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Abstract. Let A be a separable and exact C∗-algebra which is a continuous field of C∗-
algebras over a connected, compact metrizable space. If at least one of the fibers of A is

quasidiagonal, then so is A. As an application we show that if G is an amenable group
that is a central extension by a countable torsion-free group, then the C∗-algebra of G is
quasidiagonal.

1. Introduction

Quasidiagonal C∗-algebras have now been studied for almost forty years.
Quasidiagonality is a finite-dimensional approximation property. In fact, by
a theorem of Voiculescu, quasidiagonal C∗-algebras are precisely those C∗-
algebras which have good matrix models, in the sense that the relevant
C∗-algebraic structure can be seen in a matrix. Some important open prob-
lems in C∗-algebras are connected in some way to quasidiagonality or notions
around it. For example, the question of whether nuclearity and quasidiagonal-
ity are equivalent notions for reduced C∗-algebras of countable discrete groups
is still open an question.

In [12], Voiculescu proved that quasidiagonality is a homotopy invariant.
His technique can be adapted to prove quasidiagonality for certain continuous
fields of C∗-algebras.

Theorem 1.1. Let A be a separable exact C∗-algebra. Suppose that A is a

continuous field of C∗-algebras over a compact, connected metrizable space X.

If the fiber A(x0) of A is quasidiagonal for some x0 ∈ X, then A is also

quasidiagonal.

Following the approach taken by Dădărlat in [4], we use this theorem to
deduce the following result about the quasidiagonality of group C∗-algebras:
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Theorem 1.2. Let 1 → N → G → H → 1 be a central extension of amenable

second countable locally compact groups. Assume that N is torsion-free and

discrete. If C∗(H) is quasidiagonal, then so is C∗(G).

2. Quasidiagonality and homotopy invariance

Definition 2.1. Let H be a Hilbert space. A subset S ⊂ L (H) is called a
quasidiagonal set of operators if there is an increasing net (Pα)α of finite-
rank orthogonal projections on H , with Pα → I strongly and such that
limα ‖PαS − SPα‖ = 0 for every S ∈ S. A representation (π,H) of a C∗-
algebra A is a called a quasidiagonal representation if π(A) is a quasidiagonal
set of operators. A C∗-algebra is called quasidiagonal (QD) if it has a faithful
quasidiagonal representation.

The main characterization of quasidiagonality is contained in the following
theorem of Voiculescu (recall that a representation of a C∗-algebra is called
essential if its image does not contain any nonzero compact operator).

Theorem 2.2 ([12, Thm. 1]). Let A be a separable C∗-algebra. The following

statements are equivalent:

(i) A is QD.

(ii) Every faithful essential representation of A is quasidiagonal.

(iii) For every ε > 0, and every finite subset F ⊂ A, there exist a representa-

tion (ϕ,H) of A and a finite-rank orthogonal projection P ∈ L (H) such
that, for a ∈ F ,

‖Pϕ(a)P‖ ≥ ‖a‖ − ε and ‖[P, ϕ(a)]‖ < ε.

(iv) There is a sequence (ϕn)n of contractive completely positive maps, ϕn :
A → Mk(n)(C), such that, for a, b ∈ A,

lim
n

‖ϕn(a)‖ = ‖a‖ and lim
n

‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0.

The following theorem is a confirmation of the topological nature of qua-
sidiagonality:

Theorem 2.3 ([12, Thm. 5]). If A homotopically dominates B, and A is QD,

then B is also QD. In particular, quasidiagonality is an invariant of homotopy

equivalence.

Since the cone CA := C0([0, 1)) ⊗ A of any C∗-algebra A is homotopic
equivalent to the zero C∗-algebra (which is trivially a QD C∗-algebra), the
next corollary follows immediately from Theorem 2.3.

Corollary 2.4. For any separable C∗-algebra A, the cone CA of A is QD.

Note that in Corollary 2.4, the C∗-algebra A could be quite far from be-
ing quasidiagonal. We can regard CA as a continuous field of C∗-algebras
over [0, 1], with fiber A at each x ∈ [0, 1) and fiber 0 (a trivial quasidiagonal
C∗-algebra) at 1. Since quasidiagonality is a topological notion, this suggests
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the possibility of generalization. Indeed, it turns out that if A is exact and
a continuous field of C∗-algebras over a sufficiently nice space (a connected,
compact metrizable space), and at least one fiber of A is quasidiagonal, then
A is necessarily quasidiagonal. This is the result stated in Theorem 1.1.

3. Quasidiagonality of continuous fields of C∗-algebras

We shall make use of the following known characterization of connectedness
for compact metrizable spaces:

Proposition 3.1 ([8, Thm. 5.1]). Let (X, d) be a compact metric space. The

following statements are equivalent:

(i) X is connected.

(ii) For every ε > 0 and every pair of points x, y ∈ X there exist n ∈ N and

a finite sequence x0, x1, x2, . . . , xn of elements in X such that x0 = x,
xn = y and d(xk−1, xk) < ε for each 1 ≤ k ≤ n.

Lemma 3.2. Let H be a separable Hilbert space and D ⊂ L (H) a separable

C∗-subalgebra. Let F ⊂ D be a finite subset and T ∈ L (H) a finite-rank

operator such that 0 ≤ T ≤ 1 and ‖[T, a]‖ < δ for every a ∈ F . If D is a

quasidiagonal set of operators, then there is a finite-rank orthogonal projection

P ∈ L (H) such that T ≤ P and ‖[P, a]‖ < δ for every a ∈ F .

Proof. Let K denote the range of T . By (the proof of) [3, Prop. 7.2.2], there
is a finite-rank orthogonal projection P such that ‖[P, a]‖ < δ for every a ∈ F
and Pξ = ξ for every ξ ∈ K (choose χ to be a basis for K in that proof).
Note that PT = T . This implies that TP = T , and multiplying the inequality
0 ≤ T ≤ 1 by P on both sides, it follows that T ≤ P , as desired. �

Theorem 3.3. Let A and D be C∗-subalgebras of L (H), where H is a sep-

arable Hilbert space. Assume that A is separable, D is a quasidiagonal set of

operators. Let X be a compact connected metrizable space and x0 ∈ X. Put

B = {f ∈ C(X,A) : f(x0) ∈ D}.

Then B is QD.

Proof. By Theorem 2.2, it suffices to show that for each finite subset F ⊂ B
and ε > 0, there exist a representation ϕ : B → L (Hϕ) and a finite-rank
orthogonal projection P ∈ L (Hϕ) such that, for f ∈ F ,

‖Pϕ(f)P‖ ≥ ‖f‖ − ε and ‖[P, ϕ(f)]‖ < ε.

Let d be a metric on X inducing the topology. Put M := max{‖f‖ : f ∈ F}.
By [1, p. 332], there is δ > 0, such that for every pair of elements Q, b ∈
L (H) with 0 ≤ Q ≤ 1 and ‖b‖ ≤ M , the inequality ‖[Q, b]‖ < 4δ implies
‖[Q1/2, b]‖ < ε/10. We may assume that δ < ε/10. By uniform continuity,
there is r > 0 such that if d(x, y) < r then ‖f(x) − f(y)‖ < δ for all f ∈ F .
Write F = {f1, f2, . . . , fn}. For each 1 ≤ j ≤ n, there exists xj,0 ∈ X such
that ‖fj(xj,0)‖ = ‖fj‖. By Proposition 3.1, we can find a positive integer m
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such that for each 1 ≤ j ≤ n there is a finite subset {xj,0, xj,1, . . . , xj,m} ⊂ X
such that xj,m = x0 and d(xj,k−1, xj,k) < r for 1 ≤ k ≤ m.

Choose a finite-rank orthogonal projection P0 ∈ L (H) such that for every
1 ≤ k ≤ m we have

‖P0f(xj,k)P0‖ ≥ ‖f(xj,k)‖ − ε

for f ∈ F and 1 ≤ j ≤ n. Let ϕj be the representation of B that is given by

ϕj(f) := f(xj,0)⊕ f(xj,1)⊕ · · · ⊕ f(xj,m).

By the general facts on quasi-central approximate units, for each 1 ≤ j ≤ n
there are positive finite-rank operators

P0 ≤ Xj,0 ≤ Xj,1 ≤ · · · ≤ Xj,m ≤ 1

such that Xj,k+1Xj,k = Xj,k for 0 ≤ k ≤ m − 1 and ‖[Xj,k, f(xj,k)]‖ < δ
for f ∈ F and 0 ≤ k ≤ m. In particular, ‖[Xj,m, f(x0)]‖ < δ for f ∈ F . By
Lemma 3.2, we can choose each Xj,m to be a finite-rank orthogonal projection.
For each 1 ≤ j ≤ n define a bounded linear operator Tj : H → Hm+1 by

Tj = X
1/2
j,0 ⊕ (Xj,1 −Xj,0)

1/2 ⊕ · · · ⊕ (Xj,m −Xj,m−1)
1/2.

Then T ∗
j Tj = Xj,m, and hence Tj is a partial isometry (1 ≤ j ≤ n). Moreover,

for each f ∈ F and any 0 ≤ k ≤ m− 1 we have

‖[Xj,k+1 −Xj,k, f(xj,k+1)]‖ ≤ ‖[Xj,k+1, f(xj,k+1)]‖ + ‖[Xj,k, f(xj,k)]‖

+ 2‖f(xj,k+1)− f(xj,k)‖

< 4δ,

hence,

‖[(Xj,k+1 −Xj,k)
1/2, f(xj,k+1)]‖ < ε/10

for 0 ≤ k ≤ m− 1.

Fix j ∈ {1, 2, . . . , n} and let yj,0 := X
1/2
j,0 and yj,k+1 := (Xj,k+1 −Xj,k)

1/2

for 0 ≤ k ≤ m− 1. Note that Pj := TjT
∗
j = (yj,kyj,l)k,l ∈ B(Hm+1) and that

yj,kyj,l = 0 if |k− l| > 1, so that the projection Pj is tridiagonal. Furthermore,
Pj almost commutes with ϕj(F). Indeed, for any f ∈ F we have

‖[Pj , ϕj(f)]‖ ≤ 3 sup
|k−l|≤1

‖f(xj,k+1)yj,kyj,l − yj,kyj,lf(xj,l+1)‖

≤ 6 sup
0≤k≤m

‖[f(xj,k), yj,k]‖+ 3 sup
|k−l|≤1

‖f(xj,k)− f(xj,l)‖

≤ 6ε/10 + 3δ < ε.

Put P := P1 ⊕ P2 ⊕ · · · ⊕ Pn and ϕ := ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕn. Then for any
f ∈ F we have

‖[P, ϕ(f)]‖ = sup
1≤j≤n

‖[Pj , ϕj(f)]‖ < ε.
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Finally, if f = fj ∈ F , then using the fact that Xj,0 ≥ P0, we obtain

‖Pϕ(f)P‖ = sup
1≤k≤n

‖Pkϕk(fj)Pk‖

≥ ‖Pjϕj(fj)Pj‖

≥ ‖P0f(xj,0)P0‖

≥ ‖f(xj,0)‖ − ε

= ‖f‖ − ε. �

Proof of Theorem 1.1. By [2, Thm. A.1], there is a C(X)-linear ∗-monomor-
phism A →֒ C(X,O2). Let O2 ⊂ L (H) be a faithful separable representation.
Therefore A embeds in the C∗-algebra

B = {f ∈ C(X,O2) : f(x0) ∈ A(x0)}.

Since by the previous theorem B is quasidiagonal, so is A. �

Remark 3.4. The hypothesis of connectedness cannot be removed. An easy
example of this would be to consider a direct sum A1 ⊕ A2, where A1 is
quasidiagonal and A2 is not. This is a continuous field over {1, 2} with fiber
A(x) ∼= Ax, x ∈ {1, 2}.

4. Applications

As a corollary of Theorem 1.1, we have the following result about the quasi-
diagonality of crossed products by Z.

Theorem 4.1. Let A be a separable, exact C∗-algebra. Suppose that A is a

continuous field of C∗-algebras over a compact, connected metrizable space X.

If the fiber A(x0) of A is a simple unital AT-algebra for some x0 ∈ X, then

A⋊α Z is quasidiagonal for every C(X)-linear automorphism α ∈ Aut(A).

Proof. By [13, Cor. 8.6], A ⋊α Z is a continuous field of C∗-algebras over X
with fiber at x ∈ X isomorphic to A(x) ⋊αx Z, for some automorphism
αx ∈ Aut(A(x)). By [7, Cor. 6.8] (see also [6, Thm. 2]) the fiber A(x0)⋊αx0 Z

is AF-embeddable, hence quasidiagonal. The conclusion now follows from
Theorem 1.1. �

By varying the hypothesis on the quasidiagonal fiber in the preceding theo-
rem, or by varying the group, several other results about the quasidiagonality
of crossed products could be deduced similarly.

In 1987 Jonathan Rosenberg proved the following result.

Theorem 4.2 ([11, Thm. A1]). Let G be a countable discrete group. If C∗
r (G)

is quasidiagonal, then G is amenable.

It is an open problem to determine whether the converse is true, that is,
whether group C∗-algebras of countable amenable groups are necessarily quasi-
diagonal. Not much is known about the class of countable (amenable) groups
that satisfy the converse of Rosenberg’s result. It is known, for example, that
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this class contains all amenable maximally almost periodic groups. Theo-
rem 1.1 allows us to deduce that this class is closed under the formation of
central extensions by torsion-free groups.

Proof of Theorem 1.2. Since N is a torsion-free, countable discrete abelian

group, N̂ is a compact, connected metrizable space. By [5, Thm. 1.2] (see also

[10, Lem. 6.3]), C∗(G) is a continuous field of C∗-algebras over N̂ . Moreover,
the fiber over the trivial character of N is isomorphic to C∗(H), which is quasi-
diagonal by hypothesis. The conclusion now follows from Theorem 1.1. �

Note added in proof. It was recently established by N. Ozawa, M. Rørdam
and Y. Sato in [9], that the class of groups that satisfy the converse of Rosen-
berg’s theorem contains all elementary amenable groups.
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