Working Papers of the Institute of Business Informatics
Editors: Prof. Dr. J. Becker, Prof. Dr. H. L. Grob, Prof. Dr. K. Kurbel,
Prof. Dr. U. Muller-Funk, Prof. Dr. R. Unland, Prof. Dr. G. Vossen

Working Paper No. 31

Semantics-Based Locking: From Isolation to Co-
operation

Rainer Unland

University of Munster, Institute of Business Informatics
Grevener Str. 91, D-48159 Munster, Germany, Tel. (0251) 83-9750, Fax (0251) 83-9754
Marz 1994

Contents

1 Introduction

2 Lock modes
2.1 Extended set of lock modes
2.2 The two effects of a lock
2.3 The Semantics of the Lock Modes
2.4 A short discussion of consistency aspects
2.5 Dynamic Assignment of an External Effect (Open Lock)

2.6 Upgrading a lock
3 Locks in the Context of Nested Transactions
4 Rules on Locks and Notification Services
5 Object-related Locks
6 Subject-related Locks
7 Conclusion

Literature

11
12
13
16
17
17
18

20

22

26

29

32

32

Abstract

'‘Advanced database applications’, such as CAD/CAM, CASE, largppNcdions orimage
and voice processing, place demands on transastaragerant which differ substantially
from those of trditional databasepplicdions. In particular, there is a need gopport 'en-
riched'datamodels (which includefor example, complex objects or version and configuration
managenent), 'synergistic’cooperative workand application- ouser-supportedonsistency.
This paperdeals with a subset of these problems. It develops a methodolagypfementing
semantics-based concurrency controttombasis of ordinary lockingviore specifically, itwill

be shown howonventional locking castep by step bemproved and refined ténally reach
our initial goal, namely a comprehensive support of synergistic cooperative work éxptbe

tation of application-specific semantics.

In addition to théconventional' binding ofocks to transactions we consider thading of
locks to objects (object related) and subjects (subject related locks). Object related locks can
definepersistent and adaptable access restrictions on objects. This permits,adhsragthe
modeling of different types of version models (time versions, veggiaphs) asvell as library
(standard) objects. Subject related locks are bound to subjects (user, appktatiand can

be used among others to supervise or direct the transfer of objects between transactions.

Keywords: transaction management; non-standard applications; semantics-based con-

currency control; nested transactions; synergistic cooperative work

1 Introduction

The conventional model of transactions as presented by [Gray79] is batezl AGID prin-

ciple ([HaRe83]) which, in short, means thdtansaction is an atomic unit of reads and writes
against a database. Sapportatomicity andisolated execution a transactiomt allowed to

see changes performed by a concurrent transactdfitiénally, the all or nothing principle

must be obeyed. Eithatl changes are reflected in the database or none. As long as transac-
tions processvithin a fewseconds this model is suitable. Because transaci@shortliving

little work will be lost in case of a backupdditionally, concurrent transactiortgave to wait

only for a very short time if they are blocked due to a conflict with a concurrent transaction.

Non-standard applications, like CAD/CAM or software development, howhaeg totally
different requirementslypically, transactions are interactive and of long durationstwf the
work performed by a user, faxample, a designer, aly expressed within thigansaction
and documented nowhere else. Thereforeoofse Jong waits or rollback in case of a trans-
action or systenfailure cannot be accepted. Anotheajor requirement of most non-standard
applications is a far-reaching support for synergistic, coopenativie. Usuallytasks aremuch
to complex to be solvable by a single user. Instead, groups of users lcaopeosvely work
together tasolvethe problem. Otourse this means that they need comprehensiygport for

teamwork.

Traditional concurrency carol, aswell as allACID-based proposalfail to adequately sup-
port coopeative-work since theycannot conside(application-)spedic sematics of opera-
tions. However, cooperative work agell as concurrency couldsubstantially be enhanced
through the use of these semanmtitormationabout operations. A common approach to the
integration ofapplication-specific semantics into concurrencytooinis semantics-based con-
currency cotrol. However, most approaches titis more expresve form of concurency
control havethe conrmon disadvatage thathey tend to beathercomplex anderror-prone.
This paper wll present a strategyhich evolves from a well-knowrgut moreconventional
technique. We W show that théocking apprach can be adégd and enhanced inway that

it is able to cajure and expresspplication specifisemantics. Indeedyur apprach can be

used as a low level technique to implemssrhatics-based concurrency dool. Furthermore,

-5-

it will be shown how the proposed appot can bautilized torealize cooperative environ-
ments withinnested transaction¥®Vhile within such an environmerdynergisticcoopeative
work and creativity carfully be accomplished this environment, nevertheless, can perfectly be

shidded from and to the outside

In addition to théconventional' binding ofocks to transactions we consider tading of
locks to objects (object related) and subjects (subject related locks). Object related locks can
definepersistent and adaptable access restrictions on objects. This permits,adhsragthe
modeling of different types of version models (time versions, veggiaphs) asvell as library
(standard) objects. Subject related locks are bound to subjects (user, appktatiand can

be used among others to supervise or direct the transfer of objects between transactions.

Comparison with semantics-based concurrency control

In object-centered database systems obpr@sisually treated asnstances of abstraciata
types. An abstract data type is characterized by a ssgieaiffiedoperationswvhich repreent
theonly way in which auser can access anthnipulatethe instances of that type. Since these
operations are treated as part of the laga theirsematics can be exploited tachieve
greater coourrency or to permit a more cooperatstgle ofwork in specificenviromrments. A
commonapprach to the integration @pplication-specific seméns into concurrency control
is type-specific or semantics-based concurrency controfc. f., [BaRa90], [BOHG92],
[ChRR91], [Garc83], [HeWe88], [SkZd89], [SpSc84], [Weih88])ithWsemantics-basecbn-
currency controkontrolling the concurrent execution of transaction®lvesthe control of
execution of the operations invoked on the objects. Whether or not two operations, invoked by
different transactions, can b#lowed to execute concurrently depends onretifiect of one op-
eration on the other, and tkfect ofthe operations on the objedtis stands irtontrast to
conventionadatabase systems. Thedgfineread andwrite operations as thievel of abstrac-
tion at which applicatioprograms can interact with the database. As a conseqseniediza-
bility theory hasproducedalgorithms thatare cast in terms of th&emantics of reading and
writing; i.e., whateverthe semantics of operations is thaye mapped on eommon basis,
namelyread and write accesses to the databasmore generally, orthe set of locknmodes
provided by the concurrency contsitheme. Otourse this mapping entails that highlewvel

sematics of operations camot beexploited. A common example is a baakcount. If two

-6 -

concurrent transactions each add an amount teatmeaccountthis can be done in an inter-
leaved way sincéhese operations ammmutative Nevertheless, theonventional locking
scheme Wl not permit such an interleaving sinb®th operations are update operations and

update operations are not compatible.

Semantics-based concurrency contrphoweverperforms on a semantically higher level than
reading and writing. Therefore, it allowlse definition of we&er and mordlexible notions of
conflict among operation&or instarce, operationgvoked bytwo transactions can hater-
leaved as if they commuted,tife semantics of thapplication allowshe dependames bet-
ween the transactions to be ignored. Tineorporation of general or state-dependent com-
mutativity inthe conflict definitionbetween operations is a first solution. A msophistcated
apprach is to substitute commutativity e more general concept of compdiility
([Garc83], [Skzd89]).Compatibility allowstwo operéions to betreated ascompatible if
their executiororder isinsignificant fromthe application's point ofiew (even if theyare not
commutative). Cledy, sematics-based concurrency dool will, in geneal, not guarantee se-
rializability. However, it neverthless preserves consistency. At first glance this seems to be an
attracive means for increasing performance in a gleminformation system. Heever, unfor-

tunately, there are also some drawbacks asso-

set of
operatlons

set of operations

insert

operation
| i§et chj
ock modes
new-operatton _
. — mapping: operation -->
correlation between lock mode

old and new operation

Figure 1.1: Semantics-based Concurrency Figure 1.2: Traditional Concurrency Con-

Control trol

-7 -

ciated with thisapproach. The mognportant is that it elinmates theeommon and neutral ba-
sis ofthelocking approach. If, for instance, a new operation is to be intgvehich displays
all transactions on an account which took placegivenperiod of time, this operation cannot
just be mapped on the read operation ofdatbase. Insteadll other operations on the ab-
stract data typ@ccountneed to be considered to decide wkiatl of concurrencycontrol
measures are to beplemented(see Figurel.l). In other words, convential concurrency
control provides a common and stdiasis (a nuttoer of lock modes) owhich each operation
of an applcation can be mapped (see Figarg). Everything else is left téhe concurrency

control scheme.

In semantics-based concurrency control such antcmmbasis isiot existent. Instead, the com-
patibility of opeations has to beefined onthe level of the operationsThis level is neither
static (itmayincrease or decrease duethe insertion or deletion of new operations) nor is its
sematics directlyvisible tothe prgrammer. Istead, it is hidden ithe implementation of the
operations. Therefore, an insertion of a new operatidigidy complex anderror-prone. An
operation like BPoOsSIT of transaction T will not conflict with aWITHDRAW operation of a
concurrent transactionplas long as both operations are the only operations afd T,. But,

if T, also wants to perform a WADRAW operation this operatiomay berejectedsince it may
violate a constraint (for example, the balance must not be negative) which would nbe&ave
violated had the \WHDRAW operation of H notbeen permitted to execute tine meantime.
The dfficulty here comes frorthe fact that more than one operation is performigiin one

transaction (instead of treating an operation as an equivalent to a transaction).

Our approach provides another solution foritiofusion of application-specific semt#s into
concurrency camol. It provides an enhances@t ofbasic lock mdes as theommon basis of
all operations. These lock modes a@ only finer grainedout they can alsondividually be
adapted to theequirements ofhe operations. Even mofiexibility is gained bythe fact, that
we allow rules to be bound to locks. This permitsratividual reaction on lock requests; i.e.,

the system can react differently on different users.

We have in common witthe concept of semaos-based concurrency control that thank of
an applcationlayer as a layer which leans tre concept of abstract data type. Therefore, we

do not want the user to explicitly handle locks. Instead, we assume tlnaintdiieng oflocks is

-8-

hidden withinthe implementation of the operations. Moreover, operations on objects of the

database can only be performed within transactions.

Other related work:

Advanced transaction models have been developesupport non-standardpplications.
However, most earlier approaches (cf[HaLo81], [H&Ro87], [LoPI83], [KLMP84],
[KoKB85], [KSUWS85]) concentrate first adll on modularity, failure handling, ancbncurrent
execution of subtask€ooperative work isisually onlysupported on a lowevel sincethese
approachesasically insist orstrict serializability orweaken stricserializability only in special

situations, for example, to facilitate a controlled lending, transfer, or exchange of objects.

Some more recent proposals, however, also pravieensfor a comprehensivesupport of

cooperative work.

The Cooperative Transaction Hierarchy or Transaction Groups concept ([SkZd89],
[Nozd90], [NoRZ92])defines anested framework for cooperating transactions tkesign
environment. The Transactigdroupsmodelstructures a cooperatiapplication as aooted
tree called acooperative transaction hierarchylhe leaves othe hierarchyrepresent the
transactions associated with tmelividual designers, calledooperative transactions The
internal nodesre thetransaction groups Each transaction grougpntains aset ofmembers
that cooperate to execute a single task. It actively controlstdction of its cooperating
members. Cooperative transactions neadto beserializable; insteathe transaction group of
the cooperative transactiodsfines aset ofrules that regulate theay the cooperative trans-
actions should interact with each other; for instamdin atransaction group, mewertrans-
actions and subgroups asgnchronized according to some semanbcrechess criteria ap-
propriate for the application. The criteria apeecified by aet ofactive patternandconflicts
Conflicts are like locks in the sense ththey specify whercertain operations cannot occur.
Patterns specifyoperation sequences that mastur in ahistory for it to becorrect. Patterns
and conflicts in a transactigroup arespecified byLR(0) grammars. The observance of the
rules is enforced by a recognizer and conflietector,which must be constructed faach
application. The implementation of transactgmoups is supported bgplacing classical locks

with non-restrictivdock mode, communication mogairs. The lock mode indicates whether

-9-

the transaction intends to read or write the object and whether it permits readengnother
transaction writes, writingvhile other transactions readsd mitiple writers of thesame ob-
ject. The communication mode specifies whether the transaction wantadtfieel if another
transaction needs the object or if another transadtamupdated the object. Transaction
groups and the associatledking mechanisnprovide suitable low-levgbrimitives for imple-

menting a variety of extended transaction models.

As our approach the model of cooperative transaction hierarchies places particular emphasis on
the support of cooperative work. Howevtreir approach isimilar to semantics-based con-
currency control which means that it has the same disadvantages. They extend this approach by
supporting thespecification of sequences gperations, a concepthich isnot volunteered by

our approach. The low level lock modes are a subset of the lock modes provmadampro-

ach and the concept of communication mode is covered by the rules and constraints concept.

The Semantic Locking for EVEnt Synchronisationconcept ([Skar93]ylevelops a method-
ology for implementingsemantic synchronization specifications with ordinRead (Share)
and Write (Exclusive) locks, and it describes a softwsystemSLEVE that implenents the
methodology. An application developgho defines a conflict relationover an arbitranget of
synchronizatiorprimitives, such as alfract type operations, events, or semantic lock types,
can use SLEVE to impleemt the specification on an undging system thasupportsonly
Read/Write locking. Their approachssnilar toour one in thathey try toimplement seman-
tics-based concurrency control top of locking. However, thegpssume conventional locking
as thebasis of implementation, while we first substantiabiyend the set of lock modasd its
semantics and furthermore allow rules to be bound to locks. Inuh&pproach isnuch more
flexible, however, requires a dea@gegration intathe databassystem(at least for arefficient

realization) while the approach of Skarra can be realized on top of an existing database system.

The Database Conversationgoncept [KLRW94] was developed &xplicitly support coop-
erative problem solving. Conversations embrace multi-padgifications of commordata in
such a way that transactional consistencguaranteedSimilar to check-out/check-in, a re-
guestoraccessinglata concurrently being modified isot blocked. Rather, the requestor is
notified about the modification (they call it conversatiostake). Opposed to check-out/check-

in, the requestor isolicitated to contribute to thmodification. Such conversatiorse best

-10 -

understood as a tigtitamework for joint data modifications incontexts larger thasingle
transactions without creatirajny commit orabortdependencies between transactidnss is
because the semanticstbé framework imssumed to be known liye participants of conver-
sations. This is a rather interesting approach to coopemttdem solvingHowever, it is es-
peciallytailored to such applications and, thereféessattractive for otheforms ofcoopera-
tion (like design applications). Moreover, it puts a lotesponsibilityfor a correctand consis-

tent work on data on the user which again restricts its general usage.

The remainder of thipaper is organized as follows. Section i# wtroduce a set diexible
and adaptable lock modes. Moreover, these lockdevfurther analyzed and synthesized in
order to be able to express more semantics. In sectionilBaewhown howthis new view on
locks can be exploited withinested transactioizspecially, it vill be shown howsynergistic
coopeative work canmassively besupportedvhile, nevertheless, being able to isolate a coop-
erative environment fromther envionments withinthe nested transaction. Sectionntro-
duces rules and notification servioghich can beébound to locks. As iV be shown this is a
major step in the direction odemantics-based locking. Indedle resulting locking scheme
can even be used as an implementationegjyator semantics-based con@ncycontrol. Sec-
tion 5 presents a solution for the treatment of special objects (as stantlarayobjects). In
section 6 it Wl be shown how objects casafely betransferred fronone application to the

next. Finally, section 7 concludes thigppa

This work is part of a larger projects which aims at the developmerfteodtde and adaptable
tool kit approach for transactiananagenent. The tool kit is meant to allow a sophisticated
applications designer or database impleaweto developindividual, application-specifitrans-
action managers faill kinds of non-standard applications. Muattention wagaid to a com-

prehensive support of different facets of cooperative work.

The main characteristics of the tool kit are:

1. It supports theefinition of a large number of differetrtansaction typesThese transaction
types are meant to reflect the requirementdiféérent applicatiorareas. Fothis reason, a
basicset ofcharacteristics arglentified by whichtransaction typesnay differ from each
other. Howeversincethe tool kit is extensibl¢his setcan be augmented if additional de-

mands need to be met.

- 11 -

2. The different transaction types can be combined with @ten inevery hierarchicabrder
to form aheterogeneously structured transaction hierare¥yich is capable ofupporting
such differentoncepts as strict isolation of (sub)transacti@mshe sense doferializability)
and (non-serializable) cooperatiw®rk in onehierarchy.For this reason a generaét of

rules was proposed which has to be obeyed by each transaction type.

Interested readers are referred to [Unla91] and [UnSc92] for further information.

2 Lock modes

Conventional database systems provige lock modesnamelythe exclusive or X- and the
shared or S- lock mode (hierarchical locksraweconsidered herepince transactions in these
environmentsare usually short-lived, thewo modes aresufficient. Advanced databasgpli-
cations, however, behavampletely different. Transactiorege typically interactive and of
long-durationwhich means thatbjects need to be locked forsabstantially longeperiod of
time. Therefore, it igessential that a lock mode fits as exactly as possibteetmperations

which will be executed on the object.

Example 2.1:

Let usconsider a CASE environment in which a numbesajfware engineensork on the
development of some software package. The following situations may occur. A programmer
wants to implement a module frowhich heknows that asimilar one wasalready imple-
mented some timago. He wants to ughis module as a moddlloreover, he needs the
currentlyvalid specification ofanother modulesince hewants to use it imis program. In

both cases the objelas to beead, howevenyith different semantics. Ithefirst case it is

of minor relevancéor the programmer whether th@dule is currently being modified by a

concurrent transaction. In the second case, however, the read needs to be a consistent read.

Another situatiormay be agroup of prgrammers thatvork cooperatively on thémple-
mentation of a program. Here it is ratidssirable that a programmer thie group is al-

lowed to read each of tommonlyused modules even if this modulestdl under devel-

-12 -

opment. On the othdrand, people who dot belong tothe groupshouldnot be in a posi-

tion to read modules which are still under development.

As the abovexample clearly indicatespoper locktechnique needs to consider the intention
(semantics) of an operation asll asthe environment within whiclthe operation is meant to

be executed.

2.1 Extended set of lock modes

In this section we W introduce an extended setlmdsic lock modewhich can beegarded as
inevitable in the context of most non-standard applications. We assunupdad¢s are not di-

rectly performed on the data of the database but that some form of shadowing is realized.

Of course, the sharg®-) and exclusivéX-) lock will remain usefulfor all kinds of datdbase

applications.

shared lock (S-lock): only permits reading of the object

exclusive lock (X-lock): permits reading, modification, and deletion of the object.

Sometimes an application or user is just interestédeexistence of an objetiut not in its
concreterealizdion. Forexample, if a programmer wants to integrate an alreadying pro-
cedure intohis' software package hmay only beinterested in thexistence othe procedure
but not inits actual implementatiorilherefore, fromthe user's point aiew it is irrelevant
whether the procedureililbe modified concurrentlyfat least as long as thmodification stays
within some linits (for example, no modification ahe interface ofthe procedure)). Such a
demand can be satisfied if a lock mode is providbith permitghe modification of an object

but not its deletion. This leads to an update lock (U-lock):

update lock (U-lock): permits reading and mdutation of the object.

Another often mentioned requirement is a dirty read éseenple2.1) or browsevhich allows

the user to read an object irrespective of any lock currently granted for that object:

browse lock (B-lock): permits browsing of the object (dirty read)

-13 -

Especially design applicatiomdten want tchandle severadtates of an objeatstead of one; i.

e., insuch environments an object is represented by its version graph. In [KSUW85] it was
shown that theonventionalS-/X-lock scheme isiot sufficient in such arenvironment since

the derivation of a new version correspondsonly to aninsert operation (of the newersion

of the object) but also to an update operation {&rsion graph othe object ismodified).

Thus, it is desirale to enable &ransaction to excludethersfrom simultaneously deriving a
new version from a given versianother transactionsay onlyreadv. Therefore, wenclude

a further lock mode:

derivation lock (D-lock): permits reading of the object and the derivation of a version

of the object.

Although this extendedet of lock modeslearly allowsthe applications designer to dape
more semantics it istill on arather coarsdevel. Especiallycooperative environments can

hardly be supported. The next section presents a more flexible and convenient solution.

2.2 The two effects of a lock

Since lockprotocolsrely on conflict avoidance theggulate access to data imedatively rigid

way. As a matter gbrinciple, atransaction, first o&ll, has no rights all on data of the data-

base Such privileges camly beacquiredvia an explicitrequest for an@ssignment ofocks.

In the remairder, we il distinguish between aowner of a lock (owner for short)and a
competitor for a lock (competitor for short). An ownerlready possesses some lock on an
object O whereas a competitor is each concurrent transaction, in particular each transaction

that competes for a lock on O.

If we analyzethe semantics of a lock, it becomes clear that a lock on an object &wmas

two effects:

1. it allows the owner to perform certain operations on O and

2. it restricts competitors in their possibilities to work on O.

-14 -

This decomposition ofhe semantics of a lock makes it possibledifierertiate between the
rights whichare assigned tahe owner of a lock and the restrictiowkich are imposed on
competitors. From now on, No. 1. will be called théernal effect of a lock request while No.

2. will be called theexternal effect

Example 2.2:
An X-lock hastheinternal effect in that it allowthe owner to readnodify, and delete the
locked object. The external effect ensures that competitors canndh®dbject in what-

ever mode.

An S-lock has the same internal and external effect since it allows the owner (internal effect)

as well as competitors (external effect) to just read the object.

This distinction betweethe internal andhe externakffect of a lock makes it possible to es-
tablishthe rights of an owner withoimultaneously and automesily stipulatingthe limita-
tions imposed on concurrent applications. We gain the freedom to determine thal ettect

of a lock individually.

The lock modesvhich were discussed in the previous section come witliolleving internal

effects:

exclusive lock (X-lock) permits reading, derivation of a new version, modification, and

deldion of the object.

update lock (U-lock) permits reading, divation of anew version, and modification of

the object (not its deletion).

derivation lock (D-lock): permits reading and derivation of a new versionth® object
(not its deletion or modification). This lock modeoidy useful if

the data model supports a version memn.

shared lock (S-lock) permits reading of the object (neither its deletiomadification

nor the derivation of a new version).

-15 -

browse lock (B-lock) permits reading of the object indi&rty mode (neithethe consis-
tent readingmodificaion, or deletion of the objecior the deri-

vation of a new version).

The examination afhe externaéffect leaves some leewéy further discussion. Cerentional
database systems enfotbe operationaintegrity to be entirely ensured liye dathase man-
agement system. To be ablestgpport theneeds of advanced databaggplicdions, however,
it is inevitable to weaken this rigid view; i.e., to transmit some responsibility faottect and
consistent processing datafrom the databassystem tahe applicationEspecially, in design
envirorments users want twwork on data in avay whichdoes notautomatically guarantee se-
rializability (cooperative work). But, of course, tdatabase system has to ensure tosat
current work on dataan preserve consistency as longhasapplicationstake care otheir
part inconsistencycontrol. Inthis sense, anpdate and a read operation on $aene object
may be corpatible as long athe reader is aware of the concurrent updatesiniultaneous
modification ofthe same object by different transactionsissially prdnibited, atleast as long
as the data ieandled bythe system as an atomic unidlowever, if concurrenapplication are
capable of merginghe different states of an object before it is checked in on the Inigkier

level, concurrent updates can also be permitted.

In order to beable to precisely describd@k mode in theemainder it is necessary $pecify
the internal effect as well as the external effect. Therexdhe,denotes a loclwhich combines

the internal effect X with the external effect Y.

-16 -

Table 2.1 lays down which internal effect can be cdined

external effect with which external effect. A (%) indicates that thgiven

B|S|DYX internal effect can always (never) be doned withthe cor-

;ig ? i i i é é i responding external effect. @ signifies thatthe validity of

(ri‘ ‘fa D[$&Od e such a combination should dependtib@design andbilities
% (t: UuleOd de of the applicdion. If the application is prepared to accept

X|®g¢e 9 some responsilitly for the consistent procgisg ofdata a®

& permitted can be replaced by @ (for example, to modelapperative

© possible environments). However, the sequence>oih a row must

& prohibited be continuous; foexample, in case &/U lock ispermitted

& should be used with care an S/D must be a psiblelock too. A¢ corresponds to @,

butindicaes thathis combinatiorshould be used with care.

Table 2.1: Compatibility ma- . . :
It especiallyrequires measurashich assure that the concur-

trix internal/exer- . . :
rentmodifications of the data cannot disturb tbensistency

nal effects
of the data(base).

2.3 The Semantics of the Lock Modes

Sincetheinternal effectB does noimpose any rgtrictions on comgéors, it is not aock in
the literal sense of the word. It neither requires an entry in the locknabketesivhether the
object is locked. Since we assume that tgslare notlirectly performed orthe original ob-
ject (but on a copy), a B-lock guarantees thatstage of the object to be read is eitbtlf
valid or was valid at some period thmne pastyalidity interva). However, if an application ac-
quires several B-locks fatifferent objects there is no guarantee thatwllity intervals of

these objects do overlap.

As an external effect, th&-lock is the strongest choice, since it does not allow any concurrent
applicaton to access the locked object in any form. However, the B-lock still allows concur-

rent applications to browse the object. By that, applications can be supported, which require
objects to be generally "browsable" (dirty read), regardless of whether they are locked. If a dir-
ty read is to be prohibited this can also be modeled. Since we consider our approach as to pro-

vide the basis for the definition of semantically richer operations (for example, in the sense of

-17 -

object-oriented methods), the browsing of objects can be prevented by simply not offering such

a method.

An internal effectS requires a compatibility check and an entryhie lock tablesince it pre-

vents competitors from acquiring at least an X-lock. Since an S/U-lock is compatible with a
U/S-lock, it may also realize some kind of dirty read. However, in contrast to the B-lock a read
is only possible if the updater a®ll asthe reader agree to it. Therefore, the S/U (U/S) lock is

supposed to be used especially in cooperatmvgonments.

An internal effectU permits themodification ofthe object. A concurrent S-lock can be prohi-
bited. An X-lock,additionally,grants the owner the right to delete the obj8eice this is the
only differencebetween thesevo lock modes, the X-lock is meant to be usaty in case the
object wil be deleted. Vith this interpretation in ind it becomes clear why ax-lock prohi-
bits a concurrent S-lockSincethe object Wi most prdably bedeleted, a read operation

makes no sense.

2.4 A short discussion of consistency aspects

The main motive forthe introduction obur approach is that we want to providéasisfor a
skillful applications designer which allowsm to satisfy the demands of an application in a
proper vay. This requirement caonly be met if the tool kitenables a designer to transfer
some of thaesponsibilityfor consistency fronthe system tothe application. @ly by such a
transfer, forexample, non-serializaboperative worlcan besupported. On the othéand,
our toolkit also supportgonsistency level GLPT76]) if all © (and¢) are replaced by &

and, additionally, the B-lock is not used.

2.5 Dynamic Assignment of an External Effect (Open Lock)

In addition to thepossibility of fixing the externakffect whenthe lock is acquired, it ialso
possible to leave bpen for themoment andix it at alater time. In this casehe system as-
sumesthe strongest external effect, as a default. If, however, #iatarises which can be

solved by a weaker external efféelse owner is asked whether he acceipis weaker external

-18 -

effect. This allowsthe owner to decidendividually whether he wants to accept concurrent
work on the object. Such a decision may depend on the competitor's profile or the current state
of the object. A lock with a fixed external effect is calfe@d lock, while a lock with an unde-

cided external effect is callegpen lock

2.6 Upgrading a lock

In order to be able to decide whethegiwenlock is stronger than another one fivet need to

define whether a given (internal/external) effect is stronger than another one.

Definition 2.1:
An internal effect istronger (weaker)than another one if it concedes

& more (fewe) rights on the locked object to the owner.

According to this definitionthe internal effectB is theweakestonewhile X is the strongest
one; i.e., theinternal effects increase from B to X. The external effectyever,lays down

which lock modes can still be granted to competitors.

Definition 2.2:
Therefore, amxternal effectis stronger (weaker)than another one if it concedes

& fewer(more rights to a competitor.

Sincethe externakffect X still allows acompetitor to acquire eaahternal effect, it is the
weakestonewhile B is thestrongestone (itonly allowscompetitors to read the object in a

dirty mode); i.e., the external effects increase from X to B.

In the previous section it wasid that & in table2.1 indicates thathe given internal effect
can be combined with the external effect which goes with it without risk. However, in case of a
new request X/Y it imotonly necessary that X is compatible watach alreadgranted exter-
nal effect. Moreover, Y must be comgdalé with each alreadygrantedinternal effect as the

following example shows:

-19 -

Example 2.3:
A D/D-lock allowscompetitors to concurrently create their own nanssion ofthe given
object. However, aonflict will arise if a competitor wants to acquir®£s lock.Since this
lock would excludeothersfrom concurrently deriving a new versiorDéS lock camot be

granted in case a D/D was already granted.

To avoid situations like the one in example 2.3 we need to define the compatibility of locks:

Definition 2.3:
Two locks arecompatible,
1. if the owner's external effect permits the internal effect of the competitor

2. if the competitor's external effect permits the internal effect of the owner.

Example 2.4:
Let usassume that an S/U-lock was alregdgnted to user P. If competitor C wants to ac-
quire a D/S-lock, thisequest can be granted. The extegfdct of P's lock permitghe in-
ternal effect of C's lock (condition 1: a D is weaker th&f).aMoreover, theexternal effect

of C's lock permits the internal effect of P's lock (condition 2: an S is compatible with an S).

In order to support the upgrade of a lock mode we neddfimeunderwhich circunstances a

lock is stronger (weaker) than another one.

Definition 2.4:
A lock L1 isstronger (weaker) than a lock L2, if
1. theinternal effect of L1 is at leasaf{ mos} as strong asheinternal effect of L2,
2. theexternaleffect of L1 is at leastaf mos} as strong asheexternaleffect of L2,
3. L1 is different from L2.

Example 2.5:
Sincetheinternal effect U istronger than theternal effect D andhe externakffect B is

stronger than the external effect S the U/B lock is weaker than the D/S lock.

-20 -

For thefollowing discussion we iV assume that eachin table2.1 isreplaced by & since
most applications il not beable toguarantee consistency in case of corentrmodifications
on thesame objectThis assumption is no real restrictisimcethe following discussion can

easily be transferred to the extended compatibility matrix.

On thebasis ofthe abovealefinition, the different lock modeswhich can be inferred from the
(restricted)compatibility matrix (table2.1), can be arranged in an&arorder (according to
their strength):

SIS

(BIX) ~ (SIU) - (SID) -~ (55

)= (DIS) - (UIS) - (U/B) - (X/B)

Exceptions are thexclusiveread lock (S/S-lock) and the shared derivation lock (D/D-lock).
The S/S-lock has stronger externagffect thanthe D/D-lock but a weakanternal effect. If
an owner of an S/S lock wantsswitch to a D/D locKor vice versa) he needs to acquire the

next stronger lock (the D/S-lock).

3 Locks in the Context of Nested Transactions

In this section it Wl be shown how the decompition of a lock mode can be exploited by the
concurrency controscheme irorder to support a more cooperatstgle of work. Consider
the transaction/applicatiomerarchy of figure 3.1Let usassume thatransaction T5 has ac-
quired some object O in lock mode U/B from jgarent (notvisible in the figure).Now it
wants someavork on O be done bys child T10. To do so, Thas to transmithe object/lock

pair O/(U/B) to transaction T10. This leads to the following situation:

1. O is locked on the level of T5 in lock mode U/B.

2. O is available to the descendant tree of T10 in lock mode U/B.

=21 -

Feature 1 is anecessary restrictiorsince it

prevents othechildren of T5(aswell as T5 it- o(u/B) TS
self) from modiying O. Feature 2, however, is @//
an unnecessary obstaclett® task of T10 for e -

. o(ur+)
the following reason: @) T10

o(D/D)

T5 is onlyinterested in the results of teork @ TN @\
of T10 on O, but not in howhese resultsyill o(b/*) T18 T19 T20 | O(D/+)
be achieved. T1@eeds O and the perrsisn
to work on O in away whichcorresponds to {
its task. However, ishould be left tor'10 to T31 T32 | | T33

decide how thevork on Ocan be performed |o(w/s) -- object 0 is locked in lock mode U/B
U/B == corresponds to an exclusive lock

best. Forexample, ifT10 decdes to develop |p/p -- allows the owner to derive a new version
of the object;
competitors may derive a new version too

+ == undecided external effect

several alternatives of O simultanelyusor

example inT18 and T20, and to select after- _. o .
P Figure 3.1: Acquisition of an object from

wards the best alternative, such a proceeding
the parent

should be permitted. In the scenario abtve

is prohibited, sincéhe U/B lock on O prevents TI8d T20 from concurrently acquiring the

necessary locks on O. If wake a closer look at treemantics othe subtaskvhich T5 assig-

ned to T10 it becomes clear that this task is sufficiently described by the object O aterthe in

nal effect of the lock on O.

However, the downward inheritance of the ex#éreffect ofthe lock is a udessobstacle,
since itdoes notesult inany advatage for T5. Instead, it unnesesily restricts T10 in per-
forming its task. Consequently we decided to transdy the intenal effect tothe child trans-
action. Therefore, if T1@cquires an object O from T5 in modéB, this lock issetonly on
thelevel of T5(see figure3.1). T10 simplyinheritsthe internakeffect ofthe lock. Theexternal
effect is left undecled (this results in U/*@)). T10 may allow its children to acquire every
lock on O with an interal effect equal to or @aker than U and every extat efect which
T10 wants to concede to its children. In figure 310 decdes to allow it<hildren to acquire
concurrently O in D/D mode, therefore, derive concurrently new versions from @) (a
D/D lock allows the owner to derive a new version of the object; compatiyslerive (con-

currently) new versiongpo). While this proceeding allow310 to executats work on O

=22 .

autonomously, ittoes nogllow T10, forexample, to transmit several alternatives of O to T5,
since O is locked on the level of T5 in mode Which does nopermit the derivation of sev-

eral alternatives).

4 Rules on Locks and Notification Services

Synergistic cooperativevork canonly be suppded adguately if applications can actively
control the preservation of the consistency of data/objdttis, however, requirgbie concur-
rencycontrol component to provide asuch suport toapplicaions as pasble. For exanple,
our approach permits update operations to be compatible jussigyiagthe appropriatéock
(U/U) to them. However, if concrencycontrolrelied onpure locks, it would béoo inflexi-
ble.

Example 4.1
Let usconsider an abstradata typePRICE-PRODUCTon whichthe following four ope-

rations are defined (see Figure 4.1):

INCREASEVAT (0p,): needs internal effect U
INCREASEPRICE (0P,): needs internal effect U
CoMPUTEPRICEINCLUSIVELYVAT (0p,): needs internal effect S

COMPUTEPRICEEXCLUSIVELY VAT (0p,): needs internal effect S

The compatibility ofthese operations (as shownfigure 4.1) cannot be&ompletely mod-
eled yet. The problem is that we cdefine thatop, andop, should acquire a U/U lock
(which means that both update operations can be performed concurrently (wiim;sef,
is desirake)). op,, however, should be compatibledp, which means that weiustassign
an S/U lock toop,. This, howeverimplies thatop, is compatible toop,, too (which, of

course, Is not correct).

-23-

The problem is that locks as subéfine compatibility still on
a tooglobal level. AnS/U lock is corpatible with a U/U
lock regardless of whether the second lock is acquired by

operationop, or op,. If we really want to exploit theseman-

tics of applicéions, theall-or-none principle(a lockallows

either allconcurrent transactions to access the object in a
v | lock mode required
e

givenmode or none) must be replaced by a more expressiv by operation

yes-if principle i.e., concurrent transactions atowed to | «—— compatible
access the object if certain clitions are fulfilled. For this | ~#— incompatible

reasonour approach supports thending ofrules to locks.

Figure 4.1: Relationship bet-

The rule nechanism is similar t&CA rules (event - condi- .
ween operations

tion - action rules, cf. [DaBM88]).

on event {[casecondition]do [actionl] [action2]}*

An Eventcan be an action which is triggered when an operation is performed on a(n):

lock: request / release / up- / downgrade / transmission (lending, transfer, return)
object: modification / transfer / deletion

transaction: begin / end / suspend / resume / (partial) rollback

Conditionscan be

special usersa certain user / application / transaction has triggered the event
special operations:a certain operation has triggered the event

object states:the object is in a certain state (for example, compiled / tested/ etc.)

The condition specification is optionavhich means that aeventmay directly trigger an ac-

tion.

Theaction section can comprise two parts:

|n actionl an exception can be expressed regardingitidierlyinglock. An exception can

be positiveor negative With positive (negative) excaépn, a lock mode can be weakened

-24 -

(tightened) byexplicitly declaring whichevent can causevhich kind of weakening

(tightening) and under which circumstances.

& Action2 allows the system to react on events by (additionséippling messages. To dae
to do so the rulenechanism is accompanied bynatification serviceby which applica-

tions/users/agents can be informed about certain facts or can be asked to do certain things.

The system W reactdifferently on arevent if different conditions and actions apecified in

thecase dopart.

Example 4.2

a. negative exception

Given is an S/U lock on object O. The following negative exception tightens the lock:

on lock-request
{[case<predicate P>] do [prohibit (U/*);] [notify-Request<t_>]}*

This condition specifies that if@ncurrentapplication wants to acquire some lock with in-
ternal effect U on object wit®ID O (wouldallow the requesting process to updé@g the
request W be rejected if predicate Pis true. The notify-Requeging process)clause

specifies that the messaggewtill be sent to the requesting process.

b. positive exception

Given is an S/S lock on object O. The following positive exception weakens the lock:

on lock-request
{[case<predicate pP>] do [permit (U/<B);] [notify-Self <t _>]}

This condition specifies that if@ncurrentapplication wants to acquire some lock with in-
ternal effect Uthe request can be granted if the extesftdct of the requested lock is
weaker than B (<B; foexample, S or U) and predicate, B true.The notify-Self clause

specifies that the messaggwtill be sent to the owner of the S/S lock.

- 25 -

c. Solution for example 4.1

The scenario of figurd.1 can be modeled as follows (it is assumed bwih opz andop,
will acquire an S/S lock on instancesRRICE-PRODUCT:

Whenop, is executed it must bind the following rule to its lock on the object dealt with:

1. on lock-request

case op; do prohibit (U/>B); notify-Request"VAT is being modified"

Whenop, is executed it must bind the following rule to its lock on the object dealt with:

2. on lock-request

caseop, do permit (S/U)

Rule 1 assures thap, cannot acquire a lock on object O as long@<olds its lock on O.
However, ifop, is thefirst operation tarequest a lock on O, thap, cannot concuently
acquire its lock on O, sincthe necessaryJ/U lock is not compatible withthe already
granted S/S lock (of operatiap;). Finally, if op, wants to acquire a lock on O, the lock

can be granted since rule 2 permits this exception.

Similar rules must be installed fop, andop,.

Anothergoodexamplefor the usefulness of rules the open lock. An open lock waefined
as a lock whose external effect is left undecided. Comiigtiith other requests idecided
individually each time a request is submitted. The decisiay dgend on therofile of the re-
guesting process and the currstdte of the objectespectively. One podgsiity is that the
owner of the lockhimself makesthe decision. A better solution would be to kb system
automatically decide otie basis of predefinetules. This freeshe ownerfrom being (frgue-

ntly) disturbed in his work by concurrent processes.

The extended lock concept can be used as a solid basis to implement higher-level diblcepts,
sematics-based concurrency control (cf. [ChRR91], [HeWe88], [SpSc84], [Weih88]).

- 26 -

5 Object-related Locks

Usually, locks are bound to transactionsctoperativeenvironments, however, seems to be
reasonable to think about an extension of this rule in a direction that locks can also be bound to
objects.Similar to the life of a human beingvho is born single and whoay, atsome later

time, acquire marriagstatus(which rulesout areturn to the statusinmarried"), objects may

also go througlseveralstates in theififetime. Theymay be'born’ without any restrictions on

the way in which they can b&eated. Howeverduring theirlifetime, some restrictions may

come into force (see example 5.1).

Example: 5.1

Especially in design applications the concept of versioning is of a great relevance.

1. Version graph

In the context ofversion graphs it is commonly required that a non-teade (inner

node) cannot benodified toprevent the successors of that node fimimginvalidated
(sincethe predecessor is no longer thegsion from which theyvere created). Here an
object is born without any restrictions (leaf) and, later, changes to an object which can no

longer be modified (non-leaf node).

2. Time versions

Time versions only permadne version of an object to balid at a given time. ithe cur-
rently valid(latest) state of an object is to imedified, a new version isreated This re-
sults in a linear sequence of versionghis case the object is born with the restriction to
be notchangeableLater on, it vl change to an objeethich can neher bemodified

nor used as a basis for the derivation of a new version (non-leaf node).

3. Standard or library objects
Many application classes, especially design enuremis,put standard otibrary objects
at the users' disposal. Such objects @alg beread.Theyare born with the restriction:

modification prohibited

- 27 -

Our idea is to link locks permanently to objects. This kind of loitikoe calledobject-related

lock (OR-lock for short). An OR-lock, oncemposed on an object, can neither be weakened
nor released, itanonly beupgraded. The lockemains valid atong as the object exists. OR-
locks behave like conventional locks (lodkied to transactionscalledtransaction-related

locks or TR-locks for short in the following, which only have an internal effect). If an OR-lock
is granted, theommunity of all(potential) transactions can be seen as the owner of the lock.
All rights of theinternal effect carstill be acquiredwhile all other rights are no longer
"grantable”. Since an OR-lock is persistent wk distinguish it from atransaction lock by

placing a P in front of the signature.

The following OR-locks can directly be adopted from the set of conventional locks:
PU-Lock: prohibits deletion of the object. All other operations are permitted.

PD-Lock: prohibits deletion and modification of the object. All other operations are permit-
ted.

PS-Lock: prohibits deletion, modification, and derivation of a new versiam@fobject. It

only permits the read operation.

It is particularly worthwhile taking a closévok at the PD-lockThis lock permitshe deri-
vation of a new version dhe object locked. However, it ot laid down whetheonly one
derivation can be pduced or more. Buguch a distinction is extremely useful, since it makes
it possible to automaticallgontrol the observance of the rules different version models
(time versions and version graphs). Dudlte greasignificance of version nuels, a distinc-

tion seems to be reasonable. Therefore, the PD-lock is split into two lock modes:

PSD-lock: only permits derivation of exactlgne newversion; i.e., aftethefirst derivation
of a new versiorthe lock mode is converted to a PS-lock (forms a sequence of

versions).
PMD-lock: permits derivation of any number of new versions (forms a version graph).
Finally, a PX-lock is introduced as the lock with which every object is 'born':

PX-lock: is a pseudo lockvhich does noimpose any rgtrictions on the object (needs not

to be considered by the concurrency control component).

-28 -

The introduction of a PB-lock do@®t make anysense, since it hdlse same effect athe PS-

lock.

Table 5.1 describes the contipdity between an OR-lock and (the internal effe€ta corven-

tional lock:

Similar tothe externakffect of conventionalocks, OR-locksincrease from PX to PS since

each step on this way concedes fewer rights on the object.

As already mentioned, witthe help of OR-locks concurrenogontrol overhead can be re-
duced. Foiinstance, with a PS-lock the objéws no longer to be consideredthg concur-
rencycontrol componentincethe only applicableoperation is the read operation. A PS-lock

is especially favorable if standard objects need to be handled.

Let usconsider figure 5.1, in whicthe standard object O2 is a shared subcomponent of sev-
eral complex object@CO1, CO2, CO3). If, foexample, somapplication T locks CO1 in an
exclusive mode (U/B-lock), this lock prevents each competitor C from loekingfthe other
complex objectsvhich also include OZhere CO2 and CO3). However, if a PS-lockmpo-

sed on O2, the lockhanger no longehas to conside®2. Therefore, the concurreatcess

can be granted. Situations like this are rather frequentiakpen design environments.

transaction lock

PX

PU

+ +|cC

PMD

PSD

+ + + | +|w

o+ + +]|O

PS

OO0~ ~00«-0U0

-+

+(+ + + +|®

O 1

permitted
prohibited
single derivation only

Table 5.1: Compatibility marix obje-

ct/transaction-related locks

-29-

—— subcomponent of

Figure 5.1: Standard object O2sagcompo-

nentof severalcomplex objects

-30 -

6 Subject-Related Locks

Non-standard applicatiorsseusually extremely complex icomparison with traditional appli-
cations. One frequentfinds complextaskswhich need to be split into several unitsvasrk,
each of which, neverthelesnay still becomplex and of longluration.Since these units of
work represenbne complextask,they often have a compleontrolflow; i.e., some units can

be executed concurrentiyhile others need to be executed in succession. Each uwibrif
accesses a (large) number of objects. Some of #iheonly usedwithin one givenunit. How-
ever, the more central objects with respect totdéis& are often used (mearly)all suliasks.
Consequently, we must be ablesafelytransfer objects frorone unit of work to the next. If
units of work correspond to (sub)transactions, we needchanism whiclallows an object to

be safelytransferred fronone transaction to the next (see also [W&Re92]). Consider, for ex-
ample, an administratiodepartment. If someonaakes an application f@omething(for ex-
ample, a businegsp), hehas tofill in the application form. Therhe applicationform usially

has to passhroughseveral stages; it has to be countersigned by a manager, registered and
checked for correctness, some computatitmse to be performed, etc. Often each subtask is
performed by a different personfietment.This means that we need tontrol the correct
flow of the application form; i.e., a safe transfer frame subtask (transaction) to the next has
to be ensured. Fdhis reason we provide subject-related locksubject-related lock (SR-

lock for short)again is defined by an internal/external effect pair. haand to a subject for
some time. During this periothe subject is the owner of the lock and canidkautono-
mously how to use the locked object (fexample, in which application). Aubject can be
anything that can be identified bye concurrency control component as such, fangte, an

applicdion, a user (group), an agent, a named sequence of actions (transactions) etc.

A subject-related lock corresponds to a transaction-related lock (TR-lock) in thdefined

by an internal/external effect pair. It is bouednporarily, however, to a&ubjectandnot to a
transaction. Since an SR-lock functions as a place holder, it reserves an object O for (later) use
by its owner in one or more (consecutive) (trans)actions. Every subject can ask for an SR-lock
at any timeThe SR-lock can be granted if i&k-, OR-, or SR-lock ig¢currently) assigned to

some competitor in anncompatible mode. Here, a compatr is either a trans-

action/application (ircase of a TR-lock) or a subjegad case of a concurrent SR-lock) or an

-31 -

object (in case of an OR-lock). The owner of an SR-lock can hold the lock as long as he
wants; i.e., an SR-lock is released byeaplicit command of its omer. This can bedone at

any time.

An SR-lock imposes restrictions d¢ime way in whichcompetitors arallowed towork on the
locked object. Consequently, the exteretiect of an SR-lockorresponds to the external ef-
fect of a TR-lock. Thenternal effect determines whidfR-lock on the object can be granted
to a transaction at mosthis means, that 88R-lock doesiot assign any directly usable rights
to its owner. Instead, rights camly becomevalid if they are supplemented by a TR-lock
within a concrete transaction. Howeveaincethe SR-lock is glace holder it is guaranteed
that the corresponding TR-lock cannmadiately begranted, preided thatthe requested TR-
lock isnot strongethan the SR-lock. If it is stronger, of course, the TR-Ibak to compete
with all alreadygranted locks on that object. Eaakernal effect/external effect-pair which is a

valid TR-lock represents also a valid SR-lock.

The additional acquisition dhe TR-lock isnecessary to ensure thtae locked object O can
only bemanpulatedwithin a transaction. Moreover, it guarantees that the owner of the SR-
lock cannot imprperly exploit his rights, for example, by using O in an incompatible way
within different transactions. The TR-lock ensures that O can ortiafiéied in aorrectway.

Only after the TR-lock is released, O is ormgainput at the disposal of the owner of the SR-
lock and can, therefore, be emy#ad inanother transaction. Of coursance O caronly be
used if a proper TR-lock is granted, an SR-loak be released any time.Either O is cur-

rently not used by some transaction or it is still protected by the additional TR-lock.

Example 6.1:
Let usassume that a user P has acquinedSR-lockU/Son O (allows P tonodify the ob-
ject, concurrent transactionsay stillread it). If P wants tanodify O intransaction T he
can directly supplemerithe SR-lock by the correspding TR-lock. This prevents Rrom

afterwards acquiring an incompatible lock mode on O in a concurrent transaction.

-32-

7 Conclusion

In this paper wehave showrhow the conventional lockingapproach carstep by step be
adapted to aemantics-based methodology of concurrecmytrol. Thefirst step was to en-
hance the coarse and small set of conventional lock modes (shared and exclusivedtiak) by
useful lock moded-owever,this wasonly a smallstep in the direction dbeing able to sup-
port more application-specific semantics. The regp was to consider tisemantics of locks
and to differentiate between an internal and an external effeckookarhis permits amuch
more precise adaptation of a lock to the requirements of an applicatespektially permits
the creation of shielded cooperative environments within nested transa€inatiyg, our initial
goal - a comprehensigipport ofsynergisticcooperative work by thexploitation ofapplica-

tion-specific semantics - was attained by allowing locks to be extended by rules.

In addition to théconventional' binding ofocks to transactions we consider tading of
locks to objectsdbject relatedl and subjectssiubject related lochs Object related locks can
definepersistent and adaptable access restrictions on objects. This permits,adhsragthe
modeling of different types of version models (time versions, veggiaphs) asvell as library
(standard) objects. Moreover, these locks can be exploited by the concurrencyocoonpro!

nent to increasefficiency. Subject related locks are bound to subjects (user, applicatmoip,

and can be used among otherstpervise or direct the transfer of objects between transac-

tions.

Literature

[BaRa90] Badrinath, B. R.; Ramamrithan, Rerformance Evaluation of Semantics-Based
Multilevel Concurrency Control Protocql$’roc. ACM-SIGMOD Int. Conf. on Man-
agement of Data; Atlantic City, NJ; May 1990

[BeSW88] Beeri, C.; Schek, H.-Weikum,G.: Multi-Level Transaction Management: Theo-
retical Art or Practical NeedProc.Intl. Conference Extending dda BaseTechnology
(EDBT); Lecture Notes in Comput&cience303, J. W.Schmidt, S. Ceri, MMissikoff
(eds.); Springer Publishing Company; 1988

[BOHG92] Buchmann, A.QOzsu, T.; Hornick, M.; Georgakopoulos, Manola, F.:A Trans-
action Model for Active Distributed Object SystemgEIma92]

-33-

[ChRR91] ChrysanthisP.; Raghuram, SRamamithan, K.: Extracting Concurrency from
Objects: A MethodologyProc. ACM-SIGMOD Int. Conf. on Management of Data;
Denver, Colorado; May 1991

[DaBM88] Dayal, U.; Buchmann, A.; McCarthyD.: Rules are Objects too: A Knitlge
Model for an Active, Object-Oriented Database ManagenSgistem Proc. 2nd Int.
Workshop on Object-Oriented Database Systems; Bad Minster, Germany; Sept. 1988

[EIma92] Elmargarmid, A(ed.): Databas@ransaction Modeldor Advanced Applications"
Morgan Kaufmann Publishers; 1992

[EIGR9O0] Ellis, C.; Gibbs, S.; Rein, @esign and Use of a Group Editon: Engineering for
Human-Computer Interaction, G. Cockton (ed.); North-Holland, Amsterdam; 1990

[EIGR91] Ellis, C.; Gibbs, S.Rein,G.: Groupware: Some Issues and Experien€snmuni-
cations of the ACM; Vol. 34, No. 1; Jan. 1991

[Garc83] Garcia-Molina,H.: Using Semantidknowledgefor TransactionProcessing in a
Distributed DatabaseACM Transactions on Database Systdif®DS); Vol. 8,No. 2;
June 1983

[GLPT76] Gray, J.; Lorie, R.; Putzolu, F.; Traigér, Granularity of Locks and Degrees of
Consistency in a Shared Data Bage;'Modelling in Data BaseManagement Systems';
G. M. Nijssen (editor); North Holland Publishing Company; 1976

[Gray79] Gray, J.Notes on Data Base Operating Sytenms;Operating Systems - An Ad-
vanced Course; Bayer, R.; Graham, R. M.; Seegmdlller, G. (edit@sire Notes in
Compuetr Science 60; Springer Publishing Company; 1979

[GrSa88] Grelf,l.; Sarin, S.: Data Sharing in GroupNork in: Greif, I. (ed.): Computer-
Supported Cooperative Work: A Book of ReadihysrganKaufmann;San Mateo, CA;
1988

[HaLo81] Haskin, R. L.; Lorie, R. A.:On Extending the Functions of a Relational Database
Systerty IBM Research Report RJ3182; 1981

[HaPS93] Haghjoo, M.; Papazoglou, M.; Schmidt, N.Semantic-based Nested Transaction
Model for Intelligent and Cooperative Informati@ystemsProc. Int.Conf. on Intelli-
gent andCooperativelnformation SystemstEEE Canputer Society Press; Rotterdam,
The Netherlands; May 1993

[HaRe83] Harder, T.; Reuter, ARrinciples of Transaction Oriented Database Recavery
ACM Computing Surveys, Vol. 15, No. 2; June 1983

[HaRo87] Harder, Th.; Rothermel, KConcurrency Control Issues in Nested Transactions
IBM Almaden Research Report RJ5803, San Jose; Aug. 1987

[HeWe88] Herlihy, M.; Weihl, W.: Hybrid Concurrency Controfor Abstract DataTypes
Proc. ACM Symposium on Principles of Database Systems, 1988

-34 -

[JaMR92] Jarke, M.; Maltzahn, C.; Rose; Sharing Processes: Team Coordination in De-
sign Repositoriesint. Journal of Intelligent and Cooperative Information Systems; Vol.
1, No. 1; March 1992

[KLMP84] Kim, W.; Lorie, R.; McNabb, D.; Plouffe, WA Transaction Mechanism for En-
gineering Design DatabaseRroc. 9th Int.Conf. on Very Large Bta Bases (VLDB);
Singapore; Aug. 1984

[KLRW94] Kirsche, T.; Lenz, R.; Ruf, TWedekind,H.: Cooperative Problem Solving Using
Database Conversation®roc. 10th Int.Conf. on DataEngineering;Houston, Texas;
Feb. 1994

[KoKB85] Korth, H.F.; Kim, W.; BancilhonF.: A Model of CAD Transaction$roc. 10th
Int. Conf. on Very Large Data Bases (VLDB); Stockholm, Sweden; Aug. 1985

[KSUWS85] Klahold, P.; Schlageter, Glnland, R.;Wilkes, W.: A Transaction Model Sup-
porting Complex Applications in Integrated Information SystéPngc. ACM-SIGMOD
Int. Conf. on Management of Data; Austin, Texas; 1985

[KUSW92] Knolle, H.; Unland, R; Schlageter, G.; Wel, E.: TOPAZ: A Tool Kit for the
Construction of Application-Specific Transaction Managens;'Objektbanken fur Ex-
perten’; R. Bayer, T. Harder, Pockemann (eds.); Springer Verlag; Informadiktuell;
1992

[LoPI83] Lorie, R.; Plouffe, W..Complex Objects and Their Use in Design Transactions
Proc.Databases foEngineering Applications; ACM-Database Week, Sagse,Califor-
nia; 1983

[Moss81] Moss, J.E.BNested Transactions: An Approach to Reliable Computtid Re-
port MIT-LCS-TR-260, Massachusetts Institute of Technology, Laboratory of Computer
Science;1981 and\ested Transactions: An Approach to Reliable Distributed Comput-
ing; The MIT Press; Research RepatglNotes,Information Systems Series; M. Lesk
(Ed.); 1985

[Nozd90] Nodine, M.; Zdonik,S.: Cooperative Transaction Hierarchies: A Transaction
Model to Support Design ApplicatignBroc. 15th IntConf. on Very Large BtaBases
(VLDB); Brisbane, Australia; Aug. 1990

[NoRZ92] Nodine, M.;RamaswamysS.; Zdonik,S.: A Cooperative Transaction Model for
Design Databasesn [EIma92]

[Skar93] Skarra, A.Concurrency Control and Object-Oriented Databasesoc. 9th Int.
Conf. on Data Engineering; Vienna, Austria; Apr. 1993

[Skzd89] SkarraA.; Zdonik, S.: Concurrency Control and Object-Oriented Databasas
'‘Object-Oriented Concepts, Databases, #&mplications'; Kim, W., Lochovsky, F.
(Editors); Addison-Wesley Publishing Company; 1989

[SpSc84] Schwarz, P.; Spector, 3ynchronizing Shared Abstract TypAE€M Transactions
on Computer Systems; Vol. 2, No. 3; August 1984

-35-

[Unla90] Unland,R.: A Flexible and Adaptable Tool Kit Approach fGoncurrency Control
in Non Standard Database Systermsoc. 3rd Int.Conf. on Database Theory (ICDT);
Paris, France; Dec. 1990

[Unla91] UnlandR.: TOPAZ: A Tool Kit for the Catruction of Application Specific Trans-
action Managers Research-Report MIP-9113; Uniggy of PassaupDepartment of
Computer Science; Oct. 1991

[UnSc92] UnlandR., Schlageter, GA Transaction Manager Development Facility for Non-
Standard Database Systenms [EIma92]

[WaRe92] Wachter, H.; Reuter, Alhe ConTract Modein: [EIma92]

[Weih88] Weihl, W.: Commutativity-Based Concurrency Contfol Abstract DataTypes
Proc. IEEE 21thAnnual Hawaiilnt. Conf. on System Sciences E8S); Hawaii; Jan.
1988

-36 -

Arbeitsberichte des Instituts fur Wirtschaftsinformatik

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

Nr.
Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

1 Bolte, Ch.Kurbel, K., Moazzami,M., Pietsch, W.: Erfahrungelei der Entwicklung
eines Informationssystems auf RDBMS- und 4GL-Basis; Februar 1991.

2 Kurbel, K.: Das technologische Uahd der InformationsverarbeitungEin subjektiver
'State of the Art'-Report Uber Hardware, Software und Paradigmen; Marz 1991.

3 Kurbel, K.: CA-Techniken und CIM; Mai 1991.

4 Nietsch,M., Nietsch, T., Rautenstrauch, CRinschede M., Siedentopf, J.Anfor-
derungen mittelstandischer Industriebetriebeiaen elektronischebeitstand - Ergeb-
nisse einer Untersuchung bei zwdlf Unternehmen; 991

5 Becker, J.PrischmannM.: Konnektionistische Modelle - Grundlagen und Konzepte;
September 1991.

6 Grob, H.L.:Ein produktivitatsorientierter Ansatz zvaluierung von Beratungserfol-
gen; September 1991.

7 Becker, J.: CIM und Logistik; Oktober 1991.

8 Burgholz, M., Kurbel, K., Nietsch, Th., Rautenstrauch, Erfahrungenbei der
Entwicklung und Portierung eines elektronischen Leitstands; Januar 1992.

9 Becker, J., Prischmann, M.: Anwendung konnektionistischer Systeme; Februar 1992.

10 Becker, J.: Computer Integrat®ldnufacturing aus Siclder Betriebswirtschaftslehre
und der Wirtschaftsinformatik; April 1992.

11Kurbel, K., Dornhoff, P.: A System for Case-Based Effort Estimation Swftware-
Development Projects; Juli 1992.

12 Dornhoff, P.: Aufwandsplanungzur Unterstitzung deblanagements von Software-
entwicklungsprojekten; August 1992.

13 Eicker, S., Schnieder, T.: Reengineering; August 1992.

14 Erkelenz, F.: KVD2 -Ein integriertes wissensbasiertes Modulr Bemessung von
Krankenhausverweildauern - Problemstellung, Konzeption und Realisierung; Dezember
1992.

15 Horster, B.SchneiderB., Siedentopf, J.Kriterien zur Auswahl konnektionistischer
Verfahren fur betriebliche Probleme; Marz 1993.

16 Jung, R.:Wirtschaftlichkeitsfaktorenbeim integrationsorientierten Reengineering:
Verteilungsarchitektur und Integrationsschritte aus 6konomischer Sicht; Juli 1993.

17Miller, C., Weiland,R.: Der Ubergang von proprietaren affienen SystemeausSicht
der Transaktionskostentheorie; Juli 1993.

18 Becker, J.RosemannM.: Design for Logistics Ein Beispielfur die logistikgerechte
Gestaltung des Computer Integrated Manufacturing; Juli 1993.

19 Becker, JRosemannM.: Informationswirtschaftliche Integrationsschwerpunikiger-
halb der logistischen Subsysteme - EBeitrag zueinem produktionstibergreifenden
Verstandnis von CIM; Juli 1993.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.
Nr.

-37-

20 Becker, J.: Neu¥erfahrender entwurfs- und konstruktionsbegleitendeakulation
und ihre Grenzen in der praktischen Anwendung; Juli 1993.

21 Becker, K.PrischmannM.: VESKONN - Prototypische Umsetzureines modularen
Konzepts zur Konstruktionsunterstitzumgt konnektionistischeethoden; Novem-
ber 1993

22 SchneiderB.: Neuronale Netze filbetriebliche Anwendungen: Anwendungspotentiale
und existierende Systeme; November 1993.

23 Nietsch, T., Rautenstrauch, C., Rehfeldt, M., Rosemann, M., Turowskingatze fir
die Verbesserung von PPS-Systemen durch Fuzzy-Logik; Dezember 1993.

24 Nietsch M., RinschedeM., Rautenstrauch, C.: Werkzeuggestuirgividualisierung
des objektorientierten Leitstands ooL, Dezember 1993.

25 Meckenstock, A.Unland, R., Zimmer, D.: Flexible Unterstitzung kooperativer
Entwurfsumgebungen durch einen Transaktions-Baukasten, Dezember 1993.

26 Grob, H. L.: ComputeAssisted Learning (CAL) durch Berechnungsexperimente,
Januar 1994.

27Kirn, St., Unland, R.(Hrsg.): Tagungsbangum Workshop "Unterstitzun@rganisa-
torischer Prozesse durch CSCW". In Kooperatiomt Gl-Fachausschul3 5.5
"Betriebliche Kommunikations- und Informationssysteme” und Arbeitskiets1
"Computer Supported Cooperative WorlV/estfalische Wilhelms-Universitdinster,
4.-5. November 1993

28Kirn, St., Unland, R.: Zur Verbundintelligenz integrierter Mensch-Computer-Teams:
Ein organisationstheoretischer Ansatz, Marz 1994.

29Kirn, St., Unland, R.: Workflow Management mitkooperativen Softwaresystemen:
State of the Art und Problemabrif3, Mé&rz 1994.

30 Unland, R.: Optimistic Concurrency Control Revisited, Mé&rz 1994.

31 Unland, R.: Semantics-Based Locking: From Isolation to Cooperation, Marz 1994.

