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an almost homogeneous bright luminescence radiation background and only a
few dark spots are left. Finally, at f = 14.7 kHz all dark spots have dis-
appeared and a homogeneous glow discharge covers the whole discharge area.
This state stays stable up to the driving frequency of 20 kHz.

In a subsequent experiment the driving frequency has been decreased. The
emerging patterns are presented in Fig. 6.8. In the beginning, the discharge
exhibits a nearly homogeneous bright glow. At f = 11.7 kHz the first dark
spots arise. Their appearance is shown in Fig. 6.8 in the upper row in four
subsequent frames. The leftmost image belongs to the highest frequency. In
contrast to the bright spots in the first run, the dark spot arise close to each
other forming a connected island that grows with decreasing driving frequency.
As the driving frequency becomes even samller, the same patterns as in the
first run occur in the reverse order (Fig. 6.8, upper row). Finally, at about f
= 5.7 kHz, the last bright spot disappears.

In Fig. 6.9 the amplitude difference A.y, of the pattern in dependence of
the driving frequency is depicted. We define this amplitude difference A.y, as
the difference of luminescence intensities between the brightest and the dark-
est area in the pattern. To reduce the influence of noise, the local brightness
in a camera frame is computed as the average over a small area. The size of
that area is chosen to be much smaller than the lateral structures in the pat-
tern and large enough to reduce the noise sufficiently. To avoid effects of the
boundary only the inner circle with a diameter of 32 mm of the discharge area
is considered.

In Fig. 6.9 (a) below approximately f = 8 kHz the amplitude is deter-
mined only by the noise in the slightly glowing discharge. At approximately f
= 8 kHz the first bright filaments occur and the amplitude jumps to a higher
value. Within the jump some frames with intermediate amplitude occur. This
is due to switching on and off of filaments during the exposure time. With
increasing driving frequency the pattern varies from bright spots over stripes
to dark spots and, the pattern amplitude develops continuously. At approxi-
mately f = 14.5 kHz, when the last dark spot disappears, the amplitude falls
back to the low level of a homogeneous discharge.

In Fig. 6.9 (b) the amplitude difference Aey, corresponding to Fig. 6.8 is to
be seen. The onset of the pattern at f = 11.7 kHz occurs abruptly. In the
course of further increase of f the experiment the amplitude difference Aexp,
develops continuously. At f = 5.7 kHz the pattern has disappeared and Aexp,
falls back to the noise level. There is a single frame with an intermediate am-
plitude of 23 a.u. corresponding to a switching filament.

As inferred from Fig. 6.9 bifurcations from the homogeneous state to the
patterned state is subcritical, and one might expect a hysteresis in the bifurca-
tion point depending on the direction of the change of f. Although the overall
phenomenon is reproducible, the precise positions of the discontinuities vary
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from run to run over a wide range, i.e. from 4 to 8 kHz and from 9 to more
than 20 kHz for the lower and upper transitions respectively. Therefore so far
it is impossible to investigate the hysteresis of the reported bifurcations in de-
tail.

Let us now classify these phenomenons in the framework of dissipative soli-
tons and Turing structures.To begin with, spots behaving like dissipative soli-
tons shall be identified. In both measurements, Fig. 6.7 (increasing driving
frequency) and Fig. 6.8 (decreasing driving frequency), they appear at the end
of the recording shortly before the pattern vanishes in favour of a homoge-
neous system state. For increasing driving frequency (Fig. 6.7) examples can
be found in the images at f = 13.6 kHz and f = 14.5 kHz. For decreasing
driving frequency (Fig. 6.8) they are exemplarily shown at f = 7.7 kHz. They
can be identified as dissipative solitons by means of their arbitrary distances
(i.e. their lack of long distance order) and their independent movement.

There are also a couple of spots in the beginning of both recordings,
when the homogeneous state becomes unstable in favour of a structured dis-
charge. For decreasing driving frequency (Fig. 6.8, f = 11.7 kHz) these spots
appear as a domain of agglomeration with distinct short range order. As
the driving frequency decreases, the domain of spots grows but spots exist-
ing independently do not appear. In combination with the amplitude behav-
ior (Fig.6.9(b)) indicating a subcritical bifurcation, this pattern can safely be
identified as a subcritical Turing bifurcation limited by a globally acting inhi-
bition. For increasing driving frequency (Fig. 6.7) the situation is more com-
plicated. For low frequencies (f = 8 kHz) single bright spots with arbitrary
distances appear. But in contrast to the dark spots at the end of this record-
ing and also in contrast to the bright spots at the end of the recording with
decreasing driving frequency (Fig. 6.8, f = 7.7 kHz), these spots do not move
at all. Moreover, they appear at rather low frequencies (at f = 8 kHz), long
before the discharge area becomes covered with further spots (at f = 9 kHz).
This leads us to the conclusion, that these early bright spots are induced by
inhomogeneities or defects on the dielectric surfaces and are not truly self-
organized. The following occupation of the discharge area with further bright
spots (Fig. 6.7, f = 9 kHz) as the driving frequency increases is very similar
to the appearance of dark spots with decreasing driving frequency (Fig. 6.8, f
= 11.7 kHz — f = 9.3 kHz). The filaments occur in an agglomerated man-
ner with a rather well defined short range order. Again, with respect to the
behavior of the amplitude Aep (Fig.6.9(a)) indicating a subcritical bifurcation,
this bifurcation can be classified as a Turing bifurcation limited by a globally
acting inhibition. Also in the present experimental situation, the physical na-
ture of the global inhibition might be some serial resistance, i.e. the internal
resistance of the driving.

Finally, we want to compare the experimental findings to the results ob-
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tained from the RD-model. As the model is not specific for our gas-discharge
system, we cannot draw any quantitative comparisons. However, a qualitative
comparison is possible.

First, consider the development of the amplitude Ae, of the patterns as
they are shown in Fig. 6.9 for the experiment and as Ay, in Fig 6.5 for the
RD-model. In both cases, all bifurcations — from a homogeneous state to a
structured one and vice versa — are subcritical. In the course of the high-
amplitude patterns the amplitude changes continuously.

For the pattern amplitude behavior Ay, in the model (Fig. 6.5) the region
of hysteresis of the subcritical bifurcations can be identified in the intervals
[K1e, ko] and [—kg, —K1c] respectively. In the experiment, the range and the po-
sition of the high-amplitude patterns varies over a wide area between single
runs making it impossible to compare the bifurcation points obtained from dif-
ferent runs. Nevertheless, as argued above, a region of hysteresis cannot be
determined though is very probable.

Furthermore the comparison of the observed patterns in the experiment
(Fig. 6.7, Fig. 6.8) and the RD-model (Fig. 6.3) leads to remarkable agree-
ment. The appearance of spots, bright ones as well as dark ones, occurs via a
subcritical Turing bifurcation limited by integral inhibition. The intermediate
patterns in both cases consist of branched stripe-like patterns with a spatial
scale inherited from the spots.

6.4 Turing instability in three-component system

6.4.1 Raus-Gurwitz Stability Criterion

As mentioned above, the concept of Turing instability was originally in-
troduced for two-component RD systems. On the other hand spatially pe-
riodic structures are also emerged in systems described with RD equations
with three and more components (see, e.g., [Sagués and Epstein, 2003, Maini
et al., 1997]). The question is, how the idea of Turing can be adapt to
such kind of multicomponent RD systems. To this end, let us turn back
to RD system in general form (6.1) assuming now the case of n components
u = (ug,us,...u,)?. As in Sec. 6.1 we suppose that the homogeneous solu-
tion ug of (6.1) is stable in absence of diffusion, namely, all eigenvalues of the
Jacobi matrix

A = (OR/00) g

should be less than zero. However, for the matrices of rather large size calcula-
tion of eigenvalues, as a rule, involves difficulties. On the other hand, one need
to know not the eigenvalues, but their position on the complex plane. To do
this, let us write down the characteristic equation for the matrix A

det(A — AE) = 0, (6.21)
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which always can be represented in the following polynomial form:

N p A 4 i A+ p, = 0. (6.22)
Using the coefficients py = 1, p1, p2, ..., pn of the Eq. (6.22) one can
construct so-called Gurwitz matriz :

P1 Po 0 0 NP 0
ps P2 p1 po --- O

Guo=| ps p+ P P2 ... 0 |. (6.23)
0O 0 0 0 ... p,

As can be seen, the coefficients p;, ps, ..., p, fills the principal diagonal of

the matrix G,,. Indices of coefficients p; decreases in each row, beginning from
the index of the first column coefficient and are consistent with the index of
the coefficient staying on the principal diagonal. If the index j becomes more
than n or less than zero, the corresponding element of the matrix equals to
Z€ero.

Statement (Raus-Gurwitz Criterion). All roots of the characteristic equa-
tion (6.22) have negative real parts if and only if all principal minors of the
matriz Gy,

1 P1 1 0
Al = D1, Ag = det il P y Ag = det P3s P2 P1|, ---, An = det(Gn)
oo bs P4 D3

(6.24)
are positive.

Remark: If only one inequality (6.24) changes the sign the characteristic
equation (6.22) has roots with positive real parts.
For example, for the 2 x 2 matrix A the characteristic polynomial is

A — Sp(A)A + det(A) =0

and the Gurwitz matrix G9 takes a form

G2 = ( _S%(A) detl(A) ) ‘

Then the Raus-Gurwitz criterion results in well-known stability conditions for
trace and determinant of the matrix A

Ay = p1ps = —Sp(A)det(A) >0  det(A) >0
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In the case of the 3 x 3 matrix A the Gurwitz matrix can be written as

pp 1 0
Gs= | ps p2 p1 |,
0 0 P3
where
P11 = _Sp(A)v
po = My + Moy + Msg,
ps = —det(A).

Here M;; denote different minors of second order of the matrix A, obtained
by eliminating the ¢’th row and j’th column correspondingly. Then the Raus-
Gurwitz criterion for the 3 x 3 matrix can be written as

Ay =p1 >0, Sp(A) <0,
AQ = p1p2 — pP3 > O, = det(A) — Sp(A)pg > 0,
Ag = pgAQ >0 det(A) <0

With this result, let us try to obtain conditions for Turing instability for
three-component RD system.

6.4.2 Instability criterion for three-component RD system

Let us now consider a three-component reaction-diffusion system in the
form
Ot =Dy Au 4+ M — u® — K30 — Kqw + Ky,
TOw =D, Av +u — v, (6.25)
00w =D, ,Aw + u — w.
The uniform solution ug = (ug, vo, wo)? can be found solving

\— Ky — Kq)Ug — U + K1 =0,

(A= ks = maJuo = tip 1 (6.26)
Vo = Wo = Ug.

First let us obtain conditions for the stability of the homogeneous solution ug

without diffusion. For the system (7.1) the Jacobi matrix A is given by

fllu)  —rs —hy
A= 1/ -1/ 0
1/6 0 -1/
The coefficients p;, p2, p3 of the Gurwitz matrix G35 for the matrix A can be
written as

T+ 60— f'(ug)
P11 = )
70
1+ 0ks + TRy — f'(uo)(T + 0)
P2 = 5
70
o f/(uo) — R3 — R4
P3s =

70
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Then the conditions for local stability of homogeneous solution (ug,vg,wq)?
take a form:

1
=y
70T+ 0) f (u0)® — ((1 + 0)* + 70(0k3 + Tk4)) f (u0) + (7 + 0) + 0%k3 + 77Ky > 0,
f’(uo) < K3 + K4

f/(U()) < 1 +

(6.27)
In some limit cases the latter can be represented in more simple form, e.g., if
7 =1 and 0 = 1 the stability conditions (6.27) are

/€3+/€4

f(uo) € (-0, 1) U (1+ 5

, K3 + /€4) (628)

As before, let us suppose that the homogeneous solution of the Eq. (7.1)
is stable against uniform perturbations, i.e., the conditions (6.27) are fulfilled.
We pursue now a goal to determine the stability of the homogeneous solution
in presence of diffusion. With this objection in mind we consider a stability
of the system with a matrix B(k) = A — k?D, where D again is the diffusion
matrix,

D, 0 0
D=(0 D,/r 0
0 0 D,/

In the same manner as for the matrix A one can write down the character-
istic polynomial for the matrix B, using its coefficients p;, ps, p3, construct
the Gurwitz matrix and finally obtain Raus-Gurwitz stability criterion in the
following form:

A (k) = —Sp(A) + k*Sp(D) > 0 V&,

Ag(k’) = p1pP2 — P3 > 0 \V/k‘, (629)

Asz(k) =det(B(k)) <0 Vk.

It is easily seen that the first condition (6.29) is fulfilled identically for all
k. The other two conditions are represented by a bicubic polynomial with co-
efficients, depending on the system parameters. It is clear that violation one of
these two inequalities leads to instability to finite wave number perturbation,
i.e., to Turing instability. Unfortunately, the coefficients staying in Ay and Aj
have complicated form, what make the evaluation of the critical wave vector k
as well as instability conditions in closed form impossible. On the other hand
it can be done rather simple numerically for given parameters set.

6.4.3 Numerical results

We have solved system (7.1) numerically on a unit square € = [0, 1] x [0, 1]
with no-flux boundary conditions. As in Sec. 6.3 we have chosen the coeffi-
cients A\ and k; as control parameters; A defines super- or subcritical regime





