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This article explores the role of artificial intelligence (Al) in the process industries
such as the chemical and pharmaceutical industry. We start by classifying the
most prominent technologies comprised under the generic term of Al, define
them, and delineate their applicability in various functions along the organization-
al value chain. Further, we illustrate the boundary conditions for Al application by
describing what data are required to initiate and sustain the "intelligence” of algo-
rithms. We continue with thought-provoking case studies that exemplify the sta-
tus quo and possible future applications of Al in the chemical and pharmaceutical
industry. Based on academic insights, we discuss potential barriers and pitfalls
that firms might face while integrating Al into their business processes and pre-

sent remedies.

1 Introduction

As the internet of things gains traction, new
opportunities for value creation arise in the
process industries through the availability of
connectivity, data, and cloud computing. Re-
cent estimates attribute artificial intelligence
(Al) an annual value creation potential of over
$100 billion in the chemical and pharmaceutical
industry, respectively (Chui et al., 2018). Taking
off on the physical infrastructure, new business
models in the process industries increasingly
place intangible assets like software, services,
and data analysis on the center stage (Stoffels
and Ziemer, 2017; Yoo et al., 2010). This consti-
tutes a stark shift for companies operating in
the process industries that are coined by high
asset-intensity, integration into physical loca-
tions, and complex value chains (Lager et al.,
2013). In order to gain a competitive edge over
their competitors and realize the full techno-
logical potential of Al, companies are recom-
mended to intertwine their business strategy

Journal of Business Chemistry 2019 (1)

with the use of new technologies (Bharadwaj et
al, 2013), and then pervasively exploit the
emerging opportunities in the company. The
latter involves the kind of activity that is wired
into the DNA of most companies in the process
industries, which is innovation. Therefore, the
goal of this paper is to support innovative appli-
cations and overall acceptance of Al in the pro-
cess industries by pursuing two measures. First,
we unravel the major strands of technologies
comprised under the notion of Al and second,
we draw on academic insights to discuss the
applicability of Al in the context of two case
studies. In the following, we focus on technolo-
gies that are either already extensively used or
are likely to become major technology compo-
nents in the future. Thus, the list of Al technolo-
gies is not complete but presents a snapshot of
the most relevant technologies.
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2 Technology overview of Al

Under the umbrella of Al, we identified four
main technologies that appeared particularly
important in the process industries, namely
expert systems, neural networks, intelligent
agents, and case-based reasoning. In the fol-
lowing, each methodology will be outlined in
more detail.

Starting with an overview of how Al is used
for different functions along the value chain in
research-intensive industries, Table 1 maps four
Al technologies against major functions in com-
panies.

2.1 Expert Systems

Expert systems (ES) are among the oldest
and most widely used Al technologies
(Negnevitsky, 2005). Their decision-making op-
erates based on rules that are codified by the
user in advance into the software that eventu-
ally presents a conclusion for a problem that
otherwise needs expert reasoning. The coded
rules serve as the knowledge base of the algo-

Journal of _
Business Chemistry

rithms. On a technical level, the user feeds the
algorithm with knowledge, which is commonly
encoded in the form of If (antecedent) — Then
(consequence) clauses. Take, for example, chess
computers. Rules that account for the “smart”
might look like these: If the pawn is on front of
a competitor’s figure, Then it can neither walk
forward nor capture the opponent’s figure be-
cause it can merely capture figures diagonal
forward. Programming a rule-based ES for a
specific application conventionally requires an
expert in the respective field of application to
collaborate with a programmer who translates
the expert knowledge into code. However, the
usefulness of this type of Al not only depends
on the quality of the hard-coded rules but also
on the newly fed data and facts that constitute
the foundation of the reasoning process
(Negnevitsky, 2005).

After the knowledge base has been filled
with rules, new facts that capture the user’s
problem can be filed into the expert system.
Figure 1 presents the architecture of rule-based
ES, including i) a knowledge base (comprising
rules), ii) a database (comprising the facts), iii)

Table 1 Al methodologies and some major applications along the organizational value chain (source: own

representation).

Functions in the value chain

Al technologies
Procurement

Research & Development

Production & Manufacturing Sales & Marketing

Supplier

evaluation and

Expert systems selection

Resource
planning

Demand
forecasting

Inventory

Artificial neural optimization

prediction

Modelling and simulation

Drug discovery
DNA-based disease

networks
Price prediction Protein folding prediction
Supplier Personalized treatments
classification
Intellicent Storage Automation and robotics
ntelligen i
ager?ts abservation Co-working humans and
Self-ordering robots
Case-based Order
reasoning management

Reactor steering
Failure detection

Process control

Reaction design Dynamic pricing

Yield optimization Personalized

Waste stream management marketing

Predictive maintenance Repeat purchase

Fault detection modelling

Compliance with regulation Next product to buy

Process control
Reactor steering
Detection of rejects
Compliance with regulations

Production plant design
Chemical process planning
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an inference engine, iv) explanation facilities, v)
and a user interface. When mimicking expert
reasoning, these components interfere in the
ways described in the following.

The inference engine is where the
“intelligent” work takes place. Here, the rules
that are encoded via If-Then relationships in
the knowledge base are applied to the data or
facts of the respective situation for which rea-
soning is required. When the “If” condition in
the rule is fulfilled by the data, the “Then” i.e.
the action is executed and the inference engine
eventually delivers a result based on the given
facts. In order to make the reasoning process
more transparent, explanation facilities are
embedded between the inference engine and
the user. They enable users to ask how a result
was produced and why specific facts are need-
ed (Negnevitsky, 2005). Explanation facilities
therefore bridge the gap between the rules and
the outcome so that the result presented to the
human user is comprehensible. Finally, the user
interface needs to be designed in a way that
suits the IT-skills of common users. Convention-
ally, interfaces are designed to be simple and
intuitive, so that even non-experts have easy
access to the knowledge condensed in the rule-
based ES.
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In terms of their application, rule-based ES
are able to deliver value in situations where
expert knowledge is available and can be pur-
posefully captured in a system that then ap-
plies it to specific problems. The capabilities of
ES include expressing relations, making recom-
mendations, suggesting directives, strategies,
and heuristics (Mohd Ali et al., 2015). Due to
these abilities, rule-based ES have been applied
in the context of strategic goal setting, plan-
ning, designing, scheduling, fault monitoring
and diagnosis applications (Abraham, 2005). A
major advantage of rule-base ES over novel
methodologies such as deep learning with arti-
ficial neural networks is that their reasoning
process is comprehensible for humans
(Giarratano and Riley, 1989). This is especially
important in situations where the Al's decisions
might have legal consequences such as in med-
ical contexts. Table 2 presents some major ad-
vantages and disadvantages of rule-based ES.

Figure 1 Architecture of a simple rule-based expert system (source: Negnevitsky, 2005).

Contains: If-Then rules

Contains: Facts

L

Inference engine
Function: apply rules to facts in order
to execute reasoning and decision
making

]

A

Explanation facilities
Function: Explain to user how the
result was

produced

User interface
Function: facilitate use for developers,
users, and admins

Expert System

Journal of Business Chemistry 2019 (1)

43

© Journal of Business Chemistry



Marius Stoffels, Tim Smolnik and Christin Hedtke

Journal of
Business Chemistry

Table 2 Characteristics of rule-based ES (source: Negnevitsky, 2005).

Advantages of rule-based ES

The ability to capture and preserve human knowledge

High consistency throughout a large number of
decisions

The comprehensibility of how the solution was pro-
duced as opposed to other Al technologies

Limitations of rule-based ES

Experts can only express relationships in form of If-
Then rules that they are actively aware of (no tacit
knowledge)

Becomes slower with larger numbers of rules

Experts must be available

The ability to develop solutions faster than human
experts

The ability to apply human expertise coherently across
several situations

In the past, the low required computing power was an
advantage of ES. However, in times of potent and
flexible cloud computing suppliers this advantage
diminishes

The basic algorithm needs to be changed when the
knowledge base changes because all reasoning is
hard-coded

Ambiguity of human reasoning might be hard to be
encoded in IF-Then rules

Inability to learn

2.2 Artificial neural networks

According to recent estimations, artificial
neural networks (ANNs) have the potential to
create an additional annual value of $100-200
billion in the chemical industry and around
$100 billion in pharmaceuticals (Chui et al,
2018). Although ANNs have been around for
several decades, they have long been unable to
unfold their potential for pervasive application.
Complementary forces that render ANNs more
widely applicable today include the exponen-
tially increasing computing power following
Moore’s law', cheap and small sensors, the re-
sulting availability of data, and cloud compu-
ting (McAfee and Brynjolfsson, 2017). These mu-
tually reinforcing elements have multiplied the
applicability of ANNs, so that widespread appli-
cation is reported in the chemical (Mohd Ali et
al, 2015) and pharmaceutical industry
(Agatonovic-Kustrin - and Beresford, 2000;
Zhavoronkov, 2018).

The technological architecture of ANNs is
inspired by the nervous system of the human
brain. ANNs adopt the idea of neurons as the
smallest operating unit, which if interlinked in
a network, can perform complex tasks. A sche-

matic representation of such a network is
shown in figure 2. The main constituents of
ANNs are the different types of layers of neu-
rons that are interconnected in a network.
These include an input-layer, a problem-specific
amount of hidden layers, and an output-layer.
The input layer receives all information to be
included in the reasoning process of the ANN.
One of ANN’s major advantages in comparison
with established technologies such as regres-
sion analysis is its ability to incorporate largely
heterogeneous  sources of  information
(Backhaus et al., 2016). For example, a neural
net for predictive maintenance might include a
database with numbers, images, and audio in-
put from microphones in the plant. The hidden
layers serve to extract patterns in the data that
are then used to generate the outcome. Re-
garding the number of hidden layers, practi-
tioners face a trade-off between using enough
hidden layers to reach a fair level of accuracy on
the one side and “overfitting” the network at
the cost of the results’ generalizability on the
other (Srivastava et al., 2014). Finally, the output
-layer returns the intended outcome dimen-
sion.

At the level of the inter-neuron relationship

"Moore’s law states that the number of transistor’s per integrated circuit doubles every 18-24 months. In consequence, smaller and faster devices
are affordable for the same amount of money. Note that the continuous doubling follows a logarithmic function.
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Figure 2 Architecture of artificial neural networks (ANNs). Neurons are displayed as circles. Activation via weights:
The intensity with which one neuron passes information to the next. Learning rules: The way in which the
weights are adjusted during the training of the neural net. (source: Backhaus, Erichson, Plinke, & Weiber, 2018).
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depicted in figure 2, the activation of a focal
neuron is contingent on the signals it receives
from the neurons in the preceding layer. Most
commonly, the weighted sum over all inputs
signals is used to determine in how far the neu-
ron is activated and consequently passes on its
signal to the following layer (Backhaus et al,
2016). During the setup of the neural net, the
input data determines the initial weights that
the connections between neurons have. At the
end of the training phase, the value of these
weights represent the memory of the neural
net (Agatonovic-Kustrin and Beresford, 2000).
Due to the forward-oriented flow of infor-
mation between neurons, this mode of training
the network is referred to as “feedforward”. In
order to optimize ANNs for their application,
they are exposed to feedback and learning in
subsequent iterations. For this means, learning
rules are responsible for slightly readjusting the
weights between neurons from the output
backwards to the input layer, until the neural
network has reached the intended level of ac-
curacy. The iteration of this so-called backprop-
agation mechanism is the actual training of the
neural net. After a satisfactory level of precision
has been achieved through training, the ANN
can be fed with new data and fulfil its actual
purpose.
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According to a study from McKinsey includ-
ing several hundred use-cases, ANNs have large
potential to generate additional value in areas
where IT tools such as regression, estimation,
and clustering are already in place (Chui et al,
2018). They further estimate that in 69% of
their use cases ANNs provide incremental im-
provements over the technologies already used,
while only 16% are applications in which no
other analytics technique could deliver value.
Although 16% appear small in comparison,
there is considerable potential for industry dis-
ruption immanent in these digits. Additionally,
in the remaining 15% of the cases ANNs cannot
beat conventional analytics, since the applica-
tion of ANNs is inextricably tied to the exist-
ence of sufficient training data. If the cost of
gathering these data exceeds the value to be
extracted from it, then, for example, a regres-
sion analysis or an expert system might be su-
perior choices. However, because of the recent
availability of data for training ANNSs, the im-
portance of rule-based ES is likely to fade and
ANNs will take their place because of their su-
perior capabilities (McAfee and Brynjolfsson,
2017).

A recent example of the power of ANNs to
solve vastly complex problems is its perfor-
mance in predicting the folding of a protein
based on its DNA sequence. A team of Google-
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affiliated researchers created a neural net the
called AlphaFold, which predicted the folding of
complex proteins starting from scratch and
significantly outperformed renowned teams in
a worldwide prediction tournament (Evans et
al.,, 2018).

2.3 Intelligent agents

Intelligent agents are referred to as autono-
mous components of a larger system, e.g. a pro-
duction process in a chemical plant. They pur-
sue their own agenda or goal but simultane-
ously interoperate with the other components
in the systems (Franklin and Graesser, 1996). In
many cases, multiple intelligent agents are con-
nected in so-called multi-agent systems. For
example, these include industrial process con-
trol systems or robots, where sensors feed in-
formation from the outside world into the sys-
tem that then decides whether it should act on
the situation or not. However, different agents
might have conflicting goals about what ac-
tions to take in a specific situation, which is
why a coordinating unit that aligns the various
interests stemming from the individual agents
might be useful (Bellifemine et al.,, 2007). Part
of the agent system are effectors such as speak-
ers, screens, stirrers, pumps, etc. through which
the desired actions can be performed. In sum,
intelligent agents feature the following charac-
teristics (Wooldridge and Jennings, 1994):

" Autonomy: Intelligent agents operate
without human intervention and super-
vise their own actions.

" Collaboration: Intelligent agents cooper-
ate with other agents or humans to
achieve its goals.

" Reactivity: Intelligent agents perceive the
environment and react to environmental
changes.

. Pro-Activity: Intelligent agents show goal
-orientated behavior by taking initiative
risks.

The interaction process of intelligent agents
with their environment is presented in figure 3.
The agent is programmed to independently
identify an effective way to act upon its envi-
ronment to achieve its goals. The sensor-based
perception in combination and the effectors are
the physical backbone of the system
(Bellifemine et al., 2007). On the level of the
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algorithms, the agent evaluates possible ac-
tions in terms of whether they manipulate the
environment in direction of the agent’s goals.
As a result of this reasoning process, the agent
will use its effectors to execute the action that
will move it towards fulfilling its objectives
(Russell and Norvig, 2010).

A powerful way to multiply the capabilities
of individual agents is to connect them in a sys-
tem. In these multi-agent systems (MAS), nu-
merous agents with restricted capabilities co-
operate in order to pursue the goals of a larger
system (Franklin and Graesser, 1996). To this
means, data processing and decision making is
centralized to gain a larger picture of the envi-
ronmental status quo, which, in turn, deter-
mines what actions shall be performed (Russell
and Norvig, 2010). Take, for example, the pro-
cess control system of a chemical plant. A varie-
ty of sensors is used to observe the reactions
and all information is gathered and supervised
in the process control centre. The overarching
goal is to optimize the reaction parameters,
which resolves potentially conflicting micro-
goals of individual agent units. As becomes evi-
dent from this example, multiple agent sys-
tems often include an interface to connect to
human experts in order to harness their
knowledge and give them the opportunity to
interfere in special situations.

However, as intelligent agents can be cou-
pled with neural networks that are able to store
experts’ ‘intuition” of how to conduct a chemi-
cal process, the window of opportunity for hu-
man intervention is narrowing. As Porter and
Heppelmann (2014) argue, the applicability of
smart connected systems such as multiple
agent systems are gradually shifting from mere
monitoring over to control, optimization and
eventually towards fully autonomous systems
with high degrees of proactive behaviour.

2.4 Case-based reasoning

Case based reasoning (CBR) builds on the no-
tion that ‘similar problems have similar solu-
tions’. It is therefore related to how humans
learn from experience. The foundation of this
methodology is a database with previous cases
that include a description of a problem and the
respective solution. Figure 4 shows the most
common framework for performing CBR, which
is known as the CBR cycle (Aamodt and Plaza,

1994).
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Figure 3 Procedure of intelligent agents, their inter-
play, and connection to the environment
(source: Russell & Norvig, 2010).
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Figure 4 CBR cycle (source: Aamodt & Plaza, 1994).

Problem

Learned
case

Tested
case

General
Knowledge

\x\.@‘ﬁ

Revise

Solved
case

Suggested
Solution

Confirmed
Solution

In CBR, every problem to be solved is treated
as a new case. Initially, the relevant parameters
that characterize the case like e.g. feed compo-
nents and product purity requirements need to
be filed into the system. In order to find a suita-
ble solution, the characteristics of the new case
are matched against those from previous cases
and the ones with the highest overlap are re-
trieved. The collection of similar cases subse-
quently constitutes the foundation for solving
the new case. After a solution for the new prob-
lem has been proposed by the algorithm, the
newly solved case is revised and eventually
added to the database so that the knowledge
repository expands over time (Aamodt and Pla-
za,1994).

CBR systems are often used in combination
with ANNs, since they have complementary
capabilities. While CBRs can make a purposeful
preselection of cases that will be considered for
the reasoning process, ANNs are good at encod-
ing the distinct characteristics into complex
patterns stored in their hidden layers. Together,
the two systems represent an efficient means
for solving complex problems based on a histo-
ry of relevant cases without sacrificing the com-
prehensibility of the outcome (Li et al., 2018).
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3 Case studies
3.1 Al in drug discovery — The case of DEep
GENOMICS

The application of Al in medicine has ma-
tured and now offers capabilities that are par-
ticularly useful for the design of medical treat-
ments (Patel et al.,, 2009; Wainberg et al., 2018).
In this regard, harnessing the pattern-
recognition capacity of artificial neural net-
works is the most common approach. Based on
this technology, numerous startups strive to
complement the resource-rich incumbent firms
with an Al-based approach to make research for
new treatments more efficient. Take the exam-
ple of DEEP GENOMICS, a Toronto-based startup
founded in 2015. Their aim is to create personal-
ly tailored genetic medicine by utilizing Al to
determine how DNA variations might produce
specific diseases.

Recent advances in cell biology, automation,
and Al enable treatments that are individual-
ized at the level of the DNA. Despite the vast
amount of data that is available for creating
neural nets that deduce disease risks directly
from the DNA, these direct prediction models
turned out to be nontransparent and therefore
not very useful in this highly regulated context.
Due to the complex and interlinked processes
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in the body, researchers use so-called cell varia-
bles as mediators that bridge the wide logical
gap between DNA sequences and disease risks
(Leung et al., 2016), as figure 5 presents. These
cell variables are factors that represent the pro-
cesses in the cell such as the quantities of key
molecules and interaction predictions (Leung et
al, 2016). Based on information gained from
high-throughput screening under various con-
ditions, DEep GENOMICS uses the data on DNA
sequences and related cell variables to train a
neural net, therefore teaching it a general-
purpose model. In the next step, deviations in
cell variables are related to disease risks, creat-
ing a mediated link to the DNA sequence that
accounts for the biological complexity of the
cell. Thus, the algorithms is taught which DNA
sequences are connected to what kind of cir-
cumstances in the cell, which in turn relates to
the resulting diseases. In combination with
newly developed gene editing technology such
as CRISPR/Cas (Cong et al., 2013), unprecedent-
ed opportunities for personalized medicine
arise.

In order to preselect promising target mole-
cules that can eventually be tested in the lab,
Deep GENOMICS has set up a platform database
including over 69 billion molecules and tested
them against 1 million targets in silico. This ap-
proach yielded 1000 promising compounds
that delivered the intended effect on the biolo-
gy of the cell. These molecules have effects on
the cell variables used as mediators in the
learning model. As a result of their in silico ex-
pertise, DEep GENOMICS scheduled first clinical
trials in 2020 (Lohr, 2018). Thus, neural net-
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works can guide the selection of potential
treatment candidates but they cannot fully rule
out the need for extensive practical testing in
clinical trials.

3.2 Al in the laboratory — The case of Clever!
Lab

Despite the value that artificial intelligence
already delivers in scientific R&D, the wet
chemistry routinely done in many laboratories
is still performed in a mostly analogue manner.
Insofar, laboratories as the cradle of innovation
might hold large innovation potential that pio-
neering companies now strive to exploit using
Al. Intelligent agents in combination with ANNs
seem to be the most suitable combination for
creating value with Al in the laboratory. Com-
bining these two approaches, the enterprise
CleverlLab offers a smart assistant for upgrad-
ing everyday work in the laboratory with Al.
Using cameras and microphones as agents and
building on IBM Watson, the clever digital as-
sistant strives to excel the capabilities of a digi-
tal laboratory journal and connects data on an
overarching level, potentially augmenting effi-
ciency and enabling innovation. The combina-
tion of a multiple agent system with an artifi-
cial neural network is a classic example of a
hybrid Al system.

Clever!Lab conceptualizes their value propo-
sition based on five pillars (Gressling, 2017), as
depicted in figure 6. First, their solution com-
prises a digital lab journal that stores results in
a coherent manner across all staff, thus, stand-
ardizing the results from routine analyses so

Figure 5 Cell variables are used as mediators for predicting disease risks from DNA sequences, because cell biology
is too complex to allow a direct deduction of diseases from DNA (source: Leung et al. 2016).
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that deep learning with ANNs can find hidden
patterns in the data. To communicate findings
to the clever assistant, employees may comfort-
ably dictate their results via microphone, while
personal accounts for all employees keep track
of their time accounts, making individual nota-
tion obsolete. Second, the clever agent might
assist in augmenting lab safety. For instance,
cameras with infrared function can readily alert
employees if a reaction overheats or when they
forgot to put on their safety glasses. The third
pillar is concerned with planning the reaction
schedule and experiment setup. The hybrid Al
might not only prevent bottlenecks on popular
laboratory devices and therefore contribute to
higher efficiency, but also directly assist by pro-
jecting reaction setups directly into the fume
hood if needed. Fourth, implementing Al in the
laboratory offers considerable opportunities for
training and education. For example, employ-
ees could be supervised when trying new anal-
yses and receive immediate feedback. Simula-
tions of special events such as emergency alerts
are also conceivable in this domain. Finally, hav-
ing an interface to the firm’s supply chain man-
agement would allow the Al to keep account of
all resources needed for the scheduled experi-
ments and initiate timely purchases if any ma-
terial runs short. Immediate orders via voice
might also be possible. In addition, a useful fea-
ture might be to ensure and document that
workflows comply with relevant regulation.
Regarding the technological requirements
of smart laboratories, figure 7 illustrates the
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basic setup of how agent-based neural net-
works might interact with lab workers. The in-
terface with the user is managed by the intelli-
gent agent system that comprises sensors to
receive information from the environment and
effectors to interact with it. These sensors
might include audio, video, temperature, hu-
midity, etc. and potential effectors such as
monitors, speakers, heating, among many oth-
er conceivable functionalities. A central posi-
tion in the system is taken by the data lake that
is ideally nurtured by the sensors and many
other sources of knowledge such as scientific
publication databanks and molecular libraries.
The data lake constitutes the knowledge repos-
itory that underlies the reasoning processes of
the system. Coupling the agent system with a
neural network introduces the capability to
analyze complex relationships in the data lake.
For example, neural networks have made strik-
ing contribution in domains as complex as ret-
rosynthesis planning, where hybrid approaches
including neural networks have recently made
a huge leap forward, as has been reported in
Nature (Segler et al., 2018). Neural networks can
extract patterns from noisy and heterogeneous
types of data such as audio, video, and images.
In congruence with the hybrid system’s goals,
the neural net provides information and deci-
sions that flow to the effectors for being trans-
mitted to the user.

Al has the potential to deliver considerable
value in the laboratory, but nothing comes
without costs. In order to enable hybrid Al sys-

Figure 6 Key value propositions of CleverlLab (based on: Gressling 2017).
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Figure 7 Schematic representation of the hybrid Al underlying Clever!Lab (based on: Gressling 2017).
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tems to unfold its more advanced functionali-
ties, some major technical preconditions need
to be met. At the center of the collaboration
between lab workers and intelligent agent lies
their communication. However, our human
language is hard to understand for machines
because it is ambiguous and work environ-
ments are often complex (Xiong et al., 2018).
For this means, Clever!Lab builds on IBM Wat-
son as the backbone of the intelligent agent,
which readily enables sense-making from con-
versation. The analytical power of the neural
net increases with the amount of information it
gets from its environment. Although the inter-
net of things is a strong driver of pervasive con-
nectedness between devices, the longevity of
old analogous machinery may currently hinder
the exchange of relevant information between
analytical devices such as chromatography sys-
tems and the digital assistant. In addition to
necessary technological conditions, new tech-
nology needs to be adopted by employees in
order to unfold its value, a topic that we discuss
in the following chapter.

4 Al adoption in incumbent firms --
The technology acceptance model

In the following, we discuss the potential
organizational challenges of Al application,
suggest remedies, and derive implications for
firms operating in the process industries. For
this means, we introduce and discuss the tech-
nology acceptance model (TAM) in order to de-
duce success factors for firms that strive to cre-
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ate value by applying Al throughout their busi-
nesses.

The implementation of new information
systems is often not only costly, but might even
fail (Legris et al., 2003). Therefore, research on
the adoption of information technology in or-
ganizations has received considerable academic
and managerial attention. Among others, aca-
demic researchers have developed and exten-
sively tested a framework briefly termed TAM
(Venkatesh and Davis, 2000). The goal of this
framework lies in explaining the employees’
usage behavior regarding novel information
technology. Beyond the application of Al in the
case studies presented above, Al is argued to be
a general purpose technology such as the
steam engine, electricity, or computers that has
the potential to create profound value through-
out all industries (Brynjolfsson at al., 2018). In
order to leverage the 100-200 billion dollars of
potential annual value creation projected by
McKinsey for the use of neural networks in the
chemical industry alone (Chui et al., 2018), em-
ployees must be willing to embrace new Al-
based solutions at the sacrifice of some of their
old working habits. Figure 8 illustrates the rela-
tionships between major factors that drive
technology adoption in form of actual usage
behavior in firms.

The employees’ actual usage behavior is
largely driven by their individual intention to
use a given technology. The intention to use a
technology does not directly translate into ac-
tual usage because old habits and routines
might drive employees to proceed in the old
manner. The intention to use a technology can

© Journal of Business Chemistry



Artificial Intelligence in the process industries

Journal of
Business Chemistry

Figure 8 Outtake from the technology acceptance model (TAM); arrows represent significant relationships (source:

Davis et al., 1989; Venkatesh & Davis, 2000).
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itself be predicted to a considerable degree by
the perceived usefulness and the perceived
ease of use of that technology (Davis et al,
1989). While perceived usefulness describes the
individual employee’s cognition that utilizing
the new technology would improve their job
performance, perceived ease of use is defined
as the employee’s perception that the IT sys-
tem can be used effortlessly (Davis et al., 1989).
On the left-hand side, figure 8 shows factors
that increase the perceived usefulness of a
technology (Venkatesh and Davis, 2000). Table
3 explains these factors in more detail.

In brief, high result demonstrability, job rel-
evance, and output quality all contribute to
higher technology adoption levels (Venkatesh
and Davis, 2000). Furthermore, some users are
unwilling to comply with mandatory usage of
new technologies, so that compliance-based
introduction should be avoided (Venkatesh and
Davis, 2000). Therefore, the usage of new tech-
nologies should be voluntary and adoption
might be encouraged through social influence,
for example by engaging in dialogue with the
actual users about how the result demonstra-
bility, job relevance, and output quality might
be improved from their perspective. In addition,
communicating the advantages of the new
technology through a direct comparison with
the old systems might increase the technolo-
gy’s adoption level (Venkatesh and Davis,
2000).

In context of the case studies presented in the
previous section, the technology acceptance
model is applicable to different degrees. While
Deep GENomiCs does not face issues regarding
the technology adoption because they primarily
employ Al experts, several established compa-
nies from the process industry might face sig-
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nificant barriers during the adoption process of
Al. For example, implementing an Al-based
CleverlLab approach to routine lab work might
provoke scepticism regarding the advantages
of the technology in comparison to the costs of
underlying steady audio and video surveillance,
while data security concerns remain high. Inso-
far, managers responsible for the introduction
of new technologies might bear in mind the
dimensions that drive the employees’ perceived
usefulness of technologies and incorporate
them into the design of the system as well as
clearly communicate them to potential users.
Decision makers might consider nurturing a
corporate culture that rewards experimenta-
tion and does not punish failure. Investments in
technology are never self-sufficient and only
pay off if courageous organizational employees
use it as a means to take hold on the emerging
opportunities (Stoffels and Leker, 2018). As all of
us will inevitably become more experienced
with hybrid systems combining intelligent
agents with artificial neural networks e.g. in
cars, smart homes, and with our mobile
phones, the willingness to adopt Al at work will
successively increase. However, those who viv-
idly explore the new technological opportuni-
ties and purposefully design their applications
will gain a competitive edge.

5 Conclusion

In times of declining returns from R&D in
the process industries, Al not only holds the
potential to incrementally improve data analy-
sis in many cases, but might also spark new
innovation by unlocking unprecedented in-
sights into data. Going forward, researchers
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Table 3 Dimensions that improve the perceived usefulness of technologies (source: Venkatesh & Davis, 2000).

Dimension of perceived usefulness

Description

Result demonstrability

Job relevance

The tangibility of the positive results produced with the new
technology.

An individual’s perception of how relevant the new technology is for

performing a current job.

Output quality

Voluntariness

The user’s perception of the quality of the results that the
technology enables.

The extent to which potential adopters perceive the usage to be

voluntary and not mandatory.

Experience

The more experience users have with a given technology, the more
they are willing and confident to use it in new situations.

and practitioners need to join forces to over-
come the barriers that prevent firms from lever-
aging the value creation potential of Al. This
article therefore strives to demonstrate when
specific Al methodologies are useful, discusses
two case studies, and explicates how potential
adoption barriers might be tackled in incum-
bent firms based on academic literature dedi-
cated to the acceptance of technologies.
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