
Chapter 6

Stability analysis of steady-state

solution

In this chapter an instability of the homogeneous solution of reaction-

diffusion system leading to the formation of static stationary spatial patterns

(Turing instability) is studied. In section 6.1 the general criteria of Turing in-
stability for two-component system in general form and pattern selection prob-

lem are briefly discussed. As an example these criteria are considered in a
frame work of a concrete two-component reaction-diffusion system (see sec-

tion 6.2). The influence of the global feedback in form of an integral term on
Turing instability conditions as well as on the resulting Turing patterns is pre-

sented in section 6.3. Finally, Turing instability in reaction-diffusion systems
with more than two components is discussed in section 6.4.

6.1 Turing instability in general form

A Turing instability (or bifurcation) involves the destabilization of a ho-
mogeneus solution to form a static periodic spatial pattern (Turing pattern),

whose wavelength depends on the local reaction kinetic parameters, diffusion
coefficients of the system and is its intrinsic property. The hypothesis that just

a difference in diffusion constants of components could be enough to destabi-
lize the homogeneous solution was put forward by A. M. Turing in 1952 [Tur-

ing, 1952]. By studying the problem of biological morphogenesis he showed
that a reaction-diffusion system with a different diffusion constants can au-

tonomously produce stationary spatial patterns.

Over the years this idea have attached the attention of a great number
of scientists. I. Prigogine and his coworkers have studied Turing patterns

and other instabilities in details in so-called Brusselator model for hypotheti-
cal chemical reaction [Prigogine and Lefever, 1968, Prigogine, 1969]. A. Gierer

and H. Meinhardt have proposed a model, called Gierer-Meinhardt there-

after [Gierer and Meinhardt, 1972], which is widely used to describe pattern
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72 Chapter 6. Stability analysis of steady-state solution

formation in living organisms. A systematic study of biological pattern for-

mation has also been performed by J. Murray [Murray, 1993]. The first lab-

oratory observation of Turing structures was made in 1990 by P. De Kepper
and coworkers in Bordeaux in so-called CIMA reaction. Subsequent studies

by Q. Ouyang and H. L. Swinney using the disk reactor showed quasi two-
dimensional patterns in the form of hexagons and stripes [Ouyang and Swin-

ney, 1991]. Other examples of Turing patterns and corresponding reaction-
diffusion models can be found in, e.g., [Murray, 1993, Cross and Hohenberg,

1993,Maini et al., 1997].

6.1.1 Linear stability analysis

We start our analysis of Turing instability from by considering a reaction-
diffusion system in general form, restricting ourself first to the case of two

components, i.e.,

∂tu = D∇2u + R(u) (6.1)

where u = u(r, t) = (u, v)T is a vector of concentration variables, R(u) =

(f(u, v), g(u, v))T describes as before a local reaction kinetics and the Laplace

operator ∇2 acts on the vector u componentwise. D denotes a diagonal diffu-
sion coefficient matrix,

D =

(
Du 0
0 Dv

)
.

Note that we suppose the system 6.1 to be isotropic and homogeneous, so D

is a scalar matrix, independent on coordinates.

Let u0 = (u0, v0)T be a homogeneous solution (or steady-state solution) of

the system (6.1), i.e. f(u0, v0) = g(u0, v0) = 0. Suppose that this solution is
stable in absence of diffusion, namely the real parts of all eigenvalues of the

Jacobi matrix

A = (∂R/∂u)u=u0
=

(
fu fv

gu gv

)

describing the local dynamics of the system (6.1) are less that zero. For the
case of a 2×2 matrix this is equivalent to the simple well-known condition for

the trace and the determinant of the matrix A, namely

Sp(A) = fu + gv < 0

det(A) = fugv − fvgu > 0.
(6.2)

Keeping Eq. (6.2) in mind let us see if the presence of diffusion term can
change the stability of u0. To this end, consider a small perturbation ũ, i.e.

u = u0 + ũ and the corresponding linear equation for it:

∂tũ = D∇2ũ + Aũ. (6.3)
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After decomposition ũ into modes ũ ∼ akeikr we get the equation

ȧk = Bak, (6.4)

where B = A − k2D.

As we have previously mentioned the stability conditions for the sys-
tem (6.4) with a 2×2 matrix B can be written as:

Sp(B) < 0 ∀k

det(B) > 0 ∀k,
(6.5)

where

Sp(B) = −(Du + Dv)k2 + Sp(A), (6.6)

det(B) = DuDvk
4 − (Dugv + Dvfu)k2 + det(A). (6.7)

k

Sp(B),det(B)

0 kc

(a)
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FIG. 6.1: Dependence Sp(B) and det(B) on wave vector k. The gray curve illustrate the
fact that Sp(B) < 0 ∀ k, whereas black lines show three typical behaviors of the function
T (k) = det(B): (a) T (k) > 0 ∀ k ; (b) T (k) is positive ∀ k, but has a minimum for k > 0;
(c) onset of instability: T (k) = 0 for k = kc.

Notice, that for k = 0 the conditions (6.5) are equivalent to the sta-
bility criterion (6.2) for the local dynamics. In particular this implies that

Sp(B) < 0 for all k (see gray curve in Fig. 6.1 for illustration), so the instabil-
ity of the homogeneous solution can occur only due to violation of the second

condition (6.5), that is, det(B) should be equal to zero for some k. It means

that the instability occur at the point where the equation det(B) = 0 has a
multiple root. To find it we can simply calculate a minimum of the function

T (k) = det(B).

T ′(k) = 4DuDvk
3 − 2(Dugv + Dvfu)k = 0 ⇒ k2 =

1

2

(
fu

Du
+

gv

Dv

)
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From the last equation can be seen that the described above situation is possi-

ble if

Dugv + Dvfu > 0 (6.8)

In this case the critical wavenumber is

kc =

√
1

2

(
fu

Du
+

gv

Dv

)
(6.9)

and instability occurs on condition that

T (kc) ≤ 0 ⇔ k4
c =

(
1

2

(
fu

Du

+
gv

Dv

))2

>
detA

DuDv

(6.10)

The instability scenario, described above is illustrated in Fig. 6.1, where three

different cases of dependence of the function T (k) = det(B) on the wave vector
k are presented. In Fig. 6.1(a) the function T (k) has no roots, so the stability

of u0 is not affected as well as in the case (b). Here T (k) > 0 for all k, but
minimum of this function exists. Finally, in Fig. 6.1(c) T (k) = 0 for k = kc,

indicating the onset of instability.

Hence, the full system of the conditions for instability of the homogeneous
solution u0 is

fu + gv < 0,

fugv − fvgu > 0,

Dugv + Dvfu > 0,
(

fu

Du
+

gv

Dv

)2

>
4detA

DuDv
.

(6.11)

A detailed description of the mechanism of Turing instability can also be

found in [Murray, 1993,Mikhailov, 1990,Kapral, 1995].
Remark: Apart from the Turing instability, a Hopf instability can be en-

countered if condition (6.2)(or the first condition (6.5)) is violated. In this
case, after initial growth of the critical mode, the evolution of the system is

determined by the nonlinear part of the reaction function and is a subject of
nonlinear stability analysis, which was discussed in details in, e.g., [Kuramoto,

1984]. As result, the system either operates in supercritical regime, that is, ad-
mits spatially homogeneous periodic oscillations, or in subcritical one, whereby

the system can be driven far away from the homogeneous solution u0.

6.1.2 Activator-inhibitor principe and pattern selection

Let us discuss the system of instability conditions obtained above. Con-

sider the first and the third equations of (6.11). As is easy to see fu and
gv should have different signs. Furthermore analysis of other conditions (6.11)

shows that only four possible combinations of signs for components of the Ja-

cobi matrix A do not affect (6.11):
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If fu > 0 and gv < 0 we say species u is the activator and species v is the
inhibitor. In what follows we are concentrated just on the systems from this

class. Furthermore we have Du

Dv
< 1 , i.e., the diffusion coefficient of the in-

hibitor should be greater that of the activator.

While the conditions for the onset of a Turing bifurcation are rather sim-

ple, the determination of the nature of the pattern that is selected is a more
difficult problem since beyond the bifurcation point a finite band of wavenum-

bers is unstable. Pattern selection is usually approached by studying amplitude
equations that are valid near the onset of the instability. To determine which

modes are selected, modes and their complex conjugates are usually treated in
pairs so that the concentration field, expanded about the homogeneous solu-

tion, reads

u(r, t) = u0 +
n∑

j=1

(
Aj(t)e

ikjr + c.c
)
,

where kj are different wavevectors such that |kj| = kc. In one dimensional
space the situation is rather simple, as result of the instability is represented

by a periodic in space structure. In two space dimension this form leads to
stripes for n = 1, rhombi (or squares) for n = 2 and hexagons for n = 3. The

pattern and wavelength that is selected depends on coefficients in the nonlin-
ear amplitude equation for the complex amplitude Aj , but some conclusions

about selected pattern can be made using, e.g., symmetry arguments. In par-

ticular, in the case of hexagonal pattern, in which three wave vectors are mu-
tually situated at an angle of 2π/3, i.e., k1 + k2 + k3 = 0, the absence of

inversion symmetry (u 7→ −u) leads to additional quadratic nonlinearity in
the amplitude equation. The latter, in its turn, ends in a fact, that hexago-

nal pattern has the maximum growth rate near the threshold and is therefor
preferred (for details see [Cross and Hohenberg, 1993]).

The general procedure in details for the derivation of such amplitude equa-

tions based on mode projection techniques can be found in [Haken, 1983]. An-
other approach, using multi scale expansion was evolved in [Newell and White-

head, 1971].

6.2 Turing instability in two-component RD system

Now let us consider as an example of Turing instability a following two-
component reaction-diffusion system of the form (see...)

∂tu = Du∆u + f(u) − v + κ1,

τ∂tv = Dv∆v + u − v,
(6.12)
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where f(u) = λu − u3. Here u = u(r, t) and v = v(r, t) denote the activating

and inhibiting components correspondingly. The parameters Du, Dv, τ, λ are

positive, whereas the sign of κ1 is arbitrary.
The steady-state solutions (u0, v0) can be found solving

(λ − 1)u0 − u3
0 + κ1 = 0,

v0 = u0.
(6.13)

For the system (6.12) the matrices D,A and B are given by

D =

(
Du 0

0 Dv/τ

)
, A =

(
f ′(u0) −1

1/τ −1/τ

)
,

and

B =

(
f ′(u0) − Duk

2 −1
1/τ −Dvk

2/τ − 1/τ

)
.

Suppose that the system (6.12) is local stable, i.e.,

Sp(A) = f ′(u0) −
1

τ
< 0,

Det(A) = −f ′(u0)

τ
+

1

τ
> 0.

Then we have

Sp(B) = −
(

Du +
Dv

τ

)
k2 + Sp(A) , H(k),

Det(B) =
DuDv

τ
k4 +

(
Du − f ′(u0)Dv

τ

)
k2 + Det(A) , T (k).

The critical wavenumber is

T ′(kc) = 0 ⇔ kc =

√
1

2

(
f ′(u0)

Du
− 1

Dv

)

The instability occurs, if

T (kc) ≤ 0 ⇔ f ′(u0) ≥ 2

√
Du

Dv
− Du

Dv
.

Hence, the conditions (6.11) for the system (6.12) takes the form

f ′(u0) < 1/τ,

f ′(u0) < 1,

f ′(u0) > Du/Dv,

f ′(u0) ≥ 2

√
Du

Dv
− Du

Dv
.

(6.14)
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Solving the system (6.14) with respect to f ′(u0) we get

f ′(u0) ∈
[

2

√
Du

Dv
− Du

Dv
, 1

)
if τ < 1 and

Du

Dv
< 1,

f ′(u0) ∈
[

2

√
Du

Dv
− Du

Dv
,

1

τ

)
if τ ≥ 1 and

Du

Dv
< 1/τ.

(6.15)

Let us discuss now the question, whether the Turing instability can occur

by the change of some control parameter, e.g., κ1. Indeed, from the fourth
condition (6.14) can be seen that instability takes a place if f ′(u0) at least

equals to 2
√

Du

Dv
− Du

Dv
, i.e.,

f ′(u0) = λ − 3u2
0 = 2

√
Du

Dv
− Du

Dv
, σ,

whence it follows that

u0 = ±
√

λ − σ

3
.

From the other hand u0 is the homogeneous solution, so it satisfies

(λ − 1)u0 − u3
0 + κ1 = 0

Hence, solving last two equations together we get the expression for the criti-

cal value κ1c of the control parameter:

κ1c = ±
√

λ − σ

3

(
1 − 2λ + σ

3

)
. (6.16)

Remark: Apart from varying some control parameter, a destabilization

can be caused by increasing the system length. Indeed, if we assume to

have a domain Ω of finite size with no-flux boundary conditions, the condi-
tion kl = lπ

‖Ω‖
, l ∈ N for possible modes in the system must be fulfilled [Purwins

et al., 2005].

6.3 Turing instability in two-component RD system with

an integral term

6.3.1 Influence of an integral term

In this section the influence of a global feedback, like, e.g., an integral

term, on the conditions of Turing instability and pattern selection is discussed.
For this purpose, consider a two-component reaction-diffusion system with an

integral term, i.e.,

∂tu = Du∆u + f(u) − v + κ1 − κ2〈u〉,
τ∂tv = Dv∆v + u − v,

(6.17)
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where 〈u〉 denotes spatial average, describing the global feedback effect,

namely

〈u〉 =
1

|Ω|

∫

Ω

u(r, t)dr. (6.18)

The homogeneous solutions (u0, v0) can be defined from the following system:

(λ − κ2 − 1)u0 − u3
0 + κ1 = 0,

v0 = u0.
(6.19)

Similar to the previous sections we suppose that the homogeneous solution is

stable in absence of diffusion and consider perturbations proportional to eikr.
Since the mean value 〈u〉 is not equal to zero only for k = 0 the integral term

can be replaced by the Kronecker symbol δ0k and the matrix B may be writ-
ten as:

B =

(
f ′(u0) − Duk

2 − κ2δ0k −1

1/τ −Dvk
2/τ − 1/τ

)
.

What this means is that presence of the integral term does not change the
conditions of Turing instability (6.15). If we again choose κ1 as a control pa-

rameter, the condition (6.16) for the system (6.17) takes a form:

κ1c = ±
√

λ − σ

3

(
1 + κ2 −

2λ + σ

3

)
. (6.20)

The value σ has here the same meaning as in the previous section.

6.3.2 Numerical results

As has been shown above the presence of the integral term does not dis-

turb the conditions of Turing instability, only homogeneous steady state and
corresponding critical values of control parameter are shifted on κ2. At the

first glance it seems as if the integral term does not play any role in forma-
tion of spatial periodic structures. A detailed discussion of this problem in one

spatial dimension in the terms of amplitude equation was treated in [Dohmen,
1991, Or-Guil, 1997]. In particular, it was shown, that parameter λ plays an

important role, namely, its change can cause the transition of the homoge-
neous system to super- and further to subcritical regime. In this context, a

supercritical bifurcation means the transition from homogeneous stable state
to spatial periodic pattern, which amplitude increases continuously beyond the

threshold. In this case, the integral term can affect only the amplitude of the
resulting periodical pattern, but not the pattern itself. In contrast, in subcriti-

cal regime the presence of integral term has an influence, namely, of above the
threshold the amplitude the spatial pattern jump up to some constant value.

Moreover, resulting pattern is not periodic in space, but only some wave trains

emerge. By further change of the control parameter, (e.g, κ1) the number of
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periodical domains increases until the whole domain is periodic in space. Fur-

ther increase or decrease of κ1 leads again to appearance of the separated pe-

riodic domains, which number decreases with the change of the control param-
eter until the whole domain becomes homogeneous (see Fig. 6.2). Notice, that

a small hysteresis region (see Fig. 6.2 for κ1 = −1.75) exists, indicating a sub-
critical ”nature” of the transition.�1 = 2:0 �1 = 1:7 �1 = 1:0 �1=0.0
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FIG. 6.2: Subcritical Turing instability in one-dimensional case. Behavior of activator
(red) and inhibitor (blue) distributions for different control parameter values is shown.
Parameters: Du = 2.8 · 10−4, Dv = 5 · 10−3, λ = 1.0, κ3 = 1.0, κ2 = 4.0, τ = 1.0; the critical
value of the control parameter κ1c = ±1.708. Computation was performed on the domain
Ω = [0, 1] with no-flux boundary conditions.

Let us now discuss the subcritical Turing bifurcation in two-dimensional
space. For this purpose we have solved the system (6.17) numerically at differ-

ent values of the control parameter κ1 with zero-flux boundary conditions on a

rectangular domain Ω = [0, 5]× [0, 5]. In the beginning, for the given parameter
set, the value of κ1 is set to the value, corresponding to the stable homoge-

neous solution and the initial condition is chosen to be the random perturbed
homogeneous solution. When the simulation reaches a stationary state, a fur-

ther simulation is started with decreased κ1 and with the previous stationary
state as the initial condition. In this way, we can calculate the emerging pat-

terns for all κ1 ∈ [−κ1c, κ1c], where ±κ1c are defined by Eq. (6.20). Notice
that one can consider two different simulation series, one for decreasing and

one for increasing κ1. In Figs. 6.3,6.4 an example from these series are to be
seen. Figure 6.3 shows the resulting patterns for increased values of κ1. For

κ1 < −κ1c the system (6.17) has homogeneous stable state (u0, v0)
T . Above

the threshold −κ1c the uniform state becomes unstable in favor of finite wave

number perturbation. That is, starting with random perturb homogeneous so-
lution one obtains a high-amplitude spot-like pattern, shown in Fig. 6.3 for

κ1 = −1.65. Notice, that as the system is in a subcritical regime (forcing a

high-amplitude pattern) and because of the presence of the integral term (lim-
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iting the overall activator density), the pattern is not periodic in space, but

only some wave trains emerge. This pattern is stable on a quite long timescale

with a slow tendency to agglomerate the bright spots. In the course of further
decrease of κ1 the pattern significantly changes its shape:spot-like pattern (see,

e.g., Fig. 6.3 for κ1 = −1.0 and κ1 = −0.5), stripes (or labyrinths) (κ1 = 0.5),
labyrinth patterns with holes for relatively high parameter values (κ1 = 1.0

and κ1 = 1.5 ). Finally, one observes spot-like patterns with low u (dark)
spots on a high u (bright) background (κ1 = 2.0, κ1 = 2.5, κ1 = 2.6). In con-

trast to the previously seen, Turing triggered patterns, these spots do not form
coherent wave trains. The number of spots decreases for increasing values of

κ1. When κ1 passes through 2.62, the pattern vanishes and the homogeneous
solution emerges (see fig. 6.3, κ1 = 3.0). This second critical value of κ1, being

different from κ1c, we refer to as κ1h.

The same patterns behavior with exchanged dark (low u) and bright (high
u) areas can be observed for decreasing values of the control parameter κ1

(see Fig. (6.4)). In this case the onset of the Turing instability then occurs
at κ1c = 1.608, and at κ1h = 2.72 the pattern vanishes.

k
1

k
1

k
1

-1.72 -k
1c

k
1c

k
1h

FIG. 6.3: Typical high-amplitude patterns corresponding to the nonuniform solutions of
the system (6.17) if κ1 is increased. Parameters: Du = 2.8 · 10−4, Dv = 5.0 · 10−3, λ = 0.9,
κ2 = 4.0, τ = 1.0, κ1 ∈ [−3.0, 3.0], Ω = [0, 5] × [0, 5], boundary conditions are Neumann.
The critical values κ1c = ±1.709.

To investigate the type of the observed bifurcations, we calculate from the
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FIG. 6.4: Typical patterns arising in the system (6.17) if κ1 is decreased. Parameters:
Du = 2.8 · 10−4, Dv = 5.0 · 10−3, λ = 0.9, κ2 = 4.0, τ = 1.0, κ1 ∈ [−3.0, 3.0], Ω =
[0, 5] × [0, 5], boundary conditions are Neumann. The critical values κ1c = ±1.709.

results gained numerically the pattern amplitude difference Ath of the activator

u as a function of κ1. Ath is defined as the difference between the largest and

the smallest value of u within Ω. Due to the used numerical accuracy a noise
rejection for u is not necessary. The result is shown in fig. 6.5 for decreasing

(solid triangles) and increasing (open triangles) κ1.

On this background the behavior of the system can be understood as fol-

lows: for |κ1| > κ1h the system (6.17) is in a homogeneous stable state, cor-
responding to the zero amplitude Ath . For |κ1| < κ1c the system is in a

patterned state. The amplitudes Ath for all parameter values in this region
are almost the same. The bifurcations taking place if |κ1| crosses κ1c or κ1h

are subcritical. For |κ1| ∈ [κ1c, κ1h] there are hysteresis regions, i.e. the actual

value of the amplitude Ath is determined by the initial condition of the calcu-
lation, i.e. the direction of κ1 variation. The patterns in these regions consist

of solitary spots being not connected to each other (see fig. 6.3).

6.3.3 Experimental observations

Bifurcation scenario and patterns, described above are known from other

RD models, describing, e.g., some chemical systems [Peña and Pérez-Garćıa,

2001] or vegetation processes [Meron et al., 2004]. Experimental observa-
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FIG. 6.5: Dependence of the amplitude on the control parameter for increased (△) and
decreased (N) values of κ1. Parameters: Du = 2.8 · 10−4, Dv = 5.0 · 10−3, λ = 0.9, κ2 = 4.0,
τ = 1.0, κ1 ∈ [−3.0, 3.0]. The critical values κ1c = ±1.608.

tions of such solitary filaments and spatially periodic patterns in quasi-one-
dimensional dc gas-discharge system ( [Willebrand et al., 1990]) or p-n-p-n

semiconductor structures ( [Niedernostheide et al., 1992b]) have also been ac-
complished, but experimental observations in two-dimension are rare in occur-

rence [von Hardenberg et al., 2001]. Recently transition from bright to dark
solitary filaments was found in dielectric barrier discharge system (DBD) with

a large aspect ratio []. This system is know to produce a large amount of
varying patterns, both particle-like structures [Dong et al., 2001, Müller et al.,

1999, Stollenwerk et al., 2006, Brauer, 2000] and other spatial patterns [Gure-
vich et al., 2003b]. Usually, solitary filaments in such systems occur as cur-

rent channels perpendicular to the dielectric barriers, defining a spot in the 2-

dimensional discharge plane. These well localized objects and the correspond-
ing well localized luminescence radiation density distribution we refer to as

bright dissipative solitons. In the present experiments also dark solitons oc-
cur, consisting of a currentless, dark spot in an otherwise bright, homogeneous

discharge. To obtain the transition between these two types of solitons only a
single system parameter has to be varied. The intermediate states consist of

different stripe-like patterns.

The experimental set-up is sketched in Fig. 6.6. Both electrodes consist of

glass plates coated with Indium Tin Oxide (ITO), which is electroconductive
and transparent with respect to the luminescence radiation being emitted from

the gas during discharge. The latter being captured by appropriate cameras is
to good approximation proportional to the current density. Between the glass

plates there is a dielectric spacer defining a circular discharge area with diame-

ter D = 40 mm and thickness d = 0.5 mm being the discharge length. One of




