Sarstedt, Nürnbrecht 

Reaction tubes 0.2 ml - 2 ml    
Eppendorf, Hamburg 

Biozym, Hess. Oldendorf 

15 ml/50 ml tubes 
Greiner, Kremsmünster 

Nunc, Wiesbaden 

Petri dishes    Sarstedt, Nürnbrecht 

Plastics for cell culture Greiner, Kremsmünster 

PCR plates, microtiter plates Abgene, Hamburg 
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2.6  Antibodies 

 

Antibody Host Manufacturer 

β-actin 

CREB 

CREB 

CREB-p 

sAC 

rabbit 

rabbit 

mouse 

rabbit 

rabbit 

Cell Signaling, Frankfurt am Main 

Cell Signaling, Frankfurt am Main 

Cell Signaling, Frankfurt am Main 

Nanotools, Teningen 

Deciphergen, Aurora, USA 

anti-mouse sheep GE Healthcare UK Ltd, Little Chalfont Buckinghamshire, UK 

anti-rabbit donkey GE Healthcare UK Ltd, Little Chalfont Buckinghamshire, UK 

anti-tubulin donkey GE Healthcare UK Ltd, Little Chalfont Buckinghamshire, UK 

 

 

2.7  Plasmids and vectors 

 

Plasmid/vector Description Manufacturer/gift of 

pCR8/GW/TOPO cloning vector Invitrogen, Karlsruhe 

pGL3-Basic reporter gene vector Promega, Mannheim 

pGL3-Control reporter gene vector Promega, Mannheim 

pGL3-Promoter reporter gene vector Promega, Mannheim 

pRC/CMV expression vector 
Dr. Dimitris Kardassis, 

Heraklion, Greece 

CREB-pRC/CMV expression vector 
Dr. Vincent Coulon, Montpellier, 

France 

SP1-pRC/CMV expression vector Dr. Birgit Gellersen, Hamburg 

pSG5 expression vector Dr. Birgit Gellersen, Hamburg 

C/EBP alpha-pSG5 expression vector Dr. Birgit Gellersen, Hamburg 

C/EBP beta-pSG5 expression vector Dr. Birgit Gellersen, Hamburg 

CRE control vector reporter gene vector Dr. Elwyn Isaac, Leeds, UK 

Bacterial artificial 

chromosome (BAC) 

IRCMp5012D1214D 

Acc#.:BC117366.1 

full length cDNA clone 
BACPAC Resource Center, 

Oakland, USA 
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2.8 Reportergene constructs of sAC promoter (according to Acc#.:NM_018417.3) 

 

-3715/+250   Reporter gene construct bearing 3715 bp of the 5´-flanking 

region and 250 bp of exon 1 

-3528/+250 Reporter gene construct bearing 3528 bp of the 5´-flanking 

region and 250 bp of exon 1 

-3016/+250  
Reporter gene construct bearing 3016 bp of the 5´-flanking 

region and 250 bp of exon 1 

-2139/+250 
Reporter gene construct bearing 2139 bp of the 5´-flanking 

region and 250 bp of exon 1 

-1516/+250    Reporter gene construct bearing 1516 bp of the 5´-flanking 

region and 250 bp of exon 1 

-1320/+250 Reporter gene construct bearing 1320 bp of the 5´-flanking 

region and 250 bp of exon 1 

-1112/+250 Reporter gene construct bearing 1112 bp of the 5´-flanking 

region and 250 bp of exon 1 

-991/+250   Reporter gene construct bearing 991 bp of the 5´-flanking 

region and 250 bp of exon 1 

-490/+250 Reporter gene construct bearing 490 bp of the 5´-flanking 

region and 250 bp of exon 1 

-2139/-77 w/o exon 1 

  

Reporter gene construct bearing 2062 bp of the 5´-flanking 

region  

-1516/-77 w/o exon 1 Reporter gene construct bearing 1439 bp of the 5´-flanking 

region 

-1320/-77 w/o exon 1 

  

Reporter gene construct bearing 1243 bp of the 5´-flanking 

region 

-1112/-77 w/o exon 1 Reporter gene construct bearing 1035 bp of the 5´-flanking 

region 

-991/-77 w/o exon 1 Reporter gene construct bearing 914 bp of the 5´-flanking 

region 

-490/-77 w/o exon 1   Reporter gene construct bearing 413 bp of the 5´-flanking 

region 

-77/-250 w/o (exon 1) 

  

Reporter gene construct bearing 250 bp of the 5´-

untranslated region and 77 bp of the 5´-flanking region 

+16197/+16377 (intron 4)  Reporter gene construct bearing 180 bp of intron 4 
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2.9  Bacteria (E. coli) 

 

Strain Genotype Manufacturer 

Mach1 

derivatives of E.coli W strains 

∆recA1398 endA1 tonA Φ80∆lacM15 

∆lacX74 hsdR(rK- mK+) 

Invitrogen, Karlsruhe 

 

 

2.10  Eucaryotic cells  

 

Line Origin Reference 

COS7 African green monkey ATCC no.: CRL-11268 

EA.hy926 Human vascular endothelium Edgell et al., 1983 

HEK293T Human embryonic kidney ATCC no.: CRL-11268 

HepG2 Human hepatocellular carcinoma ATCC no.: HB-8065 

IHKE Immortalized human kidney epithelium Haugen et al., 1989 

THP1 Human monocytes ATCC no.: TIB-202 

 

 

2.11  Laboratory equipment 

 

Instrument Specification Manufacturer 

Autoclave 
FVS-2  

Systec VX-75  

Fedegari, Albuzzano, Italy 

Systec, Wettenberg 

Cell counter 

 

Casy Model TT 

 

Innovatis, Bielefeld 

 

 Multifuge 3SR Heraeus, Hanau 

 5415C Eppendorf, Hamburg 

Centrifuge 5417R Eppendorf, Hamburg 

 5810R Eppendorf, Hamburg 

 J2-21M/E Beckman Coulter, Krefeld 

CO2-Incubator (eukaryotic cells) MCO-18AIC Sanyo, Munich 

Developing machine Optimax Protec, Oberstenfeld 

 Mini PROTEAN BioRad, Munich 

Gel electrophoresis chamber StarPhoresis Starlab, Ahrensburg 

Gel imaging AlphaImagerEC 
Alpha Innotech Corp, 

San Leandro, USA 
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Incubator shaker (bacteria) Shaker Series 25 
New Brunswick Scientific, 

Nürtingen 

Luminometer Sirius V12 
Berthold Detection 

Systems, Pforzheim 

Microbiological incubator B 6120 Heraeus, Hanau 

Axiovert 40 CFL Zeiss, Jena 
Microscope 

Axioplan 2 Zeiss, Jena 

pH-Meter Calimatic 766 Knick, Dülmen 

Power supply PowerPackBasic BioRad, Munich 

Spectrophotometer Nanophotometer Implen, Munich 

Sequence detection system 7500 ABIprism 
Applied Biosystems, 

Foster City, USA 

Shaker 

Sonicator 

GFL 3006 

Bioruptor UCD-200 

GFL, Großburgwedel 

Diagenode, Liège, Belgium 

Sterile hood (bacteria) Class II type EF 
Clean air Techniek B.V., 

Woerden, The Netherlands 

Sterile hood (eukaryotic cells) HS 12 Heraeus, Hanau 

Tank blot chamber Mini Trans-Blot Cell BioRad, Munich 

Thermocycler 
PTC-225,  

DNA Engine Tetrad (2) 

MJ Research, Miami, 

USA 

Vortexer 
Bio Vortex V1 

VortexGenie2 

Kisker, Steinfurt 

Bender&Hobein, Zurich, 

Switzerland 

Waterbath GFL 1083 GFL, Großburgwedel 
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3 Methods 

 

 

3.1  Molecular biological methods 

 

All standardized molecular methods were performed as described in “Molecular Cloning” 

(Sambrook and Russel, 2001) or in manufacturers’ instructions. Modifications in protocols 

are indicated where applicable. 

 

 

3.1.1 Isolation of nucleic acids 

 

3.1.1.1 Isolation of genomic DNA  

 

Genomic DNA of white blood cells was isolated using the QIAamp DNA Blood Kit 

(Qiagen) according to manufacturers’ protocol. 200 µl of human EDTA-treated whole 

blood were mixed with 20 µl proteinase K and 200 µl binding buffer, incubated at 56°C for 

10 min, and loaded onto the spin columns, allowing the DNA to bind to the silica-gel 

membrane. After two washing steps, the DNA was eluted in dH2O (pH 7 - 8.5) or TE buffer 

and stored at -20°C. 

 

 

3.1.1.2 Isolation of total RNA 

 

Total RNA was extracted from cultured cells using the NucleoSpin RNA II Kit (Macherey-

Nagel) according to manufacturers’ protocol. Briefly, ~5 x 106 cultured cells were washed 

twice with dulbecco´s phosphate buffered saline (PBS) and lysed with 350 µl lysis buffer 

(1% β-mercaptoethanol). By filtration through a filter column, clearance of the lysate was 

conducted. 350 µl of ethanol were added to achieve optimal binding conditions. 

Subsequently, the lysate was loaded onto the RNA binding column and the membrane 

was desalted. Digestion of DNA was performed by addition of DNase for 15 min. After 

three washing steps, the RNA was eluted in RNase-free water and held at 4°C or was 

stored at -80°C.   
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3.1.1.3 Isolation of plasmid DNA 

 

Isolation of plasmid DNA from E. coli cultures was performed using the NucleoSpin 

Plasmid Kit (Macherey-Nagel). 2 ml of an overnight culture of transformed E. coli were 

centrifugated and the pellet was lysed in resuspension buffer containing RNase A for 

5 min at RT. Neutralization buffer was added and centrifugated to clear the lysate. The 

DNA was loaded and bound to a silica membrane. The plasmid DNA was eluted in TE 

buffer after two washing steps and held at 4°C or was stored at -20°C.  

Preparation of transfection grade endotoxin-free plasmid DNA from E. coli cultures was 

performed with the PureLink HiPure Plasmid DNA Purification Kit (Invitrogen) as 

described in manufacturers’ protocol. 100 ml of E. coli cells of an overnight culture were 

centrifugated and the pellet was resuspended in an RNase A containing buffer. 

Subsequently, the cells were lysated by addition of a lysis buffer for 5 min, the lysate was 

cleared using a precipitation buffer and centrifugated (12,000 x g, 10 min, RT). The 

supernatant was cleared from bacterial endotoxins by an additional incubation step with 

Endotoxin Removal Buffer A and one washing step with Endotoxin Removal Buffer B. The 

cleared lysate was loaded onto a pre-equilibrated column, washed and eluted. Afterwards, 

the DNA was precipitated by addition of isopropanol (70% v/v) and centrifugation 

(15000 x g, 30 min, 4°C). After washing with ethanol (70% v/v), the DNA was air-dried and 

resuspended in TE buffer. Plasmid DNA was held at 4°C and stored at -20°C.  

 

Endotoxin Removal Buffer A         Endotoxin Removal Buffer B 

50 mM MOPS, pH 7.0    100 mM sodium acetate, pH 5.0 

750 mM sodium chloride    750 mM sodium chloride 

10% (w/v) Triton X-100    1% (w/v) Triton X-100 

10% (v/v) isopropyl alcohol 

 

 

3.1.2 Photometric measurement of nucleic acid concentration 

 

Measurement of concentration and purity of nucleic acids was performed photometrically 

with the nanophotometer (Implen). The particular elution buffer served as blank. An optical 

density (OD) of 1 at 260 nm represents a concentration of 50 µg/ml of dsDNA or 40 µg/ml 

of RNA. The E260/E280 ratio indicates the degree of purity of the nuclei acid, with a value of 

1.9 in the case of pure DNA and a value under 2.0 in the case of pure RNA.  
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3.1.3 Polymerase chain reaction (PCR) 

 

The PCR is conducted to amplify DNA fragments in vitro with two specific oligonucleotides 

(primers) using a thermo resistant DNA polymerase as first introduced by Mullis et al. 

(Mullis et al., 1986). Semiquantitative PCRs were performed with GoTaq DNA polymerase 

(Promega) or KAPAHiFi polymerase (PeqLab). Taq DNA polymerase was used for 

standard PCRs, which needs a relatively low elongation time. An enzyme with a 

proofreading function, such as the High Fidelity polymerase, was used to assure amplicon 

sequence identity to template DNA for cloning of transfection vectors.  

All oligonucleotide sequences used for single amplifications are listed in the appendix 

(table A1). 

 

Standard PCR reaction   Standard PCR program 

5 ng genomic DNA    Initial denaturation  95°C, 5 min 

10 µM sense primer (SS)   Denaturation   95°C, 1 min 

10 µM antisense primer (AS)   Annealing*  X°C, 45 sec           25-35  

200 µM of each dNTP   Elongation  72°C, 1 min/kb     cycles 

1 M betaine     Terminal elongation 72°C, 10 min 

1x Taq polymerase buffer   

0.6 U Taq polymerase     

add nuclease-free H2O to 25 µL  

        

*Annealing temperature (TA) depended on primer melting temperature (TM) and was 

calculated as ([TM(SS) + TM(AS)]/2) – 2 = TA.  

TM was calculated using the following algorithm (Nakano et al., 1999): 

TM= (wA+xT)*2 + (yG+zC)*4 - 16.6*log10(0.050) + 16.6*log10([Na+])  

(w,x,y,z are the number of the bases A,T,G,C in the sequence, respectively) 

 

Four PCR modifications were applied when necessary: 

 

 

3.1.3.1 Real time PCR 

 

To account for a small amount of template DNA, real time PCR was used. The samples 

were amplified in triplicate by real-time PCR (using the Stratagene MxPro detection 

system) in a final volume of 25 µl using Absolute QPCR SYBR Green ROX Mix (Thermo 

Scientific). Melting curve analysis was performed using Dissociation Curves software 
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(Stratagene) to ensure that only a single product was amplified. Specificity of the reactions 

was confirmed by 2.5% agarose gel electrophoresis. Results were obtained using 

Stratagene MxPro sequence detection software and evaluated using Excel (Microsoft). 

Specific primer sequences for amplification are exposed in table 3. 

 

Table 3: Oligonucleotide sequences for real time PCR  

Description Sequence 5'-3' Reference 

mineralocorticoid receptor SS GATTTGGCGAGACCAGAGCA  De-An et al., 2010 

mineralocorticoid receptor AS AAGCGAACGATACCAGAAACTACA De-An et al., 2010 

Na+/K+-ATPase alpha SS TGTCCAGAATTGCAGGTCTTTG Murphy et al., 2004 

Na+/K+-ATPase alpha AS TGCCCGCTTAAGAATAGGTAGGT Murphy et al., 2004 

Na+/K+-ATPase beta SS ACCAATCTTACCATGGACACTGAA  Murphy et al., 2004 

Na+/K+-ATPase beta AS CGGTCTTTCTCACTGTACCCAAT Murphy et al., 2004 

ENaC alpha SS CCTCTGTCACGATGGTCACCCTCC Bergann et al., 2009 

ENaC alpha AS CAGCAGGTCAAAGACGAGCTCAG Bergann et al., 2009 

soluble adenylyl cyclase SS CTGAGCAGTTGGTGGAGATCCTC Schmid et al., 2007 

soluble adenylyl cyclase AS CAGCCAGTCCTATCTTGACTCGG Schmid et al., 2007 

glyceraldehyde-3-phosphate 

dehydrogenase SS 
CTGCACCACCAACTGCTTAGCAC BY999181.1 

glyceraldehyde-3-phosphate 

dehydrogenase AS 
CACCACCATGGAGAAGGCTGGGG BY999181.1 

 

 

3.1.3.2 Touch down PCR 

 

To ensure the enrichment of specific PCR products the annealing temperature was 

gradually decreased, starting at 5-10°C over the calculated primer annealing temperature. 

The annealing temperature was reduced by 2°C every second cycle until the calculated 

annealing temperature was reached, followed by 25 cycles at the final annealing 

temperature (Don et al., 1991).  

 

 

3.1.3.3 Nested PCR 

 

To generate a higher amount and specificity of a weak PCR signal, nested PCR war used. 

Amplified PCR products from a first PCR reaction were used as templates for a second 
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PCR reaction by using a second set of primers located within the first amplicon. PCR 

products from the first PCR amplification were extracted from agarose gels (chapter 3.1.6) 

or directly used as templates.  

 

 

3.1.3.4 Thermal gradient PCR 

 

To determine the optimal annealing temperature for a set of oligonucleotides, the single 

PCR reaction was performed over a range of defined annealing temperatures (Chang and 

Lee, 2005). 

 

 

3.1.4  Reverse transcriptase PCR (RT-PCR) 

 

Reverse transcriptase PCR was performed to synthesize cDNA by using Superscript III 

(Invitrogen) or M-MuLV Reverse Transcriptase (Fermentas) according to manufacturers’ 

instructions. Total RNA (0.5 - 1 µg) was mixed with 1 µl oligo (dT18-20), 1-2 µl dNTPs (10 

mM each), 20-40 U RNase Inhibitor (RiboLock, Fermentas; RNaseOUT, Invitrogen) and 

incubated with the particular reverse transcriptase. The RNA was reversely transcribed 

into cDNA at 50°C (Superscript III) or at 37°C (M-MuLV) for 60 min. The reaction was 

inactivated at 70°C for 15 min (Superscript III) or for 10 min (M-MuLV). To control if 

synthesis was successful a diagnostic PCR of human ribosomal protein 27 (hRP27) was 

routinely performed. To detect endogenous expression of sAC, cDNA was used as 

template for amplification with specific primers (appendix, table A2) in a semiquantitative 

PCR. 

 

 

3.1.5  DNA modifications 

 

3.1.5.1 Restriction  

 

Up to 1 µg DNA was restricted using 1 unit of the appropriate restriction endonuclease. 

Reaction buffer and dH2O were added to a total volume of 20 µl, incubated at 37°C (or 

different optimal temperature dependent on the enzyme) for 1 h. The restriction enzyme 

was heat-inactivated at 70°C for 10 min. Restriction efficiency of DNA was controlled by 

agarose gel electrophoresis (chapter 3.1.6).  
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3.1.5.2 Dephosphorylation  

 

To avoid relegation of linearized plasmid DNA with compatible ends, shrimp alkaline 

phosphatase (SAP) was used for dephosphorylation of the 5’-ends. Digestion reaction 

was mixed with 1 unit SAP and 10 x reaction buffer and dH2O was added to a total volume 

of 25 µl. Reaction mixture was incubated at 37°C for 30 min and heat-inactivated at 65°C 

for 10 min.   

 

 

3.1.6 Agarose gel electrophoresis 

 

To determine the size of DNA fragments, agarose gel electrophoresis was used. DNA 

migrates in an electric field because of the negatively charged phosphate backbone. 

Agarose concentrations of 0.8% to 3%, depending on fragment size, were applied in 1 x 

TAE buffer. Ethidium bromide was added to the gel solution at a concentration of 

0.05 µg/ml to visualize DNA double-strands by use of the AlphaImager (Alpha Innotech 

Corporation) gel documentation system. 

 

50 x TAE buffer    6 x loading buffer 

40 mM Tris base    0.02% (w/v) bromphenole blue 

1 mM EDTA     0.02% (w/v) xylene xyanole 

5.71% glacial acetic acid    30% (v/v) glycerol 

      20 mM Tris-HCl, pH 7.6 

      2 mM EDTA  

 

 

3.1.7 Purification of PCR products 

 

3.1.7.1 Column purification 

 

To reach a high purification grade of DNA fragments for subsequent applications like 

sequencing or cloning, the High Pure PCR Product Purification Kit (Roche) was used. The 

PCR reactions were mixed with binding buffer, loaded onto the silica membrane column 

and washed twice. DNA was eluted in 10 mM Tris-HCl (pH 8.5). 
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3.1.7.2 Gel extraction 

 

Gel extraction was performed using the QIAquick Gel Extraction Kit (Qiagen). After 

agarose gel electrophoresis, the DNA fragments were resectioned from 0.8% agarose 

gels. Gel slices containing DNA were mixed with solubilization buffer QG (pH 7.5) and 

heated at 50°C for 10 min until agarose dissolves. The probes were mixed with one gel 

volume of isopropanol (100%) and loaded onto the silica membrane column. After two 

washing steps, DNA was eluted in EB buffer (10 mM Tris-HCl, pH 8.5).       

 

 

3.1.7.3 DNA precipitation 

 

DNA precipitation was performed to concentrate the amount of DNA. The sample was 

mixed with 10% volume of 3 M NaAc (pH 5.2) and one volume isopropanol (100%), 

incubated at -80°C for 2 h and centrifuged twice (maximal speed, 20 min, 4°C). After two 

washing steps with ice-cold ethanol (70%), the pellet was air-dried and the DNA 

resuspended in an appropriate volume of nuclease-free dH2O.    

 

 

3.1.7.4 ExoSAP clean-up 

 

A rapid one-step PCR clean-up for subsequent sequencing reactions was performed with 

ExoSAP clean up. A mixture of exonuclease I (Exo I) (Fermentas) and SAP (Fermentas) 

was used to digest small single-stranded fragments (e.g. primers) and to remove dNTPs. 

1 µl of ExoSAP mixture was added to a PCR product (5 µl) and was incubated at 37°C for 

30 min. Heat inactivation of enzymes was performed at 80°C for 15 min.  

 

ExoSAP mixture 

20 U Exonuclease I (E. coli) 

10 U SAP 

add dH2O to 100 µl 
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3.1.8 Sequencing 

 

For detection and localization of genetic variants in the MolProMD study and to ascertain 

sequence accuracy of DNA fragments and plasmid constructs, samples were sequenced 

(both strains) using an automated ABI 3730 fluorescence sequencer with BigDye 

terminator chemistry (PE Applied Biosystems). 

 

 

3.1.9 Construction of reporter gene constructs 

 

To generate reporter gene constructs, promoter fragments were amplified using extracted 

DNA from clone IRCMp5012D1214D, bearing sAC wild type (wt) sequence, as template. 

Deletion constructs of the sAC 5'-flanking region were amplified using one antisense 

primer at position +250 bp and sense primers (table 4) generating serial deletion 

constructs. Promoter constructs lacking the untranslated exon 1 were generated using 

one antisense primer at postion -77 and sense primers (table 4). The construct of the 

intron 4 promoter was designed from position +16197 to +16377 (table 4). Constructs 

harbouring MolHap1 and MolHap2 were generated from position -2436 to -1993 (table 4). 

For transient transfection assays, amplified PCR fragments were introduced in the entry 

vector pCR8/GW/TOPO (Invitrogen, figure 7). The basis of this cloning technique is the 

site-specific recombination property of bacteriophage λ (Landy, 1989). Recombination 

occurs at attachment sequences of phage DNA (attP) and bacteria DNA (attB). The 

introduced PCR fragment is flanked by attL sequences. The vector was subsequently 

transformed into competent Mach1 (Invitrogen) bacterial cells (chapter 3.3.1.3) and the 

plasmid isolated and purified (chapter 3.1.1.3).  

Constructs with the right 5' to 3'-orientation were cloned into the promoter-less luciferase 

reporter gene vector pGL3-Basic (Promega, figure 8) or into the pGL3-Promoter vector 

(Promega, figure 8), harbouring the simian vacuolating virus 40 (SV40) promoter for 

preinitiation complex (PIC). The modified pGL3-Basic destination vector, bearing artificial 

attR sites, was mixed with the entry vector and incubated with the LR clonase enzyme 

allowing the exchange of the gateway cassette in combination with the sAC promoter 

fragment. For verification of accurate insert size and orientation (5'-3'), plasmids were 

double digested with sequence-specific endonucleases (chapter 3.1.5.1). Sequencing 

(chapter 3.1.8) of generated plasmids for transfection assays was performed to control 

sequence correctness and identity.  
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Standard pCR8/GW/TOPO cloning reaction  LR clonase reaction 

1 µl salt solution (1.2 M NaCl, 0.06 M MgCl2)  100 ng entry vector 

1 µl pCR8/GW/TOPO cloning vector (10 ng/µl)  150 ng destination vector 

4 µl purified insert      2 µl LR Clonase 

incubation for 5 min at RT     add TE buffer to 8 µl 

        incubation for 1 h at 25°C 

        add 1 µl Proteinase K 

        incubation for 10 min at 37°C 

 

 

Table 4: Oligonucleotide sequence for sAC promoter deletion constructs 

Description Sequence 5' to 3' Position Ref. Acc# 

sAC -490 SS TGTTAGAAAACACACCAGCCTCT -490 NM_018417.3 

sAC -991 SS TCAGTGCTGCTGTTTCCTCA -991 NM_018417.3 

sAC -1112 SS AAGAAGCTGCTTGGGGTAGA -1112 NM_018417.3 

sAC -1320 SS GAGGTTGCAGTGAGCTGAG -1320 NM_018417.3 

sAC -1516 SS TGCCTGAAATCCCAGCACTT -1516 NM_018417.3 

sAC -3016 SS GGCTCCGTTGTGAGGAGAGA -3016 NM_018417.3 

sAC -3528 SS TGCCTGGTCCATGATAAGTGTT -3528 NM_018417.3 

sAC -3715 SS TGCTGAAGAGACTGAGAAATGGGTAGT -3715 NM_018417.3 

sAC -490 SS TGGCTTTTCCTCAGCCCTGGA +250 NM_018417.3 

sAC -490 SS CCCTGACCCTTGCCTCAAATGTG -77 NM_018417.3 

sAC intron 4 SS GCAGGTATGGGGGCTTACTAAGATA +16197 NM_018417.3 

sAC intron 4 AS AGATTGATCCCCAGGGCA +16377 NM_018417.3 

sAC MolHap SS TTGTAGCATTTAGATACAATCATAGGC -2436 NM_018417.3 

sAC MolHap AS CCTTTGCACTCCAGCCTG -1993 NM_018417.3 
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Figure 7: pCR8/GW/TOPO vector circle map 

The pCR8/GW/TOPO vector functioned as entry vector of the amplified construct sequences and 

contains attL sequences for recombination. 
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Figure 8: The pGL3-vector circle maps 

The pGL3-Basic vector lacks eukaryotic promoter and enhancer sequences, the pGL3-Control 

vector possesses a complete promoter with SV40 promoter and enhancer sequences, and the 

pGL3-Promoter vector contains a minimal SV40 promoter without an enhancer upstream of the 

luciferase gene. Putative promoter or enhancer sequences were introduced in 5' to 3' orientation 

into the pGL3-Basic or pGL3-Promoter vector, respectively. luc+: cDNA encoding the modified 

firefly luciferase. Ampr: gene conferring ampicillin-resistance in E. coli. f1 ori: origin of replication 

derived from filamentous phage. ori: origin of plasmid replication in E. coli. Arrows within luc+ and 

the Ampr gene indicate the direction of transcription. The arrow in f1 ori indicates the direction of 

ssDNA strand synthesis. SV40: simian vacuolating virus 40.  

 

 

3.1.10 Site directed mutagenesis 

 

The detected genetic variants in the 5´-flanking region of sAC at positions -2356, -2181 

and -2092 were introduced by QuikChange site-directed mutagenesis (Stratagene) 

following the manufacturers’ instructions. The wt promoter construct (-3016/+250) served 

as PCR template. Oligonucleotide primers were designed to generate a mutant plasmid 

containing the nucleotide exchange. PCR conditions included a 6-7 min elongation step 

each cycle instead of the final elongation step. The amplified product was treated with 

methylation-sensitive DpnI endonuclease, to digest the parental DNA template strand and 

to select for mutation-containing synthesized DNA. After transformation and plasmid 

extraction, correctness of the exchanged nucleotides was checked by automated 

sequencing. 
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Standard mixture  

10x reaction buffer  

125 ng of primer 1 (sense strand)  

125 ng of primer 2 (antisense strand)  

10 ng of dsDNA template plasmid  

1 µl of dNTP mix  

2.5 u of PfuTurbo DNA polymerase (2.5 u/µl)  

dH2O to 50 µl  

 

10 units of DpnI (10 u/µl) 

 

 

3.1.11 ChIP assay 

 

To investigate interaction of a specific DNA sequence with trans-acting factors, ChIP 

assay was performed by using a modified protocol (Boyd et al. 1998; Liu et al., 2000). The 

basic steps of this technique are crosslinking of proteins with the DNA and precipitation of 

bounded chromatin using selected specific antibodies. To identify DNA fragments 

associated with the protein of interest amplification with specific primers was performed. 

About 107 cells were fixed by adding formaldehyde to a final concentration of 1% (v/v) and 

incubated for 15 min at RT. Cells were washed twice with ice-cold PBS (Sigma) and lysed 

for 10 min at RT. Nuclei were isolated followed by DNA sonification using a Bioruptor 

(Diagenode) until the chromatin had an average size of 300 to 500 bp (≤45 min, 0.5 s 

interval, 200 W, 4°C). Size of chromatin fragments was routinely controlled using agarose 

gel electrophoresis. After centrifugation, the supernatant was incubated with rabbit 

pre-immune serum for 30 min at 4°C and subsequently incubated with freshly prepared 

magnetic protein-G beads (blocked with BSA and tRNA 1 h, 4°C) for 30 min at 4°C. The 

samples were centrifugated, the supernatant was transferred to low-binding tubes and 4 

µg of selected antibody anti-sAC (Deciphergen), anti-CREB (Cell Signaling), anti-CREB-p 

(Nanotools), and IgG (Active Motif) were added and incubated over night at 4°C. The next 

day, samples were incubated with freshly prepared magnetic protein-G beads for 3 h at 

4°C. After washing with wash buffer I, II and III, the antibody/protein/DNA complex was 

eluted from the beads. Crosslinks were reversed at 67°C over night and proteins were 

digested using proteinase K (2 h, 37°C). The DNA was extracted by 

phenol/chloroform/isoamyl alcohol extraction, resuspended in nuclease-free dH2O and 

used for PCR analysis. Amplification of DNA was performed with primers for a CRE 

control sequence in the C-FOS gene locus (ChIPAb+ CREB, Millipore, Lundblad et al., 
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1998; Dalley et al., 1999; Impey et al., 2004) and in sAC exon 1 (oligonucleotide 

sequences are listed in table 5).  

 

Cellular lysis buffer  Nuclear lysis buffer  Dilution buffer 

10 mM Tris pH 8.0  50 mM Tris pH 8.0  20 mM Tris pH 8.0 

10 mM NaCl   10 mM EDTA   2 mM EDTA 

0.2% (v/v) NP-40  1% (w/v) SDS   150 mM NaCl 

Roche Complete  Roche Complete  1% (w/v) Triton X-100 

proteinase inhibitor  proteinase inhibitor  Roche Complete 

        proteinase inhibitor 

 

Wash buffer I   Wash buffer II  Wash buffer III 

20 mM Tris pH 8.0  10 mM Tris pH 8.0  20 mM Tris pH 7.6 

2 mM EDTA   1 mM EDTA   50 mM NaCl 

50 mM NaCl   0.25 mM LiCl     

1% (w/v) Triton X-100 1% (v/v) NP-40     

0.1% (w/v) SDS  1% (w/v) Deoxycholic acid 

Roche Complete   

proteinase inhibitor 

 

Elution buffer 

10 mM NaHCO3 

1% (w/v) SDS 

 

Table 5: Oligonucleotide sequences for ChIP  

Description Sequence 5'-3' Ref. Acc# 

CRE control ChIP (C-FOS) SS GGCCCACGAGACCTCTGAGACA  NP_004370 

CRE control ChIP (C-FOS) AS GCCTTGGCGCGT GTCCTAATCT NP_004370 

sAC exon 1 ChIP SS GGCCTCCTCTCCTGTCTT NM_018417.3 

sAC exon 1 ChIP AS AGGTCTGGCTTTTCCTCAGC NM_018417.3 
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3.2 Protein biochemical methods 

 

3.2.1 Extraction of proteins 

 

3.2.1.1 Extraction of cellular protein extract 

 

Cells were washed in ice cold PBS, centrifuged and lysed in lysis buffer. To remove 

cellular debris, samples were centrifuged again (12000 x g, 5 min, 4°C). Pre-heated 4 x 

SDS-PAGE sample buffer was added to the supernatants and they were heated to 95°C 

for 5 min. Protein samples were aliquoted and stored at -70°C.  

 

Lysis buffer     4 x SDS sample buffer 

150 mM sodium chloride  200 mM Tris-HCl, pH 6.8 

1% Triton X-100   8% (w/v) SDS 

0.5% sodium deoxycholate  0.4% (w/v) bromphenol blue 

0.1% SDS    40% (v/v) glycerol 

50 mM Tris, pH 8.0 

 

 

3.2.1.2 Extraction of nuclear protein extract 

 

Nuclear proteins were extracted by a modified protocol of Schreiber et al. (Schreiber at al., 

1989). A total of 107 cells were washed twice with ice-cold PBS, scraped and centrifuged 

(5000 x g, 2 min, 4°C). Pellets were resuspended in a low salt buffer (500-800 µl) and 

allowed to swell for 15 min on ice. After addition of 25-75 µl NP-40 (10% solution) and 

incubation for 5 min at RT, lysed cells were centrifuged (5000 x g, 5 min, 4°C). The 

supernatant containing the cytosolic protein was removed and stored at -80°C, while the 

pellets were resuspended in 50-150 µl of a high salt buffer. After incubation of 3 h, cellular 

debris were centrifuged twice (24,000 x g, 1 h, 4°C) and the nuclear protein extracts were 

aliquoted on ice, snap frozen in liquid nitrogen and stored at -80°C. 
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Low salt buffer     High salt buffer 

10 mM HEPES, pH 7.9    20 mM HEPES, pH 7.9   

10 mM KCl      0.2 mM EDTA pH 8.0 

1 mM DTT      1 mM DTT 

1.5 mM MgCl2      420 mM NaCl 

Roche Complete proteinase inhibitor  1.5 mM MgCl2 

       0.5 mM PMSF 

       25% (v/v) glycerol 

       Roche Complete proteinase inhibitor 

 

3.2.2 Protein quantification 

 

Quantification of the protein content was determined using the BCA Protein Assays Kit 

(Thermo Fischer). The measurement of a series of dilutions with known concentrations of 

BSA served as standard curve. Protein concentrations were measured photometrically 

and calculated with reference to the standard curve.  

 

 

3.2.3 SDS polyacrylamide gel electrophoresis (PAGE) 

 

A 10% SDS gel was used for separation of protein samples as described by Rittenhouse 

and Marcus (Rittenhouse and Marcus, 1984). The anionic detergent SDS denatures 

secondary and non-disulfide-linked tertiary structures and leads to a negative charge of a 

protein in relation to its mass, thus the migration distance of the protein in the gel is 

assumed to be directly proportional to the protein size. Protein samples were incubated in 

SDS sample buffer at 95°C for 10 min. After incubation on ice for 5 min, samples ran on a 

stacking gel (4% polyacrylamide) at 80 V and were separated in the following 10% 

stacking gel at 100 V. Running of the gel was controlled using a prestained marker.  

  

Stacking gel (4%)    Running gel (10%) 

560 µl AA/BA, 30%    2.5 ml AA/BA, 30% 

675 µl 0.5 M Tris-HCl, pH 6.8  1.9 ml 1.5 M Tris-HCl, pH 8.8 

675 µl 0.5 M imidazole, pH 6.8  75 µl SDS, 10% 

75 µl SDS, 10%    25 µl APS, 10% 

40 µl APS, 10%    5 µl TEMED 

5 µl TEMED     add dH2O to 7.5 ml 

add dH2O to 4.2 ml 
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1 x SDS running buffer 

25 mM Tris base 

102 mM glycine 

1% (w/v) SDS 

 

 

3.2.4 Coomassie blue staining 

 

Visualization of protein bands was performed by incubation of the gel for 1 h in coomassie 

blue staining solution for 30 min, followed by two washing steps with destaining solution 

(each 30 min).  

 

Coomassie staining solution    Destaining solution 

0.25% (w/v) Coomassie Brilliant Blue R-250  45% methanol 

45% (v/v) methanol      10% acetic acid 

10% (v/v) acetic acid      add dH2O 

add dH2O 

 

 

3.2.5 Western blot (wet blot) 

 

For immunologic detection of proteins, the protocol of Towbin et al. was used (Towbin et 

al., 1979). The protein extracts were transferred from the SDS gel (chapter 3.2.3) to a 

polyvinylidene difluoride membrane, which was activated for 5 min in methanol and 

equilibrated in blotting buffer. Briefly, the membrane was placed onto the gel and covered 

with two sheets of whatman-paper on each site. The blots were run for 1 h at 100 V using 

cooling units. After blotting, membranes were saturated in blocking buffer over night at 

4°C. 

Immunodetection of proteins of interest was performed by incubation of the membrane 

with specific antibody for 1 h at RT with following concentration: anti-sAC (Deciphergen; 

1:1000; rabbit), anti-CREB (Cell Signaling, 1:1000 rabbit; Cell Signaling, 1:1000 mouse), 

anti-CREB-p (Nanotools, 1:1000 rabbit) and β-tubulin (Thermo Scientific, 1:1000). 

Horseradish-peroxidase-coupled secondary antibodies (GE Healthcare, UK Ltd) were 

given for 45 min (RT) at following dilutions: anti-mouse 1:5000 and anti-rabbit of 1:5000. 

After extensive washing, membranes were incubated for 5 min in SuperSignal West 

Chemiluminescent Substrate (Pico or Femto, Thermo Scientific) and exposed to CL-X 

Posure Film (Thermo Fischer). β-tubulin served as gel loading control.  
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1 x Blotting buffer  Blocking solution  Washing solution (1 x TBS-T) 

25 mM Tris base  4% (w/v) casein  100 mM Tris base  

192 mM glycine  in 1 x TBS-T   1.5 mM NaCl 

10% methanol       0.03% (v/v) Tween-20 

 

 

3.2.6 Co-immunoprecipitation 

 

To identify potential protein/protein interactions co-immunoprecipitation (Co-IP) was 

performed. 100 µl of freshly prepared whole cell lysate (chapter 3.2.1.1) was incubated for 

2-3 h with an appropriate amount of the first antibody at RT. 5-10 µl protein G sepharose 

beads were added and incubated for 1 h at RT. The samples were centrifugated (2000 g, 

5 min, RT) and the pellet was washed for at least three times with washing buffer. Next, 

the samples were heated with SDS sample buffer at 95°C for 10 min, followed by SDS-

PAGE (chapter 3.2.3) and western blot analysis with the second antibody (chapter 3.2.5). 

 

Washing buffer      Elution buffer 

20 mM Tris      Wash buffer + 4% SDS 

0.2%Triton   

water up to 50 ml 

 

 

3.3 Cell biological and microbiological methods 

 

3.3.1 Prokaryotic cells 

 

3.3.1.1 Cell culture and storage 

 

Bacteria were used for the generation and amplification of plasmid DNA. Cultivation was 

performed at 37°C either in liquid lysogeny broth (LB) medium or on LB agar plates. 

Antibiotics were applied for specific selection of transformed bacteria. For long-term 

storage, overnight cultures were centrifuged, the pellets were resuspended in LB Medium 

with 15% (v/v) glycerol and frozen in liquid nitrogen and stored at -80°C.   
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LB Medium     LB Agar 

10 g Bactotryptone    15 g Bacto Agar in 1000 ml LB Medium  

10 g NaCl     add appropriate antibiotics     

5 g Yeast extract    after cool down to 56°C 

add dH2O to 1000 ml, pH 7.0 

Autoclave at 121°C for 120 min 

 

 

3.3.1.2 Generation of chemically competent cells 

 

Transformable competent E. coli bacterial cells were generated according to a modified 

protocol by Hanahan (Hanahan, 1983). 200 ml of LB-Medium was inoculated with E. coli 

cells, which grown at 37°C to an OD600 of 0.5. Cells were incubated for 20 min in an ice 

bath and harvested by centrifugation (4000 x g, 15 min, 4°C). The pellet was resuspended 

in 10 ml of a MnCl2-transform buffer and incubated on ice for 10 min. After centrifugation 

(3000 x g, 10 min, 4°C), the cells was resuspended in 7.4 ml of MnCl2-transform buffer 

and mixed gently, followed by dropwise addition of 560 µl DMSO. Aliquots of 100 µl were 

snap frozen in liquid nitrogen and stored at -80°C. The transformation efficiency of 

generated competent cells was routinely controlled by transformation of the pUC19 vector. 

 

MnCl2-transform buffer 

10 mM HEPES, pH 6.8 

15 mM CaCl2 

20 mM KCl 

55 mM MnCl2 

 

 

3.3.1.3 Transformation of DNA 

 

An aliquot of competent E.coli cells of 100 µl was thawed on ice and incubated with 50 ng 

of DNA for 25 min on ice, heat-shocked for 45 sec at 42°C and briefly cooled down on ice 

for 1 min. 250 µl of pre-warmed LB-Medium was added and the cells were incubated at 

37°C for 45 min. 100-150 µl of the cells were plated onto antibiotic agar plates and 

incubated at 37°C over night.  
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3.3.2 Eukaryotic cells 

 

3.3.2.1 Cell culture 

 

The human vascular endothelial cell line EA.hy926 (kind gift of Edgell et al., 1983) and the 

human embryonic kidney cell line HEK293T were maintained in DMEM (Sigma-Aldrich) 

with 10% conditioned fetal calf serum (PAA, Cölbe, Germany), penicillin (100 units/ml), 

streptomycin (100 ng/ml), and L-Glutamine (2 mmol/ml, all Sigma-Aldrich). For cultivation 

of HEK293T iron-supplemented FCS was used (Cell Concepts). Immortalized human 

kidney epithelial (IHKE) cells were maintained in Dulbecco’s modified Eagle’s 

medium/Ham’s-F12 enriched with 1% bovine calf serum (PAA), 100 units/ml penicillin, 

100 ng/ml streptomycin, 2 mmol/ml L-glutamine, 10 ml/l Insulin-transferrin-sodium selenite 

media supplement, 1.25 g/l NaHCO3,  55 mg/l sodium pyruvate, 10 µg/l human epidermal 

growth factor (all Sigma-Aldrich, Munich, Germany) and 15 mmol/l N-2-

hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; Merck). The human 

hepatocellular carcinoma cell line HEPG2 and the monocytic cell line THP1 were 

maintained in RPMI 1640 medium containing 10% (v/v) FBS, 100 U/ml penicillin, 100 

µg/ml streptomycin and 2 mM/ml L-Glutamine. For cultivation of THP1 monocytes 1 x 

modified Eagle’s medium amino acid solution (Sigma) was added. THP1 cells were kept 

at a concentration of 0.5 to 1 x 106/ml. When state of confluence was reached, cells were 

detached from surface by trypsination and splitted at appropriate ratios for further 

cultivation. Cells were cultivated at least for two passages before used for experiments. 

The number of passages did not exceed 40 in any case. 

For stimulation experiments, cells were incubated with 500 µM 8-Br-cAMP (Biolog), 10 nM 

phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich), 1 µM, 10 µM, 30 µM and 60 µM 

KH7 (Sigma Aldrich), 120 µM 2-hydroxyestradiol (HE, steraloids) and 1 nM aldosterone 

(Sigma Aldrich) for 24 h. 

 

 

3.3.2.2 Storage 

 

For long term storage cells were washed twice with PBS, trypsinated, and transferred to 

fresh medium. After centrifugation, cells were placed on ice and resuspended in 90% (v/v) 

fetal calf serum mixed with 10% DMSO. Cells were stored at -80°C and transferred to 

liquid nitrogen the next day. Thawing of cells occurred as fast as possible, using a 

waterbath at 37°C. Cells were washed with PBS to remove DMSO from the freezing 

medium. After centrifugation cells were transferred into pre-warmed medium. 
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3.3.2.3 Transient transfection 

 

EA.hy926 and IHKE cells were transfected using Nanofectin (PAA) according to 

manufacturers’ protocol. Nanofectin consists of a positively charged polymer with DNA-

binding capacity, which is embedded into a porous nanoparticle. 500 ml medium with 

105 cells/well was transferred into 24-well plates an transfected the next day. Two hours 

prior transfection medium was changed. 

For both, EA.hy926 and IHKE cells, 1 µg DNA and 3.2 µl Nanofectin solution was 

incubated in 50 µl NaCl solution for 10 min at RT. The diluted Nanofectin particles were 

added drop wise to the diluted DNA and gently vortexed. After incubation for 30 min at 

RT, the transfection complexes were added drop wise to the cell medium. Transfection 

reagent was removed by change of medium after 3 h. Stimulation of the cells was 

performed during change of medium. Cells were harvested 24 h post transfection with 

100 µl passive lysis buffer (Promega) and luciferase activity was determined using a sirius 

singletube luminometer (Berthold detection systems). 20 µl of cell lysate were routinely 

diluted with 75 µl luciferase substrate. The pGL3-Control vector, which harbors a 

competent SV40 viral promoter and an additional enhancer upstream of the luciferase 

gene, served as positive control. The promotor-less pGL3-Basic vector served as empty 

shuttle vector control. Transfection of the CRE control vector (figure 9) was used as an 

index of the cAMP-dependent signaling pathway. Transfection experiments were repeated 

at least three times, in triplicates for each plasmid. 

CRE-VectorCRE control vectorCRE-VectorCRE control vector

 

Figure 9: Schematic representation of the CRE control vector 

pADneo2 reporter plasmid containing the firefly luciferase gene under the transcriptional control of 

multiple units of CRE (pADneo2-C6-BGL) was used to measure CRE-mediated transcriptional 

activity (Isaac et al., 2007). 
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3.3.2.4 Cotransfection 

  

For cotransfection experiments overexpression of the proteins CREB and SP1, which 

were cloned into the pRC/CMV expression vector and C/EBP alpha and C/EBP beta, 

which were cloned into the pSG5 expression vector (figure 10) were performed to analyze 

the possible effect on transcription of the cotransfected reporter gene construct. The 

expression vector and reporter gene plasmids were transfected in a 3:1 ratio.  

 

 

 

Figure 10: Expression vector circle maps  

Map of the expression vector pSG5 and pRc/CMV. Amp: gene conferring ampicillin-resistance in E. 

coli. Neomycin: gene conferring neomycin-resistance in E. coli.  ori: origin of plasmid replication in 

Arrows within genes indicate the direction of transcription. SV40: simian vacuolating virus 40. pA: 

polyA signal.  
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3.4  In silico analyzes of putative transcription factor binding sites 

 

Prediction of TFBS was performed by in silico analysis using PROMO 

(http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) and 

AliBaba2.1 (http://www.gene-regulation.com/pub/programs/alibaba2/index.html, Grabe, 

2002; Messeguer et al., 2002). The standard settings were used for the data algorithms. 

Both programs use information on binding sites of the eukaryotic TRANSFAC database. 

 

 

3.5 Statistical methods 

 

P-values were calculated using the scientific analysis and presented with the computer 

program “Graph Pad Prism 4.0/5.0”. Significance was calculated by unpaired, two-tailed t-

test (C.I.:95%). The significance levels were set at ***p<0.001, **p<0.01, and *p<0.05. 

 

 

3.6 Study population 

 

The current investigation was based on the Münster Molecular Functional Profiling for 

Mechanism Detection (MolProMD) Study. The Münster MolProMD Study is a prospective 

study of patients with CVD (e.g. with myocardial infarction, essential hypertension), aimed 

at studying the molecular mechanism of CVD. The study was approved by the ethics 

committee of the Medical Faculty, Westphalia Wilhelms-University of Münster and written 

informed consent was obtained from all study subjects. Genomic DNA from patients of 

this study was used for the detection of genetic variants by sequencing as well as for 

subcloning and generation of gene promoter reporter vectors (Dördelmann et al., 2008). 
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4 Results 

 

 

4.1 Gene regulatory function of sAC 

 

4.1.1 sAC acts as a co-factor of CREB 

 

4.1.1.1 sAC interacts with CREB 

 

Initial studies have shown the importance of sAC for CREB phosphorylation and 

activation. Co-localisation of sAC with CREB has been shown by immunofluorescence. 

Further, HCO3
- induces CREB phosphorylation via sAC activation (Zippin et al., 2004). 

To determine if sAC and CREB interact physically, Co-IP was performed in EA.hy926 and 

IHKE cells (figure 11). Co-IP is implemented to identify protein/protein interactions by 

using target protein-specific antibodies. Interaction partners of the target protein can 

subsequently be identified by western blot analysis. Precipitation of whole cell lysates of 

EA.hy926 and IHKE cells was performed with a specific CREB antibody. The captured 

complex was separated with SDS-gelelectrophoresis and detected with a sAC antibody, to 

identify potential CREB/sAC interactions. To ensure antibody specificity a sAC-peptide 

was used as negative control.  

 

50 kDa

50 kDa

EA.hy926 IHKE

Anti-sAC

Anti-sAC + sAC-peptide

50 kDa

50 kDa

EA.hy926 IHKE

Anti-sAC

Anti-sAC + sAC-peptide

50 kDa

50 kDa

EA.hy926 IHKE

Anti-sAC

Anti-sAC + sAC-peptide

50 kDa

50 kDa

EA.hy926 IHKE

Anti-sAC

Anti-sAC + sAC-peptide

 

 

Figure 11: Co-IP of CREB and sAC 

Co-IP in whole cell lysates of EA.hy926 and IHKE cells was performed with a CREB antibody. 

Detection with a sAC antibody in a western blot showed a specific band for sAC at ~50 kDa. The 

lysates were precipitated with a CREB antibody and the captured complex was precipitated with 

sAC in the absence (upper panel) or presence (lower panel) of 10 mg/ml antigen peptide. Co-IP: 

co-immunoprecipitation, sAC: soluble adenylyl cyclase, CREB: cAMP response element binding 

protein, kDa: kilodalton. 
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Detection of the CREB-immunoprecipitated complex with a sAC antibody showed a 

specific signal at ~50 kDa in both cell lines (figure 11). The applied sAC peptide prevented 

the sAC antibody from binding to the precipitated complex pointing to the specificity of the 

sAC antibody.  

 

 

4.1.1.2 sAC is bound together with CREB on chromatin 

 

To evaluate the role of sAC in gene expression regulation via the cAMP-regulated 

transcription factor CREB, the localization of sAC on chromatin was analyzed (figure 12). 

ChIP assays were performed to investigate protein/DNA interactions in vivo. The basic 

steps of this technique are (1) fixation of protein/DNA complexes, (2) sonification of the 

DNA, (3) immunoprecipitation with specific antibodies recognizing sAC, CREB, and 

CREB-p, and (4) detection of the precipitated DNA via PCR. 

In
p
u

t

C
R

E
B

C
R

E
B

-p

s
A

C

Ig
G

EA.hy926 IHKE

In
p

u
t

C
R

E
B

C
R

E
B

-p

s
A

C

Ig
G

A B

CRE

**
*

**
*

**
*

**
*

**

 

 

Figure 12: sAC binding at CRE element  

Chromatin immunoprecipitation analysis in EA.hy926 (A) and IHKE (B) cells demonstrates in vivo 

binding of the transcription factor CREB and sAC on a CRE consensus site. Binding of CREB and 

sAC was detected in both cell lines, whereas a binding of the phosphorylated CREB-p occurred 

exclusively in EA.hy926 cells. DNA was precipitated with specific antibodies against CREB, CREB-

p, and sAC. Input-DNA (Input), immunoprecipitated DNA, and DNA, which was precipitated with 

IgG as control, were amplified with specific primers for a CRE control element in the C-FOS gene. 

Gelelectrophoresis was performed and band intensities were three times quantified 

densitometrically. The input signal was defined as 100%, signal intensities are indicated as 

percentage of input. Level of significance was determined in reference to IgG.  *** p<0.001, 

** p<0.01. 
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In EA.hy926 cells, sAC showed a signal intensity of 15% compared to a 12% signal 

intensity of CREB, to the CRE consensus sequence (figure 12A). CREB-p was detected 

at lower intensities. In IHKE cells, a signal intensity of 10% of sAC and 15% of CREB was 

detected and no binding of CREB-p was observed (figure 12B). Taken together, these 

findings demonstrate sAC binding in complex with CREB on a CRE consensus sequence 

in EA.hy926 and IHKE cells.  

 

 

4.1.1.3 Transcriptional activity driven by CRE sites depends on sAC  

 

Since sAC showed binding capacities at the CRE consensus sequence (figure 12), CRE 

activation was investigated to determine if it depends partially on sAC abundance. A CRE 

control vector was used comprising a set of six CREs upstream of the luciferase reporter 

gene to measure the CRE-mediated transcriptional activity. Inhibitors of sAC were tested 

for their potential to prevent CRE-mediated transcriptional activity. KH7 is a sAC-specific 

inhibitor (figure 13). 2-hydroxyestradiol (HE, figure 9), which is often used as sAC-inhibitor 

(Pastor-Soler et al., 2003; Luconi et al., 2005; Pierre et al., 2009), was shown to be a 

general inhibitor of class III AC activity, since it inhibited the tmAC with an IC50 value of ~2 

µM (Steegborn et al., 2005). 
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Figure 13: HE affects CRE-mediated transcriptional activity 

The inhibition of sAC and tmACs resulted in a decreased transcriptional activity of the CRE control 

vector. In EA.hy926 cells, treatment with HE reduced transcriptional activity to 60% of initial activity. 

In IHKE cells, HE reduced transcriptional activity to 20% of initial activity. IHKE and EA.hy926 cells 

were transfected with a CRE control vector, comprising six CREs upstream of the luciferase gene. 

Transfected cells were treated with 120 µM of the inhibitor 2-hydroxyestradiol (HE) for 24 h or with 

equal volumes of ethanol (control). Transcriptional activity of control was defined as 100%.            

** p<0.01. HE: 2-hydroxyestradiol. Transcriptional activity was assessed as relative light units 

(RLUs).
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Figure 14: Inhibition of sAC by KH7 decreases CRE-mediated transcriptional activity in a 

dose-dependent manner  

Treatment with different doses of sAC-specific inhibitor KH7 in EA.hy926 (A) and IHKE (B) cells led 

to dose-dependent decrease of CRE-mediated transcriptional activity. EA.hy926 and IHKE cells 

were transfected with a CRE control vector, with six CRE elements upstream of the luciferase gene 

and treated for 24 h with increasing doses of the sAC-specific inhibitor KH7 or with equal volumes 

of DMSO (control). *** p<0.001, * p<0.05. Transcriptional activity was assessed as relative light 

units (RLUs). 

 

Inhibition with HE (figure 13) and KH7 (figure 14) significantly (HE, p<0.01; KH7, p<0.001 

and 0.05) reduced transcriptional activity driven by CREs. Inhibition of sAC with KH7 

showed a significant dose-dependent decrease of CRE-mediated transcriptional activity in 

EA.hy926 cells (figure 14A). In contrast in IHKE cells, inhibition of sAC with 1 µM and 10 

µM KH7 had no effect on transcriptional activity driven by CREs (figure 14B). 30 µM and 

60 µM KH7 showed significant reduction of CRE-mediated transcriptional activity in both 

cell lines (p<0.001, p<0.05).  

To test whether the inhibiting effect of KH7 results from a lack of cAMP or from the 

inhibition of the sAC enzyme directly, the cells were treated with cAMP to compensate the 

lack of cAMP due to sAC inhibition (figure 15). Compensation of sAC inhibition with cAMP 

stimulation did not overcome the inhibiting effect of KH7 on CRE-mediated transcriptional 

activity, since transcriptional activity is decreased ~3-fold compared to control (p<0.01, 

p<0.05). These effects were observed in a similar manner for both the IHKE cells and the 

EA.hy926 cells. 
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Figure 15: sAC influences cAMP-independent CRE-mediated transcriptional activity  

Transcriptional activity of CRE elements decreased after treatment with 30 µM of sAC inhibitor 

KH7. Treatment with cAMP increased the overall CRE-mediated transcriptional activity, whereas it 

did not overcome the inhibiting effect of KH7 on CRE-mediated transcriptional activity. EA.hy926 

and IHKE cells were transfected with a CRE control vector, comprising six CREs upstream of the 

luciferase gene and treated with (+cAMP) or without  0.5 mM 8-Br-cAMP (w/o) for 24 h. ** p<0.01,  

* p<0.05. Transcriptional activity was assessed as relative light units (RLUs). 

 

 

4.1.2 sAC affects expression of genes involved in aldosterone signaling 

 

4.1.2.1 Aldosterone-mediated activation of CRE sites is blocked by inhibition of sAC 

 

There is some evidence that aldosterone takes part in cAMP-regulated gene expression 

(Christ et al., 1999). Therefore, we analyzed the effect of aldosterone stimulation on the 

transcriptional activity of the CRE control vector (figure 16).  
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Figure 16: Aldosterone influences sAC enhanced CRE-mediated transcriptional activity 

Aldosterone had an activating effect on CRE-mediated transcriptional activity. EA.hy926 cells were 

transfected with a CRE control vector, comprising six CREs upstream of the luciferase gene and 

treated with 1 nM aldosterone and 30 µM KH7. *** p<0.001. Transcriptional activity was assessed 

as relative light units (RLUs). 

 

Treatment of cells with aldosterone increased CRE-mediated transcriptional activity 

1.5-fold (p<0.001). The elevated transcriptional activity, resulting from aldosterone 

stimulation was significantly (p<0.001) decreased to 0.6-fold after incubation with KH7 

(figure 16). 

 

 

4.1.2.2 Aldosterone-regulated genes are influenced by sAC 

 

To determine the regulatory effect of sAC on genes involved in aldosterone signaling, we 

analyzed the expression pattern of the mineralocorticoid receptor, Na+/K+-ATPase alpha, 

Na+/K+-ATPase beta, ENaC alpha and sAC via real time PCR after treatment with 

aldosterone and KH7 (figure 17).  
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Figure 17: Inhibition of sAC leads to reduction of aldosterone-regulated gene expression 

Changes in the expression of genes involved in aldosterone signaling after treatment with 60 µM of 

sAC inhibitor KH7 and 1 nM aldosterone were analyzed by reverse transcription real time PCR in 

EA.hy926 cells. A Treatment with KH7 resulted in a downregulation of the mineralocorticoid 

receptor, Na
+
/K

+
-ATPase alpha, Na

+
/K

+
-ATPase beta, and ENaC alpha. B Treatment with 

aldosterone resulted in an upregulation of Na
+
/K

+
-ATPase beta, ENaC alpha, and sAC as well as in 

a downregulation of the mineralocorticoid receptor transcript and had no effect on the expression of 

the Na
+
/K

+
-ATPase alpha. C Treatment of KH7 in combination with aldosterone hampered the 

aldosterone effect on the expression of all analyzed genes. *** p<0.001, ** p<0.01, * p<0.05. 

Normalization of all amplifications was performed in reference to glycerine-aldehyde-3-phosphate-

dehydrogenase (GAPDH). 

 

Aldosterone enhanced the expression of Na+/K+-ATPase beta (p<0.01), ENaC alpha, and 

sAC (p<0.05), inhibited the expression of mineralocorticoid receptor (p<0.05), and had no 

effect on the expression of Na+/K+-ATPase alpha (figure 17B). Inhibition of sAC by KH7 

resulted in a significant decrease (p<0.001; p<0.05) of expression of all analyzed genes, 

except sAC (figure 17A). Furthermore sAC inhibition did prevent the effect of aldosterone 

on the expression of these genes, since all analyzed genes displayed only ~50% of 

expression after treatment with aldosterone and KH7 (figure 17C) compared to treatment 

with aldosterone exclusively (figure 17B). 

 

 

4.2 Transcriptional regulation of sAC 

 

4.2.1 Endogenous expression of sAC  

 

Since sAC expression was shown to be modulated by aldosterone (figure 17B), we 

investigated the transcriptional regulation of sAC. To identify cell lines that endogenously 

express sAC under basic and different stimulatory conditions (cAMP, PMA), the 

expression of sAC in the following cell lines was investigated: human hepatocellular 

carcinoma cell line (HepG2), human vascular endothelial cells (EA.hy926), human 

embryonic kidney 293T cell line (HEK293T), immortalized human kidney epithelial cell line 

(IHKE), and human acute monocytic leukemia cells (THP1, figure 18).  

EA.hy926, HEK293T and IHKE cell lines showed endogenous expression of sAC. To 

determine if sAC is involved in cAMP signal transduction, the influence of cAMP on sAC 

mRNA expression in all cell lines was analyzed. In HepG2, EA.hy926, IHKE, and THP1 

cells stimulation with cAMP increased sAC expression, whereas in HEK293T cells cAMP 
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treatment led to decreased sAC expression. Stimulation with PMA increased sAC 

expression exclusively in HepG2 and HEK293T cells. 
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Figure 18: Endogenous expression of sAC 

sAC expression was detected in EA.hy926, HEK293T and IHKE cells. Stimulation with cAMP led to 

upregulation in HepG2, EA.hy926, IHKE and THP1 cells, whereas cAMP stimulation led to 

downregulation in HEK293T cells. In HepG2 cells, endogenous expression of sAC was upregulated 

by PMA. RNA was isolated after treatment with 5 x 10
-4

 M cAMP or 10
-8

 M PMA for 24 h. 

Amplification with specific primers for human ribosomal protein 27 (hRP27) served as loading 

control. HepG2: human hepatocellular carcinoma cell line, EA.hy926: human vascular endothelial 

cells, HEK293T: human embryonic kidney 293T cell line, IHKE: immortalized human kidney 

epithelial cell line, THP1: human acute monocytic leukemia cells, w/o: unstimulated cells.  

 

 

4.2.2 sAC transcription in endothelial and kidney cells 

 

4.2.2.1 Distinct sAC isoform expression in kidney and endothelial cells 

 

To study sAC protein expression and localization in endothelial and kidney cells, western 

blot analysis was performed to detect possible differences of sAC protein expression in 

cell extract and nuclear extract of endothelial and kidney cells (figure 19).  
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Figure 19: sAC is endogenously expressed in endothelial and kidney cells and localized in 

the nucleus 

Detection of sAC using a specific sAC antibody in whole cell extracts of EA.hy926 cells showed 

three distinct bands at 50, 70 and 80 kDa. EA.hy926 nuclear extract displayed a signal at 50 and 

70 kDa. Nuclear and whole cell extract of IHKE displayed a signal at 50 and 80 kDa. 

 

In both cell lines sAC protein could be detected in the cell extract as well as in the nuclear 

extract. We observed isoforms at 50 kDa, at 80 kDa and additionally at 70 kDa in 

EA.hy926 cells, which has not been described so far. While all three isoforms were 

expressed in the whole cell extract, the 80 kDa isoform could not be detected in the 

nuclear extract of EA.hy926 cells. In contrast to the findings in EA.hy926 cells the 50 kDa 

and the 80 kDa isoforms were found in the cell and the nuclear extract in the IHKE cells, 

while in both extracts the 70 kDa isoform, which could be observed in both extracts of 

EA.hy926, could not be found (figure 19). 

 

 

4.2.2.2 sAC promoter structure in endothelial and kidney cells 

 

Since differences in the expression pattern of sAC could be detected in endothelial and 

kidney cells (figure 19), we investigated the transcriptional regulation in endothelial 

(EA.hy926) and kidney (IHKE, HEK293T) cell lines. To identify transcriptional active 

promoter portions, we cloned the region -3715 to +250 into the promoterless pGL3-Basic 

vector, harboring the luciferase reporter gene downstream of the multiple cloning site 
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(mcs), to detect potential promoter activity of the 5´-flanking region (figure 20). Expression 

of luciferase protein resulted from transcriptional activity of the specific sAC promoter 

fragment. Transcriptional activity was determined as relative light units of the permitted 

light resulting from the chemical reaction of oxidation of luciferin catalyzed by luciferase. 

(Greer and Szalay, 2002). By deleting parts of the 5´-end of the constructs, we created 

serial deletion constructs. We performed transient transfection assays in EA.hy926, IHKE, 

and HEK293T cells. 
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Figure 20: Schematic representation of sAC promoter deletion constructs 

3715 bp of the 5´-flanking region of the sAC gene harboring 250 bp of exon 1 were cloned into the 

pGL3-Basic vector upstream of the reporter gene luciferase and serial deletion constructs were 

generated. Sequence positions are shown according to TSS (Acc#.: NM_018417.4). The arrow 

indicates the TSS. The black box indicates a part of the untranslated exon 1. The white box 

indicates the luciferase gene. luc: luciferase. 
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Figure 21: sAC promoter structure in endothelial and kidney cell lines 

Deletion constructs of the sAC 5´-flanking region were transiently transfected into EA.hy926 (A), 

IHKE (B), and HEK293T (C) cells to identify transcriptionally active promoter regions within the 5'-

flanking region. In the endothelial cell line EA.hy926, the construct -490/+250 harbored the highest 

transcriptional activity, whereas in the kidney cell lines IHKE and HEK293T the strongest 

transcriptional activity was detected in construct -1320/+250. In IHKE cells, the construct                 

-3528/+250 also showed a significantly higher transcriptional activity compared to the surrounding 

constructs. White bars display transcriptional activity of the pGL3-Control vector, with a strong viral 

SV40 promoter; black bars display basic transcriptional activity of the pGL3-Basic vector. 

*** p<0.001, ** p<0.01, * p<0.05, ns: not significant. Transcriptional activity was assessed as 

relative light units (RLUs). 

 

The 5´-flanking region of sAC showed transcriptional activity in endothelial, as well as in 

kidney cell lines, the overall transcriptional activity being lower in the endothelial cell line 

EA.hy926. The transcriptional activity significantly (p<0.01) peaked in the shortest 

construct -490/+250, but showed only 2-fold higher transcriptional activity compared to 

pGL3-Basic, and increases with longer construct length in EA.hy926 cells (figure 21A). In 

HEK293T the construct -1320/+250 showed a very strong transcriptional activity with 75% 

of transcriptional activity compared to pGL3-Control (figure 21C). The highest 

transcriptional activity in both kidney cell lines, IHKE and HEK293T, was observed for the 

construct -1320/+250 (p<0.001) whereas only in the IHKE cell line the transcriptional 

activity did show another significant peak at the construct -3528/+250 (p<0.001), pointing 

to a more expanded promoter region (figure 21B).  

 

 

4.2.2.3 Regulatory effect of exon 1 on transcriptional activity of the sAC promoter 

 

The 5´-UTR often has significant impact on transcriptional control of gene expression 

(Pickering and Willis, 2005). To analyze if sAC expression is regulated via regions in the 

5´-UTR, we generated sAC promoter deletion constructs lacking the 5´-untranslated 

region of exon 1 (figure 22). 
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Figure 22: Schematic representation of sAC promoter fragments with or without exon 1 

Deletion constructs were designed as described in figure 20 and exon 1 was deleted or exon 1 

alone (-77/+250) cloned upstream of the luciferase gene in the pGL3-Basic vector. Sequence 

positions are shown according to TSS (Acc#.: NM_018417.4). luc: luciferase. 
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Figure 23: Exon 1 comprises essential cis-regulatory elements 

sAC promoter fragments with exon 1 (position -77 to +250 bp relative to TSS [Acc#.: 

NM_018417.4]) and promoter fragments without exon 1 were transiently transfected into EA.hy926 

(A) and IHKE (B) cells. Comparison of constructs lacking exon 1 with constructs containing exon 1 

revealed a total inhibition of transcriptional activity when exon 1 was excised (marked with red 

arrows). The construct -77/+250 (exon 1) held a high transcriptional activity in both cell lines. White 

bars display transcriptional activity of pGL3-Control vector, black bars display basic transcriptional 

activity of pGL3-Basic vector. *** p<0.001, * p<0.05. Transcriptional activity was assessed as 

relative light units (RLUs). 
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To investigate the effect of the 5´-UTR on transcriptional activity of the sAC promoter in 

different cell lines, constructs including the 5´-UTR (+250), constructs lacking the 5´-UTR 

(-77) and a deletion construct representing the 5´-UTR alone (-77/+250 [exon 1]) were 

designed (figure 22). Deletion of the 5´-UTR resulted in a significant (p<0.001) inhibition of 

the transcriptional activity for all constructs in both cell lines compared to constructs 

including the 5´-UTR. The construct representing the isolated 5´-UTR (-77/+250 [exon 1]) 

showed high transcriptional activity in both cell lines. In EA.hy926 cells, the 5´-UTR 

(-77/+250 [exon 1]) construct displayed significant (p<0.05) higher transcriptional activity 

compared to the other promoter constructs, harboring additional 5´-flanking regions (figure 

23A). In IHKE cells, construct -77/+250 (exon 1) showed a significantly lower (p<0.05) 

transcriptional activity compared to the highest transcriptional activity of the construct 

-1320/+250 (figure 23B). 

 

 

4.2.2.4 Alternative promoter region positioned in intron 4  

 

Since an alternative translational start site in exon 5 was predicted by the group of Geng 

(Geng et al., 2005), it was investigated whether an alternative promoter upstream of exon 

5 exists. Therefore, the region comprising intron 4 (+16197/+16377) was cloned into the 

pGL3-Basic vector (figure 24). 
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Figure 24: Intron 4 holds independent transcriptional activity  

sAC promoter constructs of exon 1 (-77/+250) or intron 4 (+16197/+16377) were transiently 

transfected in EA.hy926 and IHKE cells. A The intron 4 construct (red bar) exhibited a higher 

transcriptional activity compared to the exon 1 construct in EA.hy926 cells (p<0.05). B By contrast, 

the exon 1 construct showed a significantly higher transcriptional activity in IHKE cells (p<0.001).  

White bars display transcriptional activity of the pGL3-Control vector, black bars display basic 

transcriptional activity of the pGL3-Basic vector. *** p<0.001, * p<0.05. Transcriptional activity was 

assessed as relative light units (RLUs). 

 

Transfection experiments including the sAC intron 4 construct demonstrated existence of 

a second intronic promoter region, independent of the 5´-promoter located in exon 1. The 

intron 4 construct showed the highest transcriptional activity (p<0.05) compared to the 

5´-promoter in EA.hy626 cells (figure 24A). In IHKE cells, the intron 4 construct showed a 

lower transcriptional activity (p<0.001), compared to the 5´-promoter (figure 24B). 

 

To investigate whether differential usage of a potential alternative promoter positioned in 

intron 4 resulted in independent usage of an alternative TSS in exon 5 in EA.hy926 and 

IHKE cells, we performed reverse transcriptase real time PCR (figure 25). A region 

covering exon 2 to 3 was amplified and compared to transcript including exon 32 to 33. 

Differences in the amounts of transcript representing exon 2 to 3 and exon 32 to 33 would 

point to an individual and independent TSS besides TSS1 (Acc#.: NM_018417.4). In both 
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cell lines transcripts representing exon 32 to 33 were detected, while exon 2 to 3 was 

absent in EA.hy926 (figure 25). 
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Figure 25: Different transcripts in EA.hy926 and IHKE cells  

Amplification of a region covering exon 2 to exon 3 was performed by reverse transcriptase real 

time PCR. Amplification of a region covering exon 32 to 33 was set as 100 %. The region in front of 

intron 4 (exon 2 to exon 3) was expressed in IHKE cells but not in EA.hy926 cells. Normalization of 

all amplifications was performed in reference to GAPDH. 

 

 

4.2.3 Transcriptional regulation by aldosterone  

 

We identified two promoter regions in EA.hy926 and IHKE cells, which showed cell type-

specific differences in transcriptional activity (5´-promoter and intronic promoter, 

figure 23). Since it has been shown that inhibition of sAC results in an abrogation of the 

aldosterone effect, hampering the activation of the Na+/K+-ATPase in renal epithelial 

collecting duct cells (Hallows et al., 2009), we tested the potential influence of the 

mineralocorticoid hormone aldosterone on the activity of the two promoter regions, located 

in the 5´-promoter and the intronic promoter.  
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Figure 26: Aldosterone stimulates the transcriptional activity of the sAC promoter 

Selected sAC promoter constructs were transiently transfected into EA.hy926 and IHKE cells and 

stimulated with 1 nM aldosterone for 24 h or treated with ethanol as control. Stimulation with 

aldosterone led to a significant increase of transcriptional activity of intron 4 construct (red bars) in 

both cell lines. In EA.hy926 cells, the transcriptional activity of the construct -1320/+250 was also 

enhanced by aldosterone treatment. Transcriptional activity of exon 1 was not affected by 

aldosterone treatment in either cell line. Transcriptional activity of the pGL3-Basic vector was 

defined as 1. Fold induction (FI) of transcriptional activity with aldosterone stimulation relative to 

unstimulated conditions is shown on the right. White bars display transcriptional activity of the 

pGL3-Control vector, black bars display basic transcriptional activity of pGL3-Basic vector.  

*** p<0.001, ** p<0.01, * p<0.05. Transcriptional activity was assessed as relative light units 

(RLUs). 

 

Treatment of both cell lines with aldosterone enhanced transcriptional activity of the 

intron 4 construct in IHKE cells 1.9-fold (p<0.05) and in EA.hy926 cell 1.4-fold (p<0.001). 

In EA.hy926 cells, the -1320/+250 construct also showed a slight activation (p<0.01) by 

aldosterone treatment (FI: 1.3, figure 26). To test whether this transcriptional activation of 

the sAC promoter results in increased amounts of expressed sAC protein, western blot 

analysis was performed using EA.hy926 extract. The slight increase in the amount of sAC 

protein after treatment with aldosterone was in accordance with the effect on 

transcriptional activity (figure 27).  
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Figure 27: Aldosterone induces an increase of sAC protein expression in EA.hy926 cells 

EA.hy926 cells were treated with 1 nM aldosterone or equal amounts of ethanol as control for 24 h. 

Western blot analysis with a sAC specific antibody and an antibody against tubulin as control was 

performed and intensities of all bands on 50, 70, 80 and 180 kDa were analysed densitometrically 

(shown right). Treatment with aldosterone led to an increased amount of sAC protein. kDa: 

kilodalton. 

 

 

4.2.4 Transcriptional regulation by CREB  

 

Since sAC is an important protein of the cAMP signaling pathway, the influence of 

cAMP-dependent transcription factors on transcriptional regulation of the sAC gene was 

examined. In silico analysis revealed several CREB binding sites, whereas the best 

prediction of a CRE could be found in exon 1 at position +138 (Zhang et al., 2005). 

Therefore, cotransfection experiments of the exon 1 sAC promoter construct were 

conducted in the presence of overexpressed CREB.  

A strong induction of the transcriptional activity of the exon 1 promoter constructs was 

observed in the presence of overexpressed CREB (figure 28). A 2.5-fold induction 

(p<0.01) by CREB overexpression compared to empty shuttle control was observed in 

EA.hy926 cells, while a 1.7-fold induction (p<0.001) was observed in IHKE cells.  



4 Results  

 

 70 

0.
0

2.
5

5.
0

7.
5

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

35 70

RLU

EA.hy926pRC/CMV CREB-pRC/CMV

0.
0

2.
5

5.
0

7.
53570

RLU

FI

2.5 **

 

0.
0

7.
5

15
.0

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

50 10
00.

0
7.

5
15

.05010
0

RLURLU

0.
0

7.
5

15
.0

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

50 10
00.

0
7.

5
15

.05010
0

RLURLU

0.
0

7.
5

15
.0

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

50 10
00.

0
7.

5
15

.05010
0

RLURLU

FI

1.7 ***

IHKEpRC/CMV CREB-pRC/CMV

 

Figure 28: CREB overexpression enhanced transcriptional activity of the sAC exon 1 

promoter fragment  

Significant induction of the transcriptional activities of the exon 1 construct was observed upon 

overexpression of CREB in EA.hy926 (FI: 2.5) and IHKE (FI: 1.7) cells. The empty vector 

pRC/CMV served as shuttle control (left). Transcriptional activity of the pGL3-Basic vector was 

defined as 1. Fold induction (FI) was calculated as transcriptional activity of exon 1 in presence of 

CREB relative to the empty vector control and is shown on the right. White bars display 

transcriptional activity of the pGL3-Control vector, black bars display basic transcriptional activity of 

pGL3-Basic vector. *** p<0.001, ** p<0.01. Transcriptional activity was assessed as relative light 

units (RLUs). 

 

To confirm the result that the transcriptional activity of exon 1 is regulated by the 

transcription factor CREB in vivo, a ChIP assay was performed (figure 29). Using a CREB 

antibody and subsequent amplification of a PCR product harboring region +156 to +244 of 

exon 1, in vivo binding of CREB was confirmed within exon 1 of the sAC gene. A 

precipitation with a CREB antibody and IgG was performed, which served as the negative 

control. The signal intensity was controlled by amplification of 10% and 1% Input-DNA. 
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Figure 29: CREB binds to a region of the sAC 5´-UTR in vivo 

Chromatin immunoprecipitation analysis in EA.hy926 and IHKE cells demonstrated binding of the 

transcription factor CREB to the sAC 5´-UTR under basic conditions. Input-DNA, 

immunoprecipitated DNA, and DNA that was treated with IgG as control, were amplified with 

specific primers for exon 1 and analyzed by gelelectrophoresis.  

 

 

4.2.5 Transcriptional regulation by sAC 

 

Since it was shown that activation of sAC by HCO3
- leads to increased CREB 

phosphorylation (Zippin et al., 2004), the effect of sAC overexpression on transcriptional 

activity of exon 1 was examined. A sAC expression vector was designed, expressing the 

full length cDNA. Cotransfection experiments of the construct harboring sAC exon 1 and 

the sAC expression vector were performed. Transcriptional activity of exon 1 was 

significantly enhanced 1.6-fold (p<0.001) in EA.hy926 cells and 2-fold (p<0.001) in IHKE 

cells (figure 30). 

 

 

 

 

 



4 Results  

 

 72 

EA.hy926

0 2 4 6

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

75 15
0

RLU

pcDNA3.1 sAC-pcDNA3.1

02467515
0

RLU

FI

1.6 ***

 

IHKE

0 10 20

pGL3-Control

pGL3-Basic

-77/+250 (exon 1)

80 12
0

RLU
010208012

0

RLU

pcDNA3.1 sAC-pcDNA3.1
FI

2.0 ***

 

Figure 30: sAC overexpression enhanced transcriptional activity of the sAC exon 1 

promoter fragment 

A significant induction of the transcriptional activity of the sAC exon 1 construct was observed upon 

the overexpression of sAC in EA.hy926 (FI: 1.6) and IHKE (FI: 2.0) cells. The empty vector 

pcDNA3.1 served as shuttle control (left). Transcriptional activity of the pGL3-Basic vector was 

defined as 1. Fold induction (FI) of transcriptional activity of sAC overexpression relative to empty 

vector control is shown on the right. White bars display transcriptional activity of the pGL3-Control 

vector, black bars display basic transcriptional activity of the pGL3-Basic vector. *** p<0.001. 

Transcriptional activity was assessed as relative light units (RLUs). 

 

 

4.2.6 Transcriptional regulation by C/EBPs 

 

In addition to predictions for CREB binding sites, in silico analysis revealed several C/EBP 

binding clusters at positions -1175 to -1128, -470 to -454  and two binding sites between 

positions -77 and +250. C/EBPs build a family of transcription factors, which can 

homodimerize or heterodimerize for example with CREB (Park et al., 1993). Similar to 

CREB, C/EBPs can be regulated by phosphorylation, leading to activation or repression of 

transcription, dependent on the cellular context (Lynch et al., 2011). In this respect, the 

role of C/EBPs in the regulation of sAC gene expression was examined in EA.hy926 and 

IHKE cells (figure 31). 
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Figure 31: Effect of C/EBP alpha and C/EBP beta on transcriptional activity of sAC promoter 

constructs 

The overexpression of C/EBP alpha in EA.hy926 cells (A) led to 0.4 to 0.8-fold decreased 

transcriptional activity of all tested sAC promoter constructs. The overexpression of C/EBP beta 

had no significant influence on transcriptional activity in EA.hy926 cells (B). In IHKE cells, 



4 Results  

 

 74 

overexpression of C/EBP alpha (C) led to 1.8 to 2.7-fold increase of transcriptional activity of all 

constructs containing the 5´-UTR promoter (-77/+250, -490/+250, -1320/+250). A decrease of 

transcriptional activity was observed for the intron 4 construct. C/EBP beta overexpression 

increased the transcriptional activity of constructs harboring the 5´-UTR promoter (-77/+250, 

-490/+250, -1320/+250) 4.6 to 8.4-fold in IHKE cells, whereas no effect could be detected on the 

construct harboring intron 4 (D). The empty vector pSG5 served as shuttle control (left). 

Transcriptional activity of the pGL3-Basic vector was defined as 1. Fold induction (FI) of 

transcriptional activity of C/EBP alpha or C/EBP beta overexpression relative to empty vector 

control is shown on the right. White bars display transcriptional activity of the pGL3-Control vector, 

black bars display basic transcriptional activity of the pGL3-Basic vector. *** p<0.001, ** p<0.01, 

* p<0.05. Transcriptional activity was assessed as relative light units (RLUs). 

 

In IHKE cells, transcriptional activity of constructs harboring the 5´-UTR promoter             

(-77/+250, -490/+250, -1320/+250), was significantly increased by overexpression of 

C/EBP alpha, whereas the strongest fold induction of 2.7 (p<0.001) was observed for the   

-77/+250 (exon 1) construct (figure 31C). Expression of C/EBP beta led to a stronger 

induction of transcriptional activity of constructs harboring the 5´-UTR promoter (-77/+250, 

-490/+250, -1320/+250) compared to C/EBP alpha, with the highest FI of 8.4 (p<0.01) for 

the -77/+250 (exon 1) construct (figure 31D). Overexpression of C/EBP alpha and beta did 

not alter transcriptional activity of the intron 4 construct. In contrast, in EA.hy926 cells the 

transcription factor C/EBP alpha led to a slight decrease (mean FI: 0.6125, p<0.001) of 

transcriptional activity of all tested sAC promoter constructs (figure 31A). Cotransfection 

with C/EBP beta did not significantly affect sAC promoter activity in EA.hy926 cells (figure 

31B). 

 

 

4.3 Determination of genetic variants within the sAC 5´-UTR promoter 

 

4.3.1 Polymorphic promoter structure 

 

Genetic variants, which reside in the promoter region, can influence transcriptional activity 

(Brand-Herrmann et al., 2004). After the determination of sAC regulatory regions, they 

were analyzed to find if genetic variants reside in the 5´-flanking region of the sAC gene. 

DNA of 60 CVD patients from the Münster MolProMD Study were screened. 4,000 bp 

were sequenced, since the 3´-end of the neighboring gene, coding for brain protein 44 

(BRP44) is located 4,000 bp upstream of the 5´-end of the sAC gene. We identified seven 

genetic variants, three of which were newly detected (blue). In addition, three variants 
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were in a nearly complete linkage disequilibrium (LD) determined in a LD plot, shown in 

red rectangles (figure 32). 
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Figure 32: Polymorphic promoter structure of sAC 

The sAC gene spans 105 kb and is located on chromosome 1. Four kb of the 5´-flanking region 

were sequenced in 60 patients with cardiovascular disease and seven genetic variants were 

identified, three of which were newly detected (dark blue). The LD plot was performed using 

Haploview. The second block of the LD Plot comprises three of the variants at positions -2356, 

-2181 and -2092 in a nearly complete linkage disequilibrium (red boxes). The untranslated regions 

are shown as grey boxes, alternatively transcribed regions are shown in black, asterisks indicate 

putative alternative translational start sites. 

 

The three genetic variants at position -2356, -2181, and -2092 cosegregate and generate 

two molecular haplotypes: Haplotype 1 (MolHap1) [Ins-2356 – C-2181 – T-2092] with the major 

allele combination and haplotype 2 (MolHap2) [Del-2356 – T-2181 – G-2092] with the minor 

allele combination (figure 33).  
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Figure 33: Molecular haplotypes within the human sAC promoter region 

The variants at positions -2356, -2181 and -2092 are in an almost complete linkage disequilibrium 

and generate two molecular haplotypes MolHap1: [Ins
-2356

 – C
-2181

 – T
-2092

] and MolHap2:                  

[Del
-2356

 – T
-2181

 – G
-2092

]. 
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4.3.2 In silico analysis of identified genetic variants 

 

Both haplotype-sequences were analyzed for potential transcription factor binding sites in 

silico using the net based program AliBaba 2.1 (http://www.gene-

regulation.com/pub/databases.html). This program accesses the transcription factor 

binding site database Transfac 7.0. (figure 34). 

 

 

C-2181T T-2092GIns-2356Del

MolHap1

MolHap2

 

Figure 34: Putative transcription factor binding sites of MolHap1 and MolHap2 

Sequence of molecular haplotypes MolHap1 [Ins
-2356

 – C
-2181

 – T
-2092

] and MolHap2                     

[Del
-2356

 – T
-2181

 – G
-2092

] were analyzed using AliBaba 2.1. Positions of variants are marked in 

green. Predicted transcription factors are displayed beneath their recognition site. USF: upstream 

transcription factor; GATA 1: transcription factor with affinity for the sequence GATA; Sp1: 

specificity protein 1; CRE-BP1: CREB, cAMP response element binding protein 1; CPE bind: 

cytoplasmatic polyadenylation element binding factor.   

 

Predicted binding patterns of potential transcription factors differed between the 

haplotypes (figure 34). For both, MolHap1 and MolHap2, the -2356 Ins/Del represented a 

putative binding site for upstream transcription factor (USF), which is linked to the lipid 

metabolism (Wu et al., 2010). Insertion of the sequence TTCTT at position -2356 resulted 

in the prediction of binding of the erythrocyte-specific transcription factor GATA-1. 

Introduction of the -2181C allele created a putative binding site for SP1, whereas the 

minor allele lacked this binding site. The transcription factor Sp1 belongs to a Cys2His2 

zinc finger domain family, which is ubiquitously expressed (Solomon et al., 2008). No 

binding was predicted for the -2092T allele, but the -2092G allele showed a binding site 

for CREB and the CPE binding factor, which mediates polyadenylation of 3´-untranslated 

regions of mRNA (Hake and Richter, 1994).  
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4.3.3 Transcriptional activity of MolHaps 

 

We analyzed transcription activity of MolHap1 and MolHap2 using reporter gene assays. 

Therefore, we cloned the sequence spanning Ins/Del-2356, C/T-2181, and T/G-2092 into 

the reporter gene vector pGL3-Promoter, which contains a minimal SV40 in front of the 

luziferase gene, to compensate for the lack of the core promoter located in sAC exon 1. 

Subsequently the constructs were transfected in HEK293T cells. MolHap2 showed a 

significantly (p<0.01) higher transcriptional activity compared to MolHap1 (figure 35). 

 

MolHap1

MolHap2 **

RLU

pGL3-Promoter

TTCTT C T

T G( - )

-2356
Ins/Del

-2181
C/T

-2092
T/G

 

Figure 35: Transcriptional activity of MolHap1 and MolHap2 

A 406 bp fragment of the sAC promoter comprising the MolHap1 [Ins
-2356

 – C
-2181

 – T
-2092

] or the 

MolHap2 [Del
-2356

 – T
-2181

 – G
-2092

] sequence was cloned into the pGL3-Promoter vector. MolHap2 

showed an ~2-fold higher transcriptional activity compared to MolHap1. Dark grey bars display the 

pGL3-Promoter vector transcriptional activity. ** p<0.01. Transcriptional activity was assessed as 

relative light units (RLUs). 

 

 

4.3.4 Allele-specific transcriptional regulation by the transcription factor SP1 

 

In contrast to MolHap2, MolHap1 showed a binding site for the transcription factor SP1, 

which plays an important role in transcription initiation of TATA-less promoters (Hilton and 

Wang, 2003). Overexpression of SP1 was performed to detect its effect on transcriptional 

activity of MolHap1 and MolHap2 in HEK293T cells (figure 36). 
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Figure 36: Overexpression of SP1 alters transcriptional activity of MolHap1 and MolHap2 

Transient cotransfection of constructs harboring MolHap1 and MolHap2 were performed in 

HEK293T cells. pRC/CMV (left) served as the empty shuttle control. SP1 overexpression 

upregulated the transcriptional activity of MolHap1 2.1-fold and decreased the transcriptional 

activity of MolHap2 by 50%. Light grey bars display the sAC constructs transcriptional activity; dark 

grey bars display the pGL3-Promoter vector transcriptional activity. *** p<0.001, ** p<0.01, 

* p<0.05. Transcriptional activity was assessed as relative light units (RLUs). 

 

MolHap1, harboring a potential binding site for SP1, showed a 2.1-fold higher 

transcriptional activity upon overexpression of SP1 (p<0.001). The transcriptional activity 

of MolHap2 decreased by 0.5-fold due to SP1 overexpression (p<0.05, figure 36). 
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5 Discussion 

 

 

In the present study, effects of sAC on aldosterone-regulated gene expression were 

analyzed. We examined the physical interaction of sAC and CREB in Co-IPs and 

assessed the constitution of a transcriptional module of sAC and CREB in ChIP assays in 

endothelial and kidney cells. In addition, we analyzed the impact of sAC on CRE motifs 

using reporter gene assays and on the expression of genes involved in aldosterone 

signaling using reverse transcription real time PCR. Since sAC expression itself is 

considerably modulated by aldosterone, we determined functional sAC promoter 

sequences and analyzed this significance in aldosterone-mediated sAC regulation. 

Therefore, reporter gene analyses were implemented to identify active promoter portions 

and the impact of trans-acting factors of sAC in endothelial and kidney cells, as well as the 

impact of genetic variants within the 5´-flanking region on transcriptional activity. 

 

 

5.1 sAC acts as a co-factor of CREB 

 

Recent studies suggested that sAC is an important factor involved in CREB 

phosphorylation. The group of Zippin (Zippin et al., 2004) reported elevated HCO3
- levels 

leading to sAC activation, subsequently increasing CREB phosphorylation. Accordingly, it 

has been shown that phosphorylation on serine 133 is a prerequisite for the function of 

CREB as transcriptional activator (Al-Tawashi et al., 2012). Using Co-IP, we 

demonstrated the existence of a CREB/sAC complex, which underlies the importance of 

sAC in CREB-mediated transcriptional activation. 

Further, our ChIP assays in EA.hy926 and IHKE cells revealed that this CREB/sAC 

complex interacts with CRE sequences in vivo. The confirmation of binding of CREB-p 

together with sAC using ChIP assay remains complicated, because sometimes 

phosphatase inhibition is not efficient enough to detect phosphorylated proteins. 

Application of the sAC-specific inhibitor KH7 in transient transfections using a CRE 

reporter vector suggested that sAC is a major factor involved in CRE-mediated 

transcriptional activation. To eliminate KH7 effects on cellular cAMP production by sAC, 

we artificially elevated cellular cAMP levels using 8-Br-cAMP. Notably, external cAMP 

could not compensate inhibition of CRE-mediated transcriptional activity by KH7. Together 

with the findings of Zippin et al. (Zippin et al., 2004) these results suggest that sAC 

facilitates the local demand of cAMP, required for CREB to act as transcriptional activator 

directly in the nucleus. Most recently, several groups independently reported (Bacskai 
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et al., 1993; Rich et al., 2000; Rich et al., 2001; Zaccolo and Pozzan, 2002) that cAMP 

generated by tmACs remains close to the site of synthesis. Cytosolic cAMP generated by 

tmACs activates PKA, leading to translocation of PKA catalytic subunits into the nucleus 

and to CREB phosphorylation (Al-Tawashi et al., 2012). Subsequently, CREB-p recruits 

the co-activators CBP or p300, which both possess histone acetyl transferase activity 

resulting in chromatin remodeling, transcription factor binding, and transcription initiation 

(Wurm et al., 2012).  

There is evidence that an additional signaling pathway for CREB phosphorylation different 

from cytoplasmatic PKA signaling exist. In fact, the local demand of cAMP was shown to 

be generated by the sAC in special microdomains. Interestingly, appearance of the PKA 

holoenzyme in nuclei was shown, modifying the existing dogma of cAMP-PKA signaling in 

the nucleus (Sample et al., 2012). 

Other protein kinases localized directly in the nucleus, such as the “mitogen and stress 

activated protein kinase 1” (MSK1) and the “calcium-calmodulin-dependent protein kinase 

IV” (CaMK IV, Bok et al., 2007) were shown to be involved in CREB phosphorylation 

(Vermeulen et al., 2003; Ko et al., 2005). Therefore, MSK1 and CaMK IV may act as 

effectors for CREB phosphorylation based on sAC-generated cAMP. Interestingly, sAC 

has been reported to be induced by oxidative stress (Acin-Perez et al., 2009), such as 

MSK1. In addition, sAC can be induced by elevated intracellular calcium levels (Han et al., 

2005), such as CaMK IV demonstrating that these factors are involved in the same 

metabolic pathways. 

Our results suggest that besides the classical signaling pathway leading to CREB 

phosphorylation via tmACs, another important signaling pathway involving sAC as a 

transcriptional co-activator of CREB, and nuclear localized protein kinases, exists.  

  

 

5.2 sAC is involved in the genomic aldosterone pathway 

 

To elucidate the role of sAC as a potential co-activator of CREB, we investigated the 

impact of sAC on gene expression regulation of selected target genes. Since an impact of 

sAC on aldosterone-mediated Na+ currents was shown (Hallows et al., 2009), which could 

be due to an influence of sAC on the expression of genes involved in aldosterone 

signaling, we focused on genes which play central roles in aldosterone signaling. 

Therefore, we analyzed the expression of the MR, Na+/K+-ATPase alpha, Na+/K+-ATPase 

beta, and ENaC alpha in the endothelial cell line EA.hy926 by reverse transcription real 

time PCR. An impact of CREB on transcriptional activation of these genes has been 

reported (Ahmad and Medford, 1995; Listwak et al., 1996; Dagenais et al., 2001; 
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Matlhagela et al., 2005). We demonstrated an essential role of sAC on the expression of 

all these genes, since the expression decreased after sAC inhibition. Furthermore, we 

were able to show that the aldosterone-induced expression of Na+/K+-ATPase beta and 

ENaC alpha was blocked by inhibition of sAC, suggesting an interaction between the 

aldosterone signal transduction system and sAC in gene expression regulation.  

In contrast to our results, the group of Verhovez (Verhovez et al., 2012) did not detect 

effects of aldosterone (10 nM aldosterone for 10, 18 or 24 h) on any transcript in human 

umbilical vein endothelial cells and human coronary artery endothelial cells using a gene 

expression microarray. Notably, the authors used a firefly luciferase based assay to 

investigate the functionality of the MR in their cell lines and could not provide evidence for 

a fully functional MR. In contrast, we used endothelial EA.hy926 cells, in which a 

functional MR was already shown to exist (Pojoga et al., 2012). In addition, an intracellular 

signaling cascade that precedes the classical genomic response to aldosterone exists in 

EA.hy926 cells (Wildling et al., 2009). 

The MR-mediated aldosterone effects are referred as genomic effects (Bonvalet, 1998). 

Genomic signaling of aldosterone involves aldosterone binding to the intracellular MR and 

subsequent translocation of the MR complex into the nucleus. Accordingly, aldosterone is 

considered to be the main ligand of the MR, which is highly expressed in the kidney 

(Krozowski et al., 1989;  Lombès et al., 1990), but also in other tissues, where RAAS 

signaling occurs, such as the vascular endothelium (Edwards et al., 1988; Funder et al., 

1988). This MR-mediated transcriptional regulation exerts effects which are observed 

several hours after stimulation. In addition, rapid and nongenomic effects of aldosterone, 

which occurs within minutes, have been reported (Chai et al., 2005). 

MR expression is regulated via two distinct promoter regions, called P1 and P2 (Zennaro 

et al., 1996) giving rise to a tissue-specific regulation of aldosterone. The developmental-

specific promoter P2 was shown to be induced by aldosterone in a dose-dependent 

manner, whereas promoter P1, which was shown to be active in all MR expressing 

tissues, was unaffected by aldosterone stimulation (Viengchareun et al., 2007).  

In our study, we detected a moderate, but still significant repressing effect of aldosterone 

on the MR expression in endothelial cells. This observation could be based on epigenetic 

modifications of the MR promoter P2 in EA.hy926 cells resulting in a transcriptional 

inactive heterochromatin structure. Interestingly, an interaction of the MR with the co-

repressor “nuclear receptor co-repressor 2” (NCOR2) on the promoter region P2 (Wang et 

al., 2004) has been reported. NCOR2, also known as “silencing mediator of retinoic acid 

and thyroid hormone receptor” (SMRT), contains multiple autonomous repression 

domains (Chen and Evans, 1995), which facilitate the recruitment of histone deacetylase 

to the promoter leading to epigenetic silencing of promoter P2 (Nagy et al., 1997). 
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In kidney collecting duct cells, the most important aldosterone effectors are ENaC and 

Na+/K+-ATPase, which mediate the aldosterone-induced increase of Na+ currents across 

the membrane (Summa et al., 2001). ENaC consists of three different subunits: ENaC 

alpha, ENaC beta and ENaC gamma, each of which comprises two transmembrane 

helices and one extracellular loop (Loffing and Schild, 2005). Amiloride is an 

ENaC-specific antagonist, which acts independently of the presence of aldosterone 

(Kusche-Vihrog et al., 2008). It is known that corticosteroids are important regulators of 

the amiloride-sensitive Na+ transport in the collecting duct, distal colon, and in airway 

epithelia (Verity et al., 2001). Interestingly, long-term treatment with aldosterone via the 

genomic pathway has been shown to increase the expression of ENaC alpha (Verity et 

al., 2001; Mick et al., 2001), while ENaC beta and ENaC gamma are constitutively 

expressed in the kidney (Masilamani et al., 1999; Loffing et al., 2000; Loffing et al., 2001). 

Corresponding to ENaC alpha subunit regulation in the kidney, we observed a slight 

activation upon aldosterone stimulation on ENaC alpha expression in endothelial cells.  

Only recently, ENaC expression has been reported to involve the circadian clock protein 

Period 1 (Per1). Aldosterone itself has been shown to take part in circadian regulation and 

can be used to reset circadian clocks in cultured cells. The extent of target gene activation 

by aldosterone furthermore depends on the circadian status of the cell (Gumz et al., 

2010). Since we analyzed aldosterone effects on target genes after 24 hours, our 

experimental setup maybe not be suitable to detect aldosterone effects on ENaC alpha 

expression. Accordingly, cells in culture would perhaps need a circadian clocks reset 

(Kaeffer and Pardini, 2005) and expression levels should be determined at different time 

points (Storch et al, 2002) to detect potential aldosterone effects on genes under the 

control of circadian regulation. 

The integral membrane Na+/K+-ATPase holoenzyme is composed of three subunits, a 

large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), responsible for 

formation and structural integrity of the Na+/K+-ATPase holoenzyme, and a modulatory 

gamma subunit (McDonough et al., 1990). We detected an enhancing effect of 

aldosterone on the expression of Na+/K+-ATPase beta in EA.hy926 cells, supporting the 

results obtained by the group of Derfoul (Derfoul et al., 1998) in african green monkey 

kidney cells (CV-1) and by the group of Kolla (Kolla et al., 1999) in transformed african 

green monkey kidney fibroblast cells (COS7). Both groups were able to show an 

activating effect of aldosterone on Na+/K+-ATPase beta gene expression. In addition, Kolla 

et al. (Kolla et al., 1999) demonstrated an activating effect on the expression of Na+/K+-

ATPase alpha in COS7, which is in contrast to our findings in EA.hy926 cells, where no 

significant influence of aldosterone on Na+/K+-ATPase alpha expression could be 

detected. It is conceivable that aldosterone has different, cell type-specific effects on the 
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regulation of the Na+/K+-ATPase holoenzyme subunits. Aldosterone effects on the 

expression of Na+/K+-ATPase beta might influence formation and structural integrity of the 

holoenzyme in endothelial cells, while the aldosterone-mediated decrease of the catalytic 

alpha subunit expression directly reduce the Na+/K+-ATPase enzyme activity in the kidney.  

 

 

5.3 Different transcriptional regulation of sAC in kidney and endothelial cells 

 

Since we were able to show that aldosterone enhances sAC mRNA and protein 

expression, we analyzed how these effects are mediated on the transcriptional level. Until 

now, the structure and regulation of the sAC protein is not completely understood. Several 

studies suggested the appearance of diverse isoforms in human cells (Geng et al., 2005; 

Schmid et al. 2010).  

We provided evidence for the existence of at least two sAC isoforms (~80 kDa and ~50 

kDa), which are expressed cell type-specifically in kidney and endothelial cells. Both 

isoforms have also been reported by Geng et al. (Geng et al., 2005) in HEK293 and Caco-

2 cells. In endothelial cells, the 80 kDa isoform was located exclusively in the cytoplasm, 

but was detected in nuclear extracts and whole cell lysates of the kidney cell line. This 

specific isoform was also shown to be located in human airway epithelial cells (Schmid et 

al., 2010). The 50 kDa isoform, which potentially represents a more active splice variant of 

sAC (Chaloupka et al., 2006), was ubiquitously expressed in both cell lines. Notably, we 

also detected another 70 kDa band exclusively in endothelial cells, which has not yet been 

reported.  

These isoforms could arise from alternative splicing or alternative translational start sites. 

The sAC gene spans 105 kb and contains several large intronic regions, which potentially 

contain transcriptionally active regions. An alternative translational start site is located in 

exon 5 (Geng et al., 2005). The differential usage of individual translational start sites is 

potentially enabled by alternative located promoter regions. The concept of alternative 

promoter systems thereby might serve for tissue- or differentiation-specific regulation (Liu, 

2010) and might result in different isoform expression. 

To define transcriptionally active regions in the sAC promoter, serial deletion constructs of 

the 5´-flanking region including exon 1, which harbors a part of the 5´-UTR, were 

generated and transiently transfected into two kidney cell lines (IHKE, HEK293T) and an 

endothelial cell line (EA.hy926). We define the location of the sAC core promoter to the 

untranslated exon 1, which likely represents the region required for assembling of the PIC 

and Pol II recruitment, since deletion of this region led to total abrogation of sAC 

transcriptional activity of all promoter deletion constructs. We also detected a cell type-
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specific effect in sAC gene expression regulation. In kidney cells, the strongest 

transcriptional activity was detected for the construct -1320/+250, whereas in the 

endothelial cells the core promoter in exon 1 showed the highest transcriptional activity. 

We detected an additional region with significant transcriptional activity, represented by 

the deletion construct -3528/+250, in the immortalized kidney cell line IHKE, in contrast to 

the embryonic kidney cells HEK293T where transcriptional activity appears more 

restricted. This observation points to a differentiation-specific regulation of the sAC, which 

is probably required since the cAMP demand needs to be regulated during differentiation. 

Additionally to the identified 5´-promoter located upstream of the translational start site in 

exon 2, intronic cis-active elements upstream of the alternative translational start site in 

exon 5 were detected. This alternative promoter region was designated as intronic 

promoter. Both promoter regions seem to be regulated in a cell type-specific manner, 

since the 5´-promoter showed stronger transcriptional activity compared to the intronic 

promoter in the kidney cells, while the intronic promoter displayed the strongest 

transcriptional activity in the endothelial cells. This distinctive feature may be the 

molecular basis for an orchestrated expression of different isoforms in the kidney and the 

vascular endothelium. An alternative promoter usage which led to tissue-specific isoform 

expression has been shown e.g. for the estrogen receptor alpha by the group of Ishii et al. 

(Ishii et al., 2010). Alternative promoter utilization in distinct cell types is reasonable in cell 

type-specific regulation via trans-active factors (Mullen et al., 2011). 

 

 

5.4 sAC expression regulation 

 

5.4.1 Modulation of sAC expression by cAMP 

 

Combinations of different trans-acting factors, regulatory elements, and co-activating 

factors lead to cell type-specific transcriptional activity (Carninci et al., 2006).  

Since sAC is an important component of cAMP signaling, it seems obvious that 

transcriptional regulation is modulated by cAMP-dependent factors. The most important 

cAMP-dependent transcription factor is CREB. As already discussed, CREB was 

identified as a target of sAC signaling (chapter 5.1). Zhang et al. (Zhang et al., 2005) used 

ChIP-on-chip analysis to determine the existence of a CRE site within exon 1 at position 

+138 of the sAC gene, a region which we designated as sAC core promoter (chapter 

5.4.1).  

We were able to identify CREB as a transcriptional activator of sAC by reporter gene and 

ChIP assays. Our results suggest that sAC may function as a co-activator of the 
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transcription factor CREB.  sAC may also be involved in a feedback regulation, acting on 

its own promoter, since we observed similar effects for sAC overexpression, compared to 

CREB overexpression. 

CREB is known to form homo- or heterodimers, the heterodimerization capacity of CREB 

being restricted to other proteins without a leucine zipper domain, with the exception of 

C/EBP beta (Park et al., 1993). C/EBP beta belongs to a family of transcription factors 

composed of six members, called C/EBP alpha to C/EBP zeta. C/EBP proteins interact 

with the CCAAT motif (Zuo et al., 2006), of which clusters are present for example in the 

sAC core promoter region and the upstream promoter at positions -1175 to -1128, -470 to 

-454 and -77 to +250. 

We tested the regulative capacity of different C/EBP family members in coexpression 

experiments and identified C/EBP beta as a strong activator of the sAC 5´-promoter in 

kidney cells. In endothelial cells, cotransfection experiments with C/EBP beta only showed 

a slight increase in transcriptional activity of 5´-promoter constructs.  

Overexpression of C/EBP alpha showed controversial effects in both cell lines. In IHKE 

cells, the transcriptional activity of deletion constructs harboring the 5´-promoter was 

significantly increased by C/EBP alpha overexpression, whereas the transcriptional 

activity of these constructs was decreased in EA.hy926 cells.  

Neither C/EBP beta nor C/EBP alpha showed an effect on transcriptional activity with 

respect to the sAC intronic promoter. This leads to the suggestion that C/EBP alpha and 

beta serve as cell type-specific regulators of the sAC 5´-promoter. 

Once they bound to DNA via their leucine zipper domain, C/EBPs can recruit co-activators 

such as CBP (Kovács et al., 2003), which can open the chromatin structure and recruit 

basal transcription factors as it is known for CREB (Kim et al., 2000). Even though all 

C/EBP isoforms share substantial sequence identity > 90 % in their leucine zipper domain, 

they exert different cell type-specific functions (Lekstrom-Himes and Xanthopoulos, 1998). 

C/EBP alpha is responsible for both adipogenesis and normal adipocyte function (Wang et 

al., 1995). C/EBP beta is involved in the regulation of genes participating in immune and 

inflammatory responses (Zhang et al., 2010). C/EBP family members can act as 

transcriptional activators as well as transcriptional repressors depending on their 

dimerization partners (McFie et al., 2006), suggesting an interaction of C/EBP alpha with a 

co-activator in IHKE cells and an interaction with a co-repressor on the 5´-promoter in 

EA.hy926 cells. The function of C/EBP family members is modulated via phosphorylation 

(Buck and Chojkier, 2007). Therefore, C/EBPs are potential phosphorylation targets in 

sAC signaling and the regulation of sAC expression via C/EBPs points to a feedback 

regulation of the sAC promoter, which is in good accordance with our CREB 

overexpression results. 
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5.4.2 Modulation of sAC expression by aldosterone 

 

In addition to transcription factors of cAMP-mediated pathways, transcription factors 

involved in aldosterone signaling also seem to be potential transcriptional regulators of 

sAC. Recently, sAC has been shown to play a pivotal role in aldosterone signaling, since 

inhibition of sAC blocked the aldosterone-mediated Na+ currents in the kidney (Hallows et 

al., 2009). In endothelial cells, aldosterone plays a role in the pathogenesis of endothelial 

dysfunction, since an aldosterone-mediated activation of the RAAS increases blood 

pressure and plays an important role in end-organ damage (Xavier et al., 2008).  

In our analysis, aldosterone predominantly enhanced the transcriptional activity of the 

intronic sAC promoter in endothelial cells as well as in kidney cells, in contrast to 

cAMP-dependent factors, which act on the untranslated region of the 5´-promoter. This 

aldosterone-stimulated transcriptional activity of the intronic sAC promoter results 

consequently in increased sAC mRNA and protein expression levels. 

We demonstrated differential regulation of sAC expression in kidney and endothelial cells 

by two independent promoter regions (5´-promoter, intronic promoter), located in close 

vicinity to two different translational start sites (exon 2, exon 5, Acc#.: NM_018417.4), 

which possibly explain the different isoform expression in these cells. 

 

 

5.5 Genetic variants influence sAC promoter activity 

 

In the current study, we screened a 4,000 bp region upstream of the TSS and were able 

to show that the sAC 5´-flanking region is polymorphic. Genetic variants, which are 

located nearby the TSS, have been shown to influence gene expression (Telgmann et al., 

2009). In addition, genetic variants within cis-active regions may change the binding 

pattern of trans-active elements, by alteration of their binding affinity to DNA (Hagedorn et 

al., 2009; Johnson et al., 2012).  

We identified seven genetic variants within 4,000 bp of the 5´-flanking region of sAC in 60 

MolProMD patients, including three novel SNPs. All identified genetic variants are located 

upstream of position -2092. This result suggests that both cis- and trans-acting elements 

downstream of position -2092 might be highly conserved, because of their essential 

function for transcriptional activity of the sAC promoter. Three genetic variants were in a 

nearly complete linkage disequilibrium generating two molecular haplotypes, MolHap1 

and MolHap2. Alleles, which reside in a high linkage disequilibrium often execute a 

common function.  
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MolHap2 showed a ~2-fold higher transcriptional activity than MolHap1, which could be 

due to altered interaction with trans-acting factors. The T allele at position -2181 disrupts a 

potential SP1 binding site. In accordance with the in silico analysis, we showed that SP1 

activates the transcriptional activity of MolHap1 containing the SP1 binding site, but 

suppresses transcriptional activity of MolHap2. SP1 acts as an important transcriptional 

activator of TATA-less promoters, while it binds with its zinc fingers to GC-rich promoter 

regions (Hilton and Wang, 2003). Even though the GC content of the analyzed region is 

only ~48%, the 5´-flanking region of the sAC gene lacks a TATA motif, but several SP1 

binding sites and is, therefore, a potential target of SP1-initiated transcription.  

These results suggests that in some CVD patients a dysregulation of sAC transcriptional 

activity could occur, which possibly leads to dysregulation of aldosterone-mediated gene 

expression (chapter 5.2). This may play a role in the differential development of CVD.  

 

 

5.6 Conclusion 

 

It is known, that aldosterone contributes to the development of hypertension (Funder, 

2011). In fact, high serum plasma aldosterone levels may predispose normotensive 

subjects to the risk for the development of incident hypertension (Vasan et al., 2004). In 

the current study, we were able to demonstrate that sAC is involved in genomic 

aldosterone signaling. Our results also indicate that sAC, acting as a co-factor of CREB, 

influences aldosterone-mediated gene expression and potentially affects Na+ currents 

across the cell membrane in the kidney and the endothelium. 

Based on this, sAC may represent a new drug target for disorders in which aldosterone 

signaling is impaired. To balance a deficiency of aldosterone synthesis, overexpression of 

sAC could balance the effect on aldosterone-induced gene expression. If a 

pathophysiological aldosterone overexpression occurs, e.g. in the case of 

hyperaldosteronism (Funder, 2011), sAC inhibition could potentially downregulate the 

aldosterone-induced gene expression.  

Hypertension is a complex multifactorial trait, in which the individual genetic 

predisposition, in combination with environmental factors and lifestyle, plays an essential 

role. Consequently, the risk to develop hypertension can be influenced in a distinct range 

by a healthy lifestyle, physical exercise, low salt intake and less mental stress, constricted 

by the genetic background as an uninfluenceable factor (Staessen et al., 2003).  

We were able to show that the sAC gene promoter is polymorphic in CVD patients, which 

leads to altered sAC expression. The analysis of genetic variants, their functional 

relevance and distribution in the population, may lead to a better understanding of the 
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pathophysiology of hypertension and development of CVD. Genome-wide gene 

expression analyzes, in combination with whole genome sequencing could help to 

determine the interactions between genetic and environmental factors and to obtain a 

more detailed insight into human gene regulation and the impact of the individual variable 

genome structure. The development of a genetic risk profile for hypertension could 

contribute to disease prevention and might help to develop individually optimized 

therapeutic treatment strategies.  
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6 Outlook 

 

 

sAC has been identified as a co-activator of CREB and an effector of 

aldosterone-mediated gene expression. We demonstrated interaction of sAC with CREB 

on CRE sites using ChIP analyzes. The underlying molecular mechanism of sAC binding 

to DNA has to be evaluated in detail. sAC and CREB RNA interference experiments and 

subsequently ChIP analyzes could be used to test if sAC binds to DNA independently of 

CREB. Identification of further interaction partners of sAC by Co-IP would lead to new 

insights in sAC signaling.  

Another part of this work was the functional characterization of the human sAC promoter 

and identification of regulatory regions, which were shown to depend on the cell type and 

differentiation status. Two autonomous promoter regions were identified to be differentially 

regulated by cAMP and aldosterone signaling. In addition, different isoform expression of 

sAC with various distribution in the nucleus and the cytoplasm had been identified in 

endothelial and kidney cells, which may originate from alternative and independent TSSs. 

5´-RACE experiments should be performed to identify potentially unknown TSSs in 

addition to the TSS in exon 1 (Acc#.: NM_018417.4). The sequence of exon 5 of the sAC 

gene reveals a putative alternative translational start site (Geng et al., 2005), which could 

lead to the different isoform expression. The exact peptide sequences of these isoforms 

are unknown and could be examined using mass spectrometry or peptide sequencing. 

Functional assays would determine the catalytic activity of these isoforms. 

To improve understanding of how sAC levels change in physiological and pathological 

conditions, a more comprehensive study of the transcriptional regulation of sAC is 

needed. A knockout mouse model of sAC exists, which demonstrates the consequences 

of a lack of the sAC protein. Female knockout mice exhibited increased cholesterol and 

triglyceride levels and both sexes exhibited a slight increase in the heart rate (Farrell et 

al., 2008).   

We screened the 5´-flanking region of sAC in 60 CVD patients and identified genetic 

variants, which change transcriptional activity of the sAC promoter. To elucidate the role 

of sAC as a genetic factor that influences the predisposition to develop hypertension a 

larger study cohort should be genotyped for sAC promoter variants and related to 

hypertension-associated phenotypes.  
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Table A1: Oligonucleotides used for sequential analysis of the sAC promoter 

Description Sequence 5' to 3' Ref. Acc# 

sAC seq 1 SS CCATTTGTCCGTAATAAACCA NM_018417.3 

sAC seq 1 AS TTTTGAGACAGCGTCTCCCT NM_018417.3 

sAC seq 2 SS CCTGAATTTGAATCCCAGCTC NM_018417.3 

sAC seq 2 AS TTCAGTGGGAGTGCAGAGC NM_018417.3 

sAC seq 3 SS GCTCCGTTGTGAGGAGAGAGAC NM_018417.3 

sAC seq 3 AS  GGTCTCCTAAGCCCCTCTTG NM_018417.3 

sAC seq 4 SS TTTATTAAAAATTTATGTGAGCTTGG NM_018417.3 

sAC seq 4 AS  CTTTGCACTCCAGCCTCG NM_018417.3 

sAC seq 5 SS GTTGCAGTGAGCTGAGATCG NM_018417.3 

sAC seq 5 AS TAACACAGTGCCTGGTCCAC NM_018417.3 

sAC seq 6 SS TTCAAGAGAGCAAAATGAGGATAAT NM_018417.3 

sAC seq 6 AS CCTATTTGCACGGTTTCTGAA NM_018417.3 

sAC seq 7 SS  AATTGAAGGTAGACCCAGAAAGT NM_018417.3 

sAC seq 7 AS GGTTTCCACAACTCACACCA NM_018417.3 

sAC seq 8 SS  AGCTCTCCCTAAGGGGATTG NM_018417.3 

sAC seq 8 AS TTCAAACAAAAATTTACCTCACAAA NM_018417.3 

sAC seq 9 SS  CCAGTCAGAAAGGGCAGGTA NM_018417.3 

sAC seq 9 AS AGAATAATGTCACCCGGCCT NM_018417.3 

sAC seq 10 SS TAGACAGACATGGCGCTTCA NM_018417.3 

sAC seq 10 AS GTTCCAAACCGGCAGCTTAC NM_018417.3 

sAC seq 11 SS TACCTCTTGAAGGGGGCTCT NM_018417.3 

sAC seq 11 AS  TCTCATTCCAAGGTGCTCCC NM_018417.3 

sAC seq 12 SS TTATCTTTCGGGCCTCATTC NM_018417.3 

sAC seq 12 AS  AACGACACAGACACACATGTGGA NM_018417.3 

sAC seq 13 SS ATTGATACGGCTCCGATGAG NM_018417.3 

sAC seq 13 AS  GGACTGGCCCATAGTCAGAA NM_018417.3 

sAC intron 4 SS  TTTTGGAGGAGACATCCTGAA NM_018417.3 

sAC intron 4 AS CCAGCTGCCGTAGGATTTAT NM_018417.3 
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Table A2: Oligonucleotides used for diagnostic PCR of sAC transcript 

Description Sequence 5' to 3' Ref. Acc# 

sAC exon 2 SS GGACTGGCCCATAGTCAGAA NM_018417.3 

sAC exon 3 AS AGCAGTGCCATGTACATGG NM_018417.3 

sAC exon 4 SS TTTTGGAGGAGACATCCTGAA NM_018417.3 

sAC exon 5 AS GTAGCCTGGAGATCCATGGA NM_018417.3 

sAC exon 32 SS CTGTATATTAATGGGAGATG NM_018417.3 

sAC exon 33 AS GACCAATGGCTTCAGACGATC NM_018417.3 
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