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Abstract. We prove that a compact quantum group is coamenable if and only if its core-
presentation ring is amenable. We further propose a Følner condition for compact quantum
groups and prove it to be equivalent to coamenability. Using this Følner condition, we prove

that for a coamenable compact quantum group with tracial Haar state, the enveloping von
Neumann algebra is dimension flat over the Hopf algebra of matrix coefficients. This ge-
neralizes a theorem of Lück from the group case to the quantum group case, and provides
examples of compact quantum groups with vanishing L2-Betti numbers.

Introduction

The theory of L2-Betti numbers for discrete groups is originally due to
Atiyah and dates back to the seventies [1]. These L2-Betti numbers are defined
for those discrete groups that permit a free, proper and cocompact action on
some contractible, Riemannian manifold X . If Γ is such a group, the space of
square integrable p-forms on X becomes a finitely generated Hilbert module
for the group von Neumann algebra L (Γ). As such it has a Murray-von
Neumann dimension which turns out to be independent of the choice of X

and is called the p-th L2-Betti number of Γ, denoted β
(2)
p (Γ). More recently,

Lück [21, 22, 23] transported the notion of Murray-von Neumann dimension
to the setting of finitely generated projective (algebraic) L (Γ)-modules and
extended thereafter the domain of definition to the class of all modules. With
this extended dimension function, dimL (Γ)(−), it is possible to extend the

notion of L2-Betti numbers to cover all discrete groups Γ by setting

β(2)
p (Γ) = dimL (Γ) TorCΓ

p (L (Γ),C).

For more details on the relations between the different definitions of L2-Betti
numbers and the extended dimension function we refer to Lück’s book [24].

All the ingredients in the homological algebraic definition above have fully
developed analogues in the world of compact quantum groups, and using this
dictionary the notion of L2-Betti numbers was generalized to the quantum



144 David Kyed

group setting in [20]. Since this generalization is central for the work in the
present paper, we shall now explain it in greater detail. Consider a compact
quantum group G = (A,∆) and assume that its Haar state h is a trace. If we
denote by A0 the unique dense Hopf ∗-algebra and by M the enveloping von
Neumann algebra of A in the GNS representation arising from h, then the p-th
L2-Betti number of G is defined as

β(2)
p (G) = dimM TorA0

p (M,C).

Here C is considered an A0-module via the counit ε : A0 → C and dimM (−) is
Lück’s extended dimension function arising from (the extension of) the trace-
state h. This definition extends the classical one [20, 1.3] in the sense that

β(2)
p (G) = β(2)

p (Γ)

when G = (C∗
red(Γ),∆red).

The aim of this paper is to investigate the L2-Betti numbers of the class
of coamenable, compact quantum groups. In the classical case we have that

β
(2)
p (Γ) = 0 for all p ≥ 1 whenever Γ is an amenable group. This can be seen

as a special case of [22, 5.1] where it is proved that the von Neumann algebra
L (Γ) is dimension flat over CΓ, meaning that

dimL (Γ) TorCΓ
p (L (Γ), Z) = 0(p ≥ 1)

for any CΓ-module Z — provided, of course, that Γ is still assumed amenable.
We generalize this result to the quantum group setting in Theorem 6.1. More
precisely, we prove that if G = (A,∆) is a compact, coamenable quantum
group with tracial Haar state and Z is any module for the algebra of matrix
coefficients A0 then

dimM TorA0
p (M,Z) = 0.(p ≥ 1)

Here M is again the enveloping von Neumann algebra in the GNS represen-
tation arising from the Haar state. In order to prove this result we need a
Følner condition for compact quantum groups. The classical Følner condition
for groups [11] is a geometrical condition, on the action of the group on itself,
which is equivalent to amenability of the group. In order to obtain a quantum
analogue of Følner’s condition a detailed study of the ring of corepresentations,
associated to a compact quantum group, is needed. The ring of corepresen-
tations is a special case of a so-called fusion algebra and we have therefore
devoted a substantial part of this paper to the study of abstract fusion alge-
bras and their amenability. Amenability for (finitely generated) fusion algebras
was introduced by Hiai and Izumi in [13] where they also gave two equivalent
Følner-type conditions for fusion algebras. We generalize their results to the
non-finitely generated case and prove that a compact quantum group is co-
amenable if and only if its corepresentation ring is amenable. From this we
obtain a Følner condition for compact quantum groups which is equivalent to
coamenability. Using this Følner condition we prove our main result, Theorem
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6.1, which implies that coamenable compact quantum groups have vanishing
L2-Betti numbers in all positive degrees.
Structure. The paper is organized as follows. In the first section we recapitulate
(parts of) Woronowicz’s theory of compact quantum groups. The second and
third section is devoted to the study of abstract fusion algebras and amenability
of such. In the fourth section we discuss coamenability of compact quantum
groups and investigate the relation between coamenability of a compact quan-
tum group and amenability of its corepresentation ring. The fifth section is an
interlude in which the necessary notation concerning von Neumann algebraic
compact quantum groups and their discrete duals is introduced. The sixth
section is devoted to the proof of our main theorem (6.1) and the seventh, and
final, section consists of examples.
Acknowledgements. I wish to thank my supervisor Ryszard Nest for the many
discussions about quantum groups and their (co)amenability, and Andreas
Thom for pointing out to me that the bicrossed product construction could be
used to generate examples of quantum groups satisfying Følner’s condition.
Notation. Throughout the paper, the symbol ⊙ will be used to denote algebraic
tensor products while the symbol ⊗̄ will be used to denote tensor products in
the category of Hilbert spaces or the category of von Neumann algebras. All
tensor products between C∗-algebras are assumed minimal/spatial and these
will be denoted by the symbol ⊗.

1. Preliminaries on compact quantum groups

In this section we briefly recall Woronowicz’s theory of compact quantum
groups. Detailed treatments, and proofs of the results stated, can be found in
[37], [25] and [18].

A compact quantum group G is a pair (A,∆) where A is a unital C∗-algebra
and ∆: A −→ A⊗A is a unital ∗-homomorphism from A to the minimal tensor
product of A with itself satisfying:

(id⊗∆)∆ = (∆ ⊗ id)∆(coassociativity)

∆(A)(1 ⊗A) = ∆(A)(A ⊗ 1) = A⊗A(non-degeneracy)

For such a compact quantum group G = (A,∆), there exists a unique state
h : A→ C, called the Haar state, which is invariant in the sense that

(h⊗ id)∆(a) = (id⊗h)∆(a) = h(a)1,

for all a ∈ A. Let H be a Hilbert space and let u ∈ M(K(H) ⊗ A) be an
invertible multiplier. Then u is called a corepresentation if

(id⊗∆)u = u(12)u(13),

where we use the standard leg numbering convention; for instance u(12) = u⊗1.
Intertwiners, direct sums and equivalences between corepresentations as well as
irreducibility are defined in a straight forward manner. See e.g. [25] for details.
We shall denote by Mor(u, v) the set of intertwiners from u to v. It is a
fact that each irreducible corepresentation is finite dimensional and equivalent
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to a unitary corepresentation. Moreover, every unitary corepresentation is
unitarily equivalent to a direct sum of irreducible corepresentations. For two
finite dimensional unitary corepresentations u, v their tensor product is defined
as

u T©v = u(13)v(23).

This is again a unitary corepresentation of G.
The algebra A0 generated by all matrix coefficients arising from irreducible

corepresentations becomes a Hopf ∗-algebra (with the restricted comultiplica-
tion) which is dense in A. We denote its antipode by S and its counit by ε. We
also recall that the restriction of the Haar state to the ∗-algebra A0 is always
faithful. The quantum group G is called a compact matrix quantum group if
there exists a fundamental unitary corepresentation; i.e. a finite dimensional,
unitary corepresentation whose matrix coefficients generate A0 as a ∗-algebra.

Each finite dimensional, unitary corepresentation u defines a contragredient

corepresentation uc on the dual Hilbert space; if u ∈ B(H)⊙A0 for some finite
dimensional Hilbert spaceH then uc ∈ B(H ′)⊙A0 is given by uc = (( · )′⊗S)u,
where for T ∈ B(H) the operator T ′ ∈ B(H ′) is the natural dual (T ′(y′))(x) =
y′(Tx). In general uc is not a unitary, but it is a corepresentation; i.e. it
is invertible and satisfies (id⊗∆)uc = uc

(12)u
c
(13) and is therefore equivalent

to a unitary corepresentation. By choosing an orthonormal basis e1, . . . , en

for H we get an identification of B(H) ⊙ A0 with Mn(A0). If, under this
identification, u becomes the matrix (uij) then uc is identified with the matrix
ū = (u∗ij), where we identify B(H ′) ⊙ A0 with Mn(A0) using the dual basis
e′1, . . . , e

′
n. From this it follows that ucc is equivalent to u. Note also that one

has (u ⊕ v)c = uc ⊕ vc and (u T©v)c = vc
T©uc for unitary corepresentations u

and v (see e.g. [35]). If u ∈ B(H)⊙A0 is a finite dimensional corepresentation
its character is defined as

χ(u) = (Tr ⊗ id)u ∈ A0,

where Tr is the unnormalized trace on B(H). The character map has the
following properties.

Proposition 1.1 ([35]). If u and v are finite dimensional, unitary corepre-

sentations then

χ(u T©v) = χ(u)χ(v), χ(u ⊕ v) = χ(u) + χ(v) and χ(uc) = χ(u)∗.

Moreover, if u and v are equivalent then χ(u) = χ(v).

We end this section with the two basic examples of compact quantum groups
arising from actual groups.

Example 1.2. If G is a compact, Hausdorff topological group then the Gelfand
dual C(G) becomes a compact quantum group with comultiplication
∆c : C(G) −→ C(G) ⊗ C(G) = C(G×G) given by

∆c(f)(s, t) = f(st).
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The Haar state is in this case given by integration against the Haar probability
measure on G, and the finite dimensional unitary corepresentations of C(G)
are exactly the finite dimensional unitary representations of G.

Example 1.3. If Γ is a discrete, countable group then the reduced group
C∗-algebra C∗

red(Γ) becomes a compact quantum group when endowed with
comultiplication given by

∆red(λγ) = λγ ⊗ λγ .

Here λ denotes the left regular representation of Γ. In this case, the Haar
state is just the natural trace on C∗

red(Γ), and a complete family of irreducible,
unitary corepresentations is given by the set {λγ | γ ∈ Γ}.

Remark 1.4. All compact quantum groups to be considered in the following
are assumed to have a separable underlying C∗-algebra. The quantum Peter-
Weyl theorem [18, 3.2.3] then implies that the GNS space arising from the
Haar state is separable and, in particular, that there are at most countable
many (pairwise inequivalent) irreducible corepresentations.

2. Fusion Algebras

In this section we introduce the notion of fusion algebras and amenability
of such objects. This topic was treated by Hiai and Izumi in [13] and we will
follow this reference closely throughout this section. Other references on the
subject are [38], [14] and [28]. Throughout the section, N0 will denote the
non-negative integers.

Definition 2.1 ([13]). Let R be a unital ring and assume that R is free as

Z-module with basis I. Then R is called a fusion algebra if the unit e is an

element of I and the following holds:

(i) The abelian monoid N0[I] is stable under multiplication. That is, for

all ξ, η ∈ I the unique family (Nα
ξ,η)α∈I of integers satisfying

ξη =
∑

α∈I

Nα
ξ,ηα,

consists of non-negative numbers.

(ii) The ring R has a Z-linear, anti-multiplicative involution x 7→ x̄ pre-

serving the basis I globally.

(iii) Frobenius reciprocity holds, i.e. for ξ, η, α ∈ I we have

Nα
ξ,η = Nη

ξ̄,α
= N ξ

α,η̄.

(iv) There exists a Z-linear multiplicative function d : R → [1,∞[ such that

d(ξ) = d(ξ̄) for all ξ ∈ I. This function is called the dimension func-

tion.
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Note that the distinguished basis, involution and dimension function are all
included in the data defining a fusion algebra. Each fusion algebra comes with
a natural trace τ given by

∑

α∈I

kαα
τ7−→ ke.

We shall use this trace later to define a C∗-envelope of a fusion algebra. Note
also that the multiplicativity of d implies

1 =
∑

α∈I

d(α)

d(ξ)d(η)
Nα

ξ,η,

for all ξ, η ∈ I. For an element r =
∑

α∈I kαα ∈ R, the set {α ∈ I | kα 6= 0}
is called the support of r and denoted supp(r). We shall also consider the
complexified fusion algebra C⊗Z Z[I] which will be denoted C[I] in the follow-
ing. Note that this becomes a complex ∗-algebra with the induced algebraic
structures.

Example 2.2. For any discrete group Γ the integral group ring Z[Γ] becomes
a fusion algebra when endowed with (the Z-linear extension of) inversion as
involution and trivial dimension function given by d(γ) = 1 for all γ ∈ Γ.

The irreducible representations of a compact group constitute the basis in a
fusion algebra where the tensor product of representations is the product. We
shall not go into details with this construction since it will be contained in the
following more general example.

Example 2.3. If G = (A,∆) is a compact quantum group its irreducible
corepresentations constitute the basis of a fusion algebra with tensor product
as multiplication. Since this example will play a prominent role later, we
shall now elaborate on the construction. Denote by Irred(G) = (uα)α∈I a
complete family of representatives for the equivalence classes of irreducible,
unitary corepresentations of G. As explained in Section 1, for all uα, uβ ∈
Irred(G) there exists a finite subset I0 ⊆ I and a family (Nγ

α,β)γ∈I0 of positive

integers such that uα
T©uβ is equivalent to

⊕

γ∈I0

uγ ⊕ · · · ⊕ uγ

︸ ︷︷ ︸

Nγ

αβ
times

.

Thus, a product can be defined on the free Z-module Z[Irred(G)] by setting

uα · uβ =
∑

γ∈I0

Nγ
α,βu

γ ,

and the trivial corepresentation e = 1A ∈ Irred(G) is a unit for this product.
If we denote by uᾱ ∈ Irred(G) the unique representative equivalent to (uα)c,
then the map uα 7→ uᾱ extends to a conjugation on the ring Z[Irred(G)] and
since each uα is an element of Mnα

(A) for some nα ∈ N we can also define a
dimension function d : Z[Irred(G)] → [1,∞[ by d(uα) = nα.
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When endowed with this multiplication, conjugation and dimension function
Z[Irred(G)] becomes a fusion algebra. The only thing that is not clear at this
moment is that Frobenius reciprocity holds. To see this, we first note that for
any α ∈ I and any finite dimensional corepresentation v we have (by Schur’s
Lemma [25, 6.6]) that uα occurs exactly

dimC Mor(uα, v)

times in the decomposition of v. Moreover, we have for any two unitary core-
presentations v and w that

dimC Mor(v, w) = dimC((Vw ⊗ V ′
v)w T#vc

)

dimC Mor(vcc, w) = dimC((V ′
v ⊗ Vw)vc

T#w)

Here the right hand side denotes the linear dimension of the space of invariant
vectors under the relevant coaction. These formulas are proved in [35, 3.4] for
compact matrix quantum groups, but the same proof carries over to the case
where the compact quantum group in question does not necessarily possess a
fundamental corepresentation. Using the first formula, we get for α, β, γ ∈ I
that

Nγ
α,β = dimC Mor(uγ , uα

T©uβ)

= dimC(Vα ⊗ Vβ ⊗ V ′
γ)uα

T#uβ
T#(uγ)c

= dimC(Vγ ⊗ V ′
β ⊗ V ′

α)uγ
T#(uβ)c

T#(uα)c

= dimC Mor(uα, uγ
T©(uβ)c)

= Nα
γ,β̄.

The remaining identity in Frobenius reciprocity follows similarly using the
second formula. The fusion algebra Z[Irred(G)] is called the corepresentation
ring (or fusion ring) of G and is denoted R(G).

Recall that the character of a corepresentation u ∈ Mn(A) is defined as
χ(u) =

∑n
i=1 uii. It follows from Proposition 1.1 that the Z-linear extension

χ : Z[Irred(G)] −→ A0

is an injective homomorphism of ∗-rings. I.e. χ is additive and multiplicative
with χ(uᾱ) = (χ(uα))∗. This gives a link between the two ∗-algebras R(G)
and A0 which will be of importance later.

Other interesting examples of fusion algebras arise from inclusions of II1-
factors. See [13] for details.

Remark 2.4. In the following we shall only consider fusion algebras with an
at most countable basis. This will therefore be assumed without further notice
throughout the paper. Since we will primarily be interested in corepresentation
rings of compact quantum groups, this is not very restrictive since the standing
separability assumption (Remark 1.4) ensures that the corepresentation rings
always have a countable basis.
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Consider again an abstract fusion algebra R = Z[I]. For ξ, η ∈ I we define
the (weighted) convolution of the corresponding Dirac measures, δξ and δη, as

δξ ∗ δη =
∑

α∈I

d(α)

d(ξ)d(η)
Nα

ξ,ηδα ∈ ℓ1(I).

This extends linearly and continuously to a submultiplicative product on ℓ1(I).
For f ∈ ℓ∞(I) and ξ ∈ I we define λξ(f), ρξ(f) : I → C by

λξ(f)(η) =
∑

α∈I

f(α)(δξ̄ ∗ δη)(α)

ρξ(f)(η) =
∑

α∈I

f(α)(δη ∗ δξ)(α)

Denote by σ the counting measure on I scaled with d2; that is σ(ξ) = d(ξ)2.
Combining Proposition 1.3, Remark 1.4 and Theorem 1.5 in [13] we get

Proposition 2.5 ([13]). For each f ∈ ℓ∞(I) we have λξ(f), ρξ(f) ∈ ℓ∞(I)
and for each p ∈ N∪ {∞} the maps λξ, ρξ : ℓ∞(I) → ℓ∞(I) restrict to bounded

operators on ℓp(I, σ) denoted λp,ξ and ρp,ξ respectively. By linear extension,

we therefore obtain a map λp,− : Z[I] → B(ℓp(I, σ)) and this map respects the

weighted convolution product. Moreover, for p = 2 the operator U : ℓ2(I) →
ℓ2(I, σ) given by U(δη) = 1

d(η)δη is unitary and intertwines λ2,ξ with the ope-

rator

lξ : δη 7−→ 1

d(ξ)

∑

α

Nα
ξ,ηδα.

Remark 2.6. Under the natural identification of ℓ2(I) with the GNS space
L2(C[I], τ), we see that πτ (ξ) = d(ξ)lξ. In particular the GNS representation
consists of bounded operators. Here τ is the natural trace defined just after
Definition 2.1.

3. Amenability for Fusion Algebras

The notion of amenability for fusion algebras was introduced in [13], but
only in the slightly restricted setting of finitely generated fusion algebras; a
fusion algebra R = Z[I] is called finitely generated if there exists a finitely
supported probability measure µ on I such that

I =
⋃

n∈N

supp(µ∗n) and µ(ξ̄) = µ(ξ) for all ξ ∈ I.

That is, if the union of the supports of all powers of µ, with respect to con-
volution, is I and µ is invariant under the involution. The first condition is
referred to as non-degeneracy of µ and the second condition is referred to as
symmetry of µ.

In [13], amenability is defined, for a finitely generated fusion algebra, by
requiring that ‖λp,µ‖ = 1 for some 1 < p < ∞ and some finitely supported,
symmetric, non-degenerate probability measure µ. It is then proved that this is
independent of the choice of µ and p, using the non-degeneracy property of the

Münster Journal of Mathematics Vol. 1 (2008), 143–180



L2-Betti numbers of coamenable quantum groups 151

measure. If we consider a compact quantum group G = (A,∆) it is not difficult
to prove that its corepresentation ring R(G) is finitely generated exactly when
G is a compact matrix quantum group. Since we are also interested in quantum
groups without a fundamental corepresentation we will choose the following
definition of amenability.

Definition 3.1. A fusion algebra R = Z[I] is called amenable if 1 ∈ σ(λ2,µ)
for every finitely supported, symmetric probability measure µ on I.

Here σ(λ2,µ) denotes the spectrum of the operator λ2,µ. From Proposition
1.3 and Corollary 4.4 in [13] it follows that our definition agrees with the
one in [13] on the class of finitely generated fusion algebras. The relation
between amenability for fusion algebras and the classical notion of amenability
for groups will be explained later. See e.g. Remark 3.8 and Corollary 4.7.

Definition 3.2. Let R = Z[I] be a fusion algebra. For two finite subsets

S, F ⊆ I we define the boundary of F relative to S as the set

∂S(F ) = {α ∈ F | ∃ ξ ∈ S : supp(αξ) * F}
∪ {α ∈ F c | ∃ ξ ∈ S : supp(αξ) * F c}.

Here, and in what follows, F c denotes the set I \ F .

The modified definition of amenability allows the following extension of [13,
4.6] from where we also adopt some notation.

Theorem 3.3. Let R = Z[I] be a fusion algebra with dimension function d.
Then the following are equivalent:

(A) The fusion algebra is amenable.

(FC1) For every finitely supported, symmetric probability measure µ on I with

e ∈ supp(µ) and every ε > 0 there exists a finite subset F ⊆ I such

that
∑

ξ∈supp(χF ∗µ)

d(ξ)2 < (1 + ε)
∑

ξ∈F

d(ξ)2.

(FC2) For every finite, non-empty subset S ⊆ I and every ε > 0 there exists

a finite subset F ⊆ I such that

∀ ξ ∈ S : ‖ρ1,ξ(χF ) − χF ‖1,σ < ε‖χF ‖1,σ,

where ρ1,ξ ∈ B(ℓ1(I, σ)) is the operator from Proposition 2.5.

(FC3) For every finite, non-empty subset S ⊆ I and every ε > 0 there exists

a finite subset F ⊆ I such that
∑

ξ∈∂S(F )

d(ξ)2 < ε
∑

ξ∈F

d(ξ)2.

The condition (FC3) was not present in [13]. It is to be considered as a
fusion algebra analogue of the Følner condition for groups as it is presented in
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[5, F.6]. The strategy for the proof of Theorem 3.3 is to prove the following
implications:

(A) ⇔ (FC2) ⇒ (FC3) ⇒ (FC1) ⇒ (FC2).

The proof of the implications (A) ⇔ (FC2) and (FC1) ⇒ (FC2) are small
modifications of the corresponding proof in [13]. We first set out to prove the
circle of implications

(FC2) ⇒ (FC3) ⇒ (FC1) ⇒ (FC2).

For the proof we will need the following simple lemma.

Lemma 3.4. If Nα
ξ,η > 0 for some ξ, η, α ∈ I then d(α)d(η) ≥ d(ξ).

Proof. By Frobenius reciprocity, we have Nα
ξ,η = N ξ

α,η̄ > 0 and hence

d(α)d(η) = d(α)d(η̄) =
∑

γ

Nγ
α,η̄d(γ) ≥ N ξ

α,η̄d(ξ) ≥ d(ξ).

�

Proof of (FC2) ⇒ (FC3). We first note that (FC2), by the triangle inequality,
implies the following condition:
For every finite, non-empty set S ⊆ I and every ε > 0 there exists a finite set

F ⊆ I such that

‖ρ1,χS
(χF ) − |S|χF ‖1,σ < ε‖χF‖1,σ.(†)

Here |S| denotes the cardinality of S. Let S and ε > 0 be given and choose F
such that (†) is satisfied. Define a map ϕ : I → R by ϕ(ξ) = ρ1,χS

(χF )(ξ) −
|S|χF (ξ). We note that

ϕ(ξ) =
( ∑

α∈I

χF (α)(δξ ∗ χS)(α)
)

− |S|χF (ξ)

=
( ∑

α∈F

∑

η∈S

(δξ ∗ δη)(α)
)

− |S|χF (ξ)

=
∑

α∈F

∑

η∈S

d(α)

d(ξ)d(η)
Nα

ξ,η − |S|χF (ξ).

We now divide into four cases.

(i) If ξ ∈ F ∩ ∂S(F )c then supp(ξη) ⊆ F for all η ∈ S and hence we get

the relation
∑

α∈F
d(α)

d(ξ)d(η)N
α
ξ,η = 1. This implies ϕ(ξ) = 0.

(ii) If ξ ∈ F c ∩ ∂S(F )c we see that Nα
ξ,η = 0 for all α ∈ F and all η ∈ S

and hence ϕ(ξ) = 0.
(iii) If ξ ∈ F c ∩ ∂S(F ) we have χF (ξ) = 0 and there exist α0 ∈ F and

η0 ∈ S such that Nα0

ξ,η0
6= 0. Using Lemma 3.4, we now get

ϕ(ξ) ≥ d(α0)

d(ξ)d(η0)
Nα0

ξ,η0
≥ 1

d(η0)2
Nα0

ξ,η0
≥ 1

d(η0)2
≥ 1

M
,
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where M = max{d(η)2 | η ∈ S}.
(iv) If ξ ∈ F ∩ ∂S(F ) we have

ϕ(ξ) =
∑

α∈F

∑

η∈S

d(α)

d(ξ)d(η)
Nα

ξ,η − |S|

= (−1)
∑

η∈S

(

1 −
∑

α∈F

d(α)

d(ξ)d(η)
Nα

ξ,η

)

= (−1)
∑

η∈S

∑

α/∈F

d(α)

d(ξ)d(η)
Nα

ξ,η,

and because ξ ∈ ∂S(F ) ∩ F there exist η0 ∈ S and α0 /∈ F such
that Nα0

ξ,η0
6= 0. Using Lemma 3.4 again we conclude, as in (iii), that

|ϕ(ξ)| ≥ 1
M .

We now get

ε
∑

ξ∈F

d(ξ)2 = ε‖χF‖1,σ

> ‖ρ1,χS
(χF ) − |S|χF ‖1,σ(by (†))

=
∑

ξ∈I

|ϕ(ξ)|d(ξ)2

=
∑

ξ∈∂S(F )

|ϕ(ξ)|d(ξ)2(by (i) and (ii))

≥ 1

M

∑

ξ∈∂S(F )

d(ξ)2,(by (iii) and (iv))

and since ε was arbitrary the claim follows. �

Proof of (FC3) ⇒ (FC1). Given a finitely supported, symmetric probability
measure µ, with µ(e) > 0, and ε > 0 we put S = supp(µ) and choose F ⊆ I
such that (FC3) is fulfilled with respect to ε. We have

(χF ∗ µ)(ξ) =
∑

α∈F,β∈S

µ(β)
d(ξ)

d(α)d(β)
N ξ

α,β,

so

(χF ∗ µ)(ξ) = 0 ⇔ ∀α ∈ F ∀β ∈ S : N ξ
α,β = 0

⇔ ∀α ∈ F ∀β ∈ S : Nα
ξ,β̄ = 0(Frobenius)

⇔ ∀α ∈ F ∀β ∈ S : Nα
ξ,β = 0(S symmetric)

⇔ ξ ∈ F c ∩ ∂S(F )c.(e ∈ S)
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Hence supp(χF ∗ µ) = (F c ∩ ∂S(F )c)c = F ∪ ∂S(F ) and we get
∑

ξ∈supp(χF ∗µ)

d(ξ)2 −
∑

ξ∈F

d(ξ)2 =
∑

ξ∈F∪∂S(F )

d(ξ)2 −
∑

ξ∈F

d(ξ)2

=
∑

ξ∈∂S(F )∩F c

d(ξ)2

≤
∑

ξ∈∂S(F )

d(ξ)2

< ε
∑

ξ∈F

d(ξ)2.(by (FC3))

�

Proof of (FC1) ⇒ (FC2). Given ε > 0 and S ⊆ I we define S̃ = S ∪ S̄ ∪ {e}
and µ = 1

|S̃|
χS̃ . Choose F ⊆ I such that µ and F satisfy (FC1) with respect

to ε
2 . We aim to prove that (FC2) is satisfied for all ξ ∈ S̃. For arbitrary ξ ∈ I

we have

‖ρ1,ξ(χF ) − χF ‖1,σ =
∑

α

|ρ1,ξ(χF )(α) − χF (α)|d(α)2

=
∑

α

|(
∑

η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ) − χF (α)|d(α)2

=
∑

α∈F

(

1 −
∑

η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ

)

d(α)2

+
∑

α/∈F

( ∑

η∈F

d(η)

d(α)d(ξ)
Nη

α,ξ

)

d(α)2

=
∑

α∈F

∑

η/∈F

d(η)d(α)

d(ξ)
Nη

α,ξ +
∑

α/∈F

∑

η∈F

d(η)d(α)

d(ξ)
Nη

α,ξ

=
∑

α/∈F

∑

η∈F

d(η)d(α)

d(ξ)
(Nη

α,ξ +Nα
η,ξ)

=
∑

α/∈F

∑

η∈F

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ).(†)

For ξ ∈ supp(µ) = S̃ and α /∈ F , it is easy to check that (χF ∗ µ)(α) > 0 if
there exists an η ∈ F such that Nα

η,ξ̄
+ Nα

η,ξ > 0. Hence the calculation (†)
implies that

‖ρ1,ξ(χF ) − χF ‖1,σ ≤
∑

α∈supp(χF ∗µ)\F

∑

η∈F

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ)

≤
∑

α∈supp(χF ∗µ)\F

∑

η∈I

d(η)d(α)

d(ξ)
(Nα

η,ξ̄ +Nα
η,ξ)
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= 2
∑

α∈supp(χF ∗µ)\F

d(α)2

= 2
( ∑

α∈supp(χF ∗µ)

d(α)2 −
∑

α∈F

d(α)2
)

< ε‖χF ‖1,σ,

where the last estimate follows from (FC1). Note that the condition e ∈
supp(µ) was used to get the fourth step in the calculation above. �

We now set out to prove the last remaining equivalence in Theorem 3.3.

Proof of (A) ⇔ (FC2). At the end of this section four formulas are gathered;
these will be used during the proof and referred to as (F1) - (F4). For the actual
proof we also need the following definitions. Consider a finitely supported,
symmetric probability measure µ on I and define pµ : I × I → R by

pµ(ξ, η) = (δξ ∗ µ)(η) =
∑

ω

µ(ω)
d(η)

d(ξ)d(ω)
Nη

ξ,ω.

Note that the function pµ satisfies the reversibility condition:

σ(ξ)pµ(ξ, η) = σ(η)pµ(η, ξ).

For a finitely supported function f ∈ c0(I) and r ∈ N we also define

‖f‖Dµ(r) =
(1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)|f(ξ) − f(η)|r
) 1

r

.

Although this is referred to as the generalized Dirichlet r-norm of f , one should
keep in mind that the function ‖ · ‖Dµ(r) is only a semi norm. We shall now
consider the following condition:
For all finitely supported, symmetric, probability measures µ we have

inf
{‖f‖Dµ(r)

‖f‖r,σ
| f ∈ c0(I) \ {0}

}

= 0.(NWr)

The reason for the name (NWr), which appeared in [13], is that the condition
is the negation of a so-called Wirtinger inequality. See [13] for more details.
To prove (A) ⇔ (FC2) we will actually prove the following equivalences

(FC2) ⇔ (NW1) and ∀r : (NW1) ⇔ (NWr) and (A) ⇔ (NW2).

For the latter of these equivalences the following lemma will be useful.

Lemma 3.5. For all f ∈ c0(I) we have

‖f‖2
Dµ(2) = 〈f |f〉2,σ − 〈ρ2,µ(f)|f〉2,σ,

where 〈·|·〉2,σ denotes the inner product on ℓ2(I, σ).

Proof. This is proven by a direct calculation using the reversibility condition
and the formula (F4) from the end of this section. �
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Proof of (A)⇔ (NW2). Let µ be a finitely supported, symmetric probability
measure on I. By [13, 1.3,1.5], we have that ρ2,µ is self-adjoint and ‖ρ2,µ‖ ≤
‖µ‖1 = 1 so that 1 − ρ2,µ ≥ 0. We now get

1 ∈ σ(λ2,µ) ⇔ 1 ∈ σ(ρ2,µ)([13, 1.5])

⇔ 0 ∈ σ(1 − ρ2,µ)

⇔ 0 ∈ σ(
√

1 − ρ2,µ)

⇔ ∃xn ∈ (ℓ2(I, σ))1 : ‖(
√

1 − ρ2,µ)xn‖2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : ‖(
√

1 − ρ2,µ)fn‖2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : 〈(1 − ρ2,µ)fn |fn〉2,σ −→ 0

⇔ ∃fn ∈ (c0(I))1 : ‖fn‖Dµ(2) −→ 0(Lem. 3.5)

⇔ inf
{‖f‖Dµ(2)

‖f‖2,σ
| f ∈ c0(I) \ {0}

}

= 0.

Hence (A) ⇔ (NW2) as desired. �

Proof of (NW1) ⇒ (FC2). Given ε > 0 and ξ1, . . . , ξn ∈ I, we choose a finitely
supported, symmetric probability measure µ with ξ1, . . . , ξn ∈ supp(µ). Define

ε′ =
ε

2
min{µ(ξ) | ξ ∈ I},

and choose, according to (NW1), an f ∈ c0(I) such that

‖f‖Dµ(1) < ε′‖f‖1,σ.(∗)

Since ‖|f |‖Dµ(1) ≤ ‖f‖Dµ(1) and ‖|f |‖1,σ = ‖f‖1,σ we may assume that f is
positive. Since f can be approximated by a rational function we may actually
assume that f has integer values. Put N = max{f(ξ) | ξ ∈ I} and define, for

k = 1, . . . , N , Fk = {ξ | f(ξ) ≥ k}. Then f =
∑N

k=1 χFk
and the following

formulas hold.

‖f‖Dµ(1) =

N∑

k=1

‖χFk
‖Dµ(1) and ‖f‖1,σ =

N∑

k=1

‖χFk
‖1,σ.

The first formula is proved by induction on the integer N and the second
follows from a direct calculation using only the reversibility property of pµ.
Because of (∗), there must therefore exist some j ∈ {1, . . . , N} such that

‖χFj
‖Dµ(1) < ε′‖χFj

‖1,σ.(∗∗)
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For the sake of simplicity we denote this Fj by F in the following. We now get

‖χF ‖Dµ(1) =
1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)|χF (ξ) − χF (η)|

=
∑

ξ∈F,η/∈F

σ(ξ)pµ(ξ, η)(reversibility)

=
∑

ξ∈F,η/∈F

σ(ξ)
( ∑

ω

µ(ω)
d(η)

d(ξ)d(ω)
Nη

ξ,ω

)

=
∑

ω

µ(ω)
( ∑

ξ∈F,η/∈F

d(ξ)d(η)

d(ω)
Nη

ξ,ω

)

=
1

2

∑

ω

µ(ω)
( ∑

ξ∈F,η/∈F

d(ξ)d(η)

d(ω)
(Nη

ξ,ω +Nη
ξ,ω̄)

)

=
1

2

∑

ω

µ(ω)‖ρ1,ω(χF ) − χF ‖1,σ.(‡)

Here the last equality follows from the computation (†) in the proof of (FC1) ⇒
(FC2). The inequality (∗∗) therefore reads

1

2

∑

ω

µ(ω)‖ρ1,ω(χF ) − χF ‖1,σ < ε′‖χF‖1,σ.

For every ω ∈ I we therefore conclude, since ε′ = ε
2 min(µ), that

µ(ω)‖ρ1,ω(χF ) − χF ‖1,σ < min(µ)ε‖χF ‖1,σ.

Since each of the given ξi’s are in supp(µ) we get for all i that

‖ρ1,ξi
(χF ) − χF ‖1,σ < ε‖χF‖1,σ,

as desired. �

Proof of (FC2) ⇒ (NW1). Assume now (FC2) and let µ and ε be given. Choose
F such that

‖ρ1,ξ(χF ) − χF ‖1,σ < ε‖χF‖1,σ

for all ξ ∈ supp(µ). Using the calculation (‡), from the proof of opposite
implication, we get

‖χF ‖Dµ(1) =
1

2

∑

ω

µ(ω)‖ρ1,ω(χF ) − χF ‖1,σ

<
1

2

∑

ω

µ(ω)ε‖χF‖1,σ

=
ε

2
‖χF ‖1,σ

< ε‖χF‖1,σ.

�
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For the proof of the statement (NW1) ⇔ (NWr) we will need the following
lemma.

Lemma 3.6 ([12]). For r ≥ 2 and f ∈ c0(I)+ we have

‖f r‖Dµ(1) ≤ 2r‖f‖r−1
r,σ ‖f‖Dµ(r).

Proof. First note that

‖f r‖Dµ(1) =
1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)r − f(η)r|

≤ r

2

∑

ξ,η

σ(ξ)pµ(ξ, η)(f(ξ)r−1 + f(η)r−1)|f(ξ) − f(η)|,

where the inequality follows from (F1). Define a measure ν on I×I by ν(ξ, η) =
1
2σ(ξ)pµ(ξ, η) and consider the functions ϕ, ψ : I × I → R given by

ϕ(ξ, η) = f(ξ)r−1 + f(η)r−1 and ψ(ξ, η) = |f(ξ) − f(η)|.
Define s > 1 by the equation 1

r + 1
s = 1. Then the inequality above can be

written as ‖f r‖Dµ(1) ≤ r‖ϕψ‖1,ν and using Hölder’s inequality we therefore
get

‖f r‖Dµ(1) ≤ r‖ϕψ‖1,ν

≤ r‖ϕ‖s,ν‖ψ‖r,ν

= r
[ ∑

ξ,η

1

2
σ(ξ)pµ(ξ, η)(f(ξ)r−1 + f(η)r−1)s

] 1
s

×
[∑

ξ,η

1

2
σ(ξ)pµ(ξ, η)|f(ξ) − f(η)|r

] 1
r

1

≤ r
[

2s−1 1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)(f(ξ)(r−1)s + f(η)(r−1)s)
] 1

s ‖f‖Dµ(r)

2

= r
[

2s−1
∑

ξ,η

σ(ξ)pµ(ξ, η)f(ξ)(r−1)s
] 1

s ‖f‖Dµ(r)

= r2
s−1

s

[∑

ξ

σ(ξ)
( ∑

η

pµ(ξ, η)
)

f(ξ)(r−1)s
] 1

s ‖f‖Dµ(r)

= r2
s−1

s

[∑

ξ

σ(ξ)f(ξ)(r−1)s
] 1

s ‖f‖Dµ(r)

≤ 2r
[∑

ξ

σ(ξ)f(ξ)r
] r−1

r ‖f‖Dµ(r)

= 2r‖f‖r−1
r,σ ‖f‖Dµ(r).

1by (F2)
2by reversibility
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�

Also the following observation will be useful.

Observation 3.7. Under the assumptions of Lemma 3.6 we have

‖f‖Dµ(r) =
[1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)|f(ξ) − f(η)|r
] 1

r

≤
[1

2

∑

ξ,η

σ(ξ)pµ(ξ, η)|f(ξ)r − f(η)r|
] 1

r

(by (F3))

= ‖f r‖
1
r

Dµ(1).

Having these results, we are now able to prove (NW1) ⇔ (NWr).

Proof of (NW1) ⇒ (NWr). Assume (NW1) and let µ and ε > 0 be given. Put
ε′ = εr and choose non-zero f ∈ c0(I)+ such that

‖f‖Dµ(1)

‖f‖1,σ
< ε′.

Using Observation 3.7 we get

‖ r
√
f‖Dµ(r)

‖ r
√
f‖r,σ

≤
‖f‖

1
r

Dµ(1)

‖f‖
1
r

1,σ

< (ε′)
1
r = ε.

�

Proof of (NWr) ⇒ (NW1). Given µ and ε > 0 and put ε′ = 1
2r ε. Then choose

non-zero f ∈ c0(I)+ with

‖f‖Dµ(r)

‖f‖r,σ
< ε′.

Using Lemma 3.6, we get

‖f r‖Dµ(1)

‖f r‖1,σ
≤

2r‖f‖r−1
r,σ ‖f‖Dµ(r)

‖f‖r
r,σ

< 2rε′ = ε.

�

Gathering all the results just proven we get (A) ⇔ (FC2). �

This concludes the proof of Theorem 3.3.

Remark 3.8. Consider a countable, discrete group Γ and the corresponding
fusion algebra Z[Γ]. It is not difficult to prove that Z[Γ] satisfies (FC3) from
Theorem 3.3 if and only if Γ satisfies Følner’s condition (for groups) as pre-
sented in [5, F.6]. Since a group is amenable if and only if it satisfies Følner’s
condition, we see from this that Γ is amenable if and only if the corresponding
fusion algebra Z[Γ] is amenable.
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3.1. Formulas used in the proof of Theorem 3.3. We collect here four
formulas used in the proof of Theorem 3.3. Let r, s > 1 and assume that
1
r + 1

s = 1. Then for all z, w ∈ C, a, b ≥ 0 and n ∈ N we have

|ar − br| ≤ r(ar−1 + br−1)|a− b|(F1)

(a+ b)r ≤ 2r−1(ar + br)(F2)

|a− b|n ≤ |an − bn|(F3)

|z − w|2 + |w − z|2 = 2(|z|2 − zw̄) + 2(|w|2 − wz̄)(F4)

Proof. The inequality (F1) can be proved using the mean value theorem on the
function f(x) = xr and the interval between a and b. To prove (F2), consider
a two-point set endowed with counting measure. Using Hölder’s inequality, we
then get

a+ b = 1 · a+ 1 · b ≤ (1s + 1s)
1
s (ar + br)

1
r .

From this the desired inequality follows using the fact that 1
s = r−1

r . The
inequality (F3) follows using the binomial theorem. If, for instance, a = b+ k
for some k ≥ 0 we have

(a− b)n = kn ≤ (b+ k)n − bn = an − bn.

The formula (F4) follows by splitting w and z into real and imaginary parts
and calculating both sides of the equation. �

4. Coamenable Compact Quantum Groups

In this section we introduce the notion of coamenability for compact quan-
tum groups and discuss the relationship between coamenability of a compact
quantum group and amenability of its corepresentation ring. The notion of
(co-)amenability has been treated in different quantum group settings by nu-
merous people. A number of references for this subject are [2], [3], [4], [6], [10],
[27] and [32]. For our purposes, the approach of Bédos, Murphy and Tuset
in [4] is the most natural and we are therefore going to follow this reference
throughout this section. We will assume that the reader is familiar with the ba-
sics on Woronowicz’s theory of compact quantum groups. Definitions, notation
and some basic properties can be found in Section 1 and detailed treatments
can be found in [18], [25] and [37].

Definition 4.1 ([4]). Let G = (A,∆) be a compact quantum group and let

Ared be the image of A under the GNS representation πh arising from the

Haar state h. Then G is said to be coamenable if the counit ε : A0 → C
extends continuously to Ared.

Remark 4.2. It is well known that a discrete group Γ is amenable if and only if
the trivial representation of C∗

full(Γ) factorizes through C∗
red(Γ). This amounts

to saying that (C∗
red(Γ),∆red) is coamenable if and only if Γ is amenable. Note

also that the abelian compact quantum groups (C(G),∆c) are automatically
coamenable since the counit is given by evaluation at the identity and therefore
already globally defined and bounded.
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In the following theorem we collect some facts on coamenable compact quan-
tum groups. For more coamenability criteria and a proof of the theorem below
we refer to [4].

Theorem 4.3 ([4]). For a compact quantum group G = (A,∆) the following

are equivalent.

(i) G is coamenable.

(ii) The Haar state h is faithful and the counit is bounded with respect to

the norm on A.

(iii) The natural map from the universal representation Au to the reduced

representation Ared is an isomorphism.

If G is a compact matrix quantum group with fundamental corepresentation

u ∈ Mn(A) the above conditions are also equivalent to the following.

(iv) The number n is in σ(πh(Re(χ(u))) where χ(u) =
∑n

i=1 uii is the

character map from Section 2.

Recall that σ(T ) denotes the spectrum of a given operator T . Thus, when we
are dealing with a coamenable quantum group the Haar state is automatically
faithful and hence the corresponding GNS representation πh is faithful. We
therefore can, and will, identify A and Ared. The condition (iv) is Skandalis’s
quantum analogue of the so-called Kesten condition for groups (see [15] and
[2]) which is proved by Banica in [3]. The next result is a generalization of
the Kesten condition to the case where a fundamental corepresentation is not
(necessarily) present. The proof draws inspiration from the corresponding
proof in [4].

Theorem 4.4. Let G = (A,∆) be a compact quantum group. Then the fol-

lowing are equivalent:

(i) G is coamenable.

(ii) For any finite dimensional, unitary corepresentation u ∈ Mnu
(A) we

have nu ∈ σ(πh(Re(χ(u)))).

Proof. Assume G to be coamenable and let a finite dimensional, unitary co-
representation u ∈ Mnu

(A) be given. Since the counit extends to a character
ε : Ared → C and since

ε(Re(χ(u))) = ε(

nu∑

i=1

uii + u∗ii
2

) = nu,

we must have nu ∈ σ(πh(Re(χ(u)))). Assume conversely that the property (ii)
is satisfied and define, for a finite dimensional, unitary corepresentation u, the
set

C(u) = {ϕ ∈ S (Ared) | ϕ(πh(Re(χ(u)))) = nu}.
Here S (Ared) denotes the state space of Ared. It is clear that each C(u) is
closed in the weak∗-topology and we now prove that the family

F = {C(u) | u finite dimensional, unitary corepresentation}
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has the finite intersection property. We first prove that each C(u) is non-
empty. For given u, we put xij = uij − δij and x =

∑

ij x
∗
ijxij . Then x is

clearly positive and a direct calculation reveals that

x = 2(nu − Re(χ(u))).(†)

Hence, nu ∈ σ(πh(Re(χ(u)))) if and only if there exists [16, 4.4.4] a ϕ ∈
S (Ared) with

ϕ(πh(Re(χ(u)))) = nu.

Thus, C(u) 6= ∅. Let now u(1), . . . , u(k) be given and put u = ⊕k
i=1u

(i). We
aim at proving that

C(u) ⊆
k⋂

i=1

C(u(i)).

Let ϕ ∈ C(u) be given and note that

k∑

i=1

nu(k) = ϕ(πh(Re(χ(u)))) =

k∑

i=1

n
u(i)
∑

j=1

1

2
ϕ(πh(u

(i)
jj ) + πh(u

(i)∗
jj )).

Since the matrix u is unitary, we have ‖πh(ust)‖ ≤ 1 for all s, t ∈ {1, . . . , nu}
and hence

1

2
ϕ(πh(u

(i)
jj ) + πh(u

(i)∗
jj )) ∈ [−1, 1].

This forces 1
2ϕ(πh(u

(i)
jj )+πh(u

(i)∗
jj )) = 1 and hence ϕ(πh(Re(χ(u(i))))) = nu(i) .

Thus ϕ is in each of the sets C(u(1)), . . . , C(u(k)) and we conclude that F
has the finite intersection property. By compactness of S (Ared), we may
therefore find a state ϕ such that ϕ(πh(Re(χ(u)))) = nu for every unitary
corepresentation u. Denote by H the GNS space associated with this ϕ, by
ξ0 the natural cyclic vector and by π the corresponding GNS representation
of Ared. Consider an arbitrary unitary corepresentation u and form as before
the elements xij and x. Then the equation (†) shows that ϕ(x∗ijxij) = 0 and

hence π(xij)ξ0 = 0 and

π(uij)ξ0 = δijξ0.

From the Cauchy-Schwarz inequality we get

|ϕ(xij)|2 ≤ ϕ(x∗ijxij)ϕ(1) = 0,

and hence ϕ(uij) = δij . We therefore have that π(uij)ξ0 = ϕ(uij)ξ0. Since the
matrix coefficients span A0 linearly we get π(a)ξ0 = ϕ(a)ξ0 for all a ∈ A0. By
density of A0 in Ared it follows that π(a)ξ0 = ϕ(a)ξ0 for all a ∈ Ared. From
this we see that

H = π(Ared)ξ0
‖·‖2

= Cξ0,

and it follows that ϕ : Ared → C is a bounded ∗-homomorphism coinciding
with ε on A0. Thus, G is coamenable.

�
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The following result was mentioned, without proof, in [13, p.692] in the
restricted setting of compact matrix quantum groups whose Haar state is a
trace.

Theorem 4.5. A compact quantum group G = (A,∆) is a coamenable if and

only if the corepresentation ring R(G) is amenable.

For the proof we will need the following lemma. For this, recall from Section
2 that the ∗-algebra C[Irred(G)] comes with a trace τ given by

∑

u∈Irred(G)

zuu 7−→ ze,

where e ∈ Irred(G) denotes the identity in R(G). In what follows, we denote
by C∗

red(R(G)) the enveloping C∗-algebra of C[Irred(G)] on the GNS space
L2(C[Irred(G)], τ) arising from τ .

Lemma 4.6. The character map χ : R(G) → A0 extends to an isometric ∗-
homomorphism χ : C∗

red(R(G)) → Ared.

Proof. Put I = Irred(G). For an irreducible, finite dimensional, unitary core-
presentation u we have h(uij) = 0 unless u is the trivial corepresentation and
therefore the following diagram commutes

C[I]

τ

��

� � χ
// A0

h
wwoo

o
o
o
o
o
o
o
o
o
o
o
o

C

Hence χ extends to an isometric embedding

K = L2(C[I], τ) −֒→ L2(A0, h) = H.

Denote by S the algebra χ(R(G)) and by S̄ the closure of πh(S) inside Ared.
Since S is a ∗-algebra that maps K into itself it also maps K⊥ into itself and
hence πh(χ(a)) takes the form

(
πh(χ(a))

∣
∣
K

0

0 πh(χ(a))
∣
∣
K⊥

)

.

Thus

‖πh(χ(a))‖ = max{‖πh(χ(a))
∣
∣
K
‖, ‖πh(χ(a))

∣
∣
K⊥

‖}
≥ ‖πh(χ(a))

∣
∣
K
‖

= ‖πτ (a)‖.

This proves that the map κ : πh(S) → πτ (C[I]) given by κ(πh(χ(a))) = πτ (a)
is bounded and it therefore extends to a contraction κ̄ : S̄ → C∗

red(R(G)). We
now prove that κ̄ is injective. Since h is faithful on Ared and τ is faithful on
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C∗
red(R(G)) we get the following commutative diagram

πh(S)
κ
∼

//
� _

��

πτ (C[I])
� _

��

S̄
κ̄

//
� _

��

C∗
red(R(G))

� _

��

L2(S̄, h) // L2(C∗
red(R(G)), τ)

One easily checks that κ induces an isometry L2(S̄, h) → L2(C∗
red(G), τ) and it

therefore follows that κ̄ is injective and hence an isometry. Thus, for χ(a) ∈ S
we have

‖πh(χ(a))‖ = ‖κ̄(πh(χ(a)))‖ = ‖πτ (a)‖,
as desired.

�

Proof of Theorem 4.5. Assume first that G is coamenable and put I =
Irred(G). Consider a finitely supported, symmetric probability measure µ
on I. We aim to show that 1 ∈ σ(λ2,µ), where λ2,µ is the operator on
ℓ2(I, σ) defined in Section 2. Write µ as

∑

ξ∈I tξδξ and recall (Lemma 4.6)

that the character map χ : C[I] → A0 extends to an injective ∗-homomorphism
χ : C∗

red(R(G)) → Ared. Using this, and Proposition 2.5, we get that

σ(λ2,µ) = σ(lµ)

= σ(
∑

ξ∈I

tξlξ)

= σ(
∑

ξ∈I

tξ
1

nξ
πτ (ξ))

= σ(χ(
∑

ξ∈I

tξ
nξ
πτ (ξ)))

= σ(
∑

ξ∈I

nξ∑

i=1

tξ
nξ
πh(ξii)).

Since G is coamenable, the counit extends to a character ε : Ared → C and we
have

ε(
∑

ξ∈I

tξ
nξ

(

nξ∑

i=1

ξii)) =
∑

ξ∈I

tξ
nξ
nξ = 1.

Hence 1 ∈ σ
(

∑

ξ∈I
tξ

nξ
(
∑nξ

i=1 πh(ξii))
)

= σ(λ2,µ) and we conclude that R(G)

is amenable.
Assume, conversely, that R(G) is amenable. We aim at proving that G

fulfills the Kesten condition from Theorem 4.4. Let therefore u ∈ Mn(A) be an
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arbitrary, finite dimensional, unitary corepresentation. Denote by (uα)α∈S ⊆
Irred(G) the irreducible corepresentations occurring in the decomposition of u
and by kα the multiplicity of uα in u. Now define

µu(uα) =

{
kαnα

n if α ∈ S;
0 if α /∈ S.

Putting µ = 1
2µu + 1

2µū we obtain a finitely supported, symmetric probability
measure and by assumption we have that 1 ∈ σ(λ2,µ). Using again that the
character map extends to an injective ∗-homomorphism χ : C∗

red(R(G)) → Ared

we obtain

σ(λ2,µ) = σ
( ∑

α∈S

kαnα

2n
λ2,uα

+
∑

α∈S

kαnα

2n
λ2,uᾱ

)

= σ
( ∑

α∈S

kαnα

2n
luα

+
∑

α∈S

kαnα

2n
luᾱ

)

(Prop. 2.5)

= σ
( ∑

α∈S

kαnα

2n

1

nα
πτ (uα) +

∑

α∈S

kαnα

2n

1

nα
πτ (uᾱ)

)

(Rem. 2.6)

= σ
( ∑

α∈S

kα

2n
πh(χ(uα)) +

∑

α∈S

kα

2n
πh(χ(uᾱ))

)

= σ
( 1

2n
πh(χ(u)) +

1

2n
πh(χ(ū))

)

= σ
( 1

n
πh(Re(χ(u)))

)

.

Thus

1 ∈ σ(λ2,µ) if and only if n ∈ σ(Re(πh(χ(u)))),

and the result now follows from Theorem 4.4. �

In particular we (re-)obtain the following.

Corollary 4.7. A discrete group is amenable if and only if the group ring,

considered as a fusion algebra, is amenable.

Corollary 4.8 ([3]). The quantum groups SUq(2) are coamenable.

Proof. By Theorem 4.5, SUq(2) is coamenable if and only ifR(SUq(2)) is amen-
able. But, R(SUq(2)) = R(SU(2)) (see e.g. [36]) and since (C(SU(2)),∆c) is
a coamenable quantum group R(SU(2)) is amenable. �

As seen from Theorem 4.5, the answer to the question of whether a compact
quantum group is coamenable or not can be determined using only information
about its corepresentations — a fact noted by Banica in the setting of compact
matrix quantum groups in [2] and [3]. With this in mind, we now propose the
following Følner condition for quantum groups.
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Definition 4.9. A compact quantum group G = (A,∆) is said to satisfy

Følner’s condition if for any finite, non-empty subset S ⊆ Irred(G) and any

ε > 0 there exists a finite subset F ⊆ Irred(G) such that
∑

u∈∂S(F )

n2
u < ε

∑

u∈F

n2
u.

Here nu denotes the dimension of the irreducible corepresentation u and ∂S(F )
is the boundary of F relative to S as in Definition 3.2.

We immediately obtain the following.

Corollary 4.10. A compact quantum group is coamenable if and only if it

satisfies Følner’s condition.

Proof. By Theorem 4.5, the compact quantum group G is coamenable if and
only if R(G) is amenable. By Theorem 3.3, R(G) is amenable if and only if
it satisfies (FC3) which is exactly the same as saying that G satisfies Følner’s
condition. �

In Section 6 we will use this Følner condition to deduce a vanishing result
concerning L2-Betti numbers of compact, coamenable quantum groups.

5. An Interlude

In this section we gather various notation and minor results which will be
used in the following section to prove our main result, Theorem 6.1. Some
generalities on von Neumann algebraic quantum groups are stated without
proofs; we refer to [19] for the details.

Consider again a compact quantum group G = (A,∆) with tracial Haar
state h. Denote by {uα | α ∈ I} a complete set of representatives for the
equivalence classes of irreducible, unitary corepresentations of G. Consider
the dense Hopf ∗-algebra

A0 = spanC{uα
ij | α ∈ I},

and its discrete dual Hopf ∗-algebra Â0. Since h is tracial, the discrete quantum
group Â0 is unimodular; i.e. the left and right invariant functionals are the
same. Denote by ϕ̂ the left and right invariant functional on Â0 normalized
such ϕ̂(h) = 1. For a ∈ A0 we denote by â ∈ A′

0 the map

A0 ∋ x7−→h(ax) ∈ C.

Then, by definition, we have Â0 = {â | a ∈ A0}. The algebra Â0 is ∗-
isomorphic to

alg
⊕

α∈I

Mnα
(C),

and because h is tracial the isomorphism has a simple description; if we denote
by Eα

ij the standard matrix units in Mnα
(C) then the map

Φ((̂uα
ij)

∗) = 1
nα
Eα

ij ,
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extends to a ∗-isomorphism [25]. Denote by λ the GNS representation of A
on H = L2(A0, h), by η the canonical inclusion A0 ⊆ H and by M (or λ(M))

the enveloping von Neumann algebra λ(A0)
′′. The map η̂ : Â0 → H given by

â 7→ η(a) makes (H, η̂) a GNS pair for (Â0, ϕ̂) and the corresponding GNS
representation L is given by

L(â)η(x) = η̂(âx̂).

We denote by M̂ (or L(M̂)) the enveloping von Neumann algebra L(Â0)
′′.

This is a discrete von Neumann algebraic quantum group and ϕ̂ gives rise to a
left and right invariant, normal, semifinite, faithful weight on M̂ . Each finite
subset E ⊆ I gives rise to a central projection

PE = Φ−1
( ∑

α∈I

χE(α)1nα

)

∈ Â0,

where 1nα
denotes the unit in Mnα

(C) and χE is the characteristic function for
the set E. A direct computation shows that L(PE) is the orthogonal projection
onto the finite dimensional subspace

spanC{uᾱ
ij | 1 ≤ i, j ≤ nα, α ∈ E}.

Recall from Example 2.3 that uβ̄ is the element in {uα | α ∈ I} which is

equivalent to (uβ)c. Because h is tracial, the left invariant weight ϕ̂ on Â0 has
the particular simple form [31, p.47]

ϕ̂ =
( ∑

α∈I

nαTrnα

)

◦ Φ,

where Trnα
is the non-normalized trace on Mnα

(C). In particular

ϕ̂(PE) =
∑

α∈E

n2
α = ϕ̂(PĒ),

for any finite subset E ⊆ I. For any m ∈ M and any finite subset E ⊆ I we
have [34, 2.10] that

TrH(m∗PEm) = h(m∗m)ϕ̂(PE),

where TrH denotes the standard trace on B(H). Here, and in what follows,

we suppress the representations λ and L of M and M̂ respectively on H .
The commutant M ′ is the underlying von Neumann algebra of a compact,
von Neumann algebraic quantum group whose Haar state is also given by the
vector state h and whose discrete dual is given by (M̂, ∆̂)op; this quantum

group has M̂ as its underlying von Neumann algebra, but is endowed with
comultiplication ∆̂op = σ∆̂ where σ denotes the flip-automorphism on M̂⊗̄M̂ .
Since (M̂, ∆̂) is unimodular we see that ϕ̂op = ϕ̂ and hence the trace-formula
above extends in the following way.

Lemma 5.1 ([34]). For any m ∈ M or m ∈ M ′ and any finite subset E ⊆ I
we have TrH(m∗PEm) = h(m∗m)ϕ̂(PE).

Münster Journal of Mathematics Vol. 1 (2008), 143–180



168 David Kyed

With this lemma we conclude the interlude and move towards an application
of the quantum Følner condition.

6. A Vanishing Result

In this section we investigate the L2-Betti numbers of coamenable quantum
groups. The notion of L2-Betti numbers for compact quantum groups was
introduced in [20] and we refer to that paper (and the introduction) for the
definitions and basic results. Throughout the section, we will freely use Lück’s
extended Murray-von Neumann dimension, but whenever explicit properties
are used there will be a reference. These references will be to the original work
[21] and [22], but for the reader who wants to learn the subject L̈ı¿1

2ck’s book
[24] is probably a better general reference.

Consider again a compact quantum group G = (A,∆) with Haar state h and
denote by M the enveloping von Neumann algebra in the GNS representation
arising from h. As promised in the introduction, we will now prove the following
theorem which should be considered as a quantum group analogue of Theorem
5.1 from [22].

Theorem 6.1. If G is coamenable and h is tracial then for any left A0-module

Z and any k ≥ 1 we have

dimM TorA0

k (M,Z) = 0,

where dimM (−) is Lück’s extended dimension function arising from the exten-

sion of the trace-state h.

If M were flat as a module over A0 we would have TorA0

k (M,Z) = 0 for
any Z and any k ≥ 1, and the property in Theorem 6.1 is therefore referred
to as dimension flatness of the von Neumann algebra over the algebra of ma-
trix coefficients. The proof of Theorem 6.1, which is a generalization of the
corresponding proof of [22, 5.1], is divided into three parts. Part I consists
of reductions while part II contains the central argument carried out in detail
in a special case. Part III shows how to boost the argument from part II to
the general case. Throughout the proof, we will use freely the quantum group
notation developed in the previous sections without further reference; in par-
ticular, {uα | α ∈ I} will denote a fixed, complete set of pairwise inequivalent,
irreducible, unitary corepresentations of G.

Proof of Theorem 6.1.

Part I

We begin with some reductions. Let an arbitrary A0-module Z be given and
choose a free module F that surjects onto Z. Then we have a short exact
sequence

0 −→ K −→ F −→ Z −→ 0,
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and since F is free (in particular flat) the corresponding long exact Tor-
sequence gives an isomorphism

TorA0

k+1(M,Z) ≃ TorA0

k (M,K) for k ≥ 1.

It is therefore sufficient to prove the theorem for arbitrary Z and k = 1.
Moreover, we may assume that Z is finitely generated since Tor commutes
with direct limits, every module is the directed union of its finitely generated
submodules and dimM (−) is well behaved with respect to direct limits [22,
2.9]. Actually, we can assume that Z is finitely presented since any finitely
generated module Z is a direct limit of finitely presented modules. To see this,
choose a short exact sequence

0 −→ K −→ F −→ Z −→ 0,

with F finitely generated and free. Denote by (Kj)j∈J the directed system of
finitely generated submodules in K. Then F/Kj is finitely presented for each
j ∈ J and

Z = lim−→
j

F/Kj .

Because of this and the direct limit formula for the dimension function [22,
2.9] we may, and will, therefore assume that Z is finitely presented. Choose a
finite presentation

An
0

f−→ Am
0 −→ Z −→ 0.

Put H = L2(A, h), K = ker(f) ⊆ An
0 ⊆ Hn and denote by f (2) : Hn → Hm

the continuous extension of f . Then we have

TorA0
1 (M,Z) =

ker(idM ⊗f)

M ⊗
A0

K
,

and hence

dimM TorA0
1 (M,Z) = dimM ker(idM ⊗f) − dimM M ⊗

A0

K

= dimM ker(f (2)) − dimM K
‖·‖2

,

where the second equality follows from [7, 2.11]. See also [22, p.158-159]. So

we need to prove that K
‖·‖2

= ker(f (2)).

Part II

We first treat the case m = n = 1. Then the map f has the form Ra (right-

multiplication by a) for some a ∈ A0. If a = 0 we have K
‖·‖2

= H = ker(f (2))
so we may assume a 6= 0. Since {uα

ij | 1 ≤ i, j ≤ nα, α ∈ I} is a linear basis for
A0, the element a ∈ A0 has a unique expansion

a =
∑

α∈I

nα∑

i,j=1

tαiju
α
ij ,(tαij ∈ C)
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and we may therefore consider the non-empty, finite set S ⊆ I given by

S = {α ∈ I | ∃ 1 ≤ i, j ≤ nα : tαij 6= 0}.

Denote by H0 the kernel of f (2) and by q0 ∈M ′ the projection onto it. Denote
by q the projection onto H0∩K⊥; we need to prove that this subspace is trivial
and since the vector-state h is faithful on M ′ this is equivalent to proving
h(q) = 0. Let ε > 0 be given. Since G is assumed coamenable, the Følner
condition provides the existence of a finite, non-empty subset F ⊆ I such that

∑

α∈∂S(F )

n2
α < ε

∑

α∈F

n2
α.

Here we identify a subset E ⊆ I with the corresponding set of corepresentations
{uα | α ∈ E}. To simplify notation further we will write ∂ instead of ∂S(F ) in
the following and moreover we will suppress the GNS-representations λ : M →
B(H) and L : M̂ → B(H) as in Section 5. Since h is tracial, Woronowicz’s
quantum Peter-Weyl Theorem [18, 3.2.3] takes a particular simple form and
states that the set

{√nαu
α
ij | 1 ≤ i, j ≤ nα, α ∈ I}

constitutes an orthonormal basis for H . Hence every x ∈ H has an ℓ2-
expansion

x =
∑

α∈I

nα∑

i,j=1

xα
ij

√
nαu

α
ij .(xα

ij ∈ C)

Consider a vector x ∈ H and assume that P∂̄(x) = 0 such that the ℓ2-expansion
of x has the form

∑

α/∈∂

∑nα

i,j=1 x
α
ij

√
nαu

α
ij . For γ ∈ S and 1 ≤ p, q ≤ nγ we

then have

R
(2)

uγ
pq
PF̄ (x) =

∑

α/∈∂,α∈F

nα∑

i,j=1

xα
ij

√
nαu

α
iju

γ
pq

PF̄R
(2)

uγ
pq

(x) = PF̄

( ∑

α/∈∂

nα∑

i,j=1

xα
ij

√
nαu

α
iju

γ
pq

)

Here R
(2)

uγ
pq

denotes the L2-extension of Ruγ
pq

. Since uα
iju

γ
pq is contained in the

linear span of the matrix coefficients of uα
T©uγ and since α /∈ ∂ = ∂S(F )

and γ ∈ S we see that the two expressions above are equal. By linearity and
continuity we obtain

f (2)PF̄ (x) = PF̄ f
(2)(x).

This holds for all x ∈ ker(P∂̄), so if x ∈ H0 ∩ ker(P∂̄) we have

0 = f (2)PF̄ (x) = f(PF̄ (x)),

where the last equality is due to the fact that rg(PF̄ ) ⊆ A0 ⊆ H . This proves
that PF̄ (x) ∈ K = ker(f) and since q was defined as the projection onto
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H0 ∩K⊥ we get qPF̄ (x) = 0. Since this holds whenever x ∈ H0 = q0(H) and
P∂̄(x) = 0 we get

qPF̄ (q0 ∧ (1 − P∂̄)) = 0.

Thus, the restriction qPF̄ : H0 → H factorizes through H0/H0 ∩ ker(P∂̄) and
we have

dimC(qPF̄ (H0)) ≤ dimC(H0/H0 ∩ ker(P∂̄))

≤ dimC(H/ ker(P∂̄))

= dimC(rg (P∂̄))

=
∑

α∈∂

n2
α

= ϕ̂(P∂).

For any finite rank operator T ∈ B(H) one has |TrH(T )| ≤ ‖T ‖ dimC(T (H))
and using this and Lemma 5.1 we now get

h(q)ϕ̂(PF ) = h(q)ϕ̂(PF̄ )

= TrH(qPF̄ q)

≤ ‖qPF̄ q‖ dimC(qPF̄ q(H))

≤ dimC(qPF̄ (H0))

≤ ϕ̂(P∂).

Thus

h(q) ≤ ϕ̂(P∂)

ϕ̂(PF )
< ε,

and since ε > 0 was arbitrary we conclude that q = 0.

Part III

We now treat the general case of a finitely presented A0-module Z with finite
presentation

An
0

f−→ Am
0 −→ Z −→ 0.

In this case f is given by right multiplication by an n×mmatrix T = (tij) with

entries in A0. Each tij has a unique linear expansion as tij =
∑

α,k,l t
(i,j)
α,k,lu

α
kl

and we put

S = {α ∈ I | ∃ i, j, k, l, α : t
(i,j)
α,k,l 6= 0}.

As in Part II, we may assume that T 6= 0 so that S 6= ∅. Denote by H0

the space ker(f (2)) ⊆ Hn, by q0 ∈ Mn(M ′) the projection onto H0 and by
q ∈ Mn(M ′) the projection ontoH0∩K⊥. We need to show that q = 0. Denote
by Trn the non-normalized trace on Mn(C) and put hn = h ⊗ Trn : B(H) ⊗
Mn(C) → C. We aim at proving that hn(q) = 0, which suffices since h is

faithful on M ′. For each x ∈ M̂ we denote by xn the diagonal operator on Hn

which has x in each diagonal entry. Under the identification B(H)⊗Mn(C) =
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B(Hn) we see that TrH ⊗ Trn corresponds to TrHn , and Lemma 5.1 together
with a direct computation therefore gives

TrHn(A∗Pn
EA) = hn(A∗A)ϕ̂(PE),(†)

for any finite subset E ⊆ I and any A in Mn(M) or Mn(M ′). Let ε > 0 be
given and choose according to the Følner condition a finite subset F ⊆ I such
that

∑

α∈∂S(F )

n2
α <

ε

n

∑

α∈F

n2
α,

and put ∂ = ∂S(F ) for simplicity. By repeating the argument from the begin-
ning of Part II we arrive at the equation

qPn
F̄ (q0 ∧ (1 − Pn

∂̄ )) = 0,

which in turn yields

dimC(qPn
F̄ (H0)) ≤ dimC(rg (Pn

∂̄ )) = n dimC(rg (P∂̄)) = nϕ̂(P∂).

Using the trace-formula (†) we conclude that

hn(q)ϕ̂(PF ) = TrHn(qPn
F̄ q)

≤ ‖qPn
F̄ q‖ dimC(qPn

F̄ q(H))

≤ dimC(qPn
F̄ (H0))

≤ nϕ̂(P∂).

Thus

hn(q) ≤ n
ϕ̂(P∂)

ϕ̂(PF )
< ε,

and since ε > 0 was arbitrary we conclude that hn(q) = 0 as desired.
�

By putting Z = C in Theorem 6.1, we immediately obtain the following
corollary.

Corollary 6.2. Let G = (A,∆) be a compact, coamenable quantum group with

tracial Haar state. Then β
(2)
n (G) = 0 for all n ≥ 1. Here β

(2)
n (G) is the n-th

L2-Betti number of G as defined in [20].

In particular we obtain the following extension of [20, 3.3].

Corollary 6.3. If G is an abelian, compact quantum group then β
(2)
n (G) = 0

for n ≥ 1.

Proof. Since G is abelian it is of the form (C(G),∆c) for some compact (second
countable) group G. Since the counit, given by evaluation at the identity, is
already globally defined and bounded it is clear that G is coamenable and the
result now follows from Corollary 6.2. �

We also obtain the classical result of Lück.
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Corollary 6.4. [22, 5.1] If Γ is an amenable, countable, discrete group then

for all CΓ-modules Z and all n ≥ 1 we have

dimL (Γ) TorCΓ
n (L (Γ), Z) = 0.

In particular, β
(2)
n (Γ) = 0 for n ≥ 1.

Proof. Put G = (C∗
red(Γ),∆red). Then G is coamenable if and only if Γ is

amenable and the result now follows from Theorem 6.1 and Corollary 6.2 �

Note, however, that this does not really give a new proof of Lück’s result
since the proof of Theorem 6.1 coincides with Lück’s proof of the statement in
Corollary 6.4 when G = (C∗

red(Γ),∆red).
In [7], Connes and Shlyakhtenko introduced a notion of L2-Betti numbers

for tracial ∗-algebras. From the above results we also obtain vanishing of these
Connes-Shlyakhtenko L2-Betti numbers for certain Hopf ∗-algebras. More pre-
cisely we get the following.

Corollary 6.5. Let G = (A,∆) be a compact, coamenable quantum group with

tracial Haar state h. Then β
(2)
n (A0, h) = 0 for all n ≥ 1, where β

(2)
n (A0, h) is

the n-th Connes-Shlyakhtenko L2-Betti number of the ∗-algebra A0 with respect

to the trace h.

Proof. By [20, 4.1] we have β
(2)
n (G) = β

(2)
n (A0, h) and the claim therefore

follows from Corollary 6.2. �

The knowledge of dimension flatness also gives genuine homological infor-
mation about the ring extension A0 ⊆M . More precisely, the following holds.

Corollary 6.6. If G = (A,∆) is compact and coamenable with tracial Haar

state then the induction functor M⊙A0 − is an exact functor from the category

of finitely generated, projective A0-modules to the category of finitely generated,

projective M -modules.

Proof. Let X and Y be finitely generated, projective A0-modules and let
f : X → Y be an injective homomorphism. Then

0 −→ X
f−→ Y −→ Y/rg(f) −→ 0,

is a projective resolution of Y/rg(f). Thus TorA0
1 (M,Y/rg (f)) = ker(idM ⊗f)

and from Theorem 6.1 we conclude that

dimM (ker(idM ⊗f)) = 0.

Because idM ⊗f is a map of finitely generated projective M -modules, it is not
difficult to prove that

ker(idM ⊗f) = ker(idM ⊗f)
alg
,

where ker(idM ⊗f)
alg

is defined (see [22]) as the intersection of all kernels
arising from homomorphisms from M ⊙A0 X to M vanishing on ker(idM ⊗f).
By [22, 0.6], we conclude from this that ker(idM ⊗f) is finitely generated and
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projective. But, since the dimension function is faithful on the category of
finitely generated, projective M -modules this forces ker(idM ⊗f) = {0} and
the claim follows. �

Corollary 6.6, in particular, implies the following result which was pointed
out to us by A. Thom.

Corollary 6.7. Let G = (A,∆) be compact and coamenable with tracial Haar

state and let x ∈ A0 be a non-zero element such that there exists a non-zero

m ∈M with mx = 0. Then there exists a non-zero y ∈ A0 with yx = 0.

Proof. This follows by using Corollary 6.6 on the map a 7−→ ax. �

An analogous statement about products in the opposite order follows by
using the involution in M . So, formulated in ring theoretical terms, we obtain
the following: Any regular element in A0 stays regular in the over-ring M .

7. Examples

A concrete example of a non-commutative, non-cocommutative, coamenable
(matrix) quantum group with tracial Haar state is the orthogonal quantum
group Ao(2) ≃ SU−1(2). It follows from [2, 5.1] that Ao(2) is coamenable. To
see that the Haar state is tracial, one observes that the orthogonality property
of the canonical fundamental corepresentation implies that the antipode has
period two.

7.1. Examples arising from tensor products. If G1 = (A1,∆1) and G2 =
(A2,∆2) are compact quantum groups then the (minimal) tensor product A =
A1⊗A2 may be turned into a quantum group G by defining the comultiplication
∆: A −→ A⊗A to be

∆(a) = (id⊗σ ⊗ id)(∆1 ⊗ ∆2)(a),

where σ denotes the flip-isomorphism from A1 ⊗ A2 to A2 ⊗ A1. The Haar
state is the tensor product of the two Haar states and the counit is the tensor
product of the counits. Using these facts, it is not difficult to see [4] that if
both G1 and G2 are coamenable and have tracial Haar states, then the same
is true for G. See e.g. [17, 11.3.2].

7.2. Examples arising from bicrossed products. Another way to obtain
examples of compact, coamenable quantum groups is via bicrossed products.
We therefore briefly sketch the bicrossed product construction following [33]
closely. In [33], Vaes and Vainerman consider the more general notion of cocy-

cle bicrossed products, but since we will mainly be interested in the case where
the cocycles are trivial we will restrict our attention to this case in the follow-
ing. The more general situation will be discussed briefly in Remark 7.5. The
bicrossed product construction is defined using the language of von Neumann
algebraic quantum groups. We will use this language freely in the following
and refer to [19] for the background material.
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Let (M1,∆1) and (M2,∆2) be locally compact (l.c.) von Neumann algebraic
quantum groups. Let τ : M1⊗̄M2 → M1⊗̄M2 be a faithful ∗-homomorphism
and denote by σ : M1⊗̄M2 → M2⊗̄M1 the flip-isomorphism. Then τ is called
a matching from M1 to M2 if the following holds.

• The map α : M2 −→ M1⊗̄M2 given by α(y) = τ(1 ⊗ y) is a (left)
coaction of (M1,∆1) on the von Neumann algebra M2.

• Defining β : M1 −→M1⊗̄M2 as β(x) = τ(x⊗ 1) the map σβ is a (left)
coaction of (M2,∆2) on the von Neumann algebra M1.

• The coactions satisfy the following two matching conditions :

τ(13)(α⊗ 1)∆2 = (1 ⊗ ∆2)α(M1)

τ(23)σ(23)(β ⊗ 1)∆1 = (∆1 ⊗ 1)β(M2)

Here we use the standard leg numbering convention (see e.g. [25]). If
τ : M1⊗̄M2 →M1⊗̄M2 is a matching from M1 to M2 then it is easy to see that
στσ−1 is a matching from M2 to M1. We will therefore just refer to the pair
(M1,M2) as a matched pair and to τ as a matching of the pair. Let (M1,∆1)
and (M2,∆2) be such a matched pair of l.c. quantum groups and denote by τ
the matching. We denote by Hi the GNS space of Mi with respect to the left
invariant weight ϕi and by Wi and Ŵi the natural multiplicative unitaries on
Hi⊗̄Hi for Mi and M̂i respectively. By H we denote H1⊗̄H2 and by Σ the
flip-unitary on H⊗̄H . We may now form two crossed products:

M = M1 ⋉α M2 = vNa{α(M2), M̂1 ⊗ 1} ⊆ B(H1⊗̄H2)

M̃ = M2 ⋉σβ M1 = vNa{σβ(M1), M̂2 ⊗ 1} ⊆ B(H2⊗̄H1)

Some of the main results in [33] are summarized in the following:

Theorem 7.1 ([33]). Define operators

Ŵ = (β ⊗ 1 ⊗ 1)(W1 ⊗ 1)(1 ⊗ 1 ⊗ α)(1 ⊗ Ŵ2)

and W = ΣŴ ∗Σ on H⊗̄H. Then W and Ŵ are multiplicative unitaries and

the map ∆: M → B(H⊗̄H) given by ∆(a) = W ∗(1 ⊗ 1 ⊗ a)W defines a

comultiplication on M turning it into a l.c. quantum group. Denoting by Σ12

the flip-unitary from H1⊗̄H2 to H2⊗̄H1, the dual quantum group M̂ becomes

Σ∗
12M̃Σ12 with comultiplication implemented by Ŵ .

Thus, up to a flip the two crossed products above are in duality. In [9],
Desmedt, Quaegebeur and Vaes studied (co)amenability of bicrossed prod-
ucts. Combining their Theorem 15 with [33, 2.17] we obtain the following: If
(M1,M2) is a matched pair with M1 discrete and M2 compact then the bi-
crossed product M is compact, and M is coamenable if and only if both M2

and M̂1 are. Here a von Neumann algebraic compact quantum group is said to
be coamenable if the corresponding C∗-algebraic quantum group is. Collecting
the results discussed above we obtain the following.

Proposition 7.2. If (M1,M2) is a matched pair of l.c. quantum groups in

which M̂1 and M2 are compact and coamenable, then the bicrossed product
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M = M1 ⋉α M2 is coamenable and compact. So if the Haar state on M
is tracial the quantum group (M,∆) has vanishing L2-Betti numbers in all

positive degrees.

In order to produce more concrete examples, we will now discuss a special
case of the bicrossed product construction in which one of the coactions comes
from an actual group action. This part of the theory is due to De Cannière [8]
and is formulated using the language of Kac algebras. We remind the reader
that a compact Kac algebra is nothing but a von Neumann algebraic, compact
quantum group with tracial Haar state. A discrete, countable group Γ acts
on a compact Kac algebra (M,∆, S, h) if the group acts on the von Neumann
algebraM and the action commutes with both the coproduct and the antipode.
Denoting the action by ρ, this means that

∆(ργ(x)) = ργ ⊗ ργ(∆(x)),

S(ργ(x)) = ργ(S(x)),

for all γ ∈ Γ and all x ∈ M . In this situation, the action of Γ on M induces
a coaction α : M −→ ℓ∞(Γ)⊗̄M . Denoting by H the Hilbert space on which
M acts and identifying ℓ2(Γ)⊗̄H with ℓ2(Γ, H), this coaction is given by the
formula

α(x)(ξ)(γ) = ργ−1(x)(ξ(γ)),

for ξ ∈ ℓ2(Γ, H). The crossed product, which is defined as

Γ ⋉ρ M = {α(M),L (Γ) ⊗ 1}′′,

becomes again a Kac algebra [8, Thm.1]. One should note at this point that
De Cannière works with the right crossed product acting on H⊗̄ℓ2(Γ) where
we work with the left crossed product acting on ℓ2(Γ)⊗̄H . But, one can come
from one to the other by conjugation with the flip-unitary and we may therefore
freely transport all results from [8] to the setting of left crossed products. We
now prove that De Cannière’s crossed product can also be considered as a
bicrossed product. This is probably well known to experts in the field, but we
were unable to find an explicit reference.

Proposition 7.3. Defining τ : ℓ∞(Γ)⊗̄M −→ ℓ∞(Γ)⊗̄M by

τ(δγ ⊗ x) = δγ ⊗ ργ−1(x)

we obtain a matching with the above defined α as the corresponding coaction

of ℓ∞(Γ) on M and trivial coaction of (M,∆) on ℓ∞(Γ).

Proof. A direct calculation shows that α(x) = τ(1⊗ x) and β(f) = τ(f ⊗ 1) =
f ⊗ 1. Therefore the two maps x 7→ τ(1 ⊗ x) and f 7→ στ(f ⊗ 1) are coactions
as required. We therefore just have to check that the matching conditions are
fulfilled. Denote the coproduct on ℓ∞(Γ) by ∆1 and choose f ∈ ℓ∞(Γ) such
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that ∆1(f) ∈ ℓ∞(Γ) ⊙ ℓ∞(Γ). Writing ∆1(f) as f(1) ⊗ f(2) we now get

τ(23)σ(23)(β ⊗ 1)∆1f = τ(23)σ(23)(β ⊗ 1)(f(1) ⊗ f(2))

= τ(23)σ(23)(f(1) ⊗ 1 ⊗ f(2))

= τ(23)(f(1) ⊗ f(2) ⊗ 1)

= f(1) ⊗ f(2) ⊗ 1

= (∆1 ⊗ 1)β(f),

and hence (M2) is satisfied. An analogous, but slightly more cumbersome,
calculation proves that (M1) is also satisfied. �

Thus, as von Neumann algebras, we have ℓ∞(Γ)⋉αM = Γ⋉ρM . Using the
fact that β is trivial, one can prove that the elements λγ ⊗1 are group-like and
it therefore follows from [8, 3.3] that also the comultiplications agree. Hence
the two crossed product constructions are identical as l.c. quantum groups. In
particular, the the bicrossed product ℓ∞(Γ)⋉αM is a Kac algebra so if (M,∆)
is compact then ℓ∞(Γ) ⋉α M is also compact [33, 2.7] and the Haar state is
tracial. We therefore have the following.

Proposition 7.4. If G = (M,∆, S, h) is a compact, coamenable Kac algebra

and Γ is a countable, discrete, amenable group acting on G then the crossed

product Γ ⋉M is again a compact, coamenable Kac algebra.

Proof. That Γ⋉M is a Kac algebra follows from the discussion above and the

coamenability of the crossed product follows from [9, 15] since ℓ̂∞(Γ) = L (Γ)
is coamenable if (and only if) Γ is amenable. �

Remark 7.5. It is also possibly to construct examples using the more general
notion of cocycle crossed products introduced in [33, 2.1]. It is shown in [9,
13] that weak amenability (i.e. the existence of an invariant mean) is preserved
under cocycle bicrossed products. In general it is not known whether or not
weak amenability is equivalent to strong amenability, the latter being defined
as the dual quantum group being coamenable in the sense of Definition 4.1.
But for discrete quantum groups this equivalence has been proven by Tomatsu
in [29] and also by Blanchard and Vaes in unpublished work. Therefore, if

(M1,M2) is a cocycle matched pair of l.c. quantum groups with both M̂1 and
M2 compact and coamenable, then the cocycle crossed product is also compact
and coamenable.
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