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Zusammenfassung 

Infektionskrankheiten sind vor allem in Entwicklungsländern eine große Bedrohung 

des menschlichen Lebens. Immerhin sind 10 % aller krankheitsbedingten Tode 

weltweit auf sie zurückzuführen. Verursacht werden diese Krankheiten durch 

Bakterien, wie zum Beispiel Salmonella enterica, Shigella flexneri oder 

enteropathogene und enterohämorragische Escherichia coli, die meist auf dem 

fäkal-oralem Weg in den Organismus gelangen. Im Darm heften sich die Bakterien 

an Epithelzellen oder dringen in diese ein und beginnen sich zu vermehren. Ein 

typisches Symptom einer solchen Infektion ist schwere Diarrhö. Es ist die Aufgabe 

der Wissenschaft, die komplexen Mechanismen hinter der Wirt-Pathogen Interaktion 

zu entschlüsseln, um Infektionen begegnen zu können. 

Damit Bakterien eine Infektion etablieren können, müssen sie den 

Verteidigungsmechanismen des Wirtes entkommen. In der Regel wird dies dadurch 

erreicht, dass die Bakterien Signalwege der Wirtszelle manipulieren und sich so eine 

spezielle Nische schaffen, in der sie überleben können. Die Manipulation wird oft 

mit Hilfe eines Sekretionssystems erreicht, das es den Bakterien erlaubt 

Virulenzfaktoren in das Zytoplasma der Wirtszelle einzubringen. Hier interagieren 

die bakteriellen Proteine dann mit ihren wirtseigenen Zielen, wie beispielsweise den 

kleinen Rho GTPasen und rufen so unter anderem Veränderungen am 

Aktin-Zytokelett der Zelle hervor. 

Obwohl die Zahl der verschiedenen Effektorproteine im Reich der Bakterien groß ist, 

lassen sie sich doch auf Grund bestimmter Charakteristika in einzelne Gruppen 

einordnen. Eine besondere Gruppe unter den Virulenzfaktoren stellt die sogenannte 

WxxxE Familie dar. Zu ihren Mitgliedern gehören IpgB1 und IpgB2 (S.flexneri), 

SifA und SifB (S.enterica) sowie Map und EspT (EPEC). Sie alle teilen ein 

konserviertes WxxxE Motiv und die meisten besitzen GEF Aktivität, die es ihnen 

ermöglicht Rho GTPasen zu aktivieren. Die WxxxE Familie ist zurzeit Gegenstand 

intensiver Forschung. Durch ihre Interaktion mit Rho GTPasen erhalten Bakterien 

Zugriff auf eine Vielzahl zelluläre Prozesse, allen voran Aktin-Zytokelett 

Organisation und Vesikel Transport. Aktuelle Untersuchungen deuten jedoch darauf 

hin, dass diese bakteriellen Virulenzfaktoren noch weiter Interaktionspartner unter 

den Wirtsproteinen haben müssen, um den Bakterien die Generierung eines 

optimalen Lebensraums zu ermöglichen.  



 

Das finale Ziel dieser Arbeit war es daher, weitere Interaktionen zwischen Wirts- und 

bakteriellen Proteinen aufzudecken, die möglicherweise die Komplexität von 

Wirt-Pathogen Interaktionen erklären. 

Mit Hilfe von biochemischen Methoden wie pull down assays und 

Co-Immunpräzipitationen, sowie mittels mikroskopischer Verfahren konnten 

deutliche Hinweise auf eine Interaktion zwischen dem humanen, mit RhoA 

interagierendem Protein Rhophilin1 (RHPN1) und dem Virulenzfaktor Map aus 

EPEC, der GEF Aktivität gegenüber Cdc42 besitzt, gefunden werden. In diesem 

Zusammenhang zeigen wir auch, dass RHPN1 mit der kleinen GTPase Rac1, 

zusätzlich zu RhoA, interagieren kann. Des Weiteren zeigen wir hier, dass RHPN1 

zumindest teilweise an Mitochondrien lokalisiert und stellen erst Hinweise zur 

Verfügung, die darauf hindeuten, dass RHPN1 in der Lage ist Autophagie von 

membranassoziierten EPEC in Infektionsversuchen zu induzieren.  

In parallelen Ansätzen zeigen wir, dass der bakterielle Virulenzfaktor IpgB2 aus 

S.flexneri in der Lage ist, mit dem Bardet-Biedl Syndrom Protein 4 (BBS4) in 

Interaktion zu treten. Schlussendlich scheint der S.enterica Effektor SifA mit der kleinen 

GTPase Rab9 interagieren zu können. Diese beiden ersten Erkenntnisse sind nun 

Gegenstand eigenständiger Projekte.  

Zusammengefasst unterstreicht diese Arbeit, dass das Funktionsspektrum der 

untersuchten Virulenzfaktoren weit über die einfache Aktivierung von GTPasen 

hinausgeht. Die Fähigkeit mit weiteren Wirtsproteinen interagieren zu können, 

ermöglicht letztlich die Etablierung von bakteriellen Infektionen beziehungsweise 

verdeutlicht die Verteidigungsmechanismen der Zelle. Der spannende 

Zusammenhang zwischen EPEC Infektion und Autophagie wird zurzeit weiter 

verfolgt, um unser Verständnis des komplexen Zusammenspiels von Wirtszelle und 

diesem bedeutendem Pathogen auszubauen. 

 

  



 

Summary 

Infectious diseases are a serious threat of human life, especially in developing 

countries. They cause at least 10 % of all death on diseases worldwide. Bacteria like 

Salmonella enterica, Shigella flexneri, or enteropathogenic and enterohemorrhagic 

Escherichia coli cause such diseases. Usually they enter the host organism via the 

fecal-oral route.  In the intestine they attach to, or invade epithelia cells and begin to 

reproduce. Severe diarrhea is a typical symptom of those infections. In order to fight 

infections, it is the task of science to decrypt the complex mechanisms of host 

pathogen interaction. 

Prior to establishment of an infection, bacteria have to overcome the defense system 

of the host. Commonly, bacteria can accomplish this by manipulating the host´s 

signaling pathways, leading to the formation of a replication niche where the bacteria 

can survive. Often bacteria utilize a secretion system to inject virulence factors into 

the host cell cytoplasm, which in turn start manipulation of the host targets. Common 

targets are small GTPases that control rearrangements of the actin cytoskeleton.  

Although the number of different effector proteins among the bacteria is huge, it is 

possible to group them on the basis of certain characteristics. A special group of 

virulence factors is the so called WxxxE family. IpgB1 and IpgB2 (S.flexneri), SifA 

and SifB (S.enterica), as well as Map and EspT (EPEC) are family members. All of 

them contain a conserved WxxxE motive, and the majority of them embodies 

bacterial GEFs, which are able to activate Rho GTPases. Currently, the WxxxE 

family is subject of extensive research. By targeting Rho GTPases, bacteria gain 

access to a variety of cellular processes, like actin cytoskeleton organization or 

vesicle transport. Current research indicated that these bacterial virulence factors 

must have additional interactors among the host´s proteins to allow bacteria the 

generation of an optimal environment.  

The ultimate goal of this work was to identify further interactions between host- and 

bacterial proteins that may explain the complexity of host pathogen interaction. 

By using biochemical methods like pull down assays and co-immunoprecipitations 

as well as microscopic techniques we reveal evidence for an interaction between the 

human RhoA interactor rhophilin1 (RHPN1) and the virulence factor Map from 

EPEC, which embodies a bacterial GEF for Cdc42. Within this framework we also 

show that RHPN1 is able to bind, to the small GTPase Rac1 in addition to RhoA. 

Furthermore we here show an at least partial localization of RHPN1 to mitochondria 



 

and provide initial evidence for RHPN1 being able to induce autophagy of EPEC 

attached to the plasma membrane by using infection assays. 

In a parallel effort, we show that the bacterial virulence factor IpgB2 from S.flexneri 

is able to get in contact with the Bardet-Biedl Syndrom Protein 4 (BBS4). Finally, 

the S.enterica effector protein SifA targets the small GTPase Rab9. These two initial 

findings are now subjects of independent projects. 

In conclusion, this work underpins once more that the spectrum of functions of the 

analyzed virulence factors goes far beyond the simple activation of GTPases. The 

ability to interact with further host proteins finally allows establishment of an 

infection or reflects cell defense mechanisms. The exiting link between EPEC 

infection and autophagy is currently followed to further our understanding of the 

complex interplay of host cells with this important pathogen.   
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A/E  attaching and effacing  

AIDS  acquired immunodeficiency syndrome 

amp  ampicillin  

ADP  adenosine diphosphate 

APS  ammoniumperoxodisulfat 

ATP  adenosine triphosphate 

BBS  Bardet-Biedl syndrome 

BSA  Bovine serum albumin 

c  centi- 
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DKFZ  German Cancer Research Center 

DMEM Dulbeccos' modified Eagle medium 

DMSO  dimethyl sulfoxide 

DN  dominant negative 
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et al.  et alii 
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G-actin globular actin 

GAP  GTPase activating protein 

GBD  global burden of disease 

GDI  guanosine nucleotide dissociation inhibitors 

GDP  guanosine diphosphate 

GEF  guanosine nucleotide exchange factor 

GFP  green fluorescent protein 

GST  glutathione sepharose 

GTP  guanosine triphosphate 

h  hour(s) 

HGF  hepatocyte growth factor 

HIV  human immunodeficiency virus 

HRP  horseradish peroxidase 

Hs  Homo sapience  

IF  immunofluorescence microscopy  

IFN  Interferon 

IFT  intraflagellar transport 

Ig  immunglobulin, immunglobulin-domain 

Il  interleukin  

IP  immunoprecipitation 

IPTG  isopropyl β-D-1-thiogalactopyranosid 

k  kilo- 

kana  kanamycin 

KO  knockout 

l  liter(s)  

L  leucine 
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LB  Luria Bertani broth 

LEE  locus of enterocyte effacement 

LPS  lipopolysaccharide 

m  milli- or meter(s) 

M  molar mass 

mc  monoclonal 

MBP  maltose binding protein 

MEFs  mouse embryonic fibroblast 

MEM  minimum Essential Medium Eagle 

MHC  major histocompatibility complex 

min  minute(s) 

Mm  Mus musculus 

MVB  multivesicular body 

n  nano- 

N   Newton or asparagine 

No.  number 

NPF  nucleation promoting factors 

n.s.  not significant 

OD600  optical density at 600 nm 

p  pico- 

PAGE  polyacrylamide gel electrophoresis 

PBS  phosphate buffered saline 

pc  polyclonal 

PCR  polymerase chain reaction 

PDGF  platelet-derived growth factor 

PDZ  PSD-95/Disk-large/ZO-1 binding motif 

PFA  paraformaldehyde 

Pi  phosphate 

PS  penicillin/streptomycin  

PVDF  polyvinylidenfluorid 

Q  glutamine 

RHPN  rhophilin 

rpm  rounds per minute 

s  second(s) 
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SCV  Salmonella containing vacuole  

SDS  sodium dodecyl sulfate 

Sifs  Salmonella induced filaments 

SN  supernatant 

SS  super-sonication 

t  time 

T  threonine 

T3SS  type 3 secretion system 

TAE  tris base, acetic acid and EDTA containing buffer 

TBS  tris-buffered saline 

TBS/T  tris-buffered saline / Tween 20 

TIF  tagged image file format 

Tir  translocated intimin receptor 

TLR  Toll like receptors 

µ  micro-  

U  unit 

V   volt or valine 

v/v  volume per volume 

W  tryptophan 

w/v  weight per volume  

WHO  world health organization 

WT  wild type  
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xg  times gravitation constant 
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Figure 1 Global and regional ranking of leading causes of years of life lost (YLL) 

To calculate the YLL the years, lost by early death, till anticipated average life, in certain region or 

country are counted. With other words this graphic shows which disease “steel” how many years, 

global and in different regions. Rank one to three ischaemic heart diseases, lower respiratory 

infections and cerebeovascular diseases respectively have an equally huge influence all over the 

world, without noticeable effects of income. In other cases it is different, diarrhea for example is 

concentrated on poor regions and the influence of malaria depends on the distribution of the 

anopheles mosquito (Lozano et al., 2012).   

 

1 Introduction 

1.1 Host pathogen interaction 

Why should we study host pathogen interactions? To answer this question, a simple 

look into the latest world health organization (WHO) report on “The Global Burdon 

of Diseases” (GBD) is sufficient. In 2010 5.3 million or 76 of 100,000 people died 

on infectious diseases, these are 10 % of all death on diseases. If we take a closer 

look at diarrhea, caused for example by enteropathogenic E.coli (EPEC), Salmonella 

or Shigella, which are subject of this thesis, it becomes even more obvious. Diarrhea 

killed 1.4 million people in 2010, this is the same case number as for HIV/AIDS. 

Diarrhea is on position four of the global years of life lost (YLLs) ranking, with huge 

differences between high and low income countries (Figure 1). Every year, 1.25 

million (20 % of all death) children under an age of 5 years die of infectious diseases. 

However, one promising fact from this report is, that in the last twenty years, the 

number of deaths caused by infectious diseases decreased from 7.8 million in 1990 

by 32 %, reflecting the increased efficiency of treatment and technology of this 

poverty connected disorders (Lozano et al., 2012). 
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1.2 The Host 

1.2.1 Motion 

Motion is an essential feature of life. Cellular motility is tightly connected to the 

formation of actin driven membrane protrusions, namely lamellipodia, filopodia and 

ruffles (Small et al., 2002). In 1980 Abercrombie first linked the thin layer of 

protruding cytoplasm at the cell periphery to motility. Protrusions, parallel to the 

substrate, were named “leading edge” or “lamellipodium” (Abercrombie et al., 

1970a). Abercrombie further noticed a random continuous protrusion and retraction 

of the lamellipodium, with a net plus on protrusions, pushing the cell forward. In the 

following thirty years intensive research generated much insight to cell movements, 

so that today, the events at the leading cell edge are quite well described. The 

mechanism behind protrusion and retraction of the dynamic structures at the cell 

front is the assembly and disassembly filamentous actin (F-actin) (see 1.2.1.5). This 

process is tightly regulated in mammalian cells. Key regulators in this process are the 

small guanosine triphosphatases (GTPases) of the Rho-family (Hall, 1998). Some 

pathogens are able to hijack these cellular processes in order to manipulate the hosts 

actin cytoskeleton resulting in local ruffle formation and lamellipodia extension 

which trigger the internalization of bacteria into membrane bound vacuoles (Patel et 

al., 2005, McGhie et al., 2009). In the following passages I attempt to shed light on 

the different protrusive structures and the established factors involved in their 

regulation. Furthermore I would like to focus on actin polymerization, the core 

process behind migration.  

 

1.2.1.1 Lamellipodia and ruffles 

There is a lot of knowledge available on the lamellipodium since it has been studied 

for more than a half decade. Ingram and Abercrombie were among the first who used 

light microscopy techniques, to systematically analyze the “leading edge” of moving 

cells (Ingram, 1969, Abercrombie et al., 1970a, Ladwein et al., 2008).  

The 0.1-0.2 µm thick and 1-5 µm wide seam (according to the cell type) at the 

leading edge of the cell consists of a dense meshwork of actin-filaments, pushing 

their fast growing ends against the plasma membrane (Small et al., 1978) (Figure 2). 

If the lamellipodium detaches from the substrate and curls upwards, we have a 

special form, called “membrane ruffle” or only ruffles (Abercrombie et al., 1970b). 
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By the injection of fluorescent actin into fibroblasts, it could be shown that the 

leading edge of the lamellipodium is in fact the primary site of actin incorporation 

(Glacy, 1983). Embedded in the lamellipodium actin bundles could often be 

observed. If these bundles stay inside the lamellipodium they are called 

“microspikes” and if they extend beyond its edge they are referred to as “filopodia” 

(Small et al., 2002). Apart from their functions in cellular migration, lamellipodia 

fulfill several other important functions. Namely they participate in development of 

adhesions and are involved (as ruffles) in macropinocytosis as well as in 

phagocytosis. The exertion of those different functions demand an exact regulation. 

This regulation mainly occurs by actin polymerization and disassembly. The primary 

pathway leading to lamellipodia and ruffle formation is via the small Rho GTPase 

Rac and the actin nucleator Arp2/3 (see 1.2.1.5). The significance of GTPases for the 

actin cytoskeleton in general and of Rac for the lamellipodium in particular is known 

since Ridley and colleagues microinjected purified constitutively active Rac into 

fibroblasts and observed massive lamellipodia and ruffle formation (Ridley et al., 

1992).  

In mice the absence of Rac1 is embryonic lethal at day 6.5, because of incomplete 

gastrulation (Sugihara et al., 1998). Therefore further genetic analysis requires the 

creation of conditional alleles. This allows embryonic survival followed by tissue 

specific knockout later in differentiation (Gu et al., 2003). Using this method, Vidali 

and colleagues generated mouse embryonic fibroblasts (MEFs) deleted for Rac1. 

These cells show a dramatic change in morphology and lack lamellipodia and ruffles. 

However, their knockout (KO) cells were still able to migrate with help of 

pseudopodia like protrusions, along a platelet-derived growth factor (PDGF) gradient 

(Vidali et al., 2006).  
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Besides membrane ruffles at the leading edge of the cell, which were already 

mentioned, there is a second type of ruffles, the so called circular dorsal ruffles 

(CDRs) (Figure 2). This highly dynamic structure is rich in F-actin. They can be 

observed a few minutes after treatment with growth factors such as PDGF 

(Mellström et al., 1983) or hepatocyte growth factor (HGF) (Dowrick et al., 1993). 

Figure 2 Schematic illustration of protrusive structures at the cell surface 

The image illustrates the protrusive membrane structures of a migrating cell. The intensity of the red 

color symbolizes the grade of actin dynamics. Finally there are four close-ups, which show the 

different structures in a higher resolution. We have lamellipodia along the leading edge with 

embedded microspikes. If the membrane curls up, either at the cell periphery or on top of the cell as 

circular structures, so called ruffles are formed. Furthermore there are rods of parallel actin, 

protruding beyond the cell borders into the extracellular space, which are termed filopodia (Ladwein 

et al., 2008). 
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The lamellipodium often curls up from the substratum and moves, like small sails, on 

the cell surface towards the cell center. Alternatively, CDRs can establish directly on 

the back of the cell in 2D tissue culture. Single membrane ruffles can group together 

and build circular ruffles, which constrict and close within 5-20 minutes (Mellström 

et al., 1983). The cup-like structure formed by CDRs goes perfectly with the process 

termed macropinocytosis and may serve receptor internalization (Swanson, 2008, 

Hoon et al., 2012). However, the impact of CDRs on macropinocytosis is under 

discussion. As Suetsugu et al. showed, the uptake of fluorescently labeled dextran 

through macropinocytosis did not occur at places of CDRs (Suetsugu et al., 2003). 

Further research will be necessary to clarify this point. 

 

1.2.1.2 Filopodia and Microspikes 

In contrast to the dense meshwork of differently angled actin filaments building the 

lamellipodium (Köstler et al., 2008), filopodia are finger like protrusive structures, 

regularly embedded in or extending beyond the lamellipodium that contain parallel 

bundles of actin filaments (Ridley, 2011). Bundles of actin which remain within the 

lamellipodium and do not protrude further are called microspikes (Small et al., 

2002). Microspikes also can serve as precursors of filopodia (Svitkina et al., 2003). 

Filopodia participate in many processes, ranging from sensing the environment 

(Wood et al., 2002b) or chemoattractants (Koleske, 2003), over anchorage of the cell 

to the extracellular substrate (Wehrle-Haller, 2012, Partridge et al., 2006), to wound 

healing (Wood et al., 2002a). Furthermore, as already mentioned in the previous 

paragraph, filopodia can develop independent of lamellipodia and take part in 

cellular motility, as it was shown e.g. in Rac1 KO cells (Vidali et al., 2006) or cells 

deficient in WAVE complex function (Steffen et al., 2006).  

Studies in different cell types revealed that there is huge variation in dynamics and 

length of filopodia, even positioning of these protrusions differ (Mattila et al., 2008). 

The dynamics of filopodia, protrusion and retraction results from the balance 

between actin polymerization at the tip and retrograde flow (Mallavarapu et al., 

1999).   

Like already described above for lamellipodia, the formation of filopodia is regulated 

by a member of small Rho GTPase family. In 1995 Hall and others investigated the 

role of small Rho GTPases by microinjection experiments combined with live time 

imaging. Co-microinjection of dominant negative Rac1, to abolish lamellipodia and 
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constitutive active Cdc42 showed, that the formation of filopodia starts after five 

minutes (Nobes et al., 1995, Kozma et al., 1995). The regulation of filopodia 

formation by Cdc42 was initially believed to occur via activation of WASP and 

N-WASP, leading subsequently to induction of the actin nucleator Arp2/3 (Prehoda 

et al., 2000, Rohatgi et al., 1999). But more recent studies have shown that filopodia 

can form independent of Arp2/3 and Cdc42 (Steffen et al., 2006, Sigal et al., 2007) 

and highlighted the role of formins and VASP (Figure 6) as actin nucleator leading to 

filopodia formation (Faix et al., 2009). Nevertheless, contribution of Arp2/3 is still 

subject of discussion (Rottner et al., 2011, Mattila et al., 2008, Yang et al., 2011). 

To concentrate single actin filaments to a stiff actin bundle, so called actin 

cross-linking proteins are necessary. One member of this group, which localizes to 

filopodia shafts is fascin, other proteins like fimbrin, α-actinin, espin and villin can 

cross-link F-actin too, but are not specifically targeted to filopodia (Kureishy et al., 

2002, Vignjevic et al., 2006). 

 

1.2.1.3 Stress fibers  

The last of the prominent cytoskeletal actin structures are stress fibers, thick bundles 

of actin filaments which pervade the cell. Each bundle consists of 10-30, in some 

cases of up to 300 filaments which are themselves composed of actin and non-muscle 

motor protein myosin II (Cramer et al., 1997, Weber et al., 1974). Bundling is 

accomplished by α-actinin, maybe in cooperation with other actin cross-linking 

proteins (Lazarides et al., 1975, Pellegrin et al., 2007). Due to their subcellular 

localization, stress fibers are grouped into three different classes, ventral and dorsal 

stress fibers plus transverse arcs (Small et al., 1998) (Figure 3). One of the first 

descriptions of those structures, although not specially named yet, was made by 

Heath and colleagues (Heath et al., 1978). The most commonly observed are ventral 

stress fibers which span the cytoplasm along the ventral side of the cell and are 

linked to focal adhesions at both ends. In contrast, dorsal stress fibers are significant 

shorter and only attached to adhesions on one side. Finally transverse arcs are 

situated at the dorsal surface, behind the lamella, and seem not to be connected to 

any adhesions (Heath et al., 1978). When the loose ends of dorsal stress fibers, or 

arcs, meet they are able to fuse, resulting in a new ventral stress fiber, so dorsal fibers 

could be seen as precursors of ventral ones (Hotulainen et al., 2006). The 

combination of focal adhesions, actin fibers and myosin II suits perfectly to generate 
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tension. The result of force measurements revealed, that a constant stress of 

5.5 ± 2 nN/µm
–2

 is applied on single adhesions by actomyosin (Balaban et al., 2001). 

Loss of stress fibers in response to C3 toxin treatment suggested participation of the 

three Rho members of the small GTPase family in the signalling pathway leading to 

stress fiber formation (Chardin et al., 1989). The role of RhoA, RhoB and RhoC, all 

main targets of C3 toxin, was validated by microinjection, which results in massive 

stress fiber formation and alters the complete cell shape (Paterson et al., 1990). 

Under physiological conditions RhoA seems to be the major regulator of stress fiber 

formation, while RhoB and RhoC fulfill a minor role or they are specialists for 

 

Figure 3 Three types of stress fibers in the cell 

In the immunofluorescence image (A) a U2OS human osteosarcoma cell stained for focal adhesions 

(red) F-actin (green) and the nucleus (blue) is shown. Ventral stress fibers, connecting two adhesions 

are located in the back part of the cell. Dorsal ones grow from focal contacts at the protruding front. 

The more filigree arcs could be found right behind the lamella. An overview of the different 

structures is given in the drawing. In (B) the periodical composition of stress fibers is illustrated by 

α-actinin (green) and F-actin (red) staining in Swiss 3T3 cells. (Bars: left 25µm; right 10µm) 

(Burridge et al., 2013). 
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particular situations or cell types (Pellegrin et al., 2007). Later two main players 

downstream of RhoA were discovered, namely the ROCK/ROK protein kinases 

(Leung et al., 1995) and the diaphanous-related formin, mDia1 (Watanabe et al., 

1997). On their own, both proteins are not able to emulate the effect of a RhoA 

overexpression. Only if ROCK and mDia1 work concurrently, they are able to 

induce thick and long actin bundles (Watanabe et al., 1999). 

 

1.2.1.4  Small GTPases 

It has already become clear in the previous chapter that dealt with protrusive 

structures, that small GTP-binding proteins have a central role in controlling cellular 

locomotion. Beyond this, they are key regulators in a lot of cellular processes, 

including cell polarity, vesicle trafficking and cytokinesis (Heasman et al., 2008). 

The story of their discovery started in 1982 with the identification of the mutationally 

activated oncogene RAS in human cancer cell lines. In the following decades 

immense effort has been put into research and a huge superfamily of Ras related 

small GTPases, which is highly conserved from yeast to mammals, has been 

discovered (Cox et al., 2010). One member is the Rho GTPase family, which 

comprise 20 proteins at the moment (Heasman et al., 2008). Among them are Cdc42, 

Rac1 and RhoA (Figure 4).  

 

 

Figure 4 Dendrogram of the small Rho GTPase family 

Members of the human Rho GTPases, shown in a Clustal/W dendrogram (Cox et al., 2010) 
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Most GTPases shuttle between two conformational stages (Figure 5), one is the GTP 

bound active stage, in which the GTPase is able to interact with its downstream 

effectors, the other is GDP bound and inactive. The dissociation of GDP and 

incorporation of GTP is catalyzed by one of over 80 guanine nucleotide exchange 

factors (GEF). This takes place at the cell membrane, to which the GTPases are 

associated via an isoprenyl moiety that is post-translationally added to the carboxyl 

terminus of the protein. The other way round, the hydrolysis of GTP is driven by 

GTPase activating proteins (GAP), there are more than twenty of them. There is one 

more regulatory component, the GDIs (guanine dissociation inhibitors), which keep 

the GTPase inactive (Aktories, 2011, Cherfils et al., 2013) and protect them from 

degradation (Boulter et al., 2010). 

 

The tight regulation of GTPases by different GEFs, GAPs and GDIs with partially 

overlapping activities has the advantage that the cell can respond specifically to 

different signals, guiding them precisely in their target pathways. This level of 

regulation is a main target of the manipulation by pathogens that have evolved 

intricate strategies to hijack or block the GTPase activation cycle. On the other side 

the cycle is prone to interference and manipulation by pathogens. In the following I 

Figure 5 Regulation of the Rho-family GTPase cycle 

The activation of Rho-family GTPases is catalyzed by GEFs and takes place at the plasma membrane. 

In the GTP bound active state, the GTPase is able to interact with its specific effector proteins to 

affect downstream pathways. GAPs enhance the intrinsic GTPase activity and thereby help to 

hydrolyze GTP to GDP+Pi. By capping the isoprenyl moiety, GDIs keep the GTPase away from the 

plasma membrane, resulting in a durable inactivation (Aktories, 2011). 
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will give several examples, to illustrate the variety of possibilities for pathogens, to 

subvert the GTPase cycle: 1) the two virulence factors of Salmonella Typhimurium, 

SpoE and SopE2, which serves as bacterial GEF for Rac1 and Cdc42 (Hardt et al., 

1998); 2) DrrA from Legionella pneumophila, which functions in two ways, by 

stimulating the GTP incorporation and by releasing its target GTPase from GDIs 

(Murata et al., 2006, Schoebel et al., 2009); 3) S. Typhimurium SptP which is able to 

act as a bacterial GAP facilitating the hydrolysis of GTP (Fu et al., 1999). 

 

1.2.1.5 Actin polymerization 

 

Figure 6 shows the complex network, controlling the formation of actin riche 

protrusions. In this chapter I would like to focus on the very last step of the cascade, 

the procedure of actin nucleation.  

Figure 6 Organization chart of the signaling network leading to actin structures 

Cytoskeletal reorganization is mainly mediated via the small GTPases Rac1, Cdc42 and RhoA, 

leading to lamellipodia, filopodia and stress fibers respectively. An additional level of complexity is 

added by the fact that the different pathways crosstalk with each other. Cdc42 for instance, is able to 

influence invasive migration or contractility in addition to and independent of filopodia formation. 

The main actin-nucleators are Arp2/3 complex and formins. Arp2/3 is activated by NPFs such as 

N-WASP or WAVE-complex. Actin polymerization via formins is triggered by RhoA (Rottner et al., 

2011). 
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Actin is one of the most abundant proteins in eukaryotic cells. Two forms of this 

ATP-binding protein are present in the cell: 1) is the 42 kDa monomeric globular 

actin (G-actin) and 2) filamentous actin (F-actin) derived from non 

covalent-self-assembly of monomers. These filaments have two asymmetric ends. 

The growing barbed end has a high affinity for filamentous (thus favoring 

polymerization) while the pointed end has a lower affinity for globular actin (thus 

favoring depolymerization in the equilibrium). The difference between (+) and (-) 

end results in a slow treadmilling of subunits (Figure 7). 

 

Figure 7 Assembly and recycling of branched actin filament networks 

The treadmilling model of actin filament assembly and recycling involves the Arp2/3 complex and 

several other proteins which posses regulatory influence on the cycle. At the beginning of the 

cycle an external stimulus (1), signals to cell to move or to alter its shape. The external signal 

triggers a pathway, which at the end activates a NPF (2), which in turn binds to actin and activates 

the Arp2/3 complex, a new filament is initiated (3). These filaments are elongated by incorporation 

of ATP-actin (4), which pushes the membrane forward (5). The elongation stops when capping 

protein binds to the barbed end, preventing the addition of further actin monomers (6). During 

maturation of the filaments (7) hydrolysis of ATP-actin and γ-phosphate dissociation takes place. 

ADF/cofilin promotes dissociation and severs ADP-actin filaments (8). Finally profilin catalyzes 

the ADP for ATP exchange of G-actin (9), refilling the pool of polymerization-competent actin 

(10) waiting for the next round of filament nucleation (Pollard et al., 2003). 
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In case of pure actin filaments, treadmilling results in a forward movement with a 

velocity of 0.04 µm/min. However, under in vivo conditions filaments can grow 

much faster with up to 10 µm/min. The velocity is increased by additional factors 

that facilitate growth. To start a new filament, three monomers have to group 

together to form a nucleation seed called “nucleus”. In principle, the nucleation of 

F-actin can occur spontaneously but it is highly inefficient, since formation of actin 

dimers or trimers is kinetically unfavorable. To solve this problem, actin nucleators 

and so called nucleation promoting factors (NPF) are available in the eukaryotic cell, 

which catalyze the process to overcome the kinetic barrier. For a long time only one 

nucleator, Arp2/3 complex and a few NPFs were known. The past decade however, 

lead to the identification of more NPFs, other nucleators like formins, and further 

proteins involved in actin polymerization. All this can be found in a variety of 

reviews on this topic, for example (Campellone et al., 2010, Goley et al., 2006, 

Pollard et al., 2003, Rotty et al., 2013). 

 

Arp2/3-complex 

The Arp2/3-complex was discovered several times independently in the 1990s, for 

example by affinity chromatography from Acanthamoeba, using the G-actin binding 

protein profiling as affinity matrix (Machesky et al., 1994), or as a human factor 

required for actin-comet tail formation of Listeria monocytogenes (Welch et al., 

1997) and as a essential factor of Cdc42 induced actin filament assembly (Ma et al., 

1998). The complex consists of seven subunits with two actin related components, 

the actin related proteins 2 and 3 (Arp2 and Arp3) (Machesky et al., 1994). The 

subunits Arp2 and Arp3 build a dimer and function as a nucleator by imitating the 

structure of a free (+) end, thus generating a nucleation seed. The complex binds to 

pre existing filaments and is able to generate new filaments by Y-shaped branching, 

afterwards Arp2/3 remains at the pointed end of the new filament (Rouiller et al., 

2008, Mullins et al., 1998). Due to its structural conformation, Arp2/3 on its own is 

rather inefficient in nucleating (Campellone et al., 2010). To increase the nucleation 

efficiency, two things are necessary. The complex has to bind to an existing actin 

filament and it has to be activated by NPFs, resulting in conformational changes 

bringing Arp2 and Arp3 in the right conformation (Goley et al., 2004). 
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Nucleation promoting factors 

The first NPF was discovered in 1998 by Welch and colleagues. They could show 

that the Listeria surface protein ActA is able to activate the Arp2/3 complex, 

resulting in an accelerated actin filament formation. ActA alone was not able to 

generate filaments. They estimated that this mechanism of Arp2/3 activation may 

play a role in the cell too (Welch et al., 1998), which turned out to be true in the 

following years. Today we know that there are two subclasses of NPFs (Figure 8), 

recently reviewed by Rotty and colleagues. All class I NPFs contain a VCA domain, 

which allows G-actin as well as Arp2/3 binding at the same time. This VCA domain 

(also known as WH2 = WASP homology 2 domain) consists of 3 modules: the V = 

verprolin homology, the C = connector and the A = acidic motif. Members of this 

class are WASP, N-WASP, WAVEs and the more resent discovered WASH, 

WHAMM and JMY. Class II NPFs include cortactin and Hs1, they lack the VCA 

domain but nevertheless they are able to bind to Arp2/3 and F-actin instead of 

G-actin. They are thought to have stabilizing effects on existing filaments. Besides 

activating cofactors of the Arp2/3 complex, there are also repressive ones, like 

cofilin or PICK1. Both types of cofactors underlay a tight regulation by various 

signaling pathways (Rotty et al., 2013).   

 

Figure 8 Positive and negative regulation of the Arp2/3 complex  

The Arp2/3 complex initiates new filaments from the side of preexisting mother filaments. For this 

function the complex has to be tightly regulated. The activators, so called nucleation promoting 

factors are divided into two subclasses, containing either directly activating or stabilizing effects. 

The inhibitors execute a lot of different functions, among them filament severing or destabilizing. 

Positive as well as negative cofactors of Arp2/3 underlay the regulation of various signaling 

pathways (Rotty et al., 2013). 
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1.2.2 Defense mechanisms  

Higher organisms are under constant thread of bacteria, viruses and other hazardous 

organisms or toxins. Only very complex self-defense mechanisms secure survival. In 

case of animals, this mechanism is the immune system. In mammals, it is divided 

into two parts, the innate and the adapted immune system. To survive and proliferate 

within the host, pathogens have either to hide or to escape. The mammalian intestine 

is a well studied example of how a host defends against intruders, because this niche 

embodies the zone where the bacteria-containing gut lumen and the sterile body 

adjoin, separated only by a barrier made of a thin layer of epithelia cells. Indeed, 

these cells are the first physical and chemical defense line. If pathogens are able to 

breach this barrier to invade deeper tissues, they face the innate immune system, 

which is represented by different phagocytic cells.  

 

Figure 9 Recognition, phagozytosis and subsequent degradation of pathogens 

Specialized cells for phagocytosis like macrophages or dendritic cells carry receptors on their surface 

that detect certain pathogen related antigens or structures. Upon pathogen recognition, phagocytosis 

takes place (1.). In the next step, the phagosome fuses with lysosomes and the pathogen is degraded 

(2.). After fusion with a MHC carrying vesicle, antigens of the pathogen remnants are prepared for 

antigen presentation (3.). Finally, the loaded MHC is translocated to the cell surface and presents the 

antigen to naïve T cells (4.). 

 

1. 

2. 

3. 

4. 



Introduction 15 

 

During phagocytosis specialized cells, like macrophages, neutrophils and dendritic 

cells, recognize, engulf and digest large particles (Figure 9), for example bacteria 

(Botelho et al., 2011). For obsonized particles the best characterized pathways go via 

the FCγ- or the complement receptor (Caron et al., 1998). In case of non-obsonized 

particles, there are multiple other receptors, including Toll like receptors (TLR) 

(Shen et al., 2010) or the scavenger and mannose receptors (Zhang et al., 2005), that 

can indicate phagocytosis. Pathogens that invade host cells and escape from the 

phagosome, face the autophagy system as the next line of host defense (Yuk et al., 

2012). Although phago- and autophagocytosis belongs to the innate immune system, 

they are also crucial for the activation of adopted immunity. Pathogen derived 

peptides from the phagosome are processed for presentation on major 

histocompatibility complex (MHC). The antigen presenting MHC is translocated to 

the plasma membrane, where naïve T cells are able to recognize the antigen and 

induce the adapted immune response (Kagan et al., 2012). In addition, triggering of 

the TLR or any type of pathogen recognition leads to the activation of inflammatory 

factors, like NF-κB, AP-1 or various cytokines (Medzhitov, 2009). 

 

1.3 Pathogens 

1.3.1 Infection strategies  

Depending on the bacterium, there are different strategies to survive the host´s 

immune response and to establish infection of the host cell. Some bacteria are able to 

evade phagocytosis, either by encapsulation (Neisseria, Streptococcus) or by 

avoiding recognition by receptors (Staphylococcus, Streptococcus). Another 

possibility to avoid phagocytosis is to manipulate the host cytoskeleton to prevent the 

formation of the phagosome (Yersinia, EPEC, EHEC). Other bacteria follow 

different strategies: they allow or even promote phagocytosis and then inhibit 

phagosome maturation (Salmonella, Legionella) or actually live in the harsh 

environment of the mature phagosome (Mycobacterium). Finally, there is the 

possibility to escape from the early phagosome and persist in the cytoplasm (Listeria, 

Shigella) (Sarantis et al., 2012) 
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Figure 10 EPEC mounted on pedestals 

Pseudocolored electron microscope image of 

EPEC (red) sitting on actin rich pedestals 

(Manfred Rhode, HZI Braunschweig) 

 

1.3.2 EPEC/EHEC 

Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are 

human pathogens of the intestine which share a unique mechanism to colonize the 

host. They transduce a number of effector proteins via a type III secretion system 

(T3SS) into the host´s cytoplasm (see 1.3.5). These effectors not only result in the 

typical attaching and effacing (A/E) lesions leading to disappearance of the 

microvilli brush border, but also manipulate several other signaling pathways. Both 

strains belong to the family of diarrhoeagenic pathogenic Escherichia coli. EPEC 

(enteropathogenic E.coli) causes gastroenteritis with massive water loss in infants 

while EHEC (enterohemorrhagic E.coli) causes bloody diarrhea. The difference 

between the two pathogens is that EHEC but not EPEC is able to produce Shiga 

toxins. Both bacteria carry a genomic pathogenicity island, the locus of enterocyte 

effacement (LEE) which encodes for the T3SS and several virulence factors, like Tir 

(translocated intimin receptor), Map (mitochondria associated protein) and EspF 

(E.coli secreted protein F) (Wong et al., 2011a, Robins-Browne et al., 2002).  

 

After the first contact of the A/E-pathogen 

with the host´s plasma membrane, the T3SS 

and the first set of secreted proteins like 

EspA, EspB and EspD assemble a 

translocation machine (Knutton et al., 1998, 

Hartland et al., 2000, Ide et al., 2001). This 

machine allows injection of a variety of 

effector proteins into the host cytoplasm. 

Secretion is tightly regulated and follows an 

exact order (Wong et al., 2011a). One of 

the first translocated proteins is Tir. Once in 

the host cytoplasm, Tir becomes 

phosphorylated and integrates into the 

plasma membrane. The extracellular part of Tir then binds to the bacterial surface 

protein intimin (Kenny et al., 1997) leading to a tight connection between the 

bacterium and the cell. Intimin binding, leads to Tir clustering, what in turn triggers 

host signaling pathways, which drive actin polymerization, resulting in actin rich 

pedestals beneath the bacterium (Campellone et al., 2004). Other early translocated 
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effectors are Map and EspT. Both belong to the WxxxE protein family of virulence 

factors (see 1.4) and induce actin cytoskeletal rearrangement within the infected cell 

(Bulgin et al., 2009a, Kenny et al., 2002). 

 

1.3.3 Salmonella 

Salmonella represents a group of Gram-negative bacteria which is currently 

categorized into two species, S. bongori and S. enterica. S. bongori is represented by 

only one subspecies, while S. enterica comprises seven, but only one of them is 

specific to endotherms. The others are restricted to cold blooded animals like reptiles 

(Garai et al., 2012). Here I would like to concentrate on Salmonella enterica serovar 

Typhi and Typhimurium because they serve as common model organisms to study 

host pathogen interaction. Both serovars infect the mammalian intestine and cause 

inflammation and diarrhea. The transmission happens via oral ingestion of 

contaminated food or water. Due to its adaptive acid tolerance, Salmonella is able to 

survive the low pH of the stomach and reach the gut (Garcia-del Portillo et al., 

1993a). In the gut, Salmonella loosely attaches to epithelia cells, translocates 

virulence factors and enters the cells. This can occur via two different routes. In case 

of phagocytes the invasion occurs as described in Figure 9 (Vazquez-Torres et al., 

1999), but Salmonella has also the ability to invade non-phagocytic cells by 

bacterial-mediated endocytosis (Francis et al., 1992).  

 

To achieve being endocytosed by 

non-phagocytic cells, Salmonella injects 

via T3SS (see 1.3.5) a cocktail of virulence 

factors, including SopE, SopE2 and SopB 

(Zhou et al., 2001, Friebel et al., 2001) 

resulting in massive membrane ruffling on 

the host cell surface, and subsequent 

internalization of the bacterium. This 

mechanism is referred to as the “trigger” 

mode of entry, the uptake is very rapid and 

occurs normally within minutes after the 

first stable contact between bacterium and host membrane (Cossart et al., 2004). 

After internalization Salmonella prevents endosomal maturation at stage of the late 

 

Figure 11 Salmonella invades Cos7 cell 

Pseudocolored scanning electron microscopy 

image of Salmonella (yellow) invading the 

host cell (green) by induction of membrane 

ruffling (Rottner et al., 2005) 
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endosome and stays in the so called Salmonella containing vacuole (SCV), 

establishing a unique niche for replication (Haraga et al., 2007). At these later stages 

of infection a second T3SS and another set of virulence factors enter the scene. This 

T3SS II secretes effectors like SifA, SseF and SseJ, which play a role in maintenance 

of the SCV, movement of the SCV towards the perinuclear region and in the 

formation of Salmonella induced filaments (Sifs) (Srikanth et al., 2011, Haraga et al., 

2007). These are long tubular structures, derived from the SCV, spreading 

throughout the whole cell. Sifs are important for SCV positioning, bacterial 

replication and Salmonella pathogenesis in general (Srikanth et al., 2011, Garcia-del 

Portillo et al., 1993b).  

 

1.3.4 Shigella  

The group of Shigella is a genus of gram-negative bacteria which contains four 

serovars. These bacteria infect human and primates via the fecal oral route. They 

cause an acute intestinal infection, with abdominal cramps and severe diarrhea, 

called shigellosis. By rehydration and antibiotic treatment it comes to a rapid 

resolution of the infection. However, in immunocompromised patients or in absents 

of proper healthcare the disease becomes live-threatening (Schroeder et al., 2008). 

 

Figure 12 Actin driven bacterial movement within the host cell. 

In (A) a Listeria infected cell, stained for F-actin in green and for Listeria in red, is shown. The 

bacteria are propelled by actin-comet tails (Gouin et al., 2005). In (B) a close-up of Shigella with 

comet tail is shown, bacteria in blue, N-WASP in green and actin in red (from the homepage of 

Goldmann Lab, Massachusetts). A Shigella actin-comet tail taken with an electron microscope is 

shown in (C) (Gouin et al., 2005). 
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After arrival in the gut, Shigella passes the epithelial barrier via microfold cells, 

immediately followed by macrophage phagocytosis. Within macrophages Shigella 

escapes from degradation by disrupting the phagosomal membrane. In the cytoplasm 

bacteria rapidly multiply and cause cell death. After release from dead macrophages, 

they can enter surrounding enterocytes from the basolateral side by induction of 

ruffling and macropinocytosis (Ogawa et al., 2008). Here Shigella escapes again 

from its membrane envelop and starts replicating in the cytoplasm. To manipulate the 

host cell, Shigella secrets a variety of virulence factors which then target regulatory 

nods of the host. As already mentioned earlier for EPEC and Salmonella, also 

Shigella carries a T3SS allowing secretion of virulence factors directly into the 

cytoplasm of the host (Mattoo et al., 2007). Among those factors are IpgB1 and its 

homologue IpgB2, both target host GTPases and provoke rearrangements of the actin 

cytoskeleton in the early stage of a Shigella infection (Hachani et al., 2007). Another 

secreted factor is IcsA (also known as VirA), this one recruits the actin 

polymerization machinery of the host and induces, like in Listeria, actin-comet tails 

(Figure 12), which propel Shigella forward (Bernardini et al., 1989, Goldberg et al., 

1995, Gouin et al., 2005). 

 

1.3.5 T3SS 

Secretion in general is the process of transduction or release of a chemical substance, 

from a cell or bacterium into the surrounding medium. In Gram-negative bacteria 

there are six different types of secretion systems (Henderson et al., 2004, Pukatzki et 

al., 2006). In this thesis I would like to concentrate on the T3SS which was already 

mentioned in previous paragraphs. The T3SS, also called injectisome, is a needle like 

structure, which is used by pathogenic bacteria to secrete virulence factors into the 

host´s cytoplasm (reviewed in Cornelis 2006). There are seven subfamilies of the 

injectisome. Analysis of their evolution revealed no similarities to development of 

the bacteria, indicating, that T3SS spread by horizontal gene transfer among the 

respective bacteria. Early genetic studies revealed significant similarities to flagella. 

This evidence was later supported by comparison of electron microscope studies of 

Salmonella needle complex and flagella. The architecture of the different injectisome 

subfamilies is more or less the same. Every secretion system consists of a cylindrical 

basal part, called needle complex with an inner and an outer ring that anchors the 

T3SS to the bacterial membrane. On the extracellular side, a needle with a tip 
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complex is formed (Figure 13). Inside the bacterium, a ring of ATPases is associated 

beneath the needle complex. The ATPases are required to deliver the energy for 

secretion. Blocker et al. were able to show, that there is a tunnel of 2-3 nm spanning 

the whole structure from end to end. This core structure is built by nine different 

proteins and a multiplicity of scaffolding proteins facilitating assembly. After the 

injectisome is constructed and connected to the host cell three proteins (IpaB, C and 

D in case of Shigella) are immediately secreted and insert into the host membrane to 

build a pore, the final and essential component of the system. To ensure that 

secretion only occurs into hosts and not spontaneously, this process is strictly 

regulated. Normally secretion is blocked by an inhibiting complex, until a specific 

signal is trigged. Upon signal recipe, which is thought to be the contact with the host 

membrane, expression of effector proteins is boosted, the inhibitor complex falls 

apart and translocation starts (Cornelis, 2006). 

 

Figure 13 Schematic overview of the T3SS 

The T3SS consists of two basic parts. The first is the needle complex, anchoring the whole structure 

with the inner and outer ring to the bacterial membrane. Furthermore it is connected to a ring of 

ATPases which supply the energy for the effector translocation. The extracellular part includes the 

needle, which bridge the distance between bacterium and host cell, the tip complex and the pore, 

which opens the door into the host cytoplasm. Together, this complex machinery allows to 

translocate effector proteins through three membranes and the extracellular space, from the bacterial 

into the host cytoplasm (Cornelis, 2006). 
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1.4 WxxxE 

Many pathogenic bacteria use a T3SS to deliver a variety of virulence factors into the 

host cytoplasm. Here they act as potent regulators and allow the bacteria to directly 

access crucial signaling pathways. In 2006 Alto and his colleagues grouped a new 

family of effector proteins. They recognized a common sequence motive and a 

shared function among several virulence factors from different pathogenic bacteria, 

including Salmonella, Shigella and enteropathogenic E.coli. Using the BLAST 

algorithm for a database search for EPEC Map homologues, they identified several 

proteins, mostly of the A/E group, that shares a Trp-x-x-x-Glu (WxxxE) sequence 

motive. Assuming that this motive contributes to a common function, the authors 

extend the data analysis for WxxxE containing proteins. They came up with 24 

different proteins from pathogenic bacteria. For three of those proteins (Map from 

EPEC and its homologues from Shigella IpgB1 and IpgB2) they could identify a 

common function, leading to characteristic cytoskeleton rearrangements of the host 

cells. Alto came to the conclusion, that all this proteins are, despite any sequence 

similarities, functional mimics of small Rho family-GTPases (Alto et al., 2006). 

Today we know, that this conclusion does not hold true. A database based on the 

structure of SifA identified SopE, an already known bacterial GEF mimic (Hardt et 

al., 1998), as the closest known structural relative of SifA.  

 

Figure 14 Structural comparison of bacterial and human GEFs 

The fold of the two bacterial GEFs SopE from Salmonella and Map from pathogenic E.coli is in large 

parts superposable. Although there is no sequence similarity, especially the catalytic loops (orange) are 

closely related. In case of Map, the Trp and Glu residues of the WxxxE motive are highlighted in 

yellow. As a representative for human GEFs ITSN is depicted on the right side. Its folding differs 

completely from SopE and Map (Orchard et al., 2012a).  
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This finding and the fact that SifA binds to GDP- and not to GTP-bound RhoA only 

allows to conclude, that WxxxE family members do not function, as GTPase mimics 

but as bacterial GEFs (Ohlson et al., 2008). Interestingly there is no similarity in 

sequence or fold between SifA and SopE or any known eukaryotic GEF.  

In 2009 Huang and his co-workers could for the first time show in 2.3-Å resolution, 

that the EPEC effector Map forms selectively a complex with Cdc42. Furthermore 

they could show in vitro that Map function as a potent guanine nucleotide exchange 

factor for Cdc42 (Huang et al., 2009). However, these results still left open the 

mechanism, of how members of the WxxxE family are able to catalyze the 

GDP-GTP exchange in GTPases. This last gap was closed when Klink and fellows 

where able to solve the crystal structure of every single step of the nucleotide 

exchange for the IpgB2-RhoA complex (Klink et al., 2010). Although the knowledge 

gained in the last years on the WxxxE family is enormous (Bulgin et al., 2010, 

Aktories, 2011, Orchard et al., 2012a), there are still lots of open questions. 

Especially the regulatory influence of host proteins on the virulence factors is largely 

unknown. In the following paragraphs I would like to introduce some of the WxxxE 

family members which are subject to this study, in more detail. 

  

1.4.1 Map 

One WxxxE member is the type three secreted virulence factor Map. It is present in 

bacteria of the A/E group, like EPEC, EHEC and C.rodentium and was first 

identified as a mitochondria associated protein, involved in the disruption of 

membrane potential (Kenny et al., 2000). Two years later, it was reported that Map is 

sufficient to induce filopodia during the early stages of EPEC infection, independent 

of Tir (Kenny et al., 2002). Later it was shown, that Map selectively targets and 

activates Cdc42 to induce filopodia formation. Furthermore the binding of Map to 

ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 (EBP50), also known as 

Na+/H+exchanger regulatory factor 1 (NHERF1) was described to be important to 

stabilize Map-induced filopodia (Berger et al., 2009). Map binds to EBP50 via its 

carboxy-terminal PSD-95/Disk-large/ZO-1 (PDZ)-binding motif (Simpson et al., 

2006).  

In this study we follow results from an initial yeast two hybrid (Y2H) screen 

indicating that Map might interact with the human RhoA binding protein rophillin1 

(RHPN1). Only little is known about rhophilins, which comprise 2 members, 
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RHPN1 and RHPN2 in mammals. Both proteins were reported to target RhoA 

GTPases in order to regulate actin cytoskeleton organization (Watanabe et al., 1996, 

Peck et al., 2002). According to SMART protein domain prediction web tool, the 

two homologues contain a HR1 domain, which is known to mediate interactions with 

small GTPases. Furthermore both rhophilins possess a Bro domain which is 

implicated to be involved in endosomal targeting. This domain is quite interesting, 

because it gives room to speculations about a potential involvement of the ESCRT III 

complex in EPEC infection. Since it was reported that enveloped viruses are able to 

recruit the ESCRT III machinery by targeting the human Bro domain containing 

protein Alix, to facilitate virus budding (Strack et al., 2003, Morita et al., 2011, 

Boonyaratanakornkit et al., 2013, Popov et al., 2009). Finally, both RHPN isoforms 

comprise a PDZ domain, which could serve as the interaction surface between RHPN 

and Map.  

 

1.4.2 EspT 

Another, but very rare T3SS effector of A/E pathogens is EspT. According to 

surveys on clinical isolates of EPEC and EHEC, only 2 % of the EPEC strains 

contain EspT (Arbeloa et al., 2009). In 2009 it was identified by Bulgin and 

colleagues, as a novel member of the WxxxE protein family. They reported that 

ectopic expression of EspT from C.rodentium results in lamellipodia or ruffle 

formation, depending on the tested cell type. These rearrangements of actin were 

interpreted to result from ELMO- and Dock180-independent targeting of Rac and 

Cdc42 (Bulgin et al., 2009b). During EPEC infection the effector is able to provoke 

membrane ruffling on the host surface, resulting in the invasion of non-phagocytic 

cells (Bulgin et al., 2009a). In this study the internalized bacteria resided in the 

phagosome where they induce intracellular pedestals. Another study revealed a role 

of EspT in the regulation of immune mediator production. Via extracellular signal-

regulated kinases (Erk), c-Jun N-terminal kinases (JNK) and NF-kB it stimulates the 

secretion of Il-1β, Il-8 and PGE2 (Raymond et al., 2011). 

In our previous mentioned Y2H screen we got several hints for putative interaction 

partners from the host side. We decided to focus on the interaction with Arf6, 

because it is a small GTPase that might be regulated by this GEF mimic. 

Furthermore Arf6 was described to be involved in reorganization of the actin 

cytoskeleton and in membrane trafficking, facilitating phagocytosis (Donaldson, 
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2003, D'Souza-Schorey et al., 2006). Both are functions which could be of interest 

for pathogens.   

 

1.4.3 SifA/B 

SifA and SifB from Salmonella are two of the originally identified WxxxE family 

members (Alto et al., 2006) but different from the other family members, in that they 

seem to be not involved in actin dynamics (Bulgin et al., 2010). SifA is secreted via 

the second T3SS, localizes at the phagosome and is required for its tabulation (Stein 

et al., 1996). While SifA is necessary to deploy full virulence in macrophages and 

mice (Beuzon et al., 2000), the role of SifB during pathogenicity remains still 

unknown and is under ongoing research. Finally, SifA and –B display a long 

N-terminal extension that is essential to the phagosome function. Ohlson et al. were 

able to show that SifA consists of two domains, one binding to the host protein SKIP, 

an interaction essential for the maintenance of the SCV (Boucrot et al., 2005), and 

the other containing the WxxxE motive (Ohlson et al., 2008). Although SifA shares a 

common fold with other bacterial GEFs like Map or SopE (Ohlson et al., 2008), no 

GEF function could be demonstrated for SifA yet (Orchard et al., 2012a). 

In our Y2H screen we got only five putative interaction partners for SifB, including 

Cdc42 and Rac1. In case of SifA we got more than 30 predicted interactions, among 

them the Rap GTPase interactor RADIL, the adapter protein of the Toll-like and IL-1 

receptor signaling pathway ECSIT, or SPIRE1, a protein involved in actin 

organization (see result section 2.1 and 2.2.4).  

 

1.4.4 IpgB1/2 

The two Shigella effector proteins IpgB1 and IpgB2 are encoded on the Shigella 

virulence plasmid (Parsot, 2005). Both of them belong to the type three secreted 

virulence factor WxxxE family (Alto et al., 2006). Ectopic expression of IpgB2 was 

reported to induce stress fibers, while IpgB1 stimulates the formation of lamellipodia 

and ruffles (Ohya et al., 2005, Alto et al., 2006). Later it was shown that IpgB1 

promotes bacterial entry by triggering ruffle formation and activating Rac1 via the 

ELMO-Dock-180 pathway (Handa et al., 2007). Infection studies, using deletion 

mutants for IpgB1 and IpgB2, revealed different effects on pathogenicity of those 

proteins with respect to the infected cell line or organism (Hachani et al., 2008). 
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More recent studies show that IpgB1 function as a GEF for Rac1 and Cdc42, while 

IpgB2 is able to catalyze the nucleotide exchange on RhoA (Huang et al., 2009, 

Klink et al., 2010). 

In our Y2H screen we found no interactions of IpgB1 together with any host protein. 

In case of IpgB2 this was different here we got hits for BBS4 and TRAPPC6A. 

BBS4 is a component of the BBSome, a multiprotein complex located at the primary 

cilium and at centriolar satellites (Loktev et al., 2008, Nachury et al., 2007). 

TRAPPC6A is also a multiprotein complex subunit, the TRAPP I complex is 

involved in vesicular transport at the endoplasmic reticulum (Sacher et al., 2008). 

 

1.5 Aim 

The research of the last decade accumulates more and more knowledge about the 

very complex molecular processes, on the bacterial side, leading to infectious 

diseases. One landmark in the understanding host-pathogen-interactions was the 

discovery of the WxxxE family of bacterial virulence factors. Their function as 

bacterial GEFs allows pathogens not only to target single proteins, but total signaling 

cascades and thereby the direct control on multiple cellular functions from 

endocytosis over motility till apoptosis. Since the regulation of mammalian GEFs is 

quite tight and the number of translocated virulence factors is rather low, it is most 

likely that host adapter- or scaffolding proteins are involved in the regulation of 

bacterial GEFs. It is the right time to find out what these proteins are and how they 

participate in regulation during infection. To tackle this question we started this study 

with a large scale Y2H screen to identify so far unknown interaction partners of 

WxxxE family members. Subsequently we here try to verify these potential hits by 

using biochemical and microscopic methods. 
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2 Results 

2.1 Y2H screen 

At the start of this study, we initiated a large scale Y2H screen to identify novel host 

targets of different bacterial virulence factors. The screening was performed in 

collaboration with Manfred Kögl and Frank Schwarz from the German Cancer 

Research Center in Heidelberg. As bait proteins we used full length, or truncated and 

mutated versions of Salmonella enterica serovar Typhimurium SifA, SifB, SopB, 

SopE and SopE2. Furthermore, we included IpgB1 and IpgB2 from Shigella flexneri, 

as well as Map and EspT from EPEC and Citerobacter rodentium. A human 

cDNA-based protein library served as prey. Each result was categorized in one of 

four groups: certain interactions, if a specific bait prey interaction occurs more 

frequently; uncertain interactions, if a specific bait prey interaction occurs only once; 

likely false positives, based on empirical data, if a prey is “sticky”, and thus 

frequently found in different screenings (prey promiscuity) and finally false 

positives, if the prey protein contains UTR elements. For more detailed information 

on data evaluation see (Albers et al., 2005). The output of the screen was diverse: 

when grouping the certain and uncertain hits for all different variants of one bait 

protein, the numbers differed from 68 hits (e.g. SifA) to zero (SopE or IpgB1). 

Interestingly, among the 40 certain and uncertain hits for EspT from C. rodentium 

and EPEC only four could be found for EspT of both bacteria. With its appearance in 

three different approaches the transcription factor HOXA1 was the most frequently 

found among the certain hits. Only the transposable element TIGD1 and the zinc 

finger protein 343 were more frequently isolated (both four times) but they belong to 

the likely false positive group. Out of all 185 potential interaction partners we pre-

selected those which possess known functions in processes like migration, 

endocytosis, or cellular transport (Table 1).  
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Table 1 Pre-selected list of Y2H results 

Bait Prey 
No. of 

Isolations 

Prey 

promiscuity 
Prey function 

Map NHERF-2 8 2 Scaffolding protein 

 RHPN1 2 2 RhoA interactor 

 Spire1 1 4 WH2 protein involved in actin organization 

EspT Arf6 2 3 Small GTPase 

 Appl1 2 2 Adapter protein involved in cell proliferation 

 Cep70 2 5 Organization of the mitotic spindle 

IpgB2 BBS4 2 1 Cilia formation; microtubule-related transport 

 TRAPPC6A 2 4 Trafficking protein particle complex subunit 

SifA ECSIT 4 2 Signaling intermediate 

 RADIL 2 1 Effector of Rap in migration and adhesion 

 Spire1 1 4 WH2 protein involved in actin organization 

 Cep70 1 5 Organization of the mitotic spindle 

SifB Cdc42 60 3 Small GTPase 

 Rac1 1 3 Small GTPase 

SopB HGS 45 7 Recycling of membrane receptors 

 ATP6V1E1 12 3 Subunit of the ATPase 

 SNX6 3 3 Intracellular trafficking 

Rab11A 1 7 Small GTPase 

 

2.2 Recombinant proteins and subsequent pull down assays 

In order to prepare recombinant proteins, a plasmid carrying the gene encoding for 

the protein of interest was transformed into the E.coli protein expression strain BL21. 

The purification protocol varied depending on the used protein tag and on the 

properties of the specific protein. After purification, the samples were loaded and ran 

on a SDS-PAGE and subsequently stained with Coomassie Brilliant Blue to 

determine efficiency of expression, purity and concentration. When available, known 

interactors were used as positive controls in pull down assays, before the other 

experiments were started. 

 



Results 28 

 

2.2.1 EspT and its putative interactors 

 

After disintegration of the cells by sonication and subsequent centrifugation, the 

majority of the EspT protein remained in the insoluble fraction and could be found in 

the pellet (Figure 15). Nevertheless, the preparation of EspT beads from both 

bacteria C.rodentium (Figure 15 A) and EPEC (Figure 15 B) revealed enough pure 

protein. For later pull down experiments 30 µl of bead material were used. 

One of the putative interaction partners for EspT from Citerobacter was the small 

GTPase Arf6. This member of the Ras-superfamily has been reported to be involved 

in several cellular processes, including reorganization of the actin cytoskeleton and 

endocytosis (Donaldson, 2003, D'Souza-Schorey et al., 2006) 

To confirm this interaction, we performed pull down assays using a constitutive 

active and different dominant negative mutants as well as the wild type version of 

C-terminal GFP tagged Arf6 (Figure 16). Furthermore, it was described that Rac1 

and Cdc42 are substrates of EspT, but a direct interaction has not been shown so far 

(Bulgin et al., 2009b, Orchard et al., 2012a). Therefore, we performed also pull 

downs with these GTPases (Figure 17). 

 

 

Figure 15 Coomassie stained SDS-PAGE of EspT protein purification 

EspT (with tag 67 kDa) from C.rodentium (A) and EPEC (B) were both expressed from the 

pETM-41 His-MBP vector. Induction was performed overnight using 0.5 mM IPTG at 20°C. Huge 

amounts of the proteins after super-sonication (SS) and centrifugation were found in the pellet 

(insoluble fraction) and only traces could be found in the supernatant (SN). Nonetheless, the bands 

in the bead lanes are pure and robust. 
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The pull down experiments were performed using the constitutive active Arf6 Q67L 

mutant, or the dominant negative variants T27N, T44N, T157N and WT. To exclude 

interactions between His-MBP and the GTPases, the immobilized tag was used for 

control pull down assays. Each approach was run in triplicates and in every case, no 

direct interaction could be detected. Sometimes very weak bands, like seen in the 

T157N pull down of Figure 16 A (right), were observed. To ensure, that no 

interaction was washed away by triton X-100, one stet of pull down assays was 

performed, using a washing buffer lacking triton. The result of these experiments did 

not differ from the experiments including triton. Exemplarily the Arf6 T27N pull 

down without use of triton is shown in Figure 16 B. An attempt with EspT beads 

from EPEC showed the same result. 

 

 

 
 

Figure 16 No interaction between Arf6 and EspT in pull down experiments 

Western blot analysis after pull down assay using wild type (WT), constitutive active (mutation QL) 

and different dominant negative (mutation TN) versions of Arf6 are shown. The experiments were 

performed using EspT from C.rodentium (left) and non-fused His-MBP (right). The proteins were 

detected by a polyclonal GFP antibody. There are robust signals in the load controls and in 

supernatant after pull down (SAP). The respective pull down lanes are empty. In (A) the standard 

triton X-100 containing washing buffer was used, in (B) no triton was used. Asterisks indicate weak 

interactions. 
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To address the question whether Rho GTPases can interact with EspT directly, pull 

down assays with EspT from Citerobacter against WT, CA and DN versions of Rac1 

and Cdc42 were performed. This set of experiments included also WT RhoG from 

mouse, human RhoG G12V/T17N and CA and DN RhoA (Figure 17). 

 

In pull down experiments with constitutive active versions of Rac1 and Cdc42, 

regardless whether EspT or one of the GTPases was used as bait or pray protein, 

always a strong interaction between the tested proteins was observed (Figure 17 

A+C). The result was different in case of other GTPase variants. Interestingly, no 

interaction between EspT and dominant negative versions of Cdc42 and Rac1 could 

be observed. This was a surprise, because EspT as potential GEF mimic which 

provokes reorganization of the actin cytoskeleton in the host cell was expected to 

interact especially with dominant negative GDP loaded GTPases. In an attempt using 

Myc-tagged WT versions of Rac1 and Cdc42, both showed only weak interactions 

with EspT. The experiments concerning CA RhoA showed a weak or no interaction 

 

Figure 17 EspT interacts with constitutive active Rac1 and Cdc42 

Immobilized EspT from Citerobacter rodentium was used in pull down assays against different 

versions of Myc-tagged (A) and GFP-tagged (B) GTPases. The clearly positive interactions with 

Cdc42 QL and Rac1 QL were double checked in a vice versa experiment (C), which gave the same 

result. 
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with EspT, the DN version no interaction. Also using RhoG revealed no interaction 

with EspT, no matter which version was tested (Figure 17 B). However, the RhoA 

and RhoG experiments were not yet performed in triplicates, further pull down 

assays have to be done. 

 

2.2.2 SopB and its putative interactors 

 

The efficiency of the SopB purification was rather low, after the incubation with the 

bead material, still high amounts of the protein remained in the supernatant. 

Nevertheless, SopB concentration on the beads was sufficient (Figure 18) and for 

subsequent experiments 30 µl of the beads were used. 

Based upon our Y2H screening the subunit ATP6V1E1 of the V-ATPase is a 

potential interactor of SopB. However, in pull down experiments a direct interaction 

between these two proteins could not be detected (Figure 19). 

To test whether there is truly no interaction between both proteins or if there might 

be an experimental problem, such as misfolding of SopB, we tried to reproduce the 

known interaction between SopB and Cdc42 (Rodriguez-Escudero et al., 2011, 

Burkinshaw et al., 2012) 

 

 

 

Figure 18 Coomassie stained SDS-PAGE of SopB protein purification 

SopB (with tag 106 kDa) from Salmonella enterica was expressed in the pETM-41 vector and 

purified in E.coli BL21 after 4 h induction at 37°C. After sonication and incubation with the bead 

material, huge amounts of the protein could be found in the supernatant. However, the SopB 

concentration on the beads seems to be sufficient.  
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Our SopB beads show strong interactions with constitutive active as well as 

dominant negative Cdc42, as shown before in yeast (Rodriguez-Escudero et al., 

2011). Furthermore the same experiments were performed with the Rho GTPases 

Rac1 and RhoA. Again, as shown in yeast, in these cases almost no interaction could 

be detected (Rodriguez-Escudero et al., 2011). 

 

2.2.3 IpgB1/2 and its putative interactors 

After successful purification of IpgB1 and IpgB2 (Figure 20), 30 µl and 10 µl of the 

beads were used in pull down experiments, respectively. Since there was no result for 

a possible IpgB1 interactor in our Y2H screen, we only tested these beads against the 

already published interactors Rac1 and Cdc42 (Huang et al., 2009). However, in our 

hands, after five independent experiments, using dominant negative mutants, no 

interaction could be detected (Figure 21). The same was true for using constitutive 

active mutants. We found the same negative result for RhoA and RhoG. 

 

Figure 19 No interaction between the V-ATPase subunit and SopB 

The pull down experiments revealed no interaction of SopB with the GFP-tagged V-ATPase subunit. 

In contrast the interaction with Myc-tagged Cdc42 is strong, while there is almost no interaction with 

Rac1 and RhoA. 

 



Results 33 

 

 

 

 

Figure 20 Coomassie stained SDS-PAGE of IpgB1 and IpgB2 protein purification 

Both proteins (around 70 kDa with tag) are equally well expressed after 4 h IPTG induction at 37°C. 

However, under the used conditions, IpgB2 seems to bind more efficient to the beads compared to 

IpgB1. 

 

 

Figure 21 No interaction between Cdc42, Rac1 or RhoA and IpgB1 

The pull down experiments between IpgB1 on the one hand and Cdc42, Rac1 and RhoA on the other 

hand did not reveal any interaction.  
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In contrast to IpgB1, we identified the putative interaction partners BBS4 and 

TRAPPC6A for IpgB2 in the Y2H screen. Recombinant IpgB2 was successfully 

expressed before (Klink et al., 2010) in our group. In an initial experiment, 

GFP-tagged BBS4 was tested to be pulled down by recombinant IpgB2, however, no 

interaction could be found (Figure 22 A, upper panel) However, when recombinant 

BBS4 linked to beads was used in pull downs against IpgB2-GFP (Figure 22 B), we 

were able to show a clear interaction. We were not able to confirm the second Y2H 

hit of an IpgB2/TRAPPC6A interaction (Figure 22 A, upper panel). The positive 

control, dominant negative RhoA (Klink et al., 2010) did interact with the virulence 

factor (Figure 22 A, lower panel). 

 

 

Figure 22 BBS4 and IpgB2 interact in pull down assays if IpgB2 is the bait 

(A) The pull down experiments between His-MBP tagged IpgB2 and GFP tagged BBS4 as well as 

GFP tagged TRAPPC6A showed no interaction. The positive control, using immobilized 

RhoA T17N was positive. (B) If His-MBP bound BBS4 was used to pull down IpgB2, a clear 

interaction could be observed. 
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2.2.4 SifA/B and its putative interactors 

The yield of recombinant SifA was rather high, the protein was well expressed, 

soluble under our buffer conditions and bound with high affinity to the 

Ni-NTA-beads. For SifB this was totally different. Under other conditions the whole 

protein could be detected after sonication and centrifugation only in the pellet. 

Finally, we identified conditions, where a small amount of protein remained soluble 

and was capable of binding to the beads (Figure 23, lower panel). 

 

Since the only published interactor of the putative GEF-domain of SifA is the 

GDP-loaded small GTPase RhoA and even none is known for SifB (Ohlson et al., 

2008, Orchard et al., 2012a), we tested both virulence factors for interactions with 

the small Rho GTPases Cdc42, Rac1 and RhoA (Figure 24). This was supported by 

the Y2H hit for a putative interaction between SifB and Cdc42. However, no 

interactions were detected for SifB and only weak interactions (marked with 

asterisks) were observed for SifA in combination with CA and DN Rac1. 

 

 

 

 

 

Figure 23 Coomassie stained SDS-PAGE of SifA and SifB protein purification 

Both His-MBP tagged proteins (around 70 kDa with tag) are equally well expressed after 4 h IPTG 

induction at 20°C. However, under the used conditions, SifA seems to bind more efficient to the 

beads while lots of SifB is bound in the insoluble fraction.  
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Furthermore we attempted to detect interactions between SifA and SifB together with 

different members of the Rab GTPase family in pull down assays. This was of 

interest since the Rab proteins are involved in vesicular trafficking and so 

consequently participated in the maturation of the SCV. Moreover the formation of 

Sifs is dependent on Rab7 and Rab9 (Brumell et al., 2007) and since the same is true 

for SifA, an interaction on protein level could be possible. 

We were not able to show an interaction of any of the tested Rab GTPases with SifB. 

In case of SifA pull downs, we observed that Rab9a bound to SifA, at least in several 

of the experiments. Additionally we could exclude interactions with Rab4a, Rab5a 

and Rab7a. Data concerning Rab11a were not reproducibly positive or negative and 

thus did not allow a reliable conclusion (Figure 25). 

 

 

 

 

Figure 24 Neither SifA nor SifB interact with any form of Cdc42, Rac1 or RhoA 

In pull down assays using immobilized SifA or SifB against dominant negative or constitutive active 

versions of Cdc42, Rac1 and RhoA, we could not observe any interactions. Asterisks indicate weak 

interactions. 
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2.2.5 Map and its putative interactors 

From the list of potential interactors of Map, RHPN1 was chosen not at least due to 

the fact that it harbors a PDZ-domain (Peck et al., 2002), while Map possess a PDZ 

binding motif (Alto et al., 2006) To analyze the putative interaction between Map 

and RHPN1, both proteins were expressed in E.coli BL21 as recombinant fusion 

proteins (Figure 26). While Map was linked to a His-MBP tag and purified by 

Ni-NTA sepharose, the human RHPN1 protein was expressed and purified as a GST 

fusion protein. The availability of both proteins in an immobilized way allowed 

doing the experiments in vise versa approaches, which increased the reliability of the 

results.  

Beside the putative interaction with RHPN1 we tested also the ability of Map to 

interact with the small GTPase Cdc42, which should serve as a positive control, since 

its interaction with the virulence factor has already been described (Huang et al., 

2009). 

 

Figure 25 Pull down experiments of different Rab GTPases versus SifA and SifB 

In pull down assays using immobilized His-MBP tagged SifA and SifB against GFP fused WT Rab 

GTPases, SifB did not interact with any of the five tested Rabs. The same was true for SifA in pull 

downs with Rab4a, 5a, and 7a. Only Rab9a shows frequently interactions with SifA. Results of 

Rab11a were not consistent enough to allow a reliable conclusion 
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We showed that the positive control between Map and Cdc42 worked (Figure 27) in 

more than 50 % of all experiments, while the negative controls using GFP alone 

against Cdc42 beads or immobilized His-MBP against Myc tagged Cdc42 were 

always negative. Since it is known, that RHPN1 is a downstream effector of the 

small GTPase RhoA (Watanabe et al., 1996), we used RhoA in pull down 

 

Figure 26 Coomassie stained SDS-PAGE of human RHMN1 and Map protein purification 

E.coli BL21 bacteria, expressing the RHPN1-GST fusion protein (100 kDa with tag), were lysed 6 h 

after IPTG induction at 20°C. After cell breakup, the lysate was incubated with glutathione 

sepharose to allow GST binding. The resulting protein concentration is shown in the last three lanes. 

The Map His-MBP fusion protein needed an IPTG induction time of 20 h at 20°C to achieve 

appropriate amounts of the protein. Under the chosen conditions Map is highly soluble and bound 

with high affinity to the bead material.  

 

 

 

Figure 27 Map interacts with Cdc42 in pull down experiments 

In the upper row, Myc tagged Cdc42 T17N expressing B16 cells were lysed and a pull down 

experiment against immobilized His-MBP tagged Map performed. The Western blot revealed a clear 

interaction between both proteins. In the row below, the vice versa experiment is shown. Here, a 

Map-GFP containing lysate was pulled against immobilized dominant negative GST tagged Cdc42. 

Again an interaction could be detected in the Western blot.  
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experiments as a positive control. Concurrently we tested against Cdc42 and Rac1 

for interactions. Beside the expected interaction of RHPN1 and RhoA, we found an 

unexpected strong interaction with constitutive active Rac1 (Figure 28 A+B) as well 

as a weaker interaction with constitutive active Cdc42 and dominant negative Rac1. 

 

 

Figure 28 RHPN1 interacts with RhoA and Rac1 in pull down experiments 

In pull down assays using GFP tagged RHPN1 against different small Rho GTPases the Western 

blot revealed strong interactions with constitutive active Rac1 and both, CA and DN RhoA (A+B). 

The vise versa experiment, using Myc-tagged GTPases, showed no interactions (C). 
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Only the pull downs with dominant negative Cdc42 and the GST negative control 

revealed no interaction in the Western blot. Interestingly these results arise from 

experiments using immobilized GTPases. In cases if RHPN1 was bound to beads, no 

interaction to any GTPase could be observed (Figure 28 C), maybe because 

recombinant RHPN1 is not properly folded in bacteria, at least its GTPase binding 

domain HR1 is possibly not functional.  

We next tried to verify the putative interaction between Map and RHPN1 in pull 

down experiments. As before in the Map-Cdc42 experiment, again vice versa 

approaches were performed.  

 

 

Figure 29 Map and RHPN1 are able to interact in pull down experiments 

In (A), lysates of cells expressing GFP labeled human RHPN1, human RHPN2 or mouse RHPN1 

were used for pull down experiments against immobilized His-MBP tagged Map. The Western blot 

revealed that Map clearly interacts with RHPN1, but not with RHPN2. Also an interaction with 

mouse RHPN1 was observed. The control pull down using GFP alone, stayed clear. Below in (B), a 

GFP tagged Map containing lysate was pulled against immobilized GST tagged RHPN1. The result 

was the same as in the vice versa approach above. 
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By using cell lysates of B16 cells transfected with GFP tagged RHPN1 for pull down 

experiments against immobilized His-MBP tagged Map, in all of the five 

independently performed approaches the Western blot revealed a clear interaction 

between both proteins. Additionally, also a clear interaction between mouse RHPN1 

and Map was observed (Figure 29 A). In case of the vice versa experiment, GFP 

tagged Map against immobilized GST-RHPN1, more than half of all pull down 

revealed an interaction (Figure 29 B). Pull down assays against the second human 

rhophilin RHPN2, did not show any interactions between Map and RHPN2. Again, 

the proper folding of the recombinant full length RHPN1 may be causative of these 

negative results. 

 

Figure 30 The PDZ domain of human RHPN1 binds exclusively to Map 

In (A), again the interaction of GFP tagged RHPN1 to immobilized His-MBP tagged Map is shown. 

Furthermore you could see pull downs of the RHPN1 domains BRO, HR1 and PDZ against Map. 

The Western blot revealed that only the PDZ domain is able to bind to the virulence factor. The pull 

down experiments shown in figure (B) could not detect interactions of His-MBP tagged Map to 

further GFP-PDZ domains. However, the functionality of the single PDZ domains was not tested. 
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After verifying the interaction between the virulence factor Map and the human 

RhoA interactor RHPN1, we turned to the identification of the interaction surface 

between both proteins. Therefore GFP tagged domain constructs of human RHPN1 

were designed and tested in pull downs against immobilized recombinant Map. 

Western blot analyses showed, that the RHPN1-PDZ domain was the only isolated 

protein domain, which was able to interact with Map (Figure 30 A).  

The exclusiveness of this interaction was highlighted by the negative results of pull 

down experiments against other PDZ domains from human RHPN2, mouse RHPN2 

or the PDZ domain of RADIL, which has been tested as a rhophilin unrelated control 

(Figure 30 B). Surprisingly, also mouse RHPN1 showed a negative result in pull 

down assays against Map, although we observed interactions with the full length 

protein (Figure 29 A). Since no interactor of these PDZ domains was known or 

available, therefore the functionality could not be tested. Experimental 

insufficiencies like miss folded recombinant proteins could not be excluded.  

 

2.2.6 Rhophilin CHMP4b interaction 

 

 

Figure 31 CHMP4b antibody test 

In order to test the efficiency of the abcam® CHMP4b antibody, we run a SDS-PAGE with lysates 

of the indicated cell lines and performed the Western blot. Subsequent antibody detection (A) 

revealed a strong unidentified band at 35 kDa and one or two weak bands around 25 kDa. CHMP4b 

is expected to migrate at 27 kDa. The band marked with an asterisk is assumed to correspond to 

CHMP4. Pull down assays (B) of B16 cell lysates against immobilized human RHPN1 revealed no 

clear result, because of the high background signal. Potentially a weak interaction is present. 
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To analyze the potential link between Map, RHPN1 and the ESCRT III complex, we 

tested two CHMP4b specific antibodies, sc-134946 (Santa Cruz) and ab105767 

(abcam®). CHMP4b is one subunit of the ESCRT III complex, which is able to 

interact with Bro domain containing proteins (Boonyaratanakornkit et al., 2013). 

First, we tested the antibodies against lysates of different cell lines. Results of the 

abcam® antibody are exemplarily in Figure 31 A. 

According to the expected size of 27 kDa for CHMP4b, lysates of 39er or B16 cells 

seemed to be most suitable to perform pull down assays against human RHPN1. Pull 

down assays using B16 cell lysates against immobilized human RHPN1 revealed no 

convincing result, because the antibody detection repeatedly produced high 

background signals (Figure 31 B). In our hands, both antibodies did not work 

satisfactory in biochemical experiments. Further experiments are needed to clarify 

this issue.  

 

2.3 Co-immunoprecipitations 

To further support the results of the pull down experiments between Map and 

RHPN1, we decided to perform co-IPs. Therefore we used Myc tagged Map and 

GFP tagged human RHPN1. After co-transfection into B16 cells and subsequent cell 

lysis, we either used 5 µg of GFP antibody to link RHPN1 to bead material, or 200 µl 

of an anti Myc supernatant or directly beads, coated with Myc antibody to 

immobilize Map. The control blots of each IP showed that at least in two of three 

cases the antibody recruitment of the bait protein to the beads was successful.  

After GFP detection of the GFP IP, we saw a strong signal for the RHPN1-GFP 

protein around 100 kDa. Also the Myc staining of the Myc-bead IP revealed a weak 

but clear band. Only in case of the Myc antibody IP we were not able to show 

precipitation of RHPN1. Since it was repeatedly hard to detect any bands (also load 

or SAP control) in these experiments, there had to be a general technical problem. 

When, using the Myc coated beats, at least 50 % of the experiments resulted in a 

clear RHPN1 precipitation (Figure 32). When we were performing the experiment 

with immobilized RHPN1, we always got a strong 25 kDa signal in the IP lane. 

Unfortunately, the antibody light chain is migrating at the same height and the 

specificity of our Myc antibody is not focused enough. Because of this we could 

never be totally sure if we were looking at a Map precipitation, or a cross-reaction. 
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Subcloning of RHPN1 in Myc- or HA-vectors and the usage of Map-GFP will solve 

this issue in the future. 

 

2.4 Microscopy 

2.4.1 Influence of WxxxE proteins on the actin cytoskeleton   

Since many members of the WxxxE virulence factor family are known to function as 

bacterial GEF mimics and because of this function being tightly knotted to GTPases, 

it is mandatory to understand the host cell morphology subsequent to virulence factor 

and GTPase transfection.  

To compare the effect to continuous activity of Rho family GTPases on the 

morphology of the cell, overexpression of constitutive active Rac1, Cdc42 or RhoA 

mutants in Hela cells followed by subsequent phalloidin staining of the actin 

cytoskeleton was performed (Figure 33). In all following microscopy panels, DAPI 

staining is only shown in the merge, except for some infection assays. The 

overexpression of CA Rac1 resulted in the typical wide spread cells, with large 

fan-shaped lamellipodia at the cell periphery. The ectopic long term expression of 

CA Cdc42 induced a phenotype similar to that of Rac1 expressing cells, due to the 

crosstalk in the GTPase pathways and numerous fine stress fibers. Finally, the 

overexpression of CA RhoA results in an enhanced formation of thicker stress fibers.  

 

 

Figure 32 Co-IP experiments between RHPN1 and Map supported our pull down results 

Two IPs, realized with anti GFP antibody, or with anti Myc coated beads (from top to bottom). 
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As described above for the small Rho GTPases, all the virulence factors of this study 

were transiently transfected into Hela cells, followed by fixation, phalloidin staining 

and DAPI staining. Also cells transfected with GFP alone were analyzed (Figure 34, 

upper panel), to ensure that the tag had no effect. Overexpression of EspT (Figure 34, 

middle) resulted in a Rac1-like phenotype, wide spread cells, with prominent 

lamellipodia at the cell front. This observation was virtually identical with either 

EspT from EPEC or from C.rodentium. The only difference between both proteins 

was, that EspT from EPEC was more equally distributed throughout the cytoplasm, 

while the Citerobacter protein was frequently observed to localize in smaller spots 

close to the nucleus (Figure 34, middle).  

In case of SopB it is difficult to describe the cell morphology upon transfection, 

because this protein seems to be highly toxic to the cells. The standard transfection 

protocol, used for all the other virulence factors was not applicable. Indeed, the 

 

Figure 33 Hela cells, ectopically expressing constitutive active Rac1, Cdc42 and RhoA 

Hela cells were transiently transfected with Myc tagged Rac1 Q61L, Cdc42 Q61L or RhoA G14V. 

After fixation, transfected cells were identified using antibody staining (green). Red labeled 

phalloidin was used to stain the actin cytoskeleton and DAPI for the nucleus. The cells were imaged 

at a 60 x resolution and the scale bar represents 10 µm. 
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transfection efficiency was very high, more than 80 %, but nearly every transfected 

cell was dead before the microscopy started. Toxicity of SopB has been described 

before (Aleman et al., 2005). 

 

Figure 34 Transient transfection of different bacteria virulence factors in Hela cells (part I) 

Hela cells were transient transfected with GFP as a control or GFP tagged full length constructs of 

EspT (either from EPEC or from Citerobacter rodentium), or SopB. The actin cytoskeleton was 

stained with red labeled phalloidin, the nucleus with DAPI. The cells were imaged at a 60 x 

resolution and the scale bar represents 10 µm. 
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Only when little amounts of DNA (4 times less than other transfections) were used 

for transfection combined with a rescue treatment by medium exchange two hours 

post transfection, the cells survived long enough to be imaged, but still most of them 

looked troubled. The few transfected and “healthy looking” cells displayed an 

uneven, ragged edge with numerous, long filopodia. In those cells, SopB was 

frequently seen in clusters which concentrate in the nuclear region (Figure 34, lower 

panel), vaguely reminiscent of what was described before.  

 

 

Figure 35 Transient transfection of different bacteria virulence factors in Hela cells (part II) 

Hela cells were transient transfected with GFP tagged full length constructs of IpgB1, IpgB2 or 

SifA. The actin cytoskeleton was stained with red labeled phalloidin, the nucleus with DAPI. The 

cells were imaged at a 60 x resolution and the scale bar represents 10 µm. 
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The ectopic expression of the Shigella virulence factor IpgB1 resulted in an 

ambivalent morphology (Figure 35, upper panel). We observed cells, displaying a 

Rac1-like lamellipodial phenotype, as well as cells producing lots of filopodia, in a 

Cdc42-like fashion. The protein itself was mostly distributed throughout the 

cytoplasm. In contrast, the IpgB2 overexpression resulted in a clear cell morphology. 

We mainly observed small rounded cells with a dense stress fiber network within the 

cell and frequently increased ruffling. This lead in some cases to huge membrane 

ruffles, spanning the whole dorsal surface of the cell. Therefore, RhoA activation via 

IpgB2 does not seem to suppress Rac1 activation, at least not in these cells. IpgB2 

was, always found to be equally distributed throughout the cytoplasm (Figure 35, 

middle). 

Finally, the transient expression of the S.enterica virulence factor SifA resulted in 

wide spread, often rounded cells without polarity. These cells only displayed small or 

even no lamellipodia. Instead, we frequently observed cells producing short 

filopodia. However, these changes were quite subtle for the diverse shape Hela cells 

can show. Again, the protein was mainly equally distributed throughout the 

cytoplasm, with some concentration in the nuclear region (Figure 35, lower panel).   

 

2.4.2 Map provokes a Rac1 like phenotype, RHPN1 induces mild stress fibers 

Before studying putative co-localization of Map and human RHPN1 the effects of 

the single proteins on cell morphology were investigated. For this purpose, Hela cells 

were transfected with GFP labeled Map, RHPN1 full length or RHPN1 domain 

constructs. After fixation of the transfected cells, the actin cytoskeleton was stained 

using red labeled phalloidin and DAPI for the nucleus. 

As shown in Figure 36, Map transfected cells, in contrast to the GFP control, display 

a wide spread, round shape. Furthermore, we observed a dense rim of actin along the 

cell periphery. Both effects are typical for pronounced Rac1 activity. Cdc42 is 

known to induce downstream Rac activation (Nobes et al., 1995). Map itself, is 

distributed throughout the whole cytoplasm. Sometimes, we observed green clusters 

of Map at variable positions. A clear recruitment of Map, for example to actin dense 

lamellipodia or to mitochondria was never seen. This came as a surprise, since Map 

was first described as “Mitochondria associated protein” (Kenny et al., 2000). 

However, in that study an anti Map polyclonal antibody was used and not a GFP 

tagged expression construct.  



Results 49 

 

After transfection of human RHPN1 or transfection of the domain construct, we 

made, despite the uniform distribution of the proteins throughout the cytoplasm, a 

different observation. The morphology of these cells was similar to the controls and 

not round. Notably, compared to the control RHPN1 transfected cells display a mild 

increase of stress fibers.  

Map, human RHPN1, human RHPN2 and murine RHPN1 were also ectopically 

expressed in Cos7 cells. In this case, the dot like localization of Map was strongly 

increased. The human RHPN1 was also found in clusters within Cos7 cells, but not 

as prominent as Map was. Only human RHPN2 and mouse RHPN1 were usually 

found equally distributed throughout the cytoplasm.  

Apart from the enhanced expression, the effects on the actin cytoskeleton were not 

that strong in Cos7 cells (data not shown). In brief, Map transfection slightly rounded 

the cells and the RhoA-like effect of RHPN1 expression was present, but milder than 

in case of Hela cells. This raised the question whether the localization of Map and 

rhophilin is random, or if they are targeted to a specific cellular compartment. Since 

it has been reported that recruitment of Map to mitochondria occurs during later 

stages of an EPEC infection (Kenny et al., 2000), we decided to perform a 

co-staining with MitoTracker®, to determine whether Map and RHPN1 locate at 

mitochondria (see 2.4.5).  
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Figure 36 Localization of Map, RHPN1 and its domains after transfection in Hela cells 

Hela cells were transfected with either GFP alone or GFP-Map, -RHPN1, -RHPN1 BRO 

domain, -RHPN1 HR1 domain, -RHPN1 PDZ domain (from top to bottom). Subsequently these 

cells were co stained with red labeled phalloidin and DAPI (blue), to visualize the actin cytoskeleton 

and the nucleus respectively. The cells were imaged at a 63 x resolution and the scale bar represents 

20 µm. 
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2.4.3 Map and RHPN1 can co-localize 

Because of the positive interaction between Map and human RHPN1 in pull down 

assays, we decided to study their subcellular level of co-localization. Therefore 

co-transfections were performed using GFP and RFP labeled versions of RHPN1 and 

Map, respectively.  

After transfection of both constructs into Hela cells, we observed a dramatic change 

in the protein distribution pattern compared to single transfections. In almost every 

cell expressing both proteins, red/green aggregates were observed, these signals 

co-localized perfectly (Figure 37). These aggregates were frequently localized in the 

proximity of the nucleus (A). If not clustered in the cell center, RHPN1-GFP and 

Map-RFP protein aggregates were spread throughout the cell (B). Interestingly, the 

wide spread cell shape, observed after single transfection of Map, was either reduced 

or sometimes even absent in the additional presents of RHPN1. 

In rare cases (about 17 %), transfected cells displayed ruffle formation. In that case 

no aggregates could be found within the cell. Instead, we observed both proteins to 

localize in membrane ruffles near the cell surface (C).  

Finally, we explored the co-localization characteristics of Map together with the GFP 

tagged PDZ domain of RHPN1, which embodies the interaction surface for Map. 

When examining co-transfection of RHPN1-PDZ together with Map, we saw a 

similar distribution pattern as observed for the full length RHPN1-Map 

co-transfections. In other words, both proteins co-localized around the nucleus (D) 

and in rare cases in ruffles near the cell surface (not shown). Noteworthy, the protein 

spots seemed to be smaller and closer to each other (D). In contrast, and as expected, 

the HR1 and BRO domain did not co-localize with Map (not shown). 
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Figure 37 RHPN1 and Map co-localize in Hela cells after co-transfection 

Hela cells were transfected with RFP-Map, either together with GFP-RHPN1 (A-C) or the GFP 

tagged RHPN1 PDZ domain (D). After fixation, cells were imaged at a 63 x resolution. The color 

merge clearly show the strong co-localization of Map and its partner. The scale bar represents 10 µm 
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2.4.4 Co-transfection of small GTPases does not affect the RHPN1-Map 

interaction 

Map and RHPN1 are both able to interact with small GTPases. Map interacts with 

Cdc42 and RHPN1 with RhoA. This rose the question, whether small GTPases are 

able to alter the interaction between Map and RHPN1. To answer this question, Hela 

cells were co-transfected with GFP-RHPN1, RFP-Map and Myc tagged GTPases. It 

was hard to find cells, which were positive for all of the three proteins. In cells, in 

which all three proteins were expressed, no effect of dominant negative Cdc42 or of 

dominant negative RhoA on the RHPN1-Map interaction could be observed and also 

no GTPase recruitment to RHPN1-Map positive sites. In fact, the distribution pattern 

of RHPN1 and Map in this experiment was similar to the distribution found in 

double transfections without the small GTPases. However, the morphology of the 

cells was affected. For example, Cdc42 co-transfection induced or restored the wide 

spread cell shape and sometimes provoked filopodia formation, even though the 

dominant negative variant of Cdc42 was used. In contrast, RhoA co-transfection 

resulted in more contracted cells, only in rare cases wide spread cells were detected. 

 

Figure 38 No influence of GTPases on RHPN1-Map co-localization 

Hela cells were triple-transfected with GFP-RHPN1, RFP-Map and Myc-Cdc42 TN or Myc-RhoA 

TN. Subsequently, cells were fixed and the Myc tag was visualized by using appropriate antibodies. 

Neither the overexpression of Cdc42 TN, nor of RhoA TN alters the localization of RHPN1 and 

Map. The scale bar represents 10 µm 
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2.4.5 MitoTracker staining revealed co-localization between human RHPN1 

and mitochondria 

The localization of Map and human RHPN1 in Hela and Cos7 cells, made us assume 

that mitochondria could be the cellular compartment where these proteins localize. 

Moreover Map has been described earlier to localize to mitochondria (Kenny et al., 

2000). In order to examine whether Map and human RHPN1 are enriched at 

mitochondria, we used MitoTracker® to visualize the mitochondria in transfected 

cells.  

We found the mitochondria as a tubular network, spreading from the nucleus towards 

the cell periphery. In all experiments, independent of the transfected plasmids, this 

tubular network looked similar.  

In case of the GFP control (Figure 39 A), the ectopically expressed protein was 

evenly spread throughout the cytoplasm and no co-localization between 

mitochondria and the proteins was observed. 

When Map, human RHPN1 or its PDZ domain were expressed, we could clearly 

detect the protein accumulations described before. No relevant overlap between 

ectopically expressed Map and mitochondria was observed (Figure 39 B). In case of 

hRHPN1 or PDZ transfected cells the result was different. In these cells we indeed 

could observe co-localizations of the overexpressed proteins with mitochondria, as 

indicated by arrowheads in the respective blow ups of Figure 39 (C+D).  
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The observed overlap was not complete but partial, since there were still some green 

hRHPN1 or PDZ dots without MitoTracker® signal and many mitochondria without 

RHPN1. Upon transfection of human RHPN2 (Figure 39 E) and mouse RHPN1 

 

Figure 39 Map did not localize to mitochondria but human RHPN1 

Cos7 cells were transfected with the indicated GFP constructs and treated with MitoTracker® 

according to the manufactures manual. Microscopic analysis revealed at least partial localizations of 

hRHPN1 and hRHPN1-PDZ to mitochondria, as indicated by arrowheads. The scale bar represents 

10 µm. 
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(Figure 39 F), no localization of those proteins at mitochondria was observed. 

Together, it will require further experiments with exchanged colors to pinpoint where 

and when RHPN1 and mitochondria come together. 

 

2.5 Infection assay 

In order to determine whether and how RHPN1 is involved in EPEC infection, we 

performed infection assays. To do so, Cos7 cells were transfected with GFP tagged 

human RHPN1, human RHPN2, mouse RHPN1, Map or the PDZ domain of human 

RHPN1. Next, the transfected cells were infected with the EPEC strain E2348/69, 

washed and fixed at different time points (30 min, 60 min and 180 min post 

infection). The cells were stained with DAPI to detect the bacteria attached to the cell 

surface and phalloidin to visualize the actin cytoskeleton, in particular the actin rich 

pedestal below the bacteria. At 30 min post infection, no bacteria were found to be 

attached to the cell surface, therefore only images after 60 and 180 min are depicted 

here (Figure 40). 
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In general, 1 h after infection, we found 3 to 10 bacteria, or clusters of bacteria 

attached to the cell surface. This number was consistent, independent from the 

transfected plasmid. Two hours later, although the cells were washed every hour to 

reduce the amount of bacteria, the number of bacteria attached to single cells 

increased to very high numbers. For this reason, only the images of the 1 hour time 

point were used for statistical analysis. The bacteria attached to each transfected cell 

were counted, as well as the number of corresponding pedestals (Figure 41), the 

results of this statistics will be analyzed together with the microscopy images in the 

following paragraph.  

 

The negative control, Cos7 cells transfected with GFP alone (Figure 40 A) revealed a 

normal cell shape and in addition some pedestals after 1 h and many more after 3 h. 

Out of 48 analyzed images, we found 220 bacteria or bacteria clusters attached to the 

transfected cells. Only 141 of them were attached to pedestals. Consequently, 64 % 

of the bacteria attached to GFP positive cells provoked the formation of pedestals 

within one hour of infection (Figure 41). Interestingly, at the 3 h time point, the 

 

Figure 40 Pedestal formation beneath attached bacteria at different time points after infection  

Cos7 cells, transfected as named on the right side of each set of images, were infected with EPEC 

and subsequently fixed after 1 h or 3 h infection. Later the cells were stained with red labeled 

phalloidin in order to visualize the actin cytoskeleton and stained with DAPI, to highlight the 

bacteria which are attached to the cell surface. Arrowheads indicate infection sides. The scale bars 

represent always 10 µm. 
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pedestals are smaller and less proper in shape, compared to after 1 h. Furthermore it 

seemed that the amount of pedestal positive bacteria had decreased. This may be 

explained by the increased numbers, leading to actin consumption and cell stress. 

In case of Map expression (Figure 40 B), the amount of pedestal positive bacteria, 

1 h after infection, in 46 analyzed images was increased by approximately 14 % to 

78 % compared to the GFP control (Figure 41). After 3 h the pedestals are still equal 

in shape and size and it seems, as if every bacterium has its own pedestal. The 

number of pedestals built up below these attached bacteria, however, was not 

statistically evaluated. Thus, the presents of Map may reduce cell stress and/or 

mobilize actin to help establish the infection. 

In contrast, when expressing human RHPN1 the number of pedestal positive bacteria 

1 h after infection was decreased by 12 % down to 52 % (Figure 41). Two hours 

later, although the number of bacteria was apparently similar to that in the other 

experiments, it was hard to find any pedestals at all (Figure 40 C). Instead the 

bacteria showed up in the GFP channel (Figure 40 C, lower panel). We saw this 

 

Figure 41 Pedestal formation efficiency differs with respect to the transfected plasmid 

The images taken from the infection assays at time point 1 h were analyzed on the one hand for the 

number of bacteria, attached to transfected cells and on the other hand for the corresponding 

pedestals beneath each bacterium. Clusters of two or more bacteria were counted as one. The same is 

true for the belonging pedestals, even though, if not every bacterium within a cluster had its own 

pedestal. 
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phenomenon in about 50 % of all transfected cells. The GFP signal perfectly 

co-localized with the bacteria in the DAPI channel, indicating the recruitment of 

RHPN1 to the infection side. However, the complete absence of F-actin made it 

impossible to judge on the exact status of infection. The GFP signal also did not 

accumulate beneath the bacteria in a characteristic pattern, making it possible that we 

look at bacterial invasion and subsequent recruitment of the GFP labeled protein to 

internalized bacteria. To address the possibility of bacterial internalization, we 

performed a gentamycin protection assay (see 2.6). With this assay, the number of 

intracellular living bacteria can be exactly determined. 

Human RHPN2 also reduces pedestal formation after 1 h, similar to hRHPN1. 

However, 3 h post infection pedestals were still present, albeit impaired, and the GFP 

signal had accumulated close to the bacteria but did not label them like hRHPN1 did 

(Figure 40 D). The pedestal formation efficiency at time point 1 h was lower (50 %) 

as compared to control (Figure 41).  

In mouse RHPN1 expressing cells the portion of bacteria which were able to provoke 

pedestals (60 %), was almost at control levels (Figure 41). Also after 3 h of infection, 

the pedestal formation seemed to be unaffected (Figure 40 E). 

Finally we tested the influence of the human RHPN1 PDZ domain under infectious 

conditions. The result was virtually identical to the GFP control  

 

2.6 Gentamycin protection assay  

In order to examine the potentially increased invasiveness of EPEC in human 

RHPN1 transfected cells (Figure 40 C, lower panel), we decided to perform a 

gentamycin protection assay. Cos7 cells were transfected with GFP or with one of 

the three GFP RHPN constructs. Next, these cells were either treated with EPEC, or 

as a negative control with E.coli C600. After 3 hours, all extracellular bacteria were 

killed by applying the non cell permeable antibiotic gentamycin. Subsequently the 

cells were lysed and plated in appropriate dilutions on LB-agar plates. The next day, 

the colonies were counted. Each colony represents one living intracellular bacterium. 

The results of three independent sets of experiments were grouped and analyzed 

(Figure 42). 

In case of E.coli C600, usually around 300 colonies were found. The GFP and the 

human RHPN1 attempt resulted both in 345 colonies. The number of colonies gained 
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from cells which expressed the other two rhophilins was not statistically significantly 

different from the control.  

In case of EPEC, there was clearly a higher number of colonies, on average 100 

times more colonies compared to the E.coli control. In this experiment, the highest 

number of colonies was derived from lysates of cells transfected with GFP alone. 

The transfection of human RHPN1 did not result in a statistically significant change 

of colony numbers. 

 

We next reasoned that the bacteria labeled with GFP-RHPN1 could potentially be 

intracellular but dead and therefore absent from the gentamycin protection assay, that 

evaluates only living bacteria. Therefore, we employed an additional approach to 

specifically stain intra- versus extracellular bacteria. In this experiment we aimed to 

find out if the green rods, observed in cells transfected with human RHPN1, are 

internalized dead bacteria or a result of protein recruitment beneath extracellular 

bacteria. To do so, an anti E.coli antibody was used. This antibody from Novus 

Biologicals specifically recognizes the J5 lipopolysaccharide (LPS) in the bacterial 

cell wall of all E.coli, such as C600 or EPEC. 

 

Figure 42 The gentamycin protection assay revealed no rhophilin mediated EPEC invasion 

The numbers from counting the colonies grown from bacteria which survived the gentamycin show, 

that neither human RHPN1 transfection, nor any other tested rhophilin result in an increased 

invasiveness of E.coli (blue) or EPEC (red). The small variations are without statistical relevance.  
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We repeated the infection assay described in 2.5 using Cos7 cells transfected with 

human RHPN1 or mouse RHPN1. Three hours after EPEC infection, the cells were 

fixed and stained with the anti LPS antibody without any permeabilization step. 

Additionally a DAPI staining was performed. The idea was that the LPS antibody 

should not be able to permeate the cell and thus, only stain bacteria on the cell 

surface, while DAPI stains also internalized bacteria. In other words, internalized 

bacteria should only be stained in blue. When analyzing the fixed cells by fluorescent 

microscopy, we observed after transfection of GFP, no rod like structures and only 

small numbers of weak LPS positive structures (Figure 43 A). However, upon 

transfection of hRHPN1 again in about 50 % of all hRHPN1-GFP positive cells, we 

noticed rod shaped structures in the GFP channel (Figure 43 B+C). Only very 

sporadically, single co-localizations with blue labeled bacteria in absence of red were 

observed (Figure 43 C). More frequently we saw deformed, weak LPS positive 

structures, which co-localizes with green and blue accumulations (Figure 43 B). In 

case of mouse RHPN1 transfected cells, sometimes also protein accumulations were 

observed in the green channel. However, these accumulations were, in contrast to 

human RHPN1 transfected cells, not co-localized with DAPI or LPS signals but 

rather diffuse (Figure 43 D).  

The weak LPS positive structures could be remnants of phagocytosed bacteria. Also 

the experimental protocol may lead to staining via small amounts of the anti LPS 

antibody, which were able to pass the membrane. Further experiments are necessary 

to unambiguously clarify this. Taken together, the gentamycin result and the high 

amount of weak LPS positive structures within cells upon human RHPN1 

transfection allow to speculate that RHPN1 induces phagocytosis of EPEC probably 

throughout autophagy of plasma membrane. At the time point of cell fixation, the 

bacteria are most likely already dead and therefore cannot count positive in the 

gentamycin protection assay. 
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Figure 43 Staining of bacteria with an anti LPS antibody after infection assay 

Cos7 cells transfected with either GFP alone, human RHPN1-GFP or mouse RHPN1-GFP were 

infected for 3 h with EPEC. Subsequently, the cells were fixed and stained with DAPI and an anti 

LPS antibody without performing a permeabilization step. Arrowheads indicate structures, 

observable in the red and blue channel, while asterisks highlight structures visible only in the green 

and blue channel. The scale bar represents 10 µm. 
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2.7 RHPN1 CHMP4b interaction 

The potential autophagy described in the previous chapter may involve the 

ESCRT III complex, which is known to participate in different membrane associated 

processes like bending, or fission. Although we were not able to show an interaction 

between the ESCRT III subunit CHMP4b and human RHPN1 in pull down assays, 

we tested the abcam® antibody for immunofluorescence microscopy (Figure 44). 

No matter if RHPN1 was expressed alone, or together with Map in Hela cells, we 

were not able to observe a recruitment of CHMP4b towards RHPN1 or RHPN1/Map 

positive structures. 

 

 

 

 

 

Figure 44 No recruitment of CHMP4b towards RHPN1 and/or Map positive structures 

In (A) Hela cells were transfected with GFP tagged human RHPN1 and subsequently stained with 

abcam® anti CHMP4b antibody. In (B), the cells were additionally co-transfected with Myc tagged 

Map. Arrowheads indicate spots of protein accumulations. The scale bars represent 10 µm. 
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3 Discussion 

The aim of this work was to identify so far unknown interaction partners of bacterial 

virulence factors on the host side. To get an idea where we had to start searching, we 

performed a large Y2H screen which comprised several variants of 10 bacterial 

proteins as baits and a genome wide human cDNA derived protein collection as 

preys. This screen resulted in over 150 hits, some of them, being more and some of 

them, being less likely. This was estimated based on their behavior in more than 100 

previous screens performed by our cooperation partners at the DKFZ in Heidelberg.  

Out of the pool of likely protein interactions, which was still numerous, we have 

chosen those involved in processes that might play a role in pathogenicity and as 

GTPases, their interactors and proteins involved in trafficking or migration. 

Furthermore we decided to follow some additional hints since they seemed 

promising.  

To verify the selected Y2H interactions, we first utilized biochemical methods. To do 

so, we purified recombinant virulence factors, as well as their putative interactors 

from bacteria and immobilized them to appropriate sepharose beads. Subsequently 

these proteins were used in pull down experiments against lysates of mammalian 

cells ectopically expressing the putative partner. All pull downs were performed until 

a statistical relevant conclusion was possible, but at least three times. The 

experiments always included suitable negative and if available also positive controls. 

In case that a pull down was repeatedly negative, we put the respective hit aside and 

focused on the next. We cannot exclude that these hits are relevant since the negative 

result can come from experimental conditions. However, we decided to test the large 

number of hits in a straight forward standard procedure, keeping potential overseen 

interactions in mind. If a pull down experiment was convincingly positive, at the best 

also in vice versa approaches, we strengthened the result by further methods, namely 

co-immunoprecipitation, and/or immunofluorescence microscopy.  

Finally we tested our findings in infection assays, trying to create a model that puts 

our results into the whole infection context and explain the biological relevance of 

this process. 
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3.1 EspT does not interact with Arf6 

The first interaction, which we tested was the one between EspT and Arf6. We 

considered this pair as potential relevant because Arf6, as a small GTPase involved 

in reorganization of the actin cytoskeleton and in endocytosis (Donaldson, 2003, 

D'Souza-Schorey et al., 2006), is very likely active during infection. Although the 

formal prove of an interaction was still missing, it has been reported that the small 

Rho GTPases Rac1 and Cdc42 were activated by EspT (Bulgin et al., 2009b, 

Orchard et al., 2012a). Thus it was attractive to test if EspT is a direct activator of 

Rac1 and/or Cdc42 or indirect, for instance via Arf6. A direct link between Rac and 

Arf6 activation has been described before (Radhakrishna et al., 1999, D'Souza-

Schorey et al., 1997).  

When inspecting the pull down assays between EspT and different versions of Arf6 

(Figure 16), it became obvious that no interaction between both proteins was 

detected. In contrast, strong interactions were observed between recombinant EspT 

and the constitutive active (CA) versions of Rac1 and Cdc42, also in the vice versa 

approach using recombinant Rac1 and Cdc42 both activated GTP-loaded GTPases 

interacted with EspT (Figure 17). As a member of the WxxxE family with predicted 

GEF activity (Ohlson et al., 2008), we had expected that EspT interacts with the 

dominant negative GDP-loaded versions. One hand this showed that our 

experimental procedure is working, on the other hand they raised different new 

questions. First, if EspT interacts with GTP loaded Rac1 and Cdc42, how is the 

published GTPase activation accomplished? This is an important question, since also 

in our hands, EspT overexpression resulted in a typical Rac1/Cdc42 hyper activation 

phenotype of the cell morphology (Figure 34). Second, if EspT possesses GEF 

activity and neither the tested Rho GTPases nor Arf6 is the substrate, what is the real 

target? Finally, the binding to CA GTPases implicates a function as a downstream 

effector of Cdc42 and Rac1, leading to the question in which pathway EspT might be 

integrated. Therefore, in the future we will revisit EspT using other assay. Also a 

crystal structure, that in the case of IpgB2 and RhoA clearly revealed the 

GEF-activity, may teach us a lot about EspT/Rac1 or EspT/Cdc42. 
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3.2 SopB does not interact with the V-ATPase subunit ATP6V1E1 

In contrast to the other virulence factors mentioned in this thesis, SopB belongs to a 

different protein class. SopB is not a member of the WxxxE protein family and is not 

a bacterial GEF. Yet, it is one of the Salmonella type III secreted virulence factors 

(Zhou et al., 2001) and plays an important role in invasiveness and later in infection 

(Hänisch et al., 2011, Roppenser et al., 2012). The SopB protein comprises two 

known functions. First a phosphoinositide phosphatase activity (residues 357-561) 

(Norris et al., 1998) and second a GTPase binding capacity (residues 117-168) 

(Rodriguez-Escudero et al., 2011), which are both involved in the stimulation of 

cytoskeletal rearrangements and perpetuation of the SCV. 

In our Y2H, SopB interacted with the ATP6V1E1 subunit of the V-ATPase. This 

ATPase is a evolutionary highly conserved machinery among eukaryotes and play an 

essential role in acidification of cellular organelles by pumping protons across 

membranes (Perez-Sayans et al., 2012). 

Upon Salmonella invasion, several host proteins are targeted to the SCV membrane, 

among them the V-ATPase (Martinez-Lorenzo et al., 2001). Having a look at other 

pathogenic bacteria, for example Streptococcus pyogenes or Mycobacterium 

tuberculosis, one can see that there are cases, in which the ATPase is a targeted to 

prevent acidification of the phagosome (Nordenfelt et al., 2012, Wong et al., 2011b). 

Due to its adaptive acid tolerance (Garcia-del Portillo et al., 1993a) Salmonella is not 

fully dependent on prevention of acidification of the SCV, however an interference 

with the ATPase could still be advantageous. 

Our pull down assay results of SopB and different small GTPases of the Rho family, 

revealed a strong interaction with dominant negative and constitutive active Cdc42 

(Figure 19). This fitted perfectly to the literature (Rodriguez-Escudero et al., 2011) 

and confirmed that our recombinant SopB is, at least in part, properly folded. The 

interaction to ATP6V1E1 however, was in three independent experiments always 

negative.  

Besides the possibility that there really is no interaction between the V-ATPase 

subunit and SopB, we cannot exclude technical reasons for this, since we have no 

control on the folding of the PiPase region. Moreover the interaction may require 

membrane or additional proteins. Finally the GFP tag may have blocked an 

interaction and recloning may solve this problem. We currently plan different 

additional approaches to clarify this issue. 
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3.3 IpgB2 interacts with BBS4 

IpgB1 and IpgB2 are two related Shigella virulence factors. They are further 

members of the WxxxE family and should stimulate the formation of lamellipodia, 

ruffles and stress fibers in the host cell upon transfection, respectively (Alto et al., 

2006, Klink et al., 2010). Upon transient transfection of IpgB1 into Hela cells, we 

observed a diverse morphology. In different attempts, we saw IpgB1 positive cells, 

displaying a Rac1- or Cdc42-like phenotype. Sometimes also a mixture of both 

phenotypes was seen (Figure 35). This fits to the report, that IpgB1 is able to 

accelerate the Rac1 activation 32-fold and the Cdc42 activation at least 6-fold 

(Huang et al., 2009), exerting GEF activity on those GTPases.  

In our hands however, we were not able to reproduce the interaction of IpgB1 and 

Rac1 or Cdc42 in pull down experiments (Figure 21), which were described by 

Huang and colleagues. Since we had no hit in the Y2H and our pull down assays 

between Rac1 or Cdc42 and IpgB1 were negative, too, it might be possible that the 

interaction is weak and transient in an “kiss and run” style. Maybe it would have 

been possible to finally reproduce the interaction, by the preparation of new 

recombinant IpgB1 or by changes in our experimental procedure. But since the Y2H 

screen has provided no potential interaction partners, we decided continue on IpgB2. 

The ectopic expression of IpgB2 was reported to provoke a RhoA like stress fiber 

response in HEK293A cells (Alto et al., 2006, Klink et al., 2010). In our 

experiments, we used Hela and Cos7 cells to analyze the results of transient 

transfections. We frequently observed rounded cells, often lined with lamellipodia. 

Cell surface spanning ruffles were also found usually. However, the RhoA effect 

described by Alto and colleagues was not that strong in these cell types. Indeed, our 

cells were filled with a dense stress fiber network, but the single fibers were rather 

thin (Figure 35). One explanation for the difference between the observed 

cytoskeletal phenotypes could be the usage of different cell types.  

For IpgB2 it has been shown on crystal structure level that the virulence factor 

specifically interacts with GDP-loaded RhoA and catalyses the nucleotide exchange 

(Klink et al., 2010). The authors also showed in the same article, that IpgB2 

accelerates the exchange ~10
4
-fold compared to the intrinsic rate. This is more than 

one order of magnitude above the efficiency of mammalian GEFs of RhoA.  
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In our pull down experiments immobilized IpgB2 clearly interacts with dominant 

negative Myc-tagged RhoA (Figure 22 A). With this successful positive control we 

started to analyze the potential interactions with BBS4 and TRAPPC6A.  

BBS4 is one of eight proteins, forming the core of a multiprotein complex called 

BBSome, which is located to non-membranous centriolar satellites and to the 

primary cilium (Nachury et al., 2007, Loktev et al., 2008). The 52 kDa protein was 

first described as one of 12 potential mutants, causing the Bardet-Biedl syndrome, a 

ciliopathic human genetic disorder (Mykytyn et al., 2001).  

The second protein TRAPPC6A is one, of the six component TRAPP I complex. 

This complex is involved in vesicular transport at the endoplasmic reticulum (Sacher 

et al., 2008).  

In our pull down assays using immobilized IpgB2, we were not able to validate the 

interaction with TRPPC6A (Figure 22 A). In case of BBS4 we could adjust the 

experimental conditions, and detect a clear and reproducible interaction between 

IpgB2 and BBS4 (Figure 22 B). 

This experiment demonstrates perfectly, how important it is to modify the 

experimental setup when an interaction appears negative in a first attempt. 

Subcloning BBS4 into a protein expression vector, was crucial for showing the 

IpgB2 BBS4 interaction. 

Since nothing is known about an interaction between IpgB2 or any other virulence 

factor and BBS4, the question rises, how does Shigella benefit from targeting BBS4? 

We already know, that BBS4 as part of the BBSome localizes at the primary cilium. 

These organelles are found in a broad range of vertebrate cells and are involved in 

many signaling events, like the wnt signaling or the hedgehog signaling pathway 

(Gerdes et al., 2009). Furthermore, it was reported that depletion of BBS4 in mice, 

does not affect the formation cilia (Mykytyn et al., 2004), but might play a role in the 

intraflagellar transport (IFT) (Wei et al., 2012). Primary cilia are typical for the G0 

phase and are disassembled in all other phases of the cell cycle (Kim et al., 2011). 

Additionally, BBS4 is a component of centriolar satellites (Loktev et al., 2008). 

These structures are required for primary cilium formation but may also serve 

physical checkpoint function since they contain CDK1 and cylinB2 (Spalluto et al., 

2013). 

But why should IpgB2 target BBS4? One potential connection is the small GTPase 

RhoA, which was found to be substrate to IpgB2 (Klink et al., 2010), involved in 
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cilia formation (Pan et al., 2007) and significantly increased in BBS4 knockout cells 

(Hernandez-Hernandez et al., 2013). RhoA possibly connects both proteins. 

A first experiment to test the influence of IpgB2 in the cilia context might be 

co-localization studies between the virulence factor, BBS4 and cilia, to see if BBS4 

recruitment or cilia formation is altered or even impaired. A current master thesis 

(Eric Meinhardt) is following this interaction. 

 

3.4 The SifA – Rab9 interaction 

The Salmonella virulence factors SifA and SifB were among the first described 

WxxxE family members (Alto et al., 2006). SifA seems to be absolutely necessary 

for the formation of Salmonella induced filaments (Stein et al., 1996). It is also 

known that SifA binds to a host protein termed SifA kinesin interacting protein 

(SKIP), which is capable to connect to the plus-end directed microtubule motor 

kinesin. Disturbing this interaction results in impaired tubulation (Boucrot et al., 

2005). Together with a second effector protein, SseJ, SifA also contributes in the 

maintenance of the phagosome (Ruiz-Albert et al., 2002). In contrast to other WxxxE 

proteins, SifA and SifB do not appear to affect actin dynamics (Bulgin et al., 2010). 

This largely agrees with our microscopic SifA overexpression studies. We neither 

observed large lamellipodia or massive filopodia formation, nor did we observe an 

increase in stress fibers or adhesions. Only the cell shape was slightly altered 

compared with control transfected cells, as it was more rounded and appeared more 

widely spread (Figure 35). Up to now there is only one report by Ohlson and 

colleagues, postulating that SifA may function as a GEF of RhoA. However, they 

were not able to show GEF activity for purified SifA and the pull down experiments, 

(with an overexposed load-control, no supernatant-control and a weak signal in the 

pull down lane), was not very convincing (Ohlson et al., 2008). Consequently, in our 

experimental setup, which is quite stringent, we were not able to detect an interaction 

with RhoA (Figure 24).  

Alternative to Rho-GTPases we followed hints that SifA might interact with Rab 

GTPases. In mammalian cells Rab GTPases are involved in multiple vesicle 

trafficking pathways. Here they organize transport and recycling by marking 

different vesicle populations (Zerial et al., 2001). In the context of Salmonella 

infection, Rab4 and Rab5 were reported to be recruited to the early phagosome in the 
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first 60 min after infection, indicative of interactions with early endosomes (Smith et 

al., 2005). Subsequently, Rab7 and Rab9, late endosomal markers, are recruited to 

the SCV and were reported to be essential for the Sif formation (Smith et al., 2007, 

Brumell et al., 2007). In this context, it is remarkable that in cells SKIP interacts with 

Rab9 and this interaction is disturbed by SifA (Jackson et al., 2008). 

In our study, we were able to detect a direct interaction between SifA and Rab9a in 

pull down experiments. Additionally, a weak interaction with Rab11a was observed, 

however, not consistent enough and thus requires further experiments. Other Rab 

GTPases, like Rab4a, Rab5a and Rab7a displayed no direct interactions under these 

conditions (Figure 25). 

In contrast to SifA, only little is known about SifB. SifB is translocated via the 

second Salmonella T3SS and localizes to the SCV, but depletion of the effector 

protein has no noticeable effect on the SCV integrity or Sif formation (Freeman et 

al., 2003). On these grounds, the authors speculate about a function of SifB in later 

stages, or special situations of the infection. Interestingly, from our Y2H screen we 

have a potential interaction with the Rap-GTPase interactor RADIL that is in play in 

cell adhesion. This hit is currently followed in an independent work together with 

two other potential hits. 

For SifB in our Y2H screen the most significant hit was Cdc42. Thus, we tested the 

virulence factor against a selection of Rho- and Rab GTPases in parallel to SifA. 

However, we never got a positive interaction (Figure 24 and Figure 25). At this point 

we have to consider that for the Y2H screen with SifB and in the biochemical 

experiments only a truncated version, lacking the first 98 aa, was used. Revisiting 

SifB interactions with the full length protein is planned for the future. 

 

3.5 The interaction between Map and human RHPN1 

The virulence factor Map, present in the A/E group of pathogenic bacteria, is also a 

member of the WxxxE effector protein family (Alto et al., 2006) and was reported to 

function as a Cdc42 GEF mimic (Huang et al., 2009). Upon intimate contact between 

EPEC and the host cell, Map is translocated via the T3SS and targets Cdc42 in order 

to remodel the GTPase signaling (Huang et al., 2009, Kenny et al., 2002, Alto et al., 

2006). To accomplish the alteration of Cdc42 signaling, the interaction with a second 
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host protein, the EBP50, via the Map PDZ-domain binding motif, is mandatory 

(Berger et al., 2009, Simpson et al., 2006).  

Targeting Cdc42 by Map results in the formation of Cdc42 dependent filopodia at the 

infection side (Berger et al., 2009, Kenny et al., 2002, Orchard et al., 2012b) and 

also ectopic Map expression provokes filopodia formation (Bulgin et al., 2010). In 

our experiments we observed filopodia formation, too. More frequently, however, we 

recognized a wide spread cell shape, with protruding lamellipodia (Figure 36). This 

effect is most likely due to Cdc42 induced Rac1 activation, because of signaling 

crosstalk between these GTPases (Hall, 1998).  

The two most significant hits from the Y2H screen for Map were the EBP50 paralog 

NHERF2 and rhophilin1 (RHPN1). First, we tested our recombinant Map in pull 

down assays against Cdc42 and were able to reproduce this direct interaction (Figure 

27). Subsequently, we started to examine the predicted interaction partner human 

RHPN1.  

The human RHPN1 was identified as an interactor of GTP bound RhoA (Watanabe 

et al., 1996). Later, Peck and colleagues characterized a structurally related protein 

(40 % aa similarity), RHPN2, in humans. Both proteins are thought to act as 

scaffolds downstream of RhoA. Contrary to Watanabe, Peck reported RhoA binding 

in the GTP as well as in the GDP bound conformation (Peck et al., 2002). In our pull 

down assays, we were able to support Peck by detecting interactions of RHPN1 

together with immobilized CA and DN RhoA. Moreover we observed strong 

interactions with CA Rac1 as well as weak interactions between RHPN1 and DN 

Rac1 or CA Cdc42 (Figure 28 A+B). Unfortunately, we were not able to detect any 

interactions in the vise versa approach, using immobilized RHPN1 (Figure 28 C). 

Possibly the GST tag used in these experiments somehow blocks the N-terminal HR1 

domain and prevents an interaction with the GTPases. Allternatively, full length 

rhophilin might not be properly folded. Therefore we will repeat these experiments 

with GST-HR1. To address this point, recloning is considered. To test, if RhoB 

might be a further candidate to interact with human RHPN1, we cloned WT and CA 

RhoB. Interestingly RhoB binding to human RHPN2 was already described (Peck et 

al., 2002). 

The ectopic expression of RHPN2 was described to cause a loss of stress fibers, 

while RHPN1 expression had no noticeable effect on the cytoskeleton (Peck et al., 

2002). Here we also observed no effect of RHPN1 upon transfection (Figure 36) and 
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indeed, the expression of human RHPN2 resulted in a decrease of stress fibers, 

however, not in a total loss.  

Both proteins share the same domain composition: A N-terminal HR1 domain, which 

mediates the RhoA binding, a C-terminal PDZ domain, known to be involved in the 

formation of protein complexes (Jelen et al., 2003) and finally a central Bro1 

domain, named after its homolog from budding yeast (Nickas et al., 1996). The PDZ 

domain was promising, since Map contains a PDZ binding motive, too (Alto et al., 

2006). In pull down assay we were able to prove a direct interaction between Map 

and human RHPN1. The specificity of this interaction was emphasized by the fact 

that Map was shown to interact with mouse RHPN1, but not with human RHPN2 

(Figure 29). Subsequently, we mapped the interaction surface. To do so, we designed 

constructs of the human RHPN1 domains HR1, PDZ and Bro1 and utilized them in 

pull down assays to probe for Map and vice versa. Western blot analysis revealed a 

clear interaction between the recombinant protein and the PDZ domain (Figure 30 

A). Surprisingly, when running pull down assays with other PDZ domains, including 

human RHPN2 and mouse RHPN1 PDZ, we detected no interactions, although the 

full length mouse RHPN1 interacted with Map (Figure 30 B). The reasons for this 

inconsistency may be found in the design of the PDZ construct, although 

bioinformatical protein domain predictions were performed before. Another problem 

could be the position of the GFP tag, a change from the N- to the C-terminus might 

lead to different results.  

To support our results concerning the Map human RHPN1 interaction, we decided to 

perform co-IPs (Figure 32). We co-transfected GFP tagged RHPN1 and Myc tagged 

Map in B16 cells and performed the precipitation by using anti GFP or anti Myc 

antibodies. We used pre-conjugated anti Myc-bead material, which lead to repeatedly 

positive results. Since Myc tagged Map migrates at the same height as the antibody 

light chain, resulting in cross reactions which made it hard to discriminate between 

Map and artificial signal. To address this problem, one could think about several 

approaches. For example the use of a secondary antibody like TrueBlot® from 

Rockland Immunochemicals, specific against native antibodies. Furthermore a 

change to native conditions may prevent antibody segregation. Finally it should be 

considered to (ex)change the protein tags which would result in a bigger Map 

protein, not masked by cross reactions. Nonetheless, we are convinced that our 
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interaction data unambiguously demonstrate a specific interaction between the 

PDZ-domain of rhophilin1 and bacterial Map. 

Next, we performed co-localization studies between Map and RHPN1. These (Figure 

37) revealed an almost complete congruency of both proteins. In most of the cases 

small globular structures were observed, either close to the nucleus or distributed 

throughout the whole cytoplasm. After single transfection of human RHPN1 or Map, 

those dots were observed, too, but by far not that numerous. This result made us 

speculating about the compartment where both proteins are recruited to. Our first 

thought was mitochondria, since Map was reported to locate at mitochondria during 

late stages of EPEC infection (Kenny et al., 2000). Therefore we performed 

MitoTracker® staining in RHPN or Map transfected cells (Figure 39). Interestingly 

the mitochondria staining revealed no co-localization with Map, suggesting, Map is 

not dominantly targeted to these organelles but probably at some point during 

infection, where further bacterial virulence factors might contribute to mitochondria 

targeting. Unfortunately, the simultaneous use of co-transfections and MitoTracker® 

did not work, because the combination of our Myc antibody together with the blue 

labeled secondary antibody produced such a high background signal that it was 

impossible to discriminate between transfected and untransfected cells. Unexpected 

to us, however, we observed a partial localization of human RHPN1 or its PDZ 

domain to mitochondria. The other tested RHPNs showed no correlation with 

MitoTracker®. The other putative compartment where RHPN1 and Map could meet 

are vesicles. We hypothesized this based on the dot like structure and, on the other 

hand, because it was reported that human RHPN2 is found at late endosomes (Steuve 

et al., 2006), although we scarcely observed clear localizations. Beside the full length 

proteins, already the RHPN1 PDZ domain is sufficient to induce a strong recruitment 

of Map. In this case, however no small dots were seen, but a ring like structure 

surrounding the nucleus, suggesting the cell endomembrane system such as the 

endoplasmic reticulum as interaction surface instead of mitochondria. 

The fact, that RHPN1 contains a Bro1 domain lead us to the theory that RHPN1 

might also interact with the endosomal sorting complex (ESCRT) required for 

transport. The ESCRT machinery was first described in yeast, for its crucial role in 

sorting membrane proteins into lysosome like vacuoles. In humans more than 20 

proteins interact to form three different complexes (ESCRT I-III). They fulfill 

functions in endosomal sorting of ubiquitinated receptors and mediate membrane 
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curvature and fission processes, such as cytokinetic abscission or in the biogenesis of 

multivesicular bodies (MVB) (Rusten et al., 2012, Jouvenet, 2012). In yeast the Bro1 

protein was described to interact directly with the ESCRT component Snf7 and 

function with, or downstream of ESCRT III in the MVB pathway (Odorizzi et al., 

2003). In mammals the close related Bro homolog is called Alix (Missotten et al., 

1999, Vito et al., 1999). We therefore suggest that Map targets RHPN1 to subsequent 

recruit the ESCRT III complex towards the infection side. Hijacking of the ESCRT 

machinery has been reported to be important for the budding of different enveloped 

viruses. The human parainfluenza virus HPIV1, a prominent respiratory pathogen, 

encodes a set of accessory C proteins, which are involved in the regulation of the 

virus replication rate, suppression of the IFN response and suppression of apoptosis. 

Furthermore, these proteins bind to Alix, a Bro1 domain containing protein, capable 

of recruiting the ESCRT subunit CHMP4b (Boonyaratanakornkit et al., 2013). The 

authors suggest, that by targeting CHMP4b via Alix, the C proteins are recruited to a 

specific side at intracellular membranes, where they can promote virus budding. 

Studies on the retrovirus HIV and ESCRT III have an even longer history and the 

first connection between virus budding and ESCRT machinery was drawn in 2003. A 

few molecules of the virus protein Gag attach at one point of the membrane and 

accumulate more and more Gag protein. Simultaneous Alix is recruited towards the 

cytosolic side of Gag and the viral envelop starts to form. When the envelop is 

almost completed, ESCRT and the associated protein Vsp4 are recruited and fission 

take place. The whole procedure takes only 10 min (Strack et al., 2003, Pires et al., 

2009, Morita et al., 2011, Jouvenet, 2012). Finally, in another study the positive 

effect of Alix on virus was lead back to its Bro-domain (Popov et al., 2009). More 

importantly, the Bro domain of Alix could be replaced by that of rhophilin with the 

same efficiency (Popov et al., 2009). From this we delineate that RHPN1 may serve 

as alternative ESCRT adapter under specific conditions. Interestingly ESCRT is not 

only associated with membrane sorting but also with autophagy (Rusten et al., 2009). 

Since autophagy is an important defense mechanism against pathogens (Mostowy et 

al., 2011) this may be the cause of recruitment. 

To see if there is any connection between human RHPN1 and ESCRT, we tested two 

different antibodies against CHMP4b, the ESCRT III subunit that is bound by the 

Bro1 domain containing protein Alix. On the one hand, we tried to perform pull 

down assay with endogenous CHMP4b against immobilized human RHPN1. 
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Unfortunately, both antibodies we used produced so many cross reactions in the 

western blot detection, that we were not able to identify CHMP4b (Figure 31). On 

the other hand, we used one of the antibodies in immunofluorescence microscopy of 

Hela cells transfected with human RHPN1. In this case the antibody performed well, 

but no co-localization was observed (Figure 44). Although we failed to show an 

interaction between RHPN1 and the ESCRT machinery, it still may exist. It could 

possibly be shown for example by the use of ectopic expressed CHMP4b instead of 

the endogenous. Alternatively, RHPN1 might only assemble with ESCRT-subunits 

under special conditions such as during bacterial attachment or during escape from 

autophagy. Further studies will shed light on this question. In this context, it is 

tempting to speculate on the potentially internalized dead bacteria observed after 

ectopic RHPN1 expression. However, more data are needed to confirm such a 

connection. 

Together, the current thesis has provided evidence for several interactions of 

virulence factors with host cell proteins. The interaction between Map and human 

RHPN1 was further characterized. We mapped the interaction surface between both 

proteins and tried to approximate a physiologic function of RHPN1 in cells and of 

this interaction during infection. 

To do so, we turned to run EPEC infection assays. In a first experiment we checked 

if the ectopic expression of any RHPN somehow affects the formation of pedestals at 

the infection site. Analysis of pedestal formation revealed that indeed the 

transfections of Map contributed positively to pedestal formation. Human RHPN1 

and RHPN2 expression showed a repressive influence (Figure 41). The Map 

dependent growth of pedestals suggests that ectopically expressed Map amplifies the 

function of the endogenous protein which was translocated via the EPEC T3SS. The 

interpretation of the RHPN result is more difficult because human RHPN1 as well as 

human RHPN2 had a repressive effect and mouse RHPN1 had not. It has to be noted, 

that mRHPN1 should be tested in murine cells since it may be nonfunctional in our 

experimental background. Nevertheless, microscopic analysis of these infection 

assays revealed a further, unique, effect of human RHPN1. 

Transfections of human RHPN1 resulted in rod shaped accumulations of our protein 

in the GFP channel, reminiscent of bacteria (Figure 40) accumulating the GFP tagged 

protein. Gentamycin protection assay (Figure 42) however revealed no increased 

numbers of living intracellular bacteria. Given the connection between RHPN1 and 
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autophagy, we analyzed if these green bacteria maybe dead and intracellular, by 

using inside out staining. These assays revealed co-localizations with extra and 

intracellular LPS positive spots. From the result we can conclude that we are indeed 

looking at active autophagy. The localization is a clear hint that human RHPN1 

participates in EPEC infection (Figure 43). Since we could not observe any protein 

accumulations in the first 60 min post infection, human RHPN1 seems to take part 

only in later stages of the infection. It will be interesting to follow this trail to learn 

more about the highly regulated mechanisms behind an EPEC infection, especially 

with respect to the exact role of RHPN1 during this process. 

 

3.6 Collaborative projects 

During the accruement of this thesis, I participated in two collaborative projects, with 

our cooperation partners on related topics.  

The first one was the characterization of a stable, viable mouse fibroblast cell line, 

genetically depleted for Rac1 (Steffen et al., 2013). Those cells, also lacking any 

detectable Rac2 and Rac3 activity, were deficient in the formation of lamellipodia 

and strongly affected in migration. This was shown in 2D wound healing assays and 

chemotaxis assays. The formation of filopodia, spreading and of focal complex 

assembly were assessed. Cell spreading was accomplished by filopodia formation 

and subsequent flow of membrane and cytoplasm in the space between them. 

Because earlier attempts to generate a viable genetic knock out cell line failed, it was 

thought that Rac1 participates essentially in cell proliferation (Vidali et al., 2006, 

Guo et al., 2006). Our cells show that this link is not essential but can be bypassed. 

Yet, in large parts we could confirm the current knowledge. I am sure, that with this 

new viable Rac1 knock out cell line, we got a strong tool to gain deeper insides into 

the broad functions of the important Rac1 GTPase. For infection research, it will be 

interesting to revisit the role of Rac for bacterial pathogenesis. Also in the case of 

EPEC and given the strong interaction of RHPN1 with CA Rac1, analyses with the 

help of these cells will be very interesting.  

Within the framework of this project, I was involved in the detection of Rac2 and 

Rac3 levels. Furthermore I contributed in the analysis of the focal contact formation. 

Finally the effect of bacterial Rac1 GEFs (IpgB1) in these cells was tested.  
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The second collaborative project was in cooperation with Sonja Blasche from the 

DKFZ in Heidelberg. It was about the identification of novel targets of EHEC 

effector proteins with focus on Tir. Based on a Y2H screen, six novel and two 

already published EPEC-Tir interactors were identified and subsequently confirmed. 

It was my part to test the new interactors in infection assays and to perform 

immunofluorescence microscopy for their recruitment to the infection site. Beside 

the positive controls BAIAP1 and -2, which were strongly recruited, we observed the 

serin/threonine kinase 16 (STK16) and hippocalcin-like1 (HPCAL1) to be targeted 

towards the infection side. In this case STK16 is interesting, because it is known that 

Tir has to be phosphorylated before actin reorganization and pedestal formation is 

started (Campellone, 2010). These results will be submitted in due time (Blasche et 

al., in prep.) 

 

3.7 Concluding remarks 

This work provides new insides into host pathogen interaction on the protein level. 

We discovered human RHPN1 as a novel target of the A/E group virulence factor 

Map. Furthermore we showed considerable evidences that the Shigella effector 

IpgB2 is able to interact with the human protein BBS4 and finally the Salmonella 

virulence factor SifA was shown to bind the small GTPase Rab9 in pull down assays. 

Based on a Y2H screening, the poorly defined RhoA-interactor RHPN1 and the 

translocated virulence factor Map, with the ability to provoke cytoskeletal 

reorganizations, were found to interact with each other. By utilizing biochemical and 

microscopic techniques we were able to confirm this finding. Although the 

interaction is verified, its biological function still remains elusive and needs further 

studies. To get a better impression of cellular localization of the RHPN1 Map 

interaction, it will be instrumental to use confocal video microscopy. Also a 

co-staining with markers for different vesicle populations should be considered, to 

see if there are compartments, other than mitochondria, where the interaction takes 

place. An infection assay using a ΔMap EPEC mutant will uncover if the observe 

RHPN1 recruitment is indeed Map dependent. In vise versa experiment with RHPN1 

knock down cells we will reveal defects in establishment of the infection. In case 

RHPN1 is involved in the defense mechanism of autophagy, infection may even be 

enhanced when RHPN1 is absent. 
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BBS4 is known to be involved in the formation of the primary cilium and in the 

recycling of different receptors on its surface. Since the cilium is almost ubiquitous 

in eukaryotic cells, it is imaginable that this compartment is a target of virulence 

factors. There is nothing known about any interference of pathogens with pathways 

like hedgehog or wnt, whose receptors are organized by BBS4, but it might be an 

interesting topic of further studies. However, for the case that centriolar satellites are 

sites of cell cycle control (Staples et al., 2012, Kim et al., 2004) it can be speculated 

that Shigella targets BBS4 to affect the host´s cell division cycle. This has been 

shown before (Iwai et al., 2007). 

The interaction between SifA and Rab9 was only shown in one directional pull down 

assays. So it is mandatory to spend more effort to verify this interaction. However, 

both proteins were reported to be involved in the formation and maintenance of Sifs. 

This circumstance makes an interaction plausible. Nevertheless, at least 

co-localization studies should be performed to confirm a relation between both 

proteins in time and space.  

Even if the insights reported here, are just small pieces of a huge puzzle, they may 

contribute to the growing pool of knowledge on infectious diseases.  
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4 Material  

4.1 Chemicals 

If not further mentioned, all chemicals used in this thesis, were purchased from 

AppliChem, Fermentas, Invitrogen, Machery-Nagel, Merck, Millipore, New England 

Biolabs, Quiagen, Roche, Roth, Sigma-Aldrich, Thermo Fischer Scientific and not 

listed in detail. Water used in this study was purified and distilled with a Milli-Q 

Advantage A10 System (Merck Millipore Billerica). If not further specified, 

solutions were prepared in H2Odd. 

4.2 Cell culture reagents and plasticware 

Cell culture media and supplements were purchased, if not further mentioned from 

Gibco, PAA and Sigma-Aldrich. Plasticware was ordered from Greiner, Sarstedt, 

Techno Plastic Products and Thermo Fischer Scientific. 

4.3 Bacterial strains 

The following bacterial strains were used in this study. 

Table 2 List of bacterial strains used in this study 

Bacterial strain Function Source 

Escherichia coli TG2 cloning Stratagene 

Escherichia coli DH5α cloning Invitrogen 

Escherichia coli DB3.1 gateway cloning Invitrogen 

Escherichia coli BL21 protein expression Invitrogen 

Escherichia coli C600 infection assays Stratagene 

EPEC E2348/69 infection assays Iguchy A. 2009 
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4.4 Cell lines 

The following cell lines were used in this study. For medium (see 5.2.1) 

Table 3 List of mammalian cell lines used in this study 

Cell line Organism Type Function Medium 

B16-F1 Mm melanoma, skin protein expression 1 

Hela Hs cervical cancer microscopy 2 

Cos7 C. aethiops kidney  microscopy, infection assays 3 

4.5 Plasmids 

Plasmids used in this study are listed below (intermediate clones not shown)  

Table 4 List of plasmids used in this study 

Plasmid Number Function Source 

pGBT9-GW SAR 17 intermediate vector Y2H DKFZ 

pDONR-211 SAR 18 final vector Y2H Invitrogen 

pEGFP C1 SAR 34 GFP-tagged expression vector Clontech 

pEGFP C1-RhoG V12 SAR 35  this group 

pEGFP C1-IpgB1 SAR 36  this group 

pDONR211-GW-IpgB1-W76A SAR 37 final clone for Y2H this study 

pDONR211-GW-IpgB2-ΔmemB-W62A SAR 38 final clone for Y2H this study 

pDONR211-GW-IpgB2-W62A SAR 39 final clone for Y2H this study 

pDONR211-GW-IpgB2-ΔmemB SAR 40 final clone for Y2H this study 

pDONR211-GW-SifB-Δext 99-336 SAR 41 final clone for Y2H this study 

pDONR211-GW-EspM2-Citero SAR 42 final clone for Y2H this study 

pDONR211-GW-IpgB1 SAR 43 final clone for Y2H this study 

pDONR211-GW-EspT-EPEC SAR 44 final clone for Y2H this study 

pDONR211-GW-Map SAR 45 final clone for Y2H this study 

pDONR211-GW-SifA-FL SAR 46 final clone for Y2H this study 

pDONR211-GW-IpgB1-ΔmemB SAR 47 final clone for Y2H this study 

pDONR211-GW-SifA-Δext SAR 48 final clone for Y2H this study 

pDONR211-GW-EspT-Citero SAR 49 final clone for Y2H this study 

pDONR211-GW-IpgB1-ΔmemB-W76A SAR 50 final clone for Y2H this study 

pDONR211-GW-IpgB2 SAR 51 final clone for Y2H this study 
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pRK5-Rac1 L61-Myc SAR 54 pull down; microscopy this group 

pcDNA3-RhoGV12-3Myc SAR 55 pull down; microscopy this group 

pDONR211-GW-SopE SAR 68 final clone for Y2H this study 

pDONR211-GW-SopE FL SAR 69 final clone for Y2H this study 

pDONR211-GW-SopE2 SAR 70 final clone for Y2H this study 

pDONR211-GW-SopE2 FL SAR 71 final clone for Y2H this study 

pDONR211-GW-SopB FL SAR 72 final clone for Y2H this study 

pDONR211-GW-SopB N 1-351 SAR 73 final clone for Y2H this study 

pDONR211-GW-SopB C 352-562 SAR 74 final clone for Y2H this study 

pDONR211-GW-IpGD SAR 75 final clone for Y2H this study 

pDONR211-GW-IpGB1 H136A SAR 76 final clone for Y2H this study 

pDONR211-GW-IpGB2 H121A SAR 77 final clone for Y2H this study 

pEGFP-C2-Arf6Q67L SAR 88 pull down; microscopy this group 

pGEX-6P-1 SAR 90 protein expression vector Amersham 

pGEX-6P-3 SAR 91 protein expression vector Amersham 

pEGFP-C1-Rac Q61L SAR 92 pull down; microscopy this study 

pEGFP-C2 SAR 96 GFP-tagged expression vector Clontech 

pEGFP-C3 SAR 97 GFP-tagged expression vector Clontech 

pEGFP-C1-SifB-Δext 99-336 SAR 98 pull down; microscopy this study 

pEGFP-C1-EspT-EPEC SAR 99 pull down; microscopy this study 

pEGFP-C1-Map SAR 100 pull down; microscopy this study 

pEGFP-C1-SifA-FL SAR 101 pull down; microscopy this study 

pEGFP-C1-SifA-Δext SAR 102 pull down; microscopy this study 

pEGFP-C1-EspT-Citero SAR 103 pull down; microscopy this study 

pEGFP-C1-SopB FL SAR 104 pull down; microscopy this study 

pEGFP-C1-SopB N 1-351 SAR 105 pull down; microscopy this study 

pEGFP-C1-SopB C 352-562 SAR 106 pull down; microscopy this study 

pEGFP-C1-IpGD SAR 107 pull down; microscopy this study 

pEGFP-C1-hum RHPN1 SAR 108 pull down; microscopy this study 

pEGFP-C3-hum RHPN2 SAR 109 pull down; microscopy this study 

pGEX-6P-3-hum RHPN1 SAR 111 protein expression this study 

pGEX-6P-1-hum RHPN2 SAR 112 protein expression this study 

pGEX-6P-1-EspT-EPEC SAR 114 protein expression this study 

pGEX-6P-1-EspT-Citero SAR 115 protein expression this study 

pJET1.2 SAR 116 cloning vector Fermentas 
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pQE-30 SAR 117 protein expression vector Qiagen 

pQE-30-SifB-Δext 99-336 SAR 118 protein expression this study 

pQE-30-SifA-FL SAR 119 protein expression this study 

pQE-30-SifA-d ext SAR 120 protein expression this study 

pEGFP-N1-Arf6-WT SAR 121 pull down; microscopy P. Chavrier 

pEGFP-N1-Arf6-T44N SAR 122 pull down; microscopy P. Chavrier 

pEGFP-N1-Arf6-Q67L SAR 123 pull down; microscopy P. Chavrier 

pEGFP-N1-Arf6-T157N SAR 124 pull down; microscopy P. Chavrier 

pEGFP-N1-Arf6-T27N SAR 125 pull down; microscopy P. Chavrier 

pGEX-6P-1-SifB-Δext 99-336 SAR 129 protein expression this study 

pGEX-6P-1-Map SAR 130 protein expression this study 

pGEX-6P-1-SifA FL SAR 131 protein expression this study 

pGEX-6P-1-SifA-Δext SAR 132 protein expression this study 

pGEX-6P-1-SopB-FL SAR 133 protein expression this study 

pGEX-6P-1-SopB N 1-351 SAR 134 protein expression this study 

pGEX-6P-1-SopB C 352-562 SAR 135 protein expression this study 

pGEX-6P-1-IpgD SAR 136 protein expression this study 

pRK5-Cdc42-WT-myc (iso1) SAR 137 pull down; microscopy this group 

pRK5-Rac1-WT-myc (iso1b) SAR 138 pull down; microscopy this group 

pEGFP-C1-IpgB1-W76A SAR 139 pull down; microscopy this study 

pEGFP-C1-IpgB2-ΔmemB-W62A SAR 140 pull down; microscopy this study 

pEGFP-C1-IpgB2-W62A SAR 141 pull down; microscopy this study 

pEGFP-C1-IpgB2-ΔmemB SAR 142 pull down; microscopy this study 

pEGFP-C1-EspM2-Citero SAR 143 pull down; microscopy this study 

pEGFP-C1-IpgB1 SAR 144 pull down; microscopy this study 

pEGFP-C1-IpgB1-ΔmemB SAR 145 pull down; microscopy this study 

pEGFP-C1-IpgB1-ΔmemB-W76A SAR 146 pull down; microscopy this study 

pEGFP-C1-IpgB2 SAR 147 pull down; microscopy this study 

pEGFP-C1-SopE catalytic domain SAR 148 pull down; microscopy this study 

pEGFP-C1-SopE FL SAR 149 pull down; microscopy this study 

pEGFP-C1-SopE2 catalytic domain SAR 150 pull down; microscopy this study 

pEGFP-C1-SopE2 FL SAR 151 pull down; microscopy this study 

pEGFP-C1-IpGB1 H136A SAR 152 pull down; microscopy this study 

pEGFP-C1-IpGB2 H121A SAR 153 pull down; microscopy this study 

pETM-41-IpgB2 SAR 161 protein expression Sally (BS) 
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pETM-41-EspT (EHEC) SAR 162 protein expression this group 

pETM-41-EspT (Citero) SAR 163 protein expression this group 

pETM-41-Map SAR 164 protein expression this group 

pETM-41 SAR 165 protein expression vector EMBL 

pRK5-Cdc42-Q61L-myc SAR 166 pull down; microscopy L. Machesky 

pRK5-Cdc42-T17N-myc SAR 167 pull down; microscopy L. Machesky 

pRK5-Rac1-Q61L-myc SAR 168 pull down; microscopy L. Machesky 

pRK5-Rac1-T17N-myc SAR 169 pull down; microscopy L. Machesky 

pRK5-RhoA-G14V-myc SAR 170 pull down; microscopy L. Machesky 

pRK5-RhoA-T19N-myc SAR 171 pull down; microscopy L. Machesky 

pEGFP-C1-hum RHPN1 Bro SAR 172 pull down; microscopy this study 

pEGFP-C1-hum RHPN1 HR1 SAR 173 pull down; microscopy this study 

pEGFP-C1-hum RHPN1 PDZ SAR 174 pull down; microscopy this study 

pEGFP-C1-ATP6V1E1 SAR 176 pull down; microscopy this study 

pETM-41-SifB Δext SAR 178 protein expression this group 

pETM-41-SifA Δext SAR 179 protein expression this group 

pmCherry-C1 SAR 180 RFP-tagged expression vector Clontech 

pmCherry-C1-Map SAR 181 pull down; microscopy this study 

pGEX-2T-RhoA WT SAR 182 protein expression this group 

pDONR211-GW-SseJ SAR 184 final clone for Y2H this study 

pETM41-IpgB1 SAR 189 protein expression this group 

pETM41-SopB SAR 190 protein expression this group 

pETM41-RhoAT17N SAR 192 protein expression this group 

pEGFP-C1-humRHPN2-PDZ SAR 193 pull down; microscopy this study 

pEGFP-C2-mRhoG wt SAR 202 pull down; microscopy this group 

pEGFP-C1-hRhoG G12V SAR 203 pull down; microscopy this group 

pEGFP-C1-hRhoG T17N SAR 204 pull down; microscopy this group 

pEGFP-C1-RADIL-PDZ SAR 209 pull down; microscopy this study 

pEGFP-C1-mus RHPN1-PDZ SAR 210 pull down; microscopy this study 

pEGFP-C1-mus RHPN2-PDZ SAR 211 pull down; microscopy this study 

pRK5-myc(new)-Map SAR 215 pull down; microscopy this study 

pRK5-myc(new)-SifA SAR 216 pull down; microscopy this study 

pRK5-myc(new)-EspT Citero SAR 217 pull down; microscopy this study 

pRK5-myc(new)-IpgB2 SAR 218 pull down; microscopy this study 

pEGFP-C1-mus RHPN1 SAR 220 pull down; microscopy this study 
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4.6 Oligonucleotides 

Plasmids were generated using oligonucleotides listed below. Oligonucleotides were 

purchased from Eurofins MWG GmbH. 

Table 5 List of oligonucleotides used in this study 

Designation Sequence 5’ - 3’ 

Generation of GFP or GST tagged human RHPN1 

SAR-P3 AAGGATCCATGATCTTAGAGGAGAGGCCGG 

SAR-P4 TTGAATTCTCATGGCCATCCTGGGTGCT 

Generation of GFP or GST tagged human RHPN2 

SAR-P7 AACTCGAGATGACTGACGCACTGTTG 

SAR-P8 TTCTCGAGTTAGTACCAAGAGCTGTCTGAG 

Generation of GFP or GST tagged mouse RHPN1 

SAR-P5 ATGGATCCATGATACTTGAGGAGAGGCC 

SAR-P34 TTGAATTCTCATCCTCGTGCTCGTGCT 

Inverse PCR to delete an intron from mouse RHPN1 

SAR-P37 TCCGCTGGCCTGAAGGAGGG 

SAR-P38 CTCAGCCTGACCCCCTGGAA 

Site directed mutagenesis to solve a point mutation in mouse RHPN1 

SAR-P39 GGCTGAGTCCGCTGGCCTGAAGGAGGGCGACTACATCGTG 

SAR-P40 CCAGCGGACTCAGCCTGACCCCCTGGGACGACAGCAGCGA 

Generation of GFP tagged human RHPN1 BRO domain 

SAR-P11 ATGCAGGATCCATGGTCACTGTCCCTATGATCCC 

SAR-P12 TGCATGTCGACACGCCACCGGTTCTTAGC 

Generation of GFP tagged human RHPN1 HR1 domain 

SAR-P13 ATGCAGGATCCATGGGCTGTGACTCTCTGACGC 

SAR-P14 TGCTTGTCGACATGCCGGCCAGGGTCC 

Generation of GFP tagged human RHPN1 PDZ domain 

SAR-P15 ATCGAGGATCCATGGTGGGGCCCGTGCATCTG 

SAR-P16 TGCATGTCGACCCGCCTCTCCCGCAGC 

Generation of GFP tagged human RHPN2 PDZ domain 

SAR-P25 ATCCAAGATCTATGCCTCGAAGTATCCGCTT 

SAR-P26 TGCATGTCGACCACAACTTTCATCTCGATC 

 

 



Material 86 

 

Generation of His-MBP tagged human RHPN2 PDZ domain 

SAR-P31 GTGCACCATGGTGCCTCGAAGTATCCGCTT 

SAR-P32 TGCATGCGGCCGCCACAACTTTCATCTCGATC 

  

4.7 Antibodies 

The antibodies, antisera and fluorescent dyes used in this study are listed below. 

Abbreviations in this table: mouse (m), rabbit (r), goat (g), monoclonal (mc), 

polyclonal (pc), western blot (WB), immunoprecipitation (IP) and 

immunofluorescence microscopy (IF). 

Table 6 List of antibodies and fluorescent dyes used in this study 

Designation Source Application Reference 

primary antibodies 

α-CHMP4B r/pc WB (1:1000); IF (1:100) Abcam 

α-CHMP4B r/pc WB (1:1000); IF (1:100) Santa Cruz 

α-Myc m/mc WB (1:1); IF (1:1) Supernatent, hybridoma clone 9E10 

α-E.coli J5 LPS r/pc IF (1:200) Novus Biologicals 

α-GFP m/mc WB (1:1000) Purified, hybridoma clone 101G4B2 

α-mouse-HRP g/IgG/M WB (1:2000) Jackson Immunoresearch Laboratories 

α-rabbit-HRP g/IgG WB (1:2000) Jackson Immunoresearch Laboratories 

secondary antibodies 

α-mouse-Alexa 594 g/IgG IF (1:200) Jackson Immunoresearch Laboratories 

α-rabbit-Alexa 594 g/IgG IF (1:200) Jackson Immunoresearch Laboratories 

α-mouse-Alexa 350 g/IgG IF (1:50) Jackson Immunoresearch Laboratories 

α-rabbit-Alexa 350 g/IgG IF (1:50) Jackson Immunoresearch Laboratories 

fluorescent dyes  

phalloidin-Alexa 594 - IF (1:100) Invitrogen 

phalloidin-Alexa 350 - IF (1:50) Invitrogen 

DAPI - IF (1:50) Invitrogen 

MitoTracker Red - IF (500 nM) Invitrogen 
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4.8 Kits  

Kits used in this study are listed below 

Table 7 List of kits used in this study 

Designation Application Source 

NucleoSpin
®
 Extract II DNA fragment purification Macherey-Nagel 

NucleoBond
®
 PC100 plasmid purification Macherey-Nagel 

GeneJET Plasmid Mini plasmid purification Thermo FischerScientific 

Anti-c-Myc Immunoprecipitation immunoprecipitation Sigma-Aldrich 

Gatway
®
 Cloning DNA cloning Invitrogen 
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5 Methods 

5.1 Cultivation of bacteria 

Bacterial strains were grown in appropriate volume of Luria Bertani broth (LB) 

medium at 37°C with aeration on a rotating shaking platform. If required, antibiotics 

were added to LB broth at the respective concentration (kanamycin (kana) 50 μg/ml; 

ampicillin (amp) 100 μg/ml; chloramphenicol (ch) 34 μg/ml in ethanol). 

 

5.1.1 Preparation of RbCl competent bacteria 

In the morning an E.coli pre culture was diluted 1:100 into 300 ml LB medium 

containing 300 µl of 1 M MgCl2. The suspension was incubated on a shaker at 37°C 

for 2-3 h (until OD600 =0.4-0.6). Next the bacteria were pelleted for 5 min by 4500 xg 

at 4°C and resuspended in 120 ml ice cold TFB1 (do not vortex), followed by a 

5 min incubation on ice. Then bacteria were pelleted again for 5 min by 4500 xg at 

4°C and resuspended in 6-12 ml ice cold TFB2, according to the pellet size (do not 

vortex). After a final incubation of 15-60 min on ice, bacteria were aliquoted in 

30-50 µl, shock frosted in liquid N2 and stored at -80°C. 

 

TFB1   TBF2 

30 mM KAc 

set pH 5.8 by  

using HAc 

sterilize buffer  

by filtration 

  10 mM PIPES 

set pH 6.5 by  

using 1 M KOH 

sterilize buffer  

by filtration 

10 mM CaCl2   75 mM CaCl2 (2H2O) 

50 mM MnCl2   10 mM RbCl 

100 mM RbCl   15 % Glycerol 

15 % Glycerol    

 

5.1.2 Transformation of chemical competent E.coli 

To transform bacteria with plasmid DNA, an aliquot of competent bacteria was 

defrosted on ice. Next, the DNA solution was given to the bacteria in a ratio of 

1:100-1:10 and mixed carefully. Now the mixture was incubated 30-60 minutes on 

ice, followed by a 1 min heat shock at 42°C and a regeneration step with 1 ml LB at 
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37°C on a shaker for 30-60 minutes. Finally the bacteria were pelleted, resuspended 

in 100 µl LB and spreaded on LB-agar which contain the appropriate antibiotics.  

5.2 Cell culture methods 

5.2.1 Media 

All media were pre warmed to 37°C before use. Sera were heat inactivated at 56°C 

for at least 40 min. After preparing the medium, the solution was sterilized by 

vacuum filtration into a sterile cell culture bottle. 

 

1. B16 DMEM (high gluc) 

 10% FCS (PAA) 

 2 mM Glutamin 

 (+1% PS) 

  

2. Hela MEM (high gluc)  

 10% FCS (Sigma) 

 2 mM Glutamin 

 1% 100mM Natrium-Pyruvat 

 1% 100x neAS 

 (+1% PS) 

  

3. Cos7 DMEM (high gluc) 

 10% FCS (Sigma) 

 (+1% PS) 

 

5.2.2 Cultivation 

Cells were splited every two or three days if the cells covered 90-95% of the dish. In 

order to split cells, the old medium was removed completely, including 1x washing 

with PBS. Afterwards an incubation step with an appropriate amount of trypsin 

(PAA) in the cell culture incubator, to detach the cells from the surface, followed. 

Now the cell suspension was diluted in fresh growth medium. In case of B16 cells 
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this diluted cell suspension was directly seeded into a new medium containing tissue 

culture treated dish (1:10 and 1:20). In case of Hela and Cos7 cells the solution was 

centrifuged 4 min by 1000 xg at RT. Then the pellet was resuspended in fresh media 

to get rid of all trypsin. Next, those cells were also given into new medium 

containing dishes (1:3-1:10). For growth, cells were placed into the humid incubator 

at 37°C with 5 % CO2. 

 

5.2.3 Freezing and thawing of cells  

For long time storage, 3 confluent 10 cm dishes were treated with trypsin and 

centrifuged as it was described in the previous paragraph. Cells were resuspended in 

10 ml 4°C cold growth medium containing 10 % dimethylsulfoxide (DMSO, Sigma) 

and aliquoted in 1 ml into cryotubes, which where than placed, overnight, into an 

isopropanol filled Mr. Freeze box (Nalgene) at -80°C. On the next day, the cells were 

transferred for long time storage into liquid nitrogen. 

To thaw cells, a tube was taken from the liquid nitrogen and unfreezed at 37°C in a 

water bath. Then the cell suspension was transferred into a 15 ml falcon and stepwise 

diluted in 10 ml fresh growth medium. After that, cells were pelleted, resuspended in 

fresh medium and seeded into a 10 cm dish. 

 

5.2.4 Transfection of mammalian cells 

24 h prior to transfection, the cells were seeded at a higher concentration (1:10 for 

B16 and 1:3 for Hela and Cos7). At the day of transfection a mixture of pure DNA 

(ideal concentration around 1 µg/µl) and an appropriate transfection reagent was 

according to the manufacturer manual made. In case double transfections the amount 

of each plasmid was reduced by 30 % compared to the single approach. Transfection 

of B16 was performed with SuperFect
®

 (Quiagen), while Hela and Cos7 cells were 

transfected with X-tremeGene
®
HP and X-tremeGene

®
9 (both Roche) respectively. 

After 60 minutes incubation, the solution was applied to the cells. Depending on 

DNA and reagents toxicity, the cells were incubated with the DNA/transfection 

reagent solution for 6 to 16 h in order to allow DNA uptake and protein expression. 

In some cases of severe toxicity, a rescue by medium exchange after 2 h was 

necessary.  
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5.2.5 Cell preparation for fluorescence microscopy 

Hela or Cos7 cells were splited at the evening before transfection in a 1:3 or 1:5 ratio 

respectively and normally and usually seeded into a 3 cm dish. The next morning, the 

transfection was made and incubated for 12 to 24 h. After incubation, the cells were 

again splited (1:1 or 1:2) on pre washed glass coverslips coated with Fibronectin 

(Roche) (1:40 dilution in PBS incubated for 1 h, then 3 times washed with PBS). 

Coverslips were usually used with 12 well plates. Within 6 to 12 h cells attach to the 

glass, spread and were ready for fixation. 

 

5.2.6 Infection assay 

The assay was performed as previously described by Lommel (Lommel et al., 2004). 

Two days before the assay started, Cos7 cells were transfected in a 3 cm dish with 

the DNA of interest. One day later, the transfected cells were seeded 1:3 on 

Fibronectin coated coverslips in a 12-well plate, using medium without any 

antibiotics. Furthermore a LB pre culture of EPEC and E.coli C600 as a negative 

control was started. In the morning of the day of the infection assay, 0.5 ml of the 

overnight pre cultures were pelleted by 4000 xg and two times washed with 1 ml of 

DMEM. Now the bacteria were resuspended in 25 ml of DMEM and incubated on a 

shaker at 37°C. Three hours later, the medium was taken off the Cos7 cells and 

replaced by 1.5 ml of a 1:75 DMEM dilution of the bacteria. Now the cells were 

placed into an incubator under normal cell culture conditions. After 10, 30, 60 and 

180 min cells were fixed by replacing the bacteria solution with pre warmed PBS 

containing 4 % of PFA for 30 minutes. After fixation, cells were prepared for 

microscopy (see 5.5). In case of incubation of cells with bacteria longer than 1 h, the 

medium had to be changed every 60 min in order to prevent bacterial overgrowth.  

 

5.2.7 Gentamicin protection assay 

One day before the assay Cos7 cells were seeded 1:2 in 24-well plate using medium 

without antibiotics. Furthermore a LB pre culture of EPEC and E.coli C600 as a 

negative control was started. In the morning of the day of the gentamicin protection 

assay, 0.5 ml of the overnight pre cultures were pelleted by 4000 xg and two times 

washed with 1 ml of DMEM. Now the bacteria were resuspended in 16.5 ml of 

DMEM and incubated on a shaker at 37°C. Three hours later, the medium on the 



Material 92 

 

Cos7 cells was replaced by a 1:100 DMEM dilution of the bacteria, followed by a 3 h 

incubation under normal cell culture conditions. To prevent bacterial overgrowth, the 

medium was changed every 60 minutes. After 3 h the cells were washed twice with 

pre warmed PBS, followed by another 90 min incubation in 1.5 ml medium 

containing 50 µg/ml gentamicin. After all extracellular bacteria were killed, cells 

were washed twice with PBS, then incubated for 5 min with 1 ml 0.2 % 

Triton-X-100 in H2O. The lysates were collected. Finally every lysate was diluted 

1:10, 1:100 and 1:1000 in PBS. 100 µl of each dilution were plated on LB-agar 

plates without antibiotics and incubated overnight at 37°C. On the next day, the 

colonies of at least two dilutions were counted. The experiment was performed in 

triplicates, data processed with Microsoft Excel 2010. 

5.3 Molecular biological methods 

5.3.1 Yeast two hybrid screen 

The Y2H screen was performed and the data evaluated by Manfred Kögl and Frank 

Schwarz from the Genomics and Proteomics Core Facilities at the German Cancer 

Research Center in Heidelberg as described in 2007 (Koegl et al., 2007) 

 

5.3.2 Polymerase chain reaction (PCR) 

For PCR reactions, Phusion High Fidelity DNA Polymerase (Thermo Fisher) with 

proof-reading activity was used. Constructs were designed using ApE (Version 

2.0.44, University of Utah). Primer annealing temperatures and secondary structures 

were analyzed with the OligoAnalyzer
®
 web tool from the IDT homepage. 

 

Standard PCR approach: 

1 x  HF Phusion buffer  

2 pmol  dNTP  

2.5 pmol  primer I and II  

1 pg  template DNA  

1 U  Phusion DNA polymerase  

ad. 50 μl  H2Odd  
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Standard PCR program: 

98°C 30 s 

98°C 10 s 

55-72°C 15 s 

72°C 30 s/1000 bp 

72°C 10 min 

4°C ∞ 

 

5.3.3 Inverse PCR 

The inverse PCR was performed like the standard PCR described in the paragraph 

before, only with primer directed into opposite directions and less polymerization 

cycles (12-15). Right after the PCR, the DNA was treated with 5 U DpnI for 2 h at 

37°C to get rid of the template DNA. The next step was a gel electrophoresis, 

followed by DNA gel extraction (see 5.3.5). Finally a self-ligation was performed, 

before the transformation.  

 

5.3.4 Site directed mutagenesis 

The site directed mutagenesis was performed as described previous by Liu (Liu et 

al., 2008). 

 

5.3.5 DNA gel electrophoresis and gel extraction  

After PCR or plasmid digestion, the DNA samples were mixed with 5 x loading dye and 

separated by agarose gel electrophoresis at 100 V 45-60 min. The gel consisted of 1-2 % 

low EEO agarose (AppliChem) in 1 x TAE buffer (from 50 x stock, AppliChem) and 

contained 0.5 μg/ml ethidiumbromide. As size marker the GeneRuler 1 kb Plus DNA 

Ladder (Thermo Fisher Scientific) was used. Separated DNA was visualized in an E-Box 

VX2 transilluminator (Peqlab). 

DNA bands were cut out and extracted by the use of the NucleoSpin
®
 Extract II Kit 

(Macherey-Nagel) according to manufacturer’s protocol. 

 

 

 

30 x 
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10 ml 5 x DNA loading dye 

5 ml 30 % Ficoll (as to be autoclaved) 

2 ml 250 mM EDTA pH 8,0 

500 µl 10 % SDS 

200 µl 50 x TAE pH 7,5 

800 µl 0.5 % Xylenblue 

800 µl 0.5 % Bromphenolblue 

700 µl H2O 

 

5.3.6 DNA restriction digest 

Restriction enzymes were purchased from Fermentas/Thermo Fisher Scientific and used 

according to manufacturer’s recommendations. Analytical restrictions were performed in 

a total volume of 20 μl using 1 μg DNA, incubated for 1 h at the recommended 

temperature. Preparative restriction digests were performed in a total volume of 50 μl 

using 2 μg DNA, incubated for 3 h or overnight at the recommended temperature. The 

amount of enzyme used for each digestion was individually calculated according to unit 

definition and number of restriction sites within the respective plasmid. 

 

5.3.7 Ligation of DNA fragments 

Ligation was performed in a total volume of 20 µl using 1 µg vector DNA, 16 µl 

insert DNA and 1 Weiss U T4 DNA ligase (Fermentas/ Thermo Fisher Scientific). 

The ligation mix was incubated at 16°C overnight, inactivated at 65°C for 10 min. 

Finally competent E.coli were transformed with the ligation mix (see 5.1.2). 

 

5.3.8 Gateway cloning 

The procedure was done as described in the Gateway cloning protocol of Invitrogen. 

 

5.3.9 DNA amplification 

E.coli DH5α were transformed (see 5.1.2) with the respective plasmid. On the next 

day bacteria were inoculated into LB medium containing an appropriate antibiotic 

and the cultures were grown overnight at 37°C on a shaker. On the next day, the 
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DNA was extracted by using the NucleoBond PC-100 Kit (Macherey-Nagel) or the 

GeneJet Plasmid Miniprep Kit (Thermo Fisher Scientific) according to the 

manufacturer’s protocol. After cleanup, the plasmid concentration and purity was 

measured with a WPA Biowave S2100 Diode Array Spectrophotometer (Biochrom). 

 

5.3.10 DNA sequencing 

After cloning involving a PCR step, constructs were sequenced. The DNA 

sequencing was performed by Eurofins MWG GmbH. 

5.4 Biochemical methods 

5.4.1 Recombinant protein purification 

The protein expression strain E. coli BL21 was transformed with the expression 

plasmids, which carried the gene for the protein that should be expressed. On the 

next day a 50 ml LB pre culture was inoculated and grown overnight, shaking at 

37°C. The whole suspension was transferred into a baffled flask containing 500 ml 

LB medium supplemented with 2 g/l glucose on the next morning. At an OD600 of 

0.5-0.8, protein expression was induced by adding 0.5 mM IPTG (AppliChem) and 

the culture was grown at 20-37°C for 8-20 h, depending on the respective protein. 

All preparation steps were performed at 4°C to avoid protein degradation and at 

every step of the preparation 50 µl samples were taken for a SDS-PAGE. The cells 

were harvested by 20 min centrifugation at 4,000 xg, the pellet was resuspended in 

10 ml ice cold lysis buffer, a small amount of lysozyme (Roth) was added and then 

the suspension was incubated at 4°C under mixing for 15 min. The cells were opened 

by sonification using an ultrasonic device (UP100H, Hielscher) first time for 1 min, 

followed by 5 x 30 s, between each round of sonification the samples were put on 

ice. The insoluble fraction was removed by 60 min centrifugation at 20,000 xg. 

During centrifugation, 500 μl beads were loaded onto a column, washed twice with 

1 x PBS buffer and once with lysis buffer to equilibrate the beads. The equilibrated 

beads were mixed with the protein-containing supernatant and incubated overnight 

under constant rotation. The next day, the beads were washed four times with 5 ml 

lysis buffer, resuspended in 2 ml resuspension buffer, aliquoted, shock frozen in 

liquid nitrogen and stored at -80°C for long time storage.  
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Successful protein expression, concentration and purity was accessed by mixing each 

sample, taken at each step of the procedure, and 30 μl beads with 10 μl 4 x SDS 

sample buffer and boiled for 5 min at 95°C. Finally 10 μl of these samples were 

loaded on a SDS polyacrylamide gel, 2.5 µl, 5 µl and 10 µl in case of the beads. 

Additionally, three different amounts of bovine serum albumin (BSA), 5, 10 and 

20 μg were loaded on the gel and separated by SDS-PAGE (see 5.4.4). The amount 

of protein bound to the beads was estimated compared to the BSA control.  

 

Buffers for Ni
2+

-NTA beads 

lysis buffer 

50 mM NaH2PO4 

300 mM NaCl 

10 mM Imidazol 

set pH 8.0 using NaOH 

10 mM β-Mercaptoethanol 

 Protease inhibitors cocktail EDTA free 

 Benzonase 

  

washing buffer 

50 mM NaH2PO4 

300 mM NaCl 

10 mM Imidazol 

set pH 8.0 using NaOH 

10 mM β-Mercaptoethanol 

 

Buffers for GST beads 

lysis buffer 

50 mM Tris HCl pH 8.5 

20 % Sucrose 

200 mM N2S 

add always  

fresh 

add always  

fresh 
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2 mM MgCl2 

2 mM DTT 

 Protease inhibitor cocktail EDTA free 

washing buffer 

50 mM Tris HCl pH 7.6 

0.1 % Triton X-100 

150 mM NaCl 

10 mM MgCl2 

 

5.4.2 Pull down analysis  

All steps were performed at 4°C. On the day before the pull down assay, B16 cells 

were transfected with plasmids of interest and incubated overnight under normal cell 

culture conditions (see 5.2.2). The next day in the morning, cells were washed twice 

with PBS and scraped of the dish in 300 µl IP-buffer containing 1 % Triton X-100 

and protease inhibitor cocktail. The lysate was incubated on ice for at least 15 min, 

including several times vortexting. After incubation, the insoluble fraction was 

pelleted by centrifugation at 15,000 xg for 15 min. 30 µl of the supernatant were 

taken and mixed with 4 x SDS-sample buffer as “load control”. 150 µl of the 

supernatant were mixed with 30 µl prey-protein coupled beads and incubated for at 

least 60 min on a rotating wheel in the cool room. Now the beads were pelleted 

(3 min, 500 xg) and washed three times with IP-buffer containing 1 % Triton X-100 

but no protease inhibitor. From the supernatant after the first centrifugation step a 

30 µl sample was taken and mixed with 4 x SDS-sample buffer as “supernatant 

control”. After the last centrifugation step, the beads were resuspended in 30 µl 

4 x SDS-sample buffer “pull down”, boiled for 5 min at 95°C for subsequent 

SDS-PAGE.  

IP-buffer 

15 mM  KCl 

50 mM NaCl 

8 mM Tris, free base 

12 mM Hepes, free base 

add always  

fresh 
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5 mM MgCl2 

1 % Triton X-100 

 Protease inhibitor cocktail EDTA free 

 

5.4.3 Co-immunoprecipitation 

Co-immunoprecipitations of Myc-tagged proteins were performed by using the Anti-

c-Myc Immunoprecipitation Kit (Sigma Aldrich) according to manufacturer’s 

recommendations, or by using 5 µg of GFP antibody. 

 

5.4.4 Protein gel electrophoresis (SDS-PAGE) 

To separate proteins according to their size 9.5 x 6.5 cm, SDS containing 

polyacrylamide gels were used. Gels were poured in customized blocs of 10 to 15 

gels. First the 10 or 15 % separation gels were poured and covered with a layer of 

isopropanol. After 30 min, the gels were polymerized, the isopropanol discarded and 

washed 10 times with water. Then the 5 % stacking gels were poured and the combs 

inserted. Again, after 30 min, polymerization was over and the gels could be 

assembled into customized, SDS-running buffer filed SDS-chambers and loaded with 

SDS-protein samples and pre- or unstained protein ladder (Thermo Fischer 

Scientific). Gels were run at 100 V/gel for 2-3 h 

 

10 x 5 % stacking gel 

23 ml H2O 

10 ml 0.5 M Tris HCl pH 6.8 

6.8 ml 30 % Acrylamid / Bisacrylamid 

400 µl 10 % SDS 

80 µl TEMED 

80 µl 25 % APS 

 

10 x 10 % (15 %) collection gel 

49 (29) ml H2O 

30 (30) ml 1.5 M Tris HCl pH 8.8 

add always  

fresh 
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37 (60) ml 30 % Acrylamid / Bisacrylamid 

1.2 (1.2) ml 10 % SDS 

160 (160) µl TEMED 

160 (160) µl 25 % APS 

 

SDS-running buffer 

25 mM Tris base 

192 mM Glycin 

0.1 % (v/v) SDS 

 

4 x SDS-sample buffer 

25 mM Tris pH 6.8 (HCl) 

29 % (v/v) Glycerol 

3.3 % (v/v) SDS 

3.3 % (v/v) β-Mercaptoethanol 

0.17 % (w/v) Bromphenolblue 

 

5.4.5 Coomassie staining  

To visualize proteins on gels after SDS-PAGE or on PVDF membranes after 

Western blotting, they were shaken in Coomassie staining solution for several hours. 

Excess dye was extracted by shaking the gel or membrane in Coomassie destaining 

solution for 3 h. 

 

Coomassie staining solution 

25 % Methanol 

10 % (v/v) Acetic acid 

0.1 % (w/v) Coomassie Brilliant Blue R250 

 

Coomassie destaining solution 

40 % Methanol 

10 % (v/v) Acetic acid 
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5.4.6 Western blotting and protein detection 

After protein separation by SDS-PAGE, the proteins were transferred from the gel to 

PVDF membranes (Merck-Millipore), using a semi dry blotting system. Prior 

assembling the blotting sandwich in a Semi-dry blotting Biometra Fastblot B44 

(Analytik Jena), filter papers were equilibrated in blotting buffer, the membrane was 

activated in methanol. The blot was run at 150 mA/membrane for 3 h. Blotting 

efficiency was checked by reversible protein staining of the membrane in Ponceau S 

staining solution. 

If the transfer was successful, the membrane was blocked in 10 % milk/TBS-T for 

30 min, incubated with a primary antibody at 4°C overnight on a shaker, followed by 

three 15 min washing steps with TBS-T and another hour shaking incubation with 

the second antibody at room temperature. Finally the membrane was washed again 

three times with TBS-T and once with H2Odd, before the membrane was covered 

with 8 ml LumiLight Western Blotting Substrate (Roche) to detect HRP activity of 

second antibodies in a Geliance 600 Imaging System (Perkin Elmer). 

The resulting image was saved as a TIF-file and processed in Adobe
®
 Photoshop 

CS6 Extended (Adobe Systems). 

 

Ponceau S solution 

5 g Ponceau S 

0.4 % (v/v) Methanol 

15 % (v/v) Acetic acid 

 

Blotting buffer 

50 mM Tris base 

38.5 mM Glycine 

1.3 mM SDS 

20 % (v/v) Methanol 

 

TBS (-T) 

200 mM Tris base 

1.37 M NaCl 
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pH 7.6 (HCl) 

(0.1 % (v/v) Tween 20) 

  

5.4.7 Stripping of PVDF membranes 

In order to remove antibodies from PVDF membranes, they were 5 min shaken in 

buffer A at room temperature and subsequent 10 min in buffer B, followed by two 

washing steps in TBS-T. After blocking, the membrane was ready for another 

antibody. 

 

Stripping buffer A 

500 mM NaCl 

200 mM Glycine 

pH 2.0 (HCl) 

 

Stripping buffer B 

500 mM Tris base 

pH 11.0 (NaOH) 

 

5.5 Microscopy techniques 

5.5.1 Coverslip washing 

To clarify glass coverslips from production residues, they were shaken for 1 h in 

washing solution at room temperature and washed ten times with H2Odd. After 

sterilization the coverslips were 30 min coated with Fibronectin (25 µg/ml in PBS; 

stock 1 g/l in 2 M urea; Roche) and then washed twice with PBS. 

 

Coverslip washing solution 

60 % (v/v) Ethanol 

40 % (v/v) conc. HCl 
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5.5.2 Staining of mitochondria 

Mitochondria were stained by using 500 nM MitoTracker
®
Red (Invitrogen) 

according to the manufacturer’s manual. 

 

5.5.3 Fixation and immuno-staining of cells 

In order to fixate cells, the medium was quickly replaced by pre warmed 4 % PFA in 

PBS at room temperature. After 20 min cells were permeabilized one minute in 

0.05-1% Triton X-100 (depending on the subsequent antibody staining) in PBS. Then 

the coverslips were three times washed with PBS, followed by a blocking step with 

5 % horse serum (v/v) in PBS containing 1 % BSA (w/v) for 1 h at room temperature 

or overnight at 4°C.  

Subsequently the coverslips were washed several times in PBS and the 

immune-staining was performed by placing a coverslip upside down on a 20 µl drop 

of primary antibody diluted (see 4.7) in PBS containing 1 % BSA. To avoid drying, 

the drop was placed on parafilm in a dark humid chamber. After one hour the 

coverslips were washed again and placed on another drop containing the diluted 

secondary antibody and additional fluorescent dyes. 45 min later the coverslips were 

washed a last time and placed on a 20 µl drop of Mowiol on an ethanol cleaned 

microscope glass slide. The fixation hardened overnight at 4°C. 

 

Mowiol 

0.4 g/ml Mowiol 7200 

1 g/ml Glycerol 

0.2 M Tris pH 9.0 

2.5 % DABCO 

 

5.5.4 Imaging and image processing  

All pictures were taken by using either a PALM IX70 microscope (Olympus) in 

combination with a HXP-120 Light Source (Visitron Systems), a 18.0 Monochrome 

camera w/o IR (Diagnostics Instruments Inc.) and the 60 x objective lens 

UPLFLN60XOI (Olympus) or an Axiovert 200 microscope (Zeiss), equipped with a 

sensicam® qe high performance cooled digital 12bit CCD camera, a pE-2 LED 
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excitation system (CoolLED) light source and the 63 x or 100 x Plan-Neofluar 

(Zeiss). Both microscopes were run with VisiVIEW software (Visitron Systems).  

Images were processed with Adobe
®
 Photoshop CS6 Extended (Adobe Systems) or 

ImageJ 1.43m (National Institute of Health, USA) containing the MBF ImageJ 

plug-in bundle for microscopy (McMaster University, Biophotonics Facility). 
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