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The Takesaki equivalence relation for maximal

abelian subalgebras

Arnaud Brothier
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Abstract. For a maximal abelian subalgebra A ⊂ M in a finite von Neumann algebra,
we consider an invariant due to Takesaki which is an equivalence relation on a standard
probability space. We give several characterizations of this invariant and show that it can be
reconstructed from the A-bimodule structure of the GNS Hilbert space L2(M). In particular,
we show that this invariant is induced by the action of the normalizer on A. Hence, this
gives a new proof to a question of Takesaki.

1. Introduction

In this paper, we study maximal abelian subalgebras (MASAs) in a finite
von Neumann algebra with a separable predual. We will always denote such
an inclusion as A ⊂M and we fix a faithful normal unital trace τ on M . The
study of MASAs began with the work of Dixmier in 1954 [3]. (See [14] for a
general introduction on the subject.) He considered the normalizer NM (A)
which is the group of unitaries u ∈M such that uAu∗ = A. In 1963, Takesaki
introduced in [15] a measure theoretical invariant for a MASA. An explicit
presentation of this invariant is given below.

Let us first define the Takesaki equivalence relation. We refer the reader
to [16, Chap. 4, § 8] for a presentation of the general theory of direct inte-
grals of Hilbert spaces, representations, and von Neumann algebras. Let Y
be a compact Hausdorff space and ν a Borel probability measure on it such
that A is isomorphic to the von Neumann algebra L∞(Y, ν). We fix such an
isomorphism and identify the two von Neumann algebras. Let L2(M) be the
GNS Hilbert space associated to the trace τ and x 7→ xΩ the embedding of
M in L2(M). Let π, ρ be the left and right actions of M on the Hilbert space
L2(M), i.e. π(x)ρ(y)(zΩ) = xzyΩ. Consider the measurable field of Hilbert
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60 Arnaud Brothier

spaces {Kt, t ∈ Y } such that L2(M) is equal to the direct integral
∫ ⊕

Y

Ktdν(t),

such that ρ(A) becomes the algebra of all diagonalizable operators. Let B ⊂M
be a separable C∗-subalgebra that is dense for the weak topology. Consider
the measurable field of representations of B, {πt, t ∈ Y }, such that

π|B =

∫ ⊕

Y

πtdν(t),

where π|B denotes the restriction to B of the standard representation.

Definition 1.1. Let R be the equivalence relation on Y defined by (s, t) ∈ R if
and only if the representation πs is unitarily equivalent to πt. It is the Takesaki
equivalence relation.

We write πs ≃ πt to say that the two representations are unitarily equivalent.

Definition 1.2. Let E,F ⊂ Y 2 be some subsets, we say that E is weakly

contained in F if there exists a null set N ⊂ Y such that E \N2 ⊂ F , where
E \N2 = {x ∈ E, x /∈ N2}. We denote this by E ≺ F . This defines a partial
order. We say that E is equivalent to F if E ≺ F and F ≺ E and denote it by
E ≡ F . This defines an equivalence relation on the subsets of Y 2. We denote

the equivalence class of a subset E by Ê.

Definition 1.3. Let R̂ be the equivalence class of R for ≡. It is an invariant
for the MASA A ⊂ M that we call the Takesaki invariant. In particular,
it does not depend of the choice of the C∗-algebra B, see [15]. We say that
a MASA is Takesaki simple if R ≡ ∆Y , where ∆Y = {(t, t), t ∈ Y } is the
diagonal of Y .

Let us define an other equivalence relation. Consider the normalizer NM (A)
and a countable subgroup G < NM (A) such that the bicommutant {G ∪ A}′′

is equal to NM (A)′′ inside M . The group G acts on A, hence this gives an
action on the space (Y, ν). We denote by NG the orbit equivalence relation.
This equivalence relation does not depend of the choice of the group G (see
Proposition 2.2), therefore we simply denote it by N .

Takesaki proved in [15, Thm. 1.2] that N ≺ R. He asked if R is a count-
able, quasi-invariant equivalence relation and if R ≡ N . We recall that an
equivalence relation is quasi-invariant if the saturation of a null set is still a
null set. In the mid 70’s, Hahn developed a theory of measure groupoids [8],
[9]. Using this theory, he proved in [10] that R ≡ N .

The author wants to indicate that all the results presented in this paper have
been proved without knowing the work of Hahn. We give here an elementary
proof of the equivalence R ≡ N . Furthermore, we define a third equivalence
relation B that we call the bimodule equivalence relation and prove that R ≡ B.
In particular, we show the surprising fact that the Takesaki equivalence relation
can be reconstructed from the A-bimodule structure of L2(M).
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The bimodule equivalence relation is defined in a similar way as R except
that we replace the separable weakly dense C∗-subalgebra B ⊂ M by a sepa-
rable weakly dense C∗-subalgebra D ⊂ A (see Definition 2.1).

One of the key arguments to prove this theorem is to show that the Takesaki
equivalence relation is quasi-invariant. We introduce a subset Y ⊂ Y × Y that
we call the set of atoms (see Definition 2.4). This set has been studied in
[13] and in [12]. We identify Y as a symmetric relation on Y and prove that
it is quasi-invariant. Furthermore, we show that B is weakly contained in Y.
Therefore, R and B are quasi-invariant. We also prove that Y is equivalent
to R under the relation ”≡”, hence the main theorem of this paper is the
following.

Theorem 1.4. Let A ⊂M be a MASA in a finite von Neumann algebra, then

the Takesaki equivalence relation, the bimodule equivalence relation, the set of

atoms and the equivalence relation induced by the normalizer are equal up to a

null set, i.e.

R ≡ B ≡ Y ≡ N .

In particular, a MASA is singular (its normalizer is equal to the unitaries of
A) if and only if it is Takesaki simple. We illustrate this result with a propo-
sition on inclusions of countable groups, see Proposition 4.1. Furthermore, we
deduce a result on the normalizer of tensor product of MASAs.

Corollary 1.5. Consider a family of MASAs in some von Neumann algebras

{Al ⊂ Ml, l ∈ Λ}, where Λ is a countable set. For any l ∈ Λ, we consider a

faithful trace τl on Ml. Let A =
⊗

l Al and M =
⊗

lMl be the tensor products

of those von Neumann algebras with respect to the traces τl. The von Neumann

algebra generated by the normalizer NM (A) is equal to the tensor product of

the von Neumann algebras generated by the normalizers NMl
(Al), i.e.

NM (A)′′ =
⊗

l∈Λ

NMl
(Al)

′′.

This result has been proved by Chifan [2] using analytic techniques.
The rest of the paper is organized into 3 sections. In Section 2 we fix some

notations and review some basic facts about equivalence relations. We define
the equivalence relation induced by the action of the normalizer on the algebra
A, the bimodule equivalence relation and the set of atoms. In Section 3 we
prove the main result of this paper. In Section 4 we illustrate the main result
in the context of representations of discrete countable groups. Then we prove
the corollary on tensor product of MASAs.

2. Notations and definitions

In this section, we fix some notations and define the bimodule equivalence
relation B, the equivalence relation N induced by the action of the normalizer
and the set of atoms Y. Consider the C∗-algebra of continuous functions
C(Y ). Let B ⊂ M be a C∗-subalgebra which is separable and weakly dense.
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The equivalence class of R does not depend on B. Therefore we can assume
that B contains the C∗-algebra C(Y ). Hence we have the following square of
inclusions.

L∞(Y, ν) ⊂ M
∪ ∪

C(Y ) ⊂ B

Definition 2.1. Consider the bimodule equivalence relation B which is defined
such that (s, t) ∈ B if the representation πt|C(Y ) is unitarily equivalent to
πs|C(Y ).

Let I(Y, ν) be the group of Borel automorphisms of (Y, ν) that preserve the
class of the measure ν. For any countable subgroup H < NM (A) we can define
a group homomorphism ΘH : H −→ I(Y, ν) such that for any u ∈ H and
any f ∈ A, u∗fu = f ◦ ΘH

u ν-almost everywhere (ν-a.e.). Consider the orbit
equivalence relation

NH = {(ΘH
u (t), t), t ∈ Y, u ∈ H}.

If u ∈ NM (A) we denote by Θu a given automorphism such that u∗fu =
f ◦ Θu ν-a.e. The following proposition justifies the definition of N given in
the introduction.

Proposition 2.2. There exists a countable subgroup G < NM (A) such that

G′′ = NM (A)′′ ⊂ M . We denote by N the orbit equivalence relation NG. If

H < NM (A) is a countable subgroup then NH ≺ N . Furthermore, NH ≡ N if

and only if

{H ∪A}′′ = NM (A)′′.

Before proving this proposition we recall a useful lemma.

Lemma 2.3. Consider a unitary u ∈ NM (A). Suppose that there exists a

Borel subset E ⊂ Y such that for any t ∈ E, Θu(t) 6= t. Then, τ(uχE) = 0,
where χE is the characteristic function of the set E.

Proof. Let us show that EA(uχE) = 0. Let f ∈ L∞(Y, ν) be an injective
function. We have that

fEA(uχE) = EA(fuχE) = EA(u(u
∗fu)χE) = EA(u(f ◦Θu)χE)

= EA(uχE)(f ◦Θu) = (f ◦Θu)EA(uχE).

We identify EA(uχE) with a function of the algebra L∞(Y, ν). We have that
(f − f ◦ Θu)(t)EA(uχE)(t) = 0 a.e. The function f is injective and Θu(t) 6= t
for any t ∈ E. Therefore, EA(uχE)(t) = 0 a.e., hence EA(uχE) = 0. This
implies that τ(uχE) = τ ◦ EA(uχE) = 0. �

Let us prove the proposition.

Proof of Proposition 2.2. Let G < NM (A) be a countable subgroup which is
dense for the norm of L2(M). This group satisfies that G′′ = NM (A)′′. To
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prove the two other statements of the proposition it is sufficient to show that
for any countable subgroups H,K < NM (A) we have that

{H ∪A}′′ ⊂ {K ∪A}′′

if and only if NH ≺ NK .
Suppose that NH ≺ NK , let u ∈ {H ∪ A}′′ be a unitary. Let us show that

u ∈ {K ∪ A}′′. Let {vk, k > 0} be an enumeration of the countable group K.
Consider the sets

Ek = {t ∈ Y, ΘK
vk
(t) = Θu(t)}

and

Fk = Ek \
⋃

j<k

Ej .

We see immediately that the sets Fk are measurable. Let pk be the projection
equal to the characteristic function of the set Fk. If k 6= l, then vkpk ⊥ vlpl.
Therefore, the sum

∞∑

k=1

vkpk

converges in the von Neumann algebra {K ∪A}′′ to an element v. By hypoth-
esis, the graph of Θu is weakly contained in NK . This implies that Y \

⋃
k Fk

is a null set. Thus, v =
∑

k vkpk is a unitary in {K ∪A}′′ and by construction
Θu = Θv ν-a.e. Therefore, vu

∗ is a unitary of A, thus u ∈ {K ∪ A}′′.
Suppose that {H ∪A}′′ ⊂ {K ∪A}′′. Consider a unitary u ∈ H and the set

E = {t ∈ Y, (ΘH
u (t), t) /∈ NK}.

The set E is measurable. Let v = up, where p = χE . Consider a unitary
w ∈ K ∪ U(A), where U(A) is the unitary group of A. Let us show that v is
orthogonal to w, i.e. τ(w∗v) = 0. We have that Θw∗u = Θ−1

w ◦ ΘH
u a.e. By

assumption, for any t ∈ E, ΘH
u (t) 6= Θw(t) a.e., hence Θw∗u(t) 6= t a.e. We

can apply Lemma 2.3; thus, τ(w∗v) = 0. Therefore, the partial isometry v is
orthogonal to the von Neumann algebra {K ∪ A}′′. This implies that p = 0
and so the graph of ΘH

u is weakly contained in the equivalence relation NK .
So, NH ≺ NK . �

We define the set of atoms. Let A = {π(A) ∪ ρ(A)}′′ ⊂ B(L2(M)) be the
abelian von Neumann subalgebra generated by the left and right actions of A
on L2(M). Consider the coordinate projection p : Y 2 −→ Y , p(s, t) = t and
the flip θ : Y 2 −→ Y 2, θ(s, t) = (t, s). Following the proof of [5, Thm. 1], there
exists a Borel probability measure µ on Y 2 such that the von Neumann algebra
A is isomorphic to L∞(Y 2, µ). It is easy to see that µ is quasi-invariant with
respect to the flip, i.e. θ∗µ ≈ µ. Furthermore, the push-forward measure p∗µ
is in the equivalence class of the measure ν, therefore by [1, Chap. 6, § 3] there
exists a disintegration of µ with respect to (p, ν). It means that there exists a

Münster Journal of Mathematics Vol. 5 (2012), 59–72



64 Arnaud Brothier

unique a.e. family {µt, t ∈ Y } of probability measures on Y , such that for any
positive measurable function f : Y 2 −→ R+, the map

t 7→

∫

Y

f(s, t)dµt(s)

is measurable, and

µ(f) =

∫

Y

∫

Y

f(s, t)dµt(s)dν(t).

Definition 2.4. The set of atoms of the MASA A ⊂M is the set

Y = {(s, t) ∈ Y 2, µt({s}) > 0, µs({t}) > 0}.

The set Y defines a symmetric relation on Y , hence we call orbit of t the
set of s ∈ Y such that (s, t) ∈ Y. Note that Y is a measurable subset of Y 2,
see [12, Prop. 3.3] for a proof.

3. The main result

Theorem 3.1. Consider the equivalence relations R, B, N and the set of

atoms Y. Then,

R ≡ B ≡ Y ≡ N .

Proof. By definition, R ⊂ B. Let us show that B ≺ Y. Consider a continuous
function f ∈ C(Y ).
Claim: The scalar f(t) is an eigenvalue of the operator πt(f) ν-a.e.

Proof of the claim: The inclusion A ⊂ M gives us an inclusion of A-
bimodules AL

∞(Y, ν)A ⊂ AL
2(M)A. As a right A-module,

L∞(Y, ν)A =

∫ ⊕

Y

Ctdν(t),

where Ct is the complex vector space of dimension one and πt(f) acts by
multiplication by f(t) on it ν-a.e. Therefore, f(t) is an eigenvalue of πt(f)
ν-a.e.

The von Neumann algebra A is isomorphic to L∞(Y 2, µ) and it acts on the
Hilbert space L2(M). Hence, there exists a measurable field of Hilbert spaces
Hs,t over (Y

2, µ) such that we have an isomorphism of A-modules

φ : L2(M) ≃

∫ ⊕

Y 2

Hs,tdµ(s, t).

We define the following direct integral of Hilbert spaces

Kt =

∫ ⊕

Y

Hs,tdµt(s).

By a result of Guichardet [7, Prop. 1], we have an isomorphism of right A-
modules

L2(M)A ≃

∫ ⊕

Y

Ktdν(t).
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Consider a continuous and injective function f ∈ C(Y ). For any t ∈ Y , we
associate to f an operator ft ∈ B(Kt) determined by

ftξ =

∫ ⊕

Y

f(s)ξsdµt(s),

for any

ξ =

∫ ⊕

Y

ξsdµt(s) ∈

∫ ⊕

Y

Hs,tdµt(s).

We remark that

π(f) =

∫ ⊕

Y

ftdν(t).

By uniqueness of the disintegration there exists a null set N ⊂ Y such that
πt(f) = ft for any t ∈ Y \ N . The claim implies that there exists a null set
N0 such that for any t ∈ Y \ N0 we have that f(t) is an eigenvalue of πt(f).
Let (s0, t) ∈ B \ (N ∪ N0)

2, hence we have that f(s0) is an eigenvalue of the
operator ft. Then there exists a non null vector

η =

∫ ⊕

Y

ηsdµt(s) ∈ Kt

such that ft(η) = f(s0)η, meaning that (f(s) − f(s0))ηs = 0 µt-a.e. This
implies that s0 is an atom of µt because f is injective. By exchanging the role
of s0 and t we get that (s0, t) ∈ Y. Therefore, B ≺ Y.

Let us show that Y ≺ N .
Claim: Let X ⊂ Y be a measurable subset. The following assertions are

equivalent:

(1) X is a null set for µ;
(2) p1(X) is a null set for ν;
(3) p2(X) is a null set for ν.

Proof of the claim: we have that

µ(X) =

∫

Y

µt({s, (s, t) ∈ X})dν(t) =

∫

p2(X)

µt({s, (s, t) ∈ X})dν(t).

The set X is contained in Y, hence for any t ∈ p2(X), µt({s, (s, t) ∈ X}) is
strictly positive. Therefore µ(X) = 0 if and only if p2(X) is a null set. We
know that the class of the measure µ is invariant under the flip; thus, µ(X) = 0
if and only if µ(θ(X)) = 0 if and only if p1(X) is a null set.
Let h : N ⊂ Y −→ Y be a measurable map defined on a measurable subset
N ⊂ Y such that its graph Γh is weakly contained in Y. We have that p1(Γh) =
h(N) and p2(Γh) = N . Thus by the claim we have that ν(N) = 0 if and only
if h(N) is a null set.

The set of atoms is measurable, hence there exists a µ-null set N ⊂ Y 2 such
that Y \N is a Borel set. By [11, Thm. 18.10] there exists a countable family
of Borel automorphisms hk ∈ I(Y, ν) such that

Y \N =
⋃

k

Γhk
.
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The claim implies that there exists a null set N0 ⊂ Y such that N ⊂ N2
0 .

Therefore Y is equivalent to the union of graphs
⋃

k Γhk
. To conclude that

Y ≺ N , we need to show that for any hk there exists a unitary uk ∈ NM (A)
such that Θuk

= hk ν-a.e. Hence, by considering the subgroup of NM (A)
generated by the uk we will get that Y ≺ N .

Lemma 3.2. Consider a Borel automorphism h ∈ I(Y, ν) such that its graph

Γh is weakly contained in Y. Then, there exists a unitary in the normalizer of

A, u ∈ NM (A), such that Θu = h ν-a.e.

Proof. Let us write L2(M) as a direct integral of Hilbert spaces over the mea-
sure space (Y 2, µ)

ψ : L2(M) −→

∫ ⊕

Y 2

Hs,tdµ(s, t).

Consider a vector

ξ0 =

∫ ⊕

Y 2

ξ0s,tdµ(s, t)

such that ‖ξ0s,t‖Hs,t
= 1 µ-a.e. Then the A-bimodule generated by the vector

ξ0 is giving us an embedding of bimodules L2(Y 2, µ) ⊂ L2(M). Let ξ = χΓh
∈

L∞(Y 2, µ) ⊂ L2(M) be the characteristic function of the graph of h. The
preceding claim implies that µ(Γh) is strictly positive. It is easy to see that
‖ξ‖22 = µ(Γh), hence ξ is different from zero. Furthermore, for any f ∈ A,

(1) f.ξ = ξ.f ◦ h−1.

The vector ξ is an affiliated operator to M , therefore it admits a spectral
decomposition ξ = u|ξ|, where u is a partial isometry of M and |ξ| ∈ L2(M)+.
Let p be the support of the partial isometry u. It is a projection of A, hence
there exists a measurable subset E ⊂ Y such that 1− p = χE . We have that

‖q.ξ‖2 =

∫ ⊕

Y 2

χE(s)χΓh
(s, t)dµ(s, t) = µ({(s, h(s)), s ∈ E}).

By the preceding claim, µ({(s, h(s)), s ∈ E}) = 0 if and only if ν(E) = 0.
Therefore, 1−p = 0. This implies that u is a unitary. We have that ufu∗ = f◦h
for any f ∈ A. �

Therefore, we have that Y ≺ N .
Let us show that N ≺ R. Let G < NM (A) be a countable subgroup of

NM (A) that implements the orbit equivalence relation N . Let u ∈ G, by [15,
Thm. 1.2], the graph of Θu is weakly contained in R. Therefore, N ≺ R. This
achieves the proof of the theorem. �

Corollary 3.3. A MASA in a finite von Neumann algebra is singular if and

only if it is Takesaki simple.

Proof. This is a direct consequence of the fact that R ≡ N . �
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Remark 3.4. Consider a A-bimodule AHA. We can define an equivalence
relation as follows. Let {Kt, t ∈ Y } be a measurable field of Hilbert spaces
such that the right A-module HA is isomorphic to the direct integral

∫ ⊕

Y

Ktdν(t).

Let λ : A −→ B(H) be the left action of A. Consider the measurable field of
representations of C(Y ), {λt, t ∈ Y }, such that

λ =

∫ ⊕

Y

λtdν(t).

Let BH be the equivalence relation {(s, t) ∈ Y 2, λt ≃ λs}. If H = L2(M) as A-
bimodules, we get that BH is the bimodule equivalence relation B. Therefore,
the bimodule equivalence relation can be reconstructed from AL

2(M)A, and
so does the equivalence relation N by Theorem 3.1. Feldman and Moore [4, 5]
showed that a Cartan subalgebra is characterized by the equivalence relation
N and a 2-cocycle. Hence, a Cartan subalgebra is characterized by the A-
bimodule L2(M) and a 2-cocycle.

4. Illustration and consequences of the main theorem

4.1. Group von Neumann algebras. Let H < G be an inclusion of discrete
countable groups such that H is abelian and

(2) for any g ∈ G \H the set {hgh−1, h ∈ H} is infinite.

This implies that the inclusion of group von Neumann algebras L(H) ⊂ L(G)
is a MASA in a finite von Neumann algebra (see Godement [6]). Let C ⊂ G
be a system of left coset representatives of H . We denote the unity of G by 1
and assume that 1 ∈ C. Consider two functions σ : G → C and η : G → H
such that for any g ∈ G we have g = σ(g)η(g). If I is a set we denote the
Hilbert space of square summable complex valued functions on I by ℓ2(I). We
denote the standard basis of ℓ2(G) (resp. ℓ2(H), resp. ℓ2(C)) by {eg, g ∈ G}
(resp. {eh, h ∈ H} resp. {εc, c ∈ C}). Let π, ρ : G y ℓ2(G) be the left and
right regular representations of the group G.
Let us decompose π with respect to the right action of H . Consider the

dual group of H with its Haar measure (Ĥ, ν) and the Fourier transform

F : ℓ2(H) −→ L2(Ĥ, ν) defined such that F(eh)(t) = t(h) for any h ∈ H

and any character t ∈ Ĥ. We have an isomorphism of right L(H)-modules

φ : ℓ2(G) −→ ℓ2(C) ⊗ L2(Ĥ, ν) given by the formula

φ(eg)(t) = t(η(g))εσ(g).

Consider the representation πt : Gy ℓ2(C) defined such that

πt(g)εc = t(η(gc))εσ(gc),
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for any t ∈ Ĥ, g ∈ G and c ∈ C. An easy computation shows that this gives
a disintegration of the representation π with respect to the right action of H ,
i.e.

π =

∫

Ĥ

πtdν(t).

Proposition 4.1. If s, t are two characters of H, then the two representations

πs and πt are unitarily equivalent if and only if their restrictions to the abelian

subgroup H are unitarily equivalent. Denote by A ⊂ M the inclusion of von

Neumann algebras L(H) ⊂ L(G). The group normalizer NG(H) generates the
same von Neumann algebra than the normalizer of the algebras NM (A).

Proof. We recognize the Takesaki equivalence relation and the bimodule equiv-

alence relation of L(H) ⊂ L(G) which are respectively R = {(s, t) ∈ Ĥ2, πs ≃

πt} and B = {(s, t) ∈ Ĥ2, πs|H ≃ πt|H}. Consider the orbit equivalence

relation N0 given by the action ad : NG(H) y Ĥ . If R = B, then we have
the first assertion of the proposition. If N0 ≡ B, then Proposition 2.2 implies
the second assertion of the proposition. Let us show that R = B = N0. By
definition, R ⊂ B. Let us show that B ⊂ N0. Let (s, t) ∈ B, and v a unitary
of ℓ2(C) such that v∗πs(h)v = πt(h) for any h ∈ H . Consider h ∈ H ,

πs(h)v(ε1) = vπt(h)(ε1) = v(t(h)ε1) = t(h)v(ε1).

We denote by y =
∑

c∈C ycεc the vector v(ε1) ∈ ℓ2(C), decomposed in the
orthonormal basis {εc, c ∈ C}. Thus, for any h ∈ H and any c ∈ C,

(3) ycs(η(hc)) = yσ(hc)t(h).

Let c ∈ C such that yc 6= 0. The last identity tells us that for any h in H ,
|yσ(hc)| = |yc|. Therefore p(HcH) is finite, where p : G։ G/H is the canonical
projection on the set of the right cosets. Condition (2) implies that c is in the
normalizer NG(H). Equation (3) implies that s = adc(t). Hence B ⊂ N0.

Let us show that N0 ⊂ R. Consider (s, t) ∈ N0 and g ∈ NG(H) such that
s = adg(t). Let u be the unitary of ℓ2(C) defined as follows:

u(εc) = s(η(cg))εσ(cg),

where c ∈ C. An easy computation shows that uπtu
∗ = πs, hence N0 ⊂ R. �

4.2. Tensor product of MASAs. In this section we compute the set of
atoms for MASAs constructed from tensor product of MASAs. We deduce
a result on the tensor product of von Neumann algebras generated by the
normalizers.

Let Λ be a countable set and {Al ⊂Ml, l ∈ Λ} a family of MASAs in some
finite von Neumann algebras. We fix a trace τl on each Ml. Consider the
infinite tensor products of von Neumann algebras with respect to the traces τl⊗

l∈Λ

Al ⊂
⊗

l∈Λ

Ml.

We denote those von Neumann algebras by A =
⊗

lAl and by M =
⊗

lMl.
The Tomita commutant theorem implies that A ⊂M is a MASA.
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For any l ∈ Λ, we consider a standard probability space (Yl, νl) and identify
Al with L

∞(Yl, νl). Let L
2(Ml) be the GNS Hilbert space and πl, ρl : Ml −→

B(L2(Ml)) the left and right actions ofMl. Consider the von Neumann algebra
Al = {πl(Al) ∪ ρl(Al)}

′′ ⊂ B(L2(Ml)). Let µl be a measure on Y 2
l such that

µl(∆Yl) = 1 and such that Al ≃ L∞(Y 2
l , µl), where ∆Yl is the diagonal.

Consider a disintegration of µl with respect to the projection pl(s, t) = t,

µl =

∫

Yl

µl,tdνl(t).

We denote the set of atoms of Al ⊂Ml by Yl. Let Y be the cartesian product
of the Yl with the σ-algebra generated by the subsets of Y of the form

∏
lXl,

where Xl ⊂ Yl is a measurable subset that is equal to Yl for all but a finite
number of l ∈ Λ. Let ν = ⊗lνl be the unique probability measure on Y that
satisfies ν(

∏
lXl) =

∏
l νl(Xl). We identify A with L∞(Y, ν). We denote an

element of Y by t and its l-component by tl.

Theorem 4.2. The set of atoms Y of A ⊂M is the set of couples (s, t) such
that for any l (sl, tl) ∈ Yl and sl = tl for all but a finite number of l ∈ Λ.

Proof. Let Ωl be the image of the unity of Ml in the Hilbert space L2(Ml).
Consider the infinite tensor product of Hilbert spaces

⊗
l∈Λ L

2(Ml) with re-

spect to the vectors Ωl. There is a unitary transformation between L2(M)
and

⊗
l∈Λ L

2(Ml) that conjugates the actions π, ρ with the tensor product of
actions ⊗l∈Λπl and ⊗l∈Λρl. For any l ∈ Λ, there exists a measurable field of
Hilbert spaces {Hl

s,t, s, t ∈ Yl} such that the Al-bimodule L2(Ml) is isomorphic
to the direct integral

∫ ⊕

Y 2

l

Hl
s,tdµl(s, t).

Consider the disintegration of the vector Ωl which is
∫ ⊕

Y 2

l

Ωl
s,tdµl(s, t).

For any couple (s, t) ∈ Y 2, we consider the infinite tensor product of Hilbert
spaces Hs,t =

⊗
l∈Λ Hl

sl,tl
with respect to the vectors Ωl

sl,tl
. For any finite

subset E ⊂ Λ, there exists a unique measure µE on Y 2 that satisfies

µE(
∏

l∈Λ

Xl) =
∏

l∈E

µl(Xl)×
∏

l∈Λ\E

µl(Xl ∩∆Yl).

Consider the measure class C of Y 2 generated by all the measures µE . Let µ be
an element of the class C. It is clear that the A-bimodule L2(M) is isomorphic
to the direct integral of Hilbert spaces {Hs,t, (s, t) ∈ Y 2} over the measure µ.
It means that

L2(M) ≃

∫ ⊕

Y 2

Hs,tdµ(s, t).
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Consider the projection of Y 2 p(s, t) = t. Let

µ =

∫

Y

µtdν(t)

be a disintegration of µ with respect to p and let Y be the set of atoms of
A ⊂ M . By the construction of µ, it is clear that Y is equal to the set of
couples (s, t) such that for any l (sl, tl) ∈ Yl and sl = tl for all but a finite
number of l. �

Corollary 4.3. Let NMl
(Al) be the group normalizer of the MASA Al ⊂Ml,

and consider the von Neumann algebra generated by those normalizers
⊗

l∈Λ

NMl
(Al)

′′ ⊂
⊗

l∈Λ

L2(Ml).

Then,

NM (A)′′ =
⊗

l∈Λ

NMl
(Al)

′′.

In particular, a tensor product of singular MASAs is a singular MASA.

Proof. For any l ∈ Λ consider a countable subgroup Gl < NMl
(Al) such that

G′′
l = NMl

(Al)
′′ ⊂ Ml. By Proposition 2.2 and Theorem 3.1 we have that

the orbit equivalence relation NGl
is equivalent to Yl. Let G be the countable

subgroup of NM (A) generated by elements of the form u = ⊗l∈Λul, where
ul ∈ Gl and ul = 1 for all but finitely many l ∈ Λ. We see immediately that
the orbit equivalence relation induced by G is equal to the set of couples (s, t)
such that for any l ∈ Λ, (sl, tl) ∈ NGl

and sl = tl for all but finitely many
l ∈ Λ. Therefore Theorem 3.1 implies that NG = Y. Hence, by Proposition 2.2
we have that G′′ = NM (A)′′ ⊂M . By construction

G′′ =
⊗

l∈Λ

G′′
l =

⊗

l∈Λ

NMl
(Al)

′′ ⊂
⊗

l∈Λ

L2(Ml).

Therefore,

NM (A)′′ =
⊗

l∈Λ

NMl
(Al)

′′.

�
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[3] J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of

Math. (2) 59 (1954), 279–286. MR0059486 (15,539b)
[4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neu-

mann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR0578656 (58
#28261a)

Münster Journal of Mathematics Vol. 5 (2012), 59–72



The Takesaki equivalence relation 71

[5] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neu-
mann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359. MR0578730
(58 #28261b)

[6] R. Godement, Sur la transformation de Fourier dans les groupes discrets, C. R. Acad.
Sci. Paris 228 (1949), 627–628. MR0028323 (10,429e)
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