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Abstract

Let H < G be compact Lie groups with Lie algebra h and g, respectively. In this thesis
a simplicial complex AL JH will be considered whose simplices are chains of appropiate
intermediate subalgebras h < £ < g. It is known that the compact homogeneous space
G/H carries a G-invariant Einstein metric if A} s 1s not contractible. Therefore, it
will be shown that under certain circumstances the existence of a non-trivial homology
class of AL /g can be deduced from non-trivial homology classes of AL K for appropiate
intermediate subgroups H < K < G. Thus, in these cases the non-contractibility of
AL /g can be deduced from the non-contractibility of AZ K This method will be

used to determine the (non-)contractibility for all AL g With [, G connected and
rank H = rank G.
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Introduction

In [B6h04], Bohm introduced for every compact homogeneous space G/H a simplicial
complex to obtain G-invariant Einstein metrics on G/H. More precisely, let H < G be
compact Lie groups and denote the Lie algebras of H and G with § and g, respectively.
An intermediate subalgebra h < € < g is called an H-subalgebra, if it is Ad(H)-
invariant. For connected H, this condition is satisfied by all intermediate subalgebras.
Moreover, let @) be a fixed Ad(G)-invariant inner product on g. Such an inner product
exists since G is compact. Let m be the orthogonal complement of § in g with respect
to @ and let
n(h) = {X € g[[X,b] C b}

be the normalizer of b in g. If n(h) = b, then by [B6h04, Lemma 6.2] there exist only
finitely many minimal H-subalgebras. By definition, the vertices of the simplicial
complex Ag}‘}{ are all subalgebras which are generated by minimal H-subalgebras.
For n > 1, the n-simplices of Ag;r}l are given by all chains (¢ < ... < ¢,) with ¢; a
vertex of Ag}‘/l}l for 0 <7 <n.

In general, there may exist infinitely many H-subalgebras. However, if only finitely
many H-subalgebras exist, one can define the extended simplicial complex Ag /1 anal-
ogously to Ag};‘}[ by taking all H-subalgebras as vertices. By [Boh04, Corollary 6.12],
AG /i 18 homotopy equivalent to Ag;‘}{

If n(h) # b, let n(h) = b L mg. By [Boh04, Lemma 4.27], mq is the Lie algebra
of a compact Lie group. So, fix a maximal torus 7" of a compact Lie group with Lie
algebra mg. By [Boh04, Corollary 7.2], there exist only finitely many H-subalgebras &
which are minimal among all H-subalgebras with the following properties:

1. tis non-toral, i.e. for my := m N &, it holds [m, me| # 0.

2. tis T-adapted, i.c. ¢ is Ad(T)-invariant.

The simplcial complex AZ /57 is defined analogously to Ag}r}{ by taking all subalgebras
as vertices which are generated by minimal non-toral T-adapted H-subalgebras. This
is a generalization of the first definition. In fact, for n(h) = b it is my = {0}, 7' = {e}

and A{Ge/} = Ag}l}{ Now, Bohm proved the following theorem:

Theorem A. Let G/H be a compact homogeneous space. If AE/H s not contractible,
then G/H admits a G-invariant Einstein metric.
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See [Boh04, Theorem 8.1]. Hence, the question arises how the (non-)contractibility
of AL /g can be determined for given compact Lie groups H < G. Suppose that n(h) =
h and that the extended complex Ag /a is well-defined. For every compact connected
Lie group H < K < G with Lie algebra ¢ it then follows n(¢) = €. Moreover, if H is
connected, then AG/K C AG/ u is just the subcomplex induced by all H-subalgebras
greater than €. In this thesis, it will be proved that for minimal H-subalgebras ¢
under certain circumstances a non-trivial homology class [0] € Hy(Ag /i, Q) \ {0} can
be “lifted”to a non-trivial homology class [fnew] € ﬁkH(Ag/H,@) \ {0}. Hence, if
(H < Ky < ... < Ky < @) is a maximal chain of compact connected Lie groups
for some N € Ny, this method can be applied iteratively to determine non-trivial
homology classes in ﬁi_l(AG /k;,Q) for 0 <@ < N and finally to determine a non-
trivial homology class in H N(AG /i1, Q). In detail, this works as follows:

K, is maximal, so Ag/k, = 0 and H_ (D, Q) # 0. Moreover, (¥) is a maximal
simplex of Ag /Ky, also called a facet. If there exists another Kj-subalgebra & # €,
then A(;/Kl is disconnected, i.e. I:IO(Ag/Kl,Q) # 0. More precisely, [0] := [t} — €&)] is
a non-zero element of Hy(Ag /K1, Q).

Now, suppose that for some ¢ > 1, [0] € ﬁ[i—l(AG/Kiv@) \ {0} is given with a
representative 0 = Y q - s, ¢ € Q\ {0}, s, an (i — 1)-simplex, such that 6 satisfies
the following properties:

1. 6 is supported by a facet, i.e. at least on of the s; is a facet of Ag/Ki.

2. A lower bound set (Lb.s.) of the vertex support of 6 is given by minimal K-
subalgebras &_; =: € ;. & ... € | ie. for each vertex [ of each s; it holds
[> ¢, for some 0 < j <4,

Suppose, there exist K, i-subalgebras €!, ... #7 not equal to & =: € and ¢/ > ¢/
for 1 <j<i+1. Let

C; ::AG/K;*E{:{JEAG/H|minasz}, 0<j<i+l1

be the cone over &. If (¢},... &™) < g, then D := UX|C; is a contractible sub-
complex and the boundary operator d, of the Mayer-Vietoris sequence for reduced
homology with respect to the triple (Co U D;Cy, D) is an isomorphism. Thus, there
is some [fhew] € Hi(CoU D, Q) \ {0} with 9,([fhew]) = [f]. From the construction
of Bnew it follows that it is supported by a facet of Ag /K., and a Lb.s. is given by
£ ... ! Since cycles which are supported by a facet cannot be boundaries, it fol-
10ws [Onew] € Hi(Ag/k,,,, @)\ {0}. If this method can be applied iteratively, it follows
Hy(Ag/m,Q) # 0. In summary, Hy(Ag/, Q) # 0 if subalgebras € can be found
satisfying the following properties:

L4t =forall0<i< N, 1<j<i+l.
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2.8 >8>0 forall0<i< N, 1<j<i+1 withe, 6 =g, &, =

3. (el .. Bt <gforall0<i<N.

Now, let g be semisimple and § a subalgebra of maximal rank, i.e. t < b for a maximal
abelian subalgebra t of g. Then n(h) = b and Ac /p is well-defined. In this thesis the
(non-)contractibility of Ag su for all these cases will be determined. If G is not simple,
then g = g1 & ... & gi for simple ideals g;,, h = b1 B ... D by with rank h; = rank g; and

Ag/H ~ AGl/H2 ...k AGk/Hk * Gk=2,

It will turn out that AG /m is non-contractible if and only if AG,; /H, is non-contractible
for all 7. Hence, it is sufficient to consider the case when g is simple.

Note, that this already classifies AL JH when b is regular, i.e. when there exists
an abelian subalgebra t C mg such that h & t' has maximal rank. In this case, t' is
maximal abelian in my and by [B6h04, Proposition 7.3], it is Ag/ H= Agﬁ/‘}”,.

So, let g be simple with rank n. Up to covering, GG is one of the classical Lie gruops,
ie. G=SU(n+1), SO(2n), SO(2n+ 1) or Sp(n) or G is an exceptional Lie group,
ie. G =G,y Fy, Eg, E7 or Eg. Let T < GG be a fixed maximal torus. As a first step,
all T-subalgebras have to be determined. If

is the root space decompostion of g with respect to T, then all T-subalgebrast < h < g
are precisely given by t® @, ., mq with / U —1 C R being a closed subroot system of
R. The mazimal closed subroot systems of irreducible root systems are given by the
Borel - de Siebenthal theorem up to conjugacy, see [Wol77, Theorem 8.10.9]. Applying
Borel - de Siebenthal iteratively yields all closed subroot systems and hence, all T-
subalgebras.

In chapter 4 of this thesis, it will be determined if Ac /u is contractible or not for
all cases where G is classical and H has maximal rank. In chapter 5, the same will be
done for exceptional G. The results of chapter 4 can be summarized as follows:

G = SU(n), H=SU(ny) x...xU(ng)).
G = SO(2n), H>=U(ny) x...xU(ny) or
H = 50(2n,) x ... x SO(2ny).
G =S0(2n+1), H >~ SO(2n;) x ... x SO(2n;) or
H = 50(2n;) x...x SO(2ng_1) x SO(2n; + 1).
G = Sp(n), H>=U(ny) x...xU(nyg) or

H = Sp(ny) x ... x Sp(ng).
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On the other hand, if H consists of block matrices of “mixed type”, e.g. G = SO(8),
H =U(2)xS0O(4), then Ag,y is contractible. Note, that U(1) = SO(2). In particular,
Ag /7 is always non-contractible for classical . As an example, for g = su(n), h =
t = s(®,u(1)), the subalgebras & are given by

E‘Z =5 u(n —1- 2)1 ..... n—2—in—1—i+j @ @ U(]_)l
=1

I#n—1—itj

for i € {0,...,n —3}, j €{0,...,5+ 1}. The indices at the bottom specify which
submatrices of su(n) are given by the u(n — 1 — ¢)-block and the u(1)-blocks. Now,
property 1 and 2 follow directly from the definition and

€, . 8 =sun—1), == @u(l),_1) <su(n).

Hence, ﬁn_g(A sum)/r, Q) # 0. In the contractible case, well-known facts about poset-
topology will be used to show contractibility. For example, let G = SO(2n) and
H = U(ny) x SO(2ny) x ... x SO(2n,), n1,ny > 2. The H-subalgebras form a
partially ordered set (poset) ﬁg/ g with respect to C. Let ¢ := @!_;50(2n;) > h. For
every H-subalgebra [, it is (¢, [) < s0(2n), since [ 2 u(n). Hence, ¢ and [ have a least
upper bound in p@/ g for all [. So, £ has no complements in the poset P /- By a
standard argument of poset-topology, see [BW83, Theorem 3.2], the contractibility of
Ag /n follows.
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Chapter 1

Preliminaries

The first chapter of this thesis is a recap of the basic properties of geometric and
abstract simplicial complexes and their homology groups. At the end of this chapter,
the complexes A} I Ag}f}{ and A,y will be introduced.

1.1 Geometric and Abstract Simplicial Complexes

In this section, finite simplicial complexes of geometric and abstract type will be
introduced, see also section 2.3 of [Mau70] for details.

Definition 1.1. A finite set of points vy,...,v, € R™ is called independent if the
following condition holds:

Yo,..., A\ ER: Zmi:()AZA?;:o — N=...=)\,=0
=0 =0

If {v,...,v,} € R™ is independent, the convex span

o = Conv(vg, ...,v,) = {Z)\ivi |0< )\ <1, Z)‘i = 1}7
i=0 =0

is the smallest convex subset of R™ which contains vy, ..., v, and is called a geometric
n-stmplex. vy, ...,v, are called the vertices of 0. dimo := n is called the dimension
of 0. This is well-defined since the vertices of a geometric simplex are unique, see
[Mau70, Proposition 2.3.3]. Moreover, the independence of vy, ..., v, ensures that for
p € o the representation p = >0 Ni(p)v; with 0 < N(p) < 1, D77 (Ni(p) =1, is
unique.

The interior of o, Int o, is the subset of all points p = ¢ such that \;(p) > 0 for
all i € {0,...,n}. Its complement Bdo := ¢ \ Int o is called the boundary of o.

If 7 = Conv(v;,, . .., v; ) for some non-empty subset {ig,...,ix} C {0,...,n}, then
T is called a face of 0.
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A geometric simplicial compler K of R™ is a finite set of geometric simplices of
R™ such that the following two conditions hold:

1. If 0 € K and if 7 is a face of o, then 7 € K.

2. f o,7 € K, then o N7 is either empty or a common face of o and 7.

The dimension of K is dim K := sup{dimo | 0 € K} for K # () and dim K := —1 for
K = (. A subset L of K which satisfies 1. and 2. is called a subcomplex of K. The
polyhedron of K is the topological space

1K= o cR™
oeK

endowed with the subspace topology of R™. If L C K is a subcomplex, then || L] is
called a subpolyhedron.

Remark 1.2. Some elementary examples of geometric simplicial complexes are given
by the following list:

1. If Ly, Lo are subcomplexes of K, then so are L; N Ly and Ly U Ls.

2. For any subset S C K, there exists a smallest subcomplex (S) of K which
contains S. (S) is called the subcomplex of K generated by S. For o € K, the
subcomplex (o) = {0 C 7 C o} is also denoted by o.

3. For m € Ny, the subcomplex K™ := {0 € K | dimo < m} is called the m-
skeleton of K. KV is also called the vertex set of K. If o = {v} € K, then v is
called a verter of K and one writes v € K instead of {v} € K.

4. Let K7 be a geometric simplicial complex of R™ and K5 a geometric simplicial
complex of R™* for some my, my > 1. For any o = Conv(vy,...,v,,) € K; and
T = Conv(wp, . .., w,,) € K, the set

{(v0,0,0),...,(vn,,0,0),(0,wp,1),...,(0,wy,, 1)}
is an independent subset of R™*m2+1 G et
o * 1 := Conv((vg,0,0),...,(vs,0,0),(0,wg,1),...,(0,wn,,1)).
Furthermore, let

o * ) := Conv((vg,0,0),...,(vs,0,0)) and
(0 % 7, := Conv((0,wg, 1),...,(0,wn,,1)).

Then,
Kl*KQZ:{O'*TlO'EKl, TEKQ}U{O*@|0€K1}U{@*T|T€K2}
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is a geometric simplicial complex of R™ ™21 of dimension dim K; +dim Ky +1,
called the join of K1 and K. Its polyhedron is

”Kl * K2|| = {(tpv (1 _t)Q7t) |p € ||K1||7 qc ||K2||7 te [07 1]}

Remark 1.3. The following list gives some elementary properties of the polyhedron
| K|| of a geometric simplicial complex K, see also [Mau70, p. 33f.]:

1. ||K|| is compact.
2. Every point p € || K|| lies in the interior of exactly one geometric simplex of K.
3. AC||K]| is closed in || K|| if and only if AN ||o]| is closed in ||o]| for all o € K.

4. If X is any topological space, then a map f : || K|| — X is continous if and only
if fijo : lo]| = X is continous for every o € K.

Definition 1.4. Let K, L be geometric simplicial complexes and let f° : K® — L°
be a map such that if vy, ..., v, are the vertices of a simplex of K, then the distinct
elements of f(vy),..., f(v,) are the vertices of a simplex of L. The induced map

f: K — L; Conv(vo,...,v,) > Conv(f'(vy),..., f'(va))

is called a simplicial map. If, in addition, f° : K® — L° is a bijection whose inverse
also induces a simplicial map, then f: K — L is called a simplicial isomorphism and
the complexes K and L are called isomorphic, denoted by K = L. Furthermore, f
induces a map || f]| : [|[K|| — || || which is also called a simplicial map in the following
way:

LA WA — L0 D> divs = > Auf (v) (1.1)
=0 =0

|| f]| is well-defined and continous by the properties 2 and 4 given above. Morcover,
|| /Il is @& homeomorphism if and only if f is a simplicial isomorphism.

By the next definition, abstract simplicial complexes will be introduced, which
allow any finite set being a vertex set.

Definition 1.5. An abstract simplicial complex or a simplicial complex A is a finite
set whose elements are non-empty finite sets such that if 0 € A, then 7 € A for all
non-empty subsets 7 C . A subset [' C A is called a subcomplex of A if I itself is a
simplicial complex.

If c € A and n := #0 — 1, then o is called an n-simplex of A and dim o := n is the
dimension of 0. The elements of ¢ are called the vertices of . As in the geometric
case, the dimension of A is dim A := sup{dimo | 0 € A} for A # () and dim A := —1
for A = 0.

A simplex 7 C ¢ is called a face of 0. Moreover, if ¢ is not a face of any other
simplex, then it is called a mazimal simplex or a facet.
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Remark 1.6. The following list gives some elementary examples of abstract simplicial
complexes:

1. If 'y, T'y are subcomplexes of A, then so are I'y NI’y and 'y U Ty.

2. As in the geometric case, for any subset S C A, the subcomplex of A which is
generated by S is denoted by (S). For o € A, the subcomplex (0) = {0 C 7 C o}
is denoted by o.

3. The subcomplex A™ := {o € A | dimo < m}, m € Ny, is called the m-skeleton
of A and A is called the verter set of A. If o = {v} € A, then v is called a
vertex of A and one writes v € A instead of {v} € A.

4. Let Ay, Ay be any simplicial complexes. Then
ArxNg:={oUT|oeAU{D}, 7€ A U{0}, oUT #0D}

is a simplicial complex of dimension dim A; + dim A, + 1, called the join of A,
and Ay. In particular, A« = A = @« A. If {v} is a singleton, A % {v} is called
a cone over A. The join A * S is called the suspension over A. Moreover, *
is commutative and associative, i.e. Aj % Ay = Ay x Ay and (Ag x Ap) x Ag =
Ay (Ag x Ag).

Definition 1.7. Let A, T' be abstract simplicial complexes. Let f°: A® — I'’ be a
map such that if {vg,...,v,} € A, then {f(vy),..., f(v,)} € I'. Again, the induced
map

f:A—T; {vo,...,v} = {f(vo),..., flva)}

is called a simplicial map. If, in addition, f° : A? — I'’ is a bijection whose inverse
induces a simplicial map, then f : A — T is called a simplicial isomorphism and A
and [' are called isomorphic, denoted by A = T'.

There is the following correspondence between abstract and geometric simplicial
complexes:

Let K be a geometric simplicial complex of R™ and o = Conv (v, ...,v,) € K any
simplex of K. Since all subsets Conv(vj,,...,v; ), 0 # {io,...,ix} € {0,...,n}, are
elements of K, the set

K = {{vo,...,v,} € R™ independent | Conv(vy,...,v,) € K}

is an abstract simplicial complex, called the abstraction of K. On the other hand, let
A be an abstract simplicial complex. A realization K(A) of A is a geometric simplicial
complex whose abstraction is isomorphic to A.
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<t

Lemma 1.8 ([Mau70, p. 37-40]). Let A be an abstract simplicial complez of dimension
n. Then A possesses a realization K(A) C R**. Furthermore, if Ki(A) C R™ and
Ky(A) € R™ are two realizations of A, then Ki(A) is isomorphic to Ky(A). In
particular, their polyhedrons ||K1(A)| and ||[K3(A)|| are homeomorphic. Moreover,
for abstract simplicial complezes Ay, Ag, K(A1) x K(As) is a realization of Ay % Ag.

If A is an abstract simplicial complex, Lemma 1.8 assigns a topological space
|A]l == || K(A)]] to A which is unique up to homeomorphism. Thus, one may assign
topological properties and topological invariants of the space ||A|| to A. For instance,
A is called contractible, if and only if ||A|| is contractible. Furthermore, if v € A is a
vertex and k£ € N, one writes 7, (A, v) for the k-th homotopy group m4(||All, [[v||) of
|Al| with base point ||v||. The group m;(A,v) is unique up to isomorphism. As the
next section will show, the singular homology groups of ||A|| can be computed directly
from the simplicial homology groups of A without considering any realization of A.

1.2 Homology

This section introduces all required properties of the singular and the simplicial ho-
mology groups including the reduced homology groups and the homology groups with
coefficients. At the end of this section, the Mayer-Vietoris sequence for simplicial
homology will be introduced.

1.2.1 Singular Homology

Definition 1.9. For n € Ny let AL, := Conv(ey := 0,ey,...,e,) be the standard
n-simplez of R™ with R? := A% := {0}.

Definition 1.10. Let X be a topological space. For n € Ny, a singular n-simplex o,
of X is a continous map

on ALy — X.

The free abelian group generated by all singular n-simplices is denoted by S, (X)
and its elements are called singular n-chains of X. For n € Z, n < 0, one defines
Sp(X) :==0 and

S.(X) == P Sn(X).
neZ
For n € N, i € {0,...,n}, the face map o : A’S"‘t:ll — AL, is defined by

5n( ) €L, OSkSZ—l
e =
P Crp1, i<k<n—1
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and continously extended as in (1.1). The boundary operator 9 : S,(X) — S,_1(X)
is the group homomorphism defined by

d(oy) = Z(—l)ian 00; € Sp—1(X) for all singular n-simplices o,.

=0

For n € Z, n <0, one defines 0 : S,,(X) — S,_1(X) being the zero map. By [Mau70,
Proposition 4.2.7],

9*=0:5.(X) — S.(X),
ie., (S.(X),0) is a chain complex. Thus, for n € Z one defines
(X) :=ker{0:S,(X) = S,_1(X)}, the group of singular n-cycles of X,

Zn(X) :
Bn(X) :=Im{0: Sp11(X) — S, (X)}, the group of singular n-boundaries of X,
H,(X) = Z,(X)/B,(X), the n-th singular homology group of X.

The singular homology group of X is
H.(X) := P Hu(X).

nez

Lemma 1.11 ([Mau70, Corollary 4.2.17, 4.2.23|). Let X, Y be topological spaces and
let f:X —Y be a continous map. The group homomorphism f, : S.(X) — S«(Y)
defined by fi(0,) := foo, for all singular n-simplices o,, of X satisfies 0o f, = f,00.
Hence, it induces a homomorphism

fo 1 Hy(X) — H,(Y)

for each n € Z. The assignment f — fo is functorial, i.e. (go f)e = go © fo and
ide = id. Moreover, if f,g: X — Y are homotopic maps, then fo = go. In particular,
fe 1s a group isomorphism if f is a homotopy equivalence.

By Lemma 1.11, all contractible spaces have the singular homology type of the
one-point space, i.e.
7 =0
Hy(x)="" (1.2)
0, n#0
for all contractible spaces X, see [Mau70, Example 4.2.12].

1.2.2 Simplicial Homology

Definition 1.12. Let A be a simplicial complex. For n € Ny let C,,(A) be the abelian
group generated by all (n + 1)-tuples

(vo, - -,0n), {vo,...,v,} is n-simplex of A,
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subject to the relations

(Vo, -+, n) —s8N(P) - (Up(0)s - - -+ Vp(n))s {05 .-, p} is n-simplex of A,
p is permutation on {0,... n}.

Furthermore, for n € Z, n <0, let C,,(A) := 0 and let

C.(A) =P Cu(n).

neL

The coset of (vg,...,v,) in Cy(A) is denoted by [vg,...,v,]. Since [vg,...,v,] =
sgn(p)-[Up(0)s - - - » Vp(ny] fOr any permutation p, it follows that C,,(A) is isomorphic to the
free abelian group generated by all n-simplices o, € A. In fact, if for each n-simplex
o, there is a fixed ordering vg™ < ... < vo" of its vertices, the corresponding cosets
[vg", ..., v8"] form a Z-basis of C,,(A). The boundary operator 0 : C,(A) = C,—1(A)
for n € N is the group homomorphism defined by

n

O[vo: - - vn)) = > _(=1)'[ve, - Tir- ., va] € Csy(A) (1.3)

1=0

and the zero map for n € Z, n < 0. In fact, 9([vp0), - - - Vpm)]) = sgn(p)-0([vo, . - ., vy))
for each permutation p, so (1.3) yields a well-defined group homomorphism, see
[Mau70, Proposition 4.3.7]. Again, * = 0: C,(A) — C.(A) and for n € Z let

Zn(A) :=ker{0 : C,(A) = C,,_1(A)}, the group of n-cycles of A,
B, (A) :=Im{0 : Cpy1(A) = Cr(A)}, the group of n-boundaries of A,
H,(A) = Z,(A)/B,(A), the n-th homology group of A.

The homology group of A is

H.(A) := @ Ha(D).

nel

The link between singular and simplicial homology groups is given by the following
theorem.

Theorem 1.13 ([Mau70, Theorem 4.3.9]). Let A be a simplicial complex and let || A||
be the polyhedron of a realization of A. Then H,(A) and H,(||A|]) are isomorphic
groups for all m € Z. More precisely, let vy < ... < vy be any ordering of all vertices
of A and for any n-simplex o, let vg" < ... < v be the induced ordering of the
vertices of o,. The homomorphism o« : C.(A) — S.(||A]]) which maps the coset

[vg™, ..., ve"] to the corresponding simplicial map, i.e.

affvg, ... o)) = {A?td — 1Al D Aiei= > A ||U§7"||}7 (1.4)
i=0 i=0
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s a chain homotopy equivalence. In other words, a induces a group isomorphism
an s Hy(A) — Hy([|A]])
for each n € Z.

Corollary 1.14 ([Mau70, p. 117]). Let A, T' be simplicial complexes and let f :
IIA|| = [|T|| be continous. Then f induces a group homomorphism

fo: Hy(A) — H,(T)

for each n € Z. Moreover, f — f. is functorial, f, = g. for homotopic maps f,g
IA]| = ||| and f. is an isomorphism if f is a homotopy equivalence.

Proof. Let
foi=(ar) to fooan: Hy(A) — H,(T),

where aa, ar are defined as in Theorem 1.13 and f, : H,(||Al|) — H,(||T]]) is defined
as in Lemma 1.11. Now, the claim follows directly from Lemma 1.11. O

The next subsection will introduce the reduced homology groups. Using reduced
homology appears to be more natural than using non-reduced homology, since the
reduced homology groups vanish for contractible spaces.

1.2.3 Reduced Homology Groups
The definitions and lemmas of this subsection are stated in [Mun84, p. 71{f.].

Definition 1.15. Let C = {C\, 0. }nez be a nonnegative chain complex, i.e. C, =0
for n < 0. The augmented chain complex C = {C’*, 0, }nez is the chain complex defined

by
én — Z, n = —]_
Cn, n#-—1
and ? — 0, for n ¢ {—1,0}, 0y : Cy — 7Z being an epimorphism which satisfies

dpody =0and d_; : Z — 0 being the zero map. The homology groups of C are called
reduced homology groups and are denoted by H,, (C), n € Z. Furthermore, one defines

- P H.©
nez
Lemma 1.16. For augmented chain complexes the following properties hold:

H,(C)®Z, n=0

1. Ha(C) = {ﬁn(C), n % 0.
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2. Let f: C ={Cn,05 nez = D = {Dy, 0P }nez be a chain map between nonnega-
tive chain complexes with augmentations C = {C’n, Y nez and D = {D,,, 0} ez
such that f preserves augmentation, i.e. 05 = OF o fic,- Then [ induces a chain

map f : C — D and therefore, it induces a homomorphism
f.: H,(C) — H,(D) (1.5)
forn e Z.

3. Under the conditions of 2, if f is in addition a chain homotopy equivalence with
chain homotopy inverse g : D — C, then g also preserves augmentation, i.e.
8(? = 8 © g|Do- and f 1s a chain homotopy equivalence with chain homotopy
inverse §: D — C, i.e. f,. in (1.5) is an isomorphism.

Now, let A be a simplicial complex. Since Cp(A) is freely generated by all vertices
of A, Ci(A) can be augmented by setting Jy(v) := 1 for any vertex v € A. Similarly,

S.(J|A]]) can be augmented by setting dy(op) := 1 for any singular O-simplex oy.
The chain homotopy equivalence a defined in (1.4) is then augmentation preserving,
i.e. aa : Ho(A) = H,(||A]) is an isomorphism by Lemma 1.16, 3. Moreover, let
f IA]| = ||T|| be continous. Then the induced chain map f; : (||A||) — S, (||F||)
see Lemma 1.11, is augmentation preserving. As in Corollary 1.14, it follows that f
induces a group homomorphism

fo: Hy(A) — H,(T)

for each n € Z such that f — f. is functorial, f, = g, if f,g : ||A| — ||T|| are
homotopic maps and f, is an isomorphism if f is a homotopy equivalence. Note, that
Hy(A) = 0 if and only if A is connected and

U

So, H _1(A) =0 if and only if A # (). Therefore, non-empty simplicial complexes are
also called (—1)-connected.

1.2.4 Homoloy with Coefficients

In this subsection, the homology with coefficients in any abelian group will be intro-
duced, see [Mun84, p. 308ff.].

Lemma 1.17. Let C := {C,,, 0, }nez be a chain complex and G an abelian group. Then
C®G:={C,®G,0,®idg}nez

is also a chain complex. Moreover, if f : C — D is a chain map (chain homotopy
equivalence), then so is f ®idg:CRG - D R G.
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Let A be a simplicial complex and let G be any abelian group. One defines
H,(A,G) == H,(C.(A) ® G), H,(A,G) := Hy(C\.(A) @ G)

for n € Z and

) =P Ha(A,G), H.(A,G) = H(A,G).

neL nez

Similarly, for topological spaces X the groups H.(X,G) and H, (X, @) are defined
as above by replacing C,(A) and C,(A) with S,(X) and S,(X), rebpectlvely Note,
that G = Z ylelds the ordinary homology groups. Again, H,(||A|, G) = H,.(A,G),

H,(J|All,G) = H,(A,G) for n € Z and if f : ||A]| — ||T'|| is continous, it induces for
each n € Z a group homomorphism

fo: Hy(A,G) — H,(T,G) (f.: H,(A,G) — H,(T',@))

such that f — f, is functorial, f. = g. for homotopic maps f,g : [|A| — ||| and f.
is an isomorphism if f is a homotopy equivalence. The same holds true for f — f,.

All homology groups with coefficients in G are already determined by the ordinary
homology groups in the following way:

H,(A,G) 2 (H,(A) ® G) ® Tor(H,_1(A), G) (1.6)

and similarly for the reduced homology groups. Here, Tor denotes the Tor-functor,
see [Mau70, p. 156] or [Mun84, Thm. 55.1, p. 332].

If G = Fis afield, then H,, (A, F) and H,(A,TF) are not just groups but also F-vector
spaces and f,, f. are F-linear. From (1.6), it follows H,(A,F) # 0 for any field F, if
the group H,(A) has positive rank. Moreover, H, (A, Q) # 0 if and only if H,(A) has
positive rank. Therefore, non-vanishing homology with rational coefficients ensures
non-vanishing homology with coefficients in any field. For this reason, in chapters 4
and 5 homology with rational coefficients will be considered. In fact, it will be shown
that I:I*(A(;/H,Q) = 0, whenever Ag/H is non-contractible. So, ﬁ*(Ag/H,F) % 0 for
any field F in this case.

1.2.5 Mayer-Vietoris Sequence

Now, the Mayer-Vietoris sequence for the reduced simplicial homology groups will be
introduced. This tool will be needed to prove the main theorem of this thesis.

Theorem 1.18. Let A be a simplicial complex and let Ay, Ay be subcomplexes such
that Ay U Ay = A and Ay N Ay # 0. Let

i1:A10A2—>A1, Z'QIAlﬂAQ%AQ, i32A1—>A, 'L'4ZA2—>A
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denote the corresponding inclusions. Furthermore, let R be a commutative unitary
ring, n € Z and

Ty 1= %1* — 22* : [:In(Al N Ag, R) — Hn(AI) R) D .E[n(AQ, R),
j* = ’233* + ’134* : Hn(Al) R) D .E[n(AQ, R) — j’:’n(A, R)

Then there exists an R-linear homomorphism 0, : I:In(A, R) — ﬁn_l(Al NAy, R) such
that

oo Hy(A N Ay, R) 2 Hy (A1, R) & Hy(As, R)
2 Hy(AR) 25 Hy (AN A9, R) = ...

is a long exact sequence, called the Mayer-Vietoris sequence for reduced homology of
the triple (A; Ay, Ay).

Proof. See [Mun84, Thm. 25.1, p. 142]. O

In particular, if A; and A, are contractible, the homology of A; U Ay can be
obtained from the homology of A; N A,. This will be used to prove the main theorem
of this thesis in section 2.3.

min

1.3 The Simplicial Complexes GIH Ag/H and Ag/H

In this section, the simplicial complexes Agﬁ/l}[, Ag/H and Ag I will be introduced.
Let H < G be compact Lie groups such that G/H is connected with finite funda-
mental group and G acts almost effectively on G/H. Moreover, let () be a fixed
Ad(G)-invariant inner product on g which exists by [War71, p. 152]. The orthogonal
complement of h in g will be denoted by m. Furthermore, let

mo :={X € m | [X,b] = 0}.
The Lie algebra of Ng,(Hp) is given by
n(h) =bh L m,
see [Boh04, Lemma 4.26).

Definition 1.19. With the notation as above, a Lie subalgebra £ of g is called an
H-subalgebra, if the following two conditions hold:

l.h<t<yg.
2. tis Ad(H)-invariant.
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Furthermore, let mg := mN¢, i.e. £ =bh L me. €is called toral, if [me, me] = 0, otherwise
¢ is called non-toral.

Note that for connected H every intermediate Lie subalgebra h < ¢ < g is Ad(H)-
invariant, thus an H-subalgebra. To define the simplicial complexes AG it Ag /i and

AG/H one has to distinguish the cases n(h) = bh and n(h) # b.

1.3.1 n(h)=h

Let H < G be compact Lie groups as above such that n(h) = h. In particular,
my = {0} and every H-subalgebra is non-toral, since [mg, m¢] = 0 implies [h, m¢] = 0.

Let PG/H be the set of all H-subalgebras. PG/H might be infinite. However, by
[B6h04, Lemma 6.2], there exist at most finitely many minimal H-subalgebras. Hence,
let {€,..., €4} be the set of all minimal H-subalgebras and let Pg/l% be the set of all
H-subalgebras which are generated by minimal ones, i.c.

PE ={,. . E)|1<I<N,1<i <..<iy <N}

P /i and Pg‘/i}} are partially ordered by “C”. Furthermore, the chains, i.e. the totally
ordered subsets of P(‘;n/mH, form an abstract simplicial complex, since Pgl/mH is finite and
if o C Pg}/‘}l{ is totally ordered, then so is 7 for every 7 C o. The same holds true for

the chains of Pg /H, if P su s finite. This yields the following definition.

Definition 1.20. With the notation as above, the simplicial complex of the chains of
P(‘;“/l}l{ is called the simplicial complex of G/H and is denoted by Ag“/‘}q If, in addition,
Pg/H is finite, the simplicial complex of the chains of PG/H is called the eztended
simplicial complex of G/H and is denoted by Ac JH-

Remark 1.21. The following properties of Agl/‘}{ and Ag /g are of further interest.
1. If H is connected, then Ag‘/r}{ and Ag su only depend on the Lie algebras b and

g instead of the Lie groups H and G. In particular, if 7 : CN{ — G is a covering
map and H = 7~'(H)o, it follows AZY} = AE Deym = Aair)-

2. n(h) = b and h < £ imply n(¢) = ¢. So, Ag}‘}( is well-defined for every compact
Lie subgroup Hy < K < G.
If, in addition, H is connected and pg/ p is finite, i.e. if there exist only finitely
many intermediate subalgebras fh < £ < g, then P /K is finite for every compact
Lie subgroup H < K < G and AG/K is well-defined. Moreover, every K-
subalgebra is also an H-subalgebra. Hence, P /K can be identified as a subposet
of Jf’g/H and A(;/ x can be identified as a subcomplex of Ag JH-
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1.3.2 n(h) #£h

Let H < G be compact Lie groups as above such that n(h) # b, i.e. my # 0. By
[B6h04, Lemma 4.26], my = n(h)/h is a compact Lie algebra. So, fix a maximal torus
T of the compact connected Lie group Ng,(Hp)o/Hp with Lie algebra mg and let t the
Lie algebra of T. This yields the following definition, see [Boh04, p. 153].

Definition 1.22. With the notation as above, an H-subalgebra € is called T-adapted,
if it is invariant under the adjoint action of T', i.e. if [t, €] C €. A non-toral T-adapted
H-subalgebra is called T-minimal non-toral, if it is minimal among all non-toral T-
adapted H-subalgebras.

By [B6h04, Corollary 7.2], there exist at most finitely many T-minimal non-toral
H-subalgebras. As above, let Pg . be the set of all non-toral T-adapted H-subalgebras

which are generated by minimal ones. Again, P} i isa finite, partially ordered set.

Definition 1.23. The simplicial complex of the chains of P} 1 called the simplicial
complez of G/H and is denoted by AL JH

Remark 1.24. The following properties of Ag /p are of interest, see [Boh04, p. 154].

1. AL Jur 18 a generalization of AZY;, since both definitions coincide for my = {0}
and T' = {e}.

2. If H is connected, then Ag I only depends on g and b and not on the choice of

T

T up to isomorphism. In particular, A% H = Az Ji for covering maps 7 : G — G

and H := 7~ (H),.

3. If both G and H are connected and |m(G/H)| < oo, then there is a one-to-
one correspondence between the minimal non-toral 7'H-subalgebras and the T-

minimal non-toral H-subalgebras. Furthermore, n(t ® h) = t @ h. By [Boh04,
T ~ Amin

Proposition 7.3], it follows Ag = AGp-
Note, that one always may assume the following conditions:

1. G/H is connected (but G and H might be disconnected.)

2. The group action of G on GG/H is almost effective, i.e. any normal subgroup of
G which is contained in H is discrete.

3. m(G/H,eH) is finite.

In fact, if G is the union of all connected components of G which intersect H, then G
is a compact subgroup of GG such that G/H is the connected component of G/H which
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contains eH. Moreover, Ag o= Ag /1> since the complex only depends on b, g, H

and T

Furthermore, if N <G, N < H, one may consider the homogeneous space M :=
(G/N)/(H/N) = G/H. Then Aj,; = Af,, since € is Ad(H)-invariant if and only if
t/n is Ad(H/N)-invariant.

The third assumption is no restriction since |7(G/H, eH)| = oo implies that AL JH
is contractible or AL i =0 and G/H is a torus, see [Boh04, Proposition 7.5].

In this thesis, all homogeneous spaces which are considered will satisfy the condi-
tions of Remark 1.24 3, so one may always assume assume n(h) = b by considering
G/TH instead of G/H. For product spaces Gy X Ga/H; x Ho, Agllxngz JHy X H arises

from Agll /i and Agé J, I the following manner.

Lemma 1.25. Fori € {1,2} let H; < G; be compact Lie groups as above and let T;
be a maximal torus as above. Then:

Ty X T ~ AT T 0
AG11>:<C§2/H1><H2 - AGll/Hl * AG22/H2 * S (17)

A proof is given by [Boh04, Theorem 3.2]. Moreover, Corollary 2.18 yields a second
proof for the homotopy equivalence in (1.7). Since S%* ... % S% = ™! it follows
o

AHZ=1 T;

~J T Tn n—2
r G/ Ty Hi — AGll/Hl Kok AGn/Hn * .5 (18)

by induction for compact Lie groups H; < G; and maximal tori T; as above.



Chapter 2

The Homotopy Type of AG /H

In this chapter several tools will be introduced which are useful to determine wether
the complex AG /H is contractible or not. In the first section, the theorem of Whitehead
will be used to obtain a useful corollary that yields some conditions under which the
union of contractible complexes is still contractible. In the second section, contractible
carriers, which are a useful tool to obtain informations about the topology of order
complexes, will be introduced. In the last section, the main theorem of this thesis will
be proved. It describes a way to find non-trivial homology classes of Ag JH-

2.1 The Theorem of Whitehead

By [Mau70, Prop. 7.3.2, p. 274], the polyhedron of a simplicial complex is also a
CW-complex. Thus, one can apply the following theorem of Whitehead to simplicial
complexes. Note that if X is any connected CW-complex, then it is path-connected
and the k-homotopy group (X, zp) does not depend on the basepoint xg up to
isomorphism. Hence, one can write 7 (X) for the k-th homotopy group. In particular,
7, (A) is unique up to isomorphism for any connected simplicial complex. For k € Ny,
A is called k-connected, if A # () and m;(A) =0 for all 0 < i < k.

Theorem 2.1 (Theorem of Whitehead, [Hat02, Theorem 4.5]). Let X, Y be non-empty
connected CW-complexes and let f : X — Y be a weak homotopy equivalence, i.e. f
is continous and f, : m,(X) = 7, (Y) is an isomorphism for alln € N. Then f is a
homotopy equivalence. If, in addition, X is a subcomplex of Y and f : X — Y is the
inclusion map, then X 1is a strong deformation retract of Y .

Corollary 2.2. Let X be a CW-complex. If X is simply connected and H,(X,Z) = 0,
then X is contractible.

Proof. X is a non-empty connected CW-complex by assumption. By Theorem 2.1, it
remains to prove that for any vertex xy of X the inclusion ¢ : {xq} — X is a weak
homotopy equivalence. So, it remains to prove that 7, (X) =0 for all n > 1.

15
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For n = 1, this is true by assumption. Now, suppose n > 2 and m(X) = 0 for
all 1 <k <n—1. By a theorem of Hurewicz, see [Hat02, Theorem 4.32], it follows

m.(X) = H,(X,Z) = 0 and the claim follows by induction. O

Now, the theorem of Whitehead can be used to prove that the union of contractible
complexes is contractible, if the complexes are glued together in an appropiate way.
This will be needed in section 2.3 to prove the main theorem.

Lemma 2.3. Let Ay, Ay be contractible subcomplexes of a simplicial complex A such
that Ay N Ay is contractible. Then A, U Ay 1s also contractible.

Proof. Ay N Ay is non-empty by assumption. So, let v € A; N Ay be any vertex.
Since Ay, Ay and Ay N Ay are path-connected and since m(Aq,v) = m(Ag,v) = 0,
it follows 71 (A; U Ay, v) = 0 by van Kampen’s theorem, see [Hat02, Theorem 1.20].
By Corollary 2.2, it remains to prove that ]EI*(Al U Ay, 7Z) = 0. This follows from the
Mayer-Vietoris sequence for reduced homology, see Theorem 1.18. More precisely, for
all n € Z there is an exact sequence:

Ho(ALZ) @ Hy(Ay, Z) 25 Hy (A UAZ) 25 Hy (AN Ay, Z)

But H,(Ay,Z)®H, (A, Z) = 0 and H,_(A1NA,, Z) = 0. Tt follows H, (A UA,, Z) =
0 for all n € Z and A; U A, is contractible. O

Corollary 2.4. Letn € N, n > 2 and let A be a simplicial complex with subcomplexes
Ay, ..., A, such that

If Ai, N ...N Ay, s contractible for all non-empty subsets {iy,..., 5} C {1,...,n},
then A is contractible.

Proof. If n = 2, then A;, Ay and A; N Ay are contractible by assumption. Hence,
A1 UAs is contractible by Lemma 2.3. Now, let n > 3 and let the claim be true for all
n’ € {2,...,n—1}. In particular, UZ”:_ll A; is contractible. By Lemma 2.3, it remains
to prove that

n—1 n—1
[.= (L_JlA> NA, = UlAmAn

is contractible. For i € {1,...,n — 1} let I, := A; N A,. Then I' = I T; and by
assumption I';, ..M, = A, N...NA;, NA, is contractible for all non-empty subsets
{ir,..., i1} € {1,...,n —1}. Hence, by the induction hypothesis, I' is contractible.
This proves the claim. O
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2.2 Order Complexes and Contractible Carriers

This section introduces the basic properties of order complexes and the contractible
carriers. These carriers will be needed to prove Theorem 2.17 and Corollary 2.19,
which will be the most important tools to prove contractibility in chapters 4 and 5.
At the end of this section, the nerve of a homogeneous space will be defined. The
nerve gives a lower bound for n € Ny such that Wn(AG/H) #£0 or [:[n(Ag/H, Z) # 0.

Definition 2.5 ([Bj695, 9.2, p. 1843f.], BW96, p. 1312]). Let P = (P, <) be a poset,
i.e. a partially ordered set. A finite totally ordered subset C' := {zy < ... < 23} is
called a chain of P. [(C) := k is called the length of C'. A mazimal chain is a chain
C = {x9 < ... < x}} such that there exists no £ € P with & < 2, z;_1 < T < x; for
some 1 <i<korax <2.

For a given poset P let 0 and 1 be two distinct elements not contained in P. Then
P := PU{0,1} becomes a poset by 0 < = < 1 for all z € P. 0 and 1 are called the
bottom element and the top element of P, respectively. P is called the proper part of
P. Moreover, P is called a lattice, if for all z, y € P there exists a least upper bound
(join) in P, denoted by 2 V y, and a greatest lower bound (meet) in P, denoted by
x A y. Furthermore, for all x € P let

Po,:={z€P|z<z}
and similarly P.,, P>, and P.,.

Definition 2.6 ([Bjo95, p. 1844]). Let (P, <) be a finite poset. The order complex
A(P,<) = A(P) of P is the simplicial complex whose k-simplices are the chains of
length k of P for k > 0. A polyhedron of A(P) will be denoted by || P|| instead of
AP

If A is any abstract simplicial complex, then P(A) := (A, C) is called the face
poset of A.

Remark 2.7. Some important properties of order complexes are given by the following
list:

1. If (P, <°P) is the dual poset of P, i.c.
Ve,ye P: e <Py y<uz,
then A(P, <) = A(P, <P).

2. Let P, (@ be finite posets and let f : P — () be a monotonic map, i.e. f is
either order-preserving or order-reversing. Then for any chain C' of P, f(C) is
a chain of (). Thus, it induces a simplicial map from A(P) to A(Q) which is
again denoted by f. Two monotonic maps f,g : P — @ are called homotopic,
denoted by f ~ g, if the induced maps ||f||, |lgll : ||P]| — ||@Q|| are homotopic.
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3. For any simplicial complex A, the order complex A(P(A)) of the face poset
P(A) is isomorphic to the barycentric subdivision of A, see [Bjo95, p. 1844].
This implies that ||P(A)]| is homeomorphic to ||A||.

The most important application is the order complex of compact Lie groups H < G.

Lemma 2.8. Let G/H be a compact homogeneous space with p(h) = b such that the
poset P = Pg/p as in section 1.3 is finite. Then P := P U{0,1} is a lattice.

Proof. The bottom element 0 may be identified with h while the top element 1 may be
identified with g. Let €;,8; € P. Then the subalgebra £, N, is either an H-subalgebra
or equal to . Hence, ¢, Aty =8 Nty € P. Moreover, the subalgebra (¢, £5) is either
an H-subalgebra or equal to g. Thus, € V & = (¢, 8) € P. O

Now, the contractible carriers can be introduced, see also [Wal81, p. 374].

Definition 2.9. Let A be a simplicial complex, X a topological space and P(X) its
power set. A map

C:A—PX)
is called a contractible carrier from A to X, if the following two conditions hold:
1. C(o) is contractible for all o € A.
2. If 1,0 € A with 7 C g, then C(7) C C(0).

Furthermore, a continous map
g:IA[ — X

is carried by C, if g(||o||) C C(o) for all o € A.

Lemma 2.10 ([Wal81, 2.1]). Let C be a contractible carrier from A to X. Then:
1. There exists a continous map g : ||A|| = X which is carried by C.
2. If g1, 90 : ||A]| = X are both carried by C, then gi is homotopic to gs.

Proof. 1. The map ¢ will be constructed iteratively on the n-skeleton of A for n > 0.
First, let o be a vertex of A. Since C(0) # () by assumption, one can define g(||o]|) :=p
for any point p € C(c). Now, suppose g : [|A"|| — X is carried by Cja» for some
0 <n < dimA and let ¢ be an (n + 1)-simplex of A. Since g(||7||) € C(r) C C(0) for
every proper face 7 of o, it follows

9/ Bd|o| : Bd|lo]| — C(0).

But (||o||,Bd||o]|) = (D™, S™) and by assumption, 7,(C(c)) = 0. Hence, by [Hat02,
p. 346], there exists a continous extension of g gq|s| to a map ||o|| = C(o) C X.
By [Mun84, Lemma 2.3, p. 9], these maps can be glued together to a continous map
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g : ||JA™] — X. Hence, g is carried by Cjan+: and for n 4+ 1 = dim A, the claim
follows.

2. Similarly to 1, the homotopy between g; and go will be constructed iteratively
on the n-skeleton of A for n > 0. First, let

H: Al x{0,1} — X

such that H(—,0) = g; and H(—,1) = ¢». If 0 € A is a vertex, then by assumption
a1(llel]); g2(llel]) € C(o). Since C(o) is path-connected, it contains a continous path
¢o 1 [0,1] = C(0o) from g1 (||o]]) to g2(]lo||). By [Mun84, Lemma 2.3, p. 9], H can be
extended continously to

H: (Al % {0,1}) U (IA%)] x [0,1]) — X

by the rule H(||o||,t) := ¢,(t), 0 < ¢ < 1. In particular, H(||o| x [0,1]) € C(o) for
every vertex . Now, let ¢ be an n-simplex of A for some n > 1 and suppose

H (A % {0,13) U (JA™ ] x [0,1]) — X

is already defined and H(||7|| x [0, 1]) C C(r) for every (n — 1)-simplex 7 of A. Since
gillel), ga2llell) < C(e), it follows H(S,) < C(o) for

S == ([lofl x {0,1}) U (Bd [|o|| x [0, 1]).

But S, = S™ and m,(C(0)) = 0, so His, can be extended continously to a map
lo|l x [0,1] — C(0). Again, these maps can be glued together to a continous map

H: (Al x {0,1}) U ([[A™] x [0,1]) = X
and for n = dim A, the claim follows. O

Corollary 2.11 ([Wal81, 2.2]). Let P, Q be finite posets and let f : P — @ be
a monotonic map. Suppose that either A(f~H(Q<,)) is a contractible subcomplex of
A(P) for all g € Q or A(f~(Qs,)) is a contractible subcomplex for all ¢ € Q. Then

LA 1P — @l

15 a homotopy equivalence.

Proof. Without loss of generality, one may assume that f~'(Q<,) is contractible for
all ¢ € Q. Otherwise, one may replace ) by its dual poset Q°P. So, consider the
contractible carriers

C1: AQ) — PIP); o = 17 (1 Q<maxo )
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and

C: A(Q) — P(IQI); 0 = [|Q<maxall-

In fact, if 7,0 € A(Q), then 7 C o implies max 7 < maxo. Hence, C;(7) C C;(o) for
i € {1,2}. Furthermore, Cy(0) is contractible by assumption and Cy(0) is contractible
since 1t 1S a cone.

By Lemma 2.10, there exists a continous map ¢ : ||Q]| — || P]| such that g(||o||) C

Ci(o) = 117 (|Q<maxcll) for all o € A(Q). Hence, ([f]l o g)([lol]) € [|@max<oll =
Cy(0). But also ||| € Cy(0) for o € A(Q). It follows that || f|| o ¢ and idg) are both
carried by Cy. Thus, || f]| o g ~ idg by Lemma 2.10. Now, consider the contractible
carrier

D AP) — PP 1 C(F(1).

In fact, f(u) € A(Q), since f is monotonic and for v, u € A(P), v C pimplies f(v) C
f(u). So, D(v) € D(u). Hence, D is a contractible carrier. For p € A(P), it follows

(go LA UulD) = g(Lf()I]) € D(w). On the other hand, [|u]| S [LFI ™ (1Q<max s ) =
D(p). Hence, g o ||f|| and idyp are both carried by D and g o || f|| ~ idp by

Lemma 2.10. O

As a first application of contractible carriers, the next theorem shows that for
compact Lie groups H < G Ag,y is a strong deformation retract of Ag}‘}{ if both
complexes are defined.

Theorem 2.12 ([Boh04, Cor. 6.12], [Sha01, Cor. 2.5]). Let G/H be a compact
homogeneous space such that w(h) = b and Pg/y is finite. Then AN — AIGH}I}{ s a

strong deformation retract of A = Ag/H.

Proof. Let P™in .= Pgl/mH and P := Pg/ . Consider the inclusion map
Lo P ey P

, is monotonic and for each € € P, the set 1! (P) is contractible. In fact, if [ € P™in,
then [ < tif and only if [ is generated by minimal H-subalgebras which are all contained
in €. For any € € P, define

min(¢) := (I | [ minimal H-subalgebra, [ < §).
It follows
v (Pee) = Pl

<min

Hence, A(v(P)) = A(Pgﬁn(e)) is a cone over min(¢). Thus, by Corollary 2.11,

]| = |A™"|| — [|A]l is a homotopy equivalence. From the theorem of Whitehead, it
follows that A™" is a strong deformation retract of A. O
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The following lemmas will be needed to prove Theorem 2.17, Corollary 2.18 and
Corollary 2.19, which show that under certain circumstances the complex Ag g may

be constructed from the complexes of the form Ag sk and A i/m for some H < K < G,
see p. 14 ff. of [BW83]. In chapters 4 and 5, this will be used to prove contractibility.

Lemma 2.13. Let P, Q) be finite posets and let f,g : P — @ be order preserving
maps. Suppose that for all p € P, f(p) and g(p) are comparable, i.e.

VpeP: f(p)=glp) vV f(p) <gp)

Then f and g are homotopic maps.

Proof. Let 0 € A(P) be a chain of P. Then ¢ := min{f(mino), g(mino)} is well-
defined and the minimal element of the subposet f(o)U g(o). Let

C:AP) — Q[ o= [[f(o) Uglo)]].

Since C(o) is a cone over ¢, it is contractible. Moreover, C(7) C C(o) for 7 C 7, so C
is a contractible carrier from A(P) to ||Q]|. Furthermore, || f(o)|], ||g(o)|| € C(o) for
o € A(P). Thus, f and g are homotopic by Lemma 2.10. O

Definition 2.14. Let P be a finite poset and p € P. P is called join-contractible
(with respect to p), if for all x € P the join x V p exists in P. Similarly, P is called
meet-contractible (with respect to p), if for all x € P the meet x A p exists in P.

Lemma 2.15. Let P be a join-contractible (meet-contractible) poset with respect to
some p € P. Then A(P) is contractible.

Proof. The map
f:P—P;z—aVp (f:P— P; x—xAD)

is a well-defined order preserving map and comparable to idp. Furthermore, f is
comparable to the constant map c,(x) = p, v € P. By Lemma 2.13, it follows
idp ~ f ~ ¢,. Hence, A(P) is contractible. O

Definition 2.16. Let P be a finite poset such that P := P U {0,1} is a lattice. For
p € P, the complement of p is

clp)={xreP|lzAp=0and zVp=1}.
Now, the following theorem shows that the order complex of P\ ¢(p) is contractible.

Theorem 2.17. Let P be a finite poset such that P = P U{0,1} is a lattice. For a
fizedp € P let Q := P\ ¢(p). Then A(Q) is contractible.
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Proof. As a first step, it has to be proved that for all z,y € @), < y, the following
conditions hold:

1. x Apexists in Q or x V p exists in () (or both).
2. If y A p exists in @, then =V (y A p) exists in Q.

To prove 1, note that for each x € () at least one of the elements z A p, = V p lies in
P. Assume x Ap € P. Since (x Ap) Ap =z Ap, x A pis not complementary to p, so
x Ap e Q. Similarly, x V p € P implies z V p € Q.

Now, let x < y such that y A p exists in (). Since y is an upper bound for z and
for y A p, it follows

I1>y>zV(yAp) >z >0.

So, 2V (y A p) € P. Furthermore, y A p is a lower bound for z V (y A p) and for p. It
follows

(:13\/(y/\p))/\p2y/\p>0.
This implies x V (y A p) € Q. Now, let
M :={x €@ |z Apexists in Q}.
For any chain o € A(Q) let

Clo):=cU{ptU{zAp|lzeonM}U{zVp|zeconM}
U{zV(yAp)|lz<y x€o0, yconM}.

By 1 and 2, C(0) is a well-defined subposet of ) . Furthermore, A(C(0)) is contractible.
In fact, let z :== mino. If 2 € M, then z A p is a lower bound for each element of C(o).
Hence, (zAp) Ac = zAp € C(o) for ¢ € C(0) and C(o) is meet-contractible with
respect to z A p.

If 2z ¢ M, then C(0) is join-contractible with respect to z. In fact, for = € o,
zVx =z €C(o) and zVp € C(o) by 1. Moreover, if x € 0 N M, then z < z and
2V (x Ap) € C(o) by definition. For all other elements ¢ € C(o), z is a lower bound.
So, zVe=ceCl(o).

By Lemma 2.15, A(C(0)) is contractible. Furthermore, the definition of C(o)
implies C(1) C C(o) for all 7 C o. It follows that o — [|C(0)|| is a contractible
carrier from A(Q) to ||Q||. Since o C C(0) and p € C(0), idg and the constant map
¢y, = ||p|| are both carried by this carrier. Hence, id|q| ~ ¢, by Lemma 2.10 and A(Q)
is contractible. O

For the case that ¢(p) is an antichain, this theorem also yields informations about
the topology of A(P), as the following corollary will show.
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Corollary 2.18 ([BW83, Thin. 4.2]). Let P be a finite poset such that P = PU{0,1} is
a lattice. Furthermore, let p € P such that c(p) is an antichain, i.e. for all x,y € c(p),
neither x <y nor y < x holds. Then

1Pl \/ I Peall# | Pos] + 5°. (2.1)
z€c(p)
Proof. Since ¢(p) is an antichain, P, := ||P., U Ps.|| = || P<s|| * || P>2|| is a subcomplex

of [P\ ¢(p)]| for x € ¢(p). In particular, ||P|| can be obtained from ||P \ ¢(p)| by
attaching the cone P, x z for all x € ¢(P).

Now, let @ := || P]|/||P \ ¢(p)||. The quotient map 7 : || P|| — @ deforms the cones
P, * x, to the suspensions P, x S° for o € ¢(P), which are glued together at the base
point [||P \ ¢(p)||]. Hence, @ is homeomorphic to the wedge sum in (2.1). Moreover,
since ||P \ ¢(P)| is contractible, the quotient map = : [|P|| — @ is a homotopy
equivalence, see [Hat02, p. 11]. This proves the claim. O

To apply these results to complexes of type Ag /i, the following corollary is needed.

Coro}lary 2.19. Let H < G be compact Lie groups such that H is connected, n(h) = b
and Py is finite. If & is an H-subalgebra such that c(¥y) contains only minimal H -
subalgebras £, ..., ¥, then

l
AG/H ~ \/AG/Ki * SO.
i=1

In particular, AG/H is contractible if all of the complexes AG/K” 1 < < U, are
contractible.

Proof. Since c(£) consists of minimal H-subalgebras, it is an antichain. Furthermore,
fori e {1,...,1},itis (Pg/u)<e, = 0 and (Pg/m)se, = Pay/k,, where Pgyk, is considered
as a subposet of PG/H, see Remark 1.21. Hence, ”(pg/H)<ei|| * ||(pg/H)>g?.” * S0 =
A /|| % SY. The claim follows from Lemma 2.8 and Corollary 2.18. O

~ As mentioned above, Corollary 2.18 yields an alternative proof that the spaces
Ay xGa/mxis and Ag, i, * A, i, * S as in (1.7) are at least homotopy equivalent.

Corollary 2.20 ([BWS83, Prop. 4.3], [B6h04, Thm.3.2, Cor.3.3]). Let Gi, Gy be
compact Lie groups, H; < G; compact connected subgroups such that n(h;) = bh; and
Peyu, is finite for i € {1,2}. Then

~ N ~ ~ 0
AG1XG2/H1XH2 — AGl/Hl * AG2/H-2 * S :

Proof. Consider the H; x Hs-subalgebra &, := g; ® hy and let € = € @ €, be any
H; x Hy-subalgebra. Then €, N € = by @ by if and only if & = bh; and (€, €) = g1 D g2
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if and only if &, = go. It follows c(y) = {h; @ g1}. Since there are canonical poset
isomorphisms

(PG1XG2/H1XH2)>h1€992 = AGl/Hl and
(PG1><G2/H1><H2)<b1éBgz = AGz/sz
the claim follows from Lemma 2.8 and Corollary 2.18. O

As another application for contractible carriers, the nerve of a homogeneous space
will be introduced.

Definition 2.21. [Bjo95, p. 1849] Let A = (A4;);c; be a finite family of non-empty
sets. The nerve N'(A) of A is the simplicial complex with vertex set I such that a
subset ) C o C [ satisfies 0 € N(A) if and only if N;c, A; # 0.

Let G/H be a compact homogeneous space and let A = Ag}l}{ or A = Ag i Let
t,..., €y denote all (T'—)minimal non-toral H-subalgebras, so

N
A:U@
=1

where C; := {0 € A | mino > &} is the cone over ¢. The nerve N((C;)ieq1,....ny) will
be denoted by N(A).

Theorem 2.22 (Nerve Theorem). [Bjo95, p. 1850] Let A be a simplicial complex
and let (A;)ier be a finite family of contractible subcomplexes such that A = U;erA;.
If A;, N .. N A, is either emply or contractible for every subset {i1,...,41} C I, then
A and N ((Ai)ier) are homotopy equivalent.

Proof. Consider the face posets @ := P(A) and R := P(N((A))ier)) of A and
N ((Ai)ier), respectively, and let

f:Q— R, o—~{iecl|oCA}.

In fact, f(o) # 0, since A = UjefA; and f(o) is a simplex of N((A;)er), since
0 # 0 C NicgoyAi. Hence, f is well-defined. Moreover, if 7 is a face of o, then
f(o) € f(r). Thus, f is monotonic. Finally, for each simplex p € N((A;)ier) it
follows

fHRsy) ={oeAluc fo)}
={oceA|ocCA,foralliepu}
= A

This set is non-empty, since p € N((A;)ier). Thus, it is contractible by assump-
tion and A(Q) ~ A(R) by Corollary 2.11. But A(Q) and A(R) are the barycentric
subdivisions of A and N ((A;)er), respectively. Hence, A ~ N ((A;)icr)- O
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Corollary 2.23. Let G/H be a compact homogeneous space and let A, N(A) as in
Definition 2.21. Then, A ~ N(A). Moreover, for A # () let

r:=inf{s € N | 3 (T'—)minimal non-toral H-subalgebras €, ... ¢;: (t,...,€) =g}
with inf () := oo. Then A is (r — 3)-connected.

Proof. Let ¢, ..., ¢ty be all (T'—)minimal non-toral H-subalgebras and let C; be as in
Definition 2.21. For any (0 AT C {1,..., N} let [; := (¢ | i € I). Then

ﬂC’i:{UEA|min02ﬂvfora,lli€_f}:{UEA|min02[1}.

il

Hence, if [; < g, then N;c;C; is a cone over [;. Otherwise, N;crC; = 0. Tt follows that
I is a simplex of N'(A) if and only if [; < g and A ~ N(A) by Theorem 2.22.

Now, let [ := (¢, | 1 < i < N) be the subalgebra generated by all (7'—)minimal
non-toral H-subalgebras. So, r = oo is equivalent to [ < g. But in this case, A is a
cone over [ and therefore, it is contractible. Hence, one may assume r < oc.

Now, r > 2, since ¥ < g for all H-subalgebras. By assumption, A # (), i.e. A is
(—1)-connected. So, assume r > 3. Every subset {i; < ... <45} C {1,..., N} with
s <7 —1isan (s — 1)-simplex of N'(A), since N%_,Cj; is a cone over (£y,..., &) < g.
It follows that the (r — 2)-skeleton of AN/(A) coincides with the (r — 2)-skeleton of the
standard (N — 1)-simplex. But for k£ < r — 3, the k-th homotopy group is determined
by the (r — 2)-skeleton. Thus, m(A) = 7, (N (A)) = 0. O

2.3 Main Theorem

In this section, the main theorem of this thesis will be proved. The theorem describes
how a non-zero homology class [@new] € Hu(Ag i, R) \ {0} can be constructed under
appropiate circumstances, if a non-zero homology class [0] € ﬁ[m_l(AG/K, R)\ {0} is
given, where m € N, H < K < (G, H maximal in K and R is a commutative unitary
ring. The beginning of such an iteration usually starts with a 0-cycle defined as in the
following lemma.

Lemma 2.24. Let H < G be compact connected Lie groups such that n(h) = b
and Pg/H is finite and let R be any commutative unitary ring. Furthermore, assume
that there exists a maximal H-subalgebra ¥y of g such that by is mazimal in ;. Then
lfIO(AG/H, R) # 0 if and only if there exists another H-subalgebra €, # €.

Proof. The above conditions imply that & is a facet of Ag su- Hence, the existence of
another vertex ensures that Ag g is disconnected. More precisely, 0y := €& — €, is a

O—CYCIG with [090] < ﬁQ(Ag/H, R) \ {0} ]
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To formulate the main theorem, the following definition is needed.

Definition 2.25. Let A be any simplicial complex and R a commutative unitary ring.
Furthermore, let = SN 7, - [vi, ..., v}] € C,(A)® R be an n-chain with coefficients
in R, r; € R\ {0} for 1 <i < N. The support of 0 is then given by

supp(0) := {{vg,...,vi}, .. o), o)),

i.e. the set of all n-simplices whose coset is a non-zero summand of 0. If supp(0)
contains a facet of A, then 6 is called supported by a facet. Moreover, the vertez-
support of 6 is given by

N
vsupp(6) := | J{vp, .00},
i=1

i.e. the underlying vertex set of supp(), see also [Kah09, p. 1665]. Now, let A = A(P)
be an order complex. A subset L C P is called a lower bound set (1.b.s.) of 0, if for
all vertices v € vsupp(#) there exists an [ € L with [ < v.

Theorem 2.26 (Main Theorem, Part I). Let H < G be compact connected Lie groups
such that n(h) = b and Pg/H is finite and let R be any commutative unitary ring.
Furthermore, let m € N, € a minimal H-subalgebra and 0] € H,,_1(Aq/x,, R) \ {0}
a non-zero homology class with a representative 6 such that the following holds:

For a given Lb.s. {ly,...,Ix} of 0 in pG/KO, there exist H-subalgebras €y, ..., ¢tx,
not necessarily distinct, with the following properties:

Vie{l,...,N}: & #£8 (2.2)
Vie{l,....N}: > (2.3)
(e1,....ty) < g (2.4)

Moreover, suppose that 0 is supported by a facet of Ag/KO. Then

Hyn(Acya, R) # 0.
More precisely, there exists an m-cycle Oney With [Opew| € ]:Im(AG/H, R)\ {0}, Opew is
supported by a facet of AG/H and a 1.b.s. of Oneyw is given by {&y, ... tn}.

Proof. Let ¢, ...,y be H-subalgebras satisfying (2.2), (2.3) and (2.4). For any sim-

plex 0 = (8 < ... < ¥,.,) € AG/H let €, . := €] be its minimal element. Moreover,

for 1 € {0,..., N}, define
Cl = {O' € Ag/H | 14 > El} and

Omin
N
D .= U C[.
=1
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C) is contractible for 0 <[ < N as it is a cone over €. Since (¢1,...,€y) < g by (2.4),
(€,,...,8.) is an H-subalgebra for every non-empty subset {i,...,is} C {1,...,N}.
Thus,
Cil N...N Cis = {O’ € Ag/H | Egmin > <Ei1, .. ,Eis>}

is also a cone. By Corollary 2.4, D is contractible. Thus, H;,(Cy, R) @ Hy(D,R) = 0
for all k € Z. Moreover, Co N D # (), since [; € CoN' D for 1 < i < N. Therefore,
the Mayer-Vietoris sequence for reduced homology of the triple (Co U D; Cy, D), see
Theorem 1.18, yields the following exact sequence for k € Z:

0 2% Au(CoUD,R) %5 Hy1(Con D, R) 50

In particular, 0, : lfIm(C’o UD,R) — lflm_l(C'O N D, R) is an isomorphism.

Now, let o € supp(f), so ¢, . € vsupp(f). Since by (2.3) &, . > [ > & for
some i € {1,...,N}, it follows ¢ € C; C D. Furthermore, o € Ag/KO C (. Thus,
supp(#) € CyN D and 6 represents an element [0] € H,,_1(CoND, R). Moreover, every
vertex [ € CyN D satisfies [ > (€g, ¢;) for some i € {1,...,N}. By (2.2), [ > £,. Hence,
ConD C Ag/KO. It follows [0] € H,,_1(ConD,R)\ {0}, since 6 is not a boundary of
Ag/KO. Now, let

6] == 0.1([6]) € Hin(Cou D, R)\ {0},

where ' is a fixed representative. By the definition of 0, see [Mun84, p. 137], §’ can
be constructed the following way:

0 is a boundary of Cy and D, since ﬁm_l(C’o, R)® ﬁm_l(D, R) = 0. So, there are
m-~chains 7 of Cy and 7, of D, such that d(m) =6, 9(ry) = —0. Then

0 =71+

is an m-cycle of Cy U D and 0.([¢']) = [f]. Now, let s € supp(f) be a facet of Ag/KO,
ile s= {~[0 <...< Tm_l} is a maximal chain of Ky-subalgebras. Since £y is minimal
over b, t := {ty < lp < ... < [,_1} is a maximal chain of H-subalgebras, i.c. a facet
of AG/H, and t is the only simplex of Cy such that s is a proper face. This implies
t € supp(mi). On the other hand, (2.2) and the minimality of & imply & # € for
i € {1,...,N}. Hence, t is not a simplex of D. So, t ¢ supp(rz) and therefore,
t € supp(#'). Now, the inclusion map ¢ : Co U D — Ag/H induces the inclusion of
chain complexes ¢, : C,(CoUD) @ R — é*(AG/H) ® R with 0 o ¢, =1, 0J. Hence,

Opew = 1:(0)

is an m-cycle of AG/ g with supp(fhew) = supp(€’'), so supp(buew) contains the facet
t. This implies 0., cannot be a boundary of AG/H, SO [Onew] € ﬁm(AG/H, R)\ {0}.
Moreover, for every ¢ € vsupp(fpew) € Co U D there exists an i € {0,..., N} with
€ > . Thus, {&,..., €y} is a Lb.s. of Oey. O
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Theorem 2.26 yields an algorithm to detect non-zero homology classes iteratively
along maximal chains of H-subalgebras by applying purely algebraic methods. This
will be shown in the second part of the main theorem.

Theorem 2.27 (Main Theorem, Part I1). Let H < G be compact connected Lie groups
such that w(h) = b, Py is finite and let (€ > ... > Q) be a mazimal chain of H-
subalgebras for some N € Ny. Furthermore, let €., := b and assume that for each
m € {1,..., N+1} there exist K2, -subalgebras €., ... € | not necessarily distinct,
with the following properties:

LoE £

2. If N > 1, then for each m € {1,...,N} the K}, -subalgebras €}, ... "+
satisfy the following properties:

(a) Vie{l,....om+1}: & £
(b)) Vie{l,...om+1}: €1 >¢
(c) (t,, ... 60" <.

Then H N(AG/H, R) # 0 for any commutative unitary ring R.

Proof. Let 0y := € — €} # 0. Then [6y] € fIO(AG/K?,R) \ {0} as in the proof of
Lemma 2.24. Furthermore, supp() contains the facet £ of Ag ko and a Lb.s. of 0y is
given by {€, €}

Now, suppose that for m € {1,..., N} there exists an (m —1)-cycle 6,, 1 of Ag/Kgn
with [0, 1] € lflm_l(Ag/Kgn, R) \ {0}, 0,,_1 is supported by a facet of Ag/Kgn and a
Lb.s. of 6,1 is given by {€ _,.... € ,}. By assumption, the K -subalgebras
el ... €™ satisfy the properties (2.2), (2.3) and (2.4) of Theorem 2.26 with respect
to 0,,—1. Hence, Theorem 2.26 yields an m-cycle 6,, of AG /KO, such that [6,,] €

ﬁm(AG/KSnH: R)\ {0}, 6,, is supported by a facet of AG/K%H and {€ ... "t} isa

m? » v m

l.b.s. of 6,,. By iteration, the claim follows from the case m = . O

In chapters 4 and 5 Theorem 2.26 and Theorem 2.27 will be used to show that
.H*(Ag/H,@) # 0 whenever they are applicable for the cases with G simple and
rank G = rank H. For this purpose, root systems have to be introduced first. This
will be done in the next chapter.



Chapter 3

Root Systems and Subalgebras of
Maximal Rank

As mentioned in the introduction, the main goal of this thesis is to determine, wether
Ag /b is contractible or not for all compact semisimple Lie groups G and H < G a
compact connected Lie subgroup of maximal rank. By Remark 1.24 2, AL /g only
depends on the corresponding Lie algebras. So, as a first step, all possibilities of real
compact semisimple Lie algebras g have to be classified. For this purpose, root systems
have to be introduced.

3.1 Abstract Root Systems

Definition 3.1. A root system R of a finite-dimensional Euclidean vector space
(V,(,+)) is a finite subset R C V' \ {0} such that the following conditions hold:

1. V = (R)g.

2. 54(8) = B — 2% -a € R for all «, f € R, where s, : V — V denotes the

orthogonal reflection at o with respect to (-, ).
3. Nap 1= 2% € Z for all o, 5 € R.
4. RN {a)r = {—a,a} for all a € R.

The elements of R are called roots and dimg V' is called the rank of R.

Let W = W (R) denote the (finite) subgroup of O(V (-,)) generated by all reflec-
tions s,, o € R. W is called the Weyl group of R.

Two root systems R C V and R’ C V' are called isomorphic, denoted by R = R’ if
there exists a linear isomorphism ¢ : V' — V' such that ¢(R) = R and ng()e(s) = Nags
for all a, 8 € R.

29
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Moreover, R is called irreducible, if there exists no decompostion of R into non-
empty proper subsets Ry, Rs such that (o, 5) =0 for all « € Ry, f € Ry. Otherwise,
R is called reducible. If R is reducible, there exists a unique decompostion R =
Ry U...UR;y, of pairwise orthogonal subsets such that R; is an irreducible root system
of V; := (R;)g for 1 <i < k. These subsets are called the irreducible components of R
and R will be written as R; + ...+ Ry. Moreover, if R is the sum of isomorphic root
system one writes 2R, 3R, and so on as abbreviation for Ry + R;, Ry + Ry + R, and
SO on.

Definition 3.2. Let R C V be a root system. A subset F' = {aq,...,a,} C R is
called a set of simple roots, if the following two conditions hold:

1. F'is an R-basis of V.

2. Each o € R can be (uniquely) written as

OéZXn:kz"Oéi (3.1)
i=1

such that the coefficients k; are either all non-negative integrals or all non-
positive integrals.

A root « is called a positive oot (negative root) (with respect to F'), if the coefficients
in (3.1) satisfy k; > 0 (k; <0).

Each root system contains a set of simple roots. Moreover all sets of simple roots
are conjugate under W, i.e. if a set of simple roots F = {ay,...,a,} is given, all
sets of simple roots are precisely given by w.F = {w(ay),...,w(a,)}, w € W, and
w.F = F if and only if w = idy, see [Hum72, p. 48, 51]. Moreover, the simple roots
determine R up to isomorphism as the following lemma shows.

Lemma 3.3 ([Hum72, p. 55]). Let R CV and R' C V' be root systems with simple
roots F' = {ou,....an} and F' ={oq,...,on}. If naa, = naas for all1 <id,j <n,
then R = R'.

Lemma 3.4 ([Hum72, p. 53, Lemma CJ). Let R be an irreducible root system. Then
there occur at most two different lengths among the roots. Moreover, roots of the same
length are conjugate under W.

If two different lengths occur, the roots will be called short and long in dependence
of their length.

Lemma 3.5 ([Hum?72, p. 52, Lemma Al). Let R be an irreducible root system and
F ={o,...,a,} a set of simple roots. Then there ezists a unique root oy € R with
= > i ni - oy such that each root f € R, =" k;-a; satisfies k; < n; for all
1 <i<n. ap is called the highest root or the maximal root (with respect to F).
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In the next step, Dynkin diagrams will be introduced which classify all root sys-
tems. For this purpose, let R be a root system and F' be any set of simple roots.
Then 14,0, - Naja; € 10,1.2,3} for all 1 < i < j < n. The Cozeter graph of R is the
graph with n vertices such that for i # j the i-th and the j-th vertex are connected
bY Naa; * Naja; edges. If two vertices are connected by a multiple edge, they represent
roots of different length. In this case, an arrow points towards the short root. The
resulting figure is called the Dynkin diagram of R, denoted by D(R).

Note, that D(R) is independent of the choice of F'. Moreover, two isomorphic root
systems have the same Dynkin diagram. Hence, root systems are classified by their
Dynkin diagrams. Since R is irreducible if and only if D(R) is connected, it remains
to classify all connected Dynkin diagrams. By [Hel78, p. 470, Theorem 3.21], these
are given by four infinite series 4,, (n > 1), B, (n > 2), C, (n > 3), D, (n > 4), the
classical Dynkin diagrams, and five ezceptional Dynkin diagrams Fg, E7, Es, Fy, Go,
see Figure 3.1.

3.2 Root Systems of Semisimple Lie Algebras

In this section, the root systems of semisimple Lie algebras will be introduced. First,
let g be a Lie algebra over R or C with Kiling form

k(X,Y) :=trace(ady oady), X,Y € g.

K is a symmetric bilinear form on g, see [Hel78, p. 131]. g is called semisimple, if
its Killing form & is non-degenerate. Moreover, g is called simple, if g is non-abelian
and if it has no non-trivial ideals. Since ker x is an ideal of g, simple Lie algebras
are semisimple. A Lie group G is called semisimple (simple), if its Lie algebra is
semisimple (simple).

Now, let g be a complex semisimple Lie algebra and let h be a Cartan subalgebra
of g, i.e. b is a maximal abelian subalgebra of g and adyx : g — g is a semisimple
endomorphism for all X € h. Let a € h* be any linear form on § and

Ly:={X€g]|h X]=a(h) X forall h € h}.

« is called a root of g with respect to by, if @ # 0 and L, # {0}. The set of all roots
with respect to h will be denoted by R(g,h). Since b is maximal abelian, Ly = b.
Furthermore, the endomorphisms adyx, X € b, are simultaneously diagonalizable,
since [ady,ady| = ad[x,y] = 0 for X, Y € b. It follows

s=ho P L (3.2)

a€R(g,h)
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A, O O O O O
1 2 n—2 n—1 n
B, O O O O=———0
1 2 n—2 n—1 n
C, O O O O—==—=-=0
1 2 n—2 n—1 n
O
-1
D,: O O O O n
1 2 n—3 H_NO
Eg O O
1 3 4 5 6
TZ
E7Z O O
1 3 4 5 6 7
TZ
Egi O ), O
1 3 4 5 6 7 8

1 2 3 4
Ga O=—===0
1 2

Figure 3.1: Dynkin diagrams
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Lemma 3.6 ([Hel78, Thm. 4.2, p. 166, Thm. 44, p. 170]). The restriction of the
Killing form to by, Ky, is non-degenerate. In particular, for each oo € b* there ewists
a unique §,, € b such that

K(Ba, h) = a(h) for all h € b.
This induces a non-degenerate bilinear form (-,-) on b* by

(a, B) == Kk(ba, bp) for all a, 5 € b*.

Moreover, k is real-valued and positive-definite on

br == (ha | @ € R(g, h))x,

so, (-,-) is real-valued and positive-definite on

bz = (o | a € R(g, h))r.
Now, the following theorem can be formulated:

Theorem 3.7. Let (-,-) be the inner product on b as in Lemma 3.6. Then, R =
R(g,b) is a root system of bk as in Definition 3.1. If g is simple, then R is irreducible.
Otherwise, let g = g1 @ ... D gr be a decompostion of g into simple ideals. Then
h=h1D...Dbg with b; a Cartan subalgebra of g; for 1 <i <k and R= R, +...+ R}
with R; := R(g;,h;) is the decompostion of R into its irreducible components.

Proof. By [Hum72, Thm. 5.2, p. 23], every semisimple Lie algebra has a unique
decompostion into simple ideals. The claim follows from [Hum72, Thm. 14.1, Cor.
14.1, p. 73t]. 0

By [Hel78, Thm. 4.1, p. 165] each semisimple complex Lie algebra has a Cartan
subalgebra and all Cartan subalgebras of g are conjugate, see [Hum72, Thm. 16.2, p.
82]. So, let o € Inn(g), b := o(h). Then a € R(g,b) if and only if a oo € R(g,h) and
Z; = 0(Lgos). Moreover, by = 0(Haos). Hence, the s-isometry oy, : br — hr induces
an isomorphism between the root systems R(g, h) and R(g, §). Thus, the root system
R(g) := R(g,b) of a complex semisimple Lie algebra is unique up to isomorphism. Its
Dynkin diagram will be denoted by D(g). By Theorem 3.7, D(g) is connected if and
only if g is simple.

On the other hand, the Dynkin diagram D(g) determines g up to isomorphism.
In fact, if g is another complex semisimple Lie algebra with Cartan subalgebra h and
D(g) = D(g), then their root systems are isomorphic, i.e. there exists an R-linear
isomorphism ¢ b, — b3 such that 6(R(g, b)) = R(3, b) and (o, 8) = (6(a), (8)) for
all a, B € b. Thus, ¢ induces an isometry ¢ : (bg, k) — (bg, %) and by [Hel78, Thm.
5.4, p. 173], ¢ can be extended to a Lie algebra isomorphism ¢ : g — g.

Moreover, by [Hel78, Thm. 4.15, p. 490], for any Dynkin diagram D, there exists a
finite-dimensional complex semisimple Lie algebra g such that D(g) = D. From this,
it follows:
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Theorem 3.8. The assignment g — D(g) yields a one-to-one correspondence between
the isomorphism classes of complex semisimple (simple) Lie algebras and (connected)
Dynkin diagrams.

3.3 Compact Real Forms

Let € be a real compact semisimple Lie algebra, i.e. £ =T, K for a compact semisimple
Lie group K. The complexification of £is g := £®C. g becomes a complex semisimple
Lie algebra by

[Xl & Zl,XQ X ZQ] = [Xl,XQ] & 2129 fOT all Xl,XQ € E, 21,29 € (C

and g is simple if and only if € is simple. ¢ is called a compact real form of g. Now,
let t C £ be a maximal abelian subalgebra. Then h := t® C is a Cartan subalgebra of
g and the root system of £ with respect to t is

R(®) := R(t,t) :== R(g, ).

Since the root system R(g) does not depend on the choice of the Cartan subalgebra
up to isomorphism, the root system R(£) does not depend on the choice of t up to
isomorphism. Moreover, R(#) is irreducible if and only if £ is simple and

rank £ := dimg t = dimg hy = rank R(¥).

The Dynkin diagram of R(¥) is D(¥) := D(g). On the other hand, D(¥) determines
£ up to isomorphism. In fact, D(f ® C) = D(t ® C) implies £t ® C = ¢ ® C by
Theorem 3.8. But the compact real form of a complex semisimple Lie algebra is
unique up to isomorphism, see [Hel78, Cor. 7.3, p. 184]. Thus, ¢ = t. Moreover, by
[Hel78, Cor. 6.3, p. 181], every complex semisimple Lie algebra has a compact real

form. It follows from Theorem 3.8:

Theorem 3.9. The assignment € — D(¥) yields a one-to-one correspondence between
the isomorphism classes of real compact semisimple (simple) Lie algebras and (con-
nected) Dynkin diagrams.

A compact simple Lie algebras is called classical, if its Dynkin diagram is of classical
type and exceptional, if its Dynkin diagram is of exceptional type. The classical
Lie algebras of rank n are su(n + 1) (n > 1), so(2n 4+ 1) (n > 2), sp(n) (n > 3)
and s0(2n) (n > 4) with Dynkin diagrams A,, B,, C, and D,, respectively. The
exceptional Lie algebras will be denoted by ¢, ¢7, es, fi, g2, respectively, see [Hel78,
p. 516, Table IV].

A compact simple Lie group is called classical or exceptional, if its Lie algebra is
classical or exceptional, respectively. The simply-connected classical Lie groups of rank
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n are SU(n+1), Spin(2n+1), Sp(n) and Spin(2n) with Dynkin diagram A,,, B,, C,
and D, respectively. Since by Remark 1.24 2, for connected H, Ag /H only depends
on g instead of GG, in chapter 4 the Lie group SO(N) may be considered instead of
Spin(N).

The simply-connected exceptional Lie groups will be denoted by their Dynkin
diagrams Fg, E7, Eg, Fy and G, respectively. A construction of these groups can be
found in [Yok09].

3.4 Subalgebras of Maximal Rank

Now, let G be any semisimple compact Lie group with real compact semisimple Lie
algebra g and let 7' < G be a maximal torus with Lie algebra t < g. To determine
the simplicial complex of G/H for all connected compact Lie subgroups 7' < H < G,
one has to determine all possibilities of H in the first place. By [Djo81, Lemma 3],
every subgroup T' < H < (G is closed in G and hence a compact Lie subgroup. Thus,
there is a one-to-one correspondence between all connected compact Lie subgroups
T < H < G and all Lie subalgebras t < h < g. These Lie subalgebras are given by
the following lemma.

Lemma 3.10. Let g and t be as above. Furthermore, let a basis of R(g) and hence, a
set of positive roots R(g)t be given. Then

with my, :==gN L, ® L_,, and L, as in (3.2). All subalgebras t < h < g are given by
h=tePm, (3.3)

acl

where I C R(g)t is any non-empty subset with the following property:
a,B€l, a+xfeR(g = axpelu-I (3.4)
Proof. Let «, 8 € R(g)". Using the notation m_, := m,, it follows

ma—i—ﬁ@ma—/‘}? OZ+B, a—ﬁéR(g)

. Mot 3, a +B € R(g)a a — ﬁ g R(g)
R L a-BeR@). atBgRE )
{0}7 Oé—|—67 a—ﬁ%R(g%

see [B6h04, p. 89]. Hence, the vector space h as in (3.3) is closed under Lie brackets.
On the other hand, any subalgebra t < h < g is also an Ad(T")-submodule, so b is the
sum of t and root spaces m,, « € I, for some I C R(g)", see [Boh04, p. 89]. Now,
equation (3.5) implies that I has to satisfy property (3.4). This proves the claim. [J
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Note, that Lemma 3.10 implies that g contains only finitely many 7-subalgebras.
Moreover, n(h) = b for every t < b < g by [Djo81, Lemma 1]. Hence, the extended
simplicial complex Ag,p is well-defined for all T < H < G.

In the following chapters, it will be proved that if GG is simple and AG/H is non-
contractible, then lfl*(AG/H,Q) # 0. But this already determines, if AG/H is con-
tractible or not for all semisimple compact Lie groups G. In fact, by Remark 1.21 1,
one may assume that G is simply-connected, so G = G X ... x G} with G; simply-
connected and simple for all 1 < i < k. Let T; be a maximal torus of GG; for 1 <1 < k.
Then T :=T; x ... x T} is a maximal torus of G and T' < H < G is a subgroup of
maximal rank if and only if H = H; x ... x H}, with T; < H; < G;. Furthermore, the
assumption that G acts almost effectively on G/H implies H; # G; for all 1 <i < k.
By (1.8), it follows R ) R

AG/H >~ AGl/Hl *oLLX AGk/Hk * Sk_Q.

Thus, Ag/H is contractible, if AG /H,; 1s contractible for at least one 1 < 7 < k.

Moreover, by Milnor, see [Mil56, Lemma 2.1], H,(X *Y,F) # 0, if H, (X, F) # 0 and
H (Y F) # 0 for any spaces X, Y and any field F. In particular, H, (Ag/H Q) #0, if

(AGi/Hi7 Q) #0 for all 1 <i < k. In other words, it follows:
Ag /i non-contractible < AGZ. /u, non-contractible for all i € {1,... k}

Hence, it remains to determine Ag /u for G simple.



Chapter 4

AG /H for G of Classical Type

In this chapter the root systems of the classical simple Lie algebras will be studied to
determine all subalgebras of maximal rank by using Lemma 3.10 and to determine for
which cases the complex Ag,y is non-contractible. Moreover, it will be shown that for

a maximal torus T of a classical group GG the complex Ag/T is homotopy equivalent
to a wedge sum of spheres of dimension rank(G) — 2. Note, that for a one-dimensional
Lie subalgebra of g, the three notations R, u(1) and so(2) will be used in this chapter.

41 SU(Mn+1), n>1
By [He178, p- 186, 187], it 1is

su(n+ 1) = {4 € CFDXOHD | A — AT A trace(A) = 0},
su(n + 1)¢ = {A € CHDX0HD | trace(A) = 0}.
A maximal abelian subalgebra is given by the diagonal matrices of su(n + 1), i.e.

n+1

t.= {diag(ial, coyiomg) |lag €R, 1<k <n+1, Zak = 0} and (4.1)

k=1

n+1
h=tC= {diag(zl,...,zn+1)|zk€(3, 1<k<n+1, szz()}
k=1

is the corresponding Cartan subalgebra of su(n + 1)c. For 1 < k& < n + 1 consider

v € b* defined by v (diag(z1, ..., 2,)) := 2zx. Moreover, for 1 ; kE,l<n+1, k#I,
let Ek,l = (5zk . 5jl)1§z’,j§n S su(n + 1)@ It follows

[diag (21, - - -, 2n), Buil = (22 — 21) - B,

37



38 CHAPTER 4. Ag/H FOR G OF CLASSICAL TYPE

Thus, v, — v is a root with root space (Ey;)c and su(n+1)c = f)@@k#(Em(c- Hence,
all roots are given this way. Furthermore, for indices ¢, j,k,l € {1,...,n + 1} such
that i # j, k #1, {i,j} # {k,(}, the following equivalence holds:

a:= v, —v))+ (v —uy)isaroot &i=Ilorj=k (4.2)
More precisely, if a is a root, then a € {£(v,—1,)}, where p < q, {p, ¢} = {3, j} O {k, [}
and A denotes the symmetric difference. From (4.2), it follows that a set of simple
roots is given by

{vi—vipn |1 <i<n}
with Dynkin diagram A,, and a set of positive roots is given by
{vk—1v |1 <k<l<n+1},
see [Hel78, p. 462]. So, for k < I, let
My o= My, o= My =My, = (Ey, B Nsu(n + 1).

This subspace consists of all matrices of su(n + 1) whose entries are all zero except
the (kl)—th and the (lk)—th one, i.e.

4
My = | z e C
—Z 0
and su(n +1) = t® @, _, my. It follows:

Proposition 4.1. Let t be as in (4.1). Moreover, letr € {2,...,n} and [[U...UI, =
{1,...,n+ 1} be a partition of the index set {1,....n+1}. Let n; := ||, 1 <i<r.

Then
s(®iou(n)) =& GB m; O... 8 @ m;; (4.3)
i€, t,j€Ir,
1<) 1<J

is a T-subalgebra of su(n + 1). Moreover, every T-subalgebra is of this type.
Proof. For indices i < j, k <, (i,j) # (k,1) it follows from (4.2) and (3.5) that

my; 5 " i, b N I{?,l (Z)

i, mgg] = { TEANAED ti. 734 }7_'5 (4.4)
{0} {i,53 N {k. 1} =0.

So, if my, denotes €D, jc;. ;o;mi; for 1 < s < 7, then [my,mz] C t& my, and

my,,m;,] =0 for s # s'. It follows that s(®j_,u(n;);,) is closed under Lie brack-
ets.
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Now, let £ be any T-subalgebra. Consider {1,...,n + 1} as the vertex set of a
graph I" where ¢ and j are connected by an edge if and only if m;; C €. By (4.4), if ¢
and j are connected and if j and k are connected, then ¢ and k are also connected. It
follows that ¢ is of type (4.3) where I3, ..., I, denote the connected components of I
Moreover, the number 7 of connected components satisfies > 2 since £ # su(n + 1)
and r < n since ¢ # t. O

Note, that after conjugation the subalgebra € = s(®]_,u(n;)r,) just consists of all
block matrices

Ay 0 i
, A eu(ny), Ztra,ce(Ai) =0. (4.5)

i=1

0 A,

In fact, if ng := 0 and o € S, with [; = a({zz;t nj+1,.. -:Z;:o n;}) for 1 <i<r,

then Adp(f) is of type (4.5), where P = (Sg’g(”) ;;) P, € SU(n + 1) and P, is the
permutation matrix.

Using the notation t := s(&%'u(1)(;), the non-contractibility of Ag/H for G =
SU(n + 1) and H < G connected and of maximal rank is given by the following
theorem.

Theorem 4.2. Let h = s(B]_,u(n;)s,) as in Proposition 4.1. Then
H, 3(A¢/m, Q) # 0.
Proof. If r = 2, then b is maximal by Proposition 4.1. Hence, Ag /i = 0 which implies

lfI_l(Ag/H,Q) # 0. Thus, one may assume r > 3.
To simplify notation, for s € {1,...,r} and 1 < i3 < ... < i, <rlet [;, ;. =

Uiy I;; and ny, g, = >0 ni,. Now, for p € {0,...,7—3} and ¢ € {0,...,p+ 1} let
Eg =5 u(nl ~~~~~ T_Q_p:r_l_p“l‘q)ll ..... r—2—p,r—1—p+q EB @ u(nl)ll
l=r—1—
l#r—l—p-ll)—q
It follows that (£ > ... > €0 .) is a maximal chain of H-subalgebras. Furthermore,

for ¢ £ 0 it holds
0
) # ¢, and
Eg:} > {?g > E2+1 with 891 =g, EE o = b.

Moreover, for all p > 1 it holds:

<E]1)7 cte 7Eg+1> = s(u(nl 7'—2_137"'_20:“-77')[1 r—2—p,r—p

.....

Hence, I’Yr_g(Ag/H, Q) # 0 by Theorem 2.27. O

yeees
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4.2 SO(N), N >3

By [Hel78, p. 186], it is
50(N) = {AeRVN | A= —AT},
50(N)e ={AeCVN | A=-AT}.

The cases N even and N odd have to be considered seperatedly. Moreover, for N even
one may assume N > 8, since s0(4) = s0(3) & so(3) is not simple and s0(6) = su(4)
is covered by the the upper case.

4.2.1 N even, N > 8
For any z € C let I(z) := (% §) € Mat(2,C). A maximal abelian subalgebra of
50(2n) and a Cartan subalgebra of s0(2n)c¢ for n > 4 is then given by
I(on)
t:= =diag({(),.... I(an)) |ax € R, 1 <k <n p and
I(an)
(4.6)
h:=t®C={diag(I(z1),...,1(z,)) |z €C, 1 <k <n}.

By [Hel78, p. 186ff.], the root system is given as follows: For 1 < k < n let v € b*
defined by vy (diag(I(z1),...,1(z,))) :=1i - zx. Now, consider the following matrices:

1 1 — 1 — 1 4
]\4_’__'_ = , M__ = y ]\4—_’__ = and ]\4__;’_ =
1 —1 —1 —1 11 —1 1

For 1 <k <l<nlet " € s0(2n)c be defined as follows: All entries of Ej;" are
zero but its submatrix induced by the indices 2k — 1, 2k, 2] — 1 and 2l is of type

0 My
_MT. 0

Let E,,~, E}~, E;7 € s0(2n)c be defined similarly. For z1...,z, € C and H :=
diag(I(z1),...,1(z,)) it then follows:

[H, E,;T—] = Z(Zk + Zl> . E,;T_

H,E | =—i(zx +2) - By
[H, E,;’E—] = Z(Zk — Zl) . El:;_
[H, Ek_[—i_] Z—i(Zk — Zl) . Ek_l+
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Hence, 1,41y, k < [, are roots and since $0(2n)c = hEBEB,Kl(E,jﬁ, E  ES B e,
all roots are given this way. Again, for indices ¢, j, k,l € {1,...,n} with i # j, k #1,
{i,7} # {k,}, the following equivalences hold:
a:=(—v)+ (v —vy)isaroot &i=lorj=k
b= (vi+v;)— (v + 1) isaroot < {i,j} N{k, 1} #0
v = (v —v;) + (v, + 1) is aroot < j € {k, 1}
§:= (v —vj) — (n+v)isaroot <ic{k,l}

(4.7)

More precisely, if the left-hand side is a root, then «, 5 € {£(r, — 1)} and 7,0 €
{£(vp+v,)}, where p < q, {p,q} = {3, j} A{k,1}. Note, that neither (v;+v;)+ (v, +v;)
nor (v; + v;) = (v; — v;) is a root. It follows from [Hel78, p. 464] that a set of simple
roots is given by

{vi—vin|1<i<n—1}U{v,_1 + v}
with Dynkin diagram D,, and a set of positive roots is given by
{1 <k<l<n}.
Furthermore, for k£ <[, let
my o=y = m e =my, = (BT BT )e Nso(2n)
and
My o=y =my gy =my, o, = (B, EyT)e Nso(2n).

In other words,

0o o7 0o o F
m), = P ) |a,BER and my; & Pella,peRr
ol _a_B 0 ) —a—B
-8 « 8 —a

To determine the T-subalgebras of s0(2n) = t&@, _,(m;;®my;), the following lemmas
are needed.

Lemma 4.3. Let i, j,k,l € {1,....,n}, i < j, k<1, (i,5) # (k,1). Then for any
signs €;5, € € {—,+} it follows

mgqa €ij = €kl {Zaj} A {kal} = {pv Q}

[m:f»m;’?l] = m;;q? €ij 7£ €kl {77]} A {kv ]} = {pv Q} (48}
{0}, {1,530 {k. 1} =0.
If a multiplication on {—,+} is given by —o— := 40+ := — and —o+ := +0— := +,

i.e. ({—,+},0)=Zy, then (4.8) can be simplified to

(M, mt] — myg i gy AR = {p,q}
Mg {0}, {i,7}n{k,1} = 0.
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Proof. (4.8) follows directly from (4.7) and (3.5). O

Lemma 4.4. Let r € {2,...,n} and I = {iy < ... < 4,3 C {l,...,n}. For any
(r—1)-tuple (€1, ...,6—1) € {—,+}"" of signs, there exist unique signs €,, € {—, +},
1 <p<q<r, satisfying:

1. €ppr1 =€ foralll <p<r-—1

2. The subspace
u('f’);l ,,,,, €r—1 = t@ @ mepq (410)

1<p<g<r

s a T-subalgebra.

Proof. If r = 2, then €5 := ¢; and t ®m;'; = u(2) @ s0(2)" ! is a subalgebra. Now,

1112

let r >3 and let 1 <k < <rsuchthat |k —1] > 2. Ifsignse,, for 1 <p<g<n
are given such that u(r);"" " as in (4.10) is a subalgebra, then (4.9) yields

€k, k+19€k41,1

[ €k, k+1 €k+1,1
k5t

Ueylk+1?  Lk+1,0

€kl

=m =M

which implies
€kl = €kk+1 © €k41,0 = €k © €11
By iteration, it follows

€l — €O ...0€_1. (411)

Hence, the sign €y is unique. It remains to prove that u(r)5 " is closed under Lie
brackets with ey defined as in (4.11). For this purpose, let i,j,k,l € I, i < j, k <,
(i,7) # (k,1). By (4.9), it remains to prove €;; 0 €5 = €, if {i,7} A {k, 1} = {p < ¢}
Since €;; 0 €4 = €5 0 €;;, one may assume ¢ < k or ¢ = k and j < [. Thus, the following
three cases remain:

j=k: p=i,qg=1 = €;0€e5=_(60...0€_1)0(€60...0€61_1) = €pq.
j=1l: p=i,qg=k = ¢€j0€y=_(60...06,10€,0...06€j_1)0(€,0...06€;_1)
= €pgs
since ;1 = ¢, for 1 < s < n, so the factors €, ..., €;_; cancel out. Similarly,
i=k: p=j,q=1l = €j0€y=€0...0€6_1060...0€1= €y,
€15-.5€p

since the factors ¢;, ..., €,_1 cancel out. Hence, u(r); ~' is a subalgebra. O

The T-subalgebras of s0(2n) are now given by the following proposition.
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Proposition 4.5. Let t be as in (4.6). Moreover, letr € {1,....,n—1}, [U...UI, =
{1,...,n} be a partition of the index set {1,...,n} and n; :== |L;|, 1 < i <r. Then
the T-subalgebras of s0(2n) are precisely given by

1 .1 l
€16

e ...e _
ulng)y, M @ du(ng), " @ s0(2m4a)p,, B ... B so(2n,)y,

—t@@m“@ @@m P mfiem)ae... .o P mem;) (412)

i,j€N i,J€1; t,5€041 i,j€Ir
1<j 1<j 1<j 1<j

for some given 1 € {0,...,r} and ¥, ... ¢ | € {— +} for 1 <k < 1. The signs

? N

e, € {— 4}, 1 < J, i,j € Iy are given as in (4.11). For ny, = 1, this notation
means that u(1l);, = s0(2);, = R is contained in t. Moreover, ny > 2 for at least one

1<s<randifl=0, thenr > 2.
Proof. For s € {1,...,r}, let

@ m 7’ for s <l and my, := EB (mf; @ mj;) for s > 1.

i,j€15s, i<j 1,5€Ls, i<j

By Lemma 4.4, [m;,,m; | C t® my, for s < . Furthermore, from (4.8), it follows
[my,,mz] € t@my, for s > [ and [m;,m;,] = 0 for s # s’. Hence, (4.12) defines a
T-subalgebra.
Now, let ¢ be any T-subalgebra of s0(2n). Similarly to the proof of Proposition 4.1,
let {1,...,n} be the vertex set of a graph G where i and j are connected if and only
;; - E or m; C ¢. By (4.8), if i and j are connected and if j and k are connected,
then so are i and k. Thus, if I, ..., I, denote the connected components of G, then

E—t@@ B,

= z]EIs
ns>2 ’L<J

where ¢;; € {mU,mU,mJr ©m,;}. Now, fix some s € {1,...,r} such that n, > 2. If

£ € {mw, i) foralli <, i,j €I, then by the uniqueness statement of Lemma 4.4,
t@@we[ Z<] £;; must be of type u(ns) """ “Re-t CIf e, = +@m forany i < j,14,7 € I,

then £,, = m! ©m_ for all p < ¢, p, g € I,. In fact, if i 7é P, then by (4.8),
mi @my, = [mfSm; €] CE

and
mi dm = [mF Smy ] St

and similarly m} @ m_ C £ for the case j # p. This proves that £ is of type (4.12).
Moreover, ng 2 2 for at least one s since £ # t and if [ = 0, then r > 2 since
£+ 50(2n). O



44 CHAPTER 4. Ag/H FOR G OF CLASSICAL TYPE

Using the embedding
Mat(m,C) — Mat(2m,R);

; : 1,1 —Y1,1 - T1,m —Yi,m
Tiati Y11 0 Tim T Yim Y11 T1,1 Yi,m Tlm
—
. . Tm,1 —Ym,1 Tm,m —Ym,m
Tm,1 +1- Yma1 ° Tmym +1- YUm,m Ym,1 Tm,1 Y Ymym Tmym

for m € N with 24, yx; € R, 1 < k.l < m, u(m) can be considered as a subalgebra of

50(2m). Moreover, € = u(n1),, - ... ou(n), ®50(2n41)1,,, D .. Ds0(2n,)1,
consists of all block matrices of type

1 el e
- €1-Cny—1

Ay 0
, A€ u(nz-), i <1, A; € 50(27’%‘), 1>, (413)
0 A,

up to automorphism. More precisely, for o € S,, let P, € SO(2n) be the permutation
matrix acting on the 2 x 2-blocks in a ca,nomcal way. As above, after conjugation with
some P,, one may assume I {Z 0 n] +1,. Z;: n;} for ng :==0,1 < i <.
Moreover, if A := diag (('Y).5L,..., L) € O(2n) then the (outer) automorphism

Ad, maps me to mf, and leaves m;t,p 41 invariant for all p > 2. Combining A with

appropiate cyclic permutations, it follows that u(n;)4 -1 is Aut(SO(2n;))-conjugate
to u(n;)~~. Hence, ¢ is of type (4.13) up to automorphism.

With t := @®j,u(1)g;, the (non-)contractibility of Agg for G = SO(2n) and
H < G connected and of maximal rank follows from the following theorem.

1 1 1 1
Theorem 4.6. Leth = u(nl)zmenlfl@. : .GBu(nl)zlmenl_l@50(2nl+1)h+1€9. .®s0(2n,),
as in Proposition 4.5. If ng =1 for some s € {1,...,r}, the corresponding summand
will be written as s0(2);,, whenever there exists a summand of type so(2ny)r, for some
ng > 2. Otherwise, it will be written as u(1);,. Using this notation, the following
statements hold:

1 Ifl=0,ie h=a)_50(2n,), then Hy_3(Ag/m, Q) # 0.

s°

2. Ifl =7, ie. h =@ u(n), then Ho_o(Aq/m, Q) # 0.
3. If 1 ¢ {0,r}, then AG/H is contractible.

Proof. Let | = 0. If r = 2, then h is maximal. Hence, lfI_l(Ag/H,Q) # 0. So, let
r > 3. With the same notation as in the proof of Theorem 4.2, let

q .__

B = 50211, 2 pr—1—pra) L1 rapr1—prg @ o(2m),
l=r—1—p
l#r—1—p+q
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forpe{0,...,r=3}, ¢ €{0,...,p+1}. Without loss of generality, let n; > 2. Under
this assumption, (£ > ... > £._3) is again a maximal chain of H-subalgebras and for
q # 0, it holds

0
o £ 80,
o> >0 with €, =g, €, :=bhand
<Ezl), c.. Ep+1> = 50(2”1 ,,,,, r—2—p,r—D,..., 7')[1 ,,,,, P—2—pr—pyer D 50(2nr_1_p)17_17p <g.

Hence, FI,«_;;(Ag/H, Q) # 0 by Theorem 2.27.
€l..€} er...€”

Now, let I =7, ie. b =u(ny), ™ ' &...&u(n,), ™' As mentioned above,
one may assume I; = {3 "1m + 1,..., 5 m} with ng := 0 and € = — for all
i €{l,...,r},je{l,...,n; =1}, If r = 1, then b = u(n)™~ is maximal and
H_(Ag/u,Q) # 0. So, let r > 2. For p € {0,...,r — 2} let

T

el = u(nl,-..,r—p—l,r—p+q)1_1',‘,'_;_p_1,r_pﬂ @ @ u(ng);, " for ¢ € {0,...,p} and
I=r—
lsﬁripiq
e = uln )L & P utu)y,,
l=r—p

ie. %! arises from u(ny, . ,—p—1);" _,—, and u(n;); 7, extended by the root space

my .. Moreover, £ = u(ni,_,—p); 7" .50 (§ > ... > €_,) is a maximal chain of
H-subalgebras a,nd with €2, := g and €&_, := b it follows for ¢ # 0:
B A e,

> eq > e
Furthermore, for p > 1 it follows

(€. B = (ulny )i @uln ) B

Thus, .E[T_Q(AG/H,@) # 0 by Theorem 2.27.
Now, let [ ¢ {0,7} and assume b = w(n1);, "~ O ... D u(n);, "~ ©s0(2n41)r,, O
@50(27%) Consider the H-subalgebra

t:=50(2n1), ©... Dso(2ny)y, ®s0(2ni41)r,, ... B so(2n,),

In fact, € #£ b, since n; > 2 for at least one ¢ < [. To show that Ag /u is contractible,
it suffices to show that £ has no complements in the poset P /1, 1.e. that there exists
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no H-subalgebra [ with [N€ = 1§ and ([,€) = g. So, let [ be any H-subalgebra. Since
n; > 2 for at least one i > [, [ 22 u(n). Hence,

/
€l 1

[=u(mi)), ™ ®... 0 u(m);, " @ s0(2mysa) g, B @ 50(2mp0) g,

Ty
for some 7’ > 2. Moreover, for all i € {1,... 7} there exists some j € {1,...,7'} with
I; C J;. In particular,

(&, ) <s0(2my)y, ® ... ©50(2mp) s, < g.

Hence, £ has no complements and Ag su is contractible by Theorem 2.17. |

4.2.2 N odd, N >3

First, consider s0(3). A maximal abelian subalgebra is given by

t= {(—Oaﬁg) |aE]R}.
000
Hence, s0(3) has rank 1. It follows from Lemma 3.10, that there exist no T-subalgebras
of s0(3), i.e. Agoe)r = 0.

So, assume N > 5, ie. SO(N) = SO(2n + 1) for some n > 2. Subalgebras
of s0(2n), so(2n)c can be considered as subalgebras of so(2n + 1), so(2n + 1)¢ in
a canonical way. Let t be the maximal abelian subalgebra of so(2n) as in (4.6). By
[Hel78, p. 187ff], tis also a maximal abelian subalgebra of so(2n+1) and h = t@Cis a
Cartan subalgebra of so(2n+1)¢. For 1 < k <[ < nlet £+, be as above. These are
roots with root space (E5 )¢, (Ey Yo, (B )c and (B e C s0(2n)c C so(2n+1)c.
Furthermore, for 1 < k < n, let E;" € s0(2n + 1)c be the matrix whose entries are all
zero but its submatrix induced by the indices 2k — 1, 2k and 2n + 1 is of type

0O 0 1
0 0 =2
-1 —¢ 0

Analogously, let E,” € so(2n + 1)¢ be the matrix whose entries are all zero but its
submatrix induced by the indices 2k — 1, 2k and 2n + 1 is of type

0 0 1

0 0 —i

-1 4 0
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It follows for z,...,2, € C, H = diag({(z1),...,1(z,),0) € b:

[H,E,—:] = z’zk . El:_

[H,E, | =—iz, - £
Hence, vy and —uj are roots with root spaces (E; )¢, ( Ej )c, respectively. Since
so2n+l)c =h e @1§k<l§n<El—5+7 By By Eqc® @1§k§n<Elj7 £y )e, all roots
are given by v, and v, £y, 1 < k <1 < n. In addition to (4.7), for indices
i,k,le{l,...,n}, k+#1, the following equivalences hold:

e:=v;+ (1, — ) isaroot &i=1
(:=—vi+ (v —v)isaroot &i=k (4.14)
n:=4v; F (v + 1) is aroot < i€ {k,l}

In particular, a set of simple roots is given by
{vi—vip |1<i<n-—1}U{w,}
with Dynkin diagram B,, and a set of positive roots is given by
{vnty |1 <k<l<n}U{y|1<k<n}

see [Hel78, 462f.]. For 1 < k < <nlet m; =m,,_,,, m;, =m,, _,, as above and

0 0 «
my, c=m,, = (B, E )cNso(2n + 1) = 0 0 B|la,BeR
—a —f0 0

Thus, the T-subalgebras of s0(2n + 1) are given by the following proposition.

Proposition 4.7. With the notation as above, all T-subalgebras ¢ of s0(2n + 1) are
precisely given by the following three cases:

1. t=50(2n).
2. £ <s0(2n) and € given as in (4.12).

3.t = @iﬂu(”i)zmeni_l_ o ®§;}+15°(2nj)13 ® s0(2n, + 1)1, = ¥ & D)y M,
where ¥ = @._, u(ni)?me"i_l ® D)y, 50(2n;)1, is equal to t or a T-subalgebra

of s0(2n) as in (4.12) with 0 <l <r < n.
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Proof. Every subalgebra of s0(2n) is also a subalgebra of so(2n + 1). Hence, 1 and 2
yield T-subalgebras. Now, let € = ¢ &P, ., my asin 3. Fori,j, k€ {1,...,n}, i <j,
(3.5) and (4.14) imply

m;, k: = .]
[mp,m] =< my, k=i (4.15)
{0}, k¢ {ij}
and furthermore,
[m, my] = m; ®my. (4.16)

Let m;, be defined as in the proof of Proposition 4.5 for 1 < s < r. For all k,l € I,
k <, it follows [mg, my] C my, [my, my] Ct, [mg,my ] =0 for s <r and [mg,my | C
@D.c;, mi. Thus, 3 defines a subalgebra of s0(2n + 1).

Now, let € be any T-subalgebra of so(2n 4+ 1). One may assume that m; C ¢ for
at least one k, since otherwise ¥ = s0(2n) or £ would a T-subalgebra of so(2n) and
thus, it would be of type (4.12). By (4.15) and (4.16), [my, s0(2n)] = so(2n + 1) and
[my, u(n)tn-1] = so(2n + 1) for any 1 < k < n and €,...,6,.1 € {—,+}. Thus,
for ¢ := €N so(2n), it follows ¥ = tor ¥ = @'_, u(ni)zmeni_l © D)., 50(2n;)1; as in
(4.12) for some 0 <1 <7, r > 2. Now, let

I={ke{l,...,n} | my C ¢t}

By (4.16), m;; ©my; C¥foralld,jel,i<j. Hence, if ¢ =t, then I = {k} for some
ke{l,...,n} and ¢ = t®my is of type 3. Now, assume ¥ # t. By (4.16), there is an
s > [ such that I C I, so assume [ C [,. But for any i € I, j € I,., i # j, it follows
from (4.15) that € O [m;, mj;] = m;. Hence, I = I, and £ is of type 3. O

Let ¢ = @i u(n)V "1 & @, Bso(2n;)r,(Ss0(2n,);,) < so(2n + 1) be
any T-subalgebra of so(2n + 1). Similarly to the case g = s0(2n), after conjuga-
tion with appropiate matrices of type P, € SO(2n) C SO(2n + 1), ¢ € S,, and
diag (V). I, ..., I, —1) € SO(2n+ 1), one may assume that € consists of all block
matrices of type

Ay 0 Ay 0

Ar—l Ar
0 0 0 B

with A; € u(n;), @ <1, A; € 50(2n), @ > [ and B € s0(2n, + 1). The (non)-
contractibility of Ag/y for G = SO(2n + 1) and H < G a connected subgroup of
maximal rank is now given by the following theorem.
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Theorem 4.8. With the notation as above, let h = so(2n) orh = @._ 1u(nz)61m€""_1 ®
D) ll+150(2nj)1 @50(271;7»‘1‘1)_[7‘ orh =t. Here,n, =0, I, = () means that h < so(2n).

As above, if ng = 1 for some s € {1,...,r}, the corresponding summand will
be written as s0(2);,, whenever there e:rists a summand of type s0(2ny)r, for some
ng > 2 or a summand of type s0(2n, + 1);, with n,. > 1. Otherwise, it will be written
as u(1),. Using this notation, the following statements hold:

1. If b = s0(2n), then Aqyy = 0.

2. If1 =0, then H,_3(Ac/m, Q) # 0.

3. Ifh =t, then H, o(Agyu, Q) # 0.

4. If L #0 and bh # t, then A(;/H is contractible.

Proof. b = s0(2n) is maximal in s0(2n + 1), hence Aso(gnﬂ)/go(zﬂ) = (.

Now, assume [ = 0. Under this assumption, » = 2 implies that b is of type
50(2n1) 1, ®50(2ng +1)5,. Hence, b is maximal, i.e. Ag/y =0 and H_1(Ag/m, Q) # 0.
So, assume r > 3. With the notation as in Theorem 4.6 let p € {0,...,r — 3},
q€{0,...,p+1} and

£ = 50(2”1 ..... r—3—p,r—2—ptqr T 1) ..... —3—pir—2—piar D @ 2nl (4'17)

p
l=r—2—p
l#r—2—p+q
This yields a maximal chain of H-subalgebras (&) > ... > € ). Furthermore, for

q#0, 8, :=gand € ,:=b it follows

BA e

Eq > >Ep+1
and for p > 1:

<E;177 cee 7E£+1> = 50(2n1 ~~~~~ r—3—p,r—1—p,..,r + 1)11,...,r737p,r717p r @ 50(2’”"'_2_17)[7‘727;) < g

.....

So, H,_3(Aq/a, Q) # 0 by Theorem 2.27.

Let h = t. Then b = @) s0(2n;);, ® so(2n, + 1);, with r = n+1, I; =
{i}, nn=1for 1 <i<nandI =0, n, = 0. As above, (4.17) yields H-subalgebras
8= 50(2(n—1—p)+1)®so(2)P™ and H,_5(Ag/m, Q) # 0 by Theorem 2.27.

Now, let [ # 0. If h = u(n), then AG/H = {s0(2n)} is a singleton. So, let h 2 u(n).
After conjugation one may assume h = @'_, u(n;) ™ oM 150(2n;); L @s0(2n,+1);,,
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where n, = 0, I, = () is possible. Since b # t, there exists at least one i < [ with

n; > 2. So,
r—1

t .= EBSO(QM)L @®so(2n, + 1),
=1
is an H-subalgebra. As in the proof of Theorem 4.6, any H-subalgebra is of type

r’'—1

l’
(— @u i) 61 “Cmi— '® @ 50(2m;) 5, © 50(2my) 7,
i=1

i=l'"+1
for some ' > 2 and for all s € {1,...,r} thereisa j € {1,...,r'} with I; C J;. Hence,

(£, < @Pso(2m);, ©s0(2my + 1), < g
Thus, £ has no complements in the poset PG /g and AG /s is contractible. O

4.3 Spn), n>1

By [Hel78, p. 186, 189f.], it is

_ A - 2nx2n nxn _ AT _ T
sp(n) = eC? ™ | A BeC™ A= -AT A B=B"Y and
B
_ U w 2nx2n nxn _ T _ T
sp(n)c = , eC | U VW eCV™"™ V=V ANW=W
vV -U

A maximal abelian subalgebra of sp(n) and a Cartan subalgebra of sp(n)c are given
by

A 0
t:= | A =diag(iaq,. .., ia,), a; €ER, 1 <i<np and (4.18)
0 —-A
A 0
h=teC= | A=diag(z1,...,2,), z€C, 1 <i<n
0 —-A
For k € {1,...,n} and H := diag(z1,...,2n, —21,...,—2,)) € b let v € b* be defined

by vg(H) := 2. Moreover, for 1 < k, l < n, let By = (5ik - 0j1)1<ij<n- 1t follows:
H, Exnt1 + Epiil = (2 +21)  Egni + Eipyr, k<1
[H, Eniig + Envigl =— (2 + 21) - Bnggg + Enre, k<1
[H,Ey — Enginr) = (2o —2) By — Eningn, kK # L
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Since

sp(n)c = b & @ (Einii + Ernir)c & @ Eniri + Entirde ® P(Ew — Entinir)c,

k<l k<l kAl
the roots are given by v, £ 1, 1 < k <l <n and £214, 1 < k < n. For indices
ij,k,le{l,....,n}, i #j, k#I1, {i,j} # {k, 1}, the equivalences in (4.7) hold and,

in addition, the following equivalences hold:

e:==x((v; +v;) —2u,) isaroot & ke {i,j}
(= (v—vj)—2y isaroot & k=1 (4.19)
n:= (vy—v;)+2y isaroot & k=7

Moreover, (v; —v;) £ (v; +v;) is always a root. It follows that a set of simple roots is

j
given by
{vi—vipn |1 <i<n-1}U{21,}

with Dynkin diagram C,, and a set of positive roots is given by
{1 <k<li<n}U{2y|1<k<n},
see [Hel78, p. 463]. Furthermore, for k < [ let

Ber R o N —

m];l = ml_k = m{_k,l} =My, = <Ekl - En+l,n+k> Elk - En-l—k,n—l—l)(c N 5]3(”)
and
my =My, = <Ek,n+k) En+k,k>(C Nsp(n).

In other words,

0 . -
my; & - |zeCp, m, & : | zeC} and
z 0 O __Z
z z
0 —2
my = |Z€C
z 0

Since (4.7) holds for roots of sp(n), Lemma 4.3 and Lemma 4.4 also hold for subalge-
bras of sp(n), i.e. u(r);" " defined as in (4.10) is a T-subalgebra of sp(n). It then
follows:
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Proposition 4.9. Let t be as in (4.18). Furthermore, letr € {1,... ,n}, LU.. .Ul =
{1,...,n} be a partition of the index set {1,...,n} and n; :== |I;|, 1 < i <r. Then
the T-subalgebras of sp(n) are precisely given by

1 1 !
€1-.-€

el...€n _
u(n);, mly @ u(nl) 1€y —1 ®sp(ni)n,, © ... ©sp(ne)r,

—tEBEBm . @@m

ngh ZJEI[
1<j 1<j

ol @ mjemp)e Pmle..o|Pmjon)o@Pm| @20

1,5€1 411 1€l 41 4,JE€1- 1€l
1<J 1<J

for some given 1 € {0,...,r} and &, ..., & | € {— +} for 1 < k < 1. The signs

nk—l

efj € {—,+}, i <, i,j € Iy are given as in (4.10). For s <l and ny = 1, this
notation means that u(1);, = R is contained in t. Moreover, if | = 0, then r > 2 and

if l =1, then ng > 2 for at least one s € {1,...,r}.

Proof. Fix some s € {1,...,7}. If s <[, thenlet mp, :== P, ;c; ., ml] , otherwise let

my, o=@, e, ie; (M m”) ® Die;, M- In particular, [m;s,mfs] Ctemy, for s <l
by Lemma 4.4. Moreover (4.19) and (3.5) imply

m, ke i}
[m35, my] = {{0}7 ke i) (4.21)

and

[my, mf] = m; ®m;. (4.22)

Now, (4.8), (4.21), (4.22) and [m;, m;] = 0 for ¢ # j yield [m;,,m; ] C tHmy, for s > |
and [my,,m;,| = 0 for s # s'. Thus, (4.20) is a T-subalgebra.

On the other hand, let ¢ be any T-subalgebra. As above, let {1,...,n} be the
vertex set of a graph I' where 7 and j are connected by an edge if and only if m;; Ct
orm; C ¢ Let I,..., I, be the connected components of G and let s € {1,...,r}.
If ng =1, I, = {i}, then ¢ contains either sp(1);, or u(1);, depending on wether ¢
contains m; or not. So, assume n; > 2. By (4.8), if ¢ and j are connected and if j
and k are connected then so are 7 and k. Thus, for all i,j € I,, i < j, it is &; C ¢
for some ¢; € {my, mf, my @ mj}. If for all 4,5 € I, i < j, there exists a unique
sign €;; € {—,+} such that ¢; = m;7/, then m; € € for i € I, by (4.21) and the
unlqueness statement of Lemma 4.4 implies that t & m;_is of type u(ns)€i """ sl

b =m Lm,; for some i, j € I, @ < j, then it follows as in the proof of Proposition 4.5
that qu m+ ®m,, for all p,q € I, p < q. Moreover, by (4.22), m; C ¢ for all i € I.



4.3. SP(N), N > 1 53

Thus, t® my, is of type sp(ns)r,. It follows that € is of type (4.20). Furthermore, if
[ =0, then r > 2 since ¢ # sp(n) and if [ = r, then ny > 2 for at least one s, since
t£t O

Again, for ¢ = @'_, u(nz)z """ = @._,.,5p(ni);, one may assume that [; =
{Z;;B nj+1,... ,E;’.:O n;}for 1 <i <r, ng:= 0, after conjugation with an appropiate
element of type (%’ 190) € Sp(n) for some o € S,,. Moreover, for 1 <1 <n let

n

P=FE,;— Ejpq+ Z Epi + Ensiontr € Sp(n).

k=1
kAl
Then Adp,(mj;) = mf; for I € {i,j} and Adp(mj;) = m; for [ ¢ {i,5}. Hence,
after conjugation with appropiate elements of type P, one may assume e;'- = — for all

1<i<l, 1<) <n.

Using the notation t = @7, u(1);, the (non-)contractibility of Ag /i for G = Sp(n)
and H < G a connected subgroup of maximal rank is now given by the following
theorem.

Theorem 4.10. Leth = @221 u(ni)z’""e”i_lea@::lﬂ sp(n;)g, be as in Proposition 4.9.
Then, the following statement holds:

1. Ifl =0, then H,_3(Ac/u, Q) # 0.
2. Ifl=r, then H, o(Aq/u, Q) # 0.

3. If1 ¢ {0,7}, then Ag g is contractible.
Proof. First, let | = 0, ie. 2 < r < n and h = @;_,sp(n;);,. Then the claim
follows as in Theorem 4.2. In fact, every H-subalgebra is of type [ = @;;15p(mj) I
hence [ is already determined by the partition J; U...U J = {1,...,n}. Thus, if
b = s(Bl_ju(n;)z,), then

pSp(n)/H — pSU(n)/H’; @;/zlsp(mj)fj = 5<@;/:1u(mj)1j)

is an isomorphism of posets. Therefore, Agp(n) /o = Agymy/ar- By Theorem 4.2, it
follows H,—3(Ac/n, Q) = Hy—s(Asu(m/n, Q) # 0. o

Now, let I = 7. If r =1, ie. h = u(n), then Ag/y =0 and H_1(Ag/u, Q) # 0. So,
let 7 > 2 and assume h = @j_ju(n;); . For pe {0,...,r —2} let

s

=i & €D ) 0 <p and
l=r—p
l#r—p+q
r—1

EZ“ =u(ng, ,,_p_l,,,)l_l"f:p_” &) @u(nl)lfl"'_

l=r—p
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as in the proof of Theorem 4.6, so Again, (£ > ... > £_,) is a maximal chain of
H-subalgebras and with €, := g and €_, := b it follows

0
&7 5
I S
for ¢ # 0 and
(- 80 =8p(2ny = 1 — L dulny); <

for p > 1. So, .HT_Q(AG/H,Q) # 0 by Theorem 2.27.
Now, let [ ¢ {0,r} and assume h = @i‘ﬂ u(ng);, " © By, 59(ni)r,. The con-
tractibility of Ag /i follows as in the proof of Theorem 4.6. More precisely,

t:=Psp(ni);,
i=1

is an H-subalgebra. Note, that, in contrast to the case g = s0(2n), no conditions
for the indices n; are needed, since u(1) is a proper subalgebra of sp(1). Now, if

e]...efn o ,
[ = @221 u(mj)Jlj e D)_iy15p(m;);, is any H-subalgebra, then 7' > 2 and

(.0 =Psp(m));, <.
j=1
Hence, £ has no complements in the poset PG /i and AG /n is contractible. l

4.4 The Topology of A, 1 for G of Classical Type

In this section, the homotopy type of Ag 7 will be determined. For this purpose, the
reduced Euler characteristic has to be defined.

Definition 4.11. Let A be any finite simplicial complex. The reduced Euler charac-
teristic of A is given by
WA= Y (-t
oceAU{D}
Here, dim@) := —1. For any field F, 3(A) = 288 (—1) dimg ﬁi(A,;F) . In
particular, Y(A) is a homotopy invariant of A. Now, the homotopy type of A¢/r for
classical G is given by the following theorem.
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4.4. THE TOPOLOGY OF Ag/T FOR G OF CLASSICAL TYPE

Theorem 4.12. Let G be classical Lie group and T a maximal torus. Then

IX(Ag/7)l

AG/T ~ \/ Sirank(G)—Q

where \/3:1 St = (. More precisely, if R(g) denotes the root system which corre-
sponds to G, then )Z(Ag/T) is given by the following table:

R(g) (Agr)

A, a, = (=1)"-n!

B, b, = (=1)"-n!

Ch, cp = (—1)"- 2"t (n —1)!
D,, n>2|d,:=(-1)"- (2" =1)-(n—1)!

The values a,, d, will also be needed in chapter 5 to prove that A Bg/T® 1S NON-
contractible. To prove Theorem 4.12, the following two lemmas will be needed to
compute the reduced Euler characteristic.

Lemma 4.13. For N € N, i EA{l,...,N}, let H; < G; be compact connected Lie
groups such that w(bh;) = b; and FPg,/u, is finite. Then

X(AG;[X...XGN/HlX...XHN) = H X(AGZ/H,)

Proof. For any two simplicial complexes A and I, the simplices of A % I" are given by
oUTt, 0 € AU{D}, 7€ TU{0} and dimo U7 = dimo + dim 7 + 1, see Remark 1.6.
This still holds true for the case c =17 =0U7 = @ It follows:

A * F E E dlIIl o+dim 7+1

ceAU{D} TEFU{@}

:X(A) Z (_1)dim7'+1

TelU{0}
= —X(A) - x(T)

Since AG1><...><GN/H1><...><HN ~ AGl/Hl k.. % AGN/HN x SN=2 by Corollary 2.20, this
implies

X(AGy % G fHr % ) = H)Z Agym,) - X(SV?)

since x(S™) = (—1)™ for all m € Ny. O
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Lemma 4.14. If H < G are compact connected Lie groups such that n(h) = b and
Peg/w is finite, then

X(AG/H) = — (1 + Z )?(AK/H)> ;

h<t<g

where K denotes the connected Lie subgroup of G with T,K = ¢.

Proof. Since the non-empty simplices o € Ac /i are chains of H-subalgebras, they can
be ordered by their maximums, i.e.

WAgm) = =1+ Y ()™ =—1+ 3 3 (-1

O'EAG/H h<€<g UEAg/Hi
£ maximum of o

For o € Ag/H, the maximum of ¢ is given by £ if and only if ¢ = ¢’ * ¢ for some
o' € Ag/p U{0}. Hence,

STt S (1 = (A,

o€lc/u: o' €A/ {0}
£ maximum of o

This proves the claim. O

_ Furthermore, the following lemma will help to determine the homotopy type of
Ag)r.

Lemma 4.15. Let A be a finite simplicial complex of dimension n. If A is (n —1)-
connected, then A ~\/T", SI* for some m € Ny, where \/5_, S := {-}.

Proof. It n = 0, then A # () by assumption and if m is the number of vertices, A is
the wedge sum of m — 1 S%’s.

If n = 1, then A is a connected graph. By [Hat02, Proposition 1 A.2], m(A) is
a finitely generated free group. The higher homotopy groups of a connected graph
are trivial, since the universal cover is contractible, see [Hat02, Proposition 1 A.2,
Lemma 1 A.3, Proposition 4.1]. So, the generators ay, ..., a,, of m(A) induce a weak
homotopy equivalence from \/}, S} to A. Hence, \/;*, S} ~ A by Theorem 2.1.

Now, let n > 2. Then m4(A) = Hy(A,Z) = 0 for 0 < k < n —1 and m,(A) =
H,(A,Z) by Hurewicz, see [Hat02, Theorem 4.32]. Since dimA = n, H,(A,Z) is
a finitely generated free abelian group and f[k(A,Z) = 0 for £ > n. So, the gen-
erators aj, ..., a,, of H,(A,Z) induce a map f : \/7, SP — A such that the map
fo o Hy(V7, SMZ) — Hy(A,Z) is an isomorphism for all k. Since A is simply-
connected, this condition already implies that f is a homotopy equivalence, see [Hat02,
Corollary 4.33]. O
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Proof of Theorem 4.12. As a first step, the reduced Euler characteristic of Ag 7 will
be computed using Lemma 4.13 and Lemma 4.14.

If rank(G) = 1, then Ag/r = 0 and ¥(#) = —1 = a; = by = ¢;. Furthermore,
A50(4)/T = {u(2)7,u(2)*} consists of two vertices. Thus, )Z(Ago(4)/T) =1 = dy.
Moreover, A soE)/T = Agp(g) /7 consists of five vertices and two edges. So, its reduced
Euler characteristic is 2 = by = ¢5.

Now, let n > 3 and g = su(n), so(2n+ 1), sp(n) or so(2n). Fix any T-subalgebra
t of g. Then there exists a partition I; U...U T, = {1,...,n} such that

l o
t = EB t; for some ¢; = su(n;)y,, u(”z‘)z """ it 50(2n;),, s0(2n; + 1), or sp(n;) 1,
=1

with n; = |I;|. Without loss of generality, assume 1 € I;. Let ny :=n — |I;]. Then

—X(Agr) =1+ Y ¥Axm)+ Y WA+ Y WAgr).

€ ne=0 £ ne=1 B one>1
:‘:,A =:B :‘:,
First,
0, g = su(n)
1. 1 4d, g=s0(2n+1
Ao 1 Un-1 + g=s0(2n+1) (4.23)

271— * Ap—1, g - 5p(n)

2" a, q, g = s0(2n).

In fact, if g = su(n) there exists no T-subalgebra € with ny = 0. If g # su(n), then
ne = 0 if and only if € = u(n)?—1 for some signs ¢ € {—,+} or £ = s0(2n)
in the case g = s0(2n + 1). By assumption, )Z(AK/T) = a,_1 in the first case and
)Z(AK/T) = d, in the second case. Since, there are 2"~! possible choices of signs,
(4.23) follows. Moreover,

(n—1) - ans, g = su(n)

B (n—1)-by_1, g=s0(2n+1) (4.24)
0, g = sp(n
(n—=1)- (2" ap-2 + dp1), g=s50(2n)

In fact, ny = 1 implies € = & @ & with €, = u(1)gy, 50(2)gy, $0(3)( or sp(1)g;y for
some i € {2,...,n}. Nox fix .

If g = su(n), then £ = s(u(n—1);, (1)) and X(Ag/7) = ay_s. Taking the sum
over all 7 yields B.

If g = s0(2n 4 1), then & = u(n — 1)77"7" 7%, s0(2(n — 1)), or s0(2(n — 1) +1),.
If & € {u(n— 1), s0(2(n — 1))}, then € = & @ 50(2)q;y or £ = & D s0(3) -
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But x(Aso@)r) = —1, 50 X(Ak,xso@),r) = —X(Ak,/r) by Lemma 4.13 and these
summands cancel each other out. If ¢ = s0(2(n — 1) 4+ 1)7,, then £ = £ @ 50(2) ;.
Hence, taking the sum over alll ¢ yields B.

If g = sp(n), then for any choice of ¢ there occur two different T-subalgebras,
namely € = & ® u(l)y; and € = € @ sp(1)g;. Since X(Asp(l)/T) = —1, it follows
)Z(Alegp(l)/T) = —)Z(AKl/T) by Lemma 4.13. Hence, taking the sum over all i and
¢, yields B = 0.

If g = 50(2n), then € = s0(2(n — 1));, ® 50(2)5y or € =u(n — 1)1 O 50(2) 3.
So, )Z(AK/T) = d,,_; in the first case and )Z(AK/T) = a,_»o in the second case. Taking
the sum over all ¢ and all possible signs yields B. This proves (4.24).

Furthermore, C' = —1 in all cases. In fact, fix any subset I; C {1,...,n} with
1€, || <n—2and fix any choice of ¢;.

If , = {1} and & = u(l)fy, then € = & @ [ for some t < [ < g(n — 1) with
gn—1)=su(n—1), so(2(n—1)+1), sp(n—1) or so(2(n — 1)), respectively. Taking
the sum over all [ yields

Yo WAy =Aamym) + Y, MAyr) =1
t<I<g(n—1) t<l<g(n—1)

by Lemma 4.14. If €& # u(1)qy, then € = & ® [ is a T-subalgebra for all t < [ <
g(n — |I1]), where g(n — |I1|) is defined similarly to g(n — 1). Now, taking the sum
over all [ yields

X(AKI/T) + Z X(AleL/T) = X(AKI/T) |1+ Z DZ(AL/T) =0

t<i<g(n—|11]) t<i<g(n—|L1])

by Lemma 4.13 and Lemma 4.14. In summary, Y(Ag/r) = —(1+A+B+C) = —A—B.

Since a; = by = ¢; = —1, dy = 1, it follows by induction:
Ap = )Z(ASU(n—l—l)/T) =-0-n-a,1
=(-1)"-n-(n—=D=(-1)"-nl, n>2.
dn = )NC(ASO(Qn)/T) = _271—1 : an 1= (n - ]-) (271 2 “Qp_o + dn 1)
=(=1)"-2"" (n— D—(n—1)-(=1)"2.2"2. (n —2)!
—(n—1)- ( nrh (20 = 1) (n - 2)!

=(=D"-2"" (n—=Dl=(n—1)-(-1)" (n—2)!
=(-D)"-2"'=1)-(n—1)), n>3.

~

bn = X(Aso@ninyr) ==2"""tp1 —dp— (n—1) byy
=" 2"t (n—-1) = (=D)"- 2" =1) - (n—1)!
—(n—=1)- (=)' (n—1)
=-D"n-1)-Q+n—-1)=(-1)"-nl, n>2.
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~

cn = X(Aspm)/T) =-2"1.q,1-0
=(=D)"- 2" (n =1, n>2,

It remains to prove that AG/T is a wedge sum of spheres up to homotopy. Let
rank(G) > 2 and m := rank(G) — 2. Furthermore, let €,..., ¢y be the minimal
T-subalgebras of g. For any subalgebra [ = (¢;,,... ¢, ), the root system R([) is con-
tained in the R-linear span of the root systems R(f;;). But rank R(¢;,) = 1 for all
1 <j <r,sorank R(l[) < r. In particular, [ = g implies » > rank(G). By Corol-
lary 2.23, Ag/T is (rank(G) — 3)-connected, i.e. (m — 1)-connected. By Lemma 4.15,
it remains to prove that Ag 7 is homotopy equivalent to a simplicial complex of di-
mension m. For this purpose, consider the subposet

Pgir = {t| 3 maximal T-subalgebras [;,...,[;: LN...N[=¢} C f’g/T

and let Ag}?:’; be its order complex. Similarly to the proof of Theorem 2.12, it follows
that for the inclusion map ¢ : P™> < P sr the fibres (P /1)>¢) are contractible,
SO Agf‘r_’; is a strong deformation retract of Ag - It remains to prove dim Ag?XH =m,
i.e. every maximal chain in ng/?‘ has length < m.

First, let g = su(n). The maximal T-subalgebras are of type s(u(ny);, © u(ng)z,).
So, any T-subalgebra ¢ = s(]_,u(n;);,) can be written as the intersection of maximal
ones, namely € = N/_;s(u(n;);, ® u(n — ni)q,..npz)- Hence, Ag% = Ag/T. Let
(8o > ... > &) be any maximal chain of T-subalgebras. In each step, two blocks get
merged together to one block, i.c. ¢ = 5(@;7;114(713-)];;) with r; =i+2forall 0 <7 <.
Since £ 2 s(u(2) @ u(1)*2), it follows 1y, =n — 1,50 [ = n — 3 = m.

Now, let g = s0(2n). The maximal T-subalgebras are of type s0(2n,);, ©s0(2n2)y,
and u(n)*-1. As above, intersections of maximal T-subalgebras of first type are
precisely given by all subalgebras of type ®I_;50(2n;);,. If € = N_,1; is the intersection
of some maximal T-subalgebras with [; = u(n)“~-1_ then £ must be a subalgebra of
[;. On the other hand, every T-subalgebra of [; can be obtained as an intersection of

choice of signs ¢;. In summary, the vertices of Ag‘}_’; are precisely given by

€l,...

@j_150(2n;);, and i, u("z‘)[?

In other words, T-subalgebras of “mixed”type are not vertices of Ag‘}z’; Now, let
(¢ > ... > &) be a maximal chain of T-subalgebras in P75, Then & = u(2)®u(1) 2.
If €9 = u(n)v»—1 then n — 2 steps are needed to merge all blocks to a single block,
ie. [ =n—2 If & = 50(2n1)1, ® $0(2n2),, then n — 3 step are needed to merge the

i i
Loe€p,—1
to @I_,80(2n;)y,.

blocks. But a further step is needed to switch from @g’zlu(ni);
So, l =n — 2 =m in each case.
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If g = sp(n), the same argument as above yields that the vertices of dim Ag7 are
given by

%

i
ST
i

Di—15p(ni)s, and iy u(ny),
Let (& > ... > ) be any maximal chain of T-subalgebras in Pgiy. If & = u(2) @
u(1)"2, then | = n — 2 = m as above. If & = sp(1)", then & = sp(ny);, ® sp(na)y,
and n — 2 steps are needed to merge the blocks. Hence, | =n — 2 = m in each case.
If g = s0(2n+1), the maximal T-subalgebras are given by s0(2n;+ 1), ©s0(2ns)y,
and so0(2n). The vertices of Ag7} are now given by

i—1

®;_150(2n;)1, and s0(2n; + 1)1, © O;_,50(2n,),.

Let (8 > ... > &) be a maximal chain of T-subalgebras in Pgjy. If & = s0(3) &
50(2)"!, then & = s0(2n; + 1);, & s0(2n)7, and n — 2 steps are needed to merge
the blocks. So, let & = s0(4) ® s0(2)" L. If & = s0(2n), then n — 2 steps are needed
to merge all blocks to a single block. If ¢, = s0(2ny + 1);, & s0(2n3),, then n — 3
steps are needed to merge the blocks and a further step is needed to switch from
50(2nq) 1, B BL_y80(2n;);, to s0(2ny + 1)1, & Bl_,50(2n;)s,. It follows I =n—2=m in
each case. Hence, dim Ag‘?‘XH = m in all cases. This proves the claim. O



Chapter 5

AG /H for G of Exceptional Type

5.1 General Properties

Let G be a compact simple Lie group of exceptional type, i.e. g = ¢g, e7, ¢g, f4 Or go
and G = Eg, F7, Eg, F, or Gg, respectively. Let T' < G be a fixed maximal torus
of G with Lie algebra t. The T-subalgebras of G' can be determined by applying the
Borel - de Siebenthal theorem. For this purpose, closed subroot systems have to be
introduced.

Definition 5.1. Let R be a root system. A subset S C R is called a closed subroot
system, denoted by S < R, if S itself is a root system of (S)r and if the following
condition holds:

Va,6€S: a+feER = a+peS

Equivalently, a subset S C R is a closed subroot system, if the following two conditions
hold:

YVaoeS: —aes
Va,p€S: a+pER — a+peS

For any subset S C R, (S) denotes the closed subroot system of R which is generated
by S.

From Lemma 3.10, it directly follows:

Corollary 5.2. Let t and g as above and let a set R(g)* of positive roots and a subset
I C R(g)* be given. Then
h=toPm,

is a Lie subalgebra if and only if I U —1I is a closed subroot system.

61
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In particular, there exists a one-to-one correspondence between all T-subalgebras
of g and all closed subroot systems of R(g). Since g is simple, it remains to classify all
closed subroot systems of R for any irreducible root system R. The maximal closed
subroot systems are classified by the Borel - de Siebenthal theorem.

Theorem 5.3 (Borel - de Siebenthal, [Wol77, Theorem 8.10.9]). Let R be an irre-
ducible root system with simple roots F = {cu,...,an}. Let ag := Y . njoy be the
mazximal oot as in Lemma 3.5. Then, up to W(R)-conjugacy, all mazimal closed
subroot systems S < R are given by:

1. S={ag,...,Q...,«qn, —p) for some i € {1,...,n} such that n; is prime.

2.8 ={a1,...,Q4y...,ap) for somei € {1,...,n} such that n; = 1.

Now, let D(R) be the eztended Dynkin diagram of R which is defined as D(R)
but with an additional vertex representing —ay. This vertex will be denoted by ©.
Furthermore, for i € {1,...,n}, the vertex representing a; will be labeled with n;, see
Figure 5.1. Theorem 5.3 states that the Dynkin diagram D(S) of any maximal closed
subroot system S < R can be obtained by one of the following two ways:

—_

1. Delete a vertex v of D(R) which is labeled by a prime number.

2. Delete a vertex v of D(R) which is labeled by 1 and delete the vertex ©.

Hence, the maximal closed subroot systems S < R are given by Table 5.1.

Table 5.1: Maximal closed subroot systems

R S maximal, S maximal,
rank(S)=rank(R) rank(S)=rank(R)—1

By +Dp g, 1<k<n—2| B,_;
D,
Co | Cu+Crg, 1< k<[5 A5
D+ Dy, 1 <k< %] A1

D, 2
Dn—l
Eg | A1 + A5, 34, Ds
Ar Ayt A E
g, | A A 5 6

A1+D6
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Table 5.1: Maximal closed subroot systems

R rani(glffr?fli’(m rankfsl)lffailia(lj?)—l
Ag, 2A4
Es | Ay + Es, A1+ Ex
Dy
Al + A5
Fy | Al 4+ 4
B,y
Gy | AL, AL + AY

In root systems with roots of different length, a subroot system of type A; may
either consist of long roots or consist of short roots which will be denoted by AL or
A% respectively. Note, that the root system of rank 1, A;, contains no proper closed
subroot system except (.

Now, if R = R; + ...+ R, for irreducible R;, 1 <7 <, then each maximal closed
subroot system S < R is of type S = 51+ ...+ 5, with S; < R; maximal for a unique
ie{l,...,l} and S; = R, for all j # i. It follows that all closed subroot systems of
R(g) can be determined up to W (g)-conjugacy by applying the Borel - de Siebenthal
theorem iteratively.

Note, that a given root system S may appear for several times in the above de-
scribed algorithm up to isomorphism. It is useful to know whether closed subroot
systems of R(g), which are isomorphic as root systems, are also conjugate under W (g)
or not. This question is answered by the following lemma, see [Dyn57, p. 147f.].

Lemma 5.4. Let R be an irreducible root system of exceptional type and S < R a
closed subroot system. Then all closed subroot systems S < R with S isomorphic to S
as root system are conjugate to S under W(R), except for the following 11 cases:

1. R=E7 andS=A1+A5, 1457 2A1+A37 1414‘1437 3A1 07’4Al,
2. R= Eg and S = A7, Al +A5, 2A3, 2141 +A3 or 4A1

In all these exceptional cases, the isomorphism class of S splits into two Weyl orbits.
More precisely, if G = E,, n=71,8, one Weyl orbit contains all S = S which satisfy
S C A, C E,. The other Weyl orbit contains all S = S which are not conjugate to a
subroot system of A, C E,.

To distinguish the two Weyl orbits in these exceptional cases, the subroot system
S will be denoted by S’ it S C A; C E7 (S C Ag C Eg) and by S” otherwise.



64

E7I

Ggi

CHAPTER 5. AG/H FOR G OF EXCEPTIONAL TYPE

1 1 1 1
/Q
2 2 2 2 o
1
1 2 2 2
O O
! 0O oo
O 2 2 2 o
1 1 1
2
O O O
1 2 3 2
O i
1 2 3 4 3
(f 3
O O
2 4 6 )
2 4 3 2
O,

O
3

N O

Figure 5.1: Extended Dynkin Diagrams
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Now, the determination of all closed subroot systems up to W(g)-conjugacy is
sufficient to determine all Lie subalgebras t < h < g. In fact, by [BD85, Thm. 3.12, p.
200], there is a canonical isomorphism from W (g) to N(T)/T. Thus, closed subroot
systems S, S’ < R are conjugate by some w € W(g) if and only if the corresponding
subalgebras b, b are conjugate by some n € N(T') and Ad,, induces an isomorphism
Ac/n = Agnr.

In the next sections, the (non)-contractibility of AG/ g will be determined, where
G runs over all exceptional Lie groups and R(h), the root system which corresponds to
H, runs over all W(g)-conjugacy classes of closed subroot systems of R(g). To apply
Theorem 2.27 to Ag /i, the following theorem will be useful in many cases.

Theorem 5.5. Let G be semisimple with maximal torus T, | € N and (€ > ... > &)
a non-extendable chain of T-subalgebras with root systems R(&), 1 <i <. If

rank R(g) > rank R(£)) > ... > rank R(£))
and if €& is maximal in g, then f[l_l(AG/Klo,Q) =+ 0.

Proof. Note, that the assumptions imply that (€ > ... > € ;) is a maximal chain of
KP-subalgebras. Thus, it is sufficient to show that this chain satisfies the conditions of
Theorem 2.27. For this purpose, choose any root r; € R(g)\ R(E) and let &) := (€9, 7,),
i.e. € is the subalgebra with root system (R(#),r). This implies

rank R(¢}) < rank R(£)) 4+ 1 < rank R(£)) + 1 < rank R(g),

ie. & < gis a Kj-subalgebra. Moreover, £ # £ since r; € R(€}) \ R(¥)). By
Lemma 2.24, it follows F[O(AG/K?,Q) £ 0.

Now, let [ > 2 and ry, &} as above. Furthermore, choose roots ry € R(8_,)\ R(£2_,)
for s €{2,...,l}. Foreveryie {1,...,l—1}and j € {1,...,i+ 1} let

Ez = <E?+1,T’i+2_j>. (51)
Then for all i € {1,...,1 — 1} the following conditions hold:
1. €0 £ ¢ for j € {1,...,i+ 1}, since 740, ¢ R(£2).

2. ¢ > forje{l,... i+1}.

In fact, for j > 2 this follows directly from (5.1), since €., < €. For j =1, the
inequality holds since r;,; € R(€_,).

3. (.. et <gforie{l,... .11}

In fact, (B}, ... €% = (€2, i1, ...,71), hence:

rank R((¢}, ..., &) <rank R(€),;) +i+ 1 < rank R(&),;) + i + 2 < rank(g)
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It follows that the subalgebras Ef satisty the conditions of Theorem 2.27 with respect
to the chain (& > ... > €} ;) of K}-subalgebras. Thus, H;-1(A¢/k0, Q) # 0. O

Moreover, to find the appropiate subalgebras for applying Theorem 2.27 or Corol-
lary 2.19, the following lemma and corollary are needed.

Lemma 5.6. Let R be an irreducible root system and S be any closed subroot system
of R. Denole
t={a€R|alS}

Then S+ is a closed subroot system of S. If, in addition, all roots of R have the same
length or if R = Gy, then S + St is also a closed subroot system.

Proof. If a € S+, then —a € S+. Moreover, let o, 3 € S* such that a + 3 € R. Then
a+ B €St ie Stis closed.

Now, suppose that all roots of R have the same length or R = Gs. If a € S + S+,
then —a € S+ S*. So, let o,8 € S + S+ such that a + 3 € R. If a, 8 € S, then
a+B€SCS+ St since Sis closed. Similarly for o, 3 € S*. If a € S, B € S+, it
follows ||a + B]]? = ||a]|? + || 3]|?, since @ L 3. Hence, o + 3 must be a long root and
«,  must be short roots. This is a contradiction, if all roots have the same length. If
R = G5, then ||o|¢|:;|/|32||2 = 3 which is again a contradiction. Hence, o + ¢ R in this

case and S + S is closed. O

Note, that S+ = @ is possible even if rank S < rank R, for instance A | = () for
An—l < An

Corollary 5.7. With the same notaion as in Lemma 5.6, assume that all closed
subroot systems of R which are isomorphic to S are also W (R)-conjugate to S. Then
St is the largest root system of all root systems R' with the property that R contains
a closed subroot system isomorphic to R 4+ S.

Proof. Let R” be any root system such that R contains a closed subroot system iso-
morphic to R” + S. Hence, R" + 5 < R for some S isomorphic to S. By assumption,
there exists an w € W(R) with w(S) = S, thus w(R") C S*. O

At last, the following lemma will be needed to determine dim Ag/ g and mg/p,
the minimal dimension of all facets of AG su- It will be shown that if Ag/H is non-
contractible, then in most cases ﬁImG " (Ag/H,Q) # 0. An example for a complex
Ag/H with ﬁk(Ag/H,@) # 0 for more than one k is given by G = E7, R(h) = A+ A,,
see section 5.5.

Lemma 5.8. Let H < G be compact connected Lie groups with rank H = rank G.
Furthermore, let the set of all minimal H-subalgebras be given by {¢,...,ex}. For

me g = min{dims | s is a facet of Ag/H},
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it follows
mea/up = Min{me iy, ..., Mgy} + 1

with ma/k, == —1, if K; is mazimal in G. Moreover,
lelA(;/H = max{dimAg/Kl, ce 7dlIn AG’/Kl} + 1.

Proof. If some K; is maximal, then &; is an isolated vertex of Ag/H and mg/g = 0.
So, assume that no K; is maximal. All maximal chains of H-subalgebras are of type
(& < lo,< ... < Ly) for some 1 < i < N and mg/x, < m < dimﬁg/m. Hence,
choosing ¢ such that mg/k, is minimal yields mg/p = mg/k, + 1.

Similarly, if all K; are maximal, then dim Ag/ g = 0. Otherwise, choosing 7 such
that dim Ag/x, is maximal yields dim Ag,p = dim Ag)x, + 1. O

5.2 Gy

As described above, applying the Borel - de Siebenthal theorem iteratively yields all
closed subroot systems of G up to W-conjugacy, see also [Dyn57, p. 149]. The closed
subroot systems of GGy are given by Table 5.2. To simplify notation, in the following
a connected subgroup H < G of maximal rank or its Lie algebra h may be written
as the root system R(h), e.g. A; may denote the root system Ay, the Lie algebra
su(2) @ t2KE -1 or the Lie group SU(2) x T™(@)=1 (or SO(3) x Trank(@)-1),

Table 5.2: G = Gy

No. H maximally | dim Ag JH | MG/H Ag JH 1S
contained in non-contractible
1 AL — -1 —1 yes
2 | A+ A7 - -1 -1 yes
3 AL 1,2 0 0 yes
4 A7 2 0 0 no
5 0 3,4 1 1 no

Note, that Table 5.2 also yields the following informations about a given subroot
system H:

1. All closed subroot systems S, in which H is maximally contained in. This will
also be denoted by “H — 5.
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2. The values dim AG/H and mq/q.

3. The answer to the question, if AG /s is non-contractible.

Since AG /i = 0 for maximal H, it remains to check whether AG /n is contractible
or not for all non-maximal H.

H = AL : Since A¥ — AL, A7 + A7, AG/H is disconnected, By Lemma 2.24, it
follows .FI()(Ag/H, Q) # 0.

H= A} : H— AF + A7 Since Gz has rank 2, there can only exist one positive
root perpendicular to A7. Hence, Ag,iy = {A}F + A7} is a singleton.

H = 0: H— AF AY. Note, that for an irreducible root system with roots of
different length, the long roots form a proper closed subroot system. For G5, this
is K = AL, Now, let ¢(K) denote the complement of K in the poset pG/H. Since
K contains all long roots, so AL ¢ ¢(K) and AL + A ¢ ¢(K). On the other hand,
for any A7 it is A N K = 0 and (A7, K) = Gy, since K is maximal in G5. Hence,
c(K) consists of all A7. But AG2 /s is contractible. Thus, Ag/H is contractible by
Corollary 2.19.

5.3 Fy

Borel - de Siebenthal’s theorem yields the following closed subroot systems of F; up
to W-conjugacy, see [Dynb7, p. 149].

Table 5.3: G = F},

No. H maximally | dim Ag JH | Ma/H Ag JH 18
contained in non-contractible
1 | AF+Cq - -1 -1 yes
2 Cy 1 0 0 no
3 B, — —1 —1 yes
4 Bs 3 0 0 no
5 2A1L + By 1,3 0 0 yes
6 | AL+ B, 2,5 1 1 no
7 By 4,6 2 1 no
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No. H maximally | dim Ag JH | MG/H Ag /H S
contained in non-contractible

8 Dy 3 0 0 yes

9 | AL+ A7 3 0 0 no
10 AL 4,8,9 1 1 no
11 | AL+ A - -1 -1 yes
12 | Ak + A7 9,11 1 0 yes
13 AL 10,12 2 1 yes
14 | AL 4+ A3 1,11 0 0 yes
15 AS 2,14 1 1 no
16 | 2AL + A7 4,5,9 1 1 no
17 | A+ A7 | 6,12,14,16 2 1 yes
18 4AL 5,8 1 1 yes
19 3AL 6,18 2 2 no
20 2AL 7,10,16,19 3 2 no
21 AL 13,17,20 4 2 yes
22 A 7,15,17 3 2 no
23 0 21,22 5 3 no

69

Again, consider all non-maximal T-subalgebras. If different root systems of the
same type have to be considered, they will be numbered consecutively, e.g. A;(1),
A1(2), A1(3) and so on.

H = C3: H— AF+ Cs. Since rank Fy —rank (5 =1, there is at most one positive
root Al perpendicular to C3. Hence, Ag/y = {Af + Cs} is a singleton.

H = B;s: H — B,. To prove that Ag/H is contractible, it is sufficient to prove

that there is a unique By containing H, so that Ag, g is a singleton. So, let H < Bj.
Now, the long roots of I form a proper closed subroot system which is of type Djy.
In particular, there is a unique subroot system of type D,. Moreover, Dy < By, so

By = (Dy, H) is unique.

H = 2AY + By: H — A + O3, By, so Hy(Ag/, Q) # 0 by Lemma 2.24.



70 CHAPTER 5. AG/H FOR G OF EXCEPTIONAL TYPE

H = A + By: H — C3, 2AF + B,. Since rank HY = 1, there is a unique
K :=2AY+ B, > H . Let L be any H-subalgebra. Then L < By or AX + C5. But By
and AL+ Cjy contain the positive root which is perpendicular to H. Thus, (K, L) < B,
or Al + (3, ¢(K) = () and Ag/H is contractible.

H=B, H— Af + By, B;. K = QAf + B, > H is unique, since rank H+ = 2.
Any H-subalgebra L satisfies L < By or A} 4+ C3. But By and A 4 Cj contain
2AF 1 H,so (K,L) < By or Af + C5 and ¢(K) = (0. Hence, Ag/y is contractible.

H =Dy H— B,. Since H = D, is unique, every subroot system of type B,
must contain H. So, fIO(AG/H) £ 0, if there exist more than one subroot systems
of type By. [, contains 24 short roots but a root system of type B, contains only
8 short roots. So, fix subroot systems By(1), A7(1) < By(1), A7(2) £ By(1) and
some w € W(Fy), w(A7(1)) = AY(2). Then By(2) := w(By(1)) contains AY(2), i.c.
B4(2) # By(1).

H = A} + Ay: H — By. If H < By, it follows as above that By = (D4, H) is
unique, hence Ag,/p is contractible.

H = A3: H — By, Dy, AY+AL. Consider K = Dy and let L be any H-subalgebra.
If L € ¢(K), then L > A7 + A} or L > Bs. But this implies that L is contained in
some B,. Now, all B, contain the unique K = Dy, so (K, L) < B,. Hence, ¢(K) =0
and AG/H is contractible.

H=A] + Ak H — A7 + AL AL + A5 so f[o(AG/H,Q) # 0 by Lemma 2.24.

H = AL H — A, A5 + AL Choose an H-subalgebra Ko := A§(1) + A%, Ag/x,
contains a 0-cycle supported by a facet with L.b.s.

Let

K] = Aé + A‘lg(2) < Ll and
Ky = Ag < Ls.

Since D, contains all long roots, it is K, Kz < (Dy, A (2)) = By, so (K}, Ks) < Fy
and H,(Ag/u, Q) # 0 by Theorem 2.26.

H=AL 4+ AS: H — AL 4 C5, AL + A5 s0 ﬁO(Ag/H,Q) # 0 by Lemma 2.24.

H = AS: H — C3, A + AJ. Since rank H+ = 2, K := AL + A5 is unique. Now,
let L be any H-subalgebra. If L > AF 4 A5 then K NL > AL + A so L ¢ ¢(K).



5.3. Fy 71

If L > Cjthen L = Cj or AF + C3. The second case implies K N L = Al + A5 > H.
Hence, c¢(K) consists of C%s. But Ap, /¢, is contractible, so is Ag/u by Corollary 2.19.

H = A7 + 2AY: H — By, 2AY + By, AY + AL, Since rank(2AF)L = 2, there
exists a unique K := 2A1L + By, > H. Let L be any H-subalgebra. Then L < By or
L < AL + (3 and these subalgebras must contain K. Thus, (K, L) < By or AL + Cj,
¢(K) = 0 and Ag,y is contractible.

. H=Al4+A}: H— Al 4By, AJ+2AL, Al + A5, AL+ A7, Let Ko := Af(1)+A§.
Ag/k, contains a 0-cycle supported by a facet with 1.b.s.

{Li = AT (1) + C5, Ly = A} + AS}.
Now choose H-subalgebras K;, K, in the following way:

Ky == AF(1) + (A} + AL(2)) < Ly and
Ky = Ag +A'1S < L.

Since Kj and K3 consist of long roots added to the short root Af of H, both are
contained in By = (A7, Dy), i.e. (K, Ky) < Fy and Hi(Ag/u, Q) # 0.

H =4A}: H — 2A} + By, Dy. Write H as A7(1) + A{(2) + AF(3) + Af(4) and
let Koy = A¥(1) + AL(2) + By(1). By Lemma 2.24, Ag/k, contains a 0-cycle supported
by a facet with L.b.s.

Since all T-subalgebras of type 2AL are conjugate, there are H-subalgebras of type
2AL + B, given by:

K, = A¥(1) + AF(3) + By(2) < Ly and
Ky = A¥(2) + AF(3) 4 By(3) < L.

Altough Lemma 5.6 is not applicable in this case, AL(3) + (AF(3))* is a T-subalgebra
and K, Ky < AF(3) 4+ (AL(3))+. In fact, there exists a maximal T-subalgebra of type
Af(3) 4+ Cs. But Cy is a maximal root system of rank 3, hence (Af(3))" = Cs and
by Theorem 2.26.

H = 3A: H — AF + By, 4AF. Let K = 4AL. Since rank HY = 1, K is
unique. Denote the positive root which is perpendicular to H by AZ(1). Let L be any
H-subalgebra. If L < B, for some H-subalgebra of type By, then K < Dy < By, so
(K,L) < Byand L ¢ ¢(K). Hence, L € ¢(K) implies L = C3 or A¥(2)+C5. If L = Cj,
then L < AF(2)+C5 with AF(2) L H. Thus, A¥(2) = AF(1) and (K, L) = AF(1)+Cs.



72 CHAPTER 5. AG/H FOR G OF EXCEPTIONAL TYPE

If L = AL(2) + Cs, one may assume A¥(2) £ H, so H £ Cs. Hence, H N C3 = 2AF
and the root A¥(2) is a summand of H. But then, C3 contains a root A¥(3) L HNCj,
hence AF(3) L H. It follows AF(3) = AF(1) and K < L. In summary, ¢(K) = () and
AG /u is contractible.

H =2AF: H — By, AL, 2AL + A7) 3AL. Let K = Dy, which is unique. If L is
any H-subalgebra and L < By for some H-subalgebra of type By, then (K, L) < B,
and L ¢ ¢(K). Again, L € ¢(K) implies L = C3 or AX + C3. In both cases, L
contains at least 3 positive long roots which are perpendicular to each other, i.e.
KNL>3AF > H. Hence, ¢(K) = ) and AG/H is contractible.

H = AL H — AL AL 4 A7) 2AL Let K, := AL, AG/KO contains a 1-cycle
supported by a facet with l.b.s.

{L1= A} + A1), Ly = Ay + AT(2), Ls = AL}
Since 2AL < AL there is a long root A¥(2) < AL perpendicular to H. So, let

K, = A% + Af(l) < Ll,
Ky = Al + A7(2) < Ly and

As above, A} + (A[)* = A} 4+ Cs and K, Ky, K3 < A} + (A})" = Cs. Hence,
HQ(AG/HaQ) 7é 0.

H=A}: H— By, Aj, AL + A Let K = Dy. Then L € ¢(K) implies that L
contains no long roots. Hence, L = A5. But Ap, /45 is contractible, so is Ag/u by
Corollary 2.19.

H=10: H— AL, A]. Let K = D,. As above, if L is a T-subalgebra containing
any long root, then L ¢ ¢(K). If L = A}, then (K, L) = B,. Hence, ¢(K) consists of T-
subalgebras of type A5 and since A /a5 18 contractible, so is Agg by Corollary 2.19.

5.4 F

By Borel - de Siebenthal, the closed subroot systems of Ejs are given up to W-conjugacy
by the following table, see [Dyn57, p. 149]. Note, that if R is a root system with roots
of equal length, then all subroot systems are closed, i.e. if S < R is a root system of
()R, then o, B € S, a+f € R always implies o+ € S. Hence, the term “closed” will
be omitted from now on.
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Table 5.4: G = FEjg

No. H maximally | dim Ag JH | Ma/m Ag JH 18
contained in non-contractible
1 Dy — —1 —1 yes
2 Dy 1 0 0 yes
3 A+ As — —1 —1 yes
4 As 3 0 0 no
5 A+ Ay 3 0 0 no
6 Ay 1,4,5 1 0 yes
7T | 2A; + A3 1,3 0 0 yes
8 | A+ A3 4,5,7 1 1 no
9 As 2,6,8 2 1 yes
10 3A — —1 -1 yes
11 | A +2A, 3,10 0 0 yes
12 24, 4,11 1 1 no
13 | 24, + A, 57,11 1 1 yes
14 | A +Ay | 6,812,13 2 1 yes
15 Ao 9,14 3 2 yes
16 4A, 2,7 1 1 yes
17 3A, 8,13,16 2 2 yes
18 24, 9,14,17 3 2 yes
19 Ay 15,18 4 3 yes
20 0 19 5 4 yes

H = Dy,: H — Ds. Since rank Eg > rank D5 > rank Dy, E’()(Ag/]_[,@) £ 0 by
Theorem 5.5.

H = As: H — Ay + As. Since Af = Ay by Corollary 5.7, there exists a unique
A;+ As > As and Ag/g is a singleton.
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H = A;+ Ay H— Ay + As. By Corollary 5.7, At = Aj. Hence, there is a unique
Ay +As > H and Ag/g = {A1 + As} is a singleton.

H = Ay H — D5, As, A + Ay, Again, ﬁo(Ag/H,@) % 0, since Ag/H is
disconnected.

H =2A,+A3: H — Ds, /}1 + As. Since there exist at least two different maximal
H-subalgebras, it follows Hy(Ag/u, Q) # 0.

H=A +As: H— A, Ay + Ay, 2A, + As. By Corollary 5.7, H+ = A;. Hence,
the H-subalgebra K = 2A; + Az is unique. So, L € ¢(K) implies L > A; + A, or
As, and hence, . < A; + As. Suppose L = Ay + As. If H < A; < L, then the
Aj-summand of L is perpendicular to H, i.e. K < L. If H < A; + A4 < L, then the
As-summand of L consists a root A;(1) perpendicular to A3 = H N A;. Moreover, the
Aj-summand of L is the Aj-summand of H. Thus, A;(1) L H and K < L. It follows
that all H-subalgebras of type A; + A5 contain K. Therefore, ¢(K) = () and AG/ o is
contractible.

H = A3Z H — D4, A5, A1 + Ag. By Theorem 5.9, ﬁl(Ag/H,@) 7& 07 since
rank Eg > rank D5 > rank A, > rank As.

H = Al + 21422 H — Al + A5, 3142 ThUS, ﬁQ(Ag/H,Q) 7é 0 since Ag/H is
disconnected.

H =2A,: H— As, A +2A,. By Corollary 5.7, H+ = Ay, so K = 34, is a unique
H-subalgebra. If L > A;4+2A,, then L < K. So,let L > As. If L = A1+ A5, H must
be contained in the As-summand of L and the A;-summand of L is perpendicular to
H. Hence, LN K = Ay +2A, > H. It follows that ¢(K) consists of H-subalgebras of
type As. Hence, by Corollary 2.19, Ag su is contractible, since A Es/As 1S contractible.

H = 2A1+A22 H— A1+A4, 2AA1+A3, A1+2A2. Write H = A1(1)+A1(2)+A2(3).
Let Ko := Ai(1) + A1(2) + As. Ag/k, contains a 0-cycle supported by a facet with
Lb.s.

{L1=A:1(1) + A5(1), La = A1(2) + A5(2)}.

Let

K, = A1(1> + A2(2) + AQ(S) < L and

Ky = AQ(].) + A1(2) + AQ(B) < LQ,
where A;(1) < Ay(1) and A;(2) < A3(2). Tt follows K7, Ky < Ay(3) 4+ Ax(3)" < Ey.
ThU_S, Hl(AG/Hv Q) 7é 0.

H=A + Ay H— Ay, A+ Az, 245, 2A, + Ay. Again, H (Ag i, Q) # 0, since
rank Fg > rank D5 > rank A4 > rank A; + As.
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H = Ay H — Az, A + As. ﬁg(Ag/H,Q) # 0, since rank Fg > rank D5 >
rank A, > rank As > rank As.

H = 4A12 H — D4, 2A1 + A3.AWrite H as Al(l) + A1(2) + A1(3) + A1(4) Let
Ko = Ai(1)+A1(2)+ A3(1) > H. Ag/k, contains a 0-cycle supported by a facet with
Lb.s.

{L1 = A1(1) + A5(1), Ly = A1(2) + A5(2)}.
Let
K, = Al(l) + A1(3) + A3(2) < Ly and
Ky = A1(2) + Al(?)) -+ Ag,(?)) < L.

Thus, (K, Ky) < Ay(3) + A1(3)F < Eg and H,(Agu,Q) # 0.

H=3A;: H— A+ As, 2A, + Ay, 4A,. Write H as A1(}) + Ay(2) + A1(3) and
let Ko := Ai(1)+ A1(2) + As(3), where A;(3) < A5(3). Then A/, contains a 1-cycle
supported by a facet with 1.b.s.

{L1 =A1(1)+A1(2) + A3, Lo =A;(1)+ Az(2) + A2(3), Ly = Ax(1) + A1(2) + A2(3)},

where A;(1) < As(1), A1(2) < Ay(2). Now, let A3 & A;(3) denote the orthogonal
complement of A;(3) in A3. By Corollary 5.7, this is a subroot system of type Ay, i.e.
there exists A;(4) < Az with A;(4) L A;(3). So, let

Ky :=A1(1)+ A1(2) + A1(3) + A1 (4) < Ly,

Ky :=Ai(1)+ Ay(2) + A1(3) < Ly and

K3 := As(1) + A1(2) + A1(3) < Ls.

It follows K, Ky, K3 < Al(g) + A1(3)J' < FEg and ﬁz(Ag/H,@) ?é 0.

H =2A;: H— Az, A1+ As, 3A;. Again, I:IQ(AG/H,Q) # 0, since rank Eg >
rank D5 > rank A4 > rank A3 > rank 2A4;.

H = A: H— Ay, 2A,. It follows ﬁg(Ag/H,Q) # 0 by considering the chain
rank Fg > ... >rank2A; > rank A;.

H=0: H— A,. Since rank Fg > ... > rank A; > rank (), it is 1':[4(A0/H,Q) £ 0.

5.5 P,

Borel - de Siebenthal yields the following subroot systems of F; up to W-conjugacy
by the following table, see [Dyn57, p. 149]. Note, that for G = E; and Ejg there
are subroot systems S which are isomorphic but not W-conjugate. As described in
Lemma 5.4, the Weyl obrits are denoted by S” and S”.
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Table 5.5: G = E;
No. H maximally dim Ag JH | MG H Ag JH 18
contained in non-contractible

1 Eg — —1 —1 yes

2 Ay + Dg - -1 -1 yes

3 Dsg 2 0 0 no

4 Ai + Ds 2 0 0 no

5 Ds 1,3,4 1 0 yes

6 3A1 + Dy 2 0 0 yes

7 2A,+ D, 3,6 1 1 no

8 A+ Dy 4,7 2 1 yes

9 D, 5,8 3 1 yes
10 Az — -1 -1 yes
11 Ag 10 0 0 no
12 Ay + As — -1 -1 yes
13 (A) + As) 1,2,10 0 0 yes
14 (A; + A5)" 2,12 0 0 yes
15 (As) 3,13 1 1 no
16 (A5)” 3,14 1 1 no
17 Ay + Ay 10,12 0 0 yes
18 A+ Ay 4,11,13,14,17 1 1 ves
19 Ay 5,18,15,16 2 1 yes
20 Al + 2A3 2 0 0 no
21 92 A4 3,10, 20 1 0 ves
22 | A; + Ay + As 12,20 1 0 yes
23 As + As 11,17,21,22 2 1 yes
24 3A; + Az 4,6,20 1 1 no
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5.5. E;
No. H maximally dim Ag JH | MG/H Ag /H 1S
contained in non-contractible
25 | (241 + A3) 5,7,13,21,24 2 1 yes
26 | (241 + A3)” 7,14,22,24 2 1 yes
27 (A; + A3) 8,15,18,23,25,26 3 2 yes
28 (A; + Ag)” 8,16, 26 3 2 no
29 As 9,19,27,28 4 2 yes
30 3A, 1,12 0 0 yes
31 A+ 24, 13,14,17,22,30 2 1 yes
32 2A, 15,16, 23,31 3 2 yes
33 3A; + Ay 22,24 2 1 yes
34 2A; + A 18,23, 25,26, 31, 33 3 2 yes
35 A+ A 19,27, 28, 32,34 4 2 yes
36 A 29,35 5 3 yes
37 TA, 6 1 1 yes
38 6A, 7,37 2 2 no
39 DA, 8,24,38 3 2 no
40 (4A) 9,25,39 4 2 yes
41 (4A,)" 26, 33,39 4 2 yes
42 (3A1) 27,34,40,41 5 3 yes
43 (3A,)" 28,41 5 3 no
44 2A, 29,35,42,43 6 3 yes
45 Ay 36,44 7 4 yes
46 0 45 8 5 yes

H = D¢: H — Ay + Dg. Since Dy = Ay, Ag/H = {A; + D¢} is a singleton.

H = A, + Ds: H— Ay + Dg. Since A; = Dy, there is a unique A; + Dg > H, so

Ag/ m is a singleton.
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H = Ds: Since H — Eg, Dg, Ay + Ds, Ag/H is disconnected and by Lemma 2.24.
Thus, Ho(Ac/u, Q) # 0.

H = 3A1 + D4Z H — Al + Dﬁ. Write H as A1(1)~+ 1/\41(2) + A1(3) + D4. Then
H < A1(1> + D6, A1(2) + D6, Al(?)) + Dg. It follows HO(AG/HaQ) 7£ 0.

H =2A,+4+ Dy H — Dg, 3A, + Dy. By Corollary 5.7, H+ = A, so there exists a
unique K = 3A; + Dy > H. Hence, L € ¢(K) implies L > Dg, so L = Ay + Dg or Ds.
If L = Ay + Dg, then L contains the positive root A; L H, so K < L. If L = Dg, then
L < Ay + Dg and again, this A; + D¢ must contain K. Hence, (K, L) = A;(1) + D,
c(K) =0 and Ag/H is contractible.

H = A + Dy H — A+ Ds, 2A;, + D,. By Corollary 5.7, H+ = 2A,. So,
K =3A1+ D, > H is unique. Now, if L > A; + Ds, it follows L < A; + Dg. But the
complement of H in A;+Dg is 241,80 K < A1+ Dg and (K, L) < E7. If L > 2A;+ Dy,
then L contains a root perpendicular to H. So, K N L > H. It follows ¢(K) = () and
Ag /m is contractible.

H =D, H— D5, Ay + D4. By Theorem 5.5, j’:’l(Ag/H,Q) # 0, since rank Fr; >
rank Fg > rank D5 > rank D,.

H = Ag: H — A;. First, let Ay < H be fixed. If H < A7, then there is a unique A,
such that Ay < Ay + Ay < A7. Tt follows A7 = (As+ Ay, H). Hence, the H-subalgebra
Az is unique and Ag/y = {Ar} is a singleton.

H = (Al + A5)/Z Since H — E@, Al + Dﬁ, Ffo(Ag/H,Q) 7é 0 by Lemma 2.24.
H= (A1+A5)HI H— A1+D6, A2+A5. Again, ﬁo(Ag/H,Q) 7é 0 by Lemma 2.24.

H = AL H — Dg, (A; + As). By Corollary 5.7, H- = A;, so the H-subalgebra
K = (A; + A;) is unique. Hence, L € ¢(K) implies L > Dg > H, so L = A; + Dg
or Dg. As in the case H = 2A, + Dy, it follows K < L for L = A, + Dg and
(K,L) = Ay + Dg for L = Dg. Hence, ¢(K) = () and AG/H is contractible.

H = Ag H — Dg, (Al =+ A5)”. Since Ag < (Al + A5)” < A2 + A5, it follows
Ht = A, by Corollary 5.7 so K = Ay + A5 > H is unique. Furthermore, all H-
subalgebras of type (A; + As)” are contained in H + H+ = K. So, L € ¢(K) implies
L > D¢ > H,ie. L= A+ D6 or Dg. In the first case, L contains a positive root
Ay L Hyso KNL>A+ H> H. It follows that ¢(K) consists of H-subalgebras of
type Dg. Thus, AG /u is contractible by Corollary 5.7, since A E7/Dg 18 contractible.

H=A,+A;: H— A;, Ay + As. It follows ﬁo(Ag/H,@) =% 0 by Lemma 2.24.
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H = Al + A4I H — Al + D5, Aﬁh (Al + A5)/, (Al + A5)”, AQ + A4. Write
H = Ai(1) + Ay. Let Ky := Ay + As. Agyk, contains a O-cycle supported by facet
with Lb.s.
{L1 = A7, L2 - Ag + A5}

Now, let As5(1) = A, © A, (1) 2 AL and A5(2) = (A, + A5) © A, (1) = A”. Let
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Kl = Al(l) + A5(1) (Al + A5)/ < L1 and
Ky = Al(l) + A5(2) = (Al + A5)” < L.

It follows, K1, Ky < Ay(1) + A, (1)*" < Er, so Hi(Ag/m, Q) # 0.

H = A;: H — Ds, AL, A, Ay + A, Since rank E; > rank By > rank Dy >
rank Ay, it is Hi(Ag/m, Q) # 0.

H = Ay +2A3: H — Ay + Ds. Since Aj = Dg, there is a unique A, + Dg > H
and Ag/ g is a singleton.

H =2A3: H— Dg, A7, Ay +2A;. Hence, Hy(Ag i, Q) # 0 by Lemma 2.24.

~ [’:r = A + A2 + Agi H — Ag + A5, A + 3A3 By Lemma 2.24, it follows
HO(AG/HvQ) 7é 0.

H=Ay+ Ag: H— Ag, Ay + Ay, 245, A+ Ay + As. For Ko = Ay + Ay, Ay,
contains a O-cycle supported by facet with L.b.s.

{Ll = A7, L2 - AQ + A5}
Let

K= A3—|—A3<L1 and
Ky 2:A2+A3+A1<L2.

By considering the As-summand of H, it follows K, Ky < Az + Ay < FEy, so
HI(AG/HvQ) 7é 0.

H = 3A1 + A31 H— Al + D5, 3141 + D4, A1 + 2A3 By COI"OH&I"y 57, 3AJ‘ = D4,
so there is a unique K = 3A; + D, > H. Now, write H = A;(1) + A1(2) + A1(3) + As.
All minimal H-subalgebras but K are of type A;(k) + D5 or A;(k) 4+ 2A3 for some
1 < k < 3 and thus, all maximal H-subalgebras are of type A;(k)+ Dg. It follows that
all maximal H-subalgebras contain K and therefore, (K, L) < E; for all H-subalgebras
L. This shows ¢(K) = () and A(;/ m is contractible.
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H = (2A1 + Ag)/I H — D5, 2A1 + D4, (Al + A5)/, 2A3, 3A1 A—|— Ag. Let H =
Ai(1) + A1(2) + Az and Ko := A(1) + A5(1) = (Ay + A5)'. Then Ag/k, contains a
0-cycle supported by a facet with 1.b.s.

{Ll — Al(l) + D67 L2 - E@}
Let A5(2) := Fs © A1(2), so A5(2) # Eg © A1(1) = A5(1). It follows

K, = Al(l) + A1(2) + Dy < Li and
Kg = A1(2) + A5(2) = (Al + A5), < LQ.

Thus, (K1, K3) < A1(2) + A1(2)* < Er and Hi(Agyn. Q) # 0.

H = (2A1 + A3)”1 H — 2A1 + Dy, 3141 + A3l Al + A2 + A3 Let H = Al(l) +
Ai(2) + Az and Ko := A;(1) + A5 = (A1 + As5)". Ag/k, contains a non-trivial 0-cycle
supported by a facet with L.b.s.

{Ly = A1(1) + Dg, Ly = Ay + As}.
Let

K, = Al(]-) + A1(2) + Dy < Ly and
Ky = A2 + A1(2) + A3 < L.

Since Ky, Ky < A;(2) + A1(2)* < B, it follows H,(Ag/m, Q) # 0.

H= (A1 +A3)" H— A1+ Dy, A5, A1+ Ay, Ax+ Az, (2414 A3)', (241 + A3)”,.
Let H = Ay(1) + As and Ko := A;(1) + Ay. Ag/k, contains a 1-cycle supported by a
facet with Lb.s.

{L1=As+ Ay, Ly =A1(1)+ As5(1) = (A1 + As), Lz = A1(1)+ A5(2) = (A1 + 45)"}.

Furthermore, let A1(2) = A5(1) © Ag and A1(3) = A5(2) © Ag. Then A1(2), Al (3) 7é
A;(1) and

Kl = AQ +A3 < Ll,
Ky = Al(].) + A1(2) + A3 = (2A1 + A3)/ < L, and
K;:= Al(l) + Al(g) + Ag = (2141 + Ag)” < Ls.

It follows (K, Ky, K3) < A3z + A < E;. Hence, [:IQ(AG/H,Q) #0.
H = (Al + Ag)”: H — Al + D4, Ag, (2A1 + Ag)”. Let H = Al(l) + Ag and

K := A;(1) + Ay(1)* = A, + Dg. Let L be any H-subalgebra. L ¢ c¢(K). If
L>A;+Dyor L > (2A; + A3)”, then L contains a root perpendicular to A;(1), i.e.
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KNL>Hand L ¢ ¢(K). So, assume L > AY. If L > A then L > (A; + As)”
or L > Dg. In both cases, L contains a root perpendicular to H, so K N L > H. It
follows that ¢(K) consists of subroot systems of type AZ. But A, JAr is contractible,
SO is Ag/H

H = A3 H — Dy, Ay, (A1 + A3), ({11 + A3)”. Since rank F; > rank Eg >
rank D5 > rank A, > rank As, it follows Hy(Ag/u, Q) # 0 by Theorem 5.5.

H =3A,: H— FEg, Ay + As. Thus, by Lemma 2.24, it is ﬁo(Ag/H,Q) £ 0.

H = Al + 2A22 H — (Al + A5>/7 (A1 + A5)H, A2 + A4, Al + Ag + A37 3A2
Write H = A1(1) + A2(2) + A2(3) and let Ky := 345 = As(1) + A2(2) + A2(3), i.e.

A

Ai(1) < Ay(1). Agym contains a 0-cycle supported by facet with Lb.s.
{Ll — Ag(l) + A5(1), L2 — E(,}
Now, let A5(2) := Eg © A;(1) and let

K, = Al(l) + A5(1) = (Al + A5)” < L17
1) + A5(2) = (Al -+ A5)/ < Lo.

3
|
~

It follows Kl; KQ < A1<1) + Al(l)l < E7 and Hl(AG/H;Q) ?é 0.

H = 2A21 H — A/5, Ag, AQ + A3, Al -i— 2A2 Let H = AQ(].) + AQ(Q) If
Ko := A3(1) + Ax(2), i.e. Ay(1) < Az(1), then Ag/k, contains a 1-cycle supported by
a facet with L.b.s.

{L1 = A2(2) + A47 LQ == Ag(].) + A3(2)7 L3 = Ag(].) + A2(2) + A1<1)}
with A2(2) < A3(2) NOW, let A1(2) = A4 e AQ(].) and

K, = AQ(].) + AQ(Q) + A1(2) < Ll,
Ky = Ag(l) + A3(2) < Ly and
K3 = AQ(].) =+ A2(2) + Al(]-) < L3.

ThU.S, <K1,K2,K3> < Ag(l) + Ag(l)l < E7 and HQ(A(;/H,Q) ?é 0.
H =3A1+Ay H — Aj+As+ Az, 3A1+As. Let H = Ay(1)+A1(2)+A1(3)+Ax(1)

and Koy = A;(1) + As(1) + Ax(1), i.e. A1(2), A1(3) < A3(1). Ag/k, contains a 0-cycle
supported by a facet with 1.b.s.

{L1 == A5 + AQ(].), Lg == A1(1> + Ag(].) + A3(2)},
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i.e. Ag(l) < A3(2) NOW, let A5 © Al (2) = A3(3) and L, & Al(]-) + Al (3) + Ag, so let

K, = A1(2) + A3(3> + A2(].) < Ly and
Ky = Ay(1) + Ay (2) + Ay(3) + As(2) < Lo,

It follows (K, Ky) < A1(2) + A1(2)+ < Eg, so Hi(Ag/u, Q) # 0.

H =2A1+Ay H — A+Ay, As+A3, (2A14+43), (2A1+43)", A1+2A5, 341+ A,.
Let H = A(1) + Ai(2) + Az and Ky := A;(1) + Az + Ay. Ag/k, contains a 1-cycle
supported by a facet with L.b.s.

{L1 == ?)AQ, LQ == Al(].) —|- A5(1) = (Al —|— 145)/7 L3 = A1<1) —|— A5(2) = (Al + A5)”}.

Note, that for i € {1,2}, A5(i) © A1(2) = A;. So, denote this orthogonal complement

K, = A1(2) + Ay + Ay < Ll,
Ky = A1(1) + A1(2) + As(1) & (2A; + A3)' < Ly and
Ky = Ay(1) + 41(2) + A3(2) = (241 + A3)" < Ls.

So, (K1, Ko, K3)A1(2) + A1 (2)F < By and Hao(Ag/n, Q) # 0.

H=A4+Ay H— A4, (Al —|—:/43)1, (Al + Ag)”, 2A; + AQ, 2A2 As mentioned
above, this case in an example for Hy(Ag/u, Q) # 0 for more than one k.

On one hand, .FIQ(AG/H, Q) # 0, since rank F; > rank Fg > rank D5 > rank A, >
rank A; + As. On the other hand, let H = A;(1) + A»(2) and consider Ky := 24, =
Ay(1) + A5(2), so Ai(1) < As(1). Ag/k, contains a 2-cycle supported by a facet with
Lb.s.

{L1 ].) —|- A2(2)7 L2 = Az(l) + A3<2)7

As(
As(1) + Ax(2) + A1(2), Ly = Ax(1) + Ax(2) + A1(3)}
with A;1(2), A1(3) # Ai(1). If A;(4) := A3(1) © Ay(1), then

(
Ki= Ai(1) + Ay(4) + Ay(2) < Ly,
Ky = Ay(1) + A3(2) < Lo,
K= Ai(1) + As(2) + A, (2) < Ly and
Ki=Ai(1) + As(2) + Ay (3) < Ly

Since <K1,K2,K3,K4> S Al(l) + A](].)J' < Eg, it follows ﬁg(Ag/H,Q) 7é 0.

H = Ay: H— A3, A+ Ay, Tt is ﬁg(Ag/th) £ 0, since rank F; > rank Fg >
rank D5 > rank A; > rank As > rank A,.
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H =7A,: H— 3A; + D,. Write H = Al(l) + ...+ Ay (7) such that Ky :=
Ai(1)+A1(2) +A1(3)+ D4(1) is an H-subalgebra. Ag/k, contains a 0-cycle supported
by a facet with Lb.s.

{L1 = Ai(1) + Ds(1), Lo = Ai(2) + Dg(1)}.

Now, there exists a p € {5,6,7} and a D,(2) such that A,(4)+ A, (p)+ D4(2) < Dg(1).
To see this, first note, that the T-subalgebras of type 2A; of Dg are not W(Dsg)-
conjugate, see [Dyn57, p. 146]. In fact, there are two orbits represented by so0(4) =
t® (mfy, ®my,) and u(2)? = t® (m, @ my,). In the first case, Dg © 24; = D, and in
the second case, Dg © 2A; = 4A;.

Now, A;(2) + A1(3) < Dg(1) represents a subalgebra of type so(4). Furthermore,
Ai(2)+...+A(7) = 6A; < Dg(1) represents a subalgebra of type so(4)3. Hence, there
is a (unique) p € {5,6, 7} such that A;(4) + A;(p) < De(1) represents a subalgebra of
type so(4).

Similarly, there exists a ¢ € {5,6,7} and a D4(3) such that A;(4)+A;(q)+D4(3) <
Dg(2). So, let

=
|
=

1)+ A1(4) + Ay(p) + D4(2) < Ly, and
Ky = A1(2) + A1<4) + Al(Q) + D4<3) < Ls.

ThU.S, <K1,K2> < A1(4) + A1(4)J' < E7, SO ﬁl(Ag/}bQ) 7é 0.

H = 6A;: H — 2A, + Dy, TA;. Tt is HX = A, by Corollary 5.7, so there
exists a unique K = 7A; > H. Now, let L be any H-subalgebra. If L € ¢(K),
then L > 2A, + D,. Thus, L must be contained in a maximal subroot system of type
A1+ Dg. But A1+ DgS6A; = Ay, i.e. A1+ Dg contains the positive root perpendicular
to H and K < A; + Dg. Hence, ¢(K) = () and AG/H is contractible.

H =5A;: H — A+ Dy, 3A, + As, 6A,. Since H+ = 2A, by Corollary 5.7,
K = 7TA; > H is unique. Let L be any H-subalgebra. If L > Ay + Dy or L >
3A; + As, then L must be contained in a maximal subroot system of type A; + Dg.
But A; + Ds © 5A; = 2A,, so K < A; + D¢ and hence, L ¢ ¢(K). Otherwise, if
L >6A;, then KNL>6A; > H. It follows ¢(K) = () and AG/H is contractible.

H = (4A1)/1 H— D4, 5A1, (2A1 + Ag)/. Let [:[ = Al(l) + A1(2) + A1(3) + A1(4)
and Ko := A;(1) + A1(2) + As(1) = (24, + A3)'. Ag/k, contains a 1-cycle supported
by a facet with L.b.s.

{Ly = Ay (1) + As(1) = (A + As), Ly = Ay(2) + A5(2) = (A, + As),
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Now, let A3(2) := A5(1) © A;(3). Then A;(2) < A3(2). In particular, A3(2) # As(1).
Similarly, A3(3) := A5(2) © A;(3) satisfies A;(1) < A3(3) # A3(1). Furthermore, let
A1(5) be any root contained in Dy and perpendicular to A;(3) + A;(4). Then

K= A;(1)+ Ai1(3) + A3(2) = (24, + A3)' < Ly,
K2 = A1(2) + A1(3) + A3(3) = (2A1 + Ag)l < L2 and
K; = H+A1<5) =54, < Ls

satisfy (K1, K, K3) A1 (3) + A1(3)* < Er. Thus, Hy(Ag/u, Q) # 0.

H=(4A1)" H — (2A1 + A3)", 3A1+ Ay, 5A1. Let H = Ay(1) + A1(2) + A1(3) +
Ai(4), Ko = Ai(1) + A1(2) + A1(3) + As. Ag/k, contains a 1-cycle supported by a
facet with Lb.s.

{L1 = A(1)+As(1)+ Az, Ly = A1(2)+A5(2)+As, Ly = Ar(1)+A4:(2)+A1(3)+A3(3)}.

Let A;(5) be any root contained in A3(3) and perpendicular to A;(4), i.e. A1(5) L H.
Let

K= A1) + A3(1) + Ai(4) = (241 + A3)" < Ly,
Ky = Ay(2) + A3(2) + A1 (4) = (241 + A3)" < Ly and
Kg =H + A1(5) = 514.1 < L3.

It follows (K, Ko, K3) Ay (4) + A (4)F < E; = Ay + D and Hy(Ag i, Q) # 0.

H = (3A4)): H — (A1 + A3), 2A1 + As, , (4A7), (4Ay)". Let H = Ai(1) +
A1<2) + Al(g) and KO = Al(]_) + A1(2) + AQ(S) with A1(3) < A2(3) AG’/K@ contains
a 2-cycle supported by a facet with L.b.s.

{Ly = A1(1) + As(2) + A5(3), Lo = A1(2) + Ax(1) + Ay(3),

Ly=A:1(1) + A1(2) + A3(1) = (2A1 + A3),
Ly = A1(1) + A1(2) + A3(2) = (24, + A3)"},

where A;(1) < Ay(1) and A;(2) < A5(2). Furthermore, let A;(4) := A3(1) & A;1(3)
and A;(5) := A3(2) © A1(3). It follows
Ky :=A;(1)+ As(2) + A1(3) < Ly,

KQ = Ag(l) + A1< ) ( ) < LQ,
K322H+A1()N(4A)<Lgand
Ky =H+ A1(5) = (4141)” < Ly.

Thus, (Ky, Ky, K3, Ky) < A1(3) + A1(3)* < By and Hs(Ag/u, Q) # 0.
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H = (3A)": H — (A1 + A3)", (4A1)". Let H = A1(1) + A1(2) + A1(3) and
K = A1) + Ay (1)t = A} + Dg and let L be any H-subalgebra. If L > (44;)", it
contains a root perpendicular to H. In particular, KNL > H. So, let L > (A; + A3)”.
If L > (A;+A3)" then L > A+ Dy, (As)” or (2A;+ A3)”. Hence, rank(L& A;(1)) >
3. In particular, L contains a root A;(4) # Ai(2), A:1(3), A:i(4) L Ay(1). Thus,
KNL> H. It follows that ¢(K) consists of subroot systems of type (A; + A3)” and
AG/ i is contractible, since A g, /(A1+A) is contractible.

H = 241 H — A3, A+ Ay, (3A1), (3A1)". Since rank By > rank Eg >
rank D5 > rank A, > rank A3 > rank 24, it is H3(Ag/r, Q) # 0.

H = A;: H — Ay, 2A,. Tt follows ﬁ4(AG/H,@) # 0, since rank E7 > ... >
rank 24, > rank A;.

H =(: H— A,. As above, ﬁ5(Ag/H,Q) = 0, since rank E7 > ... > rank A; >
rank ().

5.6 Fjx

By Borel - de Siebenthal, the subroot systems of Fg are given up to W-conjugacy by
the following table, see [Dyn57, p. 149]. Note, that Theorem 5.5 is not applicable for
T-subalgebras of Eg, since every maximal subroot systems S < Fg has rank 8.
Moreover, the case G = Eg, H = T® is the only case where the non-contractibility
of Ag/H cannot be shown by Theorem 2.27. In fact, since every maximal subroot
system has rank 8, every maximal chain (&) > ... > &) of T-subalgebras has length
[ > 7. Suppose, Theorem 2.27 would be applicable to such a chain. Let &, ... ,E;H be
minimal T-subalgebras as in Theorem 2.27. Fori € {0,...,l+1} it is R(&) = {r;, —1;}
for a root r;, since the € are minimal. Now, let €, 0 < j <1 —1,1 < i < j+1,
be as in Theorem 2.27. The conditions of Theorem 2.27 imply € > (€7, ... E77) and
€> (e2, €9 for i > 1. Since (€,...,60") < egforall 0 < j <11, it follows

Ey ?é R(<E317 s 7E§+1>) = <R(E2+1)7 Tl—j+15 - - - ,’f’[+1> = <T07 R 777jj7 s 7rl+1>'

Moreover, (&, ... €1 < eg implies (ry,...,741) # Es and from £ # eg it follows
<T‘0,...,’I"l> 7é Eg. SO, <7ﬂ0,...,/f;€7...,7nl+1> 7£ Eg for all k € {0,,l+ 1} On the
other hand, (ro,...,r41) = Eg, since otherwise, (£,... €%1) < ¢z, But then, the

subcomplex NFi{o € Ag /g | mino > €} would be contractible by Corollary 2.4 and
the [-cycle 6 constructed in Theorem 2.26 would be a cycle of this subcomplex, hence,

a boundary. By [Kan01, p. 138], it follows

(ro,...,T141)z = ZEg and
Ty s Thy - T1g1)z 7# ZEg for all k.



86 CHAPTER 5. AG/H FOR G OF EXCEPTIONAL TYPE

But Theorem 1.1 of [Goo07] states, that each set of roots which generates the root
lattice contains a Z-basis of the root lattice. Since [ 4+ 1 > 8, there must exist at least
one k with (ro,..., 7%, ...,741)z = ZEg. This is a contradiction, so Theorem 2.27 is
not applicable. However, at the end of this section, the reduced Euler characteristic
of A gy/s Will computed to prove the non-contractibility.

Table 5.6: G = Eg

No. H maximally dim Ag /H | MG/H Ac /H 1S
contained in non-contractible
1 A+ E; — -1 -1 yes
2 E- 1 0 0 no
3 Ay + Eg — -1 -1 yes
4 A1+ Eg 1,3 0 0 yes
5 Es 2,4 1 1 no
6 Dy — —1 —1 yes
7 D 6 0 0 no
8 2A1 + Dg 1,6 0 0 yes
9 A + Dy 2,8 1 1 no
10 Dy 7,9 2 1 no
11 As + Ds 6 0 0 no
12 As + Dy 3,11 1 0 yes
13 24, + Dy 7,8,11 1 1 no
14 Ay + Ds 4,9,12,13 2 1 ves
15 Ds 5,10,14 3 2 no
16 2D, 6 0 0 yes
17 As+ Dy 7,11,16 1 1 no
18 Ay + Dy 12,17 2 1 yes
19 4A, + Dy 8,16 1 1 yes
20 3A1+ Dy 9,19 2 2 no
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No. H maximally dim Ag JH | MG/H Ag JH 18
contained in non-contractible
21 2A, 4+ Dy 10,13,17,20 3 2 no
22 A1+ Dy 14,18, 21 4 2 yes
23 Dy 15,22 5 3 no
24 Ag — -1 -1 yes
25 A+ Aq 1 0 0 no
26 AL 6,24 0 0 yes
27 Al 2,6,25 1 0 yes
28 Ay + Ag 24,25 1 0 yes
29 Ag 7,26,27,28 2 1 yes
30 | A+ As + As 1,3 0 0 yes
31 As + As 2,24,30 1 0 yes
32 2A; + As 4,8,25,30 1 1 yes
33 (A1 + As) 9,26, 28,31, 32 2 1 yes
34 (A1 + A5)” 5,9,27,32 2 1 yes
35 As 10,29, 33,34 3 2 yes
36 2A, — -1 -1 yes
37 Az + Ay 11,24, 36 1 0 yes
38 | Av+A+ A 25,30, 36 1 0 yes
39 As + Ay 12,26,27,31,37, 38 2 1 yes
40 2A, + Ay 13,28,32,37, 38 2 1 yes
41 A+ Ay 14,29, 33, 34, 39, 40 3 2 yes
42 Ay 15,35,41 4 3 yes
43 2A; 4+ 2A3 8,11 1 1 no
44 A+ 243 9,25,43 2 1 no
45 (243) 17,26, 37 2 1 yes
46 (243)" 10,17,27,44 3 1 yes
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No. H maximally dim Ag/H ma/H AG/H is
contained in non-contractible
AT | 2A; + Ay + As 12, 30,43 2 1 yes
48 | A1+ As+ As | 28,31,37,38,44,47 3 1 yes
49 A+ As 18,29, 39,45, 46, 48 4 2 yes
50 4A; + Az 13,17,19,43 2 2 no
51 3A; + As 14,20, 32,44, 47,50 3 2 yes
52 (2A; + A3)" | 21,33,40,45,48,51 4 2 yes
53 (2A1 + A3)” 15,21, 34,46, 51 4 2 yes
54 A+ As 22,35,41,49,52,53 5 3 yes
55 As 23,42, 54 6 4 yes
56 4A, 3 0 0 yes
57 A+ 3A, 4,30, 56 1 1 yes
58 3A, 5,31,57 2 1 yes
59 2A1 + 24, 32,38,47,57 3 1 yes
60 A +2A, 33,34, 39,48, 58,59 4 2 yes
61 24, 35,49, 60 5 3 yes
62 4A; + As 18,47, 50 3 2 yes
63 3A; + Ay 40, 48,51, 59,62 4 2 yes
64 2A; + A,y 41,49, 52,53, 60,63 5 3 yes
65 A+ A 42,54, 61,64 6 4 yes
66 As 55,65 7 5 yes
67 8A; 19 2 2 yes
68 TA, 20,67 3 3 no
69 64, 50,21, 68 4 3 no
70 5A; 22,51,62,69 5 3 yes
71 (4A,) 52,63, 70 6 3 yes
72 (4A1)" 23,53,70 6 3 yes
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No. H maximally dim Ag JH | MG/H Ag JH 18
contained in non-contractible

73 3A; 54,64,71,72 7 4 yes

74 24, 55,65, 73 8 5 yes

75 Ay 66, 74 9 6 yes

76 0 75 10 7 yes

 H=FE;: H— A+ E;. Since E+ = A, there exists a unique A; 1 H. Hence,
Aq/u = {A + Ez} is a singleton.

H = Al -+ E6Z Since H — Al + E7, A2 + Eﬁ, it follows F[O(AG/H,Q) 7é 0 by
Lemma 2.24.

H=F;: H— E7, A1 + Fs. Since H' = AQ, K = AQ + Eg > H is unique. Let
L be any H-subalgebra. If L > A; + Eg, it contains a root perpendicular to H and
KNL>H. So,let L > E; ie. L = E; or Ay + E;. In the second case, it follows
K N L > H as above. Hence, ¢(K) consists of Efs and by Corollary 2.19, AG/H is

contractible since Ap, /B, 18 contractible.

H = D7 H— Dg. Fixa Dy < H and let K := Dy+ Di =2D,. If Dy < H < Dg,
then K < Dg, since Dg © Dy = Djy. ATherefore, (H,K) = Ds. In particular, the
subroot system Dg > H is unique and Ag,y is a singleton.

H= 2A1 + DGZ H — Al + E7, Dg. ThUS, FIQ(AG/H,Q) 7& 0 by Lemma 2.24.

H = A, + Dg: H — E7, 2A; + Dg. Since H+ = A, there exists a unique K :=
2A1+ D¢ > H. L € ¢(K) implies L > E7,s0 L= FE;or L = A+ E;. If L = A + Ex,
it contains H+, so K < L. If L = Fy, it follows (K, L) = (H+ L) = A, + E;. Thus,
¢(K)=0and AG/H is contractible.

H = Dg: H — D;, A, + Dg. Since H = 2A,, there exists a unique K :=
2A1+Dg > H. Hence, if L is an H-subalgebra with L. > A;+ Dg, then KNL > A1+ Dy
and L ¢ c¢(K). If L > D, then L is contained in a subroot system of type Ds. But
Dg&Dg = 2A4, s0 K < Dg. Tt follows (K, L) < Dg, ¢(K) = () and Ag/H is contractible.

H = A3+ Ds: H— Dg. Fixa Dy < H and let K := Dy + D = 2D,. Asil}the
case H = D7, Dy < H < Dg implies K < Dg and (H, K) = Dy is unique. Thus, Ag/u
is a singleton.

_ H=A+4+Ds: H— Ay + Eg, A3+ Ds: Since Ay + E is maximal, it follows
Hy(A¢/u, Q) # 0 by Lemma 2.24.
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H = 2A1 + D5Z H — D7, 2141 + D67 Ag + D5. Since QA% = DGv there exists
a unique K := 2A; + Dg > H. Now, L € ¢(K) implies L > A3+ D5 or L > D+,
so L = A3 + D5, D; or Dg. If L = Dg, then L must contain K, so L ¢ c¢(K). If
L = A3+ Ds or D7 it must be contained in a subroot system of type Dg. Therefore,
(K, L) = Dg. Hence, ¢(K) =0 and AG/H is contractible.

H = A1 —|—D5I H— A1 —|:E6, Al +D6, AQ +D5, 2A1 +D5 Write H = Al(].) +D5
and let Ko := A;(1) + Es. Ag/k, contains a O-cycle supported by a facet with L.b.s.

{Ll == Ag —|— E(;, LQ == A1(1> —|— E7}
Let A;(2) := F7 © Ds. Then

K, = A2+D5 < L; and
Ky = Al(l) + Al(Q) 4+ D5 < Ls.

Since (K, Ky) < D5 + Di < Eg, it follows .Hl(Ag/H,Q) £ 0.

H = Ds: H — FEg, Dg, A1 + Ds. It is H- = As, so there exists a unique
K := A3+ D5 > H. Let L be any H-subalgebra. This implies L < Dg except for the
cases L = E@, Al + E@, AQ + Eﬁ, E7 and A] + E7.

First, let L < Dg. By Corollary 5.7, it is Dg & Ds = As. Hence, K < Dg, so
(K,L) < Dg. If L = A1+ Egs, Ay + Eg or Ay + E7, then H < Eg (H < E7) and L
contains roots perpendicular to H. Thus, KNL > H. If L = E7, then L& H = A
and again, K N L > H. It follows that ¢(K) consists of subroot systems of type Fj.
But A Es/Ee 18 contractible. Thus, AG /u is contractible.

H =2D,: H — Dg. Write H as Dy(1) + D4(2). By Lemma 2.24, it remains to
show that there exist at least two H-subalgebras of type Dg containing H. For this
purpose, fix a H < Dg(1) and fix a 2A4;(1) < Dy(1) < H < Dg(1).

The T-subalgebras of type 2A4; of Dg(1) split into two W (Ds)-orbits represented by
50(4) =t (mfydmy,) and u(2)? = tP (m,&my,). In the first case, Dg(1) ©2A; = Dy
and in the second case, Dg(1) © 2A; = 24, + D,.

Morecover, D4(1) < Dg(1) contains both, subroot systems 2A4; of type so(4) and
subroot systems 2A; of type u(2)%. So, without loss of generality, assume that Dg(1)©
2A,(1) = Dg. Moreover, let 24,(2) < Dy(1) < Dg(1) be another subroot system
satisfying Dg(1) © 2A4,(2) = 2A; + Dy. Now, there exists a w € W(FEjy) such that

w(H) = H, (5.2)
w(24, (1)) = 24;(2). 5.3)

More precisely, the subroot systems 2A4; of Eg are all W(FEjg)-conjugate, so there
exists a 7 € W(FEg) with 7(24;(1)) = 2A;(2). Thus, D4(2) and 7(D4(2)) are both
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perpendicular to 24;(2), i.e. Dy4(2), 7(D4(2)) < Es ©2A,(2) = Dg. Since all subroot
systems Dy < Dg are conjugate under W (Dg), there exists € W(Dg) C W(Ejy)
satisfying po7(Dy(2)) = D4(2). This implies pro 7(Dy(1)) = Dy(1), so po7(H) = H.
Furthermore, p € W(Dg) = W(2A4,(2)*) leaves 2A4,(2) invariant. Hence, w := po 7
satisfies (5.2) and (5.3).

Now, H < Dg(1) and H < w(Dg(1)) =: Ds(2) by (5.2). Furthermore, Dg(1) ©
implies Dg(1) # Dg(2) and therefore Hy(Ag s, Q) # 0.

H = As+Dy: H— Dy, A3+ Ds, 2D,: Since Di, there is a unique K := 2Dy > H.
Each H-subalgebra L must be contained in a subroot system of type Dg. But this
implies K < L since Dg © Dy = D,. Hence, (K, L) < Dg, so ¢(K) = () and Ag/H is
contractible.

H=Ay+ Dy H— Ay + D5, Az + Dy. Let Ko := Ay + Ds(1). Ag/x, contains a
0-cycle supported by a facet with 1.b.s.

{Ll = AQ + E6, L2 = Ag + D5(1)}

As shown above, the complex Ag, /D, is disconnected, i.e. there exist at least two
subroot systems of type Dy satisfying Dy < D5 < Eg. So, let

K, = AQ + D5(2) < Ly and
Ky = A3 + Dy < L2,

with Ds5(1) # Ds(2). Now, let L := Dg be a subroot system of type Dg satisfying
K, < L. In fact, L is unique, since by Corollary 5.7, there exists a unique 2D, > H
and L must contain this 2D4. Hence, L = (2D, K1). Moreover, Ky < 2D, by
Corollary 5.7. It follows (K, K3) < L < Fg and ﬁl(Ag/H7@) #0.

H =4A1+Dy: H — 2A1+Dg, 2Dy. Let H = A1(1)+A1(2)+A1(3)+A1(4)+Dy(1)
and let K := 2D, = Dy(1) + D4(2).

As described in the case “H = 2D,”, the subroot systems 2A; of Dg are either of
type s0(4) or type u(2)2. Since there is a unique root A; L Dy such that A;(1)+ A; is
of type s0(4), one may assume that A;(1) + A;(2) is of type so(4) and A;(1) + A1(3)
is of type u(2)?. Hence, if a subroot system Dg > H is given, one may assume
Dge (A1(1) + A1(2)) =2 Dg and Dg & (A1(1) + A1(3)) = 2A; + Dy. For the case “H =
2D,", it was shown that there exists w € W (Es) such that w(Dy(i)) = D4(i), i = 1,2
and w(A;(1)+A41(2)) = A1(1)+ A1 (3). Furthermore, it was shown that AG/KO contains
a 0-cycle supported by a facet with 1.b.s.

{Ll = Dg, L2 = ’UJ(Dg)}
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It follows w(Dg) & (A1(1) + A1(3)) = w(Ds & (A1(1) + A1(2))) = Dg. Hence,

K, = Al(]-) + A1(2) + D()(]_) < Iy and
Ky = Al(l) + Al(g) + D6(2) < Lo.

Since <K1,K2> S Al(l) + A1(1>J' < Eg, it follows ﬁl(Ag/H,@) ?é 0.

H = 3A, 4+ Dy H — A, + Dg, 44, + D4. Since H- = A, there is a unique
K :=4A, + Dy > H. So, let L. be any H-subalgebra with L > A; + Dg. This implies
L <Dgor L <A+ E;. First, let L < Dg. By Corollary 5.7, it is Dg © H = A;. So,
K < Dg and (K, L) < Ds. Now, let L < A; + E,. If H < E7, the A;-summand of
A1+ FE7 is perpendicular to H and (K, L) < Aj+FE;. If H £ E, then HNE; = 2A1+ Dy
and by Corollary 5.7, E;©(2A;+ Dy4) = A;. Again, this A;-summand is perpendicular
to H and (K, L) < A; + E7. It follows ¢(K) = () and AG/H is contractible.

H =2A,+ Dy H— Dg, 2A, + D5, A3+ Dy, 3A, + Dy4. Since H+ = 2A,, there
exists a unique K := 4A4; + Dy > H. Let L be any H-subalgebra. Then L < Dg or
Aj 4+ E7 since these are the only maximal subroot systems of Eg containing H.

First, let L < Dg. Again, the 2A;-summand is either of type so(4) or type u(2)%.
Hence, a subgroup of SO(16) with corresponding root system H = H is either of type
SO(8)SO(4)SO(2)? or type SO(8)U(2)%. But in both cases, Ds © H = 24;. So, if
L < Dg, then K < Dg and (K, L) < Dsg.

Now, let L < Ay + E;. If H < FE;, then £, © H = A; by Corollary 5.7, so
(Al +E7) @H = 2A1 IftH 7( E7, then HﬂE7 = Al +D4, E7@ (Al +D4) = 2A1 and
this 2A; is perpendicular to H. In both cases, K < A; + E;, so (K, L) < Ay + E7.
This shows ¢(K) = () and Ag /u is contractible.

H = Al + Dy H — A1A+ D5, AQ + D4, 2A1 + Dy Let H = Al(]-) + D, and
Ky := A:(1) + D5(1). Then Ag/k, contains a 1-cycle supported by a facet with Lb.s.

{L1 = A1) + Bg, Ly = Ay + Ds(1), Lz = A:1(1) + A1(2) + Ds(1)}.

Since A, /p, is disconnected, there exists a subroot system Dy < D5(2) < Eg with
D5<].) 7é D5<2) SO, let

K, = A1<1) + D5(2) < L],
Ky = AQ + D4y < Lo and
Kg = A1<1) + A1(2) + Dy < L3.

Now, Ky, K3 < D, + Di = 2D,. Furthermore, let L be a Kj-subalgebra of type
Dg. Since Dg © Dy = Dy fmdA H < L, it follows Dy + Dy < L. In summary,
(K1, Ky, K3) < L < Eg and Hy(Ag/, Q) # 0.
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H = Dy: H— D5, Ay + Dy. Since H- = Dy, there is a unique K := 2D, > H.
Now, let L be any H-subalgebra. Then L < Dg except for the cases L = Fg, A +
Es, Ao+ FEs, Eror Aj+FE;. If L < Dg, then this Dg also contains K and (K, L) < Ds.
If L=A,+ Eg, Ay + Eg or A; + E7, then L contains a root perpendicular to H and
therefore, K N L > H. The same holds true for the case L = Fy, since E; 6 D, = 3A;
by Corollary 5.7. It follows that ¢(K’) consists of L-subalgebras of type Fj.

Note, that Corollary 2.19 is not applicable here, since Ejg is not a minimal H-
subalgebra. However, by Corollary 2.18, it follows

Ag/H ~ NEe>H AEg/Eﬁ * AE‘g/D4 * SO.
But AE8 /E, 18 contractible and so is Ag/ H-

H = A+ A;: H— A, + E;. Since Aj = Fy, there exists a unique A, + E7 > H
and Ag/ g is a singleton.

H = AL: H— Dg, As. By Lemma 2.24, it follows ﬁo(Ag/H,@) #0.

H = A" H — F;, Ds, A+ A;. Since Dy is maximal, it follows I:Ig(Ag/H, Q) #0
by Lemma 2.24.

H=A +As: H— Ag, A+ A;. Tt is ﬁO(Ag/H,Q) # 0, since Ag is maximal.

H = Ag: H— Dy, Ay A% Ay + Ag. Let Ky := AL Ag)k, contains a 0-cycle
supported by a facet with l.b.s.

{L1 = Dg, Ly = Ag}.
Now, let

K, := A7 < Ly and
K2 = Al —I—Ag < LQ.

By Corollary 5.7, A7 = A, so there is a unique root A;(1) perpendicular to H,
so Ky = Ay(1) + Ag. Moreover, K; = A7 < Ay + A;. But this A;-summand is also
perpendicular to H, hence K, < A;(1)+Az. Tt follows (K, K3) < A (1)+A; (1) < Eg
and H1<Ag/H7Q) 75 0.

H= Al + A2 + A5Z H— Al + E7, AQ + E67 SO Ho(Ag/H, Q) 7é 0 by Lemma 2.24.

H=A+As: H— Ag, A7, A + Ay + As: As above, .F[()(Ag/hh(@) = 0 since Ag

is maximal.
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H = 2A1—|—A5Z H — A1—|—E6, 2A1+D6, A1+A7, A1+A2—|—A5Z Let H =
Ay(1) + Ay (2) + A5 and Kg := Ai(1) + Es. Ak, contains a 0-cycle supported by a
facet with Lb.s.

{Ll = Ag + E(;, LQ == A1(1> + E7}

Let D¢ := E; © A;(2). Then

K, = A2 + A1(2) +A5 < L and
Ky = Al(l) + A1(2) + D6 < Lo.

Since (K, Kp) < A1(2) + A;(2)* < Eg, it follows f[l(AG/H,Q) # 0.

H - (A1+A5)/I HA—> A1+D6, A/7, A1+A6, A2+A5, 2A1+A5 Let H - A1(1)+A5
and K, := A%. Then Ag/k, contains a 0-cycle supported by a facet with 1.b.s.

{Ly = Ds, Ly = Ag}.
Let

K, = Al(l) + DG < L; and
Ky = Al(l) + A(; < Ls.

It follows <K1, KQ) S Al(]_) + A1(1>J_ < Eg and ]:Il(Ag/H,@) 7é 0.

H = (AAl + A5)HZ H — EG, Al + DG, A/7/, 2A1 + A5. Let H = A1<1) + A5 and
Ko := A7. Aq/k, contains a 0-cycle supported by a facet with 1.b.s.

{L1= Ds, Ly = Ai(2) + Az},
So, let

K, = A1<1) + D6 < Iy and
Ky = A1<].) + A1(2) + A5 < Ls.

It follows (K7, Kp) < A1) + A;(1)* < Es and therefore, lffl(AGv/H,Q) # 0.

H = As: H— Dg, Ag, (A1 + As)', (A1 + A5)". Let Ky := As. Ag/KO contains a
1-cycle supported by a facet with L.b.s.

{Ll = A/7, L2 = A/7/, L3 = Al(l) -+ A@}
Since A7 © As = A;, there exist roots A;(2) and A;(3) such that

K, = A1(2) + A5 = (Al + A5)/ < Ll,
Ky = Al(g) + A5 = (Al + A5)” < L, and
K3 = Al(l) + A = (Al + A5)/ < Ls.
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Hence, <K1, K, K3> < A5 + Aé‘ < FEg and gg(Ag/H,@) 7§ 0.
H= A3+ Ay H— Ag, 244, Az + Ds, 50 Ho(Ag/a, Q) # 0 by Lemma 2.24.

~1':I = A1 + A2 -+ A4Z H — A1 + A7, A1 + Ag + A5, 2A41 Since 2A4 is maximal, it
is Ho(Ag/m, Q) # 0 by Lemma 2.24.

H = A2—|—A4Z H — A2_A|—D5’ A,7, A/7/, A2+A5, A3+A4, A1+A2+A4. Let
H = Ay(1)+ Ay, Ko := Al Ag/k, contains a 0-cycle supported by a facet with L.b.s.

{Ll = Dg, L2 = Ag}
Since Dg S) A2 = D5 and Ag o AQ = A5, let

K, = AQ(].) + D5 < L and
Ky = AQ(l) —|—A5 < Ls.

Then (K7, Ko) < As(1) + Ay(1)* < Eg. Tt follows Hy(Ag/u, Q) # 0.

H = 2A1 + A4Z H — 2141 + D5, Al + AG, Az + A5, 2f41 + A5, A3 + A4. Let
H = Ay(1) + A (2) + Ay and Ky := A;(1) + Ag(1). Then Ag/k, contains a 0-cycle
supported by a facet with 1.b.s.

{Ll - Ag, L2 - Al(l) + A7}
So, let

K, = A](Q) -+ A@(Q) < Ly and
Ky = Al(l) + A1(2) + A5 < Lo.

It follows (K7, Ka) < A1(2) + Ay(2)+ < Es and Hy(Ag/m, Q) # 0.

H=A1+A;: H— A+ D5, As, (A1 +A45), (A1 +A45)", As+ Ay, 241+ Ay Let
H = A(1) + Ay and Ko := As. Ag/k, contains a 1-cycle supported by a facet with
L.b.s.
{Ll = A/7, L2 - A/7/, L3 = A1(2) + Aﬁ}

Let Ag(l) = AI7 o A4 and AQ(Q) = AI7/ S, A4. Then

K, = AQ(l) + A4 < Ll7
Ky = A2(2) + A4 < Ly and
Kg = Al(l) + A1<2) + A4 < L3.

So, (K1, Ky, K3) < Ay + A} < Es and I:IQ(AG/HaQ> # 0.
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H = Ay H — D5, As, A + Ay, Let Ky := As. Ag/KO contains a 2-cycle
supported by a facet with L.b.s.

{Ly = Ag, Ly =Ai(1) + As = (A, + 45)’,
Ly=A:2)+ A5 = (A1 + As),7 Ly=A:1(3)+ A5 = (A1 + A5)”}-

Let A1(4) := Ag © H and

Ky :=A1(4)+ Ay < Ly,
Ky = Ay(1) + Ay < Lo,
K3 :=A1(2)+ Ay < L3 and
Ky =A3)+ A< Ly

Then (Ky, Ky, K3, K3) < Ay + Af and Hy(Ag/m,Q) # 0.

H = 2A; +2A3: H — 2A, + Dg, Az + Ds. Since 247 = Dg by Corollary 5.7,
K :=2A;+ Dg > H is unique. Hence, L € ¢(K) implies L > A3+ D5, so L = A3+ Ds
or Dg. If L =Dg, then K < L and L ¢ ¢(K). If L = A3+ D;, then L is contained in
some Dg and (K, L) = Dg. Thus, ¢(K) = () and AG/H is contractible.

H = Al +2A32 H — A1 + DG, A1 4‘1477 2141 —|—2A3 Since HJ' = Al, K =
2A; +2A3 > H is unqiue. Let L be any H-subalgebra. Then L < A;+ E; or L < Dsg.
First, suppose L < A; + E7;. Then A; + E; contains a root perpendicular to H and
(K,L) < Ay + E;. In fact, if H < FE7, then the Aj-summand of A; + E; satisfies
Ay L H. If H < E;, then 2A3 < FEy, E7 © 2A3 = A; and this root is perpendicular
to H. Now, let L < Dg. By Corollary 5.7, it is Dg © H = A;. Hence, Dy also
contains a root perpendicular to H. It follows (K, L) < Dg, so ¢(K) = () and Ag/ o is
contractible.

R H = (2143)/2 H — Ag + .D47 A/7, A3 + A4. Let H = Ag(l) + A3(2) and KO = A,7
Ag/k, contains a 0-cycle supported by a facet with L.b.s.

{Ly = Ds, Ly = Ag}.
Now, let

K, = Ag(].) + Dy < L; and
Ky = A3(1) + Ay < Lo.

Since (K1, Ky) < Ag(1) + A3(1)* < By, it is H1(Agm, Q) # 0.

H = (243)”2 H — DG: A3 + D4, A/7/, A1 + 2A3 Let H = Ag(l) + A3(2) and
Ky := A7. Aq/k, contains a 0-cycle supported by a facet with 1.b.s.

{Ly = Dg, Ly =A; + Az}.
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So, let

K, = Ag(]_) + Dy < Ly and
KQ = Al + Ag(l) + A3(2> < LQ.

It follows (K7, Ko) < As(1) + A3(1)* < Eg and H(Ag/m, Q) # 0.

H = 2A1 —|—A2 —|—A32 H — Ag + D5, Al —|—AA2 —|—A5, 2A1 —|—2A3 Tet H =
Ai(1) 4+ A1(2) + Ay + A3(1) and Ko := Ay + D5. Ag/k, contains a 0-cycle supported
by a facet with L.b.s.

{Ly = Ay + Es, Lo = A3(2) + D5}.
Let A; := Eg © A;(1). Then
Ky :=Ay+ A(1) + As < L, and
Ky = Ay (1) + A (2) + As(1) + A3(2) < Lo.
Thus, (K1, Ko) < Ay(1) + A (1)* < Es and H,(Ag/, Q) # 0.

H=A1+ Ay + Az H— A1+ Ag, Ao+ As, Az+ Ay, Ay + Ag + Ay, 241 + Ay +
As, A1 +2A3. Let Ko := A;+ Ag. Agk, contains a 0-cycle supported by a facet with
L.b.s.

{L1 = Ag, L2 - Al + A7}

Let

Kl = A2—|—A5<L1 and
Ky Z:A1+A2+A4<L2.

Hence, (K, Ky) < Ay + Ay < Fg and H,(Ag/u,Q) # 0.

H = A2 + A31A H — AG; AQ + D4, A2 + A4, (2143)/, (2143)”, Al + A2 + A3 Let
Ky := Ag¢. Then Ag/g, contains a 1-cycle supported by a facet with 1.b.s.

{Ll = A'/?, L2 = A{YI, L3 - Al + A@}
Let Ayg(1) := AL © Ay and Ay(2) := A7 S Ay. Then

K, = AQ + A4(1) < L17
Ky = AQ + A4(2) < Ly and
K; 2:A1+A2+A3 < Ls.

Thus, (K1, Ky, K3) < Ay + Ay < Eg and FIQ(AG/H)Q) # 0.
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H= 4A1 + Agi H— 2A1 + Ds, Ag + Dy, 4A1 + Dy, 2A1 + 2143 Since 4Af‘ = Dy,
there exists a unique K := 44, + Dy > H. Let L be any H-subalgebra with L >
2A1 + D57 A3 + D4 or 2141 + 2A3 Then L S Dg or L S Al + E7.

First, suppose L < Dg. A subgroup of SO(16) with corresponding root system
H =~ H, is cither of type SO(6)SO(4)2S0(2) or U(4)SO(4)%. In both cases, it is
contained in SO(8)S0(4)?, i.e. Dg contains a subroot system of type D, perpendicular
to the 4A;-summand of H. This shows (K, L) < Ds.

Now, let L < Ay + E;. Since H £ Ey, it follows H N E; = 3A; + A3. By
Corollary 5.7, E; © 3A; = D, and this D, is perpendicular to the 4A;-summand of
H,so K < Ay + Ey. Tt follows (K, L) < A, + E7, ¢(K) = 0 and Agy is contractible,

H = 3A1 + Agi H — Al + D5, 3A1 + D4, 2A1 + A5, Al + 2A3, 2A1 + AQ +
43, 4A1 +A3. Let H = Al(l) +A1(2) +A1<3) +A3 and KO = Al(l) +A1(2) +A5(1)
Ag/k, contains a 1-cycle supported by a facet with L.b.s.

{Ll - Al(].) —|‘ Eﬁ, LQ - A1(2) —|‘ AQ + A5(1), L3 - Al(].) + A1(2) + D@}
Let A5(2) = E6 © A1(3) and D4 = D6 © Al(?)) SO,

K, = Al(l) + A1(3) + A5(2) < Ll,
Ky = A1(2) + A2 + Al(g) + A3 < Lo and
Kg = A1(1> + A1(2) + Al(?)) + Dy < L3.

Hence, (K1, K, K3) < A1(3) + A1(3)* < Es and Hy(Agyr, Q) # 0.

H = (2A1 + A3)" H — 2A1 + Dy, (A1 + A5)', 241 + Ay, (243), A1+ Ag +
43, 3A1 + Ag. Let H = A1(1> + A1(2) + A3 and Ko = Al(l) + A5 = (Al + A5)/.
Ag/K, contains a 1-cycle supported by a facet with L.b.s.

{Ll - 14/77 L2 - Al(l) —|— D67 L3 - Al(l) + AG}
Now, let

K, = A1<2) + A5 = (Al + A5>, < Ll7
Ky = Al(l) + A1(2) + Dy < Ly and
Kg = A1<1) + A1(2) + A4 < L3.

Hence, (K1, Ks, K3) < A1(2) + A1(2)*+ < Es and Hy(Ag/s, Q) # 0.

H = (2A1 + Ag)”! H — D5, 2A1 + D4, (Al + A5)”, (2143)”, 3Az41 + A3. Let
H = Ai(1)+A1(2)+ A3(1) and Ko := A;(1)+ A5 = (A1 + A5)". Then Ag/k, contains
a l-cycle supported by a facet with 1.b.s.

{Ll - A,7/, L2 - Al(l) + Dg, L3 - Al(].) + A1(3) + A5}



5.6. Ly 99

for some A;(3) # Ai(1), A1(2). If [ < s0(12) is a T-subalgebra with root system
Ay + As, then the corresponding subgroup is SO(6)SO(2)U(2) or U(4)U(2). In both
cases, Dg © R(l) = A;y. So, let A1(4) :== D © (A1(2) + A3(1)). Moreover, let A3(2) :=
Al & A;z(1). Then

K= Ag(l) + A3(2) = (2143)// < Ll,
Ky = Ay(1) + Ay (2) + Ay (4) + Ag(1) < Lo and
Kg = Al(l) + A1(2) + A1(3) + A3<1) < L3.

ThU.S, <K1,K2,K3> S Ag(].) + Ag(l)l < Eg and ﬁg(AG/H,Q) 7& 0.

H=A+As: H— A1+ Dy, A5, A1+ Ay, As+ Az, (241 + As)', (241 + As)".
Let H = A;(1) + A3 and K; := As. Ag/k, contains a 2-cycle supported by a facet
with Lb.s.

{L1 = A6, Ly =A:(2)

+ AS (Al + A5)I7
L3 = Al(S) + A5

(A1 +As), La=Ai(4) + A5 = (A1 + 45)"}

[rae

For Ay := Ag © A1(1), let

Ky = A (1) + Ay < Ly,

Ky :=A1(1)+ A (2) + A3 = (24, + A3)' < Lo,

Kz :=A;(1)+ A (3) + A3 = (2A; + A3)' < L3 and
Ky:= A1)+ A (4) + A3 = (2A; + A3)" < Ly.

Since, (K1, Ko, K3, Ky) < Ay(1) + Ay (1)+ < Eg, it follows H3(Ag/u, Q) # 0.

H=As: H— Dy, Ay, A1 + As. Let Ky := As. Then Ag/KO contains a 3-cycle
supported by a facet with l.b.s.

(Li= A} U{L; = Aj(i— 1) + Ay | 2 < i < 5}
Let A1(5) = A5 © Ag. SO,

K, = A1(5) + Ag < Ll, and

Hence, <K1, e ,K5> S A3 —+ A§‘ < Eg, SO H4(Ag/H,Q) 7£ 0.
H = 4142: H — A2+E6. Let H = A2(1)+A2(2)+A2(3)+A2(4) FOl”i c {1,2,3,4}

let Eg(i) := Asx(i)*. So, H < As(i) + Eg(i) for each i and Ho(Ag/u, Q) # 0 by
Lemma 2.24.
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H= A1—|—3A22 H T} A1+E6, A1—|—A2—|—A5, 4A2 Let H = A1—|—A2(1)—|—A2(2)—|—A2(3)
and Ko := A; + Es. Ag/k, contains a 0-cycle supported by a facet with Lb.s.

{Ll - A2(4) + EG, L2 - Al + E7}
with A2(4) # AQ(l), A2(2), A2(3) Let A5 = E7 e Ag(l) Then

K, = 4A2 < Iy and
Ky = A1 + Az(l) + A5 < Ls.

Thus, (Ky, Ky) < As(1) 4+ Ay(1)* < Fy and H,(Agm, Q) # 0.

H =34y H = Eg, A+ A5, A+ 34s Let H = Ay(1) + As(2) + A(3). Tf
Ko := As(1) + A5(1), then Ag/k, contains a 0-cycle supported by a facet with Lb.s.

{L1 - Ag, LQ - Al + AQ(].) + A5}
Let A5(2) = Ag S A2(2) Then

K, = A2(2) + A5(2) < L and
Ky = Al + 3A2 < Ls.

Thus, (K1, K) < A(2) + As(2)* < By and Hi(Agym, Q) # 0.

H = 2A1 + 2A22 H — 2A1 + A5, Al + AQ + A4, Al + 31427 2A1 + AQ + Ag.

A1(2) + A3(2) < A4(2). Then Ag/k, contains a 0-cycle supported by a facet with
Lb.s.
{Ly =24, = Ay(1) + A4(2), Ly = Ai(1) + Ar}.

with Al(].) + Ag(l) < A4(].) Let A5 = A7 &) A1(2) Then

K = A1(2) + A2(2) + A4(1) < Iy and
Ky = A1(1> + A1(2) + A5 < Lo.

Thus, (K1, K3) < A1(2) + A1(2)* < Es and Hi(Ag/n. Q) # 0.

H = A1—|—2A23 H— (A1—|—A5),, s (A1—|—A5)//, A2:|—A4, A1—|—A2—|—A3, 3142, 2A1+2A2
Let H = A1+ As(1)+ Ay(2) and Ky := (A1 +As)". Ag/k, contains a 1-cycle supported
by a facet with Lb.s.

{Li =A%, Ly= A+ Dg, Ly = Ay + Ag}.
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Let A4 = A,7 © AQ(].), Ag(].) = Dﬁ © AQ(].) and A3(2) = A6 O Ag(].) SO,

K, = Ag(l) + A4 < Ll,
Ky = Al + Ag(l) + Ag(]_) < Ly and
K; = A+ AQ(].) + A3(2) < Ls.

Hence, (K, Ky, K3) < Ay(1) + Ay(1)* < Eg and Hy(Agyir, Q) # 0.

R H = 21422 H — A5, A2 +A3, Al +2A2 Let H = Ag(l) +A2(2) and Ko = A5, SO
Agq/K, contains a 2-cycle supported by a facet with L.b.s.

{L1 = Aq, Lo =A1(1)+ A5 = (A1 + A5)',
L3 — A1(2) + A5 = (Al + A5)/, L4 — Al(?)) + A5 = (Al + A5)”}.
Let
K, = AQ(].) + Ag < I,
Ky = Al(l) -+ AQ(l) -+ A2(2) < Lz,
K5 = A1(2) + AQ(].) + A2(2) < L3 and
Ky = Al(?)) + AQ(].) + A2(2) < Ly.

It follows (K1, Ky, K, Ky) < Ag(1) 4+ Ay(1)* < Eg. Hence, Hy(Ag/m,Q) # 0.

H = 4141 +A22 H— AQ 4’1)47 2141 +f42 +A3, 4A1 +A3. Let H = A1<1) +A1(2) +
Ai(3)+A1(4) + Ay and Ky := Ay + Dy. Agyk, contains a 1-cycle supported by a facet
with Lb.s.

{Ly = Ay + D5(1), Ly = Ay + D5(2), L3 = A3(1) + Dy}.

If [ < s0(10) is a T-subalgebra with root system 4A4;, the corresponding subgroup of
S0O(10) is of type SO(4)2S0O(2). Hence, for a given A; < 44, there exists a unique
A, < 4A, such that the subgroup which corresponds to A +A, is of type SO(4)SO(2)3.
Since SO(4)SO(3)2 < SO(4)SO(6) < SO(10), it is D5 & (A; + A1) = As.

This implies that there exist p, ¢ € {2, 3,4} and subroot systems A3(2), A3(3) with
Al(l) + Al(p) + A3(2) < D5(1) and Al(l) + Al(Q) + A3(3) < D5(2) SO, let

K = Al(l) + Al(p) + A3(2) + A2 < Ll:
Ky = Al(l) + Al(q) + A3(3) + A2 < Ly and
Kg = Al(l) + A1(2) + A1(3) + A1(4) + A3(1) < Ls.

It follows (K, Ko, K3) < Aj(1) + A;(1)* < Eg and Hy(Ag/m, Q) # 0.
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H = 3A1 + AQZ H— 2A1 + A4, Al + AQ + Ag, 3A1 + Ag, 2A1 + 2142, 4A1 :|— AQ.
Let H = Al(l) + A1(2) + Al(g) + Ag and KO = Al(l) + A1(2) + A4(1) Then AG/K[)
contains a 1-cycle supported by a facet with Lb.s.

{L1 = A1(1) + As(1), L2 = A1(2) + 46(2), Lz = A:(1) + A1 (2) + A5}

Let A4(2) = A6<1) © A1(3), A4(3) = A6(2) &) A1(3) and Ag = A5 &) Al(g) Then
Kl = Al(l) + A1(3) + A4( ) < Ll,
Ky = A1(2) + A (3) + A4(3) < Ly and
Ky = Ay (1) + Ay (2) + A (3) + Ay < L.

It follows (K, Ky, K3) < A1(3) + Ay (3)* < By and Hy(Ag/m, Q) # 0.

H=2A1+Ay H = Aj+Aq, As+As, (2A1+43)', (2A1+A43)", A1+2A,, 3A1+As.
Let H = A1(1)4+ A1(2) + As(1) and Ky := As(1)+ A;s. Then, Ag/k, contains a 2-cycle
supported by a facet with l.b.s.

(L = Ag, Lo = As(1) + Ay(1), Ly = As(1) + As(2), Ly = Ag(1) + Ay + A,(3)}.

for some A;(3) # A (1), A,(2). With Ay(3) := Ag © A;(1), Ax(2) := Ay(1) © A (1)
and A2(3) = A4(2) S, Al(l) let

Ky = A;(1) + A4(3) < Ly,

Ky = As(1) + A1 (1) + Az(2) < Lo,

K3 = As(1) + A (1) + Ax(3) < L3, and
Ky:=Ay(1) + A (1) + A1(2) + A1(3) < Ly.

Hence, <K1,K2,K3,K4> S Al(].) + Al(l)l < Eg and I’Yg(Ag/H,@) 7& 0.

H = A1A+ AQI H — A4, Al + A3, 2142, 2A1 + AQ. Let H = Al(l) + AQ and
Ky := Ay. Ag/k, contains a 3-cycle supported by a facet with Lb.s.

Furthermore, let A3 = A5 © A;(1). So,

K1 = Al(l) + Ag < Ll and
K, = A1(1> + Al(l) + AQ < L; for 2 <7 <5.

It follows (K, ..., Ks) < Ay(1) + Ay (1)* < Eg and Hy(Ag/m, Q) # 0.

H = Ay H — A;, A + Ay. Let Ky := Az. Then Ag/KO contains a 4-cycle
supported by a facet with l.b.s.
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Now, let A;(6) := A4 © As. It follows

K, = A1(6) +A2 < Ly and

It follows (K1,..., Ks) < Ay + Ay < Eg and Hs(Ag/u, Q) # 0.

H= 8141: H— 4A1 —tD4 Let H = Al(l) +... +A1(8) and K() = A1(1> +A1(2) +
A1(3) + A1(4) + Dy(1). Agyk, contains a 1-cycle supported by a facet with Lb.s.

{L1 = D4(1) + Da(2), Lz = Ai(1) + A1(2) + Ds(1), Ly = A1(1) + A1(3) + De(2)}.

Now, if [ < s0(12) is a T-subalgebra with root system 6A;, the corresponding subgroup
of SO(12) is of type SO(4)3. In particular, for a given A; < 6A; there exists a unique
A, < 6A, such that the subgroup which corresponds to A +A, is of type §’VO(4)SO(2)4.
Since SO(4)SO(2)* < SO(4)SO(8) < SO(12), it follows Dg & (A; + A1) = Dy. In
particular, there exists a unique p € {3,4,5,6,7} with A;(p) + A1(8) + D4(3) < Ds(1)
and a unique ¢ € {2,4,5,6,7} with A;(q) + A1(8) + D4(4) < Dg(2). So, let

Ky = A1(5) + A1(6) + Ai(7) + Ai(8) + Du(2) < Ly,
K, = A1<].) + A1(2) + Al(p) + A1(8) + D4(3) < L, and
K= Ai1(1) + A1(3) + Ai(q) + Ai(8) + D4(4) < Ls.

It follows (K7, Ko, K3) < A;(8) + Ay (8)* < Eg and Hy(Ag/u,Q) # 0.

H=7TA;: H— 3A, + Dy, 8A,. Since H+ = A, there is a unique 84; > H. Let
L be any H-subalgebra. This implies L < Dg or Ay + F;. All subroot systems of type
7A; of Dg are W(Dg)-conjugate, so Dy © H = A; by Corollary 5.7. Hence, L < Dg
implies K < Dg, so (K, L) < Dg. Now, let L < Ay + FE,. If L < E;, the Aj;-summand
of Ay + E7 is perpendicular to H, so K < Ay + FE;. If L £ E7, then H N E; = 6A;.
But F; © 6A; = A; and this A;-summand is perpendicular to H. Again, it follows
K <A+ E; ie (K,L) < A; + E;. Hence, ¢(K) = and Ag/H is contractible.

H = 6A;: H — 2A, + Dy, 4A; + As, TA;. Tt is H+ = 24, so there exists a
unique K := 8A4; > H. Let L be any H-subalgebra. Then L < Dg except for the
cases L = F; and L = A, + Fx.

First, suppose L < Dg. A subgroup of SO(16) with corresponding root system
H = H is of type SO(4)?S0(2)? or SO(4)2U(2)%. But in both cases, it follows
Dg © H = 2A,. In particular, L < Dy implies K < Ds, so (K, L) < Ds.

If L=F;or L =A;+ E7, then L contains at least one root perpendicular to H,
since 7 ©6A; = Ap. Tt follows KNL > H. Thus, ¢(K) = 0 and Ag/H is contractible.
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H = 5A11 H— Al + D4, 3A1 + Ag, 4A1 :|—A2, 6A1 Let H = A](].) + ... —|—A1(5)
and Ko = A1(1) + A:(2) + A1(3) + A3(1). Ag/k, contains a 2-cycle supported by a
facet with Lb.s.

{L1 = Al(].) + A1(2) + A5(].), LQ = A1<1) —|— A1(3) + 145(2)7
Ly=A:(2) + Ai(3) + Az + A3(1), Ly = Ai(1) + A1(2) + A1(3) + Da}.

Note, that if [ < s0(8) is a T-subalgebra with root system 2A;, then the corresponding
subgroup of SO(8) is of type SO(4)SO(2)? or U(2)?. In both cases, it follows Dy ©
2A; = 2A,. So, let A;(6) a root of D, perpendicular to A;(4) + A;(5). Furthermore,
let A3(2) := A5(1) © A1(5) and A3(3) := A5(2) © A1(5). Then

Ky = Ai(1) + A1(2) + A1(5) + A3(2) < Ly,

K, = Al(l) + A1(3) + A1(5) + A3(3) < Lo,

Ky = A1(2) + Ai(3) + As + Ay (4) + Ay(5) < Ly and
K, = Al(l) + ...+ A1(6) < Ly.

ThU_S7 <K1,K2,K3,K4> < A1(5) + A1<5)J' < Fyg and ﬁg(Ag/H,Q) 75 0.

H = (4A1)/2 H— (2A1 + Ag)/, 3141 + AQ, 5A1.A Let H = Al(l) + A1(2) + A1(3) +
Ai(4) and Ko = Ay(1) + A1(2) + A:(3) + A2(1). Ag/k, contains a 2-cycle supported
by a facet with Lb.s.

{Ll = Al(].) —|- Al(Z) + A4<1)7 LQ == Al(].) + A1(3) + A4(2),
Ly = A1(2) + Ay (3) + Ag(3), Ly = Ai(1) + A,(2) + A (3) + A}

Let A1(5) := A3 © A1(4) and Ao(i) := Ay(i — 1) © Ay (4) for 2 < i < 4. Then

Kl = Al —|—A1(2)—|—A1(4)+A2(2) <L17

(1)
Ky = A1) + A (3) + Ay(4) + As(3) < Lo,
K3 = A1(2) + A1(3) + A1(4) + A2(4) < L3 and
Ky = Al(l) + ...+ A1(5) < Ly.

It follows <K1, KQ, Kg, K4> < A1(4) + A1(4)J‘ < Eg and ﬁ[g(Ag/H,Q) 7é 0.

H - (4141)”2 H — D4, (2A1 + Ag)”, 5A1 Let ]AJ = Al(l) +A1(2) + Al(g) +A1(4)
and Ko := A;(1) + A1(2) + As(1) = (2A, + A3)". Ag/k, contains a 2-cycle supported
by a facet with 1.b.s.

{Ly = Aj(1) + As = (A; + As)", Ly = A3(1) + A5(2) 22 (243)",
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K= A (1) + A1 (4) + As(3) = (24, + A3)" < Ly,

Ky = Ai(3) + A1(4) + A3(2) = (241 + A3)" < Ly,
Ky:=A1(1) + A1(2) + Ai(3) + A (4) + Ay (5) < Ly and
Ky = A1) + A1(2) + A1 (3) + Ar(4) + A1(6) < La.

Hence, (K1, Ky, K3, K4) < Ai(4) + A1(4)* < Es and Hs(Ag/,Q) # 0.

H=3A1: H— A+ As, 241+ Ay, (4A41), (441)". Let H = A;(1)+ Ay (2)+ A, (3)
and Ky := A;(1) + A3(1). Ag/k, contains a 3-cycle supported by a facet with 1.b.s.

{Ll - A5, L2 - A1(1> + A4, L3 - Al(l) + A1(4> + A3(].),
Ly=A1(1)+ A1(5) + A3(1), Ly = Ai(1) + Ai(6) + A3(1)},

where Lg, L4 = (2141 + A3)/, L5 = (2A1 + Ag)” and A1(4), A1(5), A1(6) 1 H. Let
Ag = A4 s A1(2) and A3(2) = A5 e A1(2> Then

K1 = Ay(2) + Ag(2) < Ly,

Ky := A1 (1) + A1(2) + Ay < Lo,

Kz = Ai1(1) + A1(2) + Ai(3) + A1 (4) = (44)) < Ls,
Kui= Ar(1) + A1 (2) + A (3) + Ay (5) 2 (441) < Ly and
Ks = Ar(1) + A1(2) + A1 (3) + A1(6) = (44)" < Ls.

ThUS, <K1, .. .,K5> < A1(2) -+ A1(2)J' < Ey and g4<AQ/H,@) 7é 0.

H = 2A13 H — 1437 Al + AQ, 3A1 Let H = A1<1) + A1(2) and K() = Ag. AG/KO
contains a 4-cycle supported by a facet with L.b.s.

{Li = A U{Li=A(i+1)+ A3 |2 <i <6}
Let Ay := A4 © A;(1). Then

K, = A1(1> + A2 < Ly and

SO, <K1, e 7K6> < Al(l) + Al(].)J' < Eg and -E[5(AG/H7Q) 7é 0.

H=A;: H— Ay, 2A,. Let H = Ay(1) and Ky := A,. Ag/KO contains a 5-cycle
supported by a facet with 1.b.s.
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1)+ Ai(8) < L, and
Ki = Al(l) +A1(Z) for 2 S 1 S 7.

Hence, (K1, ..., K7) < Ay(1) + A (1) < Es and He(Ag/, Q) # 0.

H =0 H — A;. As mentioned above, Theorem 2.27 is not applicable but {(A g, /T)
can be computed. By Lemma 4.14, it is

X(Apyr) = - <1 + Z )Z(AK/T)> : (5.4)

t<t<yg

where K is the Lie subgroup with T.K = €. Let {(R(¢)) := )Z(AK/T). To calculate
the sum on the right-hand side, one needs Y(R(¢)) for every R(€) # () given by the
table above and the order of its Weyl orbit.

First, if R(¢) is reducible, i.e. if the semisimple part £, := £ & ... D¢, is not simple,
then by Lemma 4.13, X(R(8)) = [;_; X(R(¢;)). Hence, to calculate each y(R(€)), one
needs the values a,, 1 <n <8, d,, 4<n <8, z:= )Z(AEﬁ/T) and y = )Z(AE7/T). It
will turn out, that  and y do not have to be calculated explicitly, altough they could
be calculated in a similar way.

It remains to calculate the order of the Weyl orbits W.S for each subroot system
S < Eg. Since |W| = |W(Eg)| = 696, 729,600 is known, see [Hum?72, p. 66], this is
equivalent to calculating the order of the isotropy group

Ws :={w e W(Ey) | w(S) = S},
since |W.S| = |W|/|Wgs|. So, consider
Aut(S, Eg) == {o € Aut(S) | Ip € W(Eg), s =0},

the group of automorphisms of S which arise from some Weyl group element of E.
There is a surjective group homomorphism

bg: We — Aut(S, Ey); w — w)s.
So,

| ker ®g| - |Aut(S)]
Ws| = | ker ®g| - | Aut(S, Eg)| =
| S| | er S| | u( ) 8)' #(S) )
where #(S) denotes the order of the quotient group | Aut(S)/ Aut(S, Fs)|. Now, by
[Hum90, p. 22], ker &g = {w € W(Es) | w; s = idg} is given by the subgroup

(sq | L S) = (54| a€ Sty =W(SH),



5.6. Ly 107

where W(0) := {1}. Moreover, | Aut(S)| = |Out(S)| - [W(S)| is given by |[W(S)]
times the order of the symmetry group of the Dynkin diagram of S. For irreducible S,
|[W(S)| is given in [Hum72, p. 66]. For S = 51 +...+ Sk it is [IW(9)| = Hle |W (Sk)|-
Furthermore, #(S) was calculated by Oshima and is given by the table in [Osh06, p.
45f.]. In summary,

(W(Es)| - #(5)

WA= Taa(S) -

Now, by (5.4), —(1 + )Z(AEg/T)) is given by the sum over the right column of the
following table. Note, that S is given by Corollary 5.7 and also by the table in
[Osh06, p. 45f.].

Table 5.7: f((AEg/T)

S =R(t) St X=X | [Aw(S)| | [W(SH] [ #(S)| [W(S)]- X
A+ E; 0 —y 5, 806, 080 1 1 —120y
E; Ay y 2,903, 040 2 1 120y
Ay + Eg 0 2z 1,244,160 1 2 2, 240
Ay + Eg 0 —x 207, 360 1 1 —3,360x
Es Ay T 103,680 6 1 1,120
Dy 0 640,080 | 10,321,920 1 2 | 86,410,800
D 0 —45,360 | 645,120 1 1 | —48,988,800
2A, + Dg 0 3,720 368, 640 1 2 | 14,061,600
Ay + Dg Ay —3,720 | 92,160 2 2 | —28,123,200
Dy 24, 3,720 46,080 4 1 | 14,061,600
As + Ds 0 2,160 184, 320 1 2 | 16,329,600
As + Ds 0 —720 46,080 1 2 | —21,772,800
24, + D; 0 —360 30,720 1 1 | —8,164,800
Ay + Ds A, 360 7,680 2 1 | 16,329,600
Ds As —360 3,840 24 1 | —2,721,600
2D, 0 1,764 | 2,654,208 1 6 2,778,300
Az + Dy 0 —252 55,296 1 3 | 9,525,600
Ay + Dy 0 84 13,824 1 1 4,233,600
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S = R(¥) St X =X(S) | [Aw(S)] | [W(SH] | #(S)| WS- x
4A, + Dy 0 42 442,368 1 6 396, 900
34,4 D, A —42 55, 296 2 6 | —1,587,600
24, + Dy 24, 42 9,216 4 3| 2,381,400
A+ D, 34, —42 2,304 8 1 | —1,587,600
D, D, 42 1,152 192 1 132, 300
As ] 40,320 | 725,760 1 1 | 38,707,200
Ay + A ) 5,040 | 161,280 1 1 | 21,772,800
AL 0 —5,040 | 80,640 1 1 |—43,545,600
Al A —5,040 | 80,640 2 1 |—21,772,800
Ay + Ag ] —720 20, 160 1 1| —24,883,200
A Ay 720 10, 080 2 1 | 24,883,200
Ay + Ay + As 0 240 34, 560 1 2 | 9,676,800
Ay + As A —240 17,280 2 2 | 9,676,800
2A; + As ) ~120 11,520 1 2 | —14,515,200
(A; + As)’ A 120 2, 880 2 1 | 14,515,200
(A1 + As)” A, 120 2,830 6 1 | 4,838,400
As Ar+ Ay | =120 1,440 12 1 | —4,838,400
2A, 0 576 115, 200 1 2 | 6,967,296
As+ Ay ] —144 11,520 1 2 | —17,418,240
A+ As+ A |0 —48 5,760 1 2 | —11,612, 160
Ay + Ay A 48 2, 830 2 2 | 11,612,160
2A, + Ay 0 24 1,920 1 1 | 8,709,120
A+ Ay Ay —24 480 6 1 | —5,806,080
Ay Ay 24 240 120 1 580, 608
24, + 243 0 36 36, 864 1 2 | 1,360,800
A+ 245 A —36 9,216 2 2 | —2,721,600
(243) ) 36 4,608 1 1 | 5,443,200
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S =R(¥) St X =XS) | [Au(S)| | W(SH)| | #(S)| W(S)]- X
(243)" 24, 36 4,608 4 1 | 1,360,800
2A) + Ay + As| 0 —12 4,608 1 2 | —3,628,800
A+ Ay+ Ay | A 12 1,152 2 2 | 7,257,600
Ay + Ag 24, —12 576 4 1 | —3,628,800
4A; + As 0 —6 18, 432 1 3 | —680,400
34, + As Ay 6 2,304 2 3 | 2,721,600
(241 + A3) | 24, —6 384 4 1 | —2,721,600
(24, + A3)" | As —6 384 24 1 | —453,600
Aj+ Ay | A+ Ay 6 96 48 1 907, 200
As D; —6 48 1,920 1 —45, 360
1A, ] 16 497,664 1 8 179, 200
Ay + 34, 0 -8 20,736 1 4 | —1,075,200
3A, A, 8 10, 368 6 4 358, 400
2A; + 24, ] 4 2,304 1 2 | 2,419,200
Ay 424, A, —4 576 6 2 | —1,612,800
24, 24, 4 288 36 1 268, 800
44, + A, ] 2 4,608 1 1 302, 400
3A; + A, A —2 576 2 1 | —1,209,600
2A; + A, As 2 96 24 1 604, 800
Ay + A, As —2 24 720 1 —80, 640
A, Eg 2 12 51,840 | 1 2,240
84, ] 1 10, 321, 920 1 30 2,025
TA, A, ~1 645,120 2 30 | —16,200
6A, 24, 1 46,080 4 15 56, 700
5A, 34, ~1 3,840 8 5 | —113,400
(44, 44, 1 384 16 1 113,400
(44;)" Dy 1 384 192 1 9,450
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S = R(¥) St X =XS) | [Aut(S)] | W(SHI [ #9) | V(9] X
34, A +Dy| -1 48 384 1 —37,800
24, Dy 1 8 23,040 | 1 3,780
A E; ~1 2 2,903,040 | 1 —120

Taking the sum over all numbers of the right column yields:

—(1+ X(Agy7)) = y(120 — 120) + (2,240 + 1,120 — 3,360) + 28, 183, 679.

Hence,

(A7) = —28,183,680 £ 0.

It follows that A Eg/T 18 non-contractible.
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