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1 Introduction

From its beginning, psychological science has been concerned with measuring
and understanding mental processes and structures. In this context, one aspect
of the human mind is especially noteworthy: The ability to maintain informa-
tion in an active and accessible state, while simultaneously processing selective
new information. Working memory (WM) is the term that cognitive psycholo-
gists use to describe this ability. One fundamental characteristic of WM is that
it has a limited capacity. That is, only a limited amount of information can be
kept in a readily accessible state. Converging evidence suggests that on average,
about four separate pieces of information can be stored in WM by healthy adults
(Cowan, 2001). Importantly, individuals differ in their WM capacity, such that
some individuals are generally better than others at performing demanding cog-
nitive tasks, such as complex learning, reading comprehension, or mathematical
problem solving. The importance of WM for higher cognition has been soundly
established within the experimental, neuropsychological, and individual differ-
ences research literature (e.g., Ackerman, Beier, & Boyle, 2005; Kane & Engle,
2002; Kyllonen & Christal, 1990). Although WM and general intelligence are
highly related, they can still be separated on empirical and theoretical grounds
(Ackerman et al., 2005; Blair, 2006).

WM is also highly related to reasoning. In all theories of intelligence struc-
ture, reasoning represents a key construct. In the definition of intelligence by
Spearman (1923), educing correlates and relations, which is best reflected in rea-
soning measures, is of central importance. Further, reasoning measures, of all
cognitive ability tests, have been shown to exhibit the highest loadings on the g
factor, which is regarded as the core construct of human cognitive abilities (Car-
roll, 1993). Reasoning tasks, however, come in a wide variety of forms. Wilhelm
(2005) offers several classification aspects of reasoning, including formal opera-
tional requirement (e.g., deductive vs. inductive reasoning), task content (e.g.,
numerical or verbal content), instantiation of reasoning problems (e.g., abstract
vs. concrete) and vulnerability to differential strategy use. Wilhelm (2005) could
show that a latent variable model based on different task content factors, all load-
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ing on a higher-order g factor, provided satisfactory fit, whereas deductive and
inductive reasoning factors could not be differentiated.

Although several studies with numerous measures of WM and reasoning
facets have been conducted in adult populations, providing insight into the re-
lationships of WM with reasoning, processing speed, short-term memory (STM),
and other relevant factors (e.g., Colom, Abad, Quiroga, Shih, & Flores-Mendoza,
2008; Kane et al., 2004; Krumm et al., 2009), much less activity has been devoted
to investigating these relationships in children. In addition, those studies con-
ducted with children often opted for a specific research paradigm, which was ei-
ther experimental or differential. Ever since Cronbach (1957), it has been argued
that a combination of both approaches is necessary to obtain a more complete
picture of underlying processes and structures. This thesis therefore is concerned
with investigating the relationship between WM and reasoning in children using
latent variable models that allow for a combination of experimental and differen-
tial perspectives.

1.1 Models of WM

Among the numerous theories of WM (cf. Miyake & Shah, 1999), one of the
most influential and widely-recognized models is the multiple-component model
suggested by Baddeley and colleagues (e.g., Baddeley, 1986; Baddeley & Hitch,
1974). WM, in this model, is assumed to have two temporary memory systems,
the phonological loop for speech-based information and the visuo-spatial sketch-
pad for spatial information. These two components are used to maintain mem-
ory traces in an active state using rehearsal. In addition, the multiple-component
model postulates a central executive which functions as a control and regulation
instance in the WM system. The central executive is not involved in temporary
storage, but rather coordinates the activity of the slave systems by processes such
as activation of long-term memory traces or switching attention. Further, the
central executive is responsible for manipulating material held in the temporary
storage systems. The multiple-component model has been repeatedly shown to
explain a wide range of experimental and individual differences data, both in
children and adult studies, although some modifications were lately introduced
(Baddeley, 2000). One of the key aspects of the multiple-component model is the
differentiation of WM into functionally different modules, along with the separa-
tion of storage and processing components.
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In contrast, the WM model introduced by Engle and colleagues (e.g., Engle,
Tuholski, Laughlin, & Conway, 1999; Kane, Conway, Bleckley, & Engle, 2001) is
more process-oriented than the multiple-component model. A central aspect of
the perspective held by Engle et al. is the assumption that a domain-free, limited-
capacity resource, controlled attention, lies at the heart of WM. These authors
assume, similar to the multiple-component model, that there are domain-specific
codes and maintenance processes (STM), whereas the ability to simultaneously
store and process information is domain-general. As shown in Engle et al. (1999),
using structural equation modeling, a WM factor was related to a reasoning factor
even when controlling for short-term memory (i.e., storage) variance, whereas
STM was unrelated to reasoning once controlled attention was partialled. Hence,
controlled attention is seen as the key resource for higher intellectual functioning.

This view was recently challenged by Colom, Rebollo, Abad, and Shih (2006),
who reanalyzed several data sets to shed light on the relevance of STM in pre-
dicting intellectual abilities. These authors found that when conceptualizing con-
trolled attention as a residual factor, capturing only variance in WM tasks, and
when STM was modeled as a factor capturing variance in both WM and short-
term memory tasks, both WM and STM were relevant for predicting intelligence.
According to Colom et al. (2006, p. 167), ”both measures [WM and STM] share
something in common that could produce their association with cognitive ability
measures”. Later, Unsworth and Engle (2007a) suggested a framework that dif-
ferentiates between primary and secondary memory instead of WM and STM.
Primary memory serves to keep a number of separate representations active for
processing by continuously allocating attention. Access to contents stored in sec-
ondary memory, however, requires a cue-dependent search process. In contrast
to STM tasks of the same list length, WM tasks measure secondary memory rather
than primary memory. Hence, low WM capacity can stem from two sources, an
inability to distinctly maintain representations in primary memory, or rather an
inability to effectively search for stored representations in secondary memory.
As soon as search processes in secondary memory are required, for example, by
using a STM task with high list length, the relationship with higher cognitive
functioning increases substantially (Unsworth & Engle, 2007b).

Another model of WM, the embedded-processes model, was suggested by
Cowan (e.g., Cowan et al., 2005). In this view, WM consists of hierarchically ar-
ranged entities: Long-term memory, the subset of activated long-term memory,
and the subset of activated long-memory that is in the focus of attention. The
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focus of attention is capacity-limited (Cowan, 2001). As Cowan et al. (2005) men-
tion, in addition to the voluntary control of attention, the scope of attention is a
decisive factor. In the view of Cowan, simultaneous storage and processing is
not required to build a WM task; rather, the number of elements that can be held
in the focus of attention, that is, the scope of attention, is of interest. Indeed,
Cowan et al. (2005) could show that tasks measuring the scope of attention, i.e.,
tasks without a storage component, were highly correlated with higher intellec-
tual functioning, as predicted by the embedded-process model. Similar results
as those reported by Cowan et al. (2005) were obtained by Oberauer, Süß, Wil-
helm, and Wittmann (2008) and Krumm et al. (2009). Oberauer (2002) elaborated
on Cowan’s view, assuming that the ability to form temporary bindings between
pieces of information is the key factor for the importance of WM in higher cogni-
tion.

To summarize, WM has generally been conceptualized as a limited-capacity
system for the simultaneous storage and manipulation of information. However,
the theories described above make different predictions pertaining to the essence
of WM. Whereas the multiple-component model and the view of controlled at-
tention postulate that simultaneous storage and processing are of paramount im-
portance for measuring WM capacity, the embedded-processes model assumes
that it is the scope of attention that is the most decisive factor. Further, whereas
STM and WM are perceived as different constructs in some theories (multiple-
component model, controlled attention model), others do not clearly differentiate
between these two (Cowan et al., 2005; Unsworth & Engle, 2007a). More research
is needed in this area to clarify these issues.

1.2 Reasoning and WM in children

A large variety of reasoning tests exists within the literature. Factor-analyzing
a wide range of published studies, Carroll (1993) suggested that reasoning con-
sists of three different factors, induction, deduction, and quantitative reasoning.
However, Carroll (1993) mentions several possible objections to this structure of
reasoning, such as the fact that many reasoning tests involve language, quantita-
tive, or spatial skills to an unknown degree. Wilhelm (2005) found that a model
focusing on task content factors (verbal, figural, or spatial material) was more
successful in explaining the pattern of correlations between reasoning tests than
other models focusing on process-related differentiations.
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Only relatively few studies have investigated the relationship between WM
and reasoning in children. For example, de Jong and Das-Smaal (1995) investi-
gated the relationship of WM, fluid intelligence (verbal and figural reasoning),
scholastic achievement, and processing speed in a sample of N = 2,222 9-year-old
students. These authors showed that WM and fluid intelligence correlated at r
= .66 in younger children. In another study (de Jonge & de Jong, 1996), children
from fourth to sixth grade were investigated, in which WM and reasoning factors
correlated at r = .49 at the latent level. A similar result was reported by Swanson
(2008), who found that fluid intelligence and WM factors correlated at r = .54, and
that WM, in contrast to STM, remained a significant predictor of fluid intelligence
even when the effect of age, processing speed, and other constructs was statisti-
cally controlled for. Tillman, Nyberg, and Bohlin (2008), testing children from
a broader age range (6 to 13 years old), reported correlations of reasoning with
verbal WM and visuospatial WM r = .35 and r = .28, respectively. In Hutton and
Towse (2001), who investigated children 8 to 11 years old, WM and STM showed
similar correlations with number skills (r = .33 vs. r = .38) and fluid intelligence
(r = .36 vs. r = .35), respectively. Results from other studies with children fall
into a similar range (Andersson, 2008; Bayliss, Jarrold, Gunn, & Baddeley, 2003).
All of these studies investigated relationships between constructs based on sum
scores of single tests, using either zero-order correlations, multiple regression, or
structural equation modeling. This can give valuable insights into the nomoth-
etic framework of cognitive abilities in children, and more such ”macroscopic”
research with multiple measures of WM, STM, and reasoning is clearly necessary
in samples of children in order to establish firm results.

However, often no systematic design of reasoning or WM items, based on
prior cognitive theory, was implemented and statistically analyzed. Hence, pos-
tulated cognitive processes during item solving were usually not explicitly tested
or modeled, which lies at the heart of construct validity (Borsboom, Mellenbergh,
& van Heerden, 2004). In this thesis, an attempt was made to statistically model
reasoning processes at the level of single items, using item response theory (IRT)
models. Test design was connected with established theories of reasoning and
cognitive complexity, allowing a systematic evaluation of these theories, and pro-
viding new insights into reasoning processes in children.
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1.3 Outline

As mentioned above, there is a paucity of results on the intricate relationships of
WM and STM with reasoning and other facets of intelligence in children. Chapter
2 reports results from a macroscopic study in which several research questions are
pursued. First of all, the question of whether WM is domain-specific or domain-
general has not yet been settled, especially with respect to children. Secondly, it is
yet unclear whether classical measures of WM are measurement invariant across
age. Thirdly, contradictory predictions of WM theories exist with respect to the
structure of WM tasks: Is storage and processing really necessary, or do WM
tasks without a processing component load on the same factor as complex span
tasks? Finally, the relative contributions of WM and STM to fluid and crystallized
intelligence are evaluated.

Chapter 3 focuses on a systematic analysis of algebraic reasoning in chil-
dren using a bivariate mixed IRT model. A computer-based algebra test was
systematically designed such that an assessment of the effects of relevant cog-
nitive processes was possible. For example, the effects of storing intermediate
results during algebraic computations was analyzed. An IRT model developed
by Klein Entink, Kuhn, Hornke, and Fox (2009) was utilized to simultaneously
analyze accuracy and response time data in order to obtain a broader picture of
solution processes. The model developed by Klein Entink et al. (2009) was ex-
tended by including person-level covariates as well as theoretically interesting
cross-level interactions between item and person characteristics.

In Chapter 4, a theory of cognitive complexity, relational complexity theory
(Halford, Wilson, & Phillips, 1998), was evaluated. A figural reasoning test was
designed based on prior complexity specifications. In order to assess basic tenets
of the theory, a host of increasingly complex IRT models was used, each shedding
light on the hypotheses of interest. Further, the effect of WM on basic reasoning
processes was modeled at the item level, thus providing a more detailed and fine-
grained picture of the cognitive processes involved.

This thesis concludes with a discussion of results and some suggestions for
future research.



2 Controlled attention and storage, after all? An inves-

tigation of the relationship between working mem-

ory, short-term memory, and intelligence in children

Summary. Working memory (WM) has received considerable attention in psychological research,
a core finding being a close relationship between WM and measures of complex cognition. How-
ever, only a limited amount of studies investigated this relationship in samples of children. This
study explored the contribution of storage-and-processing tasks (WM), a measure of the scope of
attention based on Cowan et al. [Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S.,
Hismjatullina, A., et al. (2005). On the capacity of attention: Its estimation and its role in working
memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.], and short-term memory
(STM) tasks of supraspan length to 275 (8 to 13 years old) school children’s fluid and crystal-
lized intelligence. The results showed that a two-factor structure of memory, consisting of a WM
(storage-and-processing as well as scope of attention tasks) and STM, was comparable across age
groups. WM was a strong predictor of fluid (Gf) and crystallized (Gc) intelligence both when
modeled separately and when modeled as a residual factor controlling for STM variance. Fur-
ther, STM interacted with age and was unrelated to Gf in children older than 11 years, whereas
the effect of WM on Gc was consistently mediated by STM. The results suggest that STM and
WM are separable but highly-related constructs, secondary-memory processes (e.g., search and
retrieval) along with controlled attention are hallmark predictors of intelligence in children, and
STM effects on Gf are moderated by age.

2.1 Introduction

Working memory (WM) has been commonly referred to as a processing resource
of limited capacity that enables the storage and simultaneous manipulation of
information (Baddeley, 1986; Engle, Tuholski, Laughlin, & Conway, 1999). That
is, WM has traditionally been measured with complex span tasks that consist of a
storage and a processing component (Oberauer, 2005c). In contrast, short-term
memory (STM) is viewed as the ability to keep a limited amount of informa-
tion in a passive storage without processing the same or additional information
(Just & Carpenter, 1992; Unsworth & Engle, 2007b). STM is usually measured by
simple span tasks. Numerous studies have provided evidence for a close relation-
ship between WM and intelligence, scholastic achievement, and learning (e.g.,
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Bayliss, Jarrold, Gunn, & Baddeley, 2003; Colom, Abad, Quiroga, Shih, & Flores-
Mendoza, 2008; de Jong & Das-Smaal, 1995; Engle et al., 1999; Hitch, Towse,
& Hutton, 2001; Gathercole, Lamont, & Alloway, 2006; Kuhn & Holling, 2009;
Kyllonen & Christal, 1990; Krumm, Ziegler, & Buehner, 2008; Süß, Oberauer,
Wittmann, Wilhelm, & Schulze, 2002; Swanson, 2008), whereas evidence for the
predictive power of STM for the latter constructs is less unanimous (Ackerman,
Beier, & Boyle, 2005; Unsworth & Engle, 2007b).

Recently, several authors suggested that the measurement of WM need not
be confined to complex span tasks, but that tasks without a processing component
can measure WM capacity as well (Cowan et al., 2005; Haarmann, Davelaar, &
Usher, 2003; Oberauer, 1993). For example, Cowan et al. (2005) argue that the
prevention of rehearsal and grouping processes is the central aspect of successful
WM measures, which does not necessarily imply a processing task. Cowan et
al. (2005) could show that complex span tasks as well as tasks tapping the scope
of attention (i.e., tasks without a processing component) both loaded on a single
WM factor which correlated highly with a latent intelligence factor, g (r = .78).
However, the relationship of WM and g with STM at the latent level was not
investigated by these authors.

2.1.1 The distinction between WM and STM

Starting with Daneman and Carpenter (1980), several studies have shown that
in adult participants, complex span tasks correlate more highly with measures
of higher order cognition than simple span tasks (e.g., Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002; Daneman & Merikle, 1996; Engle et al., 1999). For
example, although Engle et al. (1999) reported a strong correlation between STM
and WM factors (r = .68), a two-factor model fit their data better than a one-factor
model. Furthermore, they found that after controlling for STM variance in the
WM factor, the WM residual was still significantly correlated with measures of
fluid intelligence. In contrast, the STM residual was no longer significantly re-
lated to fluid intelligence when controlling for WM variance. According to Engle
et al. (1999), the residual WM variance corresponds to controlled attention, a cen-
tral executive component which is closely related to fluid intelligence. A similar
result was obtained by Conway et al. (2002), who reported a standardized path
coefficient of .60 between a residual WM factor and fluid intelligence, but no sig-
nificant correlation between STM and fluid intelligence. In a related study with 7-
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year-old children, STM measures predicted reading comprehension or arithmetic
ability only when they were entered into a regression equation prior to WM tasks
(Leather & Henry, 1994).

However, several other studies have found that simple span tasks correlate
substantially and nearly as well as complex span tasks with higher order cogni-
tion (Colom, Rebollo, Abad, & Shih, 2006; Colom et al., 2008; Kane et al., 2004;
Mogle, Lovett, Stawski, & Sliwinski, 2008; Shah & Miyake, 1996; Tillman, Ny-
berg, & Bohlin, 2008; Unsworth & Engle, 2006). Recently, Ackerman et al. (2005)
reported a meta-analytic correlation of g and a WM factor of r = .50, whereas the
correlation was r = .49 for g and a STM factor. Further, Kane et al. (2004) report
a correlation of r = .54 between a spatial simple span factor and fluid intelligence
which was slightly higher than the latent correlation of fluid intelligence with ex-
ecutive attention (cf. Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). This
finding is in line with the results by Colom et al. (2008) who could show that
WM was not a significant predictor of g when conceptualized as a residual factor
beyond STM.

An interesting finding was reported by Unsworth and Engle (2006) who
found that whereas complex span tasks of all list lengths correlated substantially
with fluid intelligence, the same was true for simple span tasks only when the
number of items to be retained exceeded four. Interestingly, humans can only
keep up to four entities in mind at the same time (Cowan, 2001). This leads to the
differentiation of primary memory (PM) from secondary memory (SM; cf. James,
1890). The purpose of PM is to maintain a distinct number of separate rep-
resentations active for ongoing processing by continuously allocating attention
(Unsworth & Engle, 2007a). In contrast, items that have been displaced from PM
must be retrieved from SM, which requires a cue-dependent effortful search pro-
cess that is vulnerable to interference (Lustig, May, & Hasher, 2001; Oberauer &
Lewandowsky, 2008). SM can be measured, for example, by having subjects learn
lists of supraspan length, whereas measures of PM rather capture the scope of im-
mediate memory without activating storage or retrieval processes. In short, PM
refers to a maintenance component of memory, whereas SM refers to search and
retrieval processes (Unsworth & Engle, 2007a). However, it should be noted that
simple and complex span tasks both measure PM and SM, albeit to a differing
degree. As stated by Unsworth and Engle (2006, p. 70), ”The main difference is
that the majority of items in complex spans are displaced from primary memory
and must be retrieved from secondary memory, whereas for simple spans many
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items can be recalled from primary memory”. It can therefore plausibly be as-
sumed that in order to tap SM in complex and simple span tasks to a comparable
degree, tasks of supraspan length should be used to measure STM.

Based on these ideas, Mogle et al. (2008) recently investigated to which
degree PM, SM, WM, and processing speed predicted fluid intelligence. In a se-
quence of nested structural equation models, Mogle et al. (2008) found that WM
played no significant role in predicting intelligence when tasks measuring SM
were in the model. These authors provide evidence that SM and to a lesser de-
gree, PM are sufficient predictors for fluid intelligence, rendering both WM and
processing speed insignificant. Further, processing speed could be dropped as an
insignificant predictor in the case of the full model as well (cf. Kane, Poole, Tuhol-
ski, & Engle, 2006). These results lead to a theoretically parsimonious and power-
ful explanation for the varying correlations of STM with fluid intelligence across
the literature: STM tasks are especially good predictors of higher level cognition
when performance is measured using supraspan lists and the role of rehearsal is
reduced, that is, STM tasks are good predictors to the degree they capture SM.
In line with these results, Maybery and Do (2003) found that verbal and spatial
supraspan STM tasks substantially correlated with mathematical ability in a sam-
ple of children (r = .50 and .53, respectively). Hence, STM tasks should predict
higher level cognition to a similar degree as WM tasks, and a residual WM factor
should remain an insignificant predictor. However, tasks that primarily capture
PM should be predictive of intelligence as well albeit to a lesser degree than SM
tasks (e.g., antisaccade tasks; Unsworth, Schrock, & Engle, 2004).

STM measures commonly applied in the literature are either in free-recall or
recognition format. STM measures that require recognition can further be differ-
entiated according to whether they measure recollection or familiarity (Oberauer,
2005b). Familiarity measures require subjects to indicate whether a target word
or stimulus occurred in a previously-shown list to be learned. In contrast, recol-
lection measures require bindings between objects to be remembered and specific
cues (e.g., spatial cues), that is, target words or objects have to be remembered in
context. As shown by Oberauer (2005b), recollection measures correlated highly
with WM, whereas familiarity measures did not. Recognition measures of STM
can therefore be considered good operationalizations of SM in case they require
learning supraspan tasks and have a recall or recognition format.
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2.1.2 WM and STM in children

Several possible explanations have been suggested for the higher WM capacity in
older as compared to younger children, ranging from higher processing speed of
diverse WM components (Bayliss, Jarrold, Baddeley, Gunn, & Leigh, 2005; Case,
Kurland, & Goldberg, 1982; Hale, Bronik, & Fry, 1997; Towse, Hitch, & Hutton,
1998) over better inhibition of irrelevant information (Swanson & Howell, 2001)
to more efficient or larger storage capabilities in older children (Bayliss et al.,
2005; Cowan et al., 2005). The latter bear on the relationship of STM with WM
in children, which is less unequivocal. For example, Hutton and Towse (2001)
found that the correlations of WM and STM measures with measures of reading,
number skills, and fluid intelligence, respectively, were of the same magnitude in
a sample of children from 8 to 11 years. Further, STM and WM measures corre-
lated at r = .76. In contrast, Alloway, Gathercole, and Pickering (2006) reported
results that showed a very high correlation between WM and visuo-spatial STM
factors at ages 4 to 6 (r = .97) that dropped to r = .71 at ages 9 to 11. That is, in
the parlance of the WM model proposed by Baddeley (1986), tasks relating to the
phonological loop (i.e., STM) and tasks relating to executive function (i.e., WM)
are not clearly separable in young children. Evidence reported by Swanson (2008)
supported a dissociation between STM and WM factors in children 6 to 9 years
old, as a model consisting of separate WM and STM factors showed a good fit. A
possible reason for these findings might reside in the fact that because the phono-
logical loop is more developed in younger children relative to their executive sys-
tem and because the memory span of younger children is shorter, possibly due
to lack of rehearsal (Alloway et al., 2006; Flavell, Beach, & Chinsky, 1966; Riggs,
McTaggart, Simpson, & Freeman, 2006), they are required to access SM resources
earlier (i.e., in tasks with fewer items to be remembered) than older children. In
the latter case, STM tasks should be good predictors of higher cognitive func-
tioning and WM should not explain much additional variance. In older children,
however, STM and WM can be seen as separable constructs, and because older
children have higher STM spans and a better executive system, the importance of
STM relative to WM can be expected to decrease. In line with these assumptions,
Bayliss et al. (2003) found no significant relationship between a residual WM fac-
tor and scores on the Raven Progressive Matrices Test in a sample of children 7 to
9 years old. In contrast, however, Tillman et al. (2008) reported significant corre-
lations between WM residuals (controlling for STM) and fluid intelligence, both
for the verbal and visuo-spatial domain. Similarly, Swanson (2008) found that
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when controlling for STM, a residual WM factor was still an important predictor
for fluid intelligence. Apparently, results in samples of children have hitherto not
provided unequivocal results.

2.1.3 Theories of WM

Several different conceptualizations of WM have been suggested in the litera-
ture. Apart from the long-standing model introduced by Baddeley (1986), two
approaches have been influential in the literature. The first one views controlled at-
tention as a central component of WM (e.g., Heitz, Unsworth, & Engle, 2005; Kane,
Conway, Bleckley, & Engle, 2001). Controlled attention is defined as ”an ability
to effectively maintain stimulus, goal, or context information in an active, eas-
ily accessible state in the face of interference, to effectively inhibit goal-irrelevant
stimuli or responses” (Kane et al., 2001, p. 180). Consequently, proponents of this
approach define WM capacity as ”an ability reflecting the extent to which an indi-
vidual is able to control attention, particularly in situations involving interference
from competing information, activated representations, or task demands” (Heitz
et al., 2005, p. 64). In this view, complex span tasks mainly reflect the ability to
control attention, and therefore often show higher correlations with measures of
higher cognitive functioning than measures of different WM facets (e.g., Buehner,
Krumm, & Pick, 2005).

Another recent model views WM as the activated traces in long-term mem-
ory. Specifically, Cowan (2005) argues that the focus of attention, which is limited
to approximately four items (Cowan, 2001), corresponds to the current working
memory contents. The focus of attention, consisting of long-term memory ele-
ments that are highly activated, forms the first layer in this model. A second
layer is composed of moderately-activated elements in long-term memory that
can be retrieved into the focus of attention. The scope of attention refers to the
amount of information that can be kept in the focus of attention for immediate
retrieval. Individuals differ in the size of their scope of attention (Cowan et al.,
2005), which appears to be a relatively fixed parameter (Cowan, Chen, & Rouder,
2004; Oberauer, 2006; Oberauer & Bialkova, 2009; Scolari, Vogel, & Awh, 2008),
although it is subject to developmental constraints and therefore is smaller in
younger children than in older children or adults (Cowan et al., 2005; Cowan,
Naveh-Benjamin, Kilb, & Saults, 2006).

Because in contrast to long-term memory, the focus of attention is capacity-
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limited, it is crucial to obtain a measure of this capacity which forms a gateway
of cognitive processing. However, according to Cowan et al. (2005), complex
span tasks are not well-suited to measure the capacity of the focus of attention.
This is because it is not entirely clear what complex span task scores actually
represent. For example, subjects might not divide attention between the storage
and the processing task but instead switch between these tasks (e.g., Hitch et al.,
2001). In this case, the ability to switch attention would be a crucial factor. In
addition, different scoring methods for complex span tasks have been suggested,
often leading to substantially different conclusions concerning their relationship
with STM and intelligence (e.g., Conway et al., 2005; Unsworth & Engle, 2007b).
Further, it is possible that the degree of proactive interference by the time that
long lists are being presented plays a decisive role and not a general WM capac-
ity (Lustig et al., 2001). Finally, and perhaps most importantly, complex span task
scores form a mixture of processing and storage components, and it is entirely
plausible that subjects with a high storage capacity but a lower degree of con-
trolled attention achieve the same score as subjects with a high ability to control
attention but lower storage capability. Complex span tasks therefore share some
interpretational problems with other dual tasks (Pashler, 1994).

According to Cowan et al. (2005), therefore, WM tasks that neither require a
processing subtask nor allow for rehearsal can be good measures of the scope of
attention. These authors used a visual array comparison task task based on Luck
and Vogel (1997). In that task, subjects had to compare two successively-shown
arrays of squares of different color, and to indicate whether a target square in the
second array had changed its color or not. Several papers have demonstrated
the utility of this paradigm for the determination of individual capacity limits in
the scope of attention in both children and adults (Cowan, Fristoe, Elliott, Brun-
ner, & Saults, 2006; Cowan, Naveh-Benjamin, et al., 2006; Vogel, McCollough, &
Machizawa, 2005; Wheeler & Treisman, 2002). Further, the work by Cowan et al.
(2005) lends support to the view that this task, along with other tasks capturing
the focus of attention, is substantially correlated with intelligence.

How can tasks measuring the scope of attention be reconciled with the
framework of PM and SM recently advanced by Unsworth and Engle (2007a)?
Because the scope of attention refers to a limited amount of highly-activated long-
term memory traces, one might suppose that the visual array comparison task
described above measures primarily PM. However, according to Cowan et al.
(2005), tasks measuring the scope of attention, including a visual array compari-
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son task, load on a single factor together with complex span tasks. A related find-
ing by Kane et al. (2004) supports this result, as these authors found a very high
correlation (r = .89) between a spatial WM and a spatial STM factor (cf. Miyake
et al., 2001). In a sample of 4- to 6-year old children, Alloway et al. (2006) even
report a correlation of r = .97 between visuospatial STM and WM tasks. Because
rehearsal is difficult in visual array comparison tasks, they further conceptually
differ from classical simple span tasks. Hence, it is of theoretical interest to lo-
cate the scope of attention in latent variable models including both complex span
tasks as well as simple span tasks of supraspan length. The scope of attention
should be statistically separable from complex and simple span tasks in case it
measures primarily PM.

In contrast, simple and complex spans capture both PM and SM, although
to varying degrees (Unsworth & Engle, 2007a): Whereas simple supraspan tasks
are good indicators of SM in the face of potential memory overload, complex span
tasks are more concerned with the control of attention and inhibition of irrelevant
(processing) information while storing items in SM. That is, in simple span tasks
of supraspan length, memory content is displaced from PM due to information
overload, whereas in complex span tasks, memory content is displaced to SM due
to the necessity of handling a secondary processing task. Apart from the work by
Mogle et al. (2008), most studies used classical simple span tasks to measure
STM, thereby potentially lowering its impact on general cognitive functioning
(Unsworth & Engle, 2007b). A core question in this context therefore pertains to
the relationship between (a) the limit of the scope of attention, (b) the ability to
conduct cue-directed retrieval and (c) the ability to control attention as well as
inhibit irrelevant information, respectively, with general intelligence. Further, it
remains unclear to which degree potential differences in these relationships are
affected by age in children. The studies by Mogle et al. (2008) and Cowan et
al. (2005) provide some first results concerning this issue. However, Mogle et al.
(2008) investigated a highly-selected adult sample, whereas Cowan et al. (2005,
Experiment 2) did not include any supraspan STM measure in their analysis. In
this study, a sample of children will be investigated cross-sectionally to provide
some answers to the aforementioned questions.

A final question pertains to the domain-specificity or generality of WM.
Whereas the domain-specific WM model assumes different WM factors across
content domains (e.g., verbal/numeric vs. spatial), the domain-general model
postulates a single WM factor that spans across content domains. Several re-
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searchers have found support for a domain-general WM model (e.g., Ackerman,
Beier, & Boyle, 2002; Colom, Flores-Mendoza, & Rebollo, 2003; Conway et al.,
2002; de Jonge & de Jong, 1996; Kane et al., 2004). However, some results sup-
port the notion of separate factors of WM that are highly correlated. For example,
Jarvis and Gathercole (2003), testing the WM model suggested by Baddeley (1986)
in a sample of 11 and 14-year-old children, found evidence for a verbal and non-
verbal WM factor that were highly correlated (r = .53 in younger children, r = .60
in older children, respectively). In the study by Süß et al. (2002), a visuospatial
and a verbal-numerical WM factor correlated at r = .80. In this context, Engle et
al. (1999) suggested a hierarchical model of WM that assumes both a domain-
general factor as well as domain-specific residual factors. It should be noted that
numerous studies supporting the domain-specificity of WM used relatively ho-
mogeneous samples, which can result in overfactorization (Shah & Miyake, 1996).
In contrast, samples representing a broader range of the population (e.g., Kane et
al., 2004) rather found support for a more domain-general model of WM.

2.1.4 Reasoning, fluid intelligence, and crystallized intelligence

Since the early 20th century, intelligence as a psychological construct has been
fractionated into different factors. Two recent theories of the structure of in-
telligence have been of key importance, the three-stratum-theory proposed by
Carroll (1993) as well as the Cattell-Horn Gf-Gc theory (e.g., Horn & Blankson,
2005). These theories are very similar in nature and have recently been merged
in the Cattell-Horn-Carroll (CHC) theory approach (McGrew, 2005). CHC the-
ory assumes a hierarchically-structured model of intelligence where the g factor
is located at the highest and most general level. Below the g factor, broad ability
factors like Fluid reasoning (Gf) or Comprehension-knowledge (Gc) are located.
Gf is commonly defined as the ability to reason under novel conditions, whereas
Gc is related to academic achievement or cultural knowledge based on already
learned knowledge (cf. Haavisto & Lehto, 2004). Both of these factors, especially
Gf, have been shown to be core components of human intelligence (Marshalek,
Lohman, & Snow, 1983; Undheim & Gustafsson, 1987). Although conceptually
distinct, Gf and Gc are statistically often closely related, i.e., they could not be
statistically separated in several analyses (Carroll, 1993).

Inductive and deductive reasoning are generally considered the hallmark
indicators of Gf. Whereas in inductive reasoning, participants are supposed to
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detect rules, patterns or similarities in test items and successfully apply these
rules, deductive reasoning requires participants to reason from premises to con-
clusions that properly and necessarily follow from them.

Harman (1999) assumes people reason in an essentially nondeductive way,
and utilize the same reasoning processes on both inductive and deductive rea-
soning problems. Taking a related approach, Johnson-Laird (1994) has extended
the mental models account, which is usually applied to deductive problems, to
a range of inductive problems. In addition, several researchers have proposed
accounts that focus mainly on reasoning about inductive arguments, and have
described deductively correct arguments as special cases (e.g., Osherson, Smith,
Wilkie, Lopez, & Shafir, 1990).

In contrast, other researchers have emphasized a distinction between two
different reasoning systems (Sloman, 1996; Stanovich, 1999). Such two-process
accounts assume one system that is relatively fast but heavily influenced by con-
text and associations, whereas the other is more deliberative, analytic, and rule-
based. Although these two systems do not necessarily correspond directly to
induction and deduction, it is quite plausible to assume that induction would de-
pend more on the first system, whereas deduction is heavily affected by the sec-
ond system. Recent neuropsychological evidence, based on brain imaging, gives
support for two anatomically separate systems of reasoning (Goel, Gold, Kapur,
& Houle, 1997; Parsons & Osherson, 2001). Interestingly, these two-process ac-
counts of reasoning are conceptually mirrored in the familiarity and recollection
systems in memory research, where only recollection is substantially related to
WM (Oberauer, 2005a; Yonelinas, 2002).

Shye (1988), reanalyzing data by Colberg, Nester, and Trattner (1985), could
show that rule-application (i.e., deductive reasoning) and rule-inference (i.e., in-
ductive reasoning) were clearly separable in a MDS analysis. However, a subse-
quent study could not separate inductive from deductive reasoning using latent
variable models (Wilhelm, 2005). Rather, a confirmatory factor analysis (CFA)
model based on separated content factors (figural, numerical, verbal) provided
the best fit. In contrast to these results, Heit and Rotello (2005) provided results
supportive of separate systems for inductive and deductive reasoning. Although
both inductive and deductive reasoning are clearly central to Gf, it is therefore an
open question whether they can be factorially distinguished or not.

Further, the magnitude of specific links between intelligence and memory
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factors are of interest. Klauer, Stegmaier, and Meiser (1997), for example, utilized
a dual-task paradigm to study disruptive effects of different secondary tasks on
spatial and propositional reasoning, respectively, as primary tasks. These authors
found that secondary tasks tapping the central executive (e.g., random number
generation) were disruptive for both spatial and propositional reasoning. How-
ever, they found that the disruptive effect of a visual tracking task was only
present for spatial reasoning but not for propositional reasoning. These results
support the notion that reasoning (i.e., Gf) heavily depends on domain-free exec-
utive functioning, but less so on domain-specific storage. In contrast, because Gc
represents academic achievement or cultural knowledge, it can be hypothesized
that this factor depends on storage or maintenance of known, activated informa-
tion to a much larger degree than on executive functioning (cf. Swanson, 2008).
Further, the relationship between Gf and Gc can be assumed to be lower in older
children because children’s knowledge base tends to be standardized by school
curricula (Schweizer & Koch, 2002). However, it can be expected that in children,
STM generally plays a prominent role in predicting performance on intelligence
tests, whereas in adults, WM is the decisive factor (Hutton & Towse, 2001).

2.1.5 Issues of measurement invariance

Although numerous studies have examined developmental differences in the
structure of WM and STM in children, only few have investigated whether the
hypothesized models exhibited measurement invariance (MI) across age groups.
MI refers to the extent to which different test scores have the same meaning
across groups of examinees (Gregorich, 2006). An investigation of MI can reveal
whether a test is systematically biased against a specific subpopulation of partici-
pants, or whether an array of tests refers to the same latent variables, to the same
degree, across groups. Research questions in this context might be, for example,
whether a possible advantage of older children compared to younger ones on
specific WM test scores is caused by a higher latent WM capacity or unrelated
measurement artifacts (e.g., test sophistication). Assessing MI, therefore, helps to
decide whether observed test scores can be attributed to latent (factor) scores or
must be seen as being caused by unrelated sources (Wicherts, Dolan, & Hessen,
2005). Further, the results of fitting a CFA model to the whole sample under in-
vestigation can mask differences in the factor structures of the subgroups under
investigation (Meredith & Teresi, 2006). Therefore, by investigating MI and using
multiple-groups CFA, biased results might be avoided.
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MI is usually evaluated by fitting a sequence of increasingly restrictive CFA
models, with strict measurement invariance seen as the ideal for cross-group
comparisons (Lubke & Dolan, 2003; Meredith, 1993). Strict measurement in-
variance requires equal factor loadings, latent intercepts, and error variances
across groups. In order to compare latent means, however, weaker forms of
measurement invariance are sometimes deemed acceptable (Thompson & Green,
2006). Latent mean comparisons commonly provide a higher statistical power
than MANOVA comparisons based on manifest indicators (Yuan & Bentler, 2006).
Further, effect sizes similar to those suggested by Cohen (1988) have been devel-
oped for latent mean comparisons (Hancock, 2001), which are especially helpful
because classical goodness-of-fit indexes are highly sensitive to sample size in
latent mean comparisons (Fan & Sivo, 2009).

From a conceptual point of view, MI analyses are highly attractive because
they enable the researcher to constrain latent variable variances and covariances
between the groups under investigation (Vandenberg & Lance, 2000). This speaks
to the comparability of relations among latent variables. It should be investi-
gated, for example, whether the relationship between WM and STM measures is
the same in younger and older children, or whether it substantially differs (Al-
loway et al., 2006). MI analyses can easily implement and test such theoretical
considerations.

Only few studies investigated the MI of hypothesized WM and STM models
in children. Gathercole, Pickering, Ambridge, and Wearing (2004) investigated
whether a WM model based on Baddeley (1986) comprising three latent factors
(executive function, phonological loop, visuo-spatial sketchpad) was invariant
across four age groups (6 to 15 years old) in children. They found that constrain-
ing selected factor loadings and covariances to be equal across age groups re-
sulted in a well-fitting model. Further, Swanson (2008) investigated whether a
model with one STM factor and two WM factors (verbal and visual) was invari-
ant across two age groups (6 to 7 vs. 8 to 9 years old) in children. Swanson (2008)
constrained factor loadings as well as covariances to be equal, and found a sat-
isfactory fit. However, both studies only imposed relatively weak constraints on
their respective latent factor models, leaving aside constraints on error covari-
ances as well as latent intercepts. This constitutes a possibly biasing factor. A
systematic investigation of MI (e.g., Vandenberg & Lance, 2000; Wicherts et al.,
2004) of the memory structure in children differing in age therefore seems neces-
sary.
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2.1.6 Objectives

The present study pursues three main goals. Firstly, we want to shed light on the
structure of WM, STM, and the scope of attention, respectively, as well as intel-
ligence factors in a sample of children by means of latent variable models. Al-
though several large-scale investigations have provided detailed results in adult
samples (e.g., Colom et al., 2008; Engle et al., 1999; Kane et al., 2004; Süß et al.,
2002), data for samples of children are still sparse. Secondly, it is our goal to
clarify whether WM, STM, and the scope of attention are constant predictors of
intelligence factors, or whether these constructs are differentially related. For
example, while reasoning factors (Gf) might heavily depend on WM, it is con-
ceivable that Gc is more dependent on STM (Swanson, 2008). And thirdly, we are
concerned with the stability of cognitive structure across age; that is, we investi-
gate MI of our measurement models across different age groups, and we check
whether age interacts with one of these variables. We expect that in the sample
investigated here, MI will hold across subgroups, while latent means will signif-
icantly differ, i.e. we expect no qualitative but quantitative (mean) differences
across subgroups (Gathercole et al., 2004).

2.2 Method

2.2.1 Subjects

Two-hundred seventy-five children participated in this study, of whom 59 chil-
dren visited primary school, whereas the remaining 216 children went to sec-
ondary schools in various regions of Germany. Mean age was 10;8 years (SD =
1.07, range: 8;0-13;4). 49.6% of the participants were female. Parental consent
was obtained for all participants prior to testing. Few participants (n = 18) in-
dicated German was not their first language, although all of these participants
spoke German since they were 3 years old.

2.2.2 WM tasks

Three types of computer-based complex span tasks were used, one comprising
verbal material, one with numerical and one with visuo-spatial material. The
three tasks used were Verbal Span, Spatial Working Memory, and Computation
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Span, respectively. The complex span tasks used here were based on Vock and
Holling (2008). These authors modified several complex span tasks from the
literature (e.g., Daneman & Carpenter, 1980; Oberauer, Süß, Schulze, Wilhelm,
& Wittmann, 2000) concerning presentation times, item complexity, and instruc-
tions to make them more appropriate for children 8 to 13 years old. Thus, Vock
and Holling (2008) were able to design a WM test battery with excellent psycho-
metric properties for children.

Each complex span task commenced with between two to three simple prac-
tice tasks that provided subjects with immediate feedback. All subjects had to
repeat the practice tasks until each had been solved correctly. This procedure was
implemented to ensure that subjects fully understood the instructions before the
testing phase began, and to become acquainted with the testing procedure.

At this point, a few words with respect to scoring of WM and STM tasks
are appropriate. Several papers have investigated the effects of different scor-
ing methods for WM and STM tasks on psychometric properties and relations
to other constructs (Conway et al., 2005; Friedman & Miyake, 2005; Unsworth
& Engle, 2007b). WM tasks generally comprise several items and subitems. For
example, in this study, Computation Span comprised 10 items, each consisting of
three to seven equations displayed on the screen (subitems). The subitems (in the
case of Computation Span, the results of the equations) were the contents that had
to be remembered. Whereas absolute scoring procedures require all subitems to
be remembered correctly for an item to be scored 1, partial scoring methods com-
pute the item score as the proportion of subitems remembered correctly. That is,
a subject remembering three out of four items correctly on the Computation Span
task would score 0 using absolute scoring and 0.75 using partial scoring. In par-
tial scoring, the total score of a WM task corresponds to the mean of all partial
scores across all items. It has been shown that partial scoring results in better
psychometric properties and higher correlations with measures of fluid intelli-
gence, presumably because much information especially from long list lengths is
retained that is lost when using absolute scoring procedures (Unsworth & Engle,
2007b). In this study, therefore, the partial scoring procedure was used for all WM
tasks.
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Verbal Span (VS)

This WM task (Oberauer et al., 2000; Vock & Holling, 2008) consisted of two dif-
ferent parts pertaining to storage and processing. Participants first had to mem-
orize a list of words presented simultaneously on the screen (presentation time
6 s). List length in this storage task varied between three to six words. Then,
between two and three verbal decision tasks followed in which participants had
to respond as quickly as possible. In these processing tasks, participants were
supposed to decide which of four words displayed in each corner of the screen
stood in a subconcept relation to the word shown in the center of the screen (e.g.,
”animal” - ”lion”). Finally, participants had to reproduce the learned words in
correct order. The task consisted of two practice items and 10 test items.

Spatial Working Memory (SWM)

Initially, this task was developed by Oberauer et al. (2000) as a spatial equiva-
lent to the Reading Span task (Daneman & Carpenter, 1980). Participants had
to memorize simple chessboard-like 3 × 3-patterns (storage task). However, the
patterns had to be memorized in a rotated fashion, rotated either 90◦ clockwise
or counterclockwise (processing task). That is, before the patterns were shown
successively for 4 s each, an arrow indicated whether patterns had to be men-
tally rotated to the left or to the right. Finally, participants had to successively
reproduce the memorized patterns into empty 3 × 3 matrices on the screen. The
task consisted of 13 items with between one to four patterns. Three practice items
preceded the testing phase.

Computation Span (CS)

Participants were sequentially shown a series of simple, single-digit equations
that included either an addition or a subtraction (e.g., 4 + 3 = 8). Each equation
was shown for 5 s. Approximately half of the equations were correct and half
were incorrect. The processing task consisted in deciding whether the equation
shown on screen was correct or incorrect. Further, all shown equation results
had to be memorized irrespective of whether they were correct or not. After all
equations had been shown, subjects were presented with an answer screen and
successively clicked the to-be-remembered equation results. Each item consisted
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of between three to seven equations, resulting in 10 test items. Two practice items
were administered before the testing phase.

2.2.3 STM tasks

In order to measure STM capacity, we selected three subtests from the Berliner
Intelligenzstruktur-Test für Jugendliche: Begabungs- und Hochbegabungsdiag-
nostik (BIS-HB; Jäger et al., 2005). The BIS-HB is based on a faceted, well-replicated
model of intelligence comprising four operation facets (processing capacity, cre-
ativity, memory, and speed) as well as three content facets (verbal, figural, and
numerical; see Süß & Beauducel, 2005). We selected one subtest that was repre-
sentative for each content area of the memory facet. All subtests required par-
ticipants to memorize stimuli lists of supraspan length, thereby heavily tapping
SM (Unsworth & Engle, 2007b). One of the subtests (verbal content) was in free-
recall format, whereas the other two (numerical and figural content) were recol-
lection measures. Recollection measures show higher correlations with WM than
familiarity measures (Oberauer, 2005a) and can be considered to be similar to
free-recall measures.

Verbal STM

In order to measure verbal STM, the subtest ”Meaningful text” (MT) was selected.
In this test, participants were required to read a short text consisting of five sim-
ple sentences with numerous bits of information. Participants were allowed to
memorize the text for one and a half minutes. After that, they had to turn the
page and write down the answers to 22 specific questions pertaining to the text
(e.g., ”What was the name of the main character?”). The test score was the num-
ber of questions answered correctly. Participants were granted two minutes for
answering the questions.

Figural STM

In this subtest, called ”Firm logos” (FM), participants were supposed to mem-
orize 20 firm logos, each of which had an individual border. One minute was
allowed to learn the combination of firm logos and logo-specific borders. After-
wards, participants turned the page, where under each firm logo, now shown
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without a border, four different border forms (distractors) were located. The goal
was to select the correct border belonging to each firm logo. The testing phase
was limited to 1.5 minutes.

Numerical STM

This subtest (”Pairs of numbers”, PN) required subjects to memorize 12 pairs
of numbers, the pairs being listed one below each other. One of the numbers
had two digits, the other one three, both being separated by a dash (e.g., 12 -
237). After two minutes, participants had to turn the page and select out of five
alternatives the correct three-digit number belonging to a previously-presented
two-digit number. The two-digit numbers were presented in a different order
than in the learning phase. The test score corresponded to the number of items
remembered correctly. The time limit for the recollection part of this subtest was
two minutes.

2.2.4 The scope of attention

In this study, the scope of attention was measured using a visual array compar-
ison task (VACT; cf. Luck & Vogel, 1997; Cowan et al., 2005). In this computer-
based task, participants first saw a red fixation cross for 500 ms in the center of
a grey 4 × 4-matrix on the screen. After that, a visual array of four, six, or eight
solid-colored, haphazardly-placed squares, representing set sizes of four (V4),
six (V6), and eight (V8), respectively, was displayed within the matrix. Set sizes
were randomly ordered across trials. The square colors used were red, blue, vi-
olet, green, yellow, black, and white. Care was taken that at least one color was
displayed twice in each initial visual array such that subjects had to memorize
both color and location of the squares (Cowan, Naveh-Benjamin, et al., 2006). On
half of the trials, the first visual array was displayed for 250 ms and for 500 ms
on the other half of the trials. This experimental condition was introduced be-
cause pretests had shown that 250 ms was too brief for some children and task
conditions to encode the visual information. After a blank interval, a second
visual array was displayed in which one of the squares was encircled. The partic-
ipants then had to decide whether the color of the encircled square had changed
in comparison to the first visual array or not. On 50% of the trials, the color of
the encircled square had changed. The length of the interstimulus interval was
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either 1 s, 2 s, or 4 s and equally distributed across trials to raise the difficulty
of the task. However, as reported by Cornelissen and Greenlee (2000), in visual
array comparison tasks even very complex stimuli show a half-life of about 3 s.
In their study, hit rates and false alarm rates were affected by the length of the
interstimulus interval, but they remained above chance level.

Three practice trials preceded 48 test trials, including an equal number of
trials for each set size. In order to obtain capacity estimates k for each set size, we
utilized the formula presented by Cowan (2001, p. 166), which provides relatively
stable results across set sizes. The formula is k = N ∗ (H + CR − 1), where H =
hit rate, CR = correct response rate andN = number of items (squares) presented.
The capacity estimates of a small portion of participants was below 1 (n = 9 for
set size 4, n = 41 for set size 6 and n = 33 for set size 8). These values were set to
1 as a lower bound for capacity.

2.2.5 Intelligence measures

In this study, eight measures tapping fluid and crystallized intelligence were
used. Six measures were indicators of Gf, whereas two captured Gc. Gf was
further decomposed into four tests measuring inductive reasoning and two tests
measuring deductive reasoning. All Gf measures consisted of figural content,
whereas Gc measures utilized verbal and numerical material, respectively. All
eight tests used number-correct scoring.

Inductive reasoning

In order to measure inductive reasoning, the four subtests from the Grundintel-
ligenztest Skala 2 (CFT 20; Weiß, 1998), a German adaptation of the Culture Fair
Intelligence Test, Scale 2 (Cattell, 1973), were utilized. The CFT 20 is a paper-and-
pencil test which provides high loadings on fluid intelligence (Cattell, 1968) and
has good psychometric properties.

Series completion (SC). Participants were supposed to complete a series of
three figural elements with a fourth one to be chosen from five distractors. This
subtest consisted of 12 items. The time limit was four minutes.

Classifications (CL). Each item consisted of five different figural objects. One
of these objects was unrelated to the four others and had to be selected as the cor-



2 Controlled attention and storage, after all? 25

rect answer. Four minutes were allowed to work on this subtest, which consisted
of 14 items.

Matrices (MA). Items consisted of 2 × 2 or 3 × 3 matrices containing geo-
metric figures. The bottom-right cell of each matrix was left empty. Participants
had to select the correct answer that completed the matrix out of five distractors.
Overall, 12 items were administered in three minutes.

Topologies (TP). On each item, a target square containing intersecting geo-
metric elements as well as one or more black dots located within these elements
was presented. To the right, five distractors containing similar geometric ele-
ments that were differently arrayed were shown. Participants had to select the
distractor in which a black dot might be placed such that the relationship between
the geometric elements and the black dot in the target square was conceptually
preserved. This subtest comprised eight items and had to be completed within
three minutes.

Deductive reasoning

As mentioned by Wilhelm (2005), only very few tests have been proposed in the
literature to measure deductive reasoning with figural content. In this study, we
developed two such measures based on the work by Birney, Halford, and An-
drews (2006) and Bouwmeester, Vermunt, and Sijtsma (2007).

Latin Square Task (LST). The LST is based on relational complexity theory
(Halford, Wilson, & Phillips, 1998), which holds that the number of relationships
to be processed is the key component of the difficulty of cognitive processes. By
providing a metric for cognitive complexity, it allows for a rule-based and theory-
driven test design. Birney et al. (2006) first presented the LST as a cognitive test
incorporating the principles of relational complexity theory. In the LST by Birney
et al. (2006), an incomplete 4×4 Latin Square was shown to the participant. Some
of the cells were filled with geometric figures, whereas some others were empty.
One of the empty cells contained a question mark, and the participant had to
select the correct geometric figure from a set of distractors. The only rule in the
test is that no geometric figure can occur more than once in each row or column.
In order to solve items from the LST, a varying number of intermediate steps has
to be carried out, each time storing intermediate results in memory. However,
the ability to adhere to the single pre-specified rule has to be kept in mind while
solving the test.
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The LST task designed in this study was administered by computer. It con-
sisted of four practice items, including immediate feedback, and 24 test items.
Participants could work on each test item for maximally one minute, after which
the next item appeared. As a modification of the task version by Birney et al.
(2006), the LST used here consisted of both 4 × 4 and 5 × 5 matrices, and it con-
tained four contradictory items that could not be solved unequivocally. In the lat-
ter case, participants had to click a crossed question-mark which was displayed
next to the other distractors located below the matrix on each item to indicate
they had detected the contradiction.

Transitive Reasoning Task (TRT). This computer-administered test was de-
signed based on the work by Bouwmeester et al. (2007) and could be solved by
using transitive reasoning (i.e., reasoning of the sort A > B,B > C ⇒ A > C). In
one condition, participants were first shown a box containing five adjacent bars
of different color. Initially, only two of the bars were fully displayed such that
their length was visible. The other three bars were partially covered such that
their color, but not their length was visible. In the second step, one of the bars
that had previously been fully visible was partially covered, whereas another bar
that was initially covered could be seen in full. This sequence was continued until
all bars had been seen in full length, although only two bars were shown in full
at each step. After the final step, all bars were partially covered, and two arrows
appeared below two of the bars, and an equal sign and a question mark appeared
to the right of the box. The task of the participant was to indicate which one of the
two bars was higher (arrows), whether the two bars were of equal length (equal
sign), or the answer was unknown (question mark). Four different constellations
of bars were tested sequentially on each item (i.e., the arrows appeared under
four different combinations of bars). That is, each TRT item consisted of four
subitems. Two of these subitems were measures of STM (i.e., the two bars had
previously been shown simultaneously), whereas two others were measures of
transitive reasoning (the two bars had not been shown simultaneously). In this
study, only the transitive reasoning subitems were used.

Another difficulty factor manipulated was memory load, in that the bars
were either ordered by length (e.g., largest bar to the left, smallest bar to the
right) or not. It was assumed that bars in ordered position are easier to remember.
Further, the presentation of two bars in each step of the task could be ordered or
unordered, that is, the bars are not shown in an ordered sequence from largest to
smallest, but in a disordered way. Again, disordered presentation was assumed
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to render items more difficult due to WM taxation. In addition, on some items,
only a box containing two bars was shown. The other three bars were hidden
from view. This manipulation required participants to construct a mental model
of the size of the bars without relying on the spatial cues provided in the other
conditions (e.g., red bar to the right). Finally, some items contained six bars, as
pretests had shown that items with three or four bars were too easy. All of these
experimental conditions were distributed in a balanced way across the test.

Two practice tasks with immediate feedback preceded 18 test items, i.e. a
maximum test score of 36 could be obtained. Each subitem was presented for 5
s. The time limit to answer each subitem was 5 s, after which the next subitem
appeared, or the next TRT item began.

Crystallized intelligence

In order to measure Gc in both the verbal and numerical domain, we used two
paper-and-pencil tests developed by Weiß (1998). Although both of these tests
required some minimum amount of reasoning ability (i.e., Gf), the tests were pri-
marily designed to capture knowledge. Weiß (1998) notes that whereas the sub-
tests of the CFT 20 (described above) form a Gf factor, the two Gc tests described
below both can be allocated to a distinct Gc factor.

Vocabulary test (VT). In this test, participants were presented 30 target words.
Next to each target word, five distractors were given. Participants were supposed
to select the distractor that had the same meaning as the target word. Overall, 30
test items were preceded by three practice items. The time limit for this test was
12 minutes.

Number series (NS). On each item of this test, participants were presented six
numbers in a row, followed by an empty cell with a question mark. Out of five
distractors, they had to select the correct answer which correctly continued the
sequence of numbers presented. Only one- or two-digit numbers were utilized,
and the complexity of the cognitive processes involved was low to medium such
that the mastery of elementary arithmetic operations was in the focus of interest,
whereas hierarchical, complex relations found in some number series (e.g., Holz-
man, Pellegrino, & Glaser, 1983) were avoided. The test consisted of 21 items that
had to be solved in 16 minutes. Four practice items were administered before the
testing phase.
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2.2.6 Procedure

Participants were tested in groups of between 8 to 15 children on notebooks pro-
vided by the authors’ university or in the computer pool of the school. Two
separate testing sessions took place in the morning, each including two breaks.
Overall testing time was 3.5h. All computer-based tests (WM, deductive reason-
ing, scope of attention) were administered in the first session, whereas all paper-
and-pencil-tests (inductive reasoning, STM, Gc) were administered in the second
session that took place approximately one week later. In the second session, par-
ticipants further answered several demographic questions.

2.3 Results

There are three sections to the results. First, descriptive statistics and zero-order
correlations are presented. Second, dimensionality and MI analyses using multiple-
group CFAs were conducted. Last, a series of structural equation models (SEM)
and hierarchical regression analyses were conducted to examine the relationship
among the constructs under investigation.

Descriptive statistics are presented in Table 2.1. No internal consistencies for
the different set sizes of the visual array comparison task are provided because a
scoring algorithm based on signal detection theory was used (see Section 2.2.4).
However, we computed construct reliabilities Ĥ (Hancock & Mueller, 2001) as
well as bootstrapped empirical 95% confidence intervals based on models 2a and
2 in Table 2.3, indicating that the hypothesis of Ĥ = .70 representing adequate
reliability could not be rejected for any of the latent variables. Reliabilities of WM
tasks were good and comparably high (Beckmann, Holling, & Kuhn, 2007).

All measures were generally within the acceptable limits of skewness less
than 3 and kurtosis less than 4 suggested by Kline (2005). The data were also
screened for outliers, with univariate outliers being any data points outside of 3.5
standard deviations from the mean. Five values out of the 4,675 in the data set
met this criterion and were replaced with values corresponding to± 3.5 standard
deviations as appropriate. One multivariate outlier with a Mahanalobis d2 score
(p < .001) was eliminated. Multivariate normality was determined by examin-
ing Mardia’s multivariate skewness (Z = 7.36, p < .01) and kurtosis (Z = 3.91, p
< .01), respectively. Based on these results, multivariate normality had to be re-
jected. Therefore, a scaled χ2 statistic (SB-χ2; Satorra & Bentler, 2001), based on
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maximum likelihood estimation, was utilized in all CFA variable models. Using
SB-χ2, likelihood-ratio testing of nested models is feasible under non-normality
conditions, and corrected standard errors for all parameter estimates can be com-
puted.

Table 2.2 provides all zero-order correlations of the measures investigated
in this study. Relationships among variables were mostly moderate to high, pro-
viding a good starting point for latent variable modeling. We proceeded by test-
ing the dimensionality of memory as well as intelligence tests used in this study.
With respect to memory, five different models were compared: (a) A single-factor
model, assuming a unitary memory structure, (b) a model with two factors, WM
and STM (with scope of attention loading on WM; cf. Cowan et al., 2005), (c)
a two-factor model (WM and STM) with scope of attention loading on a STM
factor, (d) a model comprising three distinct factors, WM, STM, and scope of at-
tention, respectively, and (e) a model consisting of three factors, visuospatial WM
(visual array comparison task and SWM), verbal WM (VS and CS), and STM,
respectively. Concerning intelligence factors, we compared three models: (a) A
single-factor model, (b) a model assuming two factors (crystallized intelligence
vs. deductive/inductive intelligence) and (c) a three-factor model, assuming dis-
tinct factors for inductive and deductive reasoning, respectively. We compared all
models using appropriate fit indexes. Likelihood-ratio testing is feasible under
conditions of boundary constraints (Stoel, Garre, Dolan, & van den Wittenboer,
2006), i. e. when models differing in the number of latent factors are compared. It
should be noted that the likelihood-ratio test should only be used when the base
model shows a good fit (Yuan & Bentler, 2004) and that because the likelihood-
ratio test tends to be a liberal criterion, additional information must be taken into
account.

Fit indexes especially adequate in MI analyses (Cheung & Rensvold, 2002;
Meade, Johnson, & Braddy, 2008) comprise the comparative fit index (CFI) and
the noncentrality index (NCI; McDonald, 1989). Changes of more than .002 in the
CFI in MI analyses commonly reflect a difference in model fit (Meade et al., 2008).
In addition, the Bayesian information criterion (BIC), which penalizes for over-
parametrization, was used in this study (cf. Raftery, 1995). We further report the
root mean square error of approximation (RMSEA), which is more robust under
some conditions than incremental fit indexes (Beauducel & Wittmann, 2005).

Table 2.3 shows the results of a first full-sample analysis of memory and
intelligence structure, respectively. As can be seen, a two-factor model (model
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DM2) lumping complex span tasks and the visual array comparison task (scope
of attention) together into one factor, and STM into another, fit significantly better
than a one-factor solution (model DM1). This was not the case for a two-factor
solution merging STM tasks and the scope of attention into one factor (model
DM3), this model was therefore dropped. Finally, although a model with a three-
factor task-specific structure (WM, scope of attention, STM tasks; model DM4)
resulted in a slightly better model fit than the first two-factor model, an inspection
of the 95% confidence interval of the correlation of a WM factor and a scope of
attention factor revealed that the upper bound was 1.03. The same was true for
a three-factor model assuming different factors for visuospatial and verbal WM
(model DM5, upper bound of 95% confidence interval: 1.02). Hence, we rejected
all three-factor models and retained a two-factor solution with a STM factor and
a WM factor, the latter consisting of complex span tasks and scope of attention.

In addition, we checked the dimensionality of all tests measuring facets of
intelligence. As seen in Table 2.3, a one-factor model (model DI1) showed a good
fit to the data. However, a two-factor model, dissociating Gf and Gc (model DI2),
resulted in an even better model fit. In this model, the correlation between Gf and
Gc was high (r = .90), although the upper bound of the 95% confidence interval
was .96. However, a three-factor solution (model DI3) did not significantly im-
prove model-fit above the two-factor solution. The 95% confidence interval of the
correlation between deductive and inductive reasoning (.75 – 1.02) provided evi-
dence for the unity of deductive and inductive reasoning. We therefore retained
a two-factor model of intelligence with highly correlated factors (Gf vs. Gc) for
further analysis. At this point, it should be mentioned that this two-factor model
is equivalent to a one-factor model with a residual covariance between the two
Gc measures, i.e., Gc can also be conceptualized as a residual factor.
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Next, we outline the results obtained from a systematic MI analysis of the
two-factor memory structure described above. The sample was split into children
aged 8;0 to 10;11 years (n = 151) and children aged 11 years or older (n = 124).
We chose this cut-off value for two reasons. Firstly, as noted by Alloway et al.
(2006), developmental increases in STM span, in contrast to WM span, level off
between 10 to 11 years of age. A systematic MI analysis using 11 years as a cut-
off value, therefore, can shed light on the question whether this effect is based
on a slowing of developmental growth or whether it represents a measurement
artifact. Secondly, choosing 11 years as a cut-off value resulted in approximately
equal group sample sizes as advocated by Kaplan and George (1995).

As can be gleaned from in Table 2.4, both configural and metric MI models
showed a very good fit to the data. A strong MI model (model MI4) fit the data
excellently as well, compared to the configural MI model. That is, factor load-
ings and latent intercepts did not vary substantially between younger and older
children. However, a model assuming equal residual variances across groups
(model MI3) exhibited a substantial drop in model fit. We therefore rejected this
model and the nested strict MI model (model MI5) and proceeded by comparing
a strong MI model assuming equal latent means in both groups (model MI6) to
the strong MI model without such constraints. This drastically reduced model
fit, implying substantial latent mean differences. A similar drop in model fit was
observed for a model constraining factor variances and covariance across groups
(model MI7). Hence, it appears that although loading patterns and latent inter-
cepts are homogeneous between younger and older children, substantial differ-
ences both in latent ability as well as the relationship between latent abilities can
be assumed. Figure 2.1 illustrates this. Both variances and covariance of WM and
STM factors were of larger magnitude in younger children, a result that is in line
with previous work finding high correlations between STM and WM in young
children (e.g., Hutton & Towse, 2001).

In order to quantify the magnitude of latent mean differences, we further
computed effect sizes (ES) according to Hancock (2001). The latter are comparable
to Cohen’s d. The resulting standardized latent mean differences were ES = .62 for
STM and ES = 0.72 for WM, respectively, indicating a medium difference between
age groups in favor of older children.

To illuminate the predictive power of WM and STM for both Gf and Gc
while controlling for age differences, we fit a series of nested structural equation
models. In these analyses, we utilized a MIMIC model (Muthén, 1989) instead
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of multiple-group CFA, i.e., we included age (in months) directly as a covariate
into the model. Because Gf and Gc were very highly correlated (r = .90 in model
DI2 in Table 2.3), we allowed Gc tests to load both on a Gf factor and a Gc factor.
Because Gc tests often require reasoning abilities to solve them (Carroll, 1993), we
deemed this assumption to provide a more realistic picture of Gc.

The results of this analysis are shown in the upper portion of Table 2.5. A
model with age (in months) as the sole predictor (model RC1) for both Gf and
Gc exhibited a bad model fit. Introducing WM into the model (model RC2) sub-
stantially improved the results. Interest goes out to STM, which was a significant
predictor of both Gf and Gc when introduced as the third predictor, resulting in
a slightly better model fit (model RC3). Parameter estimates of model RC3 are
illustrated in Figure 2.2.

As can be seen, WM predicted both Gf and Gc, whereas STM was only rel-
evant for Gf, although it was marginally significant for Gc (p = .07). Age, in
contrast, only mattered in the context of Gc, but was irrelevant for Gf when tak-
ing STM and WM into account. This could have been expected, because older
children should have better knowledge due to more advanced school curricula.
We proceeded by placing equality constraints on the unstandardized regression
coefficients of WM and STM to Gf, which resulted in a significant deterioration
in model fit, ∆SB-χ2(1) = 10.33, p < .01. WM therefore was a better predictor for
Gf than STM. However, when constraining the paths from WM and STM to Gc to
be equal, a nonsignificant likelihood-ratio test resulted, ∆SB-χ2(1) = 1.29, p = .25.
The results presented here contradict evidence provided by Martínez and Colom
(2009), who found that WM was no longer relevant for predicting Gc when Gf
was statistically controlled for. These authors, however, used observed scores
and tested a sample of university students, which can be considered relatively
homogeneous in their acquired knowledge (Gc).
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Figure 2.1: Standardized solution (strong MI, model MI4 in Table 2.4) for the
two-factor memory structure in younger (upper panel) and older children (lower
panel). For abbreviations, see Table 2.1. Unstandardized estimate, younger chil-
dren (standard error; critical ratio): WM↔ STM: 4.55 (.62, 7.39). Unstandardized
estimate, older children: WM↔ STM: .983 (.340, 2.89).
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In the last two models in Table 2.5, we specified a bifactor structure with
respect to WM and STM (e.g., Gustafsson & Balke, 1993). In this context, Colom
et al. (2006) reanalyzed several key studies to investigate whether WM, when de-
fined as nested in and orthogonal to STM, still has predictive value for cognitive
abilities (e.g., Gf). We follow their approach here and specify WM as a resid-
ual factor uncorrelated with STM, i.e. all WM tasks load on both a WM and a
STM factor, whereas STM tasks only load on the STM factor. Thus, storage of in-
formation was captured by the STM factor, whereas controlled attention (or any-
thing that is measured by complex span tasks above storage) was captured by the
residual WM factor. Figure 2.3 presents the results of model RN2, showing that a
residual WM factor still had explanatory power for both Gf and Gc, although less
so than in model RC3. It was found that constraining the paths from STM and
WM to Gf to be equal did not result in a loss of model fit, ∆SB-χ2(1) = .07, p = .80.
The same result occurred when constraining the paths of WM and STM to Gc to
be of the same magnitude, ∆SB-χ2(1) = .07, p = .79. In model RN2, therefore, STM
and a residual WM factor were of similar importance in predicting both Gf and
Gc.

In order to cross-validate these findings, we computed a series of hierarchi-
cal regression analyses (for a rationale, see Luo, Thompson, & Detterman, 2006).
Scores on all indicators pertaining to specific constructs were z-standardized and
aggregated. Further, we were interested in the interaction terms of age with WM
and STM, respectively. Product terms pertaining to interaction effects were z-
standardized after computation of the product. By analyzing the statistical signif-
icance of these interaction terms, it was possible to check whether the regression
slopes of WM and STM changed or remained constant across age. As illustrated
by Table 2.6, we also computed residuals for both WM and Gc. These resid-
ual variables were used in additional analyses to check whether WM with STM
partialed still affected the criterion variables, and whether controlling for all Gf
variance in Gc substantially changed the results.
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Figure 2.2: Standardized solution of structural equation model predicting Gf and
Gc from WM, STM, and age in months (model RC3 in Table 2.5). Factor loadings
are given to the left (WM, STM) or right (Gf, Gc) of each indicator. Estimates
in italics are statistically nonsignificant. Unstandardized regression weight esti-
mates (standard error; critical ratio): WM → Gf: .64 (.10, 6.32); WM → Gc: 1.00
(.34, 2.97); STM→Gf: .16 (.07, 2.52); STM→Gc: .40 (.22, 1.76); Age→Gf: .00 (.01,
.21); Age→ Gc: .08 (.02, 3.62).
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Figure 2.3: Standardized solution of structural equation model predicting Gf and
Gc from WM, STM, and age in months (model RN2 in Table 2.5). Factor loadings
are given to the left (WM, STM) or right (Gf, Gc) of each indicator. Estimates
in italics are statistically nonsignificant. Unstandardized regression weight esti-
mates (standard error; critical ratio): WM → Gf: .49 (.12, 4.26); WM → Gc: 1.00
(.33, 3.04); STM→Gf: .53 (.08, 7.11); STM→Gc: .90 (.17, 5.43); Age→Gf: .00 (.00,
-.08); Age→ Gc: .08 (.02, 3.63).
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All results of hierarchical regression analyses are provided in Table 2.7. The
largest variance inflation factor observed overall was 2.3 (WM in model HR4,
Gf), indicating that multicollinearity did not affect the results to a significant de-
gree. With respect to Gf, age was a significant predictor only when WM was not
taken into account, whereas both STM and WM predicted Gf in all models. Inter-
estingly, the effect of STM was moderated by age, indicating that STM was less
important for predicting Gf in older children than in younger children.

This finding is illustrated by a simple slopes analysis (Aiken & West, 1991)
in Figure 2.4, indicating that STM was a significant predictor for children aged
9;8 years (b = 1.60, t = 5.77, p < .01) and 10;8 years (b = .78, t = 4.27, p < .01),
respectively, but not for children aged 11;8 years (b = -.04, t = -.15, p = .88). A com-
putation of the Johnson-Neyman regions of significance (cf. Preacher, Curran, &
Bauer, 2006) revealed that STM was a significant positive predictor for Gf for chil-
dren up to approximately 11 years old (boundaries of Johnson-Neyman regions
of significance for standardized age variable: .44 and 2.20). A supplementary
analysis (not shown), using the residual of WM regressed on STM instead of WM
unpartialed, in general provided similar results. Importantly, the residual of WM,
controlling for STM, remained a statistically significant predictor for Gf in models
HR4 and HR5.

Table 2.6: Intercorrelations among aggregated variables

Variable 1 2 3 4 5 6 7 8 9

1. Age –
2. STM .44** –
3. STM×Agea -.26** -.31** –
4. WM .59** .59** -.44** –
5. WM×Ageb -.51** -.38** .65** -.58** –
6. WMresc .41** .00 -.32** .81** -.45** –
7. Gf .52** .59** -.48** .77** -.53** .53** –
8. Gc .64** .61** -.41** .76** -.54** .50** .70** –
9. Gcresd .39** .28** -.09 .31** -.24** .18** .00 .71** –

Note. aInteraction term of STM with age. bInteraction term of WM with age. cResidual of WM
regressed on STM. dResidual of Gc regressed on Gf.
**p < .01.
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Figure 2.4: Mean plot illustrating the interaction of STM and age

With respect to Gc, it should be mentioned that in the full model (model
HR5), only WM, STM, and age were significant predictors. This finding is sim-
ilar to the results of the structural equation models above. Hence, as expected,
age predicted Gc but not Gf after WM and STM were entered into the model.
However, in model HR5, no substantial interaction effect occurred, underscor-
ing the fact that neither STM nor WM lost predictive power in older children
for Gc. However, things looked differently when focusing on the residual of Gc
when controlling for Gf. Here, age was the dominant predictor, and STM only
marginally contributed to the improvement of the model, while WM was entirely
irrelevant when entered into the model at a later stage. This finding slightly dif-
fers from the results obtained in the structural equation models above, in which
Gc tests were modeled as loading on both Gf and Gc. The regression model spec-
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ified for Gcres, therefore, was an extremely strict test. However, in contrast to the
findings reported by other authors (e.g., Martínez & Colom, 2009), the findings in
Table 2.6 show that Gcres still substantially correlated with WM and STM. Hence,
even when controlling for all Gf variance in Gc, WM and STM are substantially
related to Gc. The same was true for WMres, which exhibited substantial correla-
tions with Gf and Gc. For both Gc and Gcres, similar results were obtained when
using WMres instead of WM.

It should be noted here that the results obtained in model HR5 for Gf, Gc,
and Gcres can be cast in the framework of a moderated mediation analysis (cf.
Preacher, Rucker, & Hayes, 2007). That is, we might be interested in assessing
the indirect effect that WM exerts on Gf via STM, for example, and whether this
effect is partly moderated by age. It would be theoretically plausible that the im-
portance of STM as a predictor for intellectual abilities like Gf diminishes with
age, but remains high for knowledge (i.e., Gc; Swanson, 2008). We therefore com-
puted the indirect effects of WM on Gf, Gc, and Gcres, respectively, with STM
as a mediator. In a first step, a mediator model predicting STM from WM and
age was computed, where both WM (b = .49, p < .01) and age (b = .15, p < .05)
were significant predictors, whereas they did not interact (b = -.02, p = .74). The
indirect effect is the product of the path from WM to STM and the path from
STM to the cognitive ability under investigation (e.g., Gf). In the case that the ef-
fect of WM on cognitive abilities is partly transmitted by STM, the indirect effect
should be statistically significant. In order to evaluate whether this indirect effect
is moderated by another variable (e.g., age), the indirect effect is evaluated using
specific values of the moderator (usually, the mean and ± 1 standard deviations).
Table 2.8 illustrates that whereas the indirect path WM → STM → Gc is always
relevant in predicting Gc irrespective of age, indicating that WM affects Gc by
storage capabilities in all children, the indirect path WM→ STM→Gf is insignif-
icant for older children (compare Figure 2.4). That is, in older children, WM does
not affect Gf indirectly through storage capabilities, whereas in younger children,
STM is a partial mediator.

2.4 Discussion

In this study, we pursued three main goals, namely, a thorough investigation of
the structure of memory and intelligence in children, an analysis of stability of
memory across age groups, and an investigation of age effects on the different



2 Controlled attention and storage, after all? 46

Table 2.8: Analysis of indirect effects in moderated mediation

Variable zage a1 ∗ b1 SE Z p

-1 .78 .16 4.78 .00
Gf 0 .38 .10 3.71 .00

1 .00 .13 .01 .99

-1 .23 .07 3.34 .00
Gc 0 .18 .05 3.73 .00

1 .13 .06 2.02 .04

-1 .00 .07 -.06 .95
Gcres 0 .06 .05 1.37 .17

1 .13 .07 1.82 .07
Note. zage = Values of z-standardized moderator
variable age; a1 ∗ b1 = Indirect path coefficient WM
→ STM → complex cognition (Gf, Gc, Gcres); SE
= Bootstrapped standard error of indirect effect
(1,000 draws; Preacher et al., 2007).

relations between memory and intelligence facets. Key findings of this study per-
tain to a relatively stable structure of WM and STM across age as well as differing
relations of WM and STM with fluid and crystallized intelligence that were partly
moderated by age. We address these findings in turn.

Similar to Swanson (2008), our findings indicate that WM and STM are
separable factors in children, although the factors were more closely related in
younger than in older children. This finding is in line with work by Alloway
et al. (2006) who found very high correlations between STM and WM in young
children that decreased with age (cf. Gathercole et al., 2004). This evidence sup-
ports the notion of an incremental differentiation of STM and WM. For example,
Engle et al. (1999) suggested that because rehearsal and chunking capabilities
are less well developed in younger children, an executive component of working
memory must be activated earlier in STM tasks, thus making STM and WM tasks
more similar in younger children. In fact, we found that STM and WM factors
correlated at r = .79 in children younger than 10 years, whereas the same factors
correlated at r = .55 in older children. Further, MI analyses revealed that there
was no substantial qualitative differences in the memory structure of younger
and older children, although latent mean differences of medium size were ob-
served. The strong MI model showing adequate fit here supports the notion that
these differences were based on developmental constraints and did not represent
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a measurement artifact. However, the idea that WM and STM can be merged into
a single factor (Hutton & Towse, 2001) had to be rejected. The fact that WM and
STM are dissociable is supported by numerous results from the behavioral and
neuroimaging domains (Engle et al., 1999; Fletcher & Henson, 2001). However,
although STM and WM measures were structurally and factorially different here,
we assume that both mainly capture SM, which has recently been suggested as
the key variable in higher cognitive functioning (Mogle et al., 2008; Unsworth &
Engle, 2007b). Tasks differed in structure, though, possibly affecting intelligence
measures as discussed below.

In line with Cowan et al. (2005), we found evidence for the fact that the
scope of attention is closely related to WM and, in fact, had to be merged into a
single factor with complex span measures. That is, although the task structure
was very different from the traditional complex span tasks (i.e., no processing
task, no overt rehearsal), the visual array comparison task captured variance that
was closely related to traditional measures of WM. Hence, we could not find
support for the assumption that this task is a measure of PM, which was clearly
separable from both WM and SM in earlier work (Mogle et al., 2008). Our results
are in agreement with evidence reported by other authors (e.g., Alloway et al.,
2006; Bayliss et al., 2003; Miyake et al., 2001), who found that visuo-spatial STM
tasks without a processing component highly correlated with WM, possibly due
to the need for a higher involvement of executive functioning in visuo-spatial
STM tasks than in verbal STM tasks. For example, Bayliss et al. (2003) showed
that a visuo-spatial STM task (Corsi task) correlated at r = .62 with fluid intelli-
gence, whereas digit span as a verbal-numerical STM measure only correlated at
r = .17.

Our results further support a domain-general model of WM in that a dis-
tinction between visuospatial and verbal-numerical WM factors was not tenable,
in contrast to other findings based on samples of children (e.g., Jarvis & Gath-
ercole, 2003; Tillman et al., 2008). However, the sample reported in Jarvis and
Gathercole (2003) was relatively small, whereas Tillman et al. (2008) used only
two WM tasks that showed a substantial zero-order correlation (r = .57). Because
we used structurally heterogeneous WM tasks, in contrast to other studies (Kane
et al., 2004; Tillman et al., 2008), our findings strongly support a domain-general
factor, in that the generality of WM extends to dual-task and single-task measures
of WM. However, more research is clearly needed with respect to this issue.

Concerning the separability of inductive and deductive reasoning, it was
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found that a single factor was sufficient for representing Gf. Hence, in accordance
with results obtained by Wilhelm (2005), a factorial separation of deductive and
inductive reasoning is not tenable in children. This supports the assumption by
Harman (1999) and others that similar reasoning processes are utilized for de-
ductive and inductive reasoning. With respect to the relation of Gf and Gc, a high
correlation (r = .90) was found, despite the fact that the Gc tests used in this study
used verbal and numerical content, whereas all Gf tests were figural. The magni-
tude of this correlation, which contrasts other findings (e.g., a Gf-Gc correlation
of r = .35 in Haavisto & Lehto, 2004), was unexpected, although it is not uncom-
mon that Gf and Gc are very closely related (Carroll, 1993). The Gc tests utilized
here obviously required reasoning to a significant degree, which was underlined
by results obtained in the structural equation models predicting Gf and Gc from
WM, STM, and age. In this model, we specified Gc tests to additionally load on
Gf, thus taking the hybrid character of these tests into account, and controlling
for Gf variance in Gc.

Unsurprisingly, structural equation modeling revealed that both WM and
to a lesser degree STM, when conceptualized as distinct but correlated factors,
were important in predicting Gf performance, resulting in an R2 of .89 at the la-
tent level. Age, in contrast, was irrelevant once these variables had been taken
into account, supporting the notion that additional relevant psychological vari-
ables (e.g., processing speed) that increase with age were not necessary to explain
differences in Gf. These findings were supported by hierarchical regression anal-
yses, but they contrast evidence reported by Swanson (2008, Model 3, p. 597),
who found that age continued to be a predictor of Gf even when STM, WM, and
other factors (e.g., processing speed) were taken into account. However, process-
ing speed was not related to Gf in Swanson (2008) when used in concert with WM
and STM, although it has been shown to be substantially related to WM in some
studies with children (e.g., Bayliss et al., 2003; Fry & Hale, 1996). The fact that
age was insignificant once WM and STM were taken into account in our study,
however, could be interpreted in a way such that developmental differences in
processing speed, as they would manifest in the age variable in our context, may
not be substantial for predicting complex cognition (Mogle et al., 2008).

The statistically significant interaction between STM and age and the Johnson-
Neyman regions of significance indicated that STM was not a substantial predic-
tor of Gf from approximately 11 years on, although WM remained central irre-
spective of age. A complementary moderated mediation analysis revealed that
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STM worked as a mediator of WM capacity on Gf in children younger than 11
years, that is, storage abilities partly explain the effect of WM on Gf in younger,
but not older children. STM span grows during childhood (Chuah & Maybery,
1999; Logie & Pearson, 1997), and whereas STM tasks can be assumed to re-
quire executive attention in younger children because their storage capabilities
are lower, possibly due to less-developed rehearsal processes (Baddeley, 1986;
Henry & Millar, 1993), older children might have differentiated executive and
storage processes to a larger degree, rendering the effect of storage capabilities
on reasoning ability insignificant. In line with this assumption, Alloway et al.
(2006) noted that developmental increases in STM span level off between 10 to
11 years of age, whereas WM span is still subject to developmental differences at
that age.

In addition, in contrast to Mogle et al. (2008) and others (cf. Unsworth
& Engle, 2007b), but in line with recent evidence obtained in another sample of
children (Tillman et al., 2008), we found that WM capacity remained a substantial
predictor for both Gf and Gc when it was conceptualized as a residual factor,
although it did not differ from STM in predictive power. This was the case even
though the STM measures utilized in this study, due to consisting of supraspan
list lengths, represented SM, and despite the fact that we used a partial scoring
algorithm for all complex span tasks, which has been shown to render a WM
residual factor insignificant (Unsworth & Engle, 2007b). In addition, similar to
Maybery and Do (2003), we did not use classical simple span tasks as a measure
of STM, but rather measures of supraspan list length, thereby excluding short
lists. In combination, this should have made it even harder for a residual WM
factor to attain statistical significance in predicting higher cognitive functioning
above a common storage factor.

What does the residual WM factor represent, then? If we regard our STM
measures as capacity measures of SM, a residual WM factor might be conceptu-
alized as controlled attention, which implies the inhibition of irrelevant informa-
tion as well as the activation of relevant information in the context of interfering
stimuli (cf. Engle et al., 1999). Apparently, this factor plays a major role for higher
cognitive functioning in children. In order to predict Gf in children, therefore,
both storage and controlled attention are equally relevant, as evidenced by a sim-
ilar magnitude of path coefficients. This finding is consistent with the position
of Hasher, Lustig, and Zacks (2007), who propose that inhibitory control is the
key factor in WM. In line with this reasoning, Swanson (2008) reported a strong
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relation between inhibition and WM as well as intelligence measures. The lack of
interaction between age and WM in explaining cognitive abilities, therefore, re-
veals that controlled attention is a consistently crucial factor for higher cognitive
abilities in children.

Different results were obtained with respect to crystallized intelligence. Struc-
tural equation modeling results support the notion of WM and STM as important
predictors for Gc. However, age remained substantially related to Gc in all analy-
ses. This is consistent with our expectation that verbal and numerical processing
knowledge are tied to school curricula, which should result in higher Gc scores
with age irrespective of cognitive abilities. Of note, STM mediated the effect of
WM on Gc across all age groups, indicating that the ability to store and retrieve
learned information is of key importance for crystallized intelligence across all
age groups. This is also consistent with the result that when Gc is statistically
purified of all Gf variance, only age mattered as a predictor in model HR5, al-
though STM added slightly to the fold when being the only additional predictor.
However, substantial zero-order correlations between Gcres, WM, and STM re-
mained. We therefore could not replicate the findings reported by Martínez and
Colom (2009) who found that WM was unrelated to a Gc residual controlling for
Gf. In children, however, both storage and controlled attention, therefore, appear
to be related to a ”purified” knowledge factor.

Overall, several key findings can be extracted from this study. Firstly, a gen-
eral WM factor, including structurally heterogeneous tasks with and without a
processing component, was found, which could be statistically separated from
a STM factor, resulting in a two-factor structure of memory in children. This
was the case even though STM tasks consisted of lists of supraspan length rep-
resenting SM, although WM and STM were highly correlated. Secondly, when
comparing younger and older children with respect to the measurement struc-
ture of these memory tasks, it was found that strong MI was tenable, although
WM and STM were more highly correlated in younger than in older children and
substantial latent mean differences were observed. Thirdly, deductive and induc-
tive reasoning were inseparable in children, whereas Gf and Gc were separable
but highly related. And finally, controlled attention, when conceptualized as a
residual WM factor controlling for STM, was found to be substantially related
to both Gf and Gc, whereas Gf did not depend on STM performance in children
older than 11 years.
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2.4.1 Limitations

Like all studies, this work has several limitations. Firstly, we slightly modified
the visual array comparison task compared to Cowan et al. (2005), especially
with respect to the interstimulus intervals. Longer interstimulus intervals gen-
erally result in the decay of stimuli (Barrouillet, Bernardin, Portrat, Vergauwe,
& Camos, 2007), thus countervailing maintenance or rehearsal activities and po-
tentially activating SM processes, especially in larger set sizes of the visual array
comparison task. The task version used here therefore might reflect a hetero-
geneous measure, capturing both the scope of attention and SM. Although our
results are in line with Cowan et al. (2005), therefore, the lack of separability be-
tween the scope of attention and WM might have been exacerbated by the task
structure of the visual array comparison task. Consequently, we did not include
a relatively pure measure of PM in this study, which would have been helpful in
gauging whether WM would then lose its predictive power for higher cognitive
functioning (Mogle et al., 2008). Future research should integrate measures of SM
and PM, both with respect to simple and complex span tasks, and systematically
manipulate factors that are known to affect the degree to which PM and SM are
captured (e.g., list length, serial position, inhibiton; Unsworth & Engle, 2007b)
in order to provide a clearer picture of which combination of elementary cogni-
tive processes are responsible for the high relation between SM, PM, and complex
cognition.

Observed power is often computed in a post-hoc fashion to gauge the prob-
ability of finding effects that are present in the data. We did not compute ob-
served power here, however, because no additional information is gained from
doing so (Hoenig & Heisey, 2001). This has to do with the fact that observed
power is closely related to the obtained p value from the test of the null hypothe-
sis in structural equation modeling (cf. MacCallum, Browne, & Cai, 2006). How-
ever, it can generally be said that in the case of MI analyses, large sample sizes
are preferable because they provide more precise results and higher statistical
power (Meade et al., 2008). In this study, sample size was relatively small, there-
fore small violations of MI might not have been detected due to a lack of power.
However, we found substantial differences in the factor variances and covariance
as well as latent mean differences of moderate size between age groups, indicat-
ing that power was sufficient to detect notable effects.

Further, we confined our analysis of interaction terms to aggregated ob-
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served variables. Although the analysis of interactions on the level of latent vari-
ables is becoming increasingly common (cf. Marsh, Wen, & Hau, 2004), this topic
remains an open field for research with several unresolved issues. In addition,
due to the complexity of the models specified (e.g., nested factor structures), we
analyzed interactions on the level of manifest indicators exclusively. Again, this
might have lowered power due to the fact that measurement error is not explic-
itly taken into account; however, the effects found in the hierarchical regression
models were in line with theoretical considerations.



3 Children’s performance on equations and its rela-

tionship with working memory, intelligence, and facets

of processing speed

Summary. Numerous studies on individual differences in mathematical abilities have shown that
working memory substantially affects arithmetic performance. In this study, we extended this
research to algebra problem solving. A total of 376 8- to 13-year old children were administered
algebra problems and measures of working memory, intelligence, arithmetic ability, literacy, and
processing speed. Further, the effects of number size and memory load were investigated. A
new modeling approach was utilized to simultaneously analyze effects of item- and person-level
predictors on algebra ability and solution speed, respectively. At the item level, number size
showed no effect, memory load substantially affected item difficulty and time intensity. At the
person level, working memory remained a substantial predictor for algebra ability even in the
face of arithmetic ability, literacy, and age. Results do not support the notion of a domain-general
working memory model, whereas access to information held in working memory during problem
solving appears to be a key predictor for intellectual functioning.

3.1 Introduction

Working memory (WM), although separable from general intelligence, has been
shown to be one of the core processes of human intellectual functioning for a
wide range of tasks (Ackerman, Beier, & Boyle, 2005; Kyllonen & Christal, 1990).
Consequently, WM plays a central role for mathematical abilities as well. For ex-
ample, several studies have shown that arithmetic calculation skills are strongly
related to WM in children (Berg, 2008; Bull & Scerif, 2001; Rasmussen & Bisanz,
2005) as well as adults (Fürst & Hitch, 2000; Heathcote, 1994; Logie, Gilhooly,
& Wynn, 1994). However, only few studies have investigated the relationship
between WM and performance on equations while taking additional cognitive
resources into account. The goal of the current study, therefore, was to examine
the relationship of algebra achievement with WM, intelligence and facets of pro-
cessing speed in a sample of children, and to combine this individual differences
approach with an experimentally-designed test in order to evaluate theories per-
taining to algebra performance.
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3.1.1 WM and attentional control: Domain-general or domain-specific?

Different models of WM have been established in the literature (cf. Conway, Jar-
rold, Kane, Miyake, & Towse, 2007; Miyake & Shah, 1999). Generally, WM is
regarded as a set of modules or processes that allow the storage of information
as well as the simultaneous manipulation of the same or other information. The
latter element distinguishes WM from more basic forms of memory such as short-
term memory.

The first and still most widely-researched WM model was introduced by
Baddeley and Hitch (1974). This structural model consists of two components
for temporarily storing information, the phonological loop and the visuo-spatial
sketchpad, respectively. Whereas the phonological loop stores speech-based in-
formation and is sometimes referred to as ”verbal WM”, the visuo-spatial sketch-
pad is used to maintain visual-spatial information. A third component, the cen-
tral executive, represents a coordinating entity that directs information towards
the relevant subsystems, inhibits irrelevant information, and coordinates activity.
The central executive is assumed to have no storage capacity. Baddeley (2000)
later added a new subsystem, the episodic buffer, which is proposed to handle
some problems of the multiple-component model, such as how verbal informa-
tion can be stored during articulatory suppression.

Another important conceptualization of WM was suggested by Engle and
coworkers (e.g., Engle, Tuholski, Laughlin, & Conway, 1999). It differs from the
model suggested by Baddeley and Hitch (1974) in several ways. Firstly, it is more
process-oriented than structural, i.e. it defines WM in terms of relevant processes
and not modules. Secondly, this WM model is mainly concerned with controlled
attention, which these authors define as follows (Kane, Conway, Bleckley, & Engle,
2001, p. 180):

By ”controlled attention” we generally mean an executive control ca-
pability; that is, an ability to effectively maintain stimulus, goal, or
context information in an active, easily accessible state in the face of
interference, to effectively inhibit goal-irrelevant stimuli or responses,
or both.

Controlled attention, i.e., WM capacity, which roughly corresponds to the
central executive in the model by Baddeley and Hitch (1974), is usually measured
by complex span tasks like reading span or computation span. These tasks gen-
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erally require subjects to maintain information in an active state while simulta-
neously processing other information. Although not pure measures of controlled
attention, they are ”reasonably good measures of a domain-general attentional
capability” (Kane, Conway, Hambrick, & Engle, 2007, p. 24). Hence, the execu-
tive control capability is described as a central, domain-general resource relevant
for a variety of complex cognitive tasks, whereas short-term memory is assumed
to tap rather domain-specific storage resources (cf. Kane et al., 2004). In this view,
complex span tasks (e.g., reading span), as operationalizations of controlled at-
tention, should be able to predict performance in complex cognitive tasks from
different domains (e.g., arithmetic). However, Shah and Miyake (1996) provided
evidence for a dissociation of verbal and visuo-spatial controlled attention. These
authors only report weak relationships between reading span and a psychomet-
ric test of spatial visualization ability, contrary to what could have been expected.
Some further studies, both in children and adolescents (Jarvis & Gathercole, 2003;
Leather & Henry, 1994; Mackintosh & Bennett, 2003; Tillman, Nyberg, & Bohlin,
2008) as well as adults (Süß, Oberauer, Wittmann, Wilhelm, & Schulze, 2002),
found that verbal and visuo-spatial WM factors could be separated as well, in-
dicating domain-specific controlled attention. Other results, again in children
(Alloway, Gathercole, & Pickering, 2006; Hitch, Towse, & Hutton, 2001) as well as
adults (Engle et al., 1999; Conway, Cowan, Bunting, Therriault, & Minkoff, 2002;
Kane et al., 2004), found that WM tasks could be considered as forming a single,
general factor. The question of whether controlled attention is domain-general or
domain-specific therefore has not yet been settled.

3.1.2 WM and arithmetic calculation

Numerous studies have shown that WM capacity and arithmetic calculation are
closely related, both in children and adults (cf. DeStefano & LeFevre, 2004).
Relating this finding to specific arithmetic operations, WM capacity is required
for addition (Adams & Hitch, 1997), subtraction (Seyler, Kirk, & Ashcraft, 2003),
multiplication (Seitz & Schumann-Hengsteler, 2000) as well as division (Imbo &
Vandierendonck, 2007). In a series of studies, Bull and colleagues (Bull & John-
ston, 1997; Bull, Johnston, & Roy, 1999; Bull & Scerif, 2001) could show that the
central executive reliably predicted arithmetic ability, but that neither the phono-
logical loop nor the visuo-spatial sketchpad were directly related to arithmetic
performance in children when controlling for reading ability or age. Fürst and
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Hitch (2000) found that articulatory suppression, which supposedly blocks the
phonological loop, does not affect on arithmetic calculation in adults when the
problem was constantly visible. In another study (K. Lee, Ng, Ng, & Lim, 2004),
the phonological loop and the visuo-spatial sketchpad failed to affect perfor-
mance in algebraic word problems directly as well. Also, a recent meta-analysis
indicates that children with mathematics difficulties can be differentiated from
unimpaired counterparts mainly by worse performance on complex span tasks
with verbal content (Swanson & Jerman, 2006). In line with these results, Leather
and Henry (1994) provided evidence for a small effect of short-term memory for
predicting arithmetic performance when entered into a regression model first,
which failed to reach significance once complex span tasks were taken into ac-
count. Several studies using dual-task methodology generally support this ev-
idence. For example, Logie et al. (1994), comparing performance on visually-
presented addition problems in conditions with secondary tasks tapping compo-
nents of the WM model by Baddeley and Hitch (1974), found that the strongest
disturbance was exerted by tapping the central executive during mental calcula-
tion, whereas tapping the phonological loop and the visuo-spatial sketchpad had
a much smaller effect. This result is in line with evidence presented by Thomas,
Zoelch, Seitz-Stein, and Schumann-Hengsteler (2006) who found that in a dual-
task paradigm, only taxing the central executive lead to deterioration in math
performance in children (cf. De Rammelaere, Stuyven, & Vandierendonck, 1999).
Taking age effects into account, Floyd, Evans, and McGrew (2003) in a large-scale
study presented results that support the highest relationship with executive com-
ponents of WM and arithmetic abilities in children 11 to 13 years old. Finally, Berg
(2008) reported that complex span tasks with verbal and visuo-spatial content
independently contributed to arithmetic performance in children 9 to 12 years
old, even when controlling for age, reading, short-term memory and process-
ing speed. In one of the few studies lacking an effect of WM, Mayes, Calhoun,
Bixler, and Zimmerman (2009) report findings indicating that arithmetic ability
was related to IQ, graphomotor speed, and visuo-motor integration in a sample
of children from kindergarten through fifth grade, but not to WM. However, WM
was only conceptualized using a digit span task by these authors.

In contrast, several other studies report effects of short-term memory on
arithmetic calculation. For example, in the study by Andersson (2008), digit span
was significantly related to arithmetic calculation in a sample of children 9 to 10
years old, although it was not related to solving arithmetical equations. In addi-



3 Children’s performance on equations 57

tion, Berg (2008) presents evidence for a relationship between short-term memory
and arithmetic calculation when controlling for age and reading ability, although
no information is provided on how this relationship changed when complex span
tasks were taken into account. Fuchs et al. (2006) investigated the relationship of
WM and arithmetic ability while controlling for variables as phonological decod-
ing, attention, and processing speed, and found that WM was neither related to
simple (e.g., 3 + 2) nor complex (e.g., 35 + 29) mental addition, although these
authors did not take complex span tasks with visuo-spatial content into account.
Rasmussen and Bisanz (2005) report a strong relationship between arithmetic cal-
culation and the visuo-spatial sketchpad, but they only investigated pre-school
children and grade 1 students. However, especially in younger children, short-
term memory and WM capacity are closely related. For example, in a sample
of 7- to 9-year-old children, Bayliss, Jarrold, Gunn, and Baddeley (2003) found
that when controlling for short-term memory variance in WM, WM capacity did
not correlate with fluid intelligence. In adults, the opposite was found (Engle
et al., 1999), i.e., a WM residual was strongly related to fluid intelligence. This
possibly indicates that controlled attention is used in short-term memory tasks
by younger children, and that WM and short-term memory processes are more
similar in children than adults (cf. Hutton & Towse, 2001). Overall, in older chil-
dren, the phonological loop and the visuo-spatial sketchpad only appear to play
a minor role for arithmetic calculation, whereas controlled attention or facets of
the central executive appear to be of paramount importance.

One of the most robust findings in research on mental arithmetic is the
problem-size effect, i.e. mental calculations become slower and more error prone
with larger numbers (e.g., 7 × 8) than with smaller ones (e.g., 2 × 3; Ashcraft,
1992; Campbell & Graham, 1985; LeFevre, Sadesky, & Bisanz, 1996). Several
studies have maintained that the reason for this finding lies with the more fre-
quent utilization of non-retrieval strategies in mental arithmetic with larger num-
bers. For example, Penner-Wilger, Leth-Steensen, and LeFevre (2002) analyzed
response times from simple and more complex multiplication problems using the
ex-Gaussian distributional model. These authors found that in Chinese students
who primarily utilized retrieval strategies, the problem-size effect showed only
in the mean of the normal component of response times (µ), representing less
efficient retrieval in calculation problems with larger numbers. In contrast, in
Canadian students, the problem-size effect was related to both µ and τ , the latter
representing the mean of the exponential component. A recent study (Schmiedek,
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Oberauer, Wilhelm, Süß, & Wittmann, 2007) has revealed that τ is closely re-
lated to the involvement of higher cognitive functions (WM), i.e., the group of
Canadian students in the study by Penner-Wilger et al. (2002) used additional
procedures differing from mere retrieval in problems with larger numbers. This
finding is consistent with results reported by Hecht (2002), who, in a dual-task
study, reported greater interference of a central executive load in more difficult
problems in the case that non-retrieval strategies (e.g., transformation, counting)
were involved (cf. LeFevre et al., 1996). This result is also supported by neuro-
physiological evidence (Jost, Hennighausen, & Rösler, 2004) and additional re-
sults that show an interaction trend between problem size and response latencies
(Lemaire, Abdi, & Fayol, 1996). Further, from an individual differences perspec-
tive, higher WM capacity has been shown to be related to more frequent and
efficient utilization of retrieval in mental arithmetic (Barrouillet & Lépine, 2005;
Imbo & Vandierendonck, 2008). Hence, participants with higher WM capacity
should be more prone to use a retrieval strategy in mental arithmetic and there-
fore should exhibit shorter response times than participants with lower WM ca-
pacity, whereas accuracy should be less unaffected.

3.1.3 WM and algebraic performance

Equations are mathematical statements that use the equal sign to indicate that
two mathematical expressions are (or are defined to be) equivalent. In addi-
tion to basic arithmetic skills, solving an equation correctly requires switching
between operational and structural views of mathematical expressions (Sfard &
Linchevski, 1994). That is, the relationships between variables and numbers in
an equation must be analyzed first, before the necessary arithmetic computations
are carried out to provide a solution. Hence, the process of solving equations can
be considered a generalized form of arithmetic computation in that it does not in-
volve specific numbers, but rather variables and functions (Carraher, Schliemann,
Brizuela, & Earnest, 2006). In addition to being familiar with arithmetic com-
putation, solving equations as well as algebraic understanding therefore require
the ability to cognitively represent the relationship of equation entities correctly
(Humberstone & Reeve, 2008).

An important prerequisite for solving equations is the correct understand-
ing of the equal sign (Knuth, Stephens, McNeil, & Alibali, 2006). Whereas a
relational understanding of the equal sign (both sides of the equation must be
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equivalent) allows to solve equations correctly, children often have incorrect con-
ceptions of the equal sign. In their change-resistance account of algebraic dys-
functionalities in children, McNeil and Alibali (2005) mention several operational
patterns that prevent children from correctly solving equations. For example,
during arithmetic training in school, pre-algebraic children learn that the equal
sign (e.g., 2 + 3 + 4 + 5 = ?) means "the total". Thus, they are unable to correctly
solve the equation 7 + 4 + 5 = 7 + ? and provide the solution 23, corresponding to
the sum of all numbers presented. McNeil and Alibali (2005) could successfully
show that early-learned arithmetic procedures and operational patterns can hin-
der the development of algebraic thinking in children, and that undergraduate
students primed with these operational patterns performed worse when solv-
ing equations. Thus, under some circumstances, prior arithmetic knowledge can
actually deteriorate performance in solving equations. Nevertheless, algebraic
thinking can be taught efficiently, and it can be practiced well. Neuropsycholog-
ical evidence (Qin et al., 2004) has shown that pre-algebra students were nearly
equivalent in solution accuracy to adults after 5 days of training, and they exhib-
ited less activity in pre-frontal and parietal brain regions after practice, indicating
a reduced involvement of higher cognitive functions.

Several studies have investigated the relationship of WM with achievement
in higher-level domains of mathematics, although very few have investigated
the relations between cognitive resources and algebra alone. Whereas in Engle
et al. (1999), WM was related to performance on the Scholastic Aptitude Test -
Mathematics (SAT-M), although short-term memory was not, Rohde and Thomp-
son (2007) found that when controlling for fluid intelligence, processing speed,
vocabulary and spatial ability, WM was not related to college students’ SAT-M
performance. Reuhkala (2001) showed that high school students’ performance
on national maths exams were correlated with spatial-short term memory (cf.
Holmes, Adams, & Hamilton, 2008; St. Clair-Thompson & Gathercole, 2006) and
mental rotation ability, but not with a reading span task. However, no complex
span tasks using numerical or spatial content were utilized in this study. In the
work conducted by Tolar, Lederberg, and Fletcher (2009), investigating a sample
of college students, the correlations of an algebra equations test with four verbal-
numerical complex span tasks were relatively low and largely insignificant (r =
.06 – .14), whereas the relationship of spatial ability as well as numerical fluency
with algebraic achievement was substantial. Using structural equation modeling,
these authors could show that WM was related to algebra achievement only in-
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directly by spatial visualization and arithmetic ability. Again, these authors did
not use a complex span task with spatial content. A recent study by Andersson
(2008), investigating the ability to solve simple arithmetic equations (e.g., ? + 25
= 500) in third-to fourth grade school children, found that controlling for fluid
intelligence and age, several complex span tasks (counting span, visual-matrix
span, verbal fluency) were significantly related to performance, whereas short-
term memory was not. In summary, results on the relationship between algebraic
performance and WM capacity, especially in children, are not unequivocal and
clearly necessitate further research.

Some studies have investigated the effect of concurrent memory load on
algebra performance. For example, Anderson, Reder, and Lebiere (1996) stud-
ied the effect of concurrent memory load (2, 4, or 6 items) on solving equations.
In the first condition, the memory load was irrelevant to the equation-solving
task, whereas in the second condition variables in the equations had to be sub-
stituted by the first or second digit from the memory set. Although the size of
the memory set affected problem-solving latency and accuracy in both condi-
tions, the effect was larger in the substitution condition. In Oberauer, Demmrich,
Mayr, and Kliegl (2001), three conditions of solving equations were compared:
No memory load, memory load with irrelevant items not accessed by working
memory, and memory load with items that had to be accessed during solving
the equations. In the latter condition, the processing task required access to con-
tents stored in working memory, whereas in the condition with irrelevant items,
no access to the stored items during processing was required. Oberauer et al.
(2001) indeed found that in the access condition, mean response times as well as
proportion of correct responses were much lower than in the irrelevant load or
no load conditions, which did not differ. The authors concluded that the results
are difficult to reconcile with a resource-sharing account between processing and
storage in WM (e.g., Just & Carpenter, 1992), because this model assumes no dif-
ference between whether content stored in WM is accessed or not. Rather, they
hypothesized that cross-talk between items held and accessed in WM result in
more errors and slower responses. According to these authors, storing interme-
diate results in memory and accessing them later during equation solving should
result in a general drop of performance, both with respect to processing speed as
well as response accuracy.
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3.1.4 Processing speed as a contributory process

The speed of processing information within WM is crucial for the efficiency with
which cognitive operations can be carried out. For example, Case, Kurland,
and Goldberg (1982) reported a linear relationship between counting speed and
counting span in children 6 to 12 years old, indicating that faster information
processing is related to higher WM capacity. The authors interpreted this find-
ing as strong evidence that a higher processing efficiency results in less cognitive
resources required and, hence, the ability to store more information. Building
on this finding, Bayliss, Jarrold, Baddeley, Gunn, and Leigh (2005) showed that
when processing speed as well as storage ability were taken into account, age
was no longer a relevant predictor for complex span tasks in a sample of children
aged 6 to 10 years. Also, Fry and Hale (1996) found that age differences in WM
were largely accounted for by age-related changes in processing speed. From
these findings, it can be concluded that processing speed plays a major role in
cognitive development.

Several studies have investigated the role of processing speed in arithmetic
calculation. In a group of 7-year-old children, Bull and Johnston (1997) found that
processing speed was the strongest predictor of arithmetic performance, even
when controlling for short-term memory, speech rate, and item identification.
These authors did not measure WM capacity, however. Similarly, Barrouillet
and Lépine (2005) showed elementary school children with higher WM capac-
ity were also more likely to use fact retrieval in simple addition and, thus, were
able to solve simple addition tasks more quickly. However, in several studies,
processing speed was unrelated to arithmetic calculation when additional cog-
nitive variables were taken into account. For example, in Swanson and Beebe-
Frankenberger (2004), who investigated children from the first to third grade,
only reading, age, and WM contributed unique variance to math calculation. A
similar result was obtained in Berg (2008), where processing speed failed to pre-
dict arithmetic calculation once age and reading were taken into account. Hitch
et al. (2001) note that WM had a considerably larger effect on basic arithmetic
skills than processing speed in children 9 to 11 years old.

One of the reasons for this conflicting state of affairs might be the concep-
tualization of processing speed. Often, mean or median reaction times, mostly of
correct trials only, were used as equivalent to processing speed. This approach,
however, has some disadvantages. Firstly, by focusing on correct trials only, infor-
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mation is lost. Secondly, this approach ignores the speed-accuracy trade-off, i.e.,
the strong inverse relationship between response speed and response accuracy
(e.g. Wickelgren, 1977). Finally, mean or median reaction times are not motivated
by psychological theory. Hence, it is unclear whether longer reaction times reflect
slower information processing, slower motor processes (e.g., in pressing answer
buttons), or a more conservative criterion until an answer is provided. Evidence
based on simple reaction times, therefore, can be misleading.

Diffusion models, first introduced by Ratcliff (1978), can overcome these
shortcomings. Diffusion models can be used to analyze response times from two-
choice tasks (cf. Wagenmakers, 2009). By taking the reaction time distributions
of both correct and error responses as well as accuracy into account, diffusion
models allow a detailed analysis of facets of processing speed. A simplified ver-
sion, the EZ-diffusion model (Wagenmakers, van der Maas, & Grasman, 2007),
focuses on three central parameters that can be related to underlying psychologi-
cal processes, mean drift rate (ν), boundary separation (a) as well as nondecision
time (Ter). The drift rate quantifies the ”ease” of information processing in a two-
choice task. It is high in the case that decisions are fast and accurate, whereas it
is low in the case of slower, more error-prone decisions. The drift rate ν is gen-
erally assumed to lie out of participants’ control. In a recent study relating diffu-
sion model parameters to WM, Schmiedek et al. (2007), using structural equation
modeling, found that ν correlated at r = .68 with a WM factor and at r = .79 with
a reasoning factor. Boundary separation, in contrast, is assumed to be under sub-
jective control. It reflects response caution, i.e., for a participant who is carefully
trying to avoid erroneous answers, the boundaries are set widely apart, which
results in higher accuracy but slower response times. Finally, the nondecision
time parameter Ter incorporates encoding or response (motor) processes that are
unrelated to the decision process. The EZ-diffusion model is conceptually similar
to signal-detection theory, although it additionally integrates information from
response times and accuracy.

Recent advances in statistical modeling have further resulted in approaches
that allow the simultaneous modeling of ability and processing speed in com-
puterized psychometric tests. For example, van der Linden (2007) developed an
item response theory (IRT) model that, in addition to classically estimating per-
son ability and item parameters (e.g., difficulty), allows the estimation of person
speed and item parameters such as time intensity. Thus, by dissociating time in-
tensity and person speed, the model circumvents the problem of directly equating
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person speed with reaction times, which is problematic in case that items differ
in the amount of information processing necessary. In contrast, the model as-
sumes fixed time intensities for each item, but assumes that person speed is a
random variable that varies individually. Hence, it becomes possible to assess
the relationship of unbiased person parameters that relate to ability and speed,
respectively. Building on this approach, Klein Entink, Kuhn, Hornke, and Fox
(2009) developed a model that further allows to estimate the effects of specific
item properties (e.g., one-digit vs. two-digit numbers) on item parameters such
as difficulty or time intensity. That is, the model by Klein Entink et al. (2009) pro-
vides the possibility to relate the cognitive processes required to solve the item to
item difficulty and time intensity, respectively, and to assess to which degree the
postulated cognitive model structure fits empirically.

3.1.5 Purpose of the present study

In review, only few studies have investigated the role of working memory in
children’s arithmetic or algebraic performance, several challenges therefore re-
main. Firstly, in predicting arithmetic or algebraic performance, many studies
have treated WM as a unitary system in the past. However, it remains unclear
whether WM can be considered a domain-general construct or not. Hence, com-
plex span tasks from different content domains and their unique effect on solving
equations should be taken into account. In the case of a domain-general WM
model, all tasks should predict algebra performance, regardless whether verbal,
numerical, or spatial content is used. Secondly, the effect of facets of process-
ing speed on algebra performance is of interest. Especially, the relationship of
parameters estimated with the diffusion model to equation solving needs to be
investigated. Finally, the effect of to-be-accessed stimuli stored in WM in solving
equations as well as problem size on both speed and accuracy in solving equa-
tions will be analyzed.

In order to rule out alternative explanations, several contributory processes
or abilities should be controlled for. Age is known to be an important general
factor (e.g., Kail & Park, 1994), and we were interested in measures that ac-
counted for variation when entered later. Given the causal relationship between
IQ and achievement (Watkins, Lei, & Canivez, 2007), it is also critical to take IQ
into account when determining predictors of achievement. Further, the role of
arithmetic skills in equation solving is of interest. Because algebra is assumedly
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cognitively demanding, WM should be of importance even after controlling for
arithmetic skills. Finally, reading-related abilities must be taken into consider-
ation, because they show a strong relationship with arithmetic calculation (e.g.,
Hecht, Torgesen, Wagner, & Rashotte, 2001; Swanson & Beebe-Frankenberger,
2004), possibly because some arithmetic strategies afford verbal processing. Re-
cently, Lonigan et al. (2009) found that vocabulary tests are highly correlated
with phonological awareness (r = .73 – .74), one of the key variables in language
acquisition. Vocabulary tests therefore appear good candidates for capturing cen-
tral reading-related abilities.

3.2 Method

3.2.1 Subjects

Three-hundred seventy-six children from three higher-track secondary schools in
various regions of Germany participated in this study. Mean age was 11;3 years
(SD = 0.97, range: 8;9-13;8). 37.4% of the participants were female. Parental con-
sent was obtained for all participants prior to testing. Few participants (n = 13)
indicated German was not their first language, although all of these participants
spoke German since they were 3 years old.

3.2.2 Measures

WM Tasks

Three types of computer-based complex span tasks were used, one comprising
verbal material, one with numerical and one with visuo-spatial material. The
three tasks used were Verbal Span, Spatial Working Memory, and Computation
Span, respectively. The complex span tasks utilized in this study are based on
Vock and Holling (2008). These authors adapted several complex span tasks from
the literature (e.g., Daneman & Carpenter, 1980; Oberauer, Süß, Schulze, Wilhelm,
& Wittmann, 2000) to be appropriate for children 8 to 13 years old. Each complex
span task first presented between two to three simple practice tasks to subjects,
including immediate feedback. All subjects had to repeat the practice tasks until
each had been solved correctly.



3 Children’s performance on equations 65

WM tasks generally comprise several items and subitems. For example,
in this study, computation span comprised 10 items, each consisting of three to
seven equations displayed on the screen (subitems). The subitems (in the case
of computation span, the results of the equations) were the contents that had to
be remembered. Recently, it has been shown that partial scoring (i.e., comput-
ing the sum of proportion of correctly-solved subitems for each item) results in
better psychometric properties and higher correlations with measures of fluid in-
telligence than other scoring procedures, presumably because more information
is retained (Unsworth & Engle, 2007b). We therefore used partial scoring for all
WM tasks.

Verbal Span This WM task (Oberauer et al., 2000; Vock & Holling, 2008)
had two different parts. Participants first had to memorize a list of words pre-
sented simultaneously on the screen (presentation time 6 s). List length in this
storage task varied between three to six words. Then, between two and three
verbal decision tasks followed in which participants had to respond as quickly
as possible. In these processing tasks, participants had to decide which of four
words displayed in each corner of the screen stood in a subconcept relation to the
word shown in the center of the screen (e.g., ”animal” - ”lion”). Finally, partici-
pants were supposed to reproduce the learned words in correct order. The task
consisted of two practice items and 10 test items.

Spatial Working Memory Participants had to memorize simple chessboard-
like 3 × 3-patterns (storage task). However, the patterns had to be stored in a ro-
tated fashion, rotated either 90◦ clockwise or counterclockwise (processing task).
That is, before the patterns were shown successively for 4 s each, an arrow in-
dicated whether patterns had to be mentally rotated to the left or to the right.
Finally, participants had to successively reproduce the memorized patterns into
empty 3 × 3 matrices on the screen. The task consisted of 13 items with between
one to four patterns. Three practice items preceded the testing phase.

Computation Span In this task, participants were sequentially shown a se-
ries of simple, single-digit equations that included either an addition or a sub-
traction (e.g., 4 + 3 = 8). Each equation was shown for 5 s. Approximately half
of the equations were correct and half were incorrect. The processing task con-
sisted in deciding whether the equation shown on screen was correct or incorrect.
Further, all shown equation results had to be memorized irrespective of whether
they were correct or not. Finally, subjects were presented with an answer screen
and successively clicked the to-be-remembered equation results. Each item con-
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sisted of between three to seven items, resulting in 10 test items. Two practice
items were administered before the testing phase.

Fluid intelligence

In order to determine fluid intelligence (IQ), the short form of the Grundintelli-
genztest Skala 2 (CFT 20; Weiß, 1998), a German adaptation of the Culture Fair
Intelligence Test, Scale 2 (Cattell, 1973), was utilized. In one school (n = 125), the
revised form of this test, the CFT 20-R (Weiß, 2006), was utilized1. CFT 20 and
CFT 20-R are paper-and-pencil tests which provide high loadings on fluid intelli-
gence (Cattell, 1968) and have good psychometric properties. They consist of four
different subtests: Series completion, Classifications, Matrices and Topologies.
Overall testing time, including instructions for each subtest, was approximately
20 minutes.

Arithmetic skills

We used a test consisting of relatively simple number series that is part of the CFT
20 (Weiß, 1998) to measure arithmetic skills. On each item of this test, participants
were presented six numbers in a row, followed by an empty cell with a question
mark. Out of five distractors, they had to select the correct answer which correctly
continued the sequence of numbers presented. Only one- or two-digit numbers
were utilized, and the complexity of the cognitive processes involved was low
to medium such that the mastery of all elementary arithmetic operations was in
the focus of interest. The test consisted of 21 items that had to be solved in 16
minutes. Four practice items were administered before testing began.

Vocabulary test

In this test, which is also part of the CFT 20, participants were presented 30 target
words. Next to each target word, five distractors were given. Participants had to
select the distractor that had the same meaning as the target word. Overall, 30

1The CFT 20-R contains some additional items and a new norm sample. In order to make these
measures comparable, we used the aggregated scores from the WM tasks to equate IQs. This
did not substantially affect results reported later, therefore, raw IQs from each test form were
retained.
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test items were preceded by three practice items. The time limit for this test was
12 minutes.

Mental speed

In this study, a two-choice task with visual content, the visual array comparison
task (VACT; cf. Luck & Vogel, 1997), was chosen. In this computer-based task,
participants first saw a red fixation cross for 500 ms in the center of a grey 4
× 4-matrix on the screen. After that, a visual array of four, six, or eight solid-
colored, haphazardly-placed squares, representing set sizes of four, six, and eight,
respectively, was displayed within the matrix. Set sizes were randomly ordered
across trials. The square colors used were red, blue, violet, green, yellow, black,
and white. Care was taken that at least one color was displayed twice in each
initial visual array such that subjects had to memorize both color and location
of the squares (Cowan, Naveh-Benjamin, Kilb, & Saults, 2006). On half of the
trials, the first visual array was displayed for 250 ms and for 500 ms on the other
half of the trials. After a blank interval, a second visual array was displayed
in which one of the squares was encircled. The participants then had to decide
whether the color of the encircled square had changed in comparison to the first
visual array or not. On 50% of the trials, the color of the encircled square had
changed. The length of the interstimulus interval was either 1 s, 2 s, or 4 s and
equally distributed across trials to raise the difficulty of the task. However in
visual array comparison tasks even very complex stimuli show a half-life of about
3 s (Cornelissen & Greenlee, 2000). Three practice trials with feedback preceded
48 test trials, including an equal number of trials for each set size.

We first screened for RT outliers, which were iteratively identified based on
individual RT distributions. For each participant, RTs smaller than 500 ms and
larger than 4 individual standard deviations were excluded from further analy-
sis. This criterion was chosen because it represented an acceptable tradeoff be-
tween deleting RTs clearly away from the rest of the RT distribution and keeping
the shape of the distribution intact. On average, less than 1 RT per participant
was excluded. In order to estimate individual parameters ν, a, and Ter in the
EZ-diffusion model, the proportion of correct responses, the mean of correct re-
sponse times, and the variance of correct response times are required. We used
the formulas provided by Wagenmakers et al. (2007) to calculate EZ-diffusion
model parameters directly in closed form.
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Algebra test

A new algebra test to model the effects of memory load and number size in solv-
ing equations was designed. A detailed instruction on how to solve algebraic
equations was provided first. Special care was taken to promote a relational un-
derstanding of the equal sign, and how to conduct arithmetic transformations
to maintain equality on both sides of the equation. All basic arithmetic oper-
ations (addition, subtraction, multiplication, division) were distributed across
items (nAddition = 14, nSubstraction = 13, nMultiplication = 12, nDivision = 8) and had to be
carried out correctly in different combinations.

We manipulated memory load by designing items in which intermediate
results had to be stored in memory to obtain the correct solution. Memory load
varied between 0 to 2 items. A typical test item with a memory load of 2 was

• B + 14 = 3× C

• A− 16 = B

• D = C +B − 10

• A = 35

• D =?

In this example, three equations needed to be solved successively, and two
intermediate results had to be repeatedly accessed WM in order to provide the
correct solution. Twelve items had a memory load of 0, seven had a memory load
of 1, and three had a memory load of 2, respectively. Items with memory load of
1 or larger required for solving the equations in descending order of complexity,
such that subjects had to solve for the most difficult unknown first (in the exam-
ple, D). In the next step, they were supposed to solve for the next unknown with
a lower memory load (in the example, C), until items without memory load were
reached (in the example, solving for B).

The second factor that was manipulated was number size. Concerning mul-
tiplication, problems with both operands > 5 were seen as large, whereas they
were seen as small if both were ≤ 5. If one operand was smaller than 5 and
the other larger, problem size was classified according to Campbell and Tarling
(1996). Ties (e.g., 9 + 9, 4 × 4) were avoided. Analogous classification schemes
for addition, subtraction, and division were used (e.g., Imbo & Vandierendonck,
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2008). We then computed an average number size indicator across all operations
necessary to solve each item, with a possible range from 0 to 1. After 5 practice
items with feedback, the testing phase comprising 22 items commenced. There
was no time-limit, i.e., the algebra test utilized here was a power test.

3.2.3 A Model for Response Accuracies and Response Times

To address the research questions outlined in the previous section, a modeling
framework is needed that models the children’s arithmetic ability and their pro-
cessing speed simultaneously. Subsequently, it should be possible to relate person
level covariates (e.g., measures of WM) to ability and speed as well as controlling
for item characteristics.

van der Linden (2007) proposed a model that jointly models a person’s abil-
ity and speed level on a test that uses separate measurement models for ability
and speed, respectively. At a higher level, a population model for the person
parameters (ability and speed) is deployed to take account of the possible de-
pendencies between the person parameters. This framework was further devel-
oped by Klein Entink, Fox, and van der Linden (2009) and Klein Entink et al.
(2009), who extended it to allow for explanatory variables on the person and item
side, respectively. Therefore, this model is well suited for the current research.
Figure 3.1 gives a schematic representation of the model. Below, the model is
described in more detail. For an extensive discussion of the joint modeling of re-
sponse accuracies and RTs on psychometric tests, the reader is referred to van der
Linden (in press).

Measurement Models for Accuracy and Speed

The left oval in Figure 3.1 denotes the measurement model for arithmetic abil-
ity. The ability level of a child is represented by θ, while a and b are parameters
that describe the characteristics of an item, denoting its discriminative capacity
between persons of different ability levels and its difficulty level, respectively.
Together, these parameters describe the observed variability in the responses Y

over items and persons. Mathematically, the probability that person i = 1, . . . , N

answers item k = 1, . . . , K correctly (Yik = 1), is assumed to follow the two-
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Figure 3.1: Modeling framework

parameter normal ogive IRT model:

P (Yik = 1|θi, ak, bk) = Φ(akθi − bk), (3.1)

where θi denotes the ability parameter of test taker i and ak and bk denote the
discrimination and difficulty parameters of item k, respectively. Φ(·) denotes the
cumulative normal distribution function.

Two characteristics of this model are important to mention: First, it is as-
sumed that the probability of a correct response increases with ability. This is
represented in the subfigure on the left in Figure 3.2 where the expectation of a
correct response E(Y ) is plotted against ability θ for two items that differ in their
difficulty b. Second, it is assumed that the ability level of the person explains all
associations between the observed responses to different items. This is known as
the local independence assumption in the IRT literature.
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The oval on the right hand side in Figure 3.1 denotes the measurement
model for speed. This model for the response times T has a similar parameter
structure as the IRT model. It is assumed that a person works with a constant
speed ζ during the test. This assumption is plausible in the case of the algebra
test as it has no time-limit. The speed parameter is the equivalent of the abil-
ity parameter. Like ability, speed is assumed to be the underlying construct for
the RTs and, conditional on speed, the RTs on a set of items are assumed to be
conditionally independent. The item parameters λ and φ account for differences
in time intensity and discriminative ability of the items, respectively. That is, λ
models the expected RT on an item and thereby allows for differences in the time
consumingness of items. Since RTs are bounded by 0 and have a skewed distri-
bution, it is assumed that the log-response time Tik of person i on item k follows
a normal model according to:

Tik = −φkζi + λk + εζik , (3.2)

where εζik ∼ N(0, σ2
k) models the residual variance. Note that the minus sign

reflects that persons working at a higher speed have a lower expected RT. On the
right hand side of Figure 3.2, the expected RT as a function of speed is plotted for
two items with different time intensities.

These two measurement models form the basis of the modeling framework
used in this paper. The dependencies between the responses and response times
are modeled at a second level.

Level 2 Model for the Item Parameters

A possible source of covariation between responses and RTs are the items in the
test. For instance, an item that requires multiple processing steps to obtain the
solution can make that item both relatively difficult and time consuming for the
test takers. As a result, we would expect a positive correlation between b and λ.
To model such dependencies, the vector of item parameters ξk = (ak, bk, φk, λk) is
assumed to follow a multivariate normal distribution (MVN),

ξk ∼ N(µI ,ΣI) (3.3)
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where ΣI specifies the covariance structure of the item parameters:

ΣI =


σ2
a σab σaφ σaλ

σab σ2
b σbφ σbλ

σaφ σbφ σ2
φ σφλ

σaλ σbλ σφλ σ2
λ

 . (3.4)

In Figure 3.1 this structural model on the item parameters is depicted by the
square on the upper side of the figure, symbolizing the possible dependencies
between the item parameters. Furthermore, it is possible to explain (a proportion
of the) variance in the item characteristics as a function of known design features
of the items. In the figure, these design features are represented as the item co-
variate matrix XI .

More specifically, in our application the following design features were known:
number size (NM), memory load (ML), and repetition (RP). These item covariates
may contain useful information why certain items are more difficult or time in-
tensive. Therefore, following Klein Entink et al. (2009), the time intensity and
difficulty of the items are modeled as a function of these covariates:

bk = γb0 +NMkγb1 +MLkγb2 +RPkγb3 +NMk ∗MLkγb4 + ebk (3.5)

λk = γλ0 +NMkγλ1 +MLkγλ2 +RPkγλ3 +NMk ∗MLkγλ4 + eλk
, (3.6)

where γ denotes the matrix of regression effects and the error terms are assumed
to follow a MVN distribution, together with the residuals of a and φ, with covari-
ance matrix ΣI as given in Equation 3.3.

Level 2 Model for the Person Parameters

The main research question is how covariates like WM, intelligence and facets
of processing speed of children relate to their performance in solving a series of
mathematical equations. Their performance on the mathematical equations is
measured from the responses and RTs on the arithmetic test, and represented by
their ability and speed levels, θ, ζ , respectively. To relate the latter to the mea-
sures of working memory, intelligence and processing speed, a multivariate re-
gression model similar to the model for difficulty and time intensity above is
developed. This multivariate model that allows for explaining variability in the
ability and speed levels of test takers as a function of covariates was proposed by
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Klein Entink et al. (2009).

The simplest model that describes dependencies between ability and speed
is to assume a bivariate normal distribution:

(θi, ζi) = µP + eP , eP ∼ N(0,ΣP ), (3.7)

where µP = (µθ, µζ) and the covariance structure is specified by:

ΣP =

[
σ2
θ σθζ

σθζ σ2
ζ

]
, (3.8)

where σθζ models the covariance between ability and speed. Like the possible
dependencies between item characteristics, also the dependencies between abil-
ity and speed of test takers can be a source of covariation between the responses
and RTs. It is important to model these different sources of covariation and to
separate the item effects from the person effects (van der Linden, in press).

In Figure 3.1, the structural model for ability and speed is represented by
the lower square. The (residual) covariance between θ, ζ is modeled by ΣP . The
matrix XP contains person level covariates that might explain a proportion of the
variance in ability and speed. For instance, two such covariates could be the age
of the children (AGE) and a measure of their working memory capacity (WM).
Then, the following model for ability and speed of child i would be obtained:

θi = γθ0 + AGEiγθ1 +WMiγθ2 + eθi
(3.9)

ζi = γζ0 + AGEiγζ1 +WMiγζ2 + eζi , (3.10)

where γθ,γζ are the regression effects on ability and speed, respectively, and the
errors follow a multivariate normal distribution with mean 0 and the covariance
matrix given by ΣP .

Thereby, the full modeling framework as represented in Figure 3.1 thus al-
lows us to measure the ability and speed of the children on the algebra test from
their responses and RTs and to relate these to measures of intelligence, process-
ing speed or other background information like age. In addition, effects of ex-
perimental variables at the item level, as described above, can be evaluated si-
multaneously. In the next section the estimation of the model and the testing of
hypotheses is discussed.
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Figure 3.2: ICC and RTCC curves for two items with differing difficulty and time
intensity, where a = φ = 1

3.2.4 Statistical Inference

This section briefly discusses the estimation procedures and some statistical tests
to assess model fit and to be able to test hypotheses of interest. Since the full
model is a complex multivariate multilevel structure with many parameters, es-
timation and testing of the model is all performed within the Bayesian statistical
framework. The Bayesian approach facilitates the use of Markov Chain Monte
Carlo (MCMC) methods, which use simulation-based algorithms to obtain esti-
mates of the model parameters. It is beyond the scope of this paper to go into
the technical details of these algorithms. Therefore, we refer the interested reader
to the papers by van der Linden (2007); Fox, Klein Entink, and van der Linden
(2007) and Klein Entink et al. (2009) for the specifics regarding the model used
here. Software to estimate the models is available as a package for use in the sta-
tistical environment R on the website of the second author. However, before we
discuss some aspects of model selection and model fit, we will briefly discuss the
principles of the Bayesian approach and MCMC for statistical inferences. For a
more thorough introduction to Bayesian statistics, we refer the reader to Gelman,
Carlin, Stern, and Rubin (2004).

3.2.5 MCMC algorithm

In the Bayesian approach, a model parameter is a random variable with a prob-
ability distribution. Statistical inference focuses on the marginal posterior distri-
bution of the parameters of interest. The posterior distribution of the model pa-
rameters are obtained by first specifying a prior distribution that reflects the prior
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uncertainty of the researcher about the parameters before seeing the data. Subse-
quently, when data about these parameters are gathered the prior distribution is
updated and the posterior distribution of all model parameters is obtained. Infer-
ences can then simply focus on the marginal distribution of the model parameters
of interest, ignoring possible nuisance parameters. The latter requires that these
nuisance parameters are integrated out, which is difficult analytically for com-
plex models with many parameters. To circumvent this problem, MCMC meth-
ods are used to approximate the full posterior distribution by obtaining draws
from a density that is proportional to the posterior. MCMC algorithms construct
a Markov chain with the joint posterior distribution of the model parameters as
its equilibrium distribution. More specifically, a complex multivariate distribu-
tion from which it is hard to sample is broken down into smaller univariate dis-
tributions, conditional on the other model parameters, from which sampling is
straightforward. After providing the algorithm with arbitrary starting values for
all parameters, it alternates between the conditional distributions for M itera-
tions. For our model, the algorithm proceeds like:

1. Generate starting values for all parameters

2. For iteration m, draw θ(m) from p(θ|ζ(m−1),y, t,xP, (all other parameters) )

3. Draw ζ from p(ζ(m)|θ(m),y, t,xP, (all other parameters) )

4. Obtain draws for all other model parameters

5. Repeat step 2-5 until M draws from the joint posterior have been obtained

When M draws of the algorithm have been obtained, first, stationarity tests have
to be performed to check the convergence of the algorithm. To do so, the BOA
package for use in R or SPLUS can be used to evaluate several statistical tests that
give an indication about convergence of the MCMC chain (Smith, 2007). Since
the algorithm is provided with arbitrary starting values, a burn-in period of the
algorithm is estimated and these samples are discarded. After this burn-in, sta-
tionarity of the chain is assumed and from the remaining samples of the chain,
summary statistics of the model parameters can be obtained for inferences.

Model Assessment

To check some model assumptions and for model selection purposes, we briefly
introduce the evaluation of test statistics in the Bayesian framework.
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Since parameters have a probability distribution, statistical inferences are
based on the posterior distribution given the observed data. An interval sum-
mary of the posterior is the Highest Posterior Density (HPD) region of level
(1−α). For instance, a 95% HPD region contains (1) 95% of the density region and
(2) parameter values inside the interval have higher probability than parameter
values outside the interval. This property can be used for regression coefficients
to evaluate if the parameter value 0 is contained in the level (1 − α) HPD region
or not.

The appropriateness of a statistical model can be assessed by means of pos-
terior predictive checks. The general principle is to compare replications of the
data, drawn from the posterior distribution under the hypothesized model, with
the observed data by means of an appropriate test statistic (for example, mean
squared error). When using MCMC algorithms for estimation, these statistics can
be obtained as a by product of the algorithm, simply by drawing a new dataset
under the model after each iteration of the algorithm and comparing it to the ob-
served data. For more details, see Gelman et al. (2004) and Gelman, Meng, and
Stern (1996). We used the following statistics to assess the appropriateness of our
model:

• An Odds Ratio statistic to test for local independence in the IRT model, as
proposed by Sinharay (2005),

• An observed score statistic, that gives an impression of overall model fit by
comparing the observed sum scores of the test takers with their replicated
sum scores under the model (Sinharay, 2005; Sinharay, Johnson, & Stern,
2006),

• A Bayesian residual analysis for the RT model (van der Linden & Guo, in
press), that assesses the discrepancy between observed and expected RTs
under the model.

For model comparison, non-nested models can be compared by means of
the Deviance Information Criterium (DIC), which is a deviance statistic with a
penalty term for model complexity (Spiegelhalter, Best, Carlin, & van der Linde,
2002). The DIC is useful to evaluate the discrimination parameters in the IRT and
RT model, since these enter the model as a product with ability (aθ) and speed
(−φζ).

A Bayes factor (Kass & Raftery, 1995; Klugkist, Laudy, & Hoijtink, 2005) can
be used to test a modelM1 against another modelM0 for the observed data y. The
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Bayes factor is defined as the ratio of the marginal likelihoods of these models:

BF =
p(y|M0)

p(y|M1)
. (3.11)

Since the Bayes factor weighs the two models against each other, a value near one
means that both models are equally likely. A value of 3 or greater is considered
to be strong evidence in favor of the null model, while on the contrary a value
near zero favors the larger model as the best explanation for the data (Kass &
Raftery, 1995). We used the Bayes factor to test several nested regression models
of covariates on θ, ζ and on b, λ.

Furthermore, the Bayesian R2 statistic as proposed by Gelman and Pardoe
(2006) was used to assess the proportion of explained variance in ability and
speed, and item difficulty and time intensity, by the person and item level co-
variates. An R2 value near 1 means that the covariates explain almost all ob-
served variability in the parameters, while a value near 0 means that the variance
in the model parameters almost equals the error variance. In contrast to the R2

computed in classical linear regression, the Bayesian R2 can actually be larger if
less predictors are in the model, because predictors without any relevance for the
criterion add noise to the Bayesian R2, thus reducing its magnitude.

3.3 Results

First, descriptive statistics and results of dimensionality and model analyses of
the algebra test are presented. Second, the effects of item-level predictors (mem-
ory load, number size) on algebraic performance are analyzed within the method-
ological framework described above. Third, we analyzed the results of person-
level predictors on both algebraic ability and speed.

Descriptive statistics and reliabilities are presented in Table 3.1. For the EZ-
diffusion model parameters, no internal consistencies could be computed. As can
be seen from the IQ data, the sample investigated here was above average in cog-
nitive ability, reflecting the fact that all students came from the highest track of
the education system. We proceeded with a dimensionality analysis of the alge-
bra test. We used NOHARM (Fraser & McDonald, 1988) to investigate accuracy
data, which is one of the best statistical procedures to assess unidimensionality
(Finch & Habing, 2007). NOHARM revealed a good fit to unidimensionality, with
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Tanaka’s goodness-of-fit index at .95 (Tanaka, 1993).

Table 3.1: Descriptive statistics and reliability estimates

Variable M SD Skewness Kurtosis K-Sa α

Working memory
1. Verbal Span 6.93 1.73 -.43 -.27 .05* .81
2. Spatial WM 7.12 2.25 -.22 -.33 .04 .73
3. Computation Span 8.47 1.30 -1.76 5.48 .13** .78
Fluid intelligence
4. IQ CFT 20b 117 12.55 -.05 -.23 .05 .91
5. IQ CFT 20-Rc 120 13.94 -.10 .15 .08* .82
Arithmetic skills
6. Number seriesd 60 8.10 .00 -.18 .07** .88
Reading-related abilities
7. Vocabulary testd 59 6.99 .10 .00 .07** .85
Mental speed
8. ν .06 .02 .35 -.06 .06** N/A
9. a .27 .07 .33 -.29 .04 N/A
10. Ter 1.01 .37 -.34 .31 .08** N/A
Algebra performance
11. Algebra test 16.94 3.76 -.67 -.10 .12** .82

Note. aZ(p) of Kolmogorov-Smirnov-test on normal distribution with correction of
significance by Lilliefors. bn = 221. cn = 155. dT -values.
*p < .05. **p < .01.

In the next step, we fit four different bivariate IRT models to the algebra
test, and used the DIC to select the one that fit the data best (Gelman et al., 2004).
Table 3.2 provides a summary of the results. As indicated by the DIC, Model
4, assuming two item parameters for both accuracy data and response times, re-
spectively, clearly fit the data best. All further analyses are therefore based on this
model.

The MCMC algorithm was run for 15,000 iterations and its output was
analyzed using the BOA package. Aspects like autocorrelation of the chains,
Geweke’s Z-statistic for stability of the chain, Heidelberg’s stationarity test and
Gelman’s convergence diagnostic were assessed. The results suggested that sta-
bility of the MCMC chain was reached for all parameters after 300 iterations. We
decided to discard the first 5,000 iterations and base our inferences on the last
10,000 MCMC samples. This applies to all analyses reported below.

The posterior model fit checks were based on 2,000 replicated data sets un-
der the model. We evaluated the Bayesian residuals for the RT model for each
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Table 3.2: Deviance summaries for the measurement models

Model Parametrizationa DIC

1 1PNO, 1PRT 21227.31
2 2PNO, 1PRT 21017.25
3 1PNO, 2PRT 20783.74
4 2PNO, 2PRT 20565.64

Note. a1PNO = 1-parameter normal ogive
model, 2PNO = 2-parameter normal ogive
model, 1PRT = 1-parameter RT model,
2PRT = 2-parameter RT model.

item graphically, using quantile-quantile plots of the observed residuals against
their expected values under the model. These plots did not suggest any serious
flaws. The fit to the response data was acceptable, too. Only for a few possible
item combinations did the odds-ratio statistic point at a violation of local inde-
pendence (a Bayesian p-value < .025 or > .975). The observed sum score statistic
suggested that the replicated data sets under the model reflected the observed
data. From Figure 3.3 in the Appendix it can be seen that the model slightly un-
derpredicted the number of people who answered 6 and 8 items correctly, but in
general described the data well.

Table 3.4 summarizes all variance-covariance estimates of Model 4. Ability
and speed parameters were modestly correlated (r = .24), indicating that good
algebra problem solvers tended to work faster. Further, time intensity and dif-
ficulty parameters showed a substantial relationship (r = .64), i.e., more difficult
items required more time to be solved. In addition, whereas more difficult alge-
bra items had a higher discriminatory power with respect to ability, the same was
not true for more time-intensive items concerning speed.

We proceeded by investigating the effects of item-level predictors on both
item difficulty and time intensity, respectively. Three predictors were of inter-
est: Memory load, number size, and repetition. Repetition referred to items with
memory load, in which a result had to be retrieved that had been computed in a
prior step. We hypothesized that both memory load and number size would raise
time intensity, whereas only memory load, but not number size would affect item
difficulty. Repetition was expected to lower both item difficulty and time inten-
sity. Finally, we investigated the interaction between number size and memory
load, expecting a larger effect of memory load for larger numbers.
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Table 3.3: Estimated proportions of explained variance (in b, λ) for models MI0 -
MI2

Model R2(b) R2(λ)

MI0 0.00 0.00
MI1 0.18 0.52
MI2 0.32 0.61

Note. MI0 = Empty model
(no predictors), MI1 =
Memory load, number
size, repetition, and mem-
ory load × number size as
predictors, MI2 = Memory
load as predictor.

Table 3.4: Estimated covariance components and correlations, Model 4

Variance components EAPa SD r

ΣP

Σ11 1.00 - 1.00
Σ12 0.08 0.02 0.24
Σ22 0.10 0.01 1.00

ΣI

Σ11 0.18 0.06 1.00
Σ12 0.20 0.08 0.79
Σ13 0.13 0.05 0.74
Σ14 0.06 0.06 0.23
Σ22 0.36 0.12 1.00
Σ23 0.13 0.07 0.52
Σ24 0.25 0.06 0.64
Σ33 0.16 0.08 1.00
Σ34 -.03 0.06 -.09
Σ44 0.40 0.13 1.00

Note. ΣP = Variance-covariance parameters on
person level, ΣI = Variance-covariance parame-
ters on item level. aExpected a posteriori param-
eter estimate.

Table 3.3 provides an overview of the proportions of explained variance in
both time intensity and item difficulty. Only memory load had a substantial ef-
fect, which it exerted on both time intensity and item difficulty. Hence, taking
memory load into account, there was no effect of number size. Further, there
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was no difference between smaller and larger numbers to be stored in WM. In
addition, repetition had no effect on item difficulty or time intensity, suggesting
that intermediate results were not simply retrieved from memory. Parameter es-
timates of model MI2 are summarized in Table 3.5, underscoring the substantial
effect of memory load on both item difficulty and time intensity.

Table 3.5: Estimated effects and .95 HPD regions for model MI2

Effect EAP SD .95 HPDa

Discrimination (a) γ100 (intercept) 0.71 0.10 [0.52,0.92]
Difficulty (b) γ200 (intercept) -1.21 0.14 [-1.48,-.94]

γ201 (Memory load) 0.59 0.17 [0.26,0.92]
Time Discrimination (φ) γ300 (intercept) 1.09 0.10 [0.89,1.27]
Time intensity (λ) γ400 (intercept) 9.33 0.12 [9.10,9.57]

γ401 (Memory load) 0.98 0.19 [0.61,1.35]
Note. a95% Highest posterior density intervals of parameter estimates.

Having established that only at the item-level, only memory load was sub-
stantially related to ability and speed in solving equations, we proceeded by in-
vestigating the effect of person-level predictors. A sequence of hierarchical re-
gression models was fitted to the data, relating all person-level variables to both
algebra ability and speed, respectively. Results are shown in Table 3.6. More
variation in ability than speed was explained when all predictors were taken into
account. Of note, WM variables still exerted a substantial effect on algebra abil-
ity when all other person-level variables were taken into account, whereas the
effect was much smaller for speed in solving equations. In contrast, parameters
from the diffusion model appeared more important in predicting speed in solving
equations than algebra ability.

Several variables were unrelated to algebra performance or speed, respec-
tively, in model MP5. The ability parameter in model MP5 was unaffected by IQ,
ν, and Verbal span, whereas the speed parameter was unaffected by Spatial WM
and Verbal Span. We therefore excluded these variables from further analysis
and estimated a more parsimonious model (MP6). The comparison of MP6 and
MP5 yielded a Bayes factor ofBF = exp(13.8), providing strong evidence in favor
of model MP6. Table 3.7 provides an overview of parameter estimates in model
MP6. Arithmetic ability, as could have been expected, was a strong predictor of
algebraic reasoning. Surprisingly, IQ did not affect when all other variables were
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Table 3.6: Estimated proportions of explained variance in θ, ζ (models MP0 - MP6)

Model R2(θ) R2(ζ)

MP0 0.00 0.00
MP1 0.04 0.10
MP2 0.15 0.17
MP3 0.16 0.22
MP4 0.37 0.31
MP5 0.41 0.32
MP6 0.41 0.32

Note. Predictors in the models: MP0 = Null model, MP1 = Age, MP2 = Age + IQ,
MP3 = Age + IQ + ν + a + Ter, MP4 = Age + IQ + ν + a + Ter + number series +
vocabulary test, MP5 = Age + IQ + ν + a + Ter + number series + vocabulary test +
Computation Span + Verbal span + Spatial WM, MP6 = As MP5 but with predictor
selections specific for ability and speed.

taken into account. It did affect speed of algebra problem solving, however, with
age being the strongest predictor.

Additionally, we checked whether the single item-level predictor, memory
load, interacted with WM capacity (both Computation Span and Spatial WM)
in predicting algebra ability. Substantial interaction effects would indicate that
high-WM subjects process memory load during solving equations differently.
However, no substantial interaction effects were found, supporting the notion
of similar processing in high- and low-WM participants, respectively.

3.4 Discussion

Building on a dearth of research on arithmetic calculation and algebra perfor-
mance in children, this study sought to illuminate the relative contributions of
WM, intelligence, and components of processing speed in children’s algebra per-
formance as well as speed. Results provide further evidence for the role of WM
and related cognitive processes in solving equations. Results suggested three
important findings. First, WM had a substantial effect on algebra ability, even
when controlling for age, reading-related abilities, arithmetic ability, and facets
of processing speed. Second, two WM tasks contributed unique variance to alge-
bra ability, contradicting the assumption of a domain-general WM model. Third,
only memory load affected item difficulty and time intensity, whereas number
size had no effect. All points will be addressed in turn.
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Table 3.7: Estimated standardized effects for model MP6

Model Effect EAP SD .95 HPD

Ability (θ) γ100 (Intercept) 0.00 - -
γ101 (Age) 0.26 0.07 [0.13, 0.39]
γ102 (IQ) 0 - -
γ103 (Vocabulary test) 0.16 0.07 [0.03,0.29]
γ104 (Number series) 0.50 0.07 [0.35,0.64]
γ105 (ν) 0 - -
γ106 (a) 0.22 0.10 [0.02,0.42]
γ107 (Ter) 0.23 0.10 [0.03,0.44]
γ108 (Computation Span) 0.25 0.07 [0.11,0.39]
γ109 (Spatial WM) 0.24 0.07 [0.11,0.37]
γ110 (Verbal Span) 0 - -

Speed (ζ) γ200 (Intercept) 0.00 - -
γ201 (Age) 0.10 0.02 [0.07,0.13]
γ202 (IQ) 0.04 0.02 [0.01,0.07]
γ203 (Vocabulary test) 0.04 0.02 [0.00,0.07]
γ204 (Number series) 0.06 0.02 [0.03,0.10]
γ205 (ν) 0.03 0.02 [0.00,0.07]
γ206 (a) -.06 0.03 [-.12,-.01]
γ207 (Ter) -.20 0.03 [-.16,-.05]
γ208 (Computation Span) 0.04 0.02 [0.01,0.08]
γ209 (Spatial WM) 0 - -
γ210 (Verbal Span) 0 - -

Note. Both intercepts (γ100, γ200) were fixed to 0 to identify the model.

Similar to other studies (e.g., Andersson, 2008), we found that complex span
tasks, except for Verbal Span, substantially predicted algebra ability, even when
numerous control variables like arithmetic ability, reading-related abilities, IQ,
age, and facets of processing speed were taken into consideration. Similar to K.
Lee et al. (2004), 4% of total variation could be uniquely attributed to WM ca-
pacity. Complex span tasks predicted algebra performance more strongly than
reading-related abilities, in contrast to other results (K. Lee et al., 2004). A pos-
sible reason for this finding might be that we did not use word problems here.
Although processing speed has been described as a basic function of WM (Case
et al., 1982), and of cognitive processing in general (Fry & Hale, 1996), a key pa-
rameter of EZ-diffusion model reflecting speed of information processing, drift
rate ν, did not substantially contribute to algebra performance, in contrast to re-
sults reported earlier by Schmiedek et al. (2007) who found large correlations
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between ν and reasoning. One of the reasons for this finding might reside in
the fact that the algebra test utilized here was given without a time-limit, thus
possibly eliminating effects of test speededness. However, ν was related to the
speed of solving algebra problems. Interestingly, therefore, a higher quality of
information processing predicted solution speed, but not solution quality in al-
gebraic reasoning. Further, studies based on younger samples (e.g., mean age
89 months; Bull & Johnston, 1997) often found a substantial effect of processing
speed on arithmetic performance, in contrast to studies based on older samples
of children (Berg, 2008), suggesting that speed of processing plays a larger role
in samples of younger children (Hecht et al., 2001). We found, however, that IQ
did not affect algebra ability in the full model. This surprising finding contrasts
results reported in several studies (e.g., Andersson, 2008; K. Lee et al., 2004), and
might be due to the fact that the IQ test utilized here here had a relatively strict
time-limit, in contrast to the other tests used here. This assumption is under-
lined by the fact that IQ predicted algebra solution speed. However, Alloway
(2009) reports findings from a longitudinal study indicating that WM, along with
domain-specific knowledge, but not IQ, predict subsequent learning in children
with learning disabilities. More research is needed to clarify this issue.

The fact that two WM tasks independently predicted algebra ability is dif-
ficult to reconcile with the assumption that a single domain-general WM system
governs cognitive processes. Rather, it is in line with results from studies paint-
ing a more differentiated picture of verbal and visuo-spatial controlled attention
(e.g., Berg, 2008; Hitch et al., 2001; Shah & Miyake, 1996), showing that WM
facets are differentially related to cognitive functioning. Similar to Leather and
Henry (1994), the results support the conclusion that the WM tasks used here
capture both domain-free and domain-specific processes. However, the precise
role of each WM task in algebra ability requires further research. Logie et al.
(1994) report evidence that in arithmetic calculation, verbal WM serves to retain
intermediate results, whereas visual-spatial WM is involved in encoding visually-
presented parts of the problem. The current study offers no insight into such
specialized roles. However, it was found that there was no interaction between
memory load at the item level and WM capacity, suggesting that high-WM sub-
jects did not use qualitatively different solution strategies in algebra items with
high memory load than low-WM subjects (e.g., more retrieval in high-WM sub-
jects; Barrouillet & Lépine, 2005), and that WM capacity was involved equally in
high-load and low-load algebra items.
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At the item level, we found that number size neither affected item diffi-
culty nor time intensity. This finding differs from other results reported in the
literature (e.g., Ashcraft, 1992; LeFevre et al., 1996), and might be related to the
fact that the algebra test in this study, for practical reasons, comprised only 22
items, thus not covering number size effects only selectively, and that the task
format was considerably more complex than in other studies. Future studies us-
ing both an experimental as well as an individual-differences approach would
benefit from a more complete estimation of the effect of number size. However, a
substantial effect of memory load on both item difficulty and time intensity was
found, underlining the effects of Oberauer et al. (2001) that access to WM load
during problem solving substantially affects algebra ability as well as solution
speed. Like in the paper by Oberauer et al. (2001), these findings speak against a
single-resource model of WM, supporting the view that cross-talk between com-
peting memory elements when the processing task requires access to the contents
of working memory is a key factor for intellectual functioning. A limitation of the
current study, however, is that we did not use a control condition in which irrel-
evant memory load was used.

Overall, a key finding of this study is that WM plays a crucial role in alge-
bra problem solving, even when taking prior arithmetic experience, IQ, and other
parameters of interest into account. From an applied perspective, it would there-
fore be useful to take WM tasks into account when predicting algebra ability, and
when doing high-stakes examinations. Although arithmetic ability certainly is
a core predictor, and amenable to educational intervention, WM capacity can be
substantially raised by training as well (Klingberg et al., 2005; Thorell, Lindqvist,
Nutley, Bohlin, & Klingberg, 2009). Future interventions intended for low per-
formers in mathematics might take this finding into account.
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3.5 Appendix

Figure 3.3: Observed sum scores (line) and model predicted sum scores (dots
with .95 HPD regions)



4 Cognitive complexity and working memory in chil-

dren: An investigation using the Latin Square Task

Summary. Relational complexity (RC) theory assumes that task complexity is defined by the
number of distinct elements that must be simultaneously represented while solving a complex
task. In this study, a measure of deductive reasoning, the Latin Square Task (LST), was system-
atically designed to assess core assumptions of RC. The LST task is conceptually simple in that
it requires understanding of only a single rule. In line with RC theory, we found in a sample
of children (N = 557, 8-13 years) that relational complexity, along with memory load, were core
predictors of item difficulty, whereas the effect of chunk size was negligible. Further, using linear
logistic test models with random effects, large interindividual differences in complex (quater-
nary) processing were found, suggesting age-related constraints in processing. Finally, the effect
of quaternary processing and memory load were moderated by spatial working memory capacity.
Results are discussed with respect to systematic investigations of reasoning ability.

4.1 Introduction

A plethora of research highlights the fact that reasoning is a core ability of fluid
intelligence (cf. Carroll, 1993). Contemporary research on reasoning has focused
on so-called dual-process theories. In these theories, an implicit, intuitive, heuris-
tic system of reasoning is contrasted with a rule-based, analytical, explicit sys-
tem (Sloman, 1996; Stanovich, 1999). In individual differences research, the in-
terest lies mainly with the second system. Individual differences in reasoning
ability have often been attributed to restrictions in the ability to create and ma-
nipulate mental representations, i.e., to working memory capacity (WM). As has
been abundantly shown, WM resides at the heart of all higher cognitive functions
(Ackerman, Beier, & Boyle, 2005; Kyllonen & Christal, 1990).

One important question in this context is, what makes a reasoning problem
difficult? In other words, can the cognitive complexity of a reasoning problem be
defined and quantified in advance, based on a strong theory? Several studies uti-
lizing numerous indicators of reasoning, WM, and general intelligence have been
published (e.g., Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008; Krumm
et al., 2009; Oberauer, Süß, Wilhelm, & Wittmann, 2008), but these offer only a
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macroscopic perspective and do not focus on cognitive processes during solving
single reasoning problems. In addition, they offer no insight into how cogni-
tive complexity may be defined. In order to evaluate cognitive complexity, one
would therefore need a carefully-designed reasoning test based on a strong the-
ory of cognitive complexity. As mentioned by Krumm et al. (2009, p. 361), ”the
experimental manipulation of task requirements seems to be a promising next
step”.

Several theories of cognitive complexity, and of modeling thought processes
in reasoning, have been suggested. Halford, Wilson, and Phillips (1998) proposed
a theory of relational complexity (RC), which allows to define task complexity
independent of domain, and which offers a metric to quantify cognitive com-
plexity. In this study, our goal was to evaluate the cognitive complexity of a
figural reasoning test, the Latin Square Task (Birney, Halford, & Andrews, 2006),
as predicted by RC. Further, the role of WM in specific reasoning processes was
assessed. Finally, using random effects item response theory (IRT) models (de
Boeck, 2008), hypotheses with respect to individual differences in reasoning and
cognitive complexity were evaluated.

4.1.1 Cognitive complexity, relational complexity, and RC theory

Cognitive complexity has been defined in different ways in the literature. For ex-
ample, in Marshalek, Lohman, and Snow (1983), complexity was defined as the
degree to which a task loaded on the g-factor (cf. Spilsbury, Stankov, & Roberts,
1990), whereas Vernon and Jensen (1984) defined complexity based on the re-
sponse time required to solve a task. These earlier approaches are purely empiri-
cal in that the establish complexity in a post-hoc fashion without a prior cognitive
theory.

Other approaches have described cognitive complexity with respect to the
number of distinct elements or type of element relations in a task (Carpenter,
Just, & Shell, 1990; Holzman, Pellegrino, & Glaser, 1983; Primi, 2001). In these ap-
proaches, reasoning ability is limited by WM. WM is often regarded as a capacity-
limited system of information processing (e.g., Just & Carpenter, 1992). Based on
such a view, more difficult items in a psychometric test require more WM capac-
ity, because more elements have to be stored and manipulated simultaneously,
and interindividual differences in reasoning therefore can be based on differences
in WM capacity. However, this definition of complexity does not necessarily bear
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on the depth of processing required to solve a task, because increasing storage
demands of an otherwise simple task will result in a higher task difficulty, but
not necessarily a higher complexity.

Although storage in the context of processing, as captured by classical WM
tasks, appears to play an important role in reasoning ability, it is not necessarily
the most important factor. One important facet of cognitive architecture is the
ability of relational integration, i.e., the ability to build structural relations be-
tween elements and thus create structural subrelations (Waltz et al., 1999). These
elements can be presented visually or held in memory. As could be shown by
both Oberauer et al. (2008) and Krumm et al. (2009), relational integration, as
captured by a battery of tasks, is a decisive factor in predicting reasoning ability,
above the traditional storage and processing component of WM. Oberauer et al.
(2008) hypothesize that reasoning tasks such as series completion require peo-
ple to construct a representation of the relations between elements of the series,
which has to be transferred to a later segment of the series in order to generate
the next element. To construct new relational representations, elements must be
bound to each other in a new representation. Hence, a limit on the number of
bindings that can be upheld simultaneously posits a limit on the complexity of
new relational representations that can be processed. That is, even WM tasks
without a storage component can be powerful predictors of reasoning ability, al-
though storage and processing as well as coordination factors are substantially
correlated but dissociable (Oberauer et al., 2008).

Similarly, Halford et al. (1998) argued that it is not the amount of infor-
mation per se, but the complexity between the pieces of information that have
to be processed which is subject to capacity limitations. RC theory is based on
two axioms. Axiom 1 pertains to the complexity of a cognitive process, which
is represented by the number of interacting variables that must be processed in
parallel to correctly carry out that process. Axiom 2 is concerned with the pro-
cessing complexity of a task, which is ”the number of interacting variables that
must be represented in parallel to perform the most complex process involved in
the task, using the least demanding strategy available to humans for that task”
(Halford et al., 1998, p. 805). The complexity of a relation R(a1, a2, . . . , an) is
generally determined by the number of arguments n involved. More arguments
allow more complex relations. For example, a binary relation would be larger-
than(elephant, mouse), in which two arguments are related to each other. In con-
trast, a unary relation is simpler, representing a categorization, such as dog(Fido).
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Ternary relations have three arguments, such as addition(2, 3, 5). More elements
allow more complex relations to be established, which according to Halford et al.
(1998) requires more WM capacity to represent them. Halford, Cowan, and An-
drews (2007) argue that WM and reasoning are also conceptually similar because
in WM, elements are bound to a temporary coordinate system, which is closely
related to relational representations in reasoning.

RC theory suggests that two cognitive strategies are available to reduce the
cognitive demand of processing such relations. The first is conceptual chunk-
ing, which recodes a high-dimensional relation into a lower-dimensional one.
As mentioned by Birney et al. (2006), velocity can either be processed as ra-
tio(distance, time, velocity), which represents a ternary relation, or as a unary
relation, velocity(60km/h). In the latter case, information concerning distance
and time are disregarded. Conceptual chunking, therefore, reduces processing
demand at the cost of loss of information. A second strategy to reduce process-
ing demand is segmentation, which entails breaking down a complex task into
several steps of lower complexity. That is, in the case of a reasoning test, for ex-
ample, a stepwise solution process is triggered, and only relations of elements
in the current solution step are analyzed. Other relations are inaccessible at the
time. Complexity of the task is then determined as the complexity of the most
complex step, according to RC theory.

Relational complexity has been shown to affect the difficulty of deductions
(Birney et al., 2006; Holling, Bertling, Zeuch, & Kuhn, in press; N. Y. L. Lee, Good-
win, & Johnson-Laird, 2008) and to play a role in cognitive development (An-
drews & Halford, 2002). However, relational complexity as defined by RC theory
hinges upon identical strategies being used by persons solving the same reason-
ing task (Sweller, 1998). That is, cognitive tasks used to assess RC theory must be
carefully designed to avoid ambiguity, despite the fact that differential strategy
use does not affect the relationship between WM and higher cognitive function-
ing (Turley-Ames & Whitfield, 2003). Further, prior knowledge differences have
to be taken into account. They can best be minimized by using reasoning tasks
with figural content. Reasoning measures with figural content have additionally
been shown to be the best measures of fluid intelligence (Undheim & Gustafsson,
1987).

The Latin Square Task (LST), an innovative deductive reasoning measure,
was developed by Birney et al. (2006) in order to operationalize complexity lev-
els as defined by RC theory. Although deductive and inductive reasoning are
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sometimes seen as being differentiable (Colberg, Nester, & Trattner, 1985), recent
research has shown that inductive and deductive reasoning cannot be separated
at the latent level (Wilhelm, 2005). Birney et al. (2006) found that in this task, com-
plexity level as defined by RC theory explained 64% of variance in item difficulty,
showing that complexity as defined by RC theory is a powerful and theoretically
sound predictor of item difficulty. The study of these authors, however, is prelim-
inary. First, they did not include any other constructs of interest in their analysis
(e.g., WM). Second, they did not use IRT models that allow detailed insights into
variation of complexity level difficulty across individuals, or interactions of com-
plexity levels with person covariates like WM. Third, some of the items in Birney
et al. (2006) had to be reclassified concerning their complexity level. The results
reported by these authors, therefore, should be considered preliminary and re-
quire further investigation.

4.1.2 Modeling cognitive complexity using IRT models

Modeling cognitive complexity requires using IRT models, because classical test
theory is focused on test scores. One of the central IRT models for assessing the
difficulty of item components or rules is the linear-logistic test model (LLTM)
proposed by Fischer (1973). In order to estimate this model, however, Rasch-
scalability must be given. The LLTM can be used to test hypotheses with respect
to item component difficulty, which are grounded in prior theory.

In the LLTM, item difficulty is decomposed such that the probability of per-
son i to answer item k correctly is provided by

P (Yik = 1|θi, γj, qjk) =
exp(θi −

∑J
j=0 qjkγj)

1 + exp(θi −
∑J

j=0 qjkγj),
(4.1)

where θi = person ability with θi ∼ N(0, σ2
θ), γj = difficulty of item compo-

nent j and qjk = dummy-variable indicating whether component j is present in
item k or not. j = 0 indicates an intercept term for scaling the IRT model.

The LLTM is a restrictive model that practically always shows inferior fit
to the Rasch model, due to the usually smaller number of item-related param-
eters (J < K). Items consisting of identical components are fixed to an identi-
cal item difficulty. To overcome this strong restriction, an item-related random
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effect can be introduced, resulting in an LLTM with a random item effect (RE-
LLTM; Janssen, Schepers, & Peres, 2004; van den Noortgate, de Boeck, & Meul-
ders, 2003),

P (Yik = 1|θi, γj, qjk) =
exp(θi −

∑J
j=0 qjkγj + εk)

1 + exp(θi −
∑J

j=0 qjkγj + εk),
(4.2)

with εk ∼ N(
∑J

j=1 qkjγj, σ
2
ε ). That is, items with an identical configuration

have an expected value of
∑J

j=1 qkjγj , but random variation is possible, and cap-
tured by the variance σ2

ε . Therefore, identical items can be seen as clones stem-
ming from the same item family (Glas & van der Linden, 2003). σ2

ε can be re-
garded as the residual variance when regressing item difficulties in the Rasch
model on the predictors qjk. The RE-LLTM therefore is helpful in assessing the
explanatory power of the cognitive model under investigation. It can be com-
pared against a version of the Rasch model that allows both random item and
person effects (de Boeck, 2008).

An additional extension of the LLTM is helpful to assess whether item com-
ponent difficulties vary across subjects. This might be an indication of differing
solution strategies. Using the random-weights LLTM (RW-LLTM; Rijmen & de
Boeck, 2002), it is possible to estimate variance components with respect to item
components. It corresponds to a logistic regression model with random slopes.
The RW-LLTM is defined as

P (Yik = 1|θil, γj, blk, qjk) =
exp(

∑L
l=0 blkθil −

∑J
j=0 qjkγj)

1 + exp(
∑L

l=0 blkθil −
∑J

j=0 qjkγj),
(4.3)

with θil ∼ N(0, σ2
θl
), where σ2

θ0
= σ2

θ as in the standard LLTM. This model is a
multidimensional extension of the LLTM because it assumes additional component-
specific person abilities θil. By estimating their variance components, an assess-
ment of the homogeneity of solution processes is principally possible.

A third extension of the LLTM takes person-level covariates into account
in order to explain differences at the level of the individual. In this model, the
person ability θi is written as

∑M
m=1wimϑm + εi, where wim is the value of person

i on some property m (e.g., a WM task score), ϑm is the fixed regression weight
of person property m, and εi is the remaining person effect after controlling for
differences due to properties m(m = 1, . . . ,M), with εi ∼ N(0, σ2

ε ). The latent



4 Cognitive complexity and working memory in children 93

regression LLTM (LR-LLTM; Zwinderman, 1991) has the form

P (Yik = 1|ϑm, γj, εi, wim, qjk) =
exp(

∑M
m=1wimϑm + εi −

∑J
j=0 qjkγj)

1 + exp(
∑M

m=1wimϑm + εi −
∑J

j=0 qjkγj).
(4.4)

Finally, it is often of interest to investigate person-by-item-interactions more
closely, which corresponds to an analysis of differential item functioning (DIF;
Meulders & Xie, 2004). In the context of the LLTM, it is of interest whether item
component difficulties interact with person properties, which is called differen-
tial facet functioning (DFF; Engelhard, 1992). In DFF, a more explanatory inves-
tigation of component difficulties due to specific person properties (e.g., WM ca-
pacity) is feasible. Often, DFF is assessed assuming a fixed effect assumption,
although random DFF conceptions have been suggested (Meulders & Xie, 2004).
A DFF model can be conceptualized as an extension of the LR-LLTM (excluding
main effects of person properties) as

P (Yik = 1|θi, γj, δj, wim, qjk) =
exp(θi −

∑J
j=0 qjkγj +

∑J
j=1 δjqjkwim)

1 + exp(θi −
∑J

j=0 qjkγj +
∑J

j=1 δjqjkwim),
(4.5)

where all δj capture interactions of item component difficulties with person
properties, respectively. This model, then, allows to assess whether difficulties
of item components vary with person properties, indicating possible qualitative
differences in cognitive processing.

The models outlined above can be combined in various ways. For example,
RW-LLTM, LR-LLTM, and DFF can be combined to yield something analogous
to a model with intercepts and slopes as outcomes in the classical multilevel lit-
erature (Snijders & Bosker, 1999). Each model allows a close examination of prior
hypotheses within an IRT framework.

4.1.3 Purpose of the present study

The purpose the present study was to corroborate and advance the results ob-
tained by Birney et al. (2006). Our goal was to design a LST with unambigu-
ous items for children. We wanted to assess the effects of relational complexity
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and number of steps on item difficulty, using the IRT models described above.
Hence, we were able to investigate whether higher relational complexity raised
item difficulty, whether interindividual variation with respect to complexity level
difficulty could be observed, and whether theoretically relevant constructs such
as WM affected the ability to provide a solution or whether they moderated the
effects of relational complexity.

4.2 Method

4.2.1 Subjects

Five-hundred fifty-seven children participated in this study, of whom 130 chil-
dren visited primary school, whereas the remaining 447 children went to sec-
ondary schools in various regions of Germany. Mean age was 10;8 years (SD =
1.05, range: 8;0-13;4). 49% of the participants were female. Parental consent was
obtained for all participants prior to testing. Few participants (n = 21) indicated
German was not their first language, although all of these participants spoke Ger-
man since they were 3 years old.

4.2.2 Measures

The Latin Square Task

We designed a LST based on Birney et al. (2006). A Latin Square is based on
the ancient puzzle in which each element in a square occurs in each row and
column only once, as shown in Figure 4.1 in the lower right panel. The princi-
ple of Latin Squares can be used to systematically design test items of differing
relational complexity. In the LST, subjects are required to correctly deduce the
content of a pre-specified cell by utilizing this simple principle.

In the upper left panel of Figure 4.1, for example, subjects must perform
binary processing in order to solve the item correctly. One of the cells in the LST
contains a question mark. The content of this cell must be deduced using the sin-
gle rule that each element below the LST (except the question mark) must occur
once in each row and column. In this case, the second row contains three different
elements. These can be conceptually chunked into one set, because a differentia-
tion of these elements from each other is not necessary. However, it is clear that
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the element in the cell with the question mark must differ from the chunked set.
In order to solve this item correctly, therefore, two sets of elements must be repre-
sented, the complete set of elements, given below the LST, as well as the given set
of elements in the second row. The difference between these two sets corresponds
to the solution of the item. Binary processing has a relational complexity of 2.

Ternary processing (upper right panel in Figure 4.1) requires integration of
information from both a row and a column. In the example given, the solution
can be deduced by taking both the second column as well as the fourth row into
account. The intersection of these two must not contain any element present in ei-
ther the respective row or column. Because elements in the second column are not
independent of any elements in the intersecting rows, they cannot be represented
in a single chunk together (Birney et al., 2006). However, elements in the lowest
row can be chunked, because their relation does not have to be considered for
solving the item. Therefore, in this example of ternary processing, three distinct
sets of elements must be cognitively represented: The full set of elements, the
two elements in the lowest row, and the element in the second column. Ternary
processing has a relational complexity of 3.

Quaternary processing requires integration of elements across multiple rows
or columns. In the example given in Figure 4.1 (lower left panel), binary or
ternary solution strategies do not produce a unique solution. Here, the distri-
bution of the circle of rows and columns must be taken into consideration. As
can be seen, the circle occurs in the second and third row and column, respec-
tively. It is impossible that a circle could be put into the lower right cell of the
LST, because this cell is already occupied. Therefore, the only possibility to put a
circle into the rightmost column is the cell with the question mark. That is, a sub-
ject must take into consideration all possible elements in the rightmost column
while taking into consideration elements in all rows. This entails representing
four pieces of information. Here, relations between the elements must be consid-
ered, and therefore, conceptual chunking is not possible. Quaternary processing
has a relational complexity of 4.

The complexity of solution steps in LST items can therefore be systemati-
cally manipulated by specifying the relations of elements within the LST. In ad-
dition, the number of steps to arrive at a solution can be manipulated. That is,
items can be constructed in which the content of empty nontarget cells must be
resolved in an itermediate step and stored in memory before the target cell is ap-
proachable. By introducing intermediate steps, serial processing is invoked, and
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memory load is introduced.

We developed 16 LST items of differing relational complexity. Complexity
of each item was determined, according to RC theory, by the most complex step
in each item. Four items were binary, eight items were ternary and four items
were quaternary. Pretests had shown that it is difficult for younger children to
solve complex LST items with a high memory load. Therefore, nine items had no
memory load (one step), five items had a memory load of one intermediate result
(two steps) and two items had a memory load of two (three steps).

We further introduced an additional manipulation to check whether chunk
size affected item difficulty. In order to do so, Latin Squares of two size formats,
4 × 4 and 5 × 5, were introduced. Based on RC theory, the size of chunks should
not play any role, in contrast to the complexity of element or set relations. Eight
items of each size were distributed across the test.

The LST task designed here was administered by computer. After a detailed
instruction explaining the Latin Square principle, four practice items with feed-
back had to be solved. The test was given without a time limit such that subjects
could work at their own pace.

WM tasks

WM tasks usually consist of several items and subitems. For example, in this
study, computation span comprised 10 items, each consisting of three to seven
equations displayed on the screen (subitems). The subitems (in the case of com-
putation span, the results of the equations) were the contents that had to be re-
membered. Recently, it has been shown that partial scoring (i.e., computing the
sum of proportion of correctly-solved subitems for each item) results in better
psychometric properties and higher correlations with measures of fluid intelli-
gence than other scoring procedures, presumably because more information is
retained (Unsworth & Engle, 2007b). We therefore used partial scoring for all
WM tasks.

Verbal Span (VS) This WM task, based on Oberauer, Süß, Schulze, Wilhelm,
and Wittmann (2000) and Vock and Holling (2008), consisted of two different
parts. Participants first had to memorize a list of words presented on the screen
(presentation time 6 s). List length in this storage task varied between three to
six words. Then, between two and three verbal decision tasks followed in which
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(a) Binary (b) Ternary

(c) Quaternary (d) Complete Latin Square

Figure 4.1: Examples of different Latin Square Task items and a complete Latin
Square

participants had to respond as quickly as possible. In these processing tasks,
participants had to decide which of four words displayed in each corner of the
screen stood in a subconcept relation to the word shown in the center of the screen
(e.g., ”animal” - ”lion”). Finally, participants were supposed to reproduce the
learned words in correct order. The task consisted of two practice items and 10
test items.

Spatial Working Memory (SWM) Participants had to memorize one or sev-
eral simple chessboard-like 3 × 3-patterns (storage task). However, the patterns
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had to be stored in a rotated fashion, rotated either 90◦ clockwise or counterclock-
wise (processing task). That is, before the patterns were shown successively for
4 s each, an arrow indicated whether patterns had to be mentally rotated to the
left or to the right. Finally, participants had to successively reproduce the mem-
orized patterns into empty 3 × 3 matrices on the screen. The task consisted of
13 items with between one to four patterns. Three practice items preceded the
testing phase.

Computation Span (CS) In this task, participants were sequentially shown
a series of simple, single-digit equations that included either an addition or a sub-
traction (e.g., 4 + 3 = 8). Each equation was shown for 5 s. Approximately half
of the equations were correct and half were incorrect. The processing task con-
sisted in deciding whether the equation shown on screen was correct or incorrect.
Further, all shown equation results had to be memorized irrespective of whether
they were correct or not. Finally, subjects were presented with an answer screen
and successively clicked the to-be-remembered equation results. Each item con-
sisted of between three to seven items, resulting in 10 test items. Two practice
items were administered before the testing phase.

Fluid intelligence

In order to determine fluid intelligence (IQ), the short form of the Grundintelli-
genztest Skala 2 (CFT 20; Weiß, 1998), a German adaptation of the Culture Fair
Intelligence Test, Scale 2 (Cattell, 1973), was utilized. The CFT 20 is a paper-
and-pencil test which provides high loadings on fluid intelligence (Cattell, 1968)
and has good psychometric properties. It consists of four different subtests: Se-
ries completion, Classifications, Matrices and Topologies. Between two and three
practice items were given before each subtest commenced. Overall testing time,
including instructions for each subtest, was approximately 23 minutes. IQ was
seen as a control variable here, which should be taken into account whenever
higher cognitive processing is analyzed (Mayes, Calhoun, Bixler, & Zimmerman,
2009).

4.3 Results

There are three sections to the results. First, descriptive statistics and reliabilities
of study measures are reported. Second, Rasch analysis results concerning the



4 Cognitive complexity and working memory in children 99

LST are reported. Third, we used the IRT models described above to assess effects
of relational complexity and memory load as well as WM, age, and IQ on LST
performance.

As shown in Table 4.1, reliabilities were mostly satisfactory, although the
internal consistency of the LST was not as high. However, ANOVA reliability
(Kerlinger, 1973) of the LST was .76, suggesting sufficient measurement precision
for subsequent IRT analyses.

Table 4.1: Descriptive statistics and reliability estimates

Variable M SD Skewness Kurtosis K-Sa α

Reasoning
1. Latin Square Task 9.54 2.98 -.11 -.21 .08** .71
Working memory
2. Verbal Span 5.91 2.14 -.63 -.10 .07* .86
3. Spatial WM 5.77 2.74 -.24 -.62 .04* .82
4. Computation Span 7.11 2.07 -1.30 1.39 .14** .86
Fluid intelligence
5. IQ CFT 20 112 14.26 -.20 .23 .05* .91

Note. aZ(p) of Kolmogorov-Smirnov-test on normal distribution with correction
of significance by Lilliefors.
*p < .05. **p < .01.

We analyzed Rasch scalability of the LST test by investigating classical good-
ness of fit tests as suggested by Andersen (1973) and Martin-Löf (1973). We
started by computing the Andersen test, which basically analyzes whether item
difficulties in the Rasch model are comparable across subgroups. Three splitting
criteria were used to build subgroups: Gender, age (younger than 10;8 years vs.
older) and mean score (below vs. above). The Andersen test suggested that per-
son homogeneity was given with respect to gender (χ2(15) = 21.34, p = .12) but
not with respect to age (χ2(15) = 26.06, p = .04) or mean score (χ2(15) = 42.05, p
= .00). Two criteria were used to form item subgroups for the Martin-Löf test,
odd item numbers vs. even item numbers and ternary items vs. binary and qua-
ternary items. Neither the odd-even comparison (χ2(63) = 53.05, p = .80) nor the
comparison of subgroups based on item structure (χ2(63) = 74.49, p = .15) rejected
item homogeneity.

We then computed the Q-index introduced by Rost and von Davier (1994).
This statistic, which is based on the log-likelihood of the observed data pattern,
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is an item-fit measure, which allows to assess overfit or underfit of single items
to the Rasch model. As shown in Table 4.2, except for one item, which showed
underfit, all items showed an acceptable fit to the Rasch model. This item was
excluded from further analyses.

Table 4.2: Design, Rasch difficulties, and fit statistics of the LST items

Item RCa MLb Size βci SE Qd p

1 2 0 4 × 4 -3.02 .23 .15 .75
2 2 0 5 × 5 -2.12 .17 .24 .36
3 3 0 4 × 4 -1.22 .13 .24 .22
4 3 0 5 × 5 -2.26 .17 .13 .86
5 2 1 4 × 4 -.20 .10 .16 .73
6 3 1 5 × 5 .23 .10 .19 .43
7 2 1 5 × 5 -.04 .10 .18 .57
8 3 1 4 × 4 .66 .10 .21 .24
9 3 0 5 × 5 -1.26 .13 .19 .61
10 3 2 4 × 4 1.08 .10 .27 .00
11 3 2 5 × 5 .93 .10 .21 .18
12 3 1 4 × 4 1.56 .10 .16 .70
13 4 0 5 × 5 1.30 .10 .17 .60
14 4 0 5 × 5 2.47 .13 .17 .62
15 4 0 4 × 4 .67 .10 .16 .68
16 4 0 4 × 4 1.22 .10 .16 .77

Note. aLevel of relational complexity (2 = binary, 3 =
ternary, 4 = quaternary). bMemory load. cRasch item
difficulty. dQ−statistic.

Prior to model estimation, we used the marginal modelling approach de-
scribed in Balázs, Hidegkuti, and de Boeck (2006), which allows to detect covariate-
specific heterogeneity in the data. This is important to determine whether local
dependencies exist, and it is helpful concerning the parsimonious specification
of random slopes in the RW-LLTM. We utilized an alternating logistic regression
algorithm (Carey, Zeger, & Diggle, 1993) to assess heterogeneity. We found that
a significant degree of heterogeneity was related to quaternary processing (α2 =

.20, p < .01), but not to the other item covariates. Hence, only one random slope
(quaternary) was allowed in the RW-LLTM.

In the following, all IRT models described above to assess cognitive com-
plexity were computed. As a general overview, it can be gleaned from Table 4.3
that the Rasch model, along with IRT models allowing an item-specific random
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Table 4.3: Model fit statistics and model comparisons

Nr. Model ``a df AIC BIC Compare with ∆χ2b ∆df p

1 Rasch -3703.78 17 7442 7559
2 RE-Raschc -3755.54 3 7517 7538
3 LLTM -3938.20 6 7888 7929 Rasch 468.84 11 .00
4 RE-LLTM -3742.23 7 7498 7547 RE-Rasch 26.63 4 .00
5 RE-LLTM LLTM 391.95 0/1d .00
6 RW-LLTM -3926.73 7 7867 7916 LLTM 22.94 0/1d .00
7 LR-LLTM -3879.82 11 7782 7857 LLTM 116.77 5 .00
8 DFF -3912.74 9 7843 7905 LLTM 50.93 3 .00

Note. aLog-likelihood of model. bLikelihood-ratio test statistic. cRasch model with random
item effects, based on de Boeck (2008). dIn case of boundary conditions, a mixture of two χ2-
distributions (with differing df ) had to be used (Stoel, Garre, Dolan, & van den Wittenboer,
2006).

effect, showed the best fit. As could have been expected, the classical LLTM ex-
hibited the worst model fit due to its severe restrictions. The largest improve-
ment in fit concerning LLTM variants without an item random component was
achieved by allowing person covariates (LR-LLTM). Comparing the Rasch model
with random item effects with the RE-LLTM, we used the reduction in item vari-
ance due to item predictors to determine model quality. The four item-level pre-
dictors (ternary, quaternary, memory load, size) reduced item variance from 2.25
in the Rasch model with item random effects to 0.41 in the RE-LLTM. Hence,
item variance was reduced by 82% by taking these four predictors into account,
or differently stated, 82% of item variance was explained. Relational complexity
alone, in a LLTM including only dummy-coded ternary and quaternary as predic-
tors (binary served as a baseline category), 42% of item variance were explained,
whereas memory load alone reduced item variance by 14%.

Table 4.4 summarizes parameter estimates of all IRT models. In all LLTM
variants, with the exception of the RE-LLTM due to its larger standard errors (de
Boeck, 2008), all predictors except for size were statistically significant. Appar-
ently, in line with RC theory, chunk size is not decisive for cognitive complexity.
However, as expected, the ability to process complex relations, especially qua-
ternary processing, plays a substantial role in reasoning. Further, memory load
affected item difficulty substantially as well, indicating that segmentation, along
with the ability to keep intermediate results in mind, is strongly related to deduc-
tive reasoning.
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We found that there were large interindividual differences in the difficulty
to process quaternary relations, as exhibited by the large random slope variance
in the RW-LLTM, which was nearly as large as the variance of the overall person
ability parameter. This result is difficult to reconcile with the assumption that
individuals used homogeneous strategies with respect to quaternary processing,
which should have resulted in a nonsignificant random slope variance. Further,
in the LR-LLTM, age and IQ were related to reasoning ability, although of all WM
tasks only the spatial WM task was related to solution accuracy.

In order to compute a DFF model, we first centered the SWM task and
then computed the product terms with ternary, quaternary, and memory load,
respectively. Nonsignificant predictors (size, VS, CS) were omitted. We found
that higher spatial WM was especially beneficial in items with higher relational
complexity (i.e., quaternary) and in items requiring the storage of intermediate
results. That is, a higher WM capacity, as evidenced by the spatial WM task, was
especially valuable in solving more complex or memory-demanding tasks.

4.4 Discussion

This study sought to investigate the impact of facets of relational complexity on
deductive reasoning, and to provide insight into the effect of WM, IQ, and age on
reasoning ability. Using different explanatory IRT models, several new insights
could be gained. We could replicate findings by Birney et al. (2006), showing that
relational complexity level was a core predictor of item difficulty. Application of
the RE-LLTM showed that a large portion of item variance (82 %) could be ex-
plained by the item covariates, especially by relational complexity level. These
results are in line with RC theory, as well as with the theory of relational integra-
tion by Oberauer et al. (2008). Especially quaternary items were highly difficult,
requiring the integration of four different information pieces into a temporary
representation. It has been shown that the upper limit of information process-
ing in humans is met when four distinct elements must be simultaneously repre-
sented (Cowan, 2001). Therefore, the high difficulty of quaternary items relative
to ternary items is not surprising. Chunk size, on the other hand, did not play
a role, as shown by the fact that item size was an insignificant predictor of item
difficulty. RC theory predicts that the number of relations to be represented si-
multaneously, not the size of elements or element sets, is of key importance. Both
results were supported by our analysis.
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Memory load affected item difficulty substantially. Because in items with
memory load, intermediate results had to be retrieved in the next step, a strong
effect of memory load could have been expected. Oberauer, Demmrich, Mayr,
and Kliegl (2001) showed that whereas irrelevant memory load only had a small
effect in an equation solving task, a strong effect of memory load could be ob-
served if intermediate results had to be accessed by WM during subsequent solu-
tion steps, that is, when intermediate results were no ”passive load”. In the LST
task utilized here, intermediate results necessarily had to be stored and used in
the next step. Hence, the effect of memory load was substantial, although not as
large as the effect of quaternary processing.

The RW-LLTM revealed that there were large interindividual differences
with respect to the difficulty of quaternary processing, as indicated by a sub-
stantial slope variance. Normative data have shown that processing quaternary
relations occurs at median age 11 (Andrews, Halford, Bunch, Bowden, & Jones,
2003), which is close to the mean age in the sample investigated here. One of
the reasons for the substantial random slope variation of quaternary processing,
therefore, could reside in the fact that younger children were not able to process
quaternary relations, whereas older children could do so. In line with this as-
sumption, age, along with IQ, were related to deductive reasoning ability in the
LR-LLTM, along with spatial WM. No other WM task was relevant for solving
the LST items. This is not surprising, as reasoning tasks with figural content of-
ten show high correlations with spatial WM factors (Kane et al., 2004). Binding
LST elements to temporal relational representations, further, at least implicitly
requires some spatial representation of the item structure. Interestingly, spatial
WM capacity was especially beneficial for quaternary items or items with mem-
ory load, as evidenced by a DFF model investigating interaction effects. That is,
in addition to an overall advantage in solving deductive reasoning tasks, having
a high spatial WM capacity is especially helpful in building complex relational
representations and storing intermediate results. The effect was small, however.
No interaction effect of spatial WM with ternary processing was found, indicat-
ing that less complex relations do not require proportional more WM capacity to
be processed.

To summarize, we could replicate and extend findings reported by Birney et
al. (2006) concerning a reasoning measure whose items were based on RC theory.
Relational complexity level was a substantial predictor of item difficulty. Huge
interindividual differences in quaternary processing were found, possibly due to
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developmental constraints. Finally, along with age and IQ, deductive reasoning
was related to spatial WM, especially to more complex and memory-demanding
processes. LST items can be designed in a very systematic and rule-based way,
combining a strong prior theory based on cognitive psychology with growing
empirical support. Therefore, this test format offers good possibilities for a more
systematic investigation of reasoning and its relationship with WM and the level
of single cognitive processes.

4.4.1 Limitations

This study had several limitations that shall be outlined below. Firstly, we did
not include a WM measure of relational integration or coordination (Oberauer
et al., 2008). This would have been helpful in disentangling effects relational
complexity and memory load. It could be hypothesized that relational integration
is more strongly related to relational complexity, whereas storage-and-processing
tasks of WM capture memory load variance.

Secondly, although the task format allows for a systematic item design, it
introduces several constraints. For example, it is not feasible to design an item
with quaternary processing that contains additional processing steps, because in
this case, the item is rendered ambiguous, i.e., it can be solved with a simpler
strategy. The restrictions imposed by the task format can lead to some depen-
dencies of item predictors, which cannot vary freely and independently of each
other. These constraints must be taken into consideration when testing specific
hypotheses is of interest.

Thirdly, we investigated a sample of children here, thus rendering compa-
rability to prior studies using the Latin Square Task difficult. Children differ from
adults in their processing capacities (e.g., Andrews & Halford, 2002), and the re-
sults presented here might therefore be qualitatively different from results that
would have been obtained with an adult sample.



5 Epilogue

As the overwhelming portion of research literature shows, WM and reasoning
are closely related. This finding has found support on both empirical and theo-
retical grounds and is not new (e.g., Ackerman, Beier, & Boyle, 2005; Blair, 2006;
Kyllonen & Christal, 1990). However, only few studies have investigated the
role of WM in reasoning processes in samples of children. The goal of this the-
sis, therefore, was to shed light on reasoning processes in children, using both a
”macroscopic” structural equation modeling perspective at the level of construct
covariation and a ”microscopic” IRT perspective at the level of item solution pro-
cesses. A special focus is placed on the role of WM in reasoning.

As mentioned in the Introduction, several theories of WM exist that provide
contradictory hypotheses with respect to the structure and breadth of WM. One
of the goals of the study in Chapter 2, therefore, was to investigate whether a
cognitive task measuring the scope of attention, i.e., a task that does not have a
processing component, operates as a WM or STM task. We found that the scope
of attention os related to WM and not STM, in line with results by Cowan et al.
(2005). Further, the structure of WM and STM is stable across age, as a partial
strong measurement invariance model could not be rejected. hence, no qualita-
tive differences in the cognitive structure of younger and older children could
be detected. Further, a domain-general model of WM showed the best fit to the
data. This finding gives strong support to the assumption of domain generality,
because structurally heterogeneous WM tasks were used. One important result
was that the role of STM in predicting Gf declined with age, with STM becom-
ing an insignificant predictor from approximately 11 years on. No interaction
between age and WM was found, indicating that WM is a consistently important
predictor for intellectual performance.

In Chapter 3, algebraic reasoning of children was investigated using a bi-
variate IRT model to assess algebra ability and solution speed simultaneously. We
found that number size did not affect algebra problem difficulty, whereas mem-
ory load had a strong effect. Hence, the ability to keep intermediate results acces-
sible in WM during algebra problem solving is of key importance. As expected,
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WM remained a substantial predictor of algebra performance, even when taking
IQ, age, and domain-specific knowledge (number series) into account. Speed of
processing, as embodied by the drift rate in the diffusion model, was unrelated
to algebra performance, but correlated with algebra processing speed, possibly
due to the fact that the algebra test used was a pure power test. Further, no in-
teraction between WM and memory load was found, providing some indirect
support for the assumption that high-WM students did not utilize different solu-
tion strategies than low-WM students. Because two WM tasks differentially pre-
dicted algebra performance, the domain-generality of WM was disputed here.
This finding stands in contrast to those of Chapter 2. However, different anal-
ysis procedures were utilized, structural equation modeling and IRT modeling.
The differing results might be a method-related artifact. Further research using
samples of children are required.

Results of a systematic analysis of cognitive complexity are discussed in
Chapter 4. A figural reasoning task was designed based on relational complex-
ity theory (Halford, Wilson, & Phillips, 1998). Relational complexity has been
suggested as a universal metric of task complexity. In line with prior results, us-
ing increasingly complex IRT models, relational complexity was found to be a
core predictor of item difficulty in reasoning, along with memory load. We fur-
ther found large differences in processing complex (quaternary) items. This re-
sult was interpreted as an age-related processing constraint. Finally, spatial WM
interacted with quaternary processing and memory load, suggesting a specific
advantage of high-WM students in building complex mental representations.

Future research could address some limitations of the studies presented
here. First of all, it has recently been described that relational integration is a
core facet of WM (Oberauer, Süß, Wilhelm, & Wittmann, 2008). Tasks capturing
relational integration have, to our knowledge, not been systematically applied
to children. Relational integration is of key importance for reasoning ability. It
would be especially fruitful to combine complex span tasks with relational inte-
gration tasks to analyze reasoning tasks based on relational complexity theory.
Hence, it becomes possible to disentangle the effects of controlled attention, as
captured by complex span tasks, from effects of relational integration. Further, a
pressing issue is the investigation of differential utilization of processing strate-
gies in reasoning tasks. For example, it would be possible to utilize a mixture
LLTM when the different solution strategies are known in advance (Mislevy &
Verhelst, 1990), or some other form of constrained latent class modeling like cog-
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nitive diagnostic modeling (Junker & Sijtsma, 2001). Finally, a systematic IRT-
based scaling of WM tasks offers great potential for the future as well, as most
WM scoring schemes do not take item dependencies into account. Local item de-
pendencies could be analyzed by developing testlet models for WM tasks (Wang
& Wilson, 2005), or by supplementing LLTM variants with additional random ef-
fects (Ip, Smits, & de Boeck, 2009). Cognitive psychology would generally benefit
from a closer integration with psychometric modeling.
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Summary in German / Zusammenfassung

Die Psychologie hat sich seit ihren Anfängen mit der systematischen Analyse
von Denkprozessen auseinandergesetzt. Das schlussfolgernde Denken nimmt in
nahezu allen Intelligenztheorien einen zentralen Raum ein. Ein wichtiges Kon-
strukt der Kognitionspsychologie, das Arbeitsgedächtnis, hat sich bei komple-
xen Denkprozessen als ein kritischer Faktor erwiesen. Zahlreiche Studien be-
legen einen engen Zusammenhang von Arbeitsgedächtniskapazität und Intelli-
genz sowie schlussfolgerndem Denken (vgl. Ackerman, Beier, & Boyle, 2005),
auch wenn diese Konstrukte sowohl empirisch als auch konzeptuell unterscheid-
bar sind (Blair, 2006). Das Arbeitsgedächtnis kann beschrieben werden als eine
kapazitätsbegrenzte kognitive Ressource, die das simultane Speichern und Ver-
arbeiten von Informationen ermöglicht.

Totz der häufig berichteten hohen Zusammenhänge von Arbeitsgedächtnis-
kapazität und schlussfolgerndem Denken existieren in der Literatur noch etliche
offene Fragen, insbesondere im Hinblick auf eine Charakterisierung kognitiver
Prozesse beim schlussfolgernden Denken sowie insbesondere deren Wechselwir-
kung mit Arbeitsgedächtnisprozessen. Des Weiteren wurden überwiegend Pro-
zesse bei erwachsenen Probanden untersucht, welche aber nicht unbedingt auf
Kinder generalisierbar sind. In der vorliegenden Arbeit soll daher anhand einer
detaillierten Analyse von Testaufgaben und Reaktionszeitdaten zum schlussfol-
gernden Denken und Arbeitsgedächtnis mittels Strukturgleichungsmodellen so-
wie Modellen der Item Response Theory einer Beantwortung dieser Fragen nach-
gegangen werden.

Berichtet werden Ergebnisse aus drei separaten Studien. Die erste Studie
analysierte Zusammenhänge von Arbeitsgedächtnis, Kurzzeitgedächtnis, sowie
fluider Intelligenz und kristalliner Intelligenz. Es konnte zunächst gezeigt wer-
den, dass das Arbeitsgedächtnis sich vom Kurzzeitgedächtnis separieren lässt,
sowie dass diese latente Faktorstruktur messäquivalent hinsichtlich jüngerer und
älterer Kinder ist. Weiterhin konnte mittels Strukturgleichungsmodellen nicht
zwischen deduktiven und induktiven schlussfolgernden Denkaufgaben unter-
schieden werden. Die Bedeutung des Kurzzeitgedächtnisses zur Vorhersage von



Zusammenfassung 130

Intelligenzleistungen nahm mit zunehmendem Alter der Kinder ab, so dass ab
ca. 11 Jahren allein die Arbeitsgedächtniskapazität für die Vorhersage von Intel-
ligenzleistungen von Bedeutung war. Wurde die Arbeitsgedächtniskapazität im
Sinne von Colom, Rebollo, Abad, and Shih (2006) als Residualfaktor spezifiziert,
blieb sie ein entscheidender Prädiktor zur Vorhersage von Intelligenzleistungen.

In einer zweiten Studie wurde untersucht, inwieweit algebraisches Denken
bei Kindern durch unterschiedliche kognitive Faktoren beeinflusst wird. Dazu
wurde ein bivariates IRT-Modell mit Zufallseffekten spezifiziert (Klein Entink,
Kuhn, Hornke, & Fox, 2009). Es zeigte sich, dass eine konkurrente Gedächtnisbe-
lastung während des Lösens von Algebraaufgaben zu einer Erhöhung der Auf-
gabenschwierigkeit führt (vgl. Oberauer, Demmrich, Mayr, & Kliegl, 2001), wäh-
rend die Größe der zu verarbeitenden Zahlen (number size effect) keine Auswir-
kungen hatte. Eine simultane Analyse der Reaktionszeizdaten zeigte ähnliche
Resultate im Hinblick auf die Zeitintensität der Algebraaufgaben. Die kogni-
tive Verarbeitungsgeschwindigkeit wurde mittels zentraler Parameter des EZ-
Diffusionsmodells (Wagenmakers, van der Maas, & Grasman, 2007) operationali-
siert. Es zeigte sich, im Gegensatz zu anderen Arbeiten, kein Zusammenhang der
”drift rate” mit der algebraischen Leistungsfähigkeit, wohl aber mit der Testbe-
arbeitungsgeschwindigkeit.

In einer dritten Studie wurde untersucht, inwieweit sich ein Testverfahren
zum schlussfolgernden Denken (Lateinische Quadrate) basierend auf der Theo-
rie der relationalen Komplexität (Halford, Wilson, & Phillips, 1998) konzipieren
lässt, und ob zentrale Aussagen dieser Theorie als zutreffend angesehen werden
können. Erwartungsgemäß war die relationale Komplexität ein entscheidender
Prädiktor für die Aufgabenschwierigkeit, ebenso wie eine konkurrente Gedächt-
nisbelastung. Die Größe der zu verarbeitenden Chunks war im Gegensatz da-
zu vernachlässigbar. Mittels komplexer IRT-Modelle konnte nachgewiesen wer-
den, dass insbesondere im Hinblick auf die komplexesten Verarbeitungsschritte
große interindividuelle Unterschiede bestehen. In einer abschließenden Diskus-
sion werden die Ergebnisse kurz reflektiert sowie ein Ausblick auf potenzielle
zukünftige Forschungsaktivitäten gegeben.
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