
Chapter 7

Localized structures and their

stability

In this chapter stability of a single stationary DS is studied. In section 7.1
the results of a linear stability analysis are presented and critical eigenfunc-

tions, which could have an influence on the dynamics of the stationary DS are

found. The influence of the mode leading to breathing DSs is discussed in sec-
tion 7.2 and the amplitude equation for the amplitude of the instable mode is

obtained. In section 7.3 travelling DSs are studied and it is shown both theo-
retically and experimentally that a stationary DS can start to move because of

change of its shape. A more complicated situation, when two critical modes be-
come unstable simultaneously is numerically studied in section 7.4. Finally, a

long-time dynamics of the DS in the situation that several modes are unstable
is briefly discussed in section 7.5.

7.1 General concepts and linear stability analysis

7.1.1 Stationary solutions

In this chapter we concentrate on the behavior of the two-dimensional soli-
tary localized solutions of the three-component RD system

∂tu =Du∆u + f(u) − κ3v − κ4w + κ1,

τ∂tv =Dv∆v + u − v,

θ∂tw =Dw∆w + u − w.

(7.1)

As before u = u(r, t) is the activating component, whereas v = v(r, t) and

w = w(r, t) denote the inhibiting components and r ⊂ R2. In the polyno-
mial function f(u) = λu − u3 the coefficient λ is positive. Du, Dv, Dw denote

the (positive) diffusion coefficients of the components, whereas the positive pa-
rameters τ and θ represent dimensionless constants, being the ratios of the

characteristic times of both inhibitors with respect to the that of the activa-

tor. The coefficient κ1 violates the inversion symmetry (u 7→ −u) and has
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96 Chapter 7. Localized structures and their stability

arbitrary sign. Finally, the constants κ3 and κ4 staying in reaction term are

also positive, indicating inhibiting nature of v and w. Let us assume that sys-

tem (7.1) has a nontrivial stationary solution us = (us, vs, ws)
T . In the sim-

plest case it is a stationary localized structure with rotational symmetry (see

Fig. 7.1 (a,b) and corresponding cross-sections Fig. 7.1 (c,d)). Notice that de-
pending on system parameters the asymptotic behavior of the stationary solu-

tion can be different. Namely, stationary DS can either decay in space mono-
tonically (Fig. 7.1 (a,c)) towards the ground state or decay in an oscillatory

manner (Fig. 7.1 (b,d)). As a rule of thumb one can note that for parame-
ter set closed to that of Turing destabilization, DSs exhibiting oscillatory tails

are observed, while otherwise a monotonic decay is to see. Analytical expres-
sions for parameter regions corresponding to monotonic or oscillatory tails be-

havior are rather simple to obtain for two-component RD system in one and
two dimensions, linearizing corresponding system about homogeneous solution

and analyzing the corresponding biquadratic equation for eigenvalues [Bode,
1993, Schenk et al., 1998, Purwins et al., 2005]. For the three-component sys-

tem (7.1) this equation becomes bicubic, what makes the problem more com-

plicated. Nevertheless, this result can be easily obtained numerically for given
parameter set.

7.1.2 Linear stability analysis

Let us now discuss stability of the stationary solution us. With this object

in mind we rewrite the system (7.1) in a more general form:

∂tu = Lu, (7.2)

where in our case u = u(r, t) = (u, v, w)T is a vector-function, r ⊂ R2, L is a

real-valued nonlinear operator,

L = D∆ + R(·). (7.3)

Here ∆ denotes the Laplace operator, the diagonal matrix D contains the dif-

fusion constants of u, v, w on the principal diagonal and vector R(u) stands

for nonlinear reaction term. We suppose that the system (7.2) has a station-
ary solution us, i.e., Lus = 0 and we are interested in its stability. For this

purpose consider a small perturbation ũ, so that u = us + ũ. Then the corre-
sponding equation for it takes the form:

∂tũ = L
′(us)ũ +

1

2!
L
′′(us)ũũ +

1

3!
L
′′′(us)ũũũ + · · · , (7.4)

where we assume that Tailor expansion of L(us + ũ) is possible. Here L
(n)(us)

denotes n’th Fréchet derivative with respect to u calculated at u = us. The

first coefficient of the expansion (7.4) is the linearization of the operator L
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FIG. 7.1: Numerical solution of (7.1) in Ω = [−1, 1] × [−1, 1] ⊂ R
2 showing sta-

tionary activator distribution us in the case of (a) monotonic tails; (b) oscillatory
tails. The corresponding cross-sections us(x, 0) for monotonic (c) and oscillatory (d)
decay as well as inhibitor distributions vs(x, 0), ws(x, 0) are also to see. Parameters:
(a,c) Du = 4.7 · 10−3, Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1, κ4 = 3.33;
(b,d) Du = 1.1 · 10−4, Dv = 0, Dw = 9.64 · 10−4, λ = 1.01, κ1 = −0.1, κ3 = 0.3,
κ4 = 1. Boundary conditions in both cases are Neumann.
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around the stationary solution us, the second term corresponds to the bilinear

operator, acting on two perturbation vectors ũ, etc.

First we take a detailed look at the linear equation

∂tũ = L
′(us)ũ

and discuss key properties and features of the linear operator L
′(us). To this

end we briefly review some notations, which will be used hereinafter.

Let L2(Ω), Ω ⊂ Rn, be a Hilbert space of square integrable functions. We
assume that all solutions of interest are localized and belong to this space.

Then one can define a scalar product 〈·|·〉 of two arbitrary complex-valued
vector-functions u(r, t) = (u1, . . . , um)T and v(r, t) = (v1, . . . , vm)T by standard

convention:

〈u|v〉 =

∫
dnr

m∑

k=1

ukv̄k, (7.5)

where overline stands for a complex conjugation. Notice, that in this defi-

nition of the scalar product the first factor is taken linear whereas the sec-

ond one–semilinear, as is usual in mathematics and not conversely, as is usual
in physics. In particular, it implies that for some scalar quantity a equality

〈u|av〉 = ā〈u|v〉 is fulfilled.
Keeping in mind definition (7.5) one can define an adjoint operator L

′†(us)

to the linear operator L
′(us) as one with the following property

〈u|L′(us)v〉 = 〈L′†(us)u|v〉.

As can be easily shown for the system (7.1) the operator L
′(us) is not Hermi-

tian (or symmetrical), i.e., L
′†(us) 6= L

′(us). It implies that if we consider the

eigenvalue problem
L
′(us)F = λF , (7.6)

the eigenvalues λ and corresponding eigenfunctions (modes) F are in general

complex.
The linear stability of us implies that all eigenvalues of (7.6) have nega-

tive real parts. If the real part of one or more eigenvalues is equal to zero
one speaks about neutral stability of the system. As the system (7.1) features

translational invariance with respect to its spatial coordinates, λ = 0 is an
eigenvalue of the operator L

′(us), corresponding to two independent neutral

eigenfunctions (one for each spatial direction), which in the following will be
called Goldstone modes. This statement becomes clear when keeping in mind

that in systems possessing translational invariance, each solution of the system

remains a solution if it is shifted to a different spatial position; a small per-
turbation of us in the form of Goldstone mode is equivalent to the shift of the

stationary solution in the respective direction,

us(r + ǫ) = us(r) + ǫ
∂us

∂r
+ O(ǫ2).
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As an infinitesimal shift corresponds to an addition of the spatial derivative of

the solution in the respective direction, the Goldstone modes can be identified

as the first derivatives of us with respect to r, where r = x, y are the spatial
coordinates, i.e.,

Gr = ∂us/∂r.

As we mentioned before, the linear stability of the DS implies that the real

parts of all eigenvalues of (7.6) but λ = 0 have negative real parts. Therefore
a slight disturbance of us in the form of Gr, causes only a translation of the

stationary solution, its stability is not affected.
In the case of reaction-diffusion systems one can speak about a compact

operator L
′(us), namely the operator, whose continuous spectrum is separated

from zero. That is, only a finite number of modes, whose eigenvalues are sit-

uated near to zero and belong to the discrete spectrum can become unstable
by the change of the control parameter. These modes are also often called

critical [Haken, 1983].
In order to find these critical modes for a given parameter set one should

solve the eigenvalue problem (7.6). For this purpose one can rewrite the sys-
tem (7.1) in polar coordinates, decompose the small perturbation ũ of the ra-

dially symmetric stationary solution us into a Fourier series and finally rewrite

the eigenvalue problem (7.6) in terms of the amplitude ũn of the perturbation
of the stationary solution with angular dependence einϕ,

λnũn = L
′
pũn,

where L
′
p denotes the linearization operator L

′ in polar coordinates,

L
′
p = D(∂rr +

1

r
∂r −

n2

r2
) + R(·).

Then the influence of the modes with different n on the radial-symmetrical DS

can be understood as follows: the mode with n = 0 (breathing mode) results
in the change of the size of the DS; the mode with n = 1 (Goldstone mode

G) describes the shift of the solution and n ≥ 2 leads to different deformations
of the DS [Schenk, 1999]. An example of real parts of first four critical modes

belonging to the discrete spectrum is shown in Fig. 7.2 (for the mode n = 1
the corresponding eigenfunction is real).

As mentioned before, the stationary DS us can loose its stability with the
change of one or more control parameters. In what follows, we use the time

constants τ and θ as control parameters. This is convenient because the sta-
tionary solution does not depend on them. Now we can solve the eigenvalue

problem (7.6) numerically for different values of the control parameters τ and
θ, keeping all other parameters fixed. The stability diagram and the graphic

illustration of the influence of the modes n = 0 and n = 1 on the radial-

symmetrical object can be seen in Fig. 7.3. One can easily see that for small
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(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3

FIG. 7.2: Real parts of first four eigenfunctions of (7.6), corresponding to different
n. The real parts of the first component of F = (fu, fv, fw) are shown. (a) breath-
ing mode n = 0; (b) Goldstone mode n = 1 ; (c)(d) n = 2, 3 – modes, responsible
for different deformations of DS.
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FIG. 7.3: Stability diagram in (τ, θ) plane, calculated for a solitary solution of
the system (7.1). Lines separate stability regions, corresponding to different modes
n=0,1,2. Parameters: Du = 4.7 · 10−3, Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04,
κ3 = 1.0, κ4 = 3.33. On the right-hand side the dotted line shows the influence of
a breathing mode n = 0 and a drift mode n = 1 on a rotation-symmetrical object,
depicted by the solid line.

values of τ and θ the stationary solution is stable. An increase of the con-

stants leads to the excitation of either n = 0 or n = 1 mode. Notice that for

the chosen parameter set the breathing mode n = 0 becomes unstable first for
all θ but θ = 0. The latter situation was investigated in, e.g., [Or-Guil et al.,

1998] and leads to the drift-bifurcation of DSs. The modes n ≥ 2 become un-
stable for larger value of τ and θ and cannot be responsible for the primary

destabilizaion. So the primary destabilization of stationary DS for presented
control parameter values can be caused only by the modes n = 0 and n = 1.

The influence of these modes on the stationary DS will be considered in the
following sections.

7.1.3 Properties of the operator L
′(us) and its spectrum

In order to investigate the influence of the modes n = 0 and n = 1 on

the stationary DS, let us first briefly discuss some properties of the lineariza-
tion operator L

′(us) and its spectrum. As we mentioned before, the lineariza-

tion operator L
′(us) is not Hermitian. Nevertheless it can be represented as a

product [Moskalenko et al., 2003,Gurevich et al., 2004b]

L
′(us) = ML(us), (7.7)

of an invertible matrix

M =




1 0 0
0 −1/κ3τ 0

0 0 −1/κ4θ



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and a Hermitian operator

L =




Du△ + λ − 3ū2 −κ3 −κ4

−κ3 −κ3Dv△ + κ3 0

−κ4 0 −κ4Dw△ + κ4


 .

The class of operators, represented by the product of two Hermitian operators
occurs widely in different physical problems, e.g., in the stability problem for

the solitons in nonlinear Schrödinger equation (NSE) [Zakharov et al., 1986].
Nevertheless to best of our knowledge it has no special name. The properties

of these operators depend on the fact whether the matrix (or operator) M is

positive definite or not. In the former case determining a new scalar prod-
uct (7.5) as

(u|v) := 〈M−1u|v〉, (7.8)

one can easily verify that the operator L
′(us) becomes Hermitian with respect

to the new scalar product (7.8) and therefore has a relatively simple structure.

On the other hand, in our case the matrix M is not positive definite, therefore
the operator L

′(us) being a composition of two Hermitian operators, is not

Hermitian, so its spectrum is complex, one can expect Jordan chains, etc.
Let us now look for possible connections between the spectrums of the op-

erator L
′(us) and its adjoint operator L

′†(us). In general, it is known that if λ
is an eigenvalue of L

′(us), its complex conjugated λ̄ is an eigenvalue of L
′†(us).

Nevertheless in general no relation between the corresponding eigenfunctions,
say F and F∗ can be established. In our case, however, such a relation does

exist. To find it, consider two eigenvalue problems for these operators:

L
′(us)F = λF ,

L
′(us)F = λ̄F ,

L
′†(us)F∗ = λ̄F∗,

L
′†(us)F

∗
= λF∗

.
(7.9)

Here F and F denotes the eigenfunctions of the operator L
′(us), correspond-

ing to the eigenvalues λ and λ̄, whereas F∗ and F∗
denote the eigenfunctions

of the adjoint operator, corresponding to the eigenvalues λ̄ and λ and overline

stands for the complex conjugation.

Statement. Let F be an eigenfunction of the operator L
′(us) corresponding to

the complex eigenvalue λ and F∗ be an eigenfunction of λ̄. Then F is orthog-

onal to the eigenvector F∗
of the adjoint operator L

′†(us), corresponding to the
same complex eigenvalue λ. Moreover, the eigenfunctions F and F∗

are related

by formula
F∗

= M−1F . (7.10)

Indeed, according to (7.9), 〈L′†(us)F
∗|F〉 = λ〈F∗|F〉. On the other hand,

by the definition of the adjoint operator,

〈L′†(us)F
∗|F〉 = 〈F∗|L′(u0)F〉 = λ̄〈F∗|F〉.
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Hence, from two last equations we get

(λ − λ̄)〈F∗|F〉 = 0,

and therefore if λ is not real 〈F∗|F〉 = 0. Now let us show that F∗
= M−1F .

Indeed, by definition (7.9)

L
′†(us)F

∗
= λF∗ ⇔ L MM−1

︸ ︷︷ ︸
E

F = λM−1F ⇔ ML︸︷︷︸
L′(us)

F = λF ⇔ L
′(us)F = λF ,

as it should be (see (7.9)).

Notice that the expression (7.10) is also correct, even if λ is real. For in-
stance, let G∗

r be the eigenfunctions of the adjoint operator, corresponding to

the zero eigenvalue. Then

G∗
r = M−1G =




∂us

∂r

−κ3τ
∂vs

∂r

−κ4θ
∂ws

∂r


 . (7.11)

However, in this case 〈G∗
r |G〉 6= 0.

Remark: In a similar way one can show, that 〈F∗|F〉 = 0 and

F∗ = M−1F .

The possibility to find the eigenfunctions F∗ (especially G∗
r ) explicitly con-

siderably simplifies many problems we face below.

7.2 Destabilization via the mode n = 0 : Breathing DSs

7.2.1 Breathing DSs

In this section we investigate the influence of the mode n = 0 on the dy-

namic of the stationary DS us by the change of the control parameters. For
the sake of simplicity we fix one control parameter, e.g., τ and change only

θ. The instability scenario we are interested in is that the pair of a complex-
conjugated eigenvalues passes through the imaginary axis as one gradually in-

creases the control parameter. The typical eigenvalues behavior in this case is
shown in Fig. 7.4. Here the eigenvalues, corresponding to different eigenfunc-

tions are colored in different ways. The accordingly colored arrows show the
“motion” of the eigenvalues on the complex plane by the change of θ. One can

see that at the beginning all eigenvalues are situated on left hand side of the
plane. By the change of θ all eigenvalues, but λ = 0 (the corresponding eigen-

mode n = 1 is black colored ) start to move as shown by arrows. Notice that
the “velocities” of the eigenvalues motion are different. The eigenvalue with

largest motion velocity (blue colored eigenvalue, corresponding to n = 0) goes

into the complex plane and crosses the axis Im(λ) first (see Fig. 7.4).
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FIG. 7.4: Behaviors of the first four on the complex plane (Re(λ), Im(λ)) by the
change of θ in case that the mode n = 0 becomes excited first. The eigenvalues
corresponding to different eigenfunctions differ in colors (see the legend). The ac-
cordingly colored arrows show the “motion” direction of the eigenvalues on the λ
plane as θ increases.

Figure 7.5 shows scenarios of the behavior of an initial pulse closed to a

stationary DS for different control parameters values, as observed in numeri-
cal simulation of the system (7.1). In Fig. 7.5 (a) a stationary DS is stable

for given τ and θ, i.e., after some transients the initial distribution converges
to an stationary DS, which is numerically stable on a long time scale. Fig-

ure 7.5 (b) shows the behavior of the solution just after the mode n = 0 be-
comes excited: a stationary DS bifurcates to an oscillatory DS. The amplitude

of oscillations is built up and achieves some constant value, so that the DS
oscillates with a constant amplitude on a long time scale. We refer to this

oscillating with the constant amplitude soliton as breathing DS. Figure 7.5 (c)

shows another possible instability scenario. The stationary DS bifurcates to
an unstable oscillatory DS with increasing amplitude, in this case it eventually

leads to a collapse of the solution. Now, we turn to breathing DSs, the main
topic of this section.

Breathing solutions in dissipative systems have attracted a great deal of
attention in recent years. They have been found, e.g., as soliton pulsa-

tion in fiber laser [Soto-Crespo et al., 2004, Tsoy and Akhmediev, 2005], as
rocking localized current filaments in p-n-p-n devices [Niedernostheide et al.,

1992c, Niedernostheide et al., 1993] and as breathing spots in chemical re-
actor [Haim et al., 1996]. Analytical investigations of breathing localized

structures in one spatial dimension have been carried out for two-component

reaction-diffusion system with piecewise linear activator nullcline [Koga and
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FIG. 7.5: Space-time plots of numerical solution of (7.1). Time evolution of the
cross-section of the initial pulse close to the stationary solution is shown; a) τ =
0.5, θ = 0.63, DS is stable; b) τ = 0.5, θ = 0.64, amplitude of oscillations reaches a
constant value; c) τ = 0.01, θ = 1.22, increase of the control parameter beyond the
critical value leads to the collapse of the soliton. Other parameters: Du = 4.7 · 10−3,
Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1.0, κ4 = 3.33. The calculations was
performed on the rectangular domain Ω = [−1, 1] × [−1, 1] on nonuniform triangular
grid with maximal element size 0.1 with Neumann boundary conditions.

Kuramoto, 1980, Nishiura and Mimura, 1989]. Numerical studies of breathing

domains in an infinite medium in two-component system with a cubic non-
linearity also in one-spatial dimension have been performed in [Hagberg and

Meron, 1994b]. In the latter study a single stationary domain loses stability
via a Hopf bifurcation, and a breathing-like oscillatory motion sets in; as the

control parameter is changed further the amplitude of the oscillation grows,
thereby leading to the collapse of the domain. Breathing and wiggling motion

of layers in reaction-diffusion system with multiple components in one dimen-
sion was investigated in [Suzuki et al., 1995]. Quasi-two-dimensional breathing

spots have been found experimentally in a disk-shaped chemical reactor [Haim
et al., 1996]. In these experiments similar to the theoretical investigation [Hag-

berg and Meron, 1994b], a circular spot bifurcates to an oscillatory spot when
the control parameter is increased beyond some critical value. Further increase

of the latter leads to the collapse of the spot. However, these oscillations have
been interpreted as an interaction of a front with the system’s boundary and

not as oscillations of the radius of the spot. Recently, localized breathers have

been found in one- and two-dimensional neural media [Bressloff et al., 2003,Fo-
lias and Bressloff, 2005], described by a two-component system with an inte-

gral term. In particular, in two-dimensional excitable neural media the nonlo-
cal inhibition leads to a symmetry breaking instability of the stationary pulse,

resulting in a formation of a non-radially symmetric breather. In addition, the
number of breathing lobes corresponds to the dominant unstable Fourier mode

associated with perturbations of the stationary solution.

The name breather as such arose from studies of the sine-Gordone (SG)
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equation and can be considered as a bound state of its kink and antikink

solutions, which oscillate with respect to each other. An important class of

breathers is the so-called discrete breathers (or localized modes) [Kivshar and
Flach, 2003]. These can be considered as solutions of a nonlinear equation

on a lattice and they are periodic in time and localized in space. Localized
breathers are found theoretically as well as experimentally in various physi-

cal systems where the space discreetness arises in a natural way, e.g., pho-
tonic crystals [Mingaleev and Kivshar1, 2001], Josephson junction [Trias et al.,

2000] or Bose-Einstein condensates in periodic optical traps [Trombettoni and
Smerzi, 2001]. Discrete breathers are observed in conservative and dissipative

systems in one- and two spatial dimension.

Another interesting type of localized oscillating solutions are oscillons. An

oscillon essentially is a name given to a stable, two-dimensional localized ex-
citations occurring in a vibrating layer of sand [Umbanhowar et al., 1996].

Typically these localized circular regions oscillate between conical peaks and
craters with a period of half of the external driving frequency and exist in a

narrow region between the stability regions of spatially extended patterns and
the ground state. Oscillons were also found in dissipative fluids and colloidal

suspensions [Lioubashevski et al., 1999]. Localized oscillons in autonomous
chemical system can also be found [Vanag and Epstein, 2004]. However, these

localized objects are result of a interaction of subcritical Turing and Hopf in-
stabilities. In contrast to breathers, an external forcing is needed to produce

an oscillon (in the case of autonomous systems, subcritical Hopf bifurcation
plays such a role, possessing simultaneously a stationary steady state and sta-

ble limit cycle.

Here we investigate the transition from stationary to breathing DSs in

three-component reaction-diffusion system with one activator and two in-
hibitors. In contrast to the reaction-diffusion models, mentioned above, where

either piecewise linear nullclines or one-dimensional domains were studied, we
consider the case of two spatial dimension and a nonlinear reaction term (see

also [Gurevich et al., 2006]).

7.2.2 Amplitude equation in general form

Let us remind that we deal with a reaction-diffusion system in general
form (7.2) with the nonlinear real-valued operator L that depends on some

control parameter p and suppose that (7.2) has a stationary solution us, which
is stable in certain parameter region. The destabilization scenario we are in-

terested in is that pair of a complex-conjugated eigenvalues passes through the
imaginary axis as one gradually changes the control parameter p. That is, for

some critical value p = pc the corresponding eigenvalues are purely imaginary,

i.e., λc = ±iω. In this case the real-valued perturbation vector-function ũ can
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be represented as:

ũ = AeiωtFc + c.c. + r, (7.12)

where Fc is the eigenfunction of the operator L
′(us)|p=pc

:= L
′
c, corresponding

to the λc. Further, A is a constant oscillation amplitude and r represents the

sum of the other decaying modes. Now, if we increase the control parame-
ter p = pc + ε, where ε is positive and ε ≪ 1, the corresponding change of

the factor eλt can be ”included” in A and the amplitude A becomes a slow
function of time, i.e.,

ũ = A(t)eiωt(Fc + εFε) + c.c. + r, (7.13)

where ∂tA ∼ εA. Here εFε represents a deviation of the eigenfunction F
from Fc. Our goal now is to write down the ordinary differential equation
for the complex amplitude A(t). For this purpose we substitute Eq. (7.13) into

Eq. (7.4), equalize the terms with the same frequency and obtain

εA(L′
c(us) − iω)Fε = −∂tAFc + εAL

′
ε(us)Fc +

1

2
A2ĀL

′′′
c (us)FcFcF c, (7.14)

where L
′
ε(us) = ∂L

′(us)
∂p

∣∣
p=pc

represents the deviation of the operator L
′(us)

from the L
′
c, so that

L
′(us)|p=pc+ε = L

′
c + εL′

ε + O(ε2).

Equation (7.14) can be interpreted as an equation with respect to the un-

known vector-function Fε. In accordance with Fredholm alternative this equa-
tion is solvable if and only if the right-hand side of Eq. (7.14) is orthogonal

to the kernel of the operator, adjoined to the L
′
c(us) − iω. This kernel can be

easily found and is represented by the eigenfunction F∗
c of the adjoint operator

L
′†
c , corresponding to the eigenvalue −iω. Indeed, one has to find a nontrivial

vector-function X , such that

〈X |(L′
c(us) − iω)Fε〉 = 0.

By the definition of the adjoint operator the latter equality is equivalent

〈X |(L′
c(us)−iω)Fε〉 = 〈(L′†

c (us)+iω)X |Fε〉 = 0 ⇔ L
′†
c (us)X = −iωX ⇔ X ≡ F∗

c .

After projection Eq. (7.14) onto F∗
c we get

˙̄A〈Fc|F∗
c 〉 = ε〈F∗

c |L′
ε(us)Fc〉 + Ā2A〈F∗

c |
L
′′′
c (us)

2
FcFcF c〉.

Conjugating the last equation one finally obtains the following equation for
the complex amplitude A(t)

∂tA = εa1A + a2A|A|2, (7.15)
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which can be recognized as a normal form of a Hopf bifurcation [Kuramoto,

1984]. The coefficients a1 and a2 are complex and can be expressed as

a1 =
〈L′

ε(us)Fc|F∗
c 〉

〈Fc|F∗
c 〉

, a2 =
〈L′′′

c (us)FcFcF c|F∗
c 〉

2〈Fc|F∗
c 〉

. (7.16)

Equation (7.15) has a trivial solution A = 0, which for Re(a1) < 0 is a sta-

ble focus. If now Re(a1) increases and passes through zero the trivial solution
becomes unstable. For Re(a1) > 0 one can also find the non-trivial periodic

solution A0(t) = Reiνt, where

R =

√

−ε
Re(a1)

Re(a2)
, ν = εIm(a1) + R2Im(a2).

Linearization of Eq. (7.15) about A0 shows that the periodic solution is stable
for Re(a2) < 0 and unstable, if Re(a2) > 0. In the former case the instability is

stabilized by a limit cycle (nonlinear stabilization) that corresponds to super-
critical bifurcation. In the latter case (Re(a2) > 0) no stabilization takes place

and bifurcation is subcritical [Kuramoto, 1984,Tabor, 1989]).
An additional point to emphasize is that the amplitude equation, derived

in a similar situation for a steady state solution of a set of ordinary differen-
tial equation, e.g., in [Kuramoto, 1984], contains in its nonlinear part contribu-

tions from the second harmonics, which are absent in the Eq. (7.15). To find
this correction on should rewrite the Eq. (7.12) as

ũ = AeiωtFc + Ye2iωt + c.c. + r,

where Y is unknown. Substituting the last equation in (7.4) and equalizing
the terms with the frequency 2iω one obtains

2iωY = L
′(us)Y +

L
′′(us)

2
FcFcA

2.

If L
′(us) can be presented as a matrix one can easily obtain Y . In our case,

however, one needs to invert the differential operator L
′(us) explicitly, that

usually is not possible. Therefore we estimated this correction for Eqs. (7.1).

Assuming it to be proportional to Fc,

ũ = AeiωtFc + Be2iωtFc + c.c. + r,

one can find B as

B =
A2

2iω

〈L′′(us)FcFc|F∗
c 〉

〈Fc|F∗
c 〉

.

Then the amplitude equation with regard to the contributions from the second

harmonics has a form

Ȧ = εa1A +

(
a2 +

〈L′′(us)FcF c|F∗
c 〉

2iω〈Fc|F∗
c 〉

〈L′′(us)FcFc|F∗
c 〉

〈Fc|F∗
c 〉

)
A|A|2.
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Direct calculation for different parameter sets shows, that the correction is

much smaller than the coefficient a2 and thus has no significant contributions.

This is also confirmed by numerical results, presented hereafter.

7.2.3 Amplitude equation for three-component RD system

Let us now apply the amplitude equation (7.15) to the three-component

system (7.1). To do so one should calculate all scalar products, staying in the
coefficients a1 and a2. As we mentioned above, the calculation of the eigen-

functions of the adjoint operator F∗, F∗

c is in general rather complicated. But
due to decomposition (7.7) the calculation of these functions becomes possible

(see the subsection 7.1.3 and the relation (7.10) for details) and one can ex-

press all scalar products in (7.16) alone in terms of the critical eigenfunction
Fc := (Fcu,Fcv,Fcw)T of the linearization operator L

′(us).

For example, the scalar product, standing in the numerator of the coeffi-
cient a1 can be presented as

〈L′
ε(u0)Fc|F∗

c 〉 = 〈MθL
′(ū)Fc|M−1

c F c〉 = iω〈MθM
−1
c Fc|M−1

c F c〉 = iωκ4〈F2
cw〉,

where Mc stands for the matrix M , calculated for the critical value of the con-
trol parameter θ = θc, Mθ = ∂M

∂θ

∣∣
θ=θc

and 〈F2
c 〉 = 〈Fc|F c〉. The other scalar

products in the Eq. (7.16) can be obtained in a similar way. The relations for
the coefficients a1 and a2 for the system (7.1) take the form:

a1 =
iωκ4〈F2

cw〉
〈F2

cu〉 − κ3τ〈F2
cv〉 − κ4θc〈F2

cw〉
,

a2 = − 3〈F2
cu|Fcu|2〉

〈F2
cu〉 − κ3τ〈F2

cv〉 − κ4θc〈F2
cw〉

and can be immediately evaluated if the solitary stationary solution is known.

7.2.4 Numerical results

In accord with the previous section, all we need to quantify coefficients in
Eq. (7.15) is Fc. As this critical eigenfunction is not known analytically we

have found it together with the corresponding eigenvalue iω and critical value
of the control parameter θc by solving the eigenvalue problem (7.6) numeri-

cally for different values of τ and θ. Based on this, the instability increment
εRe(a1) can be calculated. The latter is presented in Fig. 7.6 as solid trian-

gles, whereas the open squares correspond to the instability increment, derived
directly from the system (7.1).

In addition, we have performed direct numerical simulations of the
Eq. (7.15) for different values of τ and θ. The results are shown in the

Fig. 7.7. Figure 7.7 (a) demonstrates a typical solution of the Eq. (7.15) in

the case of nonlinear stabilization, i.e., for Re(a1) > 0 and Re(a2) < 0. In this
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FIG. 7.6: Dependence of the instability increment εRe(a1) on the control parame-
ter θ for three different τ as results from the reduced model (7.15) (N) and direct
simulation of the system (7.1) (�). Other parameters are: Du = 4.7 · 10−3, Dv = 0,
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FIG. 7.7: Numerical solutions of the Eq. (7.15) on the phase plane (Re(A), Im(A))
in super- and subcritical regimes. (a) The typical solution of the amplitude equa-
tion for Re(a2) > 0, calculated for τ = 0.5, θ = 0.65. The dotted line corresponds
to the limit circle, obtained as the solution of the full three-component system. (b)
The typical solution of the reduced system for Re(a2) < 0. Control parameters are
τ = 0.7 and θ = 0.55. Other parameters are the same as in the Fig. 7.6.
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case the solution on the complex plane is represented by a unstable focus sur-

rounded by a stable limit cycle of the radius R =
√

−εRe(a1)
Re(a2)

. It is necessary

to stress that a direct calculation of the complex amplitude A(t) for all t from

the system (7.1) involves some difficulties, while the derivation of the limit cy-

cle radius is relatively simple. The latter can be seen in the Fig. 7.7 (a) as a
dotted line.

In Figure 7.7 (b) a typical solution, corresponding to the subcritical regime

with Re(a1) > 0, Re(a2) > 0, is shown. In this case the solution on the phase
plane corresponds to the unstable focus. In order to compare this result with

the full model, direct simulations of the system (7.1) for the same parameter
set have been performed; the obtained solution clearly shows absence of the

nonlinear stabilization, i.e, the stationary solution becomes unstable and starts
to oscillate with an increasing amplitude that finally leads to destruction of

the solution by the oscillations.

It should be mentioned that similar to [Haim et al., 1996], further increase
of the control parameter in the supercritical regime can also lead to the de-

struction of the limit cycle and collapse of the soliton. The latter transition
cannot be described by Eq. (7.15). Indeed, the amplitude equation (7.15) is

derived in the vicinity of the bifurcation point θc, i.e., the sign of the coeffi-
cients a1 and a2 is calculated in this critical point. Predictions far from the

bifurcation point are therefore impossible. On the other hand, numerical sim-
ulations show that the destruction of the limit cycle usually takes place far

beyond the vicinity of the bifurcation point and are out of scope of the ampli-
tude equation (7.15).

7.3 Destabilization via the mode n = 1 : Drift-Bifurcation

7.3.1 Drift-Bifurcation due to a change of time constant

In this section we consider the influence of the mode with n = 1 on the dy-

namic of DS. As noted above the system (7.1) is neutral stable, i.e., λ = 0 is
the eigenvalue of the operator L

′(us), corresponding to two independent neu-

tral eigenfunctions (one for each spatial direction) Gr, r = x, y. However, a
slight disturbance of us in the form of Gr, causes only a translation of the

stationary solution, its stability is not affected. The typical destabilization
scenario is that the real part of eigenvalue Re(λ) passes through zero as one

gradually changes the parameters of the system (see e.g, section 7.2 for de-
tails). In the following we consider the case that Im(λ) also passes through

zero [Or-Guil et al., 1998]. Figure 7.8 shows such eigenvalues dynamics on the
complex plane (Re(λ), Im(λ)) by the change of the control parameter τ , while

θ is kept fixed. One can see, that at the beginning all eigenvalues are situated

on the real axis. By the change of τ all λ but λ = 0 start to move. As well as
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FIG. 7.8: Typical eigenvalues behavior on the complex plane (Re(λ), Im(λ)) by the
change of τ in case that the mode n = 1 becomes excited first. The eigenvalues cor-
responding to different eigenfunctions differs in colors (see the legend). The accord-
ingly colored arrows show the motion direction of the eigenvalues on the complex
plane by the change of the control parameter.

in section 7.2 (see Fig. 7.4), all eigenvalues, corresponding to eigenmodes with

small n move first in opposite to Im(λ) direction and become complex after-

wards (see Fig. 7.8 for modes n = 0 and n = 2). But in the case presented
here, one mode (purple colored one), denoted in Fig. 7.8 as n = 1(2) remains

on the real axis and moves in the Im(λ) direction. Finally, this eigenvalue
achieves the zero far in advance of other modes. The corresponding eigenfunc-

tion can be represented as a linear combination of the Goldstone modes. The
system of eigenfunctions is then incomplete and has to be supplemented with

a generalized eigenfunction with eigenvalue zero, the so-called propagator mode
Pr [Or-Guil et al., 1998,Schütz, 1995], which is defined by the relation

L
′(us)Pr = Gr. (7.17)

The occurrence of the propagator mode marks the onset of the destabilization,
therefore the value of the control parameter for which Eq. (7.17) is fulfilled

corresponds to the bifurcation point. The stationary solution becomes unstable
at this point due to the existence of this generalized mode: a perturbation in

form of the propagator mode causes a change in form of the Goldstone mode
that corresponds to a permanent shift of the DS [Or-Guil et al., 1998]. Thus

we have a transition from a stationary to a moving state, i.e., a drift bifurca-
tion.

Using the Fredholm alternative, it can be proven that Eq. (7.17) can be
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solved if and only if the equality

〈G∗
r |Gr〉 = 0 (7.18)

is fulfilled, where G∗
r is an eigenfunction of the adjoint operator L

′†(us) with

the eigenvalue zero and the same spatial symmetry as Gr.

Remark: As is shown in subsection 7.1.3, in general the condition (7.18)
is not fulfilled and becomes correct only in degeneration point, where instabil-

ity takes place (bifurcation point).
As we mentioned above, the analytic calculation of the eigenfunctions G∗

r

of the adjoint operator L
′†(us) poses severe problems, but in the present case

it is possible due to the special form (7.7) of the operator L
′(us). For a

given Goldstone mode Gr, the eigenfunction G∗
r can be calculated via the re-

lation (7.11),

G∗
r = M−1G =




∂us

∂r

−κ3τ
∂vs

∂r

−κ4θ
∂ws

∂r


 .

In the following, we will without loss of generality restrict ourselves to the
case r = x as all spatial directions are equal. In this case the perturbed solu-

tion will move in the x-direction. Let us define τc,x as the value of the param-
eter τ for which condition (7.18) is fulfilled. Consequently, condition (7.17)

will be fulfilled for the same τ as well. The value τc,x can be calculated by

inserting the explicit expressions for Gx and G∗
x into Eq. (7.18), which results

in the algebraic equation

〈u2
s,x〉 − κ3τc,x〈v2

s,x〉 − κ4θ〈w2
s,x〉 = 0, (7.19)

yielding the expression

τc,x =
〈u2

s,x〉 − κ4θ〈w2
s,x〉

κ3〈v2
s,x〉

, (7.20)

where us,x := ∂us

∂x
. For θ = 0 and Dv = 0 this expression has been derived in

[Or-Guil et al., 1998]. Here we consider a more complicated three-component

system with Dv = 0 but θ > 0. In this situation, Eq. (7.20) can be rewritten

in the form

τc,x =
1

κ3

− θ
κ4

κ3

〈w2
s,x〉

〈u2
s,x〉

. (7.21)

Our next goal is to examine the dependence of the velocity c of a DS on
the system parameters in the vicinity of the bifurcation point τ = τc,x. For

this purpose we transform the system (7.1) into a coordinate frame moving
with the velocity c in the x-direction by means of the substitution x ֌ x − ct.

The transformed equations read

ut = cux + Du∆u + λu − u3 − κ3v − κ4w + κ1,
vt = cvx + (u − v)/τ,

wt = cwx + (Dw∆w + u − w)/θ.

(7.22)
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A stationary solution ûs = (û, v̂, ŵ)T of Eq. (7.22) corresponds to a uni-

formly moving DS. Note that the rotational symmetry can not be expected

any more. After projecting the system (7.22) for u = ûs onto the vector
function (ûx,−κ3τ v̂x,−κ4τŵx) and performing several transformations, most of

which consist of taking integrals by parts, one obtains the expression

c(〈û2
x〉 − κ3τ〈v̂2

x〉 − κ4θ〈ŵ2
x〉) = 0. (7.23)

In order to rewrite Eq. (7.23) into a more suitable form we take use of the
second equation of Eqs. (7.22), rewriting it for the case of a stationary solu-

tion ûs, i.e.

û = v̂ − cτ v̂, (7.24)

and insert the latter in (7.23) to obtain the following result:

cτ 2〈v̂2
xx〉

[
c2 − κ3

τ 2

〈v̂2
x〉

〈v̂2
xx〉

(
τ −

(
1

κ3
− θ

κ4

κ3

〈ŵ2
x〉

〈v̂2
x〉

))]
= 0, (7.25)

In the vicinity of the bifurcation point τ ≈ τc,x, û ≈ v̂ ≈ us and ŵ ≈ ws. Thus

we can rewrite expression (7.25) as

cτ 2
c,x〈u2

s,xx〉
[
c2 − κ3

τ 2
c,x

〈u2
s,x〉

〈u2
s,xx〉

(
τ − τc,x

))]
= 0. (7.26)

For τ ≤ τc,x, only the trivial solution c = 0 of Eq. (7.26) exists and no trav-

elling DSs are observed. The situation is different for τ > τc,x as one obtains
two additional finite solutions of the last equation:

c2 =
κ3

τ 2
c,x

〈u2
s,x〉

〈u2
s,xx〉

(
τ − τc,x

)
. (7.27)

The additional solutions indicate a drift bifurcation at τc,x due to a change of

the time scale constant τ . On the other hand, for a fixed τ the drift bifurca-

tion can also be induced by shifting the bifurcation point τc,x (7.21) due to a
variation of the stationary solution (us, vs, ws)

T. To do this, every parameter

which does not destroy the integrity of the DS is appropriate.

In particular, parameter κ1 is an appropriate candidate. Indeed, as is men-

tioned in the Chapter 5, κ1 is related to the normalized applied voltage in
the experimental system. From the experimental point of view, the change of

the applied voltage also leads to the destabilization of the current filament in
form of drift-bifurcation [Gurevich et al., 2004b]. Thus, using κ1 as the con-

trol parameter one can qualitatively compare the results of experimental and

theoretical findings. This is the aim of the next two sections.
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7.3.2 Drift-Bifurcation due to a change of shape

Analyzing the solutions of (7.1) using κ1 as control parameter, one finds
that the shape of the stationary solution (us, vs, ws)

T is directly affected by

changes of κ1 (see Fig. 7.9). Therefore, we consider us as a function of κ1 and
rewrite Eq. (7.21) as

τc,x =
1

κ3
− θ

κ4

κ3

〈u2
s,x(κ1)〉

〈u2
s,x(κ1)〉 = τc,x(κ1). (7.28)

According to Eq. (7.28), there is a dependence between the control parameter

κ1 and the critical value of the parameter τ (see Fig. 7.10). If the stationary

distribution of us(κ1) is known, the velocity c can be determined as a function
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FIG. 7.11: Dependence of the square of the DSs velocity c2 on the control param-
eter κ1 as results of analytical (�) and numerical calculations (△). Parameters:
Du = 4.67 × 10−3, Dv = 0, Dw = 0.01, λ = 5.67, θ = 0.1, τ = 1.2, κ3 = 1, κ4 = 3.33,
κ1 ∈ [−1.25,−0.95].

of κ1, i.e.

c2 =
κ3

τ 2
c,x(κ1)

〈u2
s,x(κ1)〉

〈u2
s,xx(κ1)〉

(
τ − τc,x(κ1)

)
=: f(κ1). (7.29)

In order to investigate the dependence of c2 on the control parameter κ1 one

has to find stationary solutions of Eq. (7.1) in form of DSs. As these solutions
are not known analytically we have solved (7.1) numerically for different values

of the parameter κ1 while keeping all other parameters fixed. Based on these
stationary solutions, Eqs. (7.28) and (7.29) have been evaluated. The results

are presented in Fig. 7.11 as solid squares, whereas the solid inclined line is a
linear fit of this data. Additionally, we have performed numerical simulations

of the system (7.1) starting from the disturbed stationary DSs and determined
the equilibrium velocities of the DSs for various values of κ1. The results are

presented in Fig. 7.11 as open triangles. It can be seen that both methods

up to a small numerical error provide the same functional dependency of the
velocity c on the control parameter κ1. The results demonstrate that DSs can

undergo a drift bifurcation from a stationary to a travelling state which is in-
duced by a shift of the bifurcation point due to a continuous change of shape

of the DS. The experimental findings, showing the drift-bifurcation of current
filaments due to change of shape in dc gas-discharge system are presented be-

low.

7.3.3 Experimental observations

The investigated dc gas-discharge system and ,in particular, experimental
set-up are discussed in Sec. 2.3.1 of Chapter 2. As is shown there, when some

control parameter, say, the supply voltage U0 is increased beyond the ignition

voltage, various forms of spatially inhomogeneous self-organized luminance pat-
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FIG. 7.12: (a) Experimentally recorded current density distribution of a propa-
gating filament in one frame. (b) Trajectory of the center of the distribution in
the discharge plane, the circle indicates the mechanical boundary of the discharge
area. Parameters: external voltage U0 = 2800V, resistivity of the semiconductor
ρSC = 1.83 ·106 Ω ·cm, series resistor R0 = 10MΩ, pressure p = 280hPa, temperature
T = 100K, with of the discharge gap d = 500µm, exposure time texp = 0.02 s.

terns can be observed in the discharge gap [Astrov and Logvin, 1997, Astrov

et al., 1997, Ammelt et al., 1998, Strümpel et al., 2001, Gurevich et al., 2003a].
Here we concentrate on current filaments, for which characteristic interaction

processes like scattering, the formation and decay of bound states as well as
generation and annihilation are observed [Astrov and Purwins, 2001, Astrov

and Logvin, 1997, Bödeker et al., 2004]. Due to the solitary properties of
the filaments and the dissipativity of the gas-discharge system, we will in the

following consider the filaments as dissipative solitons. As the CCD camera

records the luminance distribution in a plane perpendicular to the discharge
direction, the originally planar, but three-dimensional filaments are observed

as two-dimensional bright spots. It can be shown that the observed luminance
intensity is locally proportional to the average current density in the discharge

direction.

Here the parameters of the discharge system are chosen in such a way that

only one filament is exited. In this way, any possible interaction of filaments
is excluded. While doing the experiment, great care is taken to ensure a

high spatial homogeneity of the system (for details see [Bödeker et al., 2003])
since inhomogeneities may influence the dynamics of the filaments and possi-

bly lead to non-self-organized patterns. Fig. 7.12.a shows the current density
profile of a single propagating filament recorded under the named conditions.

The basic shape of the structure remains conserved during the propagation,

although slight deviations from an ideal radially symmetric shape can be ob-
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served. Therefore it seems sensible to describe the propagation of the whole

filament in terms of the two-dimensional trajectory of the ”center of mass” of

its current density distribution, corresponding to a particle approach. To this
end, the filament in each recorded frame is identified as a region of high lu-

minance density and the corresponding center of luminance (which corresponds
to the center of the current density distribution) is calculated [Bödeker et al.,

2003]. The resulting trajectory for the shown example is depicted in Fig.
7.12.b. Obviously, a possible deterministic part of the motion of the filament

is superimposed by stochastic contributions.
As discussed in [Bödeker et al., 2003], the deterministic motion of the fil-

aments cannot be determined directly from the trajectories. To overcome this
drawback, we apply an appropriate stochastic data analysis technique [Bödeker

et al., 2003,Siegert et al., 1998], which is briefly discussed below.
We start with a general introduction to methods of stochastic data analysis

and their applications. Afterwards we apply the techniques to the dynamics of
experimentally observed DSs in the semiconductor gas-discharge system.

In order to describe the dynamics of a continuous Markovian system and a

wide variety of stochastic dynamical systems one often uses a Langevin equa-
tion [Kittel, 1958]

d

dt
qi(t) = hi({qk(t)}, t) + gij({qk(t)}, t)Γj(t), i, j = 1 . . . n (7.30)

for a set of n random variables q = {qk(t)}, k = 1 . . . n. Here the first term

on the right side describes the deterministic part of the dynamics of the sys-
tem whereas the second term relates to the stochastic part, representing the

influence of noise. The latter is a product of the matrix of amplitudes of noise

g(q, t) = {gij(q, t)} and a vector Γ of n fluctuating Langevin forces, which are
usually assumed to be δ-correlated noise forces with vanishing mean:

〈Γi(t)〉 = 0 i = 1 . . . n, (7.31)

〈Γi(t)Γj(t
′)〉 = 2δijδ(t − t′) i, j = 1 . . . n. (7.32)

Here δij is the Kronecker symbol, δ(t − t′) is the delta function and 〈·〉 de-
notes the ensemble average. According to Wiener-Khintchine’s theorem [Kittel,

1958], Eq. (7.32) characterizes the fluctuations as white noise.
Following [Risken, 1996], a Fokker-Planck equation can be found for each

Langevin equation fulfilling (7.31) and (7.32). This allows us to write
down the following relations for the deterministic and the stochastic terms

(see [Risken, 1996]):

hi(q) = lim
△t→0

1

△t
〈q′i(t + △t) − q′i(t)〉 |q′(t)=q, (7.33)

gik(q)gjk(q) =
1

2
lim
△t→0

1

△t
〈(q′i(t + △t) − q′i(t))(q

′
j(t + △t) − q′j(t))〉 |q′(t)=q (7.34)
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where q′(t) is assumed to be a solution of Eq. (7.30). For Eq. (7.33),

the fluctuation term in (7.30) is interpreted according to the Itó calculus.

Note that in real physical systems, condition (7.31) can always be fulfilled
whereas Eq. (7.32) approximately holds as long as the noise correlation time is

smaller than the characteristic time scale of the investigated dynamics. More-
over, in real systems only a finite number of data points is available. In order

to use conditions (7.33) and (7.34) in practice, one has to use a finite time
interval △t, ensuring that △t is smaller than the characteristic time scale of

the dynamics of the system, but larger than the correlation time of the fluctu-
ations [Siegert et al., 1998,Friedrich et al., 2000]. This yields

hi(q) + gkj(q)
∂

∂qk

gij(q) ≈ 1

△t
〈q′i(t + △t) − q′i(t)〉 |q′(t)≈q, (7.35)

gik(q)gjk(q) ≈ 1

2

1

△t
〈(q′i(t + △t) − q′i(t))(q

′
j(t + △t) − q′j(t))〉 |q′(t)≈q . (7.36)

In order to apply this approach to the dynamics of the DSs in the exper-

imental gas-discharge system, we use a particle ansatz in which the dynamics

of each filament is described using its center of luminance r(t) = (rx(t), ry(t))T

and its velocity ṙ(t) = v(t) = (vx(t), vy(t))T as dynamic variables. Using the

translational and rotational invariance of the system which for our experimen-
tal set-up can be achieved by a homogeneous preparation of the discharge area

(under negligence of the finite size of the system) and taking into account the
strong dissipation of the gas-discharge system, the following Langevin equation

describing the dynamics of a single filament without interaction has been de-
rived [Bödeker et al., 2003,Liehr et al., 2003]:

v̇ = h(v) + R(v)Γ(t). (7.37)

Here h describes the deterministic motion of the soliton, whereas the second

term represents the influence of noise. It consists of a matrix of noise am-
plitudes R(v) and a fluctuation force Γ. As we mentioned above, in order

to apply Eqs. (7.33) and (7.34) we assume Eq. (7.32) to be fulfilled on the
timescale of the motion of filaments, Eq. (7.31) can always be fulfilled by in-

troducing an offset in h. Under these conditions, using Eq. (7.36) one can ob-
tain the deterministic part of the dynamics through Eq. (7.33), showing that

h possesses radial symmetry with respect to v (for details see [Bödeker et al.,
2003]). Thus one can rewrite Eq. (7.37) in the form

v̇ = hv(v)ev + R(v) Γ(t). (7.38)

Here v = |v|, ev = v/v and hv(v) is a projection of the vector h on the unit
vector of the velocity v, i.e. h(v) = hv(v)ev.

Transforming Eq. (7.38) into polar coordinates, one can prove that the de-

terministic part of the dynamics can be calculated via (cf. [Bödeker et al.,
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2003])

hv(v)
R2(v)

v
+ R(v)

∂R(v)

∂v
≈ 1

∆t
〈|v′(t + ∆t)| − |v′(t)|〉||v′(t)|≈v (7.39)

where v′(t) is solution of Eq. (7.38). In the practical analysis of the exper-

imental data using Eq. (7.39) is inconvenient as the fluctuation term on the
left-hand side of the equation has to be determined each time. This draw-

back can be overcome by using the following ”projection”, allowing for an
estimation of the function hv(v) without determining R(v) [Bödeker et al.,

2003,Liehr et al., 2003]:

hv(v) ≈ 1

∆t

〈
(v′(t + ∆t) − v′(t)) · v′(t)

|v′(t)|

〉∣∣∣∣
|v′(t)|≈v

. (7.40)

Due to the utilization of the radial symmetry and the estimation in a single

step, Eq. (7.40) provides a powerful tool to determine the deterministic dy-

namics of a single filament despite the presence of strong fluctuations.

So, using methods of stochastic data analysis, it is possible to determine

the deterministic dynamics of a single filament by estimating the function
hv(v). Recent investigation have shown that hv(v) always has one stable fixed

point v0 (given by h(v0) = 0 and h′(v0) < 0), corresponding to the ”‘intrinsic
velocity”’ of the filament. Furthermore, it was found that a single filament can

undergo a bifurcation, i.e. a transition from a vanishing to a finite intrinsic
velocity, by using the specific resistivity ρsc of the semiconductor cathode as

control parameter [Bödeker et al., 2003]. In the experiment, the value ρsc can
be varied via external illumination, which requires a calibration of the nonlin-

ear dependence of the specific resistivity on the light intensity, rendering the
specific resistivity as a suitable but uncomfortable control parameter.

As a consequence, the question arises if it is possible to find a drift bifur-

cation of localized structures in the experimental system using other control
parameters. A straight forward decision is the global voltage U0 applied to the

discharge cell, since U0 is easy to change and to control. This control param-
eter has also been applied in the context of other bifurcation scenarios, e.g.,

the Turing destabilization of a homogeneous discharge [Ammelt et al., 1997] or
the self-completion of single filaments [Astrov and Logvin, 1997], which leads

to the generation of additional filaments. However, for the parameters chosen
in the current investigation, a single filament is stable for a large range of pa-

rameters and initial conditions.

An application of the stochastic data analysis to experimentally recorded

data series shows that changing U0 does not only cause a significant change of
the shape of the averaged filament shape (see Fig. 7.13), but also leads to a

change of the dynamics of the filament, which becomes clear when plotting the

square of the intrinsic velocity v0 as a function of the control parameter U0
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FIG. 7.13: Central transverse section of the luminance distribution of the filament
for different values of U0, parameters like in Fig. 7.12. For each section, 4000
frames were shifted to the center of the distribution and averaged to exclude differ-
ent fluctuations. Note that with increasing voltage, the maximum luminance inten-
sity grows and starts to decrease again at a voltage Uth ≈ 2800V.
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FIG. 7.14: Experimentally measured drift bifurcation using the voltage U0 as con-
trol parameter. Parameters like in Fig. 7.12.
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(Fig. 7.14). The plot shows that below a critical value U0 = Ucrit ≈ 2800 V

of the control parameter, the intrinsic velocity of the filament vanishes, so that

its motion observed in the experiment is purely noise-induced like for a Brow-
nian particle, whereas for U0 > Ucrit the filament starts to move intrinsically

with a finite velocity v0. In this case the filament would also propagate in the
absence of noise. This transition can be interpreted as drift bifurcation from

a stationary to a moving state, which in the present case is hidden by noise.
It is noticeable that above the bifurcation point, the square of the intrinsic

velocity scales linearly with the control parameter, showing a bifurcation simi-
lar to the theoretical finding (Fig. 7.11). This observation rises the question if

the bifurcation and the characteristic scaling behavior of the intrinsic velocity
can be related to the change of the shape of the filament, which is caused by

increasing the supply voltage.

Note that the qualitative agreement of the experimental system and the
theoretical model show that the drift-bifurcation of DSs can occur in rather

general scenarios in which the destabilization is accompanied or induced by a
significant but continuous change of the shape of the DSs, induced by varying

an appropriate control parameter.

7.4 Travelling and breathing DSs: codim=2 point

As was shown in sections 7.2 and 7.3, in order to become the mode n = 0

or n = 1 excited only one control parameter has to be changed. Here, we
are interested in more complicated situation, where both modes becomes un-

stable simultaneously (see Fig. 7.15). In this case two control parameters are
to be changed, so one can speak about codim=2 bifurcation point. We start

from the numerical analysis of such kind of bifurcation for single DS, restrict-
ing ourself on the case of monotonic tails.

7.4.1 One-soliton solution

We have performed two series of numerical simulations of the system (7.1)
in the vicinity of the codim=2 bifurcation point (τc, θc). The first one was

made for fixed τc and three different values of θ. The results of simulations
are depicted in Fig. 7.16. If θ is chosen to be close to θc, an initial pulse close

to the stationary solution converges to moving and breathing with a constant
amplitude DS, as shown in Fig. 7.16 (a). Notice that dependence of the DS

position on time is not linear, as in the case of drift bifurcation, but is propor-
tional to

√
t (see Fig. 7.16 (d)). Here the black line represents the numerically

calculated dependence of the soliton’s position on time, whereas the red curve
is a fit of this data with a function c1

√
t + c2. This implies, that single DS in

this case moves with nonconstant velocity, proportional to 1/
√

t, as shown in

Fig. 7.17.
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FIG. 7.15: Stability diagram in (τ, θ) plane, calculated for a solitary solution of
the system (7.1). Lines separate stability regions, corresponding to different modes
n=0,1,2. Parameters: Du = 4.7 · 10−3, Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04,
κ3 = 1.0, κ4 = 3.33. The rot square denotes the vicinity of the codim=2 bifurcation
point we are interested in.
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FIG. 7.16: Space-time plots of the activator u for different values of θ obtained
from numerical solution of (7.1). Time evolution of the cross-section of the initial
pulse close to the stationary solution as well as the time dependence of the soliton’s
position are shown; a) θ = 0.38 b) θ = 0.4 c) θ = 0.44 . Other parameters: Du =
4.7 · 10−3, Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1.0, κ4 = 3.33, τ = 0.834.
The codim=2 bifurcation point is (τc, θc) = (0.834, 0.376). The calculations was
performed on the rectangular domain Ω = [−1.5, 1.5] × [−1.5, 1.5] on nonuniform
triangular grid with maximal element size 0.12 with Neumann boundary conditions.
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FIG. 7.17: Time dependence of velocity of the single moving and breathing DS
in the vicinity of the codim=2 bifurcation point. Parameters are the same as in
Figs. 7.16 (a,d).

However the behavior of the DS changes if one increases θ further (see

Fig. 7.16 (b)). In this case at the beginning the position of DS is also propor-
tional to

√
t, whereas the oscillation amplitude increases. After some time the

soliton stops (see Fig. 7.16 (e)), and oscillation amplitude reaches some con-

stant value. So finally one obtains a stationary breathing with constant am-
plitude DS. Further increase of the θ makes no significant changes in the dy-

namics of DS. At the beginning of the simulation initial pulse starts to move
with the velocity ∼ 1/

√
t and oscillate with increasing amplitude, but in the

short run the soliton’s velocity becomes zero and breathing amplitude reaches
the constant value (see Figs. 7.16 (c,f)).

The second simulation series is performed for τ and θ values, which are

slightly different from (τc, θc). As before, one fixes one of the control parame-
ter (e.g., τ) and changes the second one. The results are shown in Fig. 7.18.

In Figure 7.18 (a) moving and breathing DS is shown. In contrast to the first
simulation series, the soliton here moves with a constant velocity. The oscilla-

tion amplitude decreases, so finally one has just moving with a constant veloc-

ity DS. Another example is shown in Figure 7.18 (b). Here initial pulse con-
verges to the moving with the constant velocity and breathing with a constant

amplitude DS. Further increase of the control parameter destroys the solution
(see Fig.7.18 (c)).

Both simulation series indicate the difference in dynamics of single DS in

the vicinity of the codim=2 bifurcation point. The latter may be explained
with the fact that the corresponding critical eigenmodes n = 0 and n = 1 have

different increments, and consequently different influences on the dynamics of
DS. In the first case the mode n = 0 seems to be dominant, whereas in the

second simulation series the mode n = 1 defines essentially the behavior of
the system. From the other hand the interplay of both modes is obviously

nontrivial, so one cannot speak about the ”influence” of the one or another

mode in the strict sense.
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FIG. 7.18: Space-time plots of u for different values of θ obtained from numerical
solution of (7.1) for τ = 0.9. Time evolution of the cross-section of the initial pulse
close to the stationary solution is shown; a) θ = 0.43 moving and breathing DS.
The velocity is constant, whereas the oscillation amplitude decreases; b) θ = 0.46
moving with a constant velocity and breathing with a constant amplitude DS c)
θ = 0.48 DS moves with a constant velocity, whereas the amplitude of oscillation
increases, what leads to the collapse of DS. Other parameters are the same as in
Fig. 7.16.

7.5 Multimode destabilization of stationary DS

In this section we consider a more complicated situation. Namely, let us

suppose that several modes become unstable and we are interested as before in
the long-time dynamics of a single DS. Recall that the mode with n = 0 cor-

responds to the change of the size of the DS, n = 1 describes the shift of the
solution and n ≥ 2 corresponds to the different soliton’s deformations. On the

other hand Fig. 7.3 clearly indicates that for calculated values of the control

parameters only first three critical modes are of interest. Therefore we have
chosen control parameters τ and θ to be in region where the modes n = 0,

n = 1 and n = 2 are unstable and we look for long time behavior of the initial
pulse. The result is shown in Fig. 7.19. Initial pulse, close to the stationary

DS starts to move. Because of instability of the modes with n = 0 and n = 2
the form of the moving soliton also changes (see Fig. 7.19 for t = 10). As is

seen from Fig. 7.19 the radius of the moving soliton increases, and after some
time the curved soliton forms a ring, as shown in Fig. 7.19 for t = 34. Finally

the solution is represented by a spreading outward circular wave (see Fig. 7.19
for t = 59). Figure 7.20 shows another possible destabilization scenario. In this

case initial pulse (Fig. 7.20 for t = 0) as well as in the previous case converges
to curved front (Fig. 7.20 for t = 10), which curvature radius grows (t = 32),

till the soliton forms a circular wave (a ring), as shown in Fig. 7.20 for t = 46.
In contrast to the situation described above, here the overlapping endpoints of

the solution give a rise to a new solitary pulse (see Fig. 7.20 for t = 53). The

dynamics of the new pulse at the beginning is similar to the dynamics of the
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FIG. 7.19: Formation of the soliton ring from the initial distribution close to the
stationary DS. Activator component u is depicted. Parameters: Du = 4.7 · 10−3,
Dv = 0, Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1.0, κ4 = 3.33, τ = 3, θ = 0.01.
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FIG. 7.20: Formation of the spiral-ring structure, formed from the stationary DS.
The activator distribution u is to be seen. Parameters: Du = 4.7 · 10−3, Dv = 0,
Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1.0, κ4 = 3.33, τ = 14, θ = 0.01.
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FIG. 7.21: Formation of the spiral. A half of a stripe is of use as an initial condi-
tion. The activator distribution u is depicted. Parameters: Du = 4.7 · 10−3, Dv = 0,
Dw = 0.01, λ = 5.67, κ1 = −1.04, κ3 = 1.0, κ4 = 3.33, τ = 7, θ = 0.01.

first one (t = 66), however, the endpoints of the new pulse are not symmetri-

cal, as can be seen in Fig. 7.20 for t = 86. Therefor the new pulse forms not
a new ring, as before, but a spiral (Fig. 7.20 for t = 110). Note that if the

endpoints of the new pulse would be symmetrical, a new ring could be formed
instead of the spiral.

The mechanisms of structure formation, discussed above could be applied
to the formation of some new structures, e.g., spirals. Indeed, let us choose

the system parameters to be in the region where three first critical modes be-
come unstable and consider a half of a stripe as an initial condition as shown

in Fig. 7.21 for t = 0. Such an initial condition converges to the moving flat
front, which curved free endpoint (see Fig. 7.21 for t = 10). The curved front

proceeds the motion further and the endpoint forms the spiral, as shown in
Fig. 7.21 for t = 40 and t = 100.

We conclude that an interplay between critical modes leads to formation
of various stationary and dynamical structures, which can be described as a

result of a long-time dynamics of a single stationary DS.
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