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Abstract

The yeast cell Saccharomyces cerevisiae provides an excellent model system to study
the underlying mechanisms of cell polarity, a process fundamental to the function of
many cell types. Two positive feedback loops are thought to contribute to the local
polarization of the most important polarity regulator Cdc42, one actin-dependent
and one actin-independent mechanism.
A common model explains polarity by a Turing-type reaction-diffusion mechanism
that can concentrate Cdc42 by a Bem1-mediated recruitment [32]. Since biological
experiments have shown that cell polarity occurs even in the absence of Bem1,
recent models emphasize the GDI-mediated exchange between the cytosol and the
plasma membrane and the associated different diffusion rates [48, 84]. However,
these reaction-diffusion Turing-type models do not take into account the suggested
actin-mediated feedback loop. Cdc42 orients actin cables, which in turn deliver
secretory vesicles containing Cdc42. Vesicle trafficking models based on stochastic
equations have demonstrated that this mechanism can either reinforce [28, 98] or
perturb polarization [52,76].
Following the approach proposed by [32] and [48], we present a minimal mathematical
model based on reaction-diffusion-advection equations that, in addition to the
diffusive transport, explicitly includes an advective term to simulate the actin-
mediated vesicle transport. Vesicles move along actin cables, thus we additionally
consider actin polymerization and depolymerization and incorporate exocytosis
and endocytosis of Cdc42. Since we consider multiple substances, either cytosolic,
membrane-bound, or vesicle-bound, and model the full geometry we have a coupled
bulk-surface problem. Thereby, our model does not rely on a Turing-type mechanism
as it includes the actin-dependent advection of molecules and distinguishes between
a cytosolic and membrane domain. Unlike [28] or [47] we further describe vesicle
transport in a continuous model, which allows a deeper analysis.
We present numerical results in 2D and 3D and compare those to experimental data.
Thus, we show that the model is able to reproduce experimentally observed patho-
logical cases and demonstrate how vesicle trafficking could reinforce polarization.
Based on this specific model, we develop a general system of three membrane reaction-
diffusion equations coupled to two diffusion equations inside the cell. Following the
approach proposed in [72], we perform a linear stability analysis and derive conditions
for a transport-mediated instability which are confirmed numerically. In order to
conclude this work, we finally compare the continuous approach for actin cable
movement to a stochastic model.





Zusammenfassung

Die Hefe Zelle Saccharomyces cerevisiae bietet ein exzellentes Modellsystem zur
Forschung der grundlegenden Mechanismen der Zellpolarität, ein fundamentaler
Prozess für viele Funktionen in verschiedenen Zelltypen. Es wird vermutet, dass zwei
positive Rückkopplungsschleifen zur lokalen Polarisierung des wichtigsten Proteins
Cdc42 beitragen, ein Aktin-abhängiger und ein Aktin-unabhängiger Prozess.
Ein bekanntes Modell erklärt Polarität durch einen Turing-basierten Reaktions-
Diffusions-Prozess [32]. Hierbei führt eine Bem1-vermittelte Rekrutierung zur Konzen-
tration von Cdc42. Da biologische Experimente allerdings gezeigt haben, dass Zellpo-
larität auch ohne Bem1 erreicht werden kann, heben jüngste Forschungen den
GDI-vermittelten Austausch zwischen dem Zytosol und der Plasmamembran und die
damit verbundenen unterschiedlichen Diffusionsraten hervor [48, 84]. Doch Turing-
artige Reaktions-Diffusions-Modelle berücksichtigen keinen Aktin-basierten Feedback.
Die Richtung der Aktinkabel, welche in der Lage sind sekretorische Vesikel mit Cdc42
zu transportieren, hängt von der lokalen Cdc42-Konzentration ab. Vesikelmodelle,
die auf stochastischen Gleichungen basieren, haben gezeigt, dass dieser Mechanismus
die Polarität entweder verstärken [28,98] oder aber auch stören kann [52,76].
In Anlehnung an die Modelle von [32] und [48] präsentieren wir hier ein minimales
Modell, das auf Reaktions-Diffusions-Advektions-Gleichungen basiert. Zuzüglich
zum diffusiven Transport schließt dieses Modell einen advektiven Term ein, um den
Aktin-basierten Transport zu simulieren. Da sich Vesikel entlang Aktikabel bewegen,
berücksichtigen wir außerdem Aktin-Polymerisation und Depolymerisation sowie
Exozytose und Endozytose von Cdc42. Das Modell simuliert mehrere Substanzen,
die entweder im Zytosol, an der Membran oder vesikelgebunden vorzufinden sind.
Dabei modelliert es die gesamte Geometrie der Zelle, so dass ein gekoppeltes System
zwischen dem Volumen und der Oberfläche entsteht. Durch die Unterscheidung von
Zytosol und Membran sowie die Berücksichtigung der advektiven Bewegung von
Molekülen, basiert das Modell nicht nur auf einem Turing-artigen Mechanismus.
Anders als [28] oder [47] nutzen wir ein kontinuierliches Modell, um den Vesikel-
transport zu simulieren, wodurch eine ausführlichere Analysis möglich ist.
Wir präsentieren numerische Ergebnisse in 2D und 3D und vergleichen diese mit
experimentellen Daten. Wir zeigen, dass das Modell experimentell beobachtete
pathologische Fälle reproduzieren kann und veranschaulichen, wie Vesikeltransport
die Polarität verstärken kann.



Basierend auf diesem speziellen Modell entwickeln wir ein allgemeines System von
drei auf der Membran definierten Reaktions-Diffusions-Gleichungen, gekoppelt an
zwei in der Zelle definierten Diffusions-Gleichungen. Dem Ansatz aus [72] folgend,
führen wir eine lineare Stabilitätsanalyse durch und leiten Bedingungen für eine
transportgetriebene Instabilität her, welche wir numerisch untermauern. Um die
Arbeit abzuschließen, vergleichen wir schließlich den kontinuierlichen Ansatz zur
Modellierung der Aktinkabelbewegung mit einem stochastischen Modell.
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1 | Introduction

In the course of this thesis, we will introduce a novel mathematical approach for
transport-mediated cell polarization. It is derived from a complex model proposed
for symmetry breaking in budding yeast. However, because of its flexibility, it can
be applied to a variety of cell types. Before going into the details, we first motivate
our principal topic.

1.1. Motivation

Look at the picture 1.1. For an embryo to become a living organism, the formation
of certain cell and tissue types is not enough. They must emerge at the correct
time and in a proper direction. Ever wonder why the nose is in the middle of the
face and the ears are on each side of the head? Or asked differently: What are the
mechanisms behind this development? How do the cells know how to develop? How
do they know the right direction?
The determination of the underlying mechanisms, which lead to this development
and thereby define top and down or front and back, is a challenging problem. The
study of cell polarity mainly addresses this issue. However, to solve this problem you
have to start at the first-line level of cells which are themselves profoundly polarized.
It is not without reason that the cell is called the fundamental unit of life. Cells
have to provide many different functions, particularly they reproduce by division.
Without cell division any other living thing would not continue to live. For example,
without the replacement of red blood cells each human would have a very short life
expectancy, corresponding to that of red blood cells. To accomplish these special
various and famous functions in living organisms, cell polarization is an essential
process. Only by this important mechanism is the cell able to divide asymmetrically.
Conversely, the lack of polarization can have fatal consequences, e.g. cells may
develop abnormally. Concerning the human organism, this can cause the develop-
ment of diseases or mutations. Studies currently examine if infections or cancer may
emerge due to a failure to polarize [94].
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Figure 1.1.: The emergence of human existence. Image of an embryo which grows and
develops into an infant [99,102].

However, dependent on the increasing complexity in the course of ever smaller
systems, biological experiments become more and more difficult. Meanwhile, math-
ematical models and simulations play an important role in supporting biological
research. Besides theory and experiment, computational simulations can give insights
into these complex systems.

1.2. Objective
The main goal of this work is the derivation of a mathematical model for cell
polarization as well as its numerical and analytical study. The model contributes to
the understanding of underlying processes involved in symmetry breaking. Based
on the signaling pathways of budding yeast, a first rather complex model simulates
distinct experimentally observed pathological cases. Taking account of the full cell
geometry, its investigation by numerical simulations helps to make predictions which
can be proved by biological experiments. For example, the sensitivity analysis of this
system yields statements about the system behavior due to parameter changes.
Since the analytical study of such complex models is very difficult, another aim of this
thesis is to derive a generic and more flexible system. It serves as an exemplary model
for transport-mediated cell polarization that can not only be analyzed analytically
but also be studied in terms of different structure forming systems. Considering
distinct kinetic functions, it allows the investigation of pattern formation in different
cell types. In doing so, it is possible to determine how the cell shape influences
transport-mediated polarity.
In order to demonstrate how delivery mechanisms can induce a sustained cluster,
the linear stability analysis of the generic system is a further goal of this work. This
analysis serves to derive stability and instability conditions which allow determination
of when a small initial perturbation of the homogeneous state leads to a spatial
pattern, even under unusual circumstances.
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1.3. Outline
This thesis consists of nine chapters. After this introduction, Chapter 2 will provide
the biological background needed to understand the process of cell polarization.
Starting with a general explanation of cell polarity, this work mainly focuses on
the yeast cell as a convenient model organism. How this process occurs in budding
yeast is explained. Furthermore, the main signaling pathways relevant for the model
derivation and its simulations are presented.
This basic part is followed by a chapter that provides the mathematical preliminaries
required for the formulation and analysis of a model problem as discussed in this
work.
Chapter 4 and 5 address implementation issues. These parts are concerned with
the numerical realization of the model problems, including numerical schemes. The
simulations are computed with the DUNE framework, especially using the dune-
multidomaingrid and dune-multidomain modules. Its main concepts and how they
serve to simulate the equations presented in this thesis are briefly explained. For a
test problem, the stability and the convergence of the employed numerical approach
is shown.
Chapter 6 is central to this work. It derives the continuous model for transport-
mediated cell polarization which is the basis of the numerical simulations presented in
this thesis. It is a new approach to the modeling of vesicular trafficking-mediated cell
polarization in yeast cells. Different results are discussed and compared to previous
ones.
The following chapter deals with the non-dimensionalization and reduction of this
complex system to a generic approach. This has the advantage that it can be applied
to different cell types and hence cell geometries. By means of a stability analysis,
conditions for a transport-driven instability resulting in polarization are deduced.
The theoretical results are then compared to numerical simulations.
As we will see later on, the continuous approach to the transport feedback performed
here is a simplification of a discrete biological process. In order to ascertain whether
this simple approach qualitatively affects the results, Chapter 8 deals with a stochastic
approach to this mechanism.
A summary and outlook of this work follows in Chapter 9. The subsequent appendix
provides short introductions into further mathematical tools and concepts used for
the model derivation, implementation, and its stability analysis. It further supplies
a glossary with biological terms as well as a list of abbreviations, notations, and
mathematical symbols.
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To develop a mathematical model that simulates a specific biological phenomenon,
it is important to figure out its fundamental mechanisms. Therefore, this chapter is
concerned with the underlying pathways leading to the process of cell polarity. Since
Rho GTPases are often assumed to play an important role in symmetry breaking,
the significance of Rho GTPases and their features are subsequently presented. One
function of Rho GTPases is the regulation of the cytoskeletal system. Since the
organization of the cytoskeleton is another important aspect in cell polarization,
the ensuing section covers this topic. Depending on the cell type, different cell
polarities can occur. However, in this thesis we are mainly interested in the modeling
of budding yeast cell polarization. Therefore, we further focus on the determining
signaling pathways important for symmetry breaking in this model organism.

2.1. The mechanism of cell polarity

Cell polarity is a crucial process during cell development in both single-celled
and multicellular organisms. It describes the formation of specific molecules in
certain regions of the cell which leads to the definition and maintenance of a
spatial arrangement. Through this symmetry breaking event the cell generates an
internal functional, structural, and molecular difference which is important for many
cellular processes. For instance, the process of cell polarity determines the growth of
different eukaryotic cells. As a result of intrinsic or extrinsic cues, an asymmetric
distribution and/or activation of downstream effectors enables the cell to generate
different shapes. In addition to its role in cell growth and morphogenesis, symmetry
breaking is essential for cell migration, signal transmission or cell differentiation and
proliferation. Consequently, the ordered, asymmetric distribution of proteins and
membrane components in the cell is the basis to specifically and efficiently realize
fundamental cellular functions.
Depending on cell types, different specific cell polarities can be distinguished. To
emphasize the multiplicity of polarization aspects, Figure 2.1 shows a few examples of
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Figure 2.1.: Illustration of different polarized cells. A few examples of polarized cells are
shown to demonstrate the importance of cell polarity and its different aspects. (a) Migrating
fibroblasts form actin-rich extensions at the leading edge to drive protrusions of the membrane
and its associated cell movement. (b) Polarized cytoskeletal assemblies and secretion characterize
polarization of cytotoxic T cells. (c) Epithelial cells show polarized actin structures and secretion.
These polarized orientation promotes the formation of an apical and basal domain. (d) Dividing cells
of C. elegans zygote form a posterior and anterior domain characterized by polarized microtubules
and the location of specific polarity regulators. (e) Budding yeast cells require polarized actin
structures and secretion to generate the daughter cell. (f) Neurites polarize to form a long thick
axon and multiple dendrites. Thereby, actin and microtubules act in parallel to reinforce neuronal
asymmetry (modified on [24,25]).
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polarized cells. For instance, in migrating cells like yeast cells or filopodia polarization
refers to a so-called front-rear polarity. The front determines the part closest to
the migration direction and the rear its opposite side. In this case, a molecular and
functional difference between these two parts provides the force and defines the
direction of cell movement [73].
Contrarily, epithelial cells which constitute the assignment to the exterior milieu
feature an apical-basal polarity. Like in the case of a front-rear polarity, polarization
in these cells describes the functional and structural difference of specific cell regions,
also referred to as domains. According to this, the apical domain which faces the
external environment separates from a basolateral domain which is in contact with
the interstitial space. These domains are kept apart by tight junctions that act as a
fence at the boundary between them. In epithelial cells, cell-cell or cell-substrate
adhesion initially generates polarity. Subsequently, intracellular polarity complexes
and a polarized membrane transport regulate the arrangement of proteins. It is
assumed that these complexes give essential cues that control a polarized organization
of epithelial cells [65,90].
The establishment of an axon out of multiple neurites provides a further example for
the importance of cell polarization. During the development of the nervous system
neurons polarize to generate a single long axon and multiple dendrites [89].
An example for polarization on the level of a variety of cells is planar cell polarity
(PCP). This process applies to cells with diverse morphologies and is mainly based on
the so-called PCP signaling pathway. It regulates the collective array and behavior of
cells across the tissue plane. Since PCP is a global property of multicellular tissues,
it requires the establishment of asymmetry within cells and the alignment of these
asymmetries in cells located dozens or hundreds of cells apart [106].

2.2. The role of the cytoskeleton

Filamental structures cross eukaryotic cells and entirely form the cytoskeleton
which is crucial for many cellular processes. Composed of protein filaments, it
constitutes a complex, flexible, and dynamic meshwork in the cytoplasm. The most
important types of protein structures are actin filaments and microtubules [19,69].
The cytoskeleton causes a multiplicity of essential biological functions in all eukaryotic
cells [36]. For instance, it contributes to cell motility, development and maintenance
of cellular morphogenesis, intracellular transport, contractility, and the interaction
with the extracellular matrix [19]. The cytoskeleton also has an important role
in the establishment of cell polarity. Polarization establishment affects different
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Figure 2.2.: Scheme of the GTPase cycle. GTPases switch between an inactive, GDP-bound
and an active, GTP-bound state. While the GDI-bound GTPase diffuses in the cytosol, the inactive
GTPase is recruited to the plasma membrane. There GEFs catalyze the exchange of GDP to GTP
and hence achieve its activation (modified on [25]).

cellular processes and by association causes changes in the cytoskeleton. Thus,
the rapid assembly and disassembly may be a fundamental property of eukaryotic
actin cytoskeletons [6,7]. Furthermore, cells require a dynamic actin cytoskeleton
to achieve polarization. For instance, the actin filaments within the growth cone of
the future axon of a neuron are highly dynamic in contrast to those within other
minor neurites. Furthermore, during elongation of neurites the actin filaments show
rigorous deformations [3, 104].

2.3. The Rho GTPases as key regulators in cell
polarity

A special protein family, the Rho GTPases (guanosine triphosphatases), mainly
regulates signaling pathways which are critical for the establishment of cell polarity.
Rho GTPases feature many different cellular functions. They affect numerous pro-
teins downstream which in turn control different signaling pathways. In this way
they regulate the organization and the modification of the actin cytoskeleton, cell
adhesion, migration, cell polarity, cell differentiation, endocytosis, vesicle trafficking,
and oncogenesis (development of cancer). For this reason, Rho GTPases are key
integrators of environmental signals which are essential for the establishment of cell
polarity [25,67].
Rho GTPases are members of the super family of small guanosine triphosphate
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(GTP)-bound proteins (G-Proteins). They function as molecular switches between
their active, GTP-bound form and their inactive, guanosine diphosphate (GDP)-
bound form. The inactive form is achieved by hydrolysis of GTP to GDP [25,88]. Cer-
tain exchange factors regulate this cycle. The so-called guanine nucleotide exchange
factors (GEFs) and GTPase activating proteins (GAPs) as well as GTPase dissocia-
tion inhibitors (GDIs) affect the activity of GTPases. GEFs catalyze GDP/GTP
exchange and GAPs inactivate GTPases. Via binding to GTPases GDIs prevent
membrane association and thereby GTP activation (see Figure 2.2) [25,50,88].

2.4. Yeast as a model system for cell polarity

The investigation of model organisms provides a promising approach to study molec-
ular mechanisms that underlay and maintain cell polarity. Model organisms are
well documented non-human species used to understand specific biological processes.
Using simple but effective culture conditions it is expected that discoveries made
in the organism model will give an insight into the functions of other organisms.
Therefore, the choice of a model organism particularly depends on the biological
issue.
To investigate the constitutive mechanisms of cell polarity the eukaryote of budding
yeast (Saccharomyces cerevisiae) provides an exemplary model organism. The bud-
ding yeast is a single-cell organism in which cell differentiation and morphogenesis
directly depend on cell polarity. It is essential to division and mating. Furthermore,
these cells polarize at different times during cell division. More importantly, the cul-
turing of yeast cells is simple and the genetics are comprehensively studied. However,
polarization of yeast cells shares many features with symmetry breaking in more
complex cells with regard to the internal cell structure [17, 42].
Three major stages characterize the yeast life cycle: Cell division by budding, mating
and sporulation. During budding and mating, cells are highly polarized whereby
sporulating cells remain unpolarized [17].
In this thesis we will focus on the polarization during budding. Figure 2.3 illustrates
the formation of an axis of polarization in budding yeast cells. This process is
spatially as well as temporally controlled: The bud develops at a distinct site of the
cell cortex and to a certain time in the cell cycle. At first the growth of cells proceeds
isotropically until it reaches a critical size and retrains a bud. The development of this
bud can normally be separated into two consecutive stages. During the short initial
stage a cluster of active Cdc42, a small GTPase of the Rho family which is the key
regulator of polarity in yeast, establishes at the inner face of the plasma membrane.



10 2 Biological preliminaries

Figure 2.3.: Polarization in budding yeast. Initially the distribution of Cdc42 is uniform at
the plasma membrane. In response to extracellular guidance cues or spontaneously the cell becomes
polarized. This leads to a cluster of activated Cdc42 at the bud-site and hence polarized growth
(modified on [82]).

Thereby, specific so-called landmark proteins determine the site of polarized growth.
Among others, the Ras family GTPase Rsr1/Bud1 and its regulators have been
identified to play a key role in this selection step. They determine a specific site for
polarized growth. In newborn cells this is naturally the position around the bud scar
remaining from the previous cell division (1. Choosing a direction for polarization).
This step is followed by an adjacent recruitment of components essential for bud
formation at the chosen site. Its assembly, which needs the activation of the Rho
family GTPase Cdc42 and its effectors, is required for bud growth at the polar site.
The interaction of Cdc42 with various proteins causes downstream processes and
leads to the formation of actin cables as well as a concentric septin ring that defines
the bud neck (2. Building an axis). In the ensuing phase of growth and elongation
the actin cables serve as tracks for polarized exocytosis of vesicles. These vesicles
eventually provide material for the bud growth. This polarized patch remains focused
at the bud tip at the early phase of bud growth but becomes broader and disperses
as the bud extends [17,42,67,97,98].
Although it is difficult to separate between them, it is reasonable to distinguish the
establishment of Cdc42 polarization from the maintenance of its polarization. In
wild type cells internal and external spatial cues like a pheromone gradient or the
bud scar control polarity establishment. However, yeast cells are also able to polarize
spontaneously. Spontaneous polarization means that the cell is able to polarize
correctly without any directional cue. In this case, the cells exhibit no defects in
polarity establishment and maintenance or cell morphology. Only polar cluster
formation and the subsequent bud growth proceeds in a random direction [85,97].
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2.4.1. Yeast polarity pathways and Cdc42 as key regulator

Yeast cell polarity is a complex process that requires the activation of different
signaling pathways coordinating multiple cellular activities. The most prominent
feature in the process of budding is the organization of the polarized actin cytoskeleton
which guides secretion towards the bud-site, resulting in polarized cell growth. While
in higher eukaryotes microtubules as well as actin are important for polarization, only
actin is essential in yeast cells [7,43]. The importance of an intact actin cytoskeleton
could be shown by studies using drugs that cause the disassembly of filamentous
actin. In that regard, its depolarization resulted in an isotropic growth of the mother
cells [6, 70].
The polarized actin cytoskeleton consists of filamentous actin structures such as
actin patches and actin cables. Actin patches which accumulate at the polarized site
for bud growth and actin cables which are polarized towards this site have different
properties. Whereas patches may serve as docking sites for vesicles or as endocytosis
sites for recycling of membrane, cables may serve as tracks for directed transport
of organelles and secretory vesicles to the bud-site. In this way actin is required
to localize secretory vesicles. This transport is achieved by cortical type V myosin
Myo2 which functions as a cargo motor using actin cables as tracks (see Figure
2.4) [33,46,71]. Due to this, actin cables are necessary for several events important
for cell polarization like polarized delivery, transport of late Golgi elements into the
bud, and asymmetric transport of mRNA [17,67].
In addition to cables and patches as structures of the actin cytoskeleton, it consists of
an contractile septin ring. By regulation of septin dynamics throughout the budding
process, actin rings help to constrict the bud neck and to accurately coordinate
morphogenesis [18].
The dynamics of actin filaments is determined by balanced activities of stabilizing and
destabilizing proteins. It involves nucleation by formins, stabilization by tropomyosins,
and cross-linking or bundling by actin-binding proteins (ABPs) [100]. This is why
actin assembly and organization of the cytoskeleton changes rapidly during cell
polarity [7]. Two different actin nucleators, the Arp2/3 complex and formins, regulate
this rearrangement. While the formins Bni1 and Bnr1 are important for actin cables,
actin patches are nucleated through the Arp2/3 complex [26,75,101]. Since Myo2
contributes to actin dynamics and thereby actin remodeling as well, a recent study
suggests that the cargo motor Myo2 may also function as a motor for translational
cable movement at the cell cortex [105].
In Sections 2.2 and 2.3 we already discussed the role of GTPases in the process of
cell polarization and especially its impact on the cytoskeleton. In yeast cells Rho
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Figure 2.4.: Model of actin-mediated transport. During its ATPase cycle, conformational
changes in the actin-binding domain lead to the rotation of the lever arm. Thus, the movement of
a myosin-V dimer along actin is a result of repeated binding sites (highlighted in gray) (modified
on [78]).

GTPases are involved in the step of bud-site selection and bud-site assembly. In the
latter step of budding GTPases regulate the activity of stabilizing and destabilizing
proteins [36, 67]. Through this, Rho GTPases regulate the polarized organization of
the actin cytoskeleton and cell wall biogenesis [67,98].
These GTPases include Rho1 and Rho2, Rho3, and Rho4, and the Rab family
GTPase Sec4. For instance, Rho1 and Rho2 are supposed to maintain polarization
of the actin cytoskeleton and cell wall byosynthetic activities [17]. Rho GTPases
also regulate the directed movement of secretory vesicles. Biological experiments
have demonstrated that Rho1, Rho3, and Cdc42 regulate the so-called exocyst, a
multiprotein complex that is involved in this process. Robinson et al. [74] showed
that Rho3, which plays an essential role in the control of bud growth, acts upstream
to Exo7, a component of the exocyst [74]. On the other hand Rho1 and Cdc42
control the Sec3 component of the exocyst [87].
Because of this, members of the Rho family of small GTPases turned out to be
essential for the assembly of the actin cytoskeleton. But Rho3 does not only affect
Exo7. It has also the ability to bind Myo2. As previously mentioned, Myo2 is an
essential myosin that regulates transport of secretory vesicles and may control the
cytoskeletal assembly. Thus, Rho3 further contributes to the delivery of exocytic
vesicles. Furthermore, since Rho3 and Rho1 interact with Bni1, they are assumed
to induce changes in the actin cytoskeleton [74, 75]. The activators Sec4 finally
regulate secretion or exocytosis from the Golgi apparatus to the plasma membrane,
a mechanism important for the emergence and growth of the bud [67] (see Figure
2.5 (b)).

As mentioned before, the localization of the GTPase Cdc42 to a single discrete
site on the plasma membrane is a crucial event essential for the achievement of
symmetry breaking and bud-site establishment in haploid yeast cells [67]. Genetic
studies indicate that Cdc42 effectors act together with Cdc24 and Cdc42 GAPs
like Bem2, Bem3, Rga1/Dbm1, and Rga2 to establish polarity (see Figure 2.5 (a)).
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(a) (b)

Figure 2.5.: Signaling pathways of Rho GTPases in budding yeast. (a) The activity of
the GTPase Cdc42 is controlled by three types of regulators: the GEF Cdc24, the GAPs Bem3,
Rga1, Rga2 and Bem2 as well as the GDI Rdi1. In its active form Cdc42 influences the assembly
of the actin cytoskeleton and the septins. Furthermore, it is involved in the process of exocytosis
(on [17]). (b) The exocytosis is regulated by three Rho GTPases that directly interact with a
component of the exocyst: Rho3, Rho1 and Cdc42 (modified on [87]).

Among this the Rho family GTPase Cdc42 and its GEF Cdc24 are essential for
the assembly of the polarized area and septin ring as well as for the polarization
of actin cables [42, 67]. Cdc42 appears to function in two different modes: First,
to turn on signaling pathways in its GTP-bound state and second, to assemble a
macromolecular structure such as the septin ring [67]. Because of this, the GTPase
Cdc42 is pointed out to be a key player in polarity establishment. In other words, it
appears to be the central factor in polarizing the cell and is the convergence point
for polarization machinery during budding [17]. This thesis focuses on the initial
establishment of a polar Cdc42 cluster. This is why the signaling pathways leading
to Cdc42 polarity are subsequently explained in more detail.

Bem1-mediated polarity

We already mentioned that although in vivo the Cdc42 cluster is predetermined by
landmark proteins including Rsr1, yeast cells can polarize even in the absence of any
spacial cues. This random symmetry breaking process led to the hypothesis that
an intrinsic ability to break symmetry exists. In this case, the initial asymmetric
signal only affords the orientation for the pattern with respect to an internal or
external cue [97]. Thus, one of the key issues concerning the role of Cdc42 in polarity
development is to understand how Cdc42 itself becomes polarized and how its
polarization state is maintained during the cell cycle [67].
Feedback loops have been linked to the fundamental process of pattern development
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and gained in importance by describing the mechanisms underlying cell polariza-
tion [30,59]. Recent studies investigating the establishment of cell polarity in different
cell types have shown that positive and negative feedback loops are important for
the emergence of spontaneous polarization [54,66].
In budding yeast cells it has been proposed that the ability of Cdc42 to cycle
between its active GTP-bound and inactive GDP-bound state is essential for actin-
independent polarization. Together with the scaffold protein Bem1, this exchange
generates a positive feedback mechanism. Bem1 builds a complex with active Cdc42,
its GEF Cdc24, and its effector Cla4 to support the accumulation of Cdc42-GTP at
the site of polarized growth. The localization of Bem1 at the emerging bud requires
activated Cdc42. The expression of Cdc42-GTP is in turn sufficient to enrich Bem1
at the plasma membrane. Through the binding of Cdc24 to Bem1, Bem1 stabilizes
Cdc24 at the polarized site so that its local accumulation may then result in a higher
concentration of Cdc42-GTP and Cdc24 at the polar site. Thus, the Bem1-mediated
complex formation generates a positive feedback loop (see Figure 2.6 (a)) [13, 16].
Interestingly, this feedback loop is sufficient to achieve spontaneous polarization
in the absence of landmark proteins. For instance, biological experiments using
knock-out mutant cells have shown that whereas ∆rsr1 cells polarize in a random
direction, ∆rsr1 ∆bem1 double mutants fail to form a polarized cap [49].

(a) (b)

Figure 2.6.: Schemes of molecular mechanisms that underlay the establishment and
maintenance of spontaneous polarization in budding yeast cells. (a) It is supposed that
Cdc42 in its GTP-bound form clusters spontaneously and temporarily at the site of polarized growth.
This becomes stabilized through the coupling with Bem1, Cdc24, and Cla4. The Bem1-based
complex then leads to the phosphorylation of Cdc24 by Cla4 and thus to further recruitment of
activated Cdc42 at the polarized site. (b) Simultaneously, Cdc42 in its GDP-bound and GTP-bound
form is transported to this site. The transport is achieved by the type V myosin Myo2 that uses the
actin cables as tracks to deliver secretory vesicles that carry Cdc42. At the growth site the inactive
Cdc42 is disposed to activation by the GEF Cdc24. After its activation Cdc42 is able to bind to
the formin Bni1, which nucleates actin. Since this leads to the assembly of further actin cables and
hence an increased transport of Cdc42, this mechanism generates a positive feedback loop.
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But not only the interaction between Bem1, Cdc24 and Cdc42 plays an important
role in this feedback loop. The binding of Cla4 to Bem1 could also essentially
contribute to this mechanism. It has been shown that, when bound to the same
Bem1 molecule, Cla4 phosphorylates Cdc24 in vivo and in vitro [13,16,35,51,93].
But there are various opinions about the role of Cla4 within this complex so that the
significance of Cdc24 phosphorylation still remains questionable. On the one hand,
it has been suggested that phosphorylation of Cdc24 by Cla4 could contribute to
the positive feedback by promoting polarized growth [13]. On the other hand, Cdc24
phosphorylation could negatively affect the feedback loop. In this case it is assumed
that Cdc24 phosphorylation triggers the dissociation of Cdc24 from Bem1 [35].
Contrarily, the results of another study have suggested that Cdc24 phosphorylation
provides a negative feedback by inhibiting GEF activity [51]. Thus, it is still unclear
whether the initial Cdc42 activation involves phosphorylation of the GEF Cdc24.

GDI-mediated polarity

Although the Bem1-mediated feedback loop and its associated cycling of Cdc42
between its GDP and GTP states is able to explain spontaneous polarization, this
mechanism alone is not sufficient to guarantee robust cluster formation. As long as
Rsr1 is present and locally activates Cdc42, even ∆bem1 cells still have the ability
to polarize [41,84]. These results implicate that other mechanisms are required for
the generation of a robust and unique polarized patch. One of them belongs to the
actin independent pathway which refers to the mechanisms that control the GTPase
cycle. Besides Bem1, the Cdc42 cycle involves Rdi1, the sole GDI of budding yeast.
Whereas Bem1 mediates a positive feedback mechanism, Rdi1 controls Cdc42-GDP
recruitment. Rdi1 interacts with Cdc42 as it extracts Cdc42-GDP from the plasma
membrane and then forms a Rdi1-bound complex. This complex diffuses in the
cytosol and forms the cytosolic pool which is not only required to maintain but
also to establish Cdc42 polarity under certain conditions. For instance, ∆rdi1 cells
which also lack the below specified actin pathway fail to polarize [28, 84]. These
results have shown that targeting of Cdc42 from the cytosolic Rdi1-bound pool is
just as essential for Cdc42 cluster formation in the absence of actin-mediated vesicle
transport as the feedback mechanism controlled by Bem1. In the absence of actin,
polarity is only possible when both, Bem1 and Rdi1, ensure an intact GTPase cycle.
However, the underlying molecular mechanisms triggering cytosolic targeting remain
unclear. One possibility is that Cla4 may be involved in Cdc42 membrane recruitment
and its subsequent activation. Biological research has shown that Cla4 disrupts Rdi1-
Cdc42 complexes. Thus, Cla4 could negatively regulate the binding to Rdi1 either
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by inhibition of the formation of a Rho GTPase-Rdi1 complex or, on the other hand,
by disruption of an already existing complex [91] (see Figure 2.6 (a)). An alternative
explanation could be a GEF-mediated displacement of Cdc42 from its GDI Rdi1
and a competition between GEF and GDI [48]. Nevertheless, the pathways involved
in GDI-mediated polarity are still unknown and require further research.

Actin-mediated polarity

In budding yeast cells different independent parallel acting feedback mechanisms
are proposed to achieve and maintain symmetry breaking. Besides the mentioned
actin-independent pathways, an actin-mediated feedback loop is hypothesized to
contribute to polarization in budding yeast cells, or rather it is supposed to be
required for the generation of robust cell polarity [96].
As mentioned before, actin cables serve as tracks to deliver secretory vesicles to
the polarized site. Thereby, two forms of cables nucleated by Bni1 and Bnr1 can
be distinguished. Whereas Bni1 nucleates cables which are localized to the bud tip,
Bnr1 nucleates those localized to the bud neck. Since Cdc42 directly interacts with
Bni1, it regulates the polarization of actin cables and hence generates a positive
feedback loop [15]. In fact, it has been shown that a stochastic increase in the local
concentration of activated Cdc42 on the plasma membrane enhances the probability
of actin polymerization. An increased number of nucleated actin cables in turn leads
to a higher probability of further Cdc42 accumulation at that site [96,98] (see Figure
2.6 (b)). Furthermore, it has been shown that inhibition of actin-based transport
resulted in unstable Cdc42 clusters [98].
These mechanisms prove the importance of an intact actin cytoskeleton and hence
polarized secretion.
But the actin cytoskeleton may also be involved in the process of endocytosis. Endo-
cytosis describes the internalization of molecules, plasma membrane components,
and extracellular material into cytoplasmic vesicles and its subsequent transport to
internal compartments. Thus, it acts as opposing intracellular membrane trafficking
process towards exocytotic secretion. Since the accumulation and stabilization of
active Cdc42 require the balance of exocytosis and endocytosis, this internalization
process also plays an important role in yeast cell polarity [47,56,79]. It is assumed
that proteins are internalized from the cell surface to early endosomes via endocytosis.
The vesicles then transit from the early endosome to the trans-Golgi network before
they return to the plasma membrane via exocytic secretion. That the latter process
requires an intact actin cytoskeleton has been outlined above. Considerable evidence
indicates that endocytosis and actin regulation are also closely linked processes. For
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instance, cortical actin patches, which show a dynamic but characteristic distri-
bution throughout the cell cycle, are often disrupted in endocytosis mutants [79].
Furthermore, disturbance of actin filament dynamics demonstrated that endocytosis
requires an intact actin cytoskeleton [6].

In order to further illustrate the mentioned processes, Figure 2.7 finally shows
microscopic images of budding yeast cells characterized by polarized Cdc42 and
actin cables.

(a) (b)

Figure 2.7.: Polarized budding yeast cells obtained from computer assisted microscopy.
(a) Polarized Cdc42-GFP. (b) Polarized actin cables (R. Wedlich-Söldner, Institute of Cell Dynamics
and Imaging Münster).
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Figure 2.8.: Schematic representation of the pathological cases observed by biological
experiments. (a) In the presence of the most important pathways, Bem1-mediated activation,
Rdi1-mediated cytosolic exchange, and vesicular-mediated molecule delivery, the cell is able to
polarize. (b) Even in the absence of the transport machinery, the cell forms a polarized Cdc42
patch. (c) Without Bem1-Cdc24-Cdc42-GTP complex formation, the cell is still able to polarize,
albeit with less intensity. (d) The lack of a cytosolic exchange induced by GDI disruption does
not impede polarization. The simultaneous disruption of (e) actin and Bem1 or (f) actin and Rdi1
leads to an unpolarized cell.



2 Biological preliminaries 19

2.4.2. Models for yeast cell polarity

Although this chapter is concerned with biological preliminaries, the findings achieved
by interdisciplinary research should not be omitted. For instance, mathematical
models provide a useful tool to simulate biological processes. They support biological
research and help to gain new scientific insights.
Through the years many mathematical models have been developed to simulate the
establishment and maintenance of yeast cell polarity. The aim of these models is
to achieve a better understanding of the fundamental processes of cell polarization.
This led to a huge number of model systems with focus on different aspects as well as
mechanisms of polarity. Dependent on the model objectives, the systems are either
based on continuous or stochastic equations. As we will see in Section 3.1, partial
differential equations (PDEs) provide a good approach to simulate reactions and
dispersions of proteins mathematically. For the mathematical simulation of actin
cable nucleation as well as exocytosis and endocytosis, stochastic approaches are
suitable.
In this section we will concentrate on models for the establishment and maintenance
of yeast cell polarization that gave direction to further studies in this field. We will
give an overview of model systems focusing on the aforementioned pathways that
may contribute to polarity. Thus, each model is of particular importance since it
provides an accurate description of various mutant phenotypes which arise from
disturbed polarization. Furthermore, the models contributed to a deeper knowledge
of the protein interactions and mechanical processes involved. However, it is difficult
to keep track of the key messages that we learn from it. Therefore, we classify the
models into three categories and summarize them into a table of each class (see
Figures 2.9-2.11). The first one includes transport models that solely focus on the
impact of actin-mediated transport. The second class comprises reaction-diffusion
models which ignore transport mechanisms and simulate polarization by protein
interactions and diffusion. Models which couple systems of the first two categories
are summarized in the last one.

Transport models

To investigate whether actin-mediated vesicle delivery could contribute to cell
polarization in yeast cells, mathematical models simulating transport mechanisms
became increasingly important. So far, the simulations of actin cable nucleation and
the associated vesicle transport are mostly based on stochastic equations. The first
model simulating the Cdc42-GTP cluster formation, based on a Poisson process
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for actin nucleation, was introduced in [96]. Although the results have shown that
actin-mediated feedback is able to cluster Cdc42, this system only considers one
active form of the GTPase and ignores reactions or nucleotide exchange mechanisms.
Furthermore, this conceptual model is confined to the transport from an internal
infinite pool to the plasma membrane. It does not include Cdc42 diffusion or a
description of endocytosis, the internalization of molecules from the membrane
back to internal compartments. However, together with biological experiments,
this was the first study which indicated that vesicle trafficking could contribute to
the establishment and maintenance of cell polarity. Thereby, this model laid the
foundation of further research with focus on vesicle delivery.
Using a deterministic PDE-based model to simulate the maintenance of cell polarity,
Marco et al. [56] developed a more realistic approach to simulate vesicular
trafficking. The model incorporates actin cable nucleation and the definition of an
exocytic transport window. Furthermore, it simulates endocytosis of molecules off the
plasma membrane and away from actin cables as well as diffusion of molecules on the
plasma membrane. In that way, their model could also show that a positive feedback
induced by directed transport can dynamically stabilize polarity. But interestingly,
their key finding was the role of endocytosis in optimizing the shape of the polar
cluster for a given transport rate [56].
However, the model described above also only simulates active Cdc42 and does not
consider the GTPase cycle. With the aim of investigating the role of GDI, Slaughter
et al. [81] extended this model by separating between two domains. The first one
defines internalization by endocytosis. The second one specifies the region of removal
by GDI-binding. By this implementation of a second delivery window which defines
GDI-mediated exchange, their model has shown that endocytosis and GDI-mediated
recycling are restricted to the same region of the nascent bud. Moreover, the rates
of Cdc42 recycling are adjusted not to reach maximum polarity, but to control the
shape of the polar cluster. Especially the rate of internalization within the polarized
region influences the morphogenetic outcome [81].
The aforementioned models had one thing in common. They all rely on the assumption
that vesicle transport contributes to robust cell polarity. Layton et al. [52] initially
postulated the contrary. Their stochastic approach to simulate maintenance of
polarity explicitly incorporates the membrane that mediates the traffic. Considering
vesicular intermediates as a result of exocytosis and endocytosis, contrary to previous
vesicle transport models, their simulations have shown that vesicle trafficking rather
disturbs than reinforces polarization. More precisely, the model demonstrated that,
with previously measured diffusion rates for Cdc42, polarity via actin-mediated
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vesicle recruitment cannot establish. In this case, secretory vesicles would only
reinforce polarization if the cargo diffuses very slowly and is selectively concentrated
into endocytic vesicles [52, 95]. Thus, their findings contradict experimental results
that have shown the impact of actin-mediated transport to robust polarity [96,98].
For instance, biological research using mutant cells containing a constitutively active
form of Cdc42 has shown that cells can polarize through actin-based transport.
These cells polarize only with an intact actin pathway. In contrast, cells treated
with latrunculin A (LatA), a drug that disrupts the organization of microfilaments
and inhibits the polymerization of actin, were not able to concentrate Cdc42 [97].
Biological experiments with ∆bem1 or ∆rdi1 cells additionally support the role
of actin-mediated delivery. These mutant cells cannot polarize when treated with
latrunculin [28,84]. Therefore, it remains to define the cases and circumstances under
which vesicle trafficking either positively or negatively affects polarization.
The main assumption of the model proposed in [52] is that exocytosis add and
endocytosis remove parts of the plasma membrane. Using this approach, their
findings revealed that the polarity regulator must diffuse very slowly and must be
highly concentrated into exocytic and endocytic vesicles to exploit positive feedback.
However, the model does not consider different diffusion rates for lipids. Lipids could
diffuse much faster than Cdc42 and hence counteract the dilution effect. Furthermore,
the model uses simplifying assumptions on kinetics of lipids and proteins during
vesicle fusion. Higher rates of vesicle fusion could also counter against a dilution [28].
Nevertheless, their results have indicated that there must be further mechanisms
which prevent vesicle transport from disturbing polarity in budding yeast cells.
Motivated by this work, Slaughter et al. [83] investigated the influence of
non-uniform membrane diffusion of Cdc42. Using the similar approach proposed
in [52], the extended model has shown that a spatial separation of exocytosis and
endocytosis as well as inhomogeneous membrane diffusion enables the maintenance
of a stable polarized patch. Moreover, their research has initially demonstrated a
critical role for membrane microdomains [83]. However, to what extend different
diffusion rates as well as membrane microdomains influence the impact of vesicular
trafficking to cell polarity has to be studied.

Reaction-diffusion models

Alan Turing was the first to analyze reaction-diffusion systems for the possibility of
instabilities that lead to spatial patterns. He suggested that diffusion could disrupt
the stable homogeneous state by a process called diffusion-driven instability. By
linear stability analysis of a simple non-linear two component reaction-diffusion
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system he demonstrated how spatial patterns can arise by a small perturbation of the
homogeneous state. Under certain conditions for the reaction and diffusion rates, this
perturbation can destabilize the system. As a result it tends to an inhomogeneous
concentration of the components, leading to spatial patterns [92]. Such a pattern
formation process is now commonly termed Turing-type pattern formation which
forms the foundation for development of structure formation systems. We will go
into detail in Section 3.3.
Gierer and Meinhard were the first to use this diffusion-driven process in the
context of cell polarity [59,60]. To simulate the polarization in yeast cells, a more
detailed reaction-diffusion system based on a Turing-type mechanism was finally
introduced by Goryachev and Pokhilko [32]. This model system was based
on the assumption that the nucleotide cycling of Cdc42, including slow diffusion
on the plasma membrane and fast diffusion in the cytosol, is sufficient to induce
Cdc42 cluster formation. Since it includes many important biochemical reactions,
this model was frequently extended or readjusted by other authors [38,45,47,76].
Importantly, their simulations have shown that molecular interactions between Cdc42,
its regulatory molecules, and its effector Bem1 are sufficient to explain spontaneous
polarity by a Turing-type instability. However, the investigation of a reduced model
based on two reaction-diffusion equations demonstrated the need of a cubic reaction
term to achieve a non-homogeneous distribution of molecules. Furthermore, in their
simulations multiple clusters arose which finally merged together [32]. Thus, the
pattern formation process was the result of a cubic feedback that dominates the
system behavior but does not fit biological evidence.
A conceptual stochastic, particle-based model also simulates polarity using a posi-
tive feedback activation [1]. It is based on the assumption that the recruitment of
molecules from the cytosol and its subsequent membrane association is proportional
to the fraction of particles on the plasma membrane. Importantly, their simulations
have shown that a positive feedback alone is sufficient to generate a polar cluster
at low particle numbers. However, the polarity was metastable and higher particle
numbers led to stochastic unstable polarization [1]. These results lack biological
evidence or even disagree with findings that high particle numbers in cells overex-
pressing Cdc42 do not affect polarity efficiency [28,37].
Smith et al. [84] were then the first who developed a deterministic, conceptual
model that does not rely on a (Bem1-mediated) positive feedback activation. Based
on the assumption that both Rdi1 and the Rdi1-Cdc42 complex activity depend on
active Cdc42, they simulated cell polarization by a positive feedback recruitment.
They assumed that a certain activity proportional to squared density of active
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membrane-bound Cdc42 can break the Rdi1-Cdc42 complex. Together with biologi-
cal experiments, their results have demonstrated that neither Bem1 nor the ability
of Bem1 to bind Cdc42-GTP is required for cell polarization. In this case Bem1
serves as a catalyst to boost GEF activity [84]. Although the model is very simple
and does not simulate the full GTPase cycle, it emphasizes the importance of the
GDI pathway.
Klünder et al. [48] developed a more detailed deterministic, PDE-based model
for the simulation of GDI-mediated cell polarity. Contrary to [84] it simulates the
full geometry of the cell as well as a GEF-complex-mediated GDI displacement and
the associated recruitment of Cdc42 from the cytosol. Furthermore, their approach
includes a Bem1-mediated recruitment of Cdc24 towards Cdc42. Interestingly, the
simulations have shown that GDI-mediated polarity provides precise spatial and
temporal control of Cdc42 signaling. In this way the GDI pathway ensures the
development of a single polarized patch by counteracting the formation of multiple
clusters [48]. These results underscore the role of GDI-based cell polarization. How-
ever, this approach is also based on an assumption that lacks experimental evidence.
There currently exists no research which proves the GEF-mediated Cdc42-GDI
recruitment.
To investigate the impact of GEF phosphorylation on the establishment of cell
polarization, Kuo et al. [51] recently published a deterministic model based on
the system proposed in [32]. They expanded this model by using the assumption
that GEF phosphorylates the Bem1-GEF-Cdc42-GTP complex which then lacks
activity. Interestingly, the results have demonstrated that such a negative feedback
generates oscillatory dynamics and reduces the level of Cdc42 concentration in the
polar cluster. Nevertheless, the role of GEF phosphorylation is still under debate
and requires further research.

Coupled reaction-diffusion-transport models

To gain a better understanding of the influence of different parallel acting pathways
on the establishment and maintenance of cell polarity, coupled reaction-diffusion-
transport models became increasingly important.
The first model proposed in [76] combines previously developed mechanistic reaction-
diffusion and vesicle trafficking models to simulate the maintenance of cell polarization
[32,52]. As a result, it comprises all three (Bem1-,GDI- and actin-mediated) pathways
which are known to contribute to yeast cell polarity. Since the simulations of the
coupled system have shown that an actin-mediated recycling would disturb polarity,
it calls the Cdc42-actin feedback hypothesis into question as well. As suggested
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in [52], it supports the assumption that vesicle delivery would not enforce polarization
if the vesicles do not carry significant amounts of Cdc42. Since the model ignores the
possibility of yeast cells to polarize in the absence of Bem1 or Rdi1 and hence via
actin-mediated transport [28,84], the results are still under debate. For example, the
systems proposed in [28] and [47] have demonstrated how vesicle trafficking could
positively affect cell polarity. The stochastic particle-based model by Freisinger
et al. [28] includes exocytosis as well as endocytosis. It simulates the nucleotide
exchange and reactions under consideration of the active and inactive form of Cdc42.
It is the first stochastic model for the establishment of cell polarization simulating
combined GDI- and actin-mediated Cdc42 recycling. Interestingly, their results have
shown that, whereas actin-mediated recycling induces robust polarity, GDI-mediated
recycling restricts polarity to a single site. Both pathways act in parallel to establish
a robust unique cluster. However, like in [48], the approach uses a GEF-mediated
Cdc42 recruitment from the cytosol which lacks experimental evidence. Furthermore,
it considers only two actin cables that nucleate at the plasma membrane.
A more detailed model that combines the described system of Goryachev and
Pokhilko [32] with a stochastic simulation for vesicular trafficking has finally been
introduced in [47]. The simulations have emphasized the importance of a spatial
organization of exocytosis and endocytosis. According to biological findings, the
mathematical results have demonstrated that exocytosis and endocytosis are spatially
coordinated. More specifically, robust polarity requires that endocytic vesicles corral
a central exocytic zone. Although the model could account for several biological
phenotypes, it could not explain polarity in ∆bem1 cells. In their simulations a
reduced autoamplification led to a vanishing pole [47]. Furthermore, whereas the
GTPase cycle was based on a system of PDEs, exocytic and endocytic events were
simulated by stochastic equations. This approach complicates the performance of
analytical studies of the complete model. Moreover, the last two systems simulate
Cdc42 trafficking as a simple protein flux between an internal pool and the plasma
membrane and do not explicitly consider vesicular intermediates. To what extend
vesicle fusion and pinch-off contributes to cell polarity and whether such effects can
possibly even be neglected need further research.

Concluding remarks

Summarized, each model of yeast cell polarity helped gain insight into the underlying
processes generating Cdc42 cluster formation. Although the described models are
able to demonstrate polarized Cdc42 distribution using parameter value estimates
based on in vitro experiments and capture many features of the establishment
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and maintenance of polarization, they are incomplete and fail in describing many
qualities of cell polarity. For instance, some scientists observed the change or even
the disappearance of the polarity axis during the process of polarization [38,66, 98].
Furthermore, as already mentioned, some models are based on assumptions that
lack experimental evidence or even disagree with biological results. In these cases,
further research is required to find out the reasons for contradictory results.
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Figure 2.9.: Overview of mathematical models for transport-mediated yeast cell po-
larity. The most important models for actin-mediated vesicular trafficking in budding yeast cells
are shown.
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Figure 2.10.: Overview of reaction-diffusion models for yeast cell polarity without
consideration of active transport. The reaction schemes used to simulate polarization in
LatA-treated yeast cells are illustrated.
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Figure 2.11.: Overview of coupled reaction-diffusion-transport models for yeast cell
polarity. The most important models for yeast cell polarization which consider reaction kinetics
as well as vesicular delivery are shown.



3 | Mathematical preliminaries

In this chapter we will provide the mathematical background that we apply in this
thesis. Before we introduce the tools for modeling pattern formation in biological
systems, we derive reaction-diffusion and reaction-diffusion-advection equations. This
is followed by fundamental definitions and properties of the stability theory and
its application in partial differential equations. The Turing mechanism provides
an example that uses principles of the stability theory in biological systems. Since
Turing instabilities gained importance in the modeling of pattern formation, we will
derive the conditions for a Turing instability and give a short example. Following
this, traveling wave solutions which are another phenomenon of reaction-diffusion
equations are addressed. To solve partial differential equations numerically, it is
common to apply the Galerkin method which is based on weak formulations using test
functions belonging to a so-called Sobolev space. Therefore, we further introduce the
basic concepts for solutions of reaction-diffusion-advection equations. We conclude
this chapter with an introduction to coupled bulk-surface partial differential equations
which are the mathematical basis of the model presented in this thesis.

3.1. Mathematics of reaction-diffusion-advection
equations

Parabolic PDEs of second order are the basis of the time-dependent reaction-
diffusion-advection problems which were initially used to model physical processes.
The increasing scope and complexity in new branches of science has made these
equations applicable in other fields. This lay the foundation of mathematical modeling.
Fluid dynamics, reactions, and transport of molecules play an important role in
many biological processes. Dependent on these mechanisms, the standard reaction-
diffusion-advection model simulates the time evolution of biological or chemical
substances. Whereas advection and diffusion are responsible for directed transport or
the dispersion of certain enzymes or proteins within the cell, biochemical reactions
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achieve the transformation of one molecule to a another. To understand how cells
achieve and control reactions and transport of substances as well as to predict its
behavior, the mathematics of such processes provides an important tool and is
essential for biological applications.
In this part, we derive PDEs that simulate the evolution of scalar fluid properties
using certain conservation principles. The content of this section is mainly based
upon [40,58].
The reaction-diffusion-advection equation is a combination of the diffusion equation,
a parabolic PDE and the advection equation, a hyperbolic PDE. It is a result of the
modeling of natural laws and mathematical facts.
Let t ≥ 0 be a time point of an interval [0, T ], Ω an open set, and x ∈ Ω ⊂ Rn,
where n = 1, 2, or 3 is the space dimension. A reaction-diffusion-advection equation
for a state variable u = u(x, t) has the typical form

∂tu = f(u)  
reaction

+ ∇ · (D∇u)  
diffusion

− ∇ · (⃗au)  
advection

, (3.1)

where ∇ is the divergence operator. The function u describes the density or concen-
tration of a substance, a protein, a population, and suchlike considered at a point x
and time t ≥ 0. D is the diffusion coefficient and a⃗ describes the average velocity.
Thus, the second and third term on the right-hand side describe the diffusion and
advection respectively. The first term f(u) is a smooth scalar function f : R → R.
This function simulates how u changes due to distinct processes in space unrelated
to diffusion or advection. For instance, it could model a chemical reaction between
molecules, its source or depletion, or alternatively death and birth of a population.
Typical and simple reactions are exponential growth

f(u) = au, a = const,

or logistic growth
f(u) = au


1 − u

K


,

with the carrying capacity K as a limiting factor of growth.
Commonly, the diffusion coefficient D is a constant and the velocity field describes
an incompressible flow (i.e., it has zero divergence). In this case, (3.1) changes to

∂tu = f(u) +D∆u− a⃗ · ∇u,
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Figure 3.1.: Scheme of a control volume. Control volume Ω with boundary ∂Ω and outer
normal n⃗.

where ∆ = ∇ · ∇ is the Laplace operator.
The reaction-diffusion-advection equation is a direct result of the conservation law
and Fick’s law.

3.1.1. Conservation principles

Consider an arbitrary control volume Ω ⊂ Rn, with n =1,2,3, and its control surface
Γ:=∂Ω (see Figure 3.1). Let u(x, t) ∈ R further denote the concentration of a state
variable at point x ∈ Ω and at time t ≥ 0. The total amount of u at time t inside Ω
is then given by

M(t) =


Ω
u(x, t) dx.

Mass conservation now implies that the change of the total amount M of substances
in a domain must be equal to the total amount of flow into the domain and the
increase or decrease of the quantity produced or depleted inside it.

Remark 3.1 (Conservation law). Let Ω be an arbitrary bounded domain with
boundary Γ := ∂Ω and u be the concentration of some chemical species at x ∈ Ω
and at time t ≥ 0. Let f further describe the local production of u per unit volume
and J be the flux of u in Ω. Using the outward unit normal n⃗ to Γ, it holds that

d

dt


Ω
u dx =


Ω
f dx−


Γ

J · n⃗ dσ. (3.2)

Whereas the mass produced inside Ω per unit time is given by the volume integral
on the right-hand side of (3.2), the surface integral corresponds to the mass that
drifts out of the domain Ω per unit area and time.
If J is sufficiently smooth and hence differentiable, we can apply the divergence



32 3 Mathematical preliminaries

theorem so that the surface integral can be expressed by the volume integral
Γ

J · n⃗ dσ =


Ω
∇ · J dx. (3.3)

Substitution of (3.3) into (3.2) yields the equation

d

dt


Ω
u dx =


Ω
f dx−


Ω

∇ · J dx

and hence 
Ω


∂tu − f + ∇ · J


dx = 0.

Since the control volume Ω is arbitrary, the term in the brackets must vanish. This
fact implies that

∂tu = f − ∇ · J. (3.4)

We finally get a PDE for the evolution of u(x, t). Equation (3.4) is also known as
continuity equation which generalizes the advection equation.

3.1.2. Diffusion and advection

To simulate the nature of involved transport mechanisms by the flux function J, we
further separate the total flux J by diffusive and advective fluxes:

J = Jdiffusive + Jadvective.

The process of diffusion is illustrated in Figure 3.2 which shows two kind of particles
dissolved in a fluid separated by a permeable membrane. Even if the fluid is at

Figure 3.2.: Illustration of diffusion through a permeable barrier. Starting with an
inhomogeneous arrangement of molecules, diffusive flux leads to its spreading which results in an
equilibrium state.
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Figure 3.3.: Advective transport trough a domain. Particles move in a certain direction
which depends on a velocity field.

rest, random motion of initially unequally distributed molecules causes its spatial
displacement. This random movement finally leads to a mixed pool of particles.
Thus, diffusive flux functions as an equalizing process. Fick’s law relates the diffusive
flux to the concentration. It hypothesizes that molecules tend to flow from regions
of higher concentrations to regions of lower concentrations with magnitude that is
proportional to the concentration gradient.

Remark 3.2 (Fick’s law of diffusion). Let J be the flux of any chemical species and
D the diffusion coefficient. The simplest description of the flux of a chemical species
is then given by

Jdiffusive = −D∇u. (3.5)

In contrast to diffusion, advection describes the transport of all of the quantity u at
point x due to a flux given by a vector field a⃗(x). That way, advective flow is able
to generate and maintain an inhomogeneous distribution of molecules. Figure 3.3
shows an example for advective transport. The sketch shows how small particles
move through a tube driven by the flow of a fluid. For example, this fluid could be
water that runs from the left to the right of this pipe. In this case, the advective flux
corresponds to the density times the velocity field or expressed in a formula, it is

Jadvective = a⃗(x, t) · u. (3.6)

Finally, using (3.5) and (3.6), for (3.4) we obtain

∂tu = f(u) + ∇ · (D∇u) − ∇ · (⃗au), (3.7)

where D may be a function of x and u. This is by definition the typical form of a
reaction-diffusion-advection equation.
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3.1.3. Initial and boundary conditions

In the last section we derived the reaction-diffusion-advection equation (3.7), a
second order parabolic partial differential equation. This equation is referred to
evolution equations as it describes biological phenomena or other time-dependent
processes. The problem is that a multitude of resulting structures can be simulated
by the same differential equation. Furthermore, evolution equations are generally
non-linear. Although in these equations the diffusive and advective terms are mostly
linear as it is assumed that the diffusion coefficient D and the velocity field a⃗ are
given and independent of the concentration u(x, t), f may be a function of u, x,
and t. These conditions can lead to an ill-posed problem so that this non-linear
reaction-diffusion-advection equation is not explicitly solvable and hence permits
no exact solution. For that reason, we need additional information to ensure that
the problem is well-posed. More to the point, the choice of reasonable initial and
well-posed boundary conditions is required for the existence of solutions of non-linear
reaction-diffusion-advection equations. Furthermore, the addition of appropriate
initial as well as boundary conditions allows us to derive important propositions
about the system evolution through time t regarding the behavior and the appearance
of solutions.
Whereas the choice of the domain and of the time interval depends on conditions of
the considered model problem, including the specified objectives, the definition of
initial and boundary conditions requires further assumptions.
Initial conditions describe the state of the system at a certain time

u(x, t0) = u0(x), x ∈ Ω,

and boundary conditions define the behavior of u at x ∈ Γ := ∂Ω. Consider a
partitioning of Γ into ΓD, ΓN and let gD and gN be given (non-linear) functions.
Typical boundary conditions are:

The Dirichlet boundary condition:

u(x, t) = gD(x, t) for all x ∈ ΓD, t > t0.

In the case of gD(x, t) = 0, we call this boundary condition homogeneous
Dirichlet boundary condition.

The Neumann boundary condition:

−D∇u · n⃗ = gN(x, t) for all x ∈ ΓN , t > t0,
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where n⃗ is the outer normal to Ω at x ∈ ΓN . If gN = 0, no molecules or
individuals can move in or out of the domain Ω. This homogeneous condition
or so-called no flux condition simulates an isolated domain.

The Robin boundary condition:

(⃗au−D∇u) · n⃗ = gM for all x ∈ ΓM , t > t0,

where n⃗ is the outer normal to Ω at x ∈ ΓM . This condition is referred to as
mixed condition.

Note that it is possible to combine different types of boundary conditions. Further-
more, the boundary Γ will be subdivided according to its relation with the velocity
field a⃗. The part of boundary where n⃗ · a⃗ < 0 is referred to as inflow boundary. By
contrast, the relation n⃗ · a⃗ > 0 characterizes the outflow boundary.
As we will see later, the nature of an analytical or numerical solution does not only
depend on the posed initial and boundary conditions. The interaction of the different
processes simulated in the equation essentially dictates the result. Here, we remark
already that, depending on the relative contribution of advection and diffusion, the
equation (3.7) can be either diffusion or advection dominated. For example, if the
diffusive and reactive terms are zero, i.e D = 0 and f ≡ 0, the equation directly
results in the pure advection equation

∂tu = −∇ · (⃗a · u), x ∈ Ω, t ∈ [0, T ],

a hyperbolic PDE of first order. In this case, the solution often exhibits a steep
gradient in parts of the domain. This behavior complicates the design of effective
numerical solvers. By contrast, if the velocity field and the reaction term vanishes,
the equation results in the diffusion equation

∂tu = ∇ · (D∇u), x ∈ Ω, t ∈ [0, T ],

a second order parabolic PDE which is also known as the heat equation. This type
of PDE can be solved relatively easily and robustly. That way, various approaches
may not only change the properties of exact solutions but also affect the efficiency
of numerical methods.
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3.1.4. Systems of reaction-diffusion-advection equations

So far, we considered the reaction-diffusion-advection equation for a single species
u. However, this study is concerned with the time-dependent evolution of multiple
interacting molecules. For that reason, we further generalize equation (3.7) to
get a system of moving and interacting substances. Using a vector u(x, t) ∈ Rm

of concentrations of species u = (u1, ..., um), a vector of smooth functions f =
(f1, , ..., fm), and control parameters λ ∈ Rk, the general system of reaction-diffusion-
advection equations reads

∂tu = f(u, λ) + ∇(D∇u) − ∇ · (au). (3.8)

Note that a = (⃗a1, ..., a⃗m) is the row vector containing the velocity fields of each
species. The diffusion constant is given by a symmetric and positive semi-definite
matrix D ∈ Rm×m. If the system does not exhibit any cross diffusion, this is simply
a diagonal matrix composed of the positive diffusion coefficients D1, ..., Dm of each
species. As before, if the diffusion and advection are independent of x, t, and u, the
respective terms are linear. By contrast, the reaction term given by function f might
be non-linear.
Unless otherwise stated, throughout this thesis we assume constant diffusion without
cross diffusion as well as divergence-free velocity fields. The system (3.8) then reduces
to

∂tu = f(u, λ) +D∆u− a · ∇(u). (3.9)

The product a : Ω → Rm×n with the divergence operator in (3.9) is understood
componentwise, i.e.

a⃗ · ∇ = diag(⃗a1 · ∇u1, . . . , a⃗m · ∇um).

Furthermore, the diffusion and advection parts are given in terms of the diagonal
matrices

∆ =


∆

.. .
∆

 , ∇ =


∇

. . .
∇

 .
As before, this system requires appropriate initial and boundary conditions to ensure
the existence of a solution. Furthermore, it is important to accurately simulate
the functions f which describe the non-linear chemistry part between the species
u = (u1, ..., um). Section A of the appendix gives a short introduction into the
modeling of chemical interactions.
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3.2. Stability analysis

Since many biological processes involve passive and active transport of molecules,
equations and systems given by (3.7) and (3.8) are essential for the mathematical
study of biological systems. As mentioned before, the exclusion of terms or addition
of model assumptions can lead to various models with different solutions. As a result,
they became increasingly important for the study of pattern formation. Since it
turned out that reaction-diffusion systems can exhibit a large variety of solutions
that are of interest to the study of structure formation, these reduced equations are
commonly considered. The solutions show very complex and interesting behavior.
Oscillations can occur which then spread in time and space due to diffusion. As
a result, instabilities of the system can lead to spatial phenomena like pattern
formation.
Cell polarity is a kind of pattern which arises due to instabilities in the system.
Hence, it seems obvious to make use of these equations to describe the mechanisms
underlying cell polarization.
In order to investigate a system of reaction-diffusion equations related to the possi-
bility of instabilities, it is often useful to analyze the long term behavior of solutions.
With this approach, it can be identified if the solution will reach a time-independent
equilibrium that is not always stable against small perturbations. Since stable and
unstable steady states play distinguished roles in the dynamic of such a system, it
is helpful to be able to find and classify the equilibrium points according to their
stability properties.
The main issue of the qualitative theory of ordinary differential equations (ODEs)
is the stability analysis. It is based on the analysis of initial value problems and
deals with the stability behavior of steady states. Using fixed initial time but slightly
modified initial values it allows a classification of the solutions.
Because cell polarity is qualitatively the change from a homogeneous to an unstable
state, the stability behavior of steady states is of great interest to the modeling of
polarization. For that purpose we will define the term stability, especially linear
stability, and show methods to investigate the stability of an equilibrium. Throughout,
we will use the notation of [5, 22].
For the sake of convenience we will take an autonomic system of differential equations
as the basis. The system

x′ = f(x) (3.10)

satisfies the conditions for global existence and uniqueness. Let f : X → Rn be a
Lipschitz-continuous function in x and X ⊆ Rn an open domain. For each x0 ∈ X
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let x(x0, t) be the unique solution of the initial value problem

x′ = f(x), x(0) = x0.

Definition 3.3 (Steady state, stationary state or equilibrium). A stationary state
x∗ ∈ X of the continuous system (3.10) is a constant solution f(x∗) = 0 of the
system. These are just the time-independent solutions x∗ of (3.10).

Given a steady state x∗, the question of its stability naturally arises. But what does
stability mean? To explain this, consider a system that starts at an equilibrium
and is suddenly perturbed by some cues that induce a variation from the steady
state. What will the result of the small perturbation be? Will the system return to
its stationary point or remain close to it? Or will it further move away from the
equilibrium?
The definition of stability and asymptotic stability is very easy and descriptive for
constant solutions and, as we will see, especially for trivial solutions. Because of
this, the question for the qualitative behavior of solutions is commonly linked to
the behavior of solutions with an initial value near the equilibrium. We define the
following notions of stability:

Definition 3.4. Let x∗ be a steady state of the system x′ = f(x).

(i) (Lyapunov Stability) The stationary state x∗ is a stable equilibrium, if for an
arbitrary neighborhood B1 of x∗ a neighborhood B2 of x∗ exists, such that for
any solution of the initial value problem

x′ = f(x), x(0) = x0 ∈ B2,

holds that
x(t) ∈ B1 for all t > 0.

(ii) If x∗ is not stable, it is unstable.

(iii) (Asymptotic stability) Let x∗ be a stable steady state of the system x′ = f(x)
(e.g. x∗ is Lyapunov stable). The stable stationary state x∗ is locally (globally)
asymptotically stable, if additionally a neighborhood B3 of x∗ can be chosen,
such that the solutions of the initial value problem x0 ∈ B3 converge uniformly
to x∗. Then, it holds that

lim
t→∞

x(t) = x∗
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for each solution of the initial value problem

x′ = f(x), x(0) = x0 ∈ B3.

(iii) The stationary state x∗ is locally (globally) exponentially stable, if given any
environment B1 (B1 = Rn) of x∗ there exist constants a, γ > 0, such that all
x0 of this neighborhood fulfil the inequality

∥x(t) − x∗∥ ≤ ae−γt∥x0 − x∗∥ for all t ≥ 0.

In other words, if x∗ is stable, regardless of how small a ball B1 centred at x∗ is
chosen, another (possibly smaller) ball B2 can always be found such that any solution
x(t) starting at some point of B1 around x∗ remains within the ball B2. Moreover
in the case of asymptotic stability the trajectories that get sufficiently close to x∗

converge to x∗ as t → ∞ (see Figure 3.4). The definition also implicates that an
exponentially stable equilibrium is asymptotically stable and hence Lyapunov stable.

(a) (b) (c)

Figure 3.4.: Visualization of stability of steady states. For an equilibrium x∗ (a) stability,
(b) asymptotic stability, and (c) instability are illustrated.

3.2.1. Stability of linear systems

Below we will consider the stability question in more detail. We investigate to what
extend the stability behavior depends on the algebraic structure and the associated
solution spaces of systems of linear differential equations. We show that the class of
linear systems exhibits a uniform stability behavior of all solutions. For that reason,
these systems are referred to stability, instability, or asymptotic stability per se.
Consider the linear inhomogeneous system

x′(t) = A(t)x(t) + g(t) (3.11)
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with continuous functions A : (T,∞) → Cn×n, g : (T,∞) → Cn on the interval
(T,∞) ∈ C. Then the reduced case, the linear homogeneous equation

x′(t) = A(t)x(t), (3.12)

plays an important role for the general theory of linear systems. That this also
applies to stability questions shows the following proposition:

Proposition 3.1. The stability behavior of any solution of the inhomogeneous
System (3.11) is equivalent to the stability behavior of the trivial solution x∗ of the
homogeneous system (3.12).

This proposition is a direct consequence of the following proposition for the non-
autonomous equation:

Proposition 3.2. Let
x′ = f(t, x) (3.13)

be a differential equation with a continuous function f : X → Rn on the infinite
domain X ⊆ Rn+1. Furthermore, let f be Lipschitz-continuous in relation to the
right-hand side and φ : (t−,∞) → Rn be a solution of this equation. Consider the
differential equation of the disturbed motion

y′ = f(t, y + φ(t)) − f(t, φ(t)),

as result of the transformation

y = x− φ(t).

Then, the differential equation (3.13) has the trivial solution on the interval (t−,∞)
which is stable and accordingly asymptotically stable if and only if the solution φ(t)
of (3.13) is stable and accordingly asymptotically stable.

By applying this proposition, any solution φ : (T,∞) → Rn of (3.11) has the same
differential equation of the disturbed motion. It is

y′ = [A(t)(y + φ(t)) + g(t)] − [A(t)φ(t) + g(t)]

and hence
y′ = A(t)y.

The prediction now directly results from Proposition 3.2.
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However, the most important class of linear systems are those with constant coeffi-
cients of the form

x′(t) = Ax(t) with A ∈ Cn,n,

where A is independent of t. Since these systems are explicitly solvable, it is possible
to develop good criteria for the stability and asymptotic stability of the equilibria.
We will see that the stability behavior then completely depends on the matrix A.
Particularly the eigenvalues of A play a crucial role.
Obviously, this system has the trivial steady state x∗ = 0. Its stability can be
investigated as follows:

Proposition 3.3 (Eigenvalue conditions for stability). Let A ∈ Cn,n be an arbitrary
matrix. For the linear homogeneous system x′(t) = Ax(t) are equivalent:

(i) The steady state x∗ = 0 is stable.

(ii) For any eigenvalue λi of A holds the inequality Reλi ≤ 0. Furthermore, the
eigenvalues with Reλi = 0 are semi-simple.

(iii) For all t ≥ 0 exist a constant M ≥ 1, such that ∥eAt∥ ≤ M .

Proposition 3.4 (Asymptotic stability). Let A ∈ Cn,n be an arbitrary matrix. For
the linear homogeneous system x′(t) = Ax(t) are equivalent:

(i) The steady state x∗ = 0 is asymptotically stable.

(ii) For any eigenvalue λi of A holds the inequality Reλi < 0.

(iii) The equilibrium x∗ = 0 is exponentially stable, whereby the constant γ > 0 of
Definition 3.4 can be any value of the interval (0,−ρmax). ρmax is the (negative)
maximum of the real part of the eigenvalues.

For the sake of compactness, we refer to [5] and [34] for the proof of Propositions
3.3 and 3.4.
Interestingly, the stability behavior of the equilibrium x∗ = 0 of the system is
independent of the basis A. The following Lemma holds:

Lemma 3.5. Let A, T ∈ Cn×n be matrices. Furthermore, let T be invertible and Ã =
T−1AT the transformed matrix. Then, the stability classification of the equilibrium
x∗ = 0 of

x′(t) = Ax(t)

is equivalent to the classification of the steady state y∗ = 0 of

y′(t) = Ãy(t).
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For the proof see [34].

3.2.2. Principle of linearized stability

So far, we have discussed stability classifications for linear systems. For our inves-
tigations we also need good results for the stability behavior of steady states of
non-linear differential equations.
Consider the system of differential equations

x′ = f(x),

with f : X → Rn a Lipschitz-continuous function in x and X ⊆ Rn an infinite
domain. Suppose that x∗ ∈ X is an equilibrium of the system. The principle of
linearized stability is based on the idea to linearize the differential equations around
x∗. Defining y(t) ≈ x(t) − x∗ and A := Df(x∗) the derivative, a multivariate Taylor
expansion of the right-hand side yields

y′ = x′(t) − d

dt
x∗  

=0

= x′(t) ≈ f(y(t) + x∗) = f(x∗)  
=0

+Df(x∗)  
=A

y(t) + O(|y|2)  
R(u)

. (3.14)

Because R(u) → 0 as |u| → 0, it is reasonable to assume that solutions of (3.14)
behave similarly to solutions of the linear approximation

y′ = Ay. (3.15)

Note that (3.15) has the steady state y∗ = 0, so that we can easily classify the
equilibria using Propositions 3.3 and 3.4.

Definition 3.5. Let x∗ be an equilibrium of a differential equation. x∗ is linearly
stable (linearly unstable or linearly asymptotically stable), if 0 is a stable (unstable
or asymptotically stable) solution of the linearized equation.

The principle of linearized stability now implicates the stability behavior for x∗ of
(3.11) by that of the trivial solution y∗ = 0 of (3.12).

Proposition 3.6 (Principle of linearized stability).

(i) x∗ is asymptotically stable, if x∗ is linearly asymptotically stable, e.g. Reλi < 0
for all eigenvalues λi of Df(x∗).

(ii) x∗ is unstable, if Df(x∗) has at least one eigenvalue λi with Re λi > 0.
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For the proof we refer to [22].
The Proposition 3.6 together with the Definition 3.5 eventually yields:

Remark 3.6. The stability behavior of stationary solutions of a non-linear system
can be derived by the investigation of the stability of the zero point of the linearized
system. For this, the algebraic sign of the real parts of all eigenvalues of the linearized
approximation are relevant.

Note that this statement fails to provide information about the system behavior if at
least one eigenvalue exists with Reλ = 0 while the real parts of the other eigenvalues
are negative. In this case, it is generally not possible to classify the steady state
based on linear stability analysis. Dealing with this case requires the non-linear
theory.

3.3. Turing instability and pattern formation

We already got some ideas about non-uniform solutions of reaction-diffusion equations.
In this section we will especially address reaction-diffusion systems that have the
possibility to develop spatial patterns. For this we follow the work presented in [22]
and [63].
We start with the idea of Alan Turing [92]. In 1952 he assumed that chemicals can
react and diffuse in a certain way such that steady state heterogeneous pattern of
morphogene concentrations or chemicals can occur. He investigated this behavior
for different reaction-diffusion systems and derived variegated scenarios of pattern
formation. This simple assumption is based on the observation that systems which
are stable on their own can become unstable if they are merged with another system.
For a better understanding consider two linear systems

x′(t) = Ax(t), x′(t) = Bx(t), with x(t) ∈ R2, A,B ∈ R2×2.

Both systems have the trivial solution x ≡ 0. As we have already seen, the stability
of this steady state depends on the eigenvalues of A and B. This means that the
solution x ≡ 0 is stable if A and B only have eigenvalues with negative real parts.
But in contrast to expectations, x ≡ 0 is not immediately a stable solution for the
merged system

x′ = (A+B)x(t).

Although if both eigenvalues of A and B are negative, it is possible that A+B has
an eigenvalue with positive real part.
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Let M ∈ R2×2 be an arbitrary matrix with negative eigenvalues λ1 and λ2. It holds
that

λ1 + λ2 = trM < 0 and λ1λ2 = detM > 0.

The matrices

A =
−1 0

0 −d

 , B =
a e

c b

 , a, b, c, e ∈ R,

can easily fulfil the inequalities

a+ b < 0, ab > ce and (a− 1)(b− d) < ce.

Thus, it is possible that

trA < 0, detA > 0,
trB < 0, detB > 0,

but
det (A+B) < 0.

In the following we transfer these results to the case of reaction-diffusion equations.
Consider the system

∂tU = F (U, V ) +DU∆U,
∂tV = G(U, V ) +DV ∆V,

where U and V represent, for instance, two chemical species. The kinetics are
described by non-linear functions F and G. Alan Turing observed that under certain
conditions for F andG as well asDU andDV the system tends to form inhomogeneous
spatial patterns. Whereas for DU = DV = 0 the species tend to a linear stable
state, the presence of diffusion can destabilize the system. This process is termed as
diffusion-driven instability or Turing instability [92].
This situation is comparable with that discussed in the beginning of this section.
Using the knowledge of stability analysis, we are now able to derive the necessary
and sufficient conditions for a Turing instability.
Consider the non-dimensionalized and scaled system in its general form

∂tu = γf(u, v) + ∆u,
∂tv = γg(u, v) + d∆v,
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where d is the ratio of diffusion coefficients. Taking into account boundary and initial
conditions, we can formulate the problem mathematically.

Proposition 3.7 (Turing instability). Let

∂tu = γf(u, v) + ∆u, ∂tv = γg(u, v) + d∆v (3.16)

be a system of two PDEs on a domain Ω with closed boundary Γ := ∂Ω. Let further
n⃗ be the unit outward normal to Γ. Given zero flux boundary conditions

(n⃗ · ∇)u = (n⃗ · ∇)v = 0, x on Γ, (3.17)

and initial conditions
u(0, x) = u0, v(0, x) = v0,

the homogeneous steady state (u∗, v∗) of (3.16) is Turing unstable if the following
inequalities are satisfied:

fu + gv < 0, fugv − fvgu > 0, (3.18)
dfu + gv > 0, (dfu + gv)2 − 4d(fugv − fvgu) > 0. (3.19)

Proof. Since we are interested in a diffusion-driven instability, we have to analyze
which conditions are necessary so that the steady state for the system is stable without
diffusion but unstable if diffusion is included. In this case, the linear instability of
the equilibrium is solely spatial dependent.
First, we derive the conditions for stability of the system with no spatial variations

∂tu = γf(u, v), ∂tv = γg(u, v).

Linearization around the steady state (u∗, v∗) yields

∂tw = γAw, A =
fu fv

gu gv


(u∗,v∗)

,

with w :=
u− u∗

v − v∗

 small. According to the preliminaries of Section 3.2, all eigen-

values of the stability matrix A must have negative real parts so that (u∗, v∗) is a
stable equilibrium of the system. Using above preliminaries, this is satisfied if

trA = fu + gv < 0, detA = fugv − fvgu.
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We now consider the full reaction-diffusion system (3.16) and again linearize around
the stationary state (u∗, v∗) to get

∂tw = D∆w + γAw, D =
1 0

0 d

 . (3.20)

To solve the system with boundary conditions (3.17), consider the spatial eigenvalue
problem defined by

∇2W + k2W = 0, (n⃗ · ∇)W = 0, for x on Γ, (3.21)

with the time-independent solution W (x) and eigenvalue k. For convenience we first
confine to a one-dimensional domain 0 ≤ x ≤ a. In this case, the solution can be
easily derived by separation of variables

w(t, x) = cw1(t)w2(t), with c ∈ R2.

Thus, we obtain a solution of the linearized equation if and only if

cw′
1(t)w2(x) = cDw1(t)w′′

2(x) + cγA.

If w1(t) ̸= 0, w2(x) ̸= 0, this is equivalent to

c
w′

1(t)
w2(t)

= cD
w′′

2(x)
w2(x) + cγA.

Since the left-hand side only depends on t while the right-hand side depends on x,
there exist constants λ, µ ∈ R such that

w′
1(t) = λw1(t), w′′

2 = −µw2(x),

where w′
2(0) = w′

2(a) = 0.
If, with an integer n,

µ = µn =

nπ

a

2
,

this equation exhibits solutions that are multiples of cos(nπx/a). The eigenvalue
is k = nπ/a. It is also called wavenumber because the measure of the wavelike
pattern 1/k = a/nπ is proportional to the wavelength ω = 2π/k = 2a/n. Since n is
an integer, there are a discrete set of possible wavenumbers if the domain is finite.
Referred to Wk(x) as the eigenfunction corresponding to the wavenumber k, we
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develop the Fourier series of solutions of (3.20) such that

w(x, t) =


k

cke
λtWk(x). (3.22)

The constants ck are the coefficients of the Fourier expansion and λ is the eigenvalue
which determines temporal growth. Substitution of (3.22) into (3.20) and cancellation
of eλt lead to

λWk = γAWk +D∇2Wk.

Using (3.21), this is equivalent to

λWk = γAWk −Dk2Wk = (γA−Dk2)Wk := MWk,

and the stability of the spatial system is determined by the eigenvalues of the
matrix M for k ≠ 0. Thus, the system becomes unstable even if the matrix M has
eigenvalues with real part > 0. This is particularly the case if both solutions of the
characteristic polynomial

χM(λ(k)) = λ2 + λ[k2(1 + d) − γ(fu + gv)] + h(k2),
h(k2) = dk4 − γ(dfu + gv)k2 + γ2 detA

(3.23)

have Reλ(k) > 0 for some k ̸= 0. Notice that for the case k = 0 this is precisely the
system without any spatial effects for which we have already derived the stability
conditions (3.18). Reλ(k) > 0 can only occur either if the coefficient λ in (3.23) is
negative or if h(k2) < 0 for some k ̸= 0. Furthermore, with k2(1 + d) > 0 for all
k ̸= 0 and (3.18) it follows that

[k2(1 + d) − γ(fu + gv)] > 0.

Thus, to get a positive eigenvalue, we need that h(k2) < 0 for some k. The roots of
(3.23) are

λ1,2(k) = −1
2[k2(1 + d) − γ(fu + gv)] ±


[k2(1 + d) − γ(fu + gv)]2 − 4h(k2).

In addition, the conditions fu + gv < 0 as well as d > 0 implicate

k2(1 + d) − γ(fu + gv) ≥ 0,

for k ̸= 0, h(k2) < 0 only if
dfu + gv > 0.
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(a) (b)

Figure 3.5.: Plot of functions determining a Turing-type instability. (a) Plot of h(k2)
defined by (3.23) for typical kinetics. h(k2) becomes negative for a finite range of k2 > 0 when the
ratio of the diffusion coefficient d increases beyond the critical value dc. (b) Plot of the largest
of the eigenvalues λ(k2) from (3.23) against k2. The wavenumbers of the range k2

1 < k2 < k2
2 are

linearly unstable when d > dc (on [63]).

This yields the necessary condition d ̸= 1 and shows that fu and gv must have
opposite signs. To observe solutions with positive real part we need one further
sufficient condition. Consider fu > 0 and gv < 0, then for h(k2) to be negative for
some k ̸= 0, the minimum

hmin = h(k2
m) = γ2


detA− (dfu + gv)2

4d


, k2 = k2

m = γ
dfu + gv

2d , (3.24)

must be negative. With (3.24) and det(A) = fugv − fvgu we can finally derive the
last condition (3.19) for a Turing instability

(dfu + gv)2 − 4d(fugv − fvgu) > 0.

Summarized, whether or not the system is capable of generating diffusion-driven
spatial patterns is determined by the functions f and g as well as by the values of γ
and d (see Figure 3.5).
A simple example for a system that exhibits Turing-type patterns is the Schnakenberg
system suggested in [77]. With positive constants a and b the model reads in non-
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dimensional form
∂tu = γ(a− u+ u2v) + ∆u,
∂tv = γ(b− u2v) + d∆v.

Figure 3.6 shows the resulting patterns depending on different diffusion constants.
Many more examples from biology and biochemistry are presented and investigated
in [63].

(a) (b) (c)

Figure 3.6.: Illustration of a Turing-type pattern. Numerical solution u of the Schnakenberg
system on [0, 1]2 at t = 10 using the estimated parameters γ = 1000, a = 0.126779, b = 0.792366
and Dv = 10 (a) Du = 2, (b) Du = 1, (c) Du = 0.1.

3.4. Traveling waves in reaction-diffusion equations
Another interesting aspect of non-linear parabolic systems and hence reaction-
diffusion systems are traveling wave solutions. Such solutions describe transitions
from one steady state to another. Thus, systems generating traveling waves are often
used to simulate a variety of biological phenomena. In this section we will expand
on the role of waves in reaction-diffusion systems and its impact on the emergence
of structures. The content of this section is mainly based upon [62].

Definition 3.7. A solution of the form

u(x, t) = v(x− ct) = v(z), z = x− ct

with a constant c ∈ R, is a traveling wave solution. The value c thereby describes
the traveling speed of the wave and z is the wave variable.

Since it is usual that f(u) admits two stationary states, for instance f(0) = f(1) = 0,
small perturbations to the system can lead to a traveling wave propagating through
the domain. In the case x− ct, the wave moves in positive x-direction. Contrarily, a
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wave which travels in the negative x-direction has the form u(x+ ct, t). This implies
that for a traveling wave represented by u(x, t) and a constant value c, the shape of
the solution and the speed of the wave will be the same for all time. Furthermore,
it is clear that if x− ct is a constant, u is a constant. In this case, the coordinate
system simply moves with speed c. To exemplify this behavior we study Fisher’s
equation

∂tu = qu(1 − u) +D∆u, D, q, u, x, t ∈ R.

This equation was first used to model the expansion of mutant genes. Later it was also
applied in the study of autocatalytic chemical reactions as well as in the description
of population development. In the non-dimensional case, Fisher’s equation is given
by

∂tu = u(1 − u) + ∆u. (3.25)

It has the steady states u ≡ 0 and u ≡ 1. According to Definition 3.7 a traveling
wave solution can be written in the form

u(x, t) = U(z), z = x− ct, (3.26)

where c is the wave speed and

lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = 1.

Replacement of (3.26) into (3.25) yields

U ′ + cU ′ + U(1 − U) = 0,

where primes denote differentiation with respect to z. Setting V = U ′ we can reduce
the PDE to a system of ODEs

U ′ = V,

V ′ = −cV − U(1 − U).

The problem of finding a traveling wave which connects two stationary states is now
equivalent to finding a curve in the phase plane (U, V ) that connects the points (0, 0)
and (0, 1). By linear stability analysis of the eigenvalues λ that are given by

λ± = 1
2(−c±

√
c2 − 4),

it can be shown that for c ≥ 2 a traveling wave solution exists (see Figure 3.7 and [62]
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for more details).

Figure 3.7.: Plot of a traveling wave solution for the Fisher equation. For large times,
the Fisher equation with compact initial conditions admits traveling wave solutions. An example
for a traveling wave solution is given by the function f(x) = (1 + exp(x/

√
6))−2.

3.5. Sobolev spaces and the weak formulations
Up to now, we defined reaction-diffusion-advection and reaction-diffusion equations
using the strong formulation of a model problem. This approach implies that the
classical solution u must be a function with continuous partial derivative of first
and second order. Such functions belong to the so-called classical function spaces.
However, partial differential equations are often not solvable in the classical sense.
The existence of a classical solution requires that all parameters are sufficiently
smooth and that the domain satisfies certain regularity conditions. In this case,
it is desirable to consider an integral or weak form of the conservation law. This
procedure requires the concept of weak formulation and so-named Sobolev spaces
which we will introduce in this section. We restrict ourselves to the main definitions
and theorems needed to formulate variational equations for the model problem used
in this thesis. Note that the study of variational equations requires many tools from
functional analysis. For a detailed introduction we refer to [14,27].
Let Ω ∈ Rn be an open set and C∞(Ω) the space of infinitely differentiable functions
φ : Ω → R. Then, φ is often denoted as test function.

Definition 3.8 (Weak partial derivative). Let α = (α1, ..., αN) be a multiindex of
order |α| = N

i=1 αi and u, v ∈L1
loc(Ω). The function v with

Ω
vφ dx = (−1)|α|


Ω
uDαφ dx
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for all test functions φ ∈ C∞
0 (Ω) is termed weak partial derivative of α-th order. The

weak partial derivative is often written as

Dαu = v, Dα = ∂α1

∂xα1
1
. . .

∂αN

∂xαN
N

. (3.27)

Note that u does not have to possess a weak partial derivative. However, if such a
derivative exists, the following Lemma says that it is unique.

Lemma 3.8. If u ∈ L1
loc(Ω) has a weak partial derivative of order |α|, then it is

uniquely defined up to a set of measure zero.

Proof. Assume that v, w ∈ L1
loc(Ω) fulfil

Ω
uDαφ dx = (−1)|α|


Ω
vφ dx = (−1)|α|


Ω
wφ dx, ∀φ ∈ C∞

0 (Ω).

This implies 
Ω
(v − w)φ dx = 0, ∀φ ∈ C∞

0 (Ω)

and hence v = w.

Since the function space L1
loc(Ω) is not quite convenient, we now define the so-called

Sobolev space which considers functions with weak derivatives of various orders in
Lebesgue spaces of various orders.

Definition 3.9. Let Ω be an open set and k ∈ N. Further, let 1 ≤ p ≤ ∞. The
Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for all |α| ≤ k}.

The Sobolev space is naturally a Banach Space with the Sobolev norm.

Definition 3.10 (Sobolev norm). For u ∈ W k,p(Ω) and 1 ≤ p < ∞ the Sobolev
norm is defined by

∥u∥W k,p(Ω) :=
 

|α|≤k


Ω

|Dαu|pdx
1/p

.

For p = ∞ it is
∥u∥W k,∞(Ω) :=


|α|≤k

ess sup
Ω

|Dαu|.

Remark 3.11. In the case p = 2, W k,p(Ω) is a Hilbert space and we usually write

Hk = W k,2(Ω), k ∈ N.
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Definition 3.12. For given 1 ≤ p < ∞ the closure of C∞
c (Ω) in W k,p(Ω) is denoted

by W k,p
0 (Ω). For p = 2 we write

Hk
0 (Ω) = W k,2

0 (Ω).

Since it is important to have an explicit characterization of the dual space of H1
0 (Ω)

to H1
0 (Ω) we define

Definition 3.13. H−1(Ω) denotes the dual space to H1
0 (Ω).

The next theorem provides a basic characterization of functions belonging to W 1,p
0 (Ω)

and explains its central role. Boundary conditions are coupled with PDEs and
prescribe the value of u on Γ := ∂Ω.

Theorem 3.9. Let u ∈ W 1,p(Ω). Then u ∈ W 1,p
0 (Ω) if and only if u vanishes on Γ.

For the proof we refer to [14].

The method of weighted residuals now provides a general approach to the derivation
of weak forms for partial differential equations. The starting point is the variational
formulation of the model problem. This can be obtained by the multiplication of
the differential equations with test functions and integration by parts. Consider the
general time-independent reaction-diffusion-advection equation

− ∇ · (D∇u) + a⃗ · ∇u = f, x ∈ Ω, (3.28)

with incompressible flow a⃗ implying ∇a⃗ = 0. The variational form of the reaction-
diffusion-advection equation with boundary conditions on Γ = ΓD ∪ ΓN given by

u = gD on ΓD, D∇u · n = gN on ΓN , (3.29)

can be obtained as follows. We multiply (3.28) with an appropriate test function φ.
Then, 

Ω
[−∇ · (D∇u) + a⃗ · ∇u]φ dx

= −D


ΓN

(∇u · n)φ dσ +


Ω
(D∇u · ∇φ+ (⃗a · ∇u)φ dx

= −


ΓN

gNφ dσ +D


Ω
∇u · ∇φ dx+


Ω
(⃗a · ∇u)φ) dx =


Ω
fφ dx,

where n⃗ is the outward pointing unit normal vector on Γ. Since the test functions
are zero on the Dirichlet boundary, the respective boundary integral on the left-hand
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side vanishes. Denoting the inner scalar product of L2(Ω) by (·, ·), we can rewrite
this term in a more compact form.

Definition 3.14 (Variational or weak formulation of the time-independent problem).
Let a⃗ ∈ L∞ and f ∈ H−1(Ω). The variational or weak formulation of the stationary
reaction-diffusion-advection equation (3.28) with boundary conditions (3.29) reads:
Find u ∈ H1(Ω) such that

a(u, φ) = l(φ) (3.30)

for all φ ∈ H1
0 (Ω). The bilinear form a and the linear functional l are given by

a(u, φ) := D


Ω
∇u · ∇φ dx+


Ω
(⃗a · ∇u)φ dx

and
l(φ) :=


Ω
fφ dx+


ΓN

gNφ dσ.

The existence and uniqueness of weak solutions is a result of the Lax-Milgram
Theorem.

Theorem 3.10 (Lax-Milgram Theorem). Assume H is a Hilbert space with norm
∥ · ∥ and inner product (·, ·). Let l : H → R be a bounded linear functional on H.
Further assume that the bilinear mapping b : H ×H → R is continuous and coercive.
In other words, there exist constants α, β > 0 such that

|b(u, φ)| ≤ α∥u∥ ∥φ∥

and
β∥u∥2 ≤ b(u, φ),

where u, v ∈ H. Then there exists a unique u ∈ H such that

b(u, v) = l(φ)

for all φ ∈ H.

For the proof we refer to [27].
From the Theorem of Lax-Milgram the following statement follows:

Corollary 3.11 (Existence and uniqueness of a solution of the weak problem (3.30)).
Assume f ∈ H1

0 (Ω) and a⃗ ∈ L∞(Ω). Then (3.30) has a unique solution.

To prove the existence and uniqueness of a solution of (3.30), it suffices to show that
the associated bilinear form is coercive and bounded.
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Since this thesis is concerned with time-dependent processes, we further seek for
solutions that satisfy an abstract variational time-dependent problem. Therefore, we
need spaces that involves space as well as time.

Definition 3.15. Let X denote a real Banach space with ∥ · ∥ and [0, T ] ⊂ R be a
time interval. For 1 ≤ p < ∞ the Lp-space of functions u : [0, T ] → X is defined as

Lp(0, T ;X) := {u
 u(·, t) ∈ X, t ∈ [0, T ], is measurable and ∥u∥Lp([0,T ],X) < ∞},

∥u∥Lp([0,T ],X) :=
 T

0
∥u((·, t)∥p

X dt
1/p

.

For p = ∞ we define

L∞(0, T ;X) := {u
 u(·, t) ∈ X, t ∈ [0, T ], is measurable and

 T

0
∥u(t)∥ is

essentially bounded},
∥u∥L∞(0,T,X) := ess sup

0≤t≤T
∥u(·, t)∥X .

For these spaces we recall the definition of a weak derivative.

Definition 3.16. Let u ∈ L2(0, T ;X). The function v ∈ L2(0, T ;X ′) with
 T

0
v(t)φ(t)dt = −

 T

0
u(t)φ′(t)dt

for all test functions φ ∈ C∞
0 (0, T ) is termed the weak derivative of u. The weak

derivative is often written as
u′ = v.

Consider now the time-dependent model problem

∂t u− ∇ · (D∇u) + a⃗ · ∇u = f, x ∈ Ω, t ∈ [0, T ], (3.31)

with boundary conditions given by (3.29) and initial condition u0 = u(0, x). The
weak formulation is then of the form

d

dt


Ω
uφ dx+


Ω
[−∇ · (D∇u) + a⃗ · ∇u]φ dx

= d

dt


Ω
uφ dx−D


ΓN

(∇u · n)φ dσ +


Ω
(D∇u · ∇φ+ (⃗a · ∇u)φ dx

= d

dt


Ω
uφ dx−


ΓN

gNφ dσ +D


Ω
∇u · ∇φ dx+


Ω
(⃗a · ∇u)φ) dx =


Ω
fφ dx.

We finally can formulate the problem as follows:
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Definition 3.17 (Variational or weak formulation of the time-dependent problem).
Let t ∈ [0, T ], a⃗ ∈ L∞ and f ∈ H−1(Ω). The variational or weak formulation of the
non-stationary reaction-diffusion-advection equation (3.31) with boundary conditions
(3.29) reads:
Find u ∈ L2(0, T ;H1(Ω)) such that

d

dt
m(u, φ) + a(u, φ) = l(φ) (3.32)

for all φ ∈ H1
0 (Ω). The bilinear form a, the linear functional l, and the inner product

m are given by

m(u, φ) :=


Ω
uφ dx,

a(u, φ) := D


Ω
∇u · ∇φ dx+


Ω
(⃗a · ∇u)φ dx,

and
l(φ) :=


Ω
fφ dx+


ΓN

gNφ dσ.

In other words, we derived an integral statement that is expected to be satisfied
for an infinite number of test functions φ. That way, we reduced the problem of
finding a classical solution of the PDE to the problem of finding a weak solution of
the variational formulation.

3.6. Coupled bulk-surface PDEs
In Sections 3.3 and 3.4 we investigated reaction-diffusion systems for the ability of
pattern formation. The equations were posed on a single bounded domain using
suitable initial, boundary, or interface conditions. However, many biological processes
occur on much more complex domains with complicated shapes. For instance, various
cell processes like diffusion or protein interactions take place on the plasma membrane
of the cell which is a thin layer around the cell cytosol. Simultaneously, membrane
processes could influence cytosolic mechanisms.
All these processes involve a coupling of bulk and surface effects. Mathematically this
can be reflected by the application of coupled bulk and surface partial differential
equations. Such equations contain some unknowns defined on a spatial domain Ω, as
well as other unknowns defined on a lower-dimensional manifold Γ ∈ Ω.
In this thesis we are interested in the modeling of the establishment of polarity. This
process also involves volume and interface mechanisms suggesting the application
of coupled bulk-surface partial differential equations. To illustrate the concept of
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such systems, in this section we study a mass conservative system of two interacting
substances introduced in [31]. It is in this respect exemplary as it also simulates cell
polarization.
Let Ω ⊂ R3 be a bounded domain and Γ := ∂Ω ⊂ R2 its boundary. Further, let
u(x, t) and v(x, t) denote two interacting molecules, where time t ∈ [0, T ]. With
initial concentrations at time t = 0 given by

u(x, 0) = u0(x), v(x, 0) = v0(x),

the shuttling of both substances between the surface and bulk domain can be
expressed in formulas as follows:

∂tu =∇Γ · (Du∇Γ)u+ f(u, v|Γ) on Γ × [0, T ], (3.33)
∂tv =∇ · (Dv∇)v in Ω × [0, T ], (3.34)

−Dv∇v · n⃗ =f(u, v|Γ) on Γ × [0, T ]. (3.35)

Here, n⃗ denotes the outer normal to Γ and ∇Γ is the surface gradient. For a function
η : Γ → R we define

∇Γη := ∇η − (∇η · n⃗)n⃗.

In case of constant diffusion coefficients Du and Dv, system (3.33)-(3.35) reduces to

∂tu =Du∆Γu+ f(u, v|Γ) on Γ × [0, T ],
∂tv =Dv∆v in Ω × [0, T ],

−Dv∇v · n⃗ =f(u, v|Γ) on Γ × [0, T ],

where ∆Γ denotes the Laplace-Beltrami operator which is given by the surface
divergence gradient defined by

∆Γ := ∇Γ · ∇Γ.

In order to apply finite element methods to solve (3.33)-(3.35) (see Section 4.2) we
can proceed as presented in Section 3.5 and consider the weak formulation. Let
V vol := H1(Ω) denote the usual Sobolev space containing weak solutions in the bulk
domain and V sur := H1(Γ) be the surface Sobolev space containing weak solutions
on the hypersurface Γ. Taking some test functions φu ∈ V sur and φv ∈ V bulk,
multiplication of (3.33) and (3.34) with φu and φv respectively leads to

d

dt


Γ
uφu dσ =


Γ

∇Γ · (Du(x)∇Γu)φu dσ +


Γ
f(u, v|Γ)φu dσ,
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d

dt


Ω
vφv dx =


Ω

∇ · (Dv(x)∇v)φv dx.

Using the surface divergence theorem and integration by parts (see [21] for more
details), we obtain

d

dt


Γ
uφu dσ = −


Γ
Du(x) · ∇Γu · ∇Γφu dσ +


Γ
f(u, v|Γ)φu dσ,

d

dt


Ω
vφv dx = −


Ω
Dv(x) · ∇v · ∇φv dx+


Γ
(Dv(x)∇v · n⃗)φv dσ.

The boundary condition (3.35) finally yields

d

dt


Γ
uφu dσ = −


Γ
Du(x) · ∇Γu · ∇Γφu dσ +


Γ
f(u, v|Γ)φu dσ, (3.36)

d

dt


Ω
vφv dx = −


Ω
Dv(x) · ∇v · ∇φv dx−


Γ
f(u, v|Γ)φv dσ. (3.37)

Assuming that f is a known function on Γ, we now seek a solution (u, v) ∈
L2(0, T, V sur) × L2(0, T, V bulk), where u : Ω → R and v : Γ → R, such that
(3.36)-(3.37) holds for each t ∈ [0, T ] and for all φu ∈ V sur, φv ∈ V bulk.
In [31] the weak formulation (3.36)-(3.37) has been solved for different functions f
simulating two well-known polarization mechanisms. The first exhibits a classical
Turing instability introduced in Section 3.3. The second shows the so-called Wave-
Pinning. This mechanism is characterized by a traveling wave which moves through
the domain and finally stops [44,61].
Figure 3.8 shows a simulation of the Wave-Pinning model with reaction kinetics
given by

f(u, v) := v


k0 + γu2

K2 + u2


− δu. (3.38)

To obtain a solution, it is common to derive a discrete formulation of the variational
form. This can be done using finite elements or finite volume methods. The next
chapter describes the discretization schemes used in this work.
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(a) (b)

Figure 3.8.: Illustration of pattern formation by the Wave-Pinning mechanism. Nu-
merical solution of (3.36)-(3.37) using kinetics given by (3.38) and parameters k0 = 0.067, γ =
1, δ = 1, K = 0.1, Du = 0.015, Dv = 3. An initial perturbation of the homogeneous steady state
leads to an inhomogeneous spatial pattern. Whereas u clusters at one site of the cell, v is nearly
homogeneously distributed. (a) Concentration of u at time t = 120s. (b) Concentration of v at
time t = 120s





4 | Numerical methods

In this chapter we present the numerical approaches which are used for the class of
mathematical models presented in this thesis. The Finite Element Method (FEM)
and the Finite Volume Method (FVM) are well-known discretization methods which
are well suited for the numerical simulation of partial differential equations. We
explain the concepts of these two schemes which are closely related to one another.
Throughout this work we concentrate on finite elements and the so-called Galerkin
method to simulate reaction-diffusion systems. To compute solutions of systems
containing advection-dominated equations, we apply the vertex-centered finite volume
scheme which is also known as Petrov-Galerkin method. The fundamental idea of
both methods is to dicretize the mathematical model. In this way, the infinite-
dimensional Hilbert Space V := H1(Ω) can be replaced by a finite-dimensional space
Vh ⊂ V . Such a discrete space allows an approximation of the analytical solution u

by a discrete solution uh which is constructed as the sum of piecewise polynomial
functions. In this introduction we fundamentally follow the description in [12,23].

4.1. Triangulations and ansatz spaces
Numerical methods like the FEM or FVM are based on a prescribed discretization
of the solution domain Ω in an infinite number of simple subsets. This is usually
done by a triangulation.

Definition 4.1 (Triangulation). Let Ω be an open set with boundary ∂Ω. A con-
forming triangulation Th= {Tk | k ∈ {0, ..., N}} with Ti ⊆ Ω open, for all k ∈ [0, N ]
and non-overlapping partition Tk ∩ Tl = ∅ for all k, l ∈ [0, N ], k ̸= l, satisfying
Ω =

N
k=1

T k, is called triangulation of Ω with mesh size

h = max { diam(T ) | T ∈ Th}.

In higher dimensions triangulations or meshes are usually constructed using simplices
or cuboids. Note that the mesh then only approximates domains which are not
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of polygonal shape. In this work, we exclusively consider simplicial partitions, i.e.
partitions of the domain Ω in a finite number of simplices. Furthermore, we consider
consistent triangulations. This implies that the intersection of two simplices Tk ∩ Tl

for all k, l ∈ [0, N ], k ̸= l, is either empty or corresponds to a lower-dimensional
boundary simplex of Tk and Tl. This approach prevents the occurrence of hanging
nodes.
For FEMs, triangulations serve as constructions for finite dimensional ansatz spaces
consisting of piecewise polynomial functions with fixed degree. To create an ansatz
space we define the following polynomials:

Definition 4.2. Let α be a multiindex. The space of polynomial functions Pk of
degree k is given as

Pk =

p : Rn → R
 p(x) =


|α|≤k

cαx
α

 .
By an appropriate operation of polynomial spaces Pk(T ) ∈ T , different ansatz spaces
for each triangulation can be defined. We restrict ourselves to piecewise constant or
piecewise linear ansatz functions and define the following spaces:

Definition 4.3 (Ansatz spaces). Let Ω ⊂ Rn be an open set and Th a triangulation
of Ω. The following function spaces of polynomial functions

P0(Th) := {uh ∈ L2(Ω) : uh|T ∈ P0(T ) for T ∈ Th},
P1(Th) := {uh ∈ L2(Ω) : uh|T ∈ P1(T ) for T ∈ Th},

P1,D(Th) := {uh ∈ P1(Th) : uh = 0 on Γ}

are called ansatz spaces. The functions uh of P0(Th), P1(Th), P1,D(Th) are the related
ansatz functions.

Figure 4.1 shows an example of a 1D P1 space. These ansatz functions, as well as
functions of the space P1,D(Th), are continuous. This implies that the dimension of
these spaces closely relates to the number of vertices of Th. By contrast, the ansatz
space P0(Th) in general comprises of discontinuous functions and its dimension
complies with the number of elements T ∈ Th.
Ansatz functions are typically defined in terms of a reference element E, e.g. the
unit triangle in 2D, for the grid cell T . In this case, affine transformations are useful
to map between a given simplex and the related reference element.

Remark 4.4. Given a finite set of reference elements {E}, we assume that for each
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Tk with k ∈ [0, N ] exists an affine transformation FTk
with

Tk = FTk
(E). (4.1)

Lastly, we need the concept of so-called degrees of freedom (DOFs). For a consistent
triangulation Th, the DOFs of functions uh ∈ P1(Th) are the function values at the
vertices Nh,D := {xh

1 , ..., x
h
Nh,D} which do not lay on the boundary of Ω. For all

vertices we write Nh := {xh
1 , ..., x

h
Nh

}.

Figure 4.1.: Basis functions for a finite element space. P1 basis functions for a finite
element space in 1D are shown.

4.2. Finite Elements and the Galerkin method
To solve a variational formulation derived in the Section 3.5, the Galerkin finite
element method is a common approach to determine the space discretization of
spatial operators. Let Th be a consistent triangulation of Ω. The Galerkin-ansatz for
(3.32) with ansatz space Vh := P1,D(Th) leads to the semi-discrete problem:

Find uh(t) ∈ Vh with d

dt
m(uh, φh) + a(uh, φh) = l(φh), φh ∈ Vh, t > 0, (4.2)

uh(0) = uh
0 . (4.3)

The inner product m, the bilinear form a, and the linear functional l are given by

m(uh, φh) :=


Ω
uhφh dx,

a(uh, φh) := D


Ω
∇uh · ∇φh dx−


Ω
(⃗a · ∇uh)φh dx,

l(φh) :=


Ω
fφh dx+D


ΓN

gNφh dσ.

As mentioned before, the dimension of the ansatz space Vh is the number of vertices
of Th that do not lie on Γ. Denoted by Nh,D ≤ Nh the vertices are numbered such
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that xh
j is a boundary point if Nh,D ≤ j ≤ Nh. Let Φh = {ϕh

1 , ϕ
h
2 , ..., ϕ

h
Nh,D

} describe
a convenient basis of Vh and let ϕh

Nh,D+1, ..., ϕ
h
Nh

be additional functions to extend the
basis in order to ensure that the Dirichlet condition is satisfied. The finite element
approximation is then the sum of a set of shape functions and boundary functions

uh(x, t) =
Nh,D
j=1

uh,j(t)ϕh
j (x) +

Nh
j=Nh,D+1

uh,j(t)ϕh
j (x). (4.4)

For simplicity we further consider only Neumann boundary or homogeneous Dirich-
let boundary conditions. Formulation (4.2)-(4.3) can then be transformed to the
equivalent linear system

d

dt

Nh,D
j=1

m(ϕh
j , ϕ

h
i ) +

Nh,D
j=1

a(ϕh
j , ϕ

h
i ) = l(ϕh

i ), 1 ≤ i ≤ Nh,D, (4.5)

uh,j(0) = uh
0,j, 1 ≤ j ≤ Nh,D, (4.6)

with unknowns uh,j(t). Here, uh
0,j denote the nodal values of the given initial approx-

imation uh
0 . In matrix notation (4.5)-(4.6) may be written as

Mhu
′
h(t) = Ahuh(t) + Fh(t), for t > 0, with uh(0) = (uh

0,j), (4.7)

where Mh denotes the consistent mass matrix with elements

Mh,i,j =


Ω
ϕh

jϕ
h
i dx

and
Fh,i =


Ω
f(t)ϕh

i dx+D


ΓN

gN(t)ϕh
i dσ.

The vector uh contains the entries uh,j(t) and the matrix Ah is the negative of the
discrete transport term and so-called stiffness matrix. It comprises of two parts, the
global diffusion matrix with entries

Adiff
h,i,j := −D


Ω

∇ϕh
j · ∇ϕh

i dx,

and the global advection matrix with elements

Aadv
h,i,j :=


Ω
(⃗a · ∇ϕh

j )ϕh
i dx.

Summarized, the problem of solving a time-dependent PDE is reduced to solving
one full matrix problem.
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4.3. Finite volume methods
We already mentioned the difficulties involved in numerical solutions of advection-
driven systems. It can be shown that with dominating advection the convergence of
the Galerkin discretization could be very bad. This is expressed by strong oscillations
of the approximation uh near boundary layers. In such cases the discretization must
be stabilized. The implementation of an upwind scheme or the streamline diffusion
method provide good ways to optimize the results. Throughout this work, to solve
advection-dominated equations, we implement a finite volume upwind scheme. The
FVM, which is also known as box method, uses the conservation law explained in
Section 3.1.1. It subdivides each triangulation element into cells and evaluates the
integral form of field equations. Since it associates control volumes and unknowns to
vertices, it is denoted as vertex-centered finite volume method.

4.3.1. Dual box-grids

Besides the general finite element triangulation, the FVM requires so-called dual
box grids. These grids have to satisfy specific balancing and regularity conditions to
ensure optimal error estimates in L2. In literature, different variants can be found:

(i) Cell-centered finite volume methods

(ii) Cell-vertex finite volume methods

(iii) Vertex-centered finite volume methods

They differ in their construction of partitions. The presented work refers to vertex-
centered finite volume methods. Let Th be a triangulation of a domain Ω with vertices
Nh = {xh

1 , ..., x
h
Nh

}. For each vertex we assign a control volume bh
j . To guarantee

that the resulting equation systems are well-conditioned, we require that bh
j contains

xh
j and is in turn contained in a neighborhood of xh

j . We define a dual box grid or
dual mesh as follows:

Definition 4.5 (Dual box grid). Let Ω be a domain and Th a consistent triangulation
of Ω with vertices xh

1 , ..., x
h
Nh

. Further, let Bh = {bh
1 , ..., b

h
Nh

} be a non-overlapping
partition bh

i ⊂ Ω with bh
i ∩ bh

j = ∅ for all i, j ∈ [0, Nh], i ̸= j. We call Bh dual box
grid if it satisfies

(i) bh
j is a closed Lipschitz domain, 1 ≤ j ≤ Nh,

(ii) xh
j ∈ bh

j for 1 ≤ j ≤ Nh,
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(a) (b)

Figure 4.2.: Visualization of the dual grid for a two- or three-dimensional simplex.
Dual grid creation for a vertex-centered finite volume scheme. (a) In 2D, the dual mesh can be
created by connecting the barycenter of each cell with the middle points of its boundary edges. The
control volume of a node xh

j is then given by bh
j (shaded in gray). (b) In 3D dual faces are given by

the planes crossing through the barycenter of the tetrahedron, the barycenter of its faces, and the
middle points of its edges. The control volume in this case is given by the resulting hexahedron
around each node.

(iii) bh
j ∈ Ωj for 1 ≤ j ≤ Nh,

(iv) Ω = Nh
j=1 b

h
j .

The control volumes bh
j ∈ Bh to the associated DOFs are now given by the volume

of associated dual elements.
In 2D, the usual procedure to create a dual grid is to connect the barycenters of
each simplex T of Th with the midpoints of its boundary edges. This results in a
subdivision of the elements of the domain triangulation into three parts with equal
area. In 3D we consider a separation into four equal parts (see Figure 4.2).
As for the FEM, we define appropriate ansatz functions for the dual grid.

Definition 4.6. Let Th be a consistent triangulation of the domain Ω with vertices
xh

1 , ..., x
h
Nh

. Further, let Bh = {bh
1 , ..., b

h
Nh

} be a dual box grid of Th. The ansatz spaces
with piecewise constant functions regarding Bh are given as

P0(Bh) := {φh ∈ L2(Ω) : φh|b ∈ P0(b) for b ∈ Bh},
P0,D(Bh) := {φh ∈ P0(Bh) : φh|bh

j
= 0, Nh,D < i ≤ Nh}.

Figure 4.3 shows the basis functions for a finite volume space in 1D.
Similar to the FEM, it is necessary to define a basis for P0(Bh) which is used to
construct a discrete solution uh. These are given by characteristic functions χh

j of
boxes bh

j . We call this basis characteristic basis and define
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Definition 4.7 (The characteristic basis). Let Th be a consistent triangulation of
the domain Ω and Bh = {bh

1 , ..., b
h
Nh

} be a dual box grid of Th. The characteristic
basis χh = {χh

1 , ..., χ
h
Nh

} of P0(Bh) reads

χh
j ∈ P0(Bh), χh

j


bh

i

= δij, 1 ≤ i, j,≤ Nh.

Analogously, χh,D := {χh
1 , ..., χ

h
Nh,D

} denotes the characteristic basis of P0,D(Bh).

We write VB := P0,D(Bh). By means of these ansatz spaces, we are now able to
formulate the FVM for the reaction-diffusion-advection equation. Let Ω be a domain
with consistent triangulation Th and Bh a corresponding dual box grid. Let further
H1

0 (Ω) be the solution space and H1
0 (Bh) be the test space of the weak form. Applying

Green’s formula to each dual cell b ∈ Bh, the abstract formulation of the semi-discrete
problem related to Bh reads:

Find uh(t) ∈ Vh with d

dt
m(uh, φh) + a(uh, φh) = l(φh), φh ∈ VB, t > 0, (4.8)

uh(0) = uh,0, (4.9)

where

m(uh, φh) :=


Ω
uhφh dx,

a(uh, φh) :=


b∈Bh


−


∂b
D∇uhφh · dσ +


∂b
a⃗uhφh · dσ


,

l(φh) :=


Ω
φh dx+D


ΓN

gNφh dσ.

The FEM and FVM are closely related. It can be shown that the stiffness matrices
are equal for both schemes. By this close relationship, all negative properties transfer
from the FEM to the FVM. This implies that for advection-dominated problems,
the standard finite volume scheme induces oscillations as well. These oscillations can
be explained by the fact that the stiffness matrix is not a M-matrix. In this case,
the linear system can even be singular. However, the approach by finite volumes
allows the application of a simple upwind scheme which is not possible with the
finite element approach.

4.3.2. Upwind stabilization

In order to derive the upwind scheme, we further consider the dual edges E(Bh) of
the corresponding dual box grid.
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Definition 4.8 (Upwind solution). Let [φ]= φbh
i

− φbh
j

for all φ ∈ VB denote the
jump of φ across e separating the control volumes bh

i and bh
j . The upwind solution

uh follows the streamlines and is given as

uh(t) :=

u
−
h (t), a⃗ · n⃗e ≥ 0,
u+

h (t), a⃗ · n⃗e < 0,

where ne denotes the unit outer normal of e.

As the unit normal n⃗e is independent of the element containing e, we shall fix the
direction n⃗e of e. Then, for all φh ∈ VB and uh ∈ Vh, the flux equations of the
semi-discrete problem (4.8) can be written in terms of integrals over dual elements
and dual faces

a(uh, φh) = −


e∈E(Bh)


e
(D∇uh) · n⃗e · [φh] dσ +


e∈E(Bh)


e
(⃗a · n⃗e)uh · [φh] dσ.

To get a linear system of equations, (4.8)-(4.9) can be written in terms of

d

dt

Nh,D
j=1

m(ϕh
j , χ

h
i ) +

Nh,D
j=1

a(ϕh
j , χ

h
i ) = l(χh

i ), 1 ≤ i ≤ Nh,D, (4.10)

uh,j(0) = uh
0,j, 1 ≤ j ≤ Nh,D, (4.11)

where ϕh
j are appropriate basis functions. In matrix form this formulation reads

Mhu
′
h(t) = Ahuh(t) + Fh(t), for t > 0, with uh(0) = (uh

0,j). (4.12)

Again, the vector uh contains the entries uh,j(t) and Mh denotes the consistent mass
matrix with elements

Mh,i,j =


Ω
ϕh

jχ
h
i dx.

The components of Fh are given by

Fh,i =


Ω
f(t)χh

i dx+D


ΓN

gN(t)χh
i dσ.

Note that whereas for the standard FEM the trial space corresponds to the test
space, in this method the trial and test space are different. Such approach is known
as Petrov-Galerkin method. For further details we refer to [12].
The entries of the comprehensive stiffness matrix Ah := Adiff + Aadv

up regarding the
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Figure 4.3.: Basis functions for a finite volume space. The basis functions in 1D are
illustrated.

advection part now reads

Aadv
up,i,j =




k ̸=i,

J⃗i,k(T )≥0

Ji,k(T ), i = j,

Ji,k(T ), i ̸= j, Ji,k(T ) < 0,
0 , i ̸= j, Ji,k(T ) ≥ 0,

where Ji,k(T ) := vol(ei,j) · a⃗ · n⃗ei,k
. Here ei,k, k ≠ l, denotes the volume of the

hyper-face between the dual elements bi and bk. The vector n⃗ei,k
describes the

corresponding unit outer normal.
Contrary to the finite element scheme presented above, the finite volume upwind
scheme implies a weak diagonal dominant stiffness matrix. Such matrices are ad-
vantageous with respect to solving advection-driven problems since they lead to a
stable discretization (see [12] for further details).

4.4. Time discretization

Up to now, we have only discussed the spatial discretization of reaction-diffusion-
advection equations. However, the variational formulations (4.2)-(4.3) and (4.8)-(4.9)
are time-dependent. Whereas stationary problems only need to be discretized in
space, such non-stationary problems are semi-discrete and must be integrated in
time. For this reason, the time interval [0, T ] has to be discretized as well in a
similar way. Furthermore, in order to solve a semi-discrete system it is useful to
decouple the space and time coordinates. This can be done by the method of lines
(MOL) approach that separately considers space and time discretizations. This
method is attractive and practical since a huge number of schemes exist developed
for numerical integration of ordinary differential equations. In this work, we use an
implicit one-step-θ-scheme to compute the time-dependent solution.



70 4 Numerical methods

Definition 4.9 (θ-method). Consider a general formulation of an initial value
problem for a system of ODEs

d

dt
x(t) = F (t, x(t)), t > 0,

with initial value x(0) = x0 and given F : R × Rm → Rm. The requested solution
x on the time interval [0, T ] can be obtained by a so-called θ-scheme. If the time
interval is subdivided into 0 = t0 < t1 < ... < tM = T with ∆tn = tn+1 − tn, the
approximation of xn+1 by the one-step-θ-scheme is given as

xn+1 − ∆tn(1 − θ)F (tn+1, xn+1) = xn + ∆tnθF (tn, xn).

The value θ ∈ [0, 1] parameterizes this scheme and determines whether the resulting
time discretization is implicit or explicit. For θ > 0 this method is implicit. For
example, θ = 1 leads to the implicit Euler method and θ = 1/2 implies an implicit
Crank-Nicolson scheme. For θ = 0 this is just the explicit Euler scheme.
Applying such approach, the question of convergence and stability naturally arises.
The Courant number given by C = u∆t

h
relates the time step to the mesh size.

Whereas the explicit Euler scheme is only stable if C < 1, the implicit Euler and the
Crank-Nicolson schemes are unconditionally stable. For more details we refer to [40].



5 | Computational implementa-
tion

The implementation of models presented in this thesis is based on the Distributed and
Unified Numerics Environment (DUNE) framework. For that reason, in this chapter
we give a short introduction into the concepts of DUNE. For further details we refer
to [8–10] or to the website1 which provides all the documentation, implementation,
and development details.
Our approach to solve coupled bulk-surface problems is based on the DUNE modules
multidomain and multidomaingrid [64]. We provide an explanation of the module
principles and explain how these allow for a solution of surface partial differential
equations.

5.1. The DUNE framework
DUNE is a set of C++ libraries which uses grid-based methods to numerically solve
PDEs. It is an open source software framework composed of core modules which are
the basis for supplementary modules and applications. The following three main
design principles characterize the DUNE framework

Flexibility: Through abstract interfaces, it differentiates between data struc-
tures and algorithms. This allows the user to build programs that can change
the underlying implementation without changing the user code. Another as-
pect is the usage of generic components which allow the reuse of different
applications.

Efficiency: Since simulations of real-world problems can become performance
heavy, software performance is of particular importance. By the usage of
generic programming techniques DUNE manages to avoid performance losses
and hence ensures high performance.

1https://www.dune-project.org

https://www.dune-project.org
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Extensibility: Appropriate interface design makes it possible to incorporate
existing code as well as libraries. Through this, it allows the reuse of existing
finite element software. Furthermore, the module concept provides a clear
separation between different parts of the framework, e.g. grid interface or linear
algebra. Thus, it is easy to try different simulations by swapping out specific
modules.

DUNE provides many important features to ensure a robust and performance
optimized numerical treatment of PDEs. In order to achieve these targets, it applies
the C++ template feature. Furthermore, it supports the application of different
kinds of grids, supplies a flexible solver package, permits parallel implementations,
and the incorporation of free software.

5.1.1. DUNE core modules

A team of core developer implemented the DUNE core modules which are the basis
for grid-based simulations. Whereas so-called add-on modules refer to those which
provide additional functionality, the core modules are required to create a program
based on the DUNE framework. The core modules are

dune-common: This module provides the basic infrastructure used by all
DUNE modules. This includes classes for exception handling and debugging
as well as dense vectors and matrices.

dune-geometry: All things related to reference elements are compiled in the
dune-geometry module. For instance, it supplies geometry transformations and
quadrature rules as well as the reference elements themselves.

dune-grid: This module is the most mature one. It contains adapters for
different pre-existing grid managers and components that implement the
infrastructure providing grid in- and output. This module further defines
nonconforming, hierarchically nested, multi-element-type, and parallel grids in
arbitrary space dimensions.

dune-istl: ISTL is the abbreviation for iterative solver template library which
comprises classes of vectors, matrices, algorithms, and solvers provided for
sparse linear algebra.

dune-localfunctions: This module prescribes the interface of shape functions
defined on the DUNE reference elements which are required for FEMs. It further
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contains the implementation of this interface which includes interpolation
operators as well as common elements like the Lagrange elements.

While the core modules contain all classes and methods required to realize a finite
element approach for a model problem, the user still has to write a lot of infrastructure
to run a simulation. Currently, there are three different additional modules which
provide this functionality, the dune-fem, dune-fufem, and dune-pdelab module. The
implementations of models presented in this thesis are based on the latter.
The DUNE PDELab framework considerably simplifies the implementation of
discretization schemes. It uses the weighted residual formulation to solve PDEs.
Considering r(uh, φh) = a(uh, φh) − l(φh), this method is based on a minimization
of the residual r. For the time-dependent weak form, the modified residual form of
(4.2)-(4.3) reads:

Find uh(t) ∈ Vh with d

dt
m(uh, φh) + r(uh, φh) = 0, φh ∈ Vh, t > 0, (5.1)

uh(0) = uh
0 . (5.2)

To compute the residual, PDELab uses a discrete function space which is bound
to a grid view and based on local finite elements. That way, the matrix entries
are calculated elementwise. Among others, the objectives of this module include
time reduction of the implementation of such schemes to solve systems of PDEs
and the suitability for teaching. This is achieved through a schematized procedure
by using a general approach to constraints handling and a generic generation of
product spaces. In this manner, it allows a fast and relatively easy implementation
of a simple discretization scheme for a simple equation or a system of equations [11].

5.1.2. Dune-multidomain and dune-multidomaingrid

As already mentioned, the dune-pdelab module provides the infrastructure to solve
PDEs and systems of PDEs in a simple manner. But the infrastructure is restricted to
a single domain. Since most real-world problems involve more than a single domain, it
was obvious to enhance this module by classes and functions providing the simulation
of coupled multi-domain problems. To simulate multi-domain PDEs, DUNE has
been extended by dune-multidomaingrid and dune-multidomain. These modules
are add-on modules based on the concepts of existing models in the subdomains.
Together they allow the use of different sets of equations in multiple subdomains
and employ coupling conditions at a distinct interface. We will shortly explain the
main concept of these modules and refer the reader to [64] for a detailed description.
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The dune-multidomaingrid module provides a mechanism to subdivide any existing
DUNE mesh into multiple subdomains. The module is implemented in terms of two
cooperating grids, MultiDomainGrid and SubDomainGrid. The MultiDo-
mainGrid wraps an existing host grid. In this way, it is extended by an interface
provided to create and access subdomains. MultiDomainGrid also handles spatial
information about subdomains and stores all data required to manage separate
meshes for those spatial subdomains. Each subdomain is then available to the user
as a distinct SubDomainGrid.
The procedure is as follows:

1. Take an existing grid and wrap it in a multi-domain grid which supports
multiple subdomains

2. Mark the respective overlapping or non-overlapping subdomains by simply
assigning grid cells to them

3. Expose subdomains as separate meta grids

Based on dune-multidomaingrid for subdomain information, the dune-multidomain
software library implements the mathematical framework for the definition of multi-
domain problems. It includes a set of extensions of dune-pdelab and makes the
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components of the mathematical framework available within the solvers of PDELab.
It uses many of the abstractions introduced in dune-pdelab as well as the associated
terminology. For instance, it allows the implementation of function spaces on parts
of the whole domain. It further includes classes and functions required to connect
different operators and function spaces as well as to couple between subdomains. For
this purpose, based on the MultiDomainGrid, it implements a MultiDomain-
GridFunctionSpace which contains child grid function spaces related either to
the MultiDomainGrid or a SubDomainGrid. Associated with a child function
space it defines subproblem subspaces required for problem assembly as well as
the respective subproblem. Usually each subproblem can be solved by an operator
defined on the subspace. The coupling conditions are implemented in a coupling
operator completing the numerical framework.

5.2. Numerical treatment of coupled bulk-surface
problems

So far, dune-multidomain and multidomaingrid separate subdomains with the same
dimension and so were not designed to solve coupled bulk-surface problems. However,
by implementation of a coupled operator considering the lower dimensional surface
between subdomains, these modules provide the possibility to restrict equations to
a surface. Furthermore, it allows assembly of constraints on subspaces in a more
capable way than the default PDELab constraints assembler. To compute solutions

Figure 5.1.: Illustration of the numerical approach to solve a coupled bulk-surface
problem with dune-multidomaingrid and dune-multidomain. The DOFs of the second
subdomain are constrained. The surface PDEs are implemented in the coupling operator defined
on the coupling interface.

of a coupled bulk-surface problem, we proceed as follows. We construct a model
geometry composed of two bulk domains. In terms of dune-multidomain, each of
these domains relates to a subdomain. The two subdomains are chosen such that
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the interface between them is the surface of interest. Then, the surface PDEs can
be computed using the coupling operator applying surface gradients. The bulk
equations can be solved by the respective operator for each subdomain. Since there
are no equations posed on the second subdomain, for this subproblem there is no
implementation needed and we can constrain the DOFs which are not related to the
coupling surface (see Figure 5.1). In general, in DUNE the constraints are created
like this:

1 // define constraints, in the case of bulk-surface coupling
2 typedef Dune::PDELab::NoConstraints NOCON;
3 NOCON nocon;
4

5 // for the multi-domain gridview (mdgv) define not coupling node
6 // constraints on the outer bulk
7 typedef Dune::PDELab::NotCouplingNodeConstraints<MDGV> NOTCOUPCON;
8 NOTCOUPCON notcoupcon(mdgv);
9 nccon.updateNotCouplingNodes(mdgv,0,1);

Using these constraints we define a GridFunctionSpace for both domains:

1 // create grid function spaces for the outer bulk domain (not
2 // coupling nodes are constrained to only consider the coupling
3 // surface)
4 typedef Dune::PDELab::GridFunctionSpace<
5 SDGV,
6 FEMSurface,
7 NOTCOUPCON,
8 VBE
9 > GFSSurface;

10 GFSSurface gfssurface(sdgv0,femsurface,notcoupcon);
11

12 // create grid function space for the bulk
13 typedef Dune::PDELab::GridFunctionSpace<
14 SDGV,
15 FEMBulk,
16 NOCON,
17 VBE
18 > GFSBulk;
19 GFSBulk gfsbulk(sdgv1,fembulk,nocon);

Both GridFunctionSpaces are now combined to generate a MultiDomainGrid-
FunctionSpace:

1 // create composite grid function space
2 typedef Dune::PDELab::MultiDomain::MultiDomainGridFunctionSpace<
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3 Grid,
4 VBE,
5 Dune::PDELab::LexicographicOrderingTag,
6 GFSSurface,
7 GFSBulk
8 > MultiGFS;
9 MultiGFS multigfs(grid,gfssurface,gfsbulk);

This MultiDomainGridFunctionSpace finally builds the basis to solve coupled
multi-domain problems (see [64] for further details). Together with our constraints
handling, it provides a simple method to compute coupled bulk-surface PDEs.

5.3. Dual grid assembly

Figure 5.2.: Dual nodes
and edges in a 2D ref-
erence element. The unit
outer normals to dual edges are
fix for each vertex. The nor-
mals are n⃗0 = [0.8944, 0.4472],
n⃗1 = [−0.7071, −0.7071], n⃗2 =
[−0.4472, −0.8944].

To apply the presented finite volume upwind scheme,
in addition to the domain triangulation, we require a
dual grid. Since the dune-pdelab module is designed
for calculations on reference elements of a domain
triangulation, we implement a class that creates a
dual grid to the simplex reference element. Apply-
ing an appropriate transformation, this allows us to
calculate all matrix entries in terms of reference ele-
ments.
The construction of the box grid used in this work
is based on the barycenter method. Figure 5.2 shows
the resulting dual grid for the reference element in 2D.
The class contains all information about coordinates
of dual nodes and dual faces. It further stores the
unit outer normals to each dual face with respect to
a vertex of the domain triangulation.
The proceeding for a local operator which accumulates
residual contributions of each grid cell is as follows:

1 // loop over vertices of this element
2 for ( int i = 0; i<lfsu.size(); i++){
3 // counterclockwise in dimension 2
4 for(int k=0; k<dim-1; k++){
5 int iInside=i; int iOutside;
6 if (iInside == 3)
7 continue;
8 if ( k==1 )
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9 iOutside = 3;
10 else{
11 if (i == 2 )
12 iOutside = 0;
13 else
14 iOutside = i+1;}
15

16 // get local positions of actual vertex
17 LC insideVertex = dualGrid.thisVertex(iInside);
18

19 // get function values at the vertex relating to dual edge i
20 RF uInside = x(lfsu,iInside);
21 RF uOutside = x(lfsu,iOutside);
22 RF flux, term, diffusion;
23

24 // get local unit outer normal to this vertex
25 LC localnormal = dualGrid.localUnitOuterNormal(iInside,k);
26

27 // transform local normal of dual face to global normal
28 GC normal;
29 jac.mv(localnormal,normal);
30 normal /= normal.two_norm();
31

32 // compute flux over dual entity i
33 flux = c*normal;
34

35 // evaluate flux and choose upwind value for u
36 RF u=0.0;
37 if (flux >= 0.0)
38 u = uInside;
39 else
40 u = uOutside;
41

42 // calculate global volume of dual edge relating to actual vertex
43 RF volume = dualGrid.globalVolume(eg,iInside,k);
44 term = (u*flux-d*(ub.gradient(x,insideVertex,jac)
45 *normal))*volume; // calculate contribution
46

47 // accumulate to residual, contribution to both vertices
48 // of the edge where the dual face crosses the middle point
49 r.accumulate(lfsu,iInside,term*1.0);
50 r.accumulate(lfsu,iOutside,term*-1.0);
51 }
52 }
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For each element of the triangulation, the contribution of fluxes to each vertex are
calculated. By a loop over vertices, the fluxes related to the right-hand outer unit
normal are accumulated.

5.4. The implementation of test problems

We proceed with the implementation of a test problem. To investigate stability and
convergence of our numerical approach, we consider two different test problems
with known analytical solution. The first example is a system of stationary coupled
bulk-surface PDEs. This example allows us to verify the implementation of our
approach to solve coupled bulk-surface problems applying dune-multidomain and
dune-multidomaingrid. Furthermore, errors for the implemented finite element and
finite volume schemes to test the efficiency are calculated.
The second model problem, an advection-dominated PDE, serves to test the imple-
mented dual grid construction and the upwind approach.

5.4.1. A coupled-bulk-surface test problem

Consider a domain Ω ⊂ R2 and its boundary Γ := ∂Ω ⊂ R. The model problem
reads

−∆Γu = f(u, v|Γ) + g(u) on Γ := ∂Ω, (5.3)
−∇v · n⃗ = f(u, v|Γ) on Γ, (5.4)

−∆v = h(v) in Ω := {x ∈ R2 | ∥x∥ < 1}, (5.5)

with given data functions f(u, v|Γ) : Γ → R, g(u) : Γ → R, and h(v) : Ω → R.
For f(u, v|Γ) :≡ v|Γ − u, g(u)(x) := −u(x) + 17x1x2 and h(v) :≡ 0, the system has
the classical unique solution (u, v) with u(x) = 3x1x2 and v(x) = x1x2 (see Figure
5.3).
The multiplication of both equations with suitable test functions leads to the weak
form. In its discrete form, the model problem is given as:
Find uh, vh ∈ Vh with

Γ
∇Γuh∇Γφuh

dσ =


Γ
f(uh, vh|Γ)φuh

+ g(uh)φuh
dσ, ∀φuh

∈ Vh,
Ω

∇vh∇φvh
dx =


Ω
h(vh)φvh

dx+


Γ
f(uh, vh|Γ)φvh

dσ, ∀φvh
∈ Vh.

Let (uh, vh) denote the numerical solution of (5.3)-(5.5) depending on the mesh size
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Figure 5.3.: Analytical solution of the coupled bulk-surface test problem. Analytical
surface (u) and bulk solution (v) of equations (5.3)-(5.5) are illustrated.

h. In order to analyze the convergence of the numerical schemes, we compute relative
errors for the bulk and surface domain respectively

∥u− uh∥L2(Γ)/∥u∥L2(Γ), ∥u− uh∥H1(Γ)/∥u∥H1(Γ),

∥v − vh∥L2(Ω)/∥v∥L2(Ω), ∥v − vh∥H1(Ω)/∥v∥H1(Ω),

where

s ∈ H1(Γ) : ∥s∥H1(Γ) :=

∥s∥2

L2(Γ) + ∥∇Γs∥2
L2(Γ)

1/2
,

b ∈ H1(Ω) : ∥b∥H1(Ω) :=

∥b∥2

L2(Ω) + ∥∇b∥2
L2(Ω)

1/2
.

The convergence order is given as follows:

Definition 5.1 (Experimental Order of Convergence (EOC)). Let u be a given
function and uh1 , uh2 approximations depending on the mesh size h1 and h2. The
Experimental Order of Convergence (EOC) is defined as

EOCh = log(∥u− uh1∥/∥u− uh2∥)
log(h1/h2)

, (5.6)

where ∥ · ∥ is a given norm.
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FEM FVM
h ErrL2(Ω) EOCL2(Ω) ErrL2(Ω) EOCL2(Ω)

5.7735 × 10−1 3.44123 × 10−2 − 3.70483 × 10−2 −
3.40275 × 10−1 1.00415 × 10−2 2.32969 9.1557 × 10−3 2.64396
1.89769 × 10−1 2.8705 × 10−3 2.14444 2.87338 × 10−3 1.98458
1.05668 × 10−1 8.12065 × 10−4 2.15654 7.77696 × 10−4 2.23211
5.29919 × 10−2 2.0021 × 10−4 2.02881 1.98422 × 10−4 1.97915
2.66646 × 10−2 4.99792 × 10−5 2.0206 4.96615 × 10−5 2.01683
1.38788 × 10−2 1.25472 × 10−5 2.11665 1.23513 × 10−5 2.13098
7.07785 × 10−3 3.14446 × 10−6 2.05505 3.08389 × 10−6 2.06057

Table 5.1.: Overview over bulk L2-errors and EOCs calculated for the test problem.
Errors and EOCs dependent on the gridwidth h as well as the distinct schemes, the FEM and
FVM, are compared.

FEM FVM
h ErrH1(Ω) EOCH1(Ω) ErrH1(Ω) EOCH1(Ω)

5.7735 × 10−1 3.67039 × 10−1 − 4.06846 × 10−1 −
3.40275 × 10−1 1.9629 × 10−1 1.18381 2.01193 × 10−1 1.3319
1.89769 × 10−1 1.06239 × 10−1 1.0513 1.07037 × 10−1 1.08074
1.05668 × 10−1 5.42648 × 10−2 1.14741 5.43782 × 10−2 1.15663
5.29919 × 10−2 2.6893 × 10−2 1.01716 2.69072 × 10−2 1.01942
2.66646 × 10−2 1.34249 × 10−2 1.01157 1.34267 × 10−2 1.01215
1.38788 × 10−2 6.69768 × 10−3 1.06491 6.6979 × 10−3 1.06506
7.07785 × 10−3 3.36034 × 10−3 1.02424 3.36037 × 10−3 1.02428

Table 5.2.: Overview over bulk H1-errors and EOCs calculated for the test problem.
Errors and EOCs dependent on the gridwidth h as well as the distinct schemes, the FEM and
FVM, are compared.
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FEM FVM
h ErrL2(Γ) EOCL2(Γ) ErrL2(Γ) EOCL2(Γ)

5.17638 × 10−1 9.29044 × 10−2 − 1.28441 × 10−1 −
2.61052 × 10−1 2.54193 × 10−2 1.89329 3.3467 × 10−2 1.96464
1.42678 × 10−1 7.68856 × 10−3 1.97934 1.00943 × 10−2 1.984
7.47824 × 10−2 2.11119 × 10−3 2.00071 2.79028 × 10−3 1.99041
3.73977 × 10−2 5.27774 × 10−4 2.00057 6.99164 × 10−4 1.99721
1.86997 × 10−2 1.31957 × 10−4 1.99998 1.74875 × 10−4 1.99943
9.34994 × 10−3 3.29793 × 10−5 2.00047 4.37349 × 10−5 1.9995
4.67498 × 10−3 8.25016 × 10−6 1.99908 4.37349 × 10−5 2.00066

Table 5.3.: Overview over surface L2-errors and EOCs calculated for the test problem.
Errors and EOCs dependent on the gridwidth h as well as the distinct schemes, the FEM and
FVM, are compared.

FEM FVM
h ErrH1(Γ) EOCH1(Γ) ErrH1(Γ) EOCH1(Γ)

5.17638 × 10−1 8.19414 × 10−1 − 8.453 × 10−1 −
2.61052 × 10−1 4.0425 × 10−1 1.03214 4.07238 × 10−1 1.06681
1.42678 × 10−1 2.19595 × 10−1 1.01013 2.20085 × 10−1 1.01863
7.47824 × 10−2 1.14874 × 10−1 1.003 1.14947 × 10−1 1.00547
3.73977 × 10−2 5.74156 × 10−2 1.00079 5.74248 × 10−2 1.00147
1.86997 × 10−2 2.87051 × 10−2 1.0002 2.87063 × 10−2 1.00037
9.34994 × 10−3 1.43522 × 10−2 1.00005 1.43524 × 10−2 1.00009
4.67498 × 10−3 7.17608 × 10−3 1.00001 7.17609 × 10−3 1.00002

Table 5.4.: Overview over surface H1-errors and EOCs calculated for the test problem.
Errors and EOCs dependent on the gridwidth h as well as the distinct schemes, the FEM and
FVM, are compared.
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Figure 5.4.: Plot of relative errors computed with the test problem. Relative Errors in
L2 and H1 in terms of changes of the maximal grid width h.

All computations presented in this thesis are based on non uniform grids. For the test
problem, calculations were done for a sequence of simplex grids with decreased cell
size. The grids which are constructed in Gmsh, a three-dimensional finite element
mesh generator [29], are successively loaded. Calculating the discrete solution using
P1 basis functions, we obtain relative errors in L2 and H1 (see Figure 5.4). Tables 5.1
and 5.2 show the EOC in L2 and H1 of the discrete bulk component uh and Tables
5.3 and 5.4 of the discrete surface solution vh respectively. The convergence order is
nearly optimal for both schemes, the FEM and FVM. It holds that ∥u− uh∥L2(Γ) ∝ h2

and ∥v − vh∥L2(Ω) ∝ h2 as well as ∥u− uh∥H1(Γ) ∝ h and ∥v − vh∥H1(Ω) ∝ h.

5.4.2. An advection-dominated test problem

Since the prior presented coupled bulk-surface model does not include advection,
the standard Galerkin approach shows good results for this test problem. But these
results can not be transferred to advective-driven situations. Consider the stationary
reaction-diffusion-advection equation

−D∆u+ a⃗ · ∇u = f (5.7)

with Dirichlet boundary conditions

u(x1, 1) = 0, u(x1,−1) = x1,
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u(−1, x2) ≈ −1, u(1, x2) ≈ 1,

a⃗ = (0, 1) and f ≡ 0. From the analytical solution given by the function

u(x1, x2) = x1

1 − e( x2−1
D

)

1 − e( −2
D

)

 ,
it is directly clear that the boundary values vary considerably close to x2 = 1.

(a) (b)

Figure 5.5.: Comparison of the Galerkin method and the vertex-centered finite volume
upwind scheme. Comparison of numerical solutions of the reaction-diffusion-advection equation
(3.7) with f ≡ 0 and parameters d = 0.01, a⃗ = [1, 0]. (a) Discrete solution u using the standard
Galerkin method. (b) Discrete solution u using the vertex-centered finite volume upwind scheme.

For very small diffusion constants D, the solution approximates x1 except at x2 = 1.
Near this outflow boundary u vanishes. This extreme change of the solution near
x2 = 1 induces a boundary layer so that the standard Galerkin method may involve
errors in this region. Figure 5.5 shows the numerical solution of (5.7) with D = 0.01.
If the mesh is not fine enough to resolve steeply varying layers in the solution, the
Galerkin method is inaccurate and give erroneous results. Such inaccuracies may also
affect the numerical solution in regions of the domain where the exact solution is
well-behaved resulting in so-called wriggles. For these cases, the vertex-centred finite
volume upwind scheme provides an elegant approach to ameliorate the problem by
increasing stability (see Figure 5.5 (b)).
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5.5. Discussion
For a coupled bulk-surface problem the stability and convergence behavior of the
FEM and FVM using dune-multidomain and dune-multidomaingrid is investigated.
The results show that the coupled multi-domain approach to solve diffusion-driven
coupled bulk-surface PDEs on a fix domain is suitable for grids with convenient grid
size. With increasing fineness of the mesh, the FEM as well as FVM show optimal
convergence order in L2 and H1.
In contrast, the numerical implementation of an advection-driven problem applying
a method without stabilizing mechanisms leads to oscillations that distort the results.
For this case, a finite volume upwind scheme operating on a dual grid is used to
stabilize the discretization. The dual grid is constructed for the reference element.
In the setting of dune-multidomain, dune-multidomaingrid, and dune-pdelab, this
proceeding makes it very easy to implement a finite volume upwind approach in
terms of finite elements. A comparison with the standard FEM shows that this
method is able to give results on relatively coarse grids without the occurrence of
oscillations.





6 | A continuous reaction-diffu-
sion-advection model for
yeast cell polarization

Up to now, we have provided a lot of information about the modeling, the numerical
simulation, and the analysis of partial differential equations. By means of these
preliminaries, as well as the biological background provided in Chapter 2, we are now
able to derive a mathematical model for yeast cell polarity. The preceding analysis
of experimental data and mathematical models made clear that many different
processes act in parallel to achieve symmetry breaking. Starting with a complex
model simulating the mentioned pathways, we are aiming to develop a minimal
continuous mathematical model bringing together all the findings that are known
to be required for cell polarization. Under consideration of different pathways the
model should account for the pathological cases shown in Figure 2.8.

6.1. The reaction-diffusion system
To simulate yeast cell polarization, we start with a simple reaction-diffusion system
modeling the actin-independent pathways presented in Chapter 2. We avoid simply
extending the model introduced in [32] and provide a new approach which does
not rely only on the Bem1-mediated complex formation. We combine the results
of [28, 32, 48, 84] and introduce a new model that considers a different approach
to the reactions between Cdc42, Cla4, Bem1, and its GEF Cdc24 as well its GDI
Rdi1. This allows us to focus on the identification of the mechanism required for
GDI-mediated polarity.
As already mentioned, it is well known that Bem1 forms a complex with Cdc24,
the exchange factor of Cdc42, which is able to change between the cytosol and
the plasma membrane [13, 16]. Cdc24 also attaches to the plasma membrane by
binding to the GTPase Rsr1. Since Rsr1 is required for polarity even in the absence
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of actin [68], the disruption of both shows that the established polar cap exhibits
drastically reduced spatial and temporal stability. In addition, ∆rsr1∆bem1 double
mutants fail to polarize. This leads to the assumption that Bem1 and Rsr1 share a
role in Cdc24 localization [84]. We are aiming to include this alternative explanation
into our approach and assume that Cdc24 generally shuttles between the cytosol and
the plasma membrane by binding to Bem1 or Rsr1 at the plasma membrane. Thus,
we simulate a stable Cdc24 GEF complex that cycles between the plasma membrane
and the cytosol. Additionally, we include a GDI-mediated feedback mechanism
proposed by [48,84]. Since it has been shown that the PAK family kinase Cla4 as
an effector of Cdc42-GTP can disrupt the binding of Cdc42 with its GDI Rdi1 and
hence lead to the membrane attachment [91], we assume that the unbinding rate of
GDI is proportional to Cdc42 in its active form.
To incorporate the suggested Cdc24 phosphorylation via Cla4 which leads to a de-
creased GEF activity, we take the simplified assumption that Cdc24 in its membrane-
bound state decreases proportional to Cdc42-GTP. Similar to several previous studies
we formulate simplified model assumptions. These are the basis used to derive a
system of PDEs which simulates the proposed protein interactions and diffusion of
molecules.

Model assumptions

1. The species only change between distinct forms. Neither depletion nor synthesis
during cell polarization occurs. This means that the total mass of the substances
remains constant over the time scale on which the cell polarizes.

2. The GTPase Cdc42 has a basal rate of activation (GTP-association), and a
basal turnover or inactivation rate (GTP-hydrolysis). Activation and inactiva-
tion of Cdc42 are indirect processes via the GEFs and GAPs respectively. These
basal reactions are represented by a first-order rate constant. Furthermore,
the membrane-bound Cdc24 GEF complex catalyzes the Cdc42-GDP/GTP
exchange.

3. The GTPase Cdc42 switches between a plasma membrane-bound and, by
binding to GDI, a cytosolic state. Cdc42 cannot exchange GDP for GTP while
bound to GDI, but Cdc42-GTP indirectly disrupts the Cdc42-GDI complex
via its effector Cla4.

4. The GEF Cdc24 transfers between the plasma membrane and the cytosol by
binding to either Bem1 or Rsr1. Since Cdc42 is also able to bind to both Bem1
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Figure 6.1.: Reaction scheme of the model system. A schematic representation of the
modeled reactions. Cdc42 in its active form is able to induce two independent pathways leading
to a further recruitment of Cdc42 to the plasma membrane. A negative feedback represents
phosphorylation of Cdc42. The respective reaction rates are given in Table 6.1.

and Rsr1, the localized membrane attachment of Cdc24 leads to the activation
of Cdc42. This induces a further recruitment of Bem1 that in turn stabilizes
Cdc24 at this site. Summarized, it is assumed that the membrane-bound Cdc24
increases proportional to the local amount of Cdc42-GTP.

5. Cla4 as an effector of active Cdc42 disrupts the Cdc42-GDI complex. As a
consequence, the GDI release rate indirectly depends on the rate of active
Cdc42.

6. The PAK kinase Cla4 phosphorylates the GEF Cdc24 resulting in a detachment
from the plasma membrane. This rate is also proportional to the amount of
Cdc42-GTP.

7. The membrane-bound species have equal diffusion rates.

8. The diffusion in the cytosol is much faster than on the plasma membrane. This
implies a well mixed and approximately spatially homogeneous cytosolic pool.

9. The amount of GDI in the cell is sufficiently large and no limiting factor. The
exchange of Cdc42 in its GDI-bound state between the plasma membrane and
the cytosol is very fast and quickly reaches a steady state. Hence, it suffices to
consider one cytosolic GDI-bound state of Cdc42.

The modeled interactions are summarized in the reaction scheme illustrated in Figure
6.1.
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To account for the geometry of the cell, we distinguish between the interior domain
(ΩC) and its surface (ΓC). Whereas ΩC represents the cytosol, ΓC defines the plasma
membrane. In the two-dimensional case the cell is represented by a disc-shaped
geometry. In 3D the cell is reflected by a sphere (see Figure 6.2).

(a) (b)

Figure 6.2.: Model geometry for the reaction-diffusion system. Scheme of the computa-
tional domain for the reaction-diffusion system. ΩC represets the cytososlic volume with boundary
ΓC , which is the one- or two-dimensional surface of the domain ΩC . (a) In 2D the cell is represented
by a disc-shaped cell. (b) In 3D the cell is represented by a three-dimensional sphere.

The model variables are defined as follows:

CT plasma membrane-bound (GTP-bound) active Cdc42
CD plasma membrane-bound (GDP-bound) inactive Cdc42
CI cytosolic (GDI-bound) inactive Cdc42
GB plasma membrane-bound (active) GEF Cdc24
GF cytosolic (inactive) GEF Cdc24

Based on Figure 6.1 and on the instructions provided in Appendix A, the respective
reaction-diffusion equations can be derived. For t ∈ [0, T ], on ΩC , the system reads

∂tCI =∇ · (Dc∇CI), (6.1)
∂tGF =∇ · (Dc∇GF ). (6.2)

The set of PDEs describing the time evolution of protein concentrations on the
surface ΓC is given by

∂tCT =(k+
1 + k1GB)CD − k−

1 CT + ∇ΓC
· (Dm∇ΓC

CT ), (6.3)
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∂tCD =k−
1 CT − (k+

1 + k1GB + k−
2 )CD + (k+

2 + k2CT )CI (6.4)
+ ∇ΓC

· (Dm∇ΓC
CD),

∂tGB =(k+
3 + k3CT )GF − (k−

3 + k4CT )GB + ∇ΓC
· (Dm∇ΓC

GB). (6.5)

and the equations

−Dc∇CI · n⃗ =(k+
2 + k2CT )CI − k−

2 CD, (6.6)
−Dc∇GB · n⃗ =(k+

3 + k3CT )GF − (k−
3 + k4CT )GB, (6.7)

describe the cytosolic flux of proteins to the membrane.

6.2. The reaction-diffusion-advection system

We further extend model (6.1)-(6.7) by incorporating a transport mechanism for
Cdc42. To differentiate our model system from prior ones, we prefer to use continu-
ous equations instead of a stochastic approach and make use of advection-diffusion
equations.
The derivation of equations that simulate the suggested actin-mediated feedback
require further model assumptions on actin cable nucleation, exocytosis, and endo-
cytosis.
For actin cable nucleation we suppose the following:

1. The movement of actin cables depends indirectly on Cdc42-GTP.

2. The number of actin cable ends at the plasma membrane can be described as
a (actin cable) density.

3. Due to polymerization and depolymerization, cables attach to or disappear
from the plasma membrane. This process depends on active Cdc42 so that cable
nucleation can be described by inhomogeneous diffusion relative to Cdc42-GTP
concentration.

Mathematically, the last point can be written in terms of

∂tA = ∇ΓC
·

DA∇ΓC


A

c(CT )


.

Here, A denotes the actin cable density and c(CT ) describes a capacity function de-
pending on the concentration of active Cdc42-GTP that is given by CT . Throughout
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this thesis, we consider a simple linear function of the form c(CT ) = v · CT .

For endocytosis and exocytosis we take the following model assumptions:

1. Exocytosis and endocytosis enforce the shuttling between the interior of the
cell and the plasma membrane.

2. Endocytosis extracts vesicles containing Cdc42 from the plasma membrane
to internal compartments. Cables transport vesicles with Cdc42 from internal
compartments to the plasma membrane.

3. Since the transport direction of exocytosis depends on actin cables, the velocity
field driving vesicle movement depends on the actin cable density.

4. The rate of exocytosis is proportional to the number of delivered vesicles near
the plasma membrane.

5. The respective rate of endocytosis is proportional to the amount of Cdc42 in
its active or inactive form on the plasma membrane.

6. Vesicle trafficking involves Cdc42-GTP as well as Cdc42-GDP.

The cell contains different large components like the nucleus, the endoplasmic
reticulum, or the Golgi apparatus. Furthermore, actin cables are aligned along the
plasma membrane. For this reason, we restrict the molecule transport to a specific
domain defined by a ring along the plasma membrane. This implies changes in the
model geometry. We differentiate between a cytosolic domain (ΩC := ΩC1 ∪ ΩC2)
and a transport domain (ΩC1) (see Figure 6.3).
Up to now, vesicle transport has not been investigated in detail. It is supposed that
endocytic vesicles move to internal compartments where they are converted and
finally delivered back to the plasma membrane [79]. Here, we derive two approaches
for vesicle transport through the cell.

6.2.1. Transport from and to internal membranes

As a first issue we consider an exchange of vesicles between internal membranes and
the plasma membrane. We assume that vesicles which are internalized at the plasma
membrane move to internal membranes or other compartments. There, the vesicles
may diffuse or be converted before they are released to be transported back to the
plasma membrane.
Transferring these assumptions to our model problem implies changes in the model
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(a) (b)

Figure 6.3.: Model geometry for the reaction-diffusion-advection system. Scheme of
the computational domain for the reaction-diffusion-advection system. ΩC1 represents the outer
transport domain of the cell with inner surface boundary ΓC2 . ΩC2 ∪ ΩC2 describes the cytososlic
volume. The surface ΓC1 finally defines the plasma membrane. (a) In 2D the cell is represented by
a disc-shaped cell. (b) In 3D the cell is represented by a three-dimensional sphere.

geometry. It is required to consider an additional surface in the interior of the cell
reflecting internal membranes. Furthermore, it is necessary to explicitly model the
movement of vesicles in both directions. Let CT Va and CDVa as well as CT Vr and CDVr

denote the vesicles containing Cdc42-GTP and Cdc42-GDP moving in anterograde
(outward) and retrograde (inward) direction. With CT Vi

and CDVi
we denote the

amount of active and inactive Cdc42 on internal membranes respectively. Further,
let v⃗a and v⃗r be the velocity fields for each transport direction. Based on the simple
idea that a potential flow describes the velocity field as the gradient of a scalar
function, we introduce potential functions to calculate the velocity fields.
Consider the reaction-diffusion-advection equation for an arbitrary u(x, t) with
x ∈ Rn and t ∈ R+

∂tu = ∆u− ∇ · (⃗au) + f. (6.8)

We can now define a potential function Φ(x, t) as a continuous function

a⃗ = ∇Φ. (6.9)

In the case a⃗ irrotational it holds

∇ × a⃗ = 0. (6.10)
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Finally, with a⃗ divergence free and substitution of (6.9) into (6.10), it follows

∇a⃗ = ∇2Φ = 0.

Summarized, considering equation (6.9), for (6.8) the reduced problem is given by

∂tu = ∆u− ∇ · (u∇Φ) + f,

∆Φ = 0.

Thus, the velocity field is simply given by a calculation of the Laplace equation.
When applying these results, the PDEs on ΩC1 for CT Va , CDVa , CT Vr and CDVr as
well as Φa and Φr read

∂tCT Va =∇ · (Dv∇CT Va) − ∇ · (CT Va∇Φa),
∂tCDVa =∇ · (Dv∇CDVa) − ∇ · (CDVa∇Φa),
∂tCT Vr =∇ · (Dv∇CT Vr) − ∇ · (CT Vr∇Φr),
∂tCDVr =∇ · (Dv∇CDVr) − ∇ · (CDVr∇Φr),

0 =∆Φa,

0 =∆Φr,

where t ∈ [0, T ]. To get a unique solution for the potential flow, appropriate initial
and boundary conditions are required. Since the direction of transport towards the
plasma membrane depends on actin cables, on ΓC1 we set

∇Φa · n⃗ =c1 · A.

We further assume that the inward transport extends in radial direction and define

−∇Φr · n⃗ =c2.

On the interior surface ΓC2 we assume homogeneous Dirichlet boundary conditions.
Furthermore, we suppose that the rate of exocytosis depends on the amount of
vesicles containing Cdc42. This means that on ΓC1 the coupling equations read

−(Dv∇CT Va − CT Va∇Φa) · n⃗ =e1 · CT Va ,

−(Dv∇CDVa − CDVa∇Φa) · n⃗ =e1 · CDVa ,

−(Dv∇CT Vr − CT Vr∇Φr) · n⃗ = − e2 ·


1 − A

Amax


· CT ,
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−(Dv∇CDVr − CDVr∇Φr) · n⃗ = − e2 ·


1 − A

Amax


· CD.

The surface equations (6.3)-(6.4) change to

∂tCT =(k+
1 + k1GB)CD − k−

1 CT + e1 · CT Va − e2 ·


1 − A

Amax


· CT

+ ∇ΓC1
· (Dm∇ΓC1

CT ),
∂tCD =k−

1 CT − (k+
1 + k1GB + k−

2 )CD + (k+
2 + k2CT )CI + e1 · CDVa

− e2 ·


1 − A

Amax


· CD + ∇ΓC1

· (Dm∇ΓC1
CD).

The parameters e1 and e2 describe the rate of exocytosis and endocytosis respectively.
Amax is a limiting factor regulating the rate of endocytosis dependent on the total
number of actin cables. By this limiting factor we keep rates of endocytosis in regions
with a high number of actin cables low. Note that for the case Amax > A we set
e2 = 0.
On the internal surface ΓC2 the equations are given by

∂tCT Vi
= e3 · CT Vr − e4 · CT Vi

+ ∇ΓC2
· (Dm∇ΓC2

CT Vi
),

∂tCDVi
= e3 · CDVr − e4 · CDVi

+ ∇ΓC2
· (Dm∇ΓC2

CDVi
),

where e3 and e4 denote the exchange rates between the internal membranes and
the transport domain. The equations describing the flux between both domains are
represented by

−(Dv∇CT Vr − CT Vr∇Φr) · n⃗ =e3 · CT Vr ,

−(Dv∇CDVr − CDVr∇Φr) · n⃗ =e3 · CDVr ,

−(Dv∇CT Va − CT Va∇Φa) · n⃗ = − e4 · CT Vi
,

−(Dv∇CDVa − CDVa∇Φa) · n⃗ = − e4 · CDVi
.

Summarized, we derive a coupled bulk-surface reaction-diffusion-advection system.
On ΓC1 it holds

∂tCT =(k+
1 + k1GB)CD − k−

1 CT + e1 · CT Va − e2 ·


1 − A

Amax


· CT (6.11a)

+ ∇ΓC1
· (Dm∇ΓC1

CT ),
∂tCD =k−

1 CT − (k+
1 + k1GB + k−

2 )CD + (k+
2 + k2CT )CI + e1 · CDVa (6.11b)

− e2 ·


1 − A

Amax


· CD + ∇ΓC1

· (Dm∇ΓC1
CD),
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∂tGB =(k+
3 + k3CT )GF − (k−

3 + k4CT )GB + ∇ΓC1
· (Dm∇ΓC1

GB), (6.11c)

∂tA =∇ΓC
·

DA∇ΓC


A

c(CT )


. (6.11d)

Whereas the flow of molecules from the cytosol (ΩC) to the plasma membrane (ΓC1)
is given by

−Dc∇CI · n⃗ =(k+
2 + k2CT )CI − k+

2 CD, (6.11e)
−Dc∇GF · n⃗ =(k+

3 + k3CT )GF − (k−
3 + k4CT )GB, (6.11f)

the flow of molecules from internal compartments (ΩC1) to the plasma membrane
(ΓC1) is described by

−(Dv∇CT Va − CT Va∇Φa) · n⃗ =e1 · CT Va , (6.11g)
−(Dv∇CDVa − CDVa∇Φa) · n⃗ =e1 · CDVa , (6.11h)

−(Dv∇CT Vr − CT Vr∇Φr) · n⃗ = − e2 ·


1 − A

Amax


· CT , (6.11i)

−(Dv∇CDVr − CDVr∇Φr) · n⃗ = − e2 ·


1 − A

Amax


· CD. (6.11j)

On ΩC1 it holds that

∂tCT Va =∇ · (Dv∇CT Va) − ∇ · (CT Va∇Φa), (6.11k)
∂tCDVa =∇ · (Dv∇CDVa) − ∇ · (CDVa∇Φa), (6.11l)
∂tCT Vr =∇ · (Dv∇CT Vr) − ∇ · (CT Vr∇Φr), (6.11m)
∂tCDVr =∇ · (Dv∇CDVr) − ∇ · (CDVr∇Φr), (6.11n)

0 =∆Φa, (6.11o)
0 =∆Φr, (6.11p)

and on ΩC2 the equations read

∂tCI =∇ · (Dc∇CI), (6.11q)
∂tGF =∇ · (Dc∇GF ). (6.11r)

Finally, on ΓC2 it holds that

∂tCT Vi
= e3 · CT Vr − e4 · CT Vi

+ ∇ΓC2
· (Dm∇ΓC2

CT Vi
),

∂tCDVi
= e3 · CDVr − e4 · CDVi

+ ∇ΓC2
· (Dm∇ΓC2

CDVi
),
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with the flux conditions

−(Dv∇CT Vr − CT Vr∇Φr) · n⃗ =e3 · CT Vr , (6.11s)
−(Dv∇CDVr − CDVr∇Φr) · n⃗ =e3 · CDVr , (6.11t)
−(Dv∇CT Va − CT Va∇Φa) · n⃗ = − e4 · CT Vi

, (6.11u)
−(Dv∇CDVa − CDVa∇Φa) · n⃗ = − e4 · CDVi

. (6.11v)

This model is very complex and contains many unknown parameters. As we will see
later, the results are very similar to those of a simpler system.

6.2.2. Transport through a domain

In this section we present a system which is based on the assumption that vesicles
which are exchanged by transport generally move through a defined domain. Although
these molecules attach and detach to and from internal membranes as well as cross
internal compartments, they finally move from one side to another. From this point
of view, it is sufficient to consider only one gradient driving vesicles through the
domain. Let CT V and CDV denote vesicles containing Cdc42-GTP and Cdc42-GDP
respectively. Let Φ be a continuous function for a velocity field that simulates the
movement along cables. Then, we can reduce (6.11a)-(6.11v) by simulating only the
concentrations CT V and CDV in the transport domain. In ΓC1 it holds that

∂tCT =(k+
1 + k1GB)CD − k−

1 CT + e1 · CT V − e2 ·


1 − A

Amax


· CT (6.12a)

+ ∇ΓC1
· (Dm∇ΓC1

CT ),
∂tCD =k−

1 CT − (k+
1 + k1GB + k−

2 )CD + (k+
2 + k2CT )CI + e1 · CDV (6.12b)

− e2 ·


1 − A

Amax


· CD + ∇ΓC1

· (Dm∇ΓC1
CD),

∂tGB =(k+
3 + k3CT )GF − (k−

3 + k4CT )GB + ∇ΓC1
· (Dm∇ΓC1

GB), (6.12c)

∂tA =∇ΓC
·

DA∇ΓC


A

c(CT )


. (6.12d)

Whereas the flow of molecules from the cytosol (ΩC) to the plasma membrane (ΓC1)
is given by

−Dc∇CI · n⃗ =(k+
2 + k2CT )CI − k+

2 CD, (6.12e)
−Dc∇GF · n⃗ =(k+

3 + k3CT )GF − (k−
3 + k4CT )GB, (6.12f)
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Figure 6.4.: Transport scheme of the vesicle trafficking machinery. Schematic representa-
tion of vesicle trafficking in budding yeast. Actin cables deliver vesicles containing Cdc42-GTP and
Cdc42-GDP from internal membranes via actin cables towards the polar cap. In turn, endocytosis
recycles plasma membrane-bound Cdc42.

the flow of molecules from internal compartments (ΩC1) to the plasma membrane
(ΓC1) is described by

−(Dv∇CT V − CT V ∇Φ) · n⃗ =e1 · CT V − e2 ·


1 − A

Amax


· CT , (6.12g)

−(Dv∇CDV − CDV ∇Φ) · n⃗ =e1 · CDV − e2 ·


1 − A

Amax


· CD. (6.12h)

On ΩC1 it holds that

∂tCT V =∇ · (Dv∇CT V ) − ∇ · (CT V ∇Φ), (6.12i)
∂tCDV =∇ · (Dv∇CDV ) − ∇ · (CDV ∇Φ), (6.12j)

0 =∆Φ − αΦ, (6.12k)

and on ΩC we set

∂tCI =∇ · (Dc∇CI), (6.12l)
∂tGF =∇ · (Dc∇GF ). (6.12m)

The boundary condition for the potential function Φ on ΩC1 reads

∇Φ · n⃗ =c0 · A. (6.12n)

Note that (6.12k) now includes the linear term αΦ to ensure uniqueness and existence
of a solution. This is in contrast to the equations (6.11o) and (6.11p) and is a result
of not posing homogeneous boundary conditions on the interior surface.
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Figure 6.4 schematically shows the actin-mediated transport of active Cdc42 and
inactive Cdc42 that is bound to vesicles.
The equations for the transport mechanism in the latter system are very similar to a
coupled bulk-surface reaction-diffusion-advection model proposed in [2]. This study
investigates a system of two interacting molecules, an internal component V and a
membrane-bound component u. It is given by equations

∂tV = D∆V − ∇ · (V∇c),
0 = ∆c− αc

in Ω × (0, T ) and

∂tu = d∆Γu+ q(V, u)

on Γ × (0, T ). With the flux conditions

−(D∇V − V∇c) · n⃗ = q(V, u),
∇c · n⃗ = βu

on Γ × (0, T ) it simulates actin-mediated spontaneous cell polarization. The model
resembles the Patlak-Keller-Segel (PKS) chemotaxis system. It is shown that for a
certain smallness condition on the initial data the system is well-posed and features
a classical solution [2]. However, this system does not include the reaction machinery
and hence does not account for the whole process of cell polarization.

6.3. Numerical simulations

Let us now investigate the models presented using numerical simulations. In order to
apply finite element methods for discretization in space, we derive a weak formulation
of model equations (6.12a)-(6.12n). Therefore, we define the Sobolev spaces Vsur :=
H1(ΓC1), Vbulk := H1(ΩC1 ∪ ΩC2) = H1(ΩC), and Vring := H1(ΩC2) containing weak
solutions of equations.

Weak formulation

d

dt


ΓC1

CTφ1 dS =


ΓC1


(k+

1 + k1GB


ΓC1

)CD − k−
1 CT + e1 · CT V


ΓC1


φ1 dS

+


ΓC1


−e2 ·


1 − A

Amax


· CT


φ1 dS
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+


ΓC1

∇ΓC1
· (Dm∇ΓC1

CT )φ1 dS,

d

dt


ΓC1

CDφ2 dS =


ΓC1


k−

1 CT − (k+
1 + k1GB


ΓC1

+ k+
2 )CD


φ2 dS

+


ΓC1


(k−

2 + k2CT )CI


ΓC1


φ2 dS

+


ΓC1


e1 · CDV


ΓC1

− e2 ·


1 − A

Amax


· CD


φ2 dS

+


ΓC1

∇ΓC1
· (Dm∇ΓC1

CD)φ2 dS,

d

dt


ΓC1

GBφ3 dS =


ΓC1


(k+

3 + k3CT )GF


ΓC1

− (k−
3 + k4CT )GB


ΓC1


φ3 dS

+


ΓC1

∇ΓC1
· (Dm∇ΓC1

GB)φ3 dS,

d

dt


ΓC1

Aφ4 dS =


ΓC1

∇ΓC1
·

DA∇ΓC1


A

v · CT


φ4 dS,

d

dt


ΩC

CIφ5 dB =


ΩC

∇ · (Dc∇CI)φ5 dB,

d

dt


ΩC

GFφ6 dB =


ΩC

∇ · (Dc∇GF )φ6 dB,

d

dt


ΩC1

CT V φ7 dR =


ΩC1

[∇ · (Dv∇CT V ) − ∇(CT V · ∇Φ)]φ7 dR,

d

dt


ΩC1

CDV φ8 dR =


ΩC1

[∇ · (Dv∇CDV ) − ∇(CDV · ∇Φ)]φ8 dR,

0 =


ΩC1

[∇ · (∇Φ) − αΦ]φ9 dR.

Using the integration by parts formula for Sobolev spaces and the respective boundary
conditions, we have

d

dt


ΓC1

CTφ1 dS =


ΓC1


(k+

1 + k1GB)CD − k−
1 CT + e1 · CT V


ΓC1


φ1 dS

+


ΓC1


−e2 ·


1 − A

Amax


· CT


φ1 dS

−


ΓC1

Dm∇ΓC1
CT · ∇ΓC1

φ1 dS,

d

dt


ΓC1

CDφ2 dS =


ΓC1


k−

1 CT − (k+
1 + k1GB + k+

2 )CD


φ2 dS

+


ΓC1


(k−

2 + k2CT )CI


ΓC1


φ2 dS

+


ΓC1


e1 · CDV


ΓC1

− e2 ·


1 − A

Amax


· CD


φ2 dS
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−


ΓC1

Dm∇ΓC1
CD · ∇ΓC1

φ2 dS,

d

dt


ΓC1

GBφ3 dS =


ΓC1


(k+

3 + k3CT )GF


ΓC1

− (k−
3 + k4CT )GB


φ3 dS

−


ΓC1

Dm∇ΓC1
GB · ∇ΓC1

φ3 dS,

d

dt


ΓC1

Aφ4 dS = −


ΓC1

DA∇ΓC1


A

v · CT


· ∇ΓC1

φ4 dS,

d

dt


ΩC

CIφ5 dB = −


ΩC

Dc∇CI · ∇φ5 dB −


ΓC1


(k−

2 + k2CT )CI


ΓC1


φ5


ΓC1

dS,

d

dt


ΩC

GFφ6 dB = −


ΩC

Dc∇GF · ∇φ6 dB −


ΓC1


(k+

3 + k3CT )GF


ΓC1


φ6


ΓC1

dS

d

dt


ΩC1

CT V φ7 dR = −


ΩC1

[Dv∇CT V − CT V · ∇Φ] · ∇φ7 dR

−


ΓC1


e1 · CT V


ΓC1

− e2 ·


1 − A

Amax


· CT


φ7


ΓC1

dS,

d

dt


ΩC1

CDV φ8 dR = −


ΩC1

[Dv∇CDV − CDV · ∇Φ] · ∇φ8 dR

−


ΓC1


e1 · CDV


ΓC1

− e2 ·


1 − A

Amax


· CD


φ9


ΓC1

dS,

0 = −


ΩC1

∇Φ · ∇φ9 dR −


ΩC1

αΦφ9 dR +


ΓC1

c0 · Aφ9


ΓC1

dS.

To find a weak solution of the model equations derived above, we now have
to look for a solution (CT , CD, GB, A, CI , GF , CT V , CDV ,Φ) ∈ L2([0, T ],Vsur) ×
L2([0, T ],Vbulk) × L2([0, T ],Vring), so that

d

dt


ΓC1

CTφ1 dS =


ΓC1


(k+

1 + k1GB)CD − k−
1 CT + e1 · CT V


ΓC1


φ1 dS

+


ΓC1


−e2 ·


1 − A

Amax


· CT


φ1 dS

−


ΓC1

Dm∇ΓC1
CT · ∇ΓC1

φ1 dS,

d

dt


ΓC1

CDφ2 dS =


ΓC1


k−

1 CT − (k+
1 + k1GB + k+

2 )CD


φ2 dS

+


ΓC1


(k−

2 + k2CT )CI


ΓC1


φ2 dS

+


ΓC1


e1 · CDV


ΓC1

− e2 ·


1 − A

Amax


· CD


φ2 dS

−


ΓC1

Dm∇ΓC1
CD · ∇ΓC1

φ2 dS,
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d

dt


ΓC1

GBφ3 dS =


ΓC1


(k+

3 + k3CT )GF


ΓC1

− (k−
3 + k4CT )GB


φ3 dS

−


ΓC1

Dm∇ΓC1
GB · ∇ΓC1

φ3 dS,

d

dt


ΓC1

Aφ4 dS = −


ΓC1

DA∇ΓC


A

v · CT


· ∇ΓC1

φ4 dS

= DA

(v · C2
T )


ΓC1


A · ∇ΓC1

CT − CT · ∇ΓC1
A


∇ΓC1
φ4 dS,

d

dt


ΩC

CIφ5 dB = −


ΩC

Dc∇CI · ∇φ5 dB −


ΓC1


(k−

2 + k2CT )CI


ΓC1


φ5 dS,

d

dt


ΩC

GFφ6 dB = −


ΩC

Dc∇GF · ∇φ6 dB −


ΓC1


(k+

3 + k3CT )GF


ΓC1


φ6 dS,

d

dt


ΩC1

CT V φ7 dR = −


ΩC1

[Dv∇CT V − CT V · ∇Φ] · ∇φ7 dR

−


ΓC1


e1 · CT V


ΓC1

− e2 ·


1 − A

Amax


· CT


φ7 dS,

d

dt


ΩC1

CDV φ8 dR = −


ΩC1

[Dv∇CDV − CDV · ∇Φ] · ∇φ8 dR

−


ΓC1


e1 · CDV


ΓC1

− e2 ·


1 − A

Amax


· CD


φ8 dS,

0 = −


ΩC1

∇Φ · ∇φ9 dR −


ΩC1

αΦφ9 dR +


ΓC1

c0 · Aφ9 dS.

for all φ1, φ2, φ3, φ4 ∈ Vsur, φ5, φ6 ∈ Vbulk, φ7, φ8, φ9 ∈ Vring and each t ∈ [0, T ].

To compare the impact of distinct spatial effects, the models are excited and probed
with different kinds of signals. To generate random initial perturbations we take
random numbers θ from the interval [0, 1] and use these numbers to generate a noise
function with amplitude a. We only disturb the initial concentration of active Cdc42.
Specifically, for each simulation with initial concentration CT0 , we assign each node
of the subgrid for the surface domain with the value CT0 + θ · a.
To simulate one or two local stimuli on a surface area with width w, we use functions

s1(x⃗, t) =

 S0, if t < t1 and dist (x⃗S1 , x⃗) < w,

0, otherwise
(6.16)

and

s2(x⃗, t) =


S1, if t < t1 and dist (x⃗S1 , x⃗) < w,

S2, if t < t2 and dist (x⃗S2 , x⃗) < w,

0, otherwise.

. (6.17)
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and calculate

F ST (CT , CI , CT V , GB, A) = F (CT , CI , CT V , GB, A) + si(x⃗, t)CI , i = 1, 2,

where F represents the reaction kinetics in (6.12a).
Here, dist(x⃗1, x⃗2) denotes the Euclidean distance between two points x⃗1 and x⃗2. The
stimuli are applied for a time period of ∆t = 5 minutes.
We are aiming to base all the used model variables on experimental evidence and
take parameter values and data concerning the amount and the distribution of Cdc42
and Cdc24 from the literature. Some reaction rates and diffusion constants have
already been measured and used for prior simulations (see Table 6.1). The remaining
rates are chosen to quantitatively display characteristics of control cells as well as to
reflect LatA-treated or ∆bem1 and ∆rdi1 cells.

Description Rate Units Value
basal activation of Cdc42 k+

1 s−1 0.002
basal inactivation of Cdc42 k−

1 s−1 1
activation via Cdc24 k1 µm2s−1 0.2
GDI binding rate k+

2 µms−1 0.5
GDI unbinding rate k−

2 s−1 0.0035
GDI unbinding rate via Cla4 k2 µm3s−1 0.1
Cdc24 membrane attachment k+

3 µms−1 1
Cdc24 membrane detachment k−

3 s−1 0.35
Bem1-mediated recruitment k3 µm3s−1 0.085
Cla4-mediated phosphorylation k4 µm2s−1 0.015
diffusion on the membrane Dm µm2s−1 0.036
diffusion in the cytosol Dc µm2s−1 11
cell radius R µm 3.95
total Cdc42 ≈ 3000
total Cdc24 ≈ 1000

Table 6.1.: Reaction rate constants and parameter estimates used to solve the reaction-
diffusion system. The rates used to solve system (6.1)-(6.7) are shown. To simulate a cell lacking
Rdi1 we set k+

2 = 0. In order to investigate the ∆bem1 case, we use strongly reduced rates
k3 = 0.035 and k4 = 0.0055.

6.3.1. Polarization in the absence of actin-mediated transport

We firstly consider the reaction-diffusion system (6.1)-(6.7). Since this system neglects
transport mechanisms, it simulates a cell treated with LatA. It has been shown
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that such cells are able to polarize as long as the GDI pathway as well as the local
Cdc42 activating pathway are intact. Whereas in ∆rsr1 cells symmetry breaking
occurs due to stochastic fluctuations, polarization in control cells is regulated by
local activation. We start with numerical experiments in 3D. For the simulations we
use the parameters summarized in Table 6.1.
Figure 6.11 (a) demonstrates actin-independent polarization. Due to random noise or
an initial stimulus of the activating factor Cdc24, the system tends to form a polar
cluster of Cdc42-GTP. The results are very similar to those achieved using previous
models for cell polarity. Starting from a small perturbation of the initial homogeneous
distribution of molecules, the system generates a spatial inhomogeneous pattern at
the surface. On the other hand, due to fast diffusion in the cytosol, the concentrations
in the bulk domain are nearly homogeneously distributed. In this case, the fast
diffusion of cytosolic molecules close to the cluster balances the flux resulting from
the continuous exchange between the cytosol and the plasma membrane.
As in [32, 48], the inhomogeneous state of approach (6.1)-(6.7) is the result of a
mass-conserved Turing-type pattern formation process which is based on distinct
diffusion velocities and an autocatalytic activation of Cdc42-GTP. Thus, the system
features can be studied in terms of a linear stability analysis.
In order to investigate the model in more detail, we further consider the two-
dimensional reduction. In this case, we have to scale the system. Therefore, we
multiply the respective parameters and state variables with a scalar given by the
ratio between the surface and the bulk volume. As we will see, this approach does
not significantly change the qualitative behavior of solutions.
At first, we test the influence of different perturbations on the initial state. Figure
6.5 illustrates how a localized stimulus determines the site and the temporal course
of cap formation. For random noise we observe that the cluster slowly forms at a
random position of the surface. Contrarily, a single local stimulus leads to the local
amplification of Cdc42-GTP at this site. This also implies an acceleration of the
polarization process such that the system quickly reaches the maximum value of
Cdc42-GTP. For two equal stimuli located at opposite sides we observe two transient
clusters that immediately merge together after the fall of excitation. Interestingly,
in all cases the initial perturbation only influences the time course of polarization
but not the Cdc42-GTP cluster height.
Figure 6.6 shows how parameter changes affect the polar cap of Cdc42-GTP as well
as the ratio between cytosolic and membrane-bound Cdc42. For instance, a small
hydrolysis rate k−

1 leads to a high amount of Cdc42 at the plasma membrane and
hence to an increased Cdc42-GTP concentration. In contrast to this, a hydrolysis
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rate k−
1 > 1.5 impedes the establishment of polarity. In this case, the local amount

of Cdc42-GTP at the plasma membrane falls short of a certain threshold which is
needed to amplify symmetry breaking by a positive feedback activation and cytosolic
recruitment.
Figure 6.6 (c)-(f) illustrate the necessity of a GDI-mediated exchange and a local
GEF activation in LatA-treated cells. We see that an increased rate of k−

2 leads to a
high cytosolic pool of Cdc42, preventing the cell from polarizing. A decrease of k−

2

close to zero also impedes polarization. Similarly, we see that the GEF membrane
recruitment rate must exceed a certain threshold to ensure that the system generates
an inhomogeneous pattern.
Figure 6.6 (g) demonstrates how the phosphorylation rate influences the maximum
value of Cdc42-GTP within the polar cluster. It becomes clear that whereas an
increased rate destabilizes the system, a reduced rate facilitates the auto-amplification
leading to very high rates of Cdc42-GTP. For instance, for k4 = 0.0 the maximal
amount of the GTPase is nearly three times higher than for the parameter used to
simulate control cells. However, it can be shown that the rates k3 and k4 are closely
related. This means that high amounts of membrane-bound Cdc42-GTP can be
buffered by a lower rate of GEF recruitment.

6.3.2. Enhanced polarization by actin-mediated transport

Next, we ask whether actin-mediated transport can enhance the polar cluster during
cap formation or rather disturb the pattern formation process. Due to computation
time and a lot of unknown parameters in (6.11a)-(6.11v), we initially focus on results
of (6.12a)-(6.12n).
The simulation illustrated in Figure 6.11 (b) shows how vesicle trafficking can re-
inforce polarity. It demonstrates that a small perturbation of the initial uniform
distribution again generates a polar cluster of active Cdc42. As a consequence thereof,
the actin cable density also polarizes. This density in turn controls the gradient
driving further molecules from internal compartments to the polarized site. We
obtain about 35% of all Cdc42 on the plasma membrane, 42% in the cytosol and
13% on internal membranes. Figure 6.7 shows the final polar cluster of Cdc42-GTP
for a two-dimensional disc and the corresponding velocity field.
Concerning the time course of polarity establishment our results nicely fit to bio-
logical experiments. A treatment of cells with LatA has demonstrated the effect of
actin-mediated transport. Whereas cells with intact actin structures had formed a
polar cap of Cdc42 within 30-40 minutes, LatA treated cells polarized within around
70 minutes with significant reduced rate [98]. From Figure 6.11 (b) we observe that
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(a) (b)

(c) (d)

Figure 6.5.: Comparison of stimuli induced polarity for cells treated with latrunculin
A. (a) A random perturbation on the initial state is sufficient to induce cell polarization. (b) A
located transient stimulus induces cell polarity with the same intensity. (c) Two equally strong
transient stimuli lead to one single polar cluster. (d) Whereas a single transient stimulus reduces
the term of polarization, two transient stimuli increase the duration of the polarization process.

the cluster forms within 25-30 minutes. Compared to Figure 6.11 (a), where cell
polarization occurs within 40-45 minutes, we see that transport can accelerate the
polarization process. Furthermore, the incorporated advection process leads to an
increased amount of polar Cdc42-GTP. These results correspond to those previously
reported [28]. It is also important to note that our simulations show an inherent
mechanism leading to symmetry breaking. The cell is able to polarize even without
any initial spatial perturbation. Thus, the formation of actin leading to the process of
exocytosis and endocytosis could be very important not only to maintain polarization
but also to initiate it. This confirms the results of studies using an artificial system
to investigate polarity that occurs through purely intrinsic mechanisms. In cells
expressing a constitutively active form of Cdc42 it has been shown that symmetry
breaking completely depends on actin polymerization and actin-based transport [96].
These findings together with our numerical results suggest that polarization does
not require any pre-existing asymmetry.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6.: Effect of parameter changes on polarization. (a) Maximal Cdc42-GTP con-
centration and (b) percentage amount of membrane-bound Cdc42 for different hydrolysis rates.
(c) Change of the maximum of membrane-bound Cdc42-GTP with respect to changes in the GDI
binding rate. (d) Varying values of cytosolic Cdc42 and (e) of active membrane-bound Cdc42
dependent on the GDI dissociation rate. (f) Effect of changes in the GEF membrane recruitment
rate on Cdc42-GTP intensity. (g) Maximum of membrane-bound Cdc42 and (h) the percentage of
membrane-bound Cdc42 with respect to changes in the phosphorylation rate.
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(a) (b) (c) (d)

Figure 6.7.: Computational results of the model considering transport trough a de-
fined domain. Cdc42-GTP cluster formation in the two-dimensional case is shown. (a) Cdc42-GTP
and Cdc42-GDP concentration at the plasma membrane after t = 1200s. (b) The distribution
of cytosolic Cdc42 is shown. (c) Visualization of the distribution of internal vesicles containing
Cdc42-GTP. (d) Illustration of the velocity field determined by the potential function Φ(x, t).

Another particular feature of our three-dimensional reaction-diffusion-advection
system is that it simulates a wandering pole. This wandering polarization site has
been reported in ∆rsr1 cells. It has been supposed that it may be influenced by the
balance between endocytosis and cable-directed delivery [53]. Indeed, our findings
demonstrate that this movement is controlled by the interplay of exocytosis and
endocytosis.
In order to analyze the enhanced model in more detail, we now consider two-
dimensional numerical simulations based on different parameter values. From Table
6.2 we obtain how vesicle transport stabilizes the system. Whereas an increase of
parameters k+

3 and k4 by the factor 2 impedes polarity in approach (6.1)-(6.7),
model (6.12a)-(6.12n) is still able to form an inhomogeneous pattern, albeit with less
intensity. With the factor 2 reduced values of k−

3 and k3 we observe similar results.
As we will see later, this stabilizing effect is important for cells lacking Bem1 or
Rdi1.
As demonstrated above, k4, which simulates phosphorylation via Cla4, buffers the
absolute value of Cdc42-GTP within the polar cap. In simulations reflecting control
cells we obtain similar results. For k4 = 0.0 the maximal amount of the GTPase is
nearly three times higher. This three fold increase is accompanied by a high amount
of Cdc42-GTP at the surface.
The combination of biological experiments with mathematical modeling previously
revealed that a balance of exocytosis and endocytosis is important to efficiently
maintain polarity. Moreover, it has been shown that polarity depends on the local-
ization of endocytosis relative to the exocytic pole where early endocytic proteins
are delivered. Co-localization of endocytosis and exocytosis within the Cdc42 cluster
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resulted in severe polarity defects [47].
Figure 6.8 illustrates how changes of parameters that control the transport mecha-
nism affect polarization. We see how values of Cdc42-GTP vary depending on choices
of rates for exocytosis and endocytosis. To obtain optimal polarity, both rates have
to balance out. Our results also suggest that the spatial organization of exocytosis
indeed influences the cluster formation at the bud-site. Interestingly, we see that a
change of Amax, the factor controlling local endocytosis, mainly affects the cluster
shape. Although a reduced rate leads to a decreased maximum value of Cdc42-GTP
within the cap, the total amount of Cdc42-GTP on the plasma membrane increases
for reduced values of Amax. This can be explained by the fact that the cap width
becomes broader as Amax decreases (see Figure 6.9 (a) and (b)).
We next investigate our model for the possibility to polarize in the presence of
endocytosis but in the absence of exocytosis. It is still unknown, whether the actin
cytoskeleton and the endocytic machinery operate independently. Experiments, us-
ing drugs that disrupt or inhibit the actin cytoskeleton, as well as genetic studies
suggest a functional connection between actin and endocytosis [6]. The identification
of several proteins that may function between the endocytic machinery and actin
supports this assumption [86]. From Figure 6.8 we obtain that our system is not
able to achieve robust polarity in the absence of exocytosis when endocytosis oc-
curs. These findings indicate that exocytic secretion is important to balance vesicle
internalization. Thus, LatA could negatively influence not only the exocytic but
also the endocytic machinery, meaning that actin polymerization could indeed be
fundamental for endocytosis.
Conversely, Figure 6.8 (c) and (d) make clear that the endocytic rate may not exceed
a certain threshold. In this case, too many molecules are internalized such that
vesicle trafficking rather disturbs polarity.

6.3.3. Actin-mediated transport in the absence of Bem1

We already mentioned that mutant cells lacking Bem1 are able to polarize as long
as the vesicle trafficking pathway is intact [84, 98]. In this case the sole GDI Rdi1
together with the transport machinery is supposed to generate polarization [28,84].
Biological experiments have demonstrated that Bem1 is able to bind both Cdc42
and Cdc24 [13, 16]. Since Smith et al. [84] found out that the ability of Bem1
to bind Cdc42-GTP is not required for cell polarity, we first solve the system
(6.12a)-(6.12n) without consideration of a Bem1-mediated recruitment of Cdc24
via complex formation with active Cdc42 to the plasma membrane. We reflect this
in our simulations by a significant reduced rate k3. Since phosphorylation of the
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(a) (b)

(c) (d)

Figure 6.8.: Effect of transport related parameter changes on actin-mediated polar-
ization in distinct phenotypes. (a) Maximal Cdc42-GTP concentration for different rates of
exocytosis. Reduced rates lead to decreased Cdc42-GTP intensities. (b) The amount of membrane-
bound Cdc42-GTP within the polar cluster depends on endocytic rates. (c) Changes of the endocytic
control rate Amax have much less influence on the cap intensity than on its shape. (d) The velocity
field control rate c0 determines the strength of the transport-mediated feedback.

(a) (b)

Figure 6.9.: Effect of the endocytic control rate on the shape of the polar cluster. The
localization of exocytosis and endocytosis in (a) control cells and (b) ∆rdi1 cells determines the
shape of the polar Cdc42-GTP cap. For increased rates of Amax exocytosis and endocytosis are
co-localized leading to a slightly narrower cap.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.10.: Effect of parameter changes on transport-mediated polarization. (a)
Maximal Cdc42-GTP concentration for different hydrolysis rates. A large hydrolysis rate prevents
polarization. (b) The amount of membrane-bound Cdc42 decreases for increased Cdc42 hydrolysis
rates. (c) Change of the maximum of membrane-bound Cdc42-GTP with respect to changes in
the GDI binding rate. Even for k−

2 = 0 the system generates a polar cluster. (d) Varying values
of cytosolic Cdc42 and (e) of active membrane-bound Cdc42 dependent on the GDI dissociation
rate. (f) Effect of changes in the GEF membrane recruitment rate on Cdc42-GTP intensity. (g)
Maximum of membrane-bound Cdc42 and (h) the percentage of membrane-bound Cdc42 with
respect to changes in the phosphorylation rate.
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(a) LatA:

(b) Control:

(c) ∆bem1:

(d) ∆rdi1:

Figure 6.11.: Numerical simulations of the pathological cases. Three-dimensional compu-
tational results of (6.12a)-(6.12n) are shown. For each case, the right diagram respectively shows the
development of Cdc42-GTP over time. The percentage values of cytosolic (C), membrane-bound
(M), and internal (I) Cdc42 are summarized in the tables included. MT denotes the proportion of
active membrane-bound Cdc42. (a) Polarization in a cell treated with LatA. (b) Visualization of
cell polarity in control cells. (c) Polarization in ∆bem1 mutants. (d) Symmetry breaking in Rdi1
knock-out cells.
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without transport with transport
Reaction rate ×0.5 ×2 ×0.5 ×2
k+

1 0 0 0 0
k−

1 +30.1 n.p. +50.9 n.p.
k1 n.p. +37.1 n.p. +54.3
k+

2 +1.0 −2.0 +2.0 −4.4
k−

2 −1.2 n.p. +17.6 n.p.
k2 n.p. +24.7 n.p. +30.9
k+

3 +56.7 n.p. +43.5 −51.4
k−

3 n.p. +50.4 −51.5 +34.2
k3 n.p. +74.6 −70.3 +65.7
k4 +80.2 n.p. +64.7 −70.8

Table 6.2.: Parameter sensitivity of the system with and without transport. The relative
change in the cluster maximal CT concentration in 2D are computed for the model parameter values
given in the Table 6.1 multiplied by the factors shown in the head row of the table. Variation of the
model parameters either changes the Cdc42 concentration within the cluster or prevents polarity
(n.p.). With actin-mediated transport, the system is less sensitive against parameter variations.

Description Rate Units Value

M
od

el
1

exocytosis e1 s−1 0.1
endocytotis e2 s−1 0.14
capacity feedback control rate c0 (µm2)−1 0.1
velocity control rate c1 µm2s−1 1
velocity control rate c2 µm2s−1 0.1
internal membrane attachment e3 µms−1 10
Cdc24 membrane detachment e4 s−1 5
diffusion of internal Cdc42 Dv µm2s−1 0.01
endocytosis control rate Amax (µm2)−1 0.2
potential function control rate α (µm2)−1 0.001
total actin cable density A 6.0

M
od

el
2

exocytosis e1 s−1 0.1
endocytotis e2 s−1 0.3
capacity feedback control rate c0 (µm2)−1 0.1
transport gradient control rate c µm2s−1 0.5
diffusion of internal Cdc42 Dv µm2s−1 0.01
endocytosis control rate Amax (µm2)−1 0.25
potential function control rate α (µm2)−1 0.001
total actin cable density A 6.0

Table 6.3.: Reaction rate constants and parameter estimates used to simulate active
transport. Model 1 denotes the system (6.11a)-(6.11v). Model 2 determines the system (6.12a)-
(6.12n). For three-dimensional computations we use c0 = 0.3.
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Figure 6.12.: Predicted dynamics in Bem1 mutant cells exhibiting a homogeneous but
high GEF activation. Simulations are shown for parameters k3 = 0.035, k4 = 0.0, and k−

3 = 0.
Furthermore, all Cdc24 is attached to the membrane.

GEF via Cla4 also depends on Bem1, we further assume a decreased rate k4. The
results which are illustrated in Figure 6.11 (c) agree with biological experiments.
We see that polarization is unaffected in mutant cells, where the binding of Bem1
to Cdc42-GTP is disrupted. In this case, Cdc42 polarity is achieved by a GDI- and
transport-mediated recycling.
Thus, our simulations support the assumption that in the presence of LatA, through
its interaction with Cdc24 and Cdc42, Bem1 is mainly required to stimulate the GEF
activity. Actually, a complete disruption or already a decrease in the concentration
of membrane-bound Cdc24 leads to a failure of Cdc42 polarity in silico (see Figure
6.13 (a)). These results are in complete agreement with biological findings. Whereas
a reduced amount of available GEF led to a loss of polarity, ∆bem1 cells were able
to polarize and bud. In this case, Cdc24 localization was strongly reduced or even
unobservable to the incipient bud-site [84, 98]. Even in wild type cells Cdc24 was
not found to be more focused compared to Cdc42-GTP [98].
However, Smith et al. [84] published a paper where they suggested that Rsr1-
Cdc24 and Bem1-Cdc24 interactions are important primarily to activate Cdc24.
This implies that localization of Cdc24 would not be necessary for cell polarization
as long as there is sufficient GEF activity at the plasma membrane. In this case,
local Cdc42 activation is a result of a positive feedback by local delivery. Since this
hypothesis has been disproved by a recent study [103], we further test our model for
this theory.
Our results confirm those published in [103]. Figure 6.12 shows computational results
considering a homogeneous but high GEF activation. We see that a disturbance
of the initial homogeneous state by a local stimulus S1 is not sufficient to induce
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(a) (b)

Figure 6.13.: Cdc42-GTP cluster height for changing molecule numbers. Maximum
height of the polar cluster for changing numbers of (a) Cdc24 and (b) Cdc42 molecules

polarization in ∆bem1 cells lacking a local GEF concentration. These findings suggest
that cells may not polarize and bud without local concentration of the GEF even
if the overall cortical GEF level exceeds a certain threshold. We suggest that local
Cdc24 activity is sufficient to induce pattern formation but it is not necessary to
maintain the polarized cluster. However, biological experiments have demonstrated
that Cdc24 is able to localize even in the absence of Bem1 [98]. Thus, there must
be another mechanism that leads to the GEF localization. We assume that Rsr1,
through interaction with landmark proteins, does not only control Cdc42 polarity
in the early stage of polarity establishment by biasing the location of the polarity
cluster. Rsr1 could also reinforce cluster formation by interacting with Cdc42-GTP.
Indeed, it has already been shown that Rsr1 could contribute to polarization by
providing a parallel positive feedback pathway [84]. In other words, Bem1 and Rsr1
could share a role in Cdc24 membrane targeting.
Strikingly, investigations of the Cdc24 activity in ∆bem1 cells have revealed that
Cdc24 caps were unstable and disappeared upon bud emergence [98]. These results
together with our simulations indicate that polarity establishment in cells could be
achieved by three distinct phases. Initially Rsr1 and Bem1 together control Cdc24
localization in the polar cap. Subsequently, the local GEF activity induces Cdc42
activation at this site. In the last phase, on the one hand local activation of Cdc42
leads to further recruitment of Cdc42 from the cytosol and on the other hand to
actin cable formation towards the polar cluster followed by actin-mediated vesicle
trafficking to maintain polarity.
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6.3.4. Actin-mediated transport in the absence of GDI

Finally, we will investigate the reaction-diffusion-advection system (6.12a)-(6.12n) for
the possibility of symmetry breaking in cells lacking the sole GDI Rdi1. Therefore, we
disable the exchange of Cdc42 between the plasma membrane and the cytosol and set
k−

2 ≡ 0. This implies that the total mass of Cdc42 is bound to the plasma membrane
as well as located on internal compartments. Indeed, ∆rdi1 cells accumulate Cdc42
on membranes due to the defect in extraction of membrane-bound Cdc42 [28].
As demonstrated by biological experiments, we see that the model simulating
∆rdi1 cells is able to polarize (see Figure 6.11 (d)). Furthermore, our results reflect
experiments of such cells that were additionally treated with LatA. The simulations
confirm biological findings that without exocytosis and endocytosis as well as an
exchange between the cytosol and the plasma membrane, yeast cells fail to generate
a robust polar cluster. We ascertain that a disruption of the cytosolic exchange of
Cdc42-GTP in approach (6.1)-(6.7) impedes polarity. From Figure 6.6 (c) and 6.10 (c)
it becomes clear that this loss of pattern formation is a result of the concurrent lack
of transport. In this case, the total amount of Cdc42 is homogeneously distributed
on the plasma membrane. To form a spatial pattern, the model requires some
recycling mechanism between the interior of the cell and its surface. This confirm the
results that targeting of Cdc42 from either the cytosolic Rdi1-bound or the internal
membrane-bound pool is crucial for Cdc42 cluster formation.
Concerning the time course, our results also agree with biological findings. We
observe a slightly decelerating symmetry breaking process. In ∆rdi1 cell polarity
is mainly based on the actin-mediated delivery of secretory vesicles. This process
recycles Cdc42 a lot more slowly than GDI. Whereas Figure 6.11 (b) demonstrates
that polarization in control cells takes 20-30 minutes, Figure 6.11 (d) shows that
∆rdi1 cells need 40-50 minutes to polarize in silico.
A further feature of cells lacking Rdi1 is the significant membrane-bound and internal
pool of Cdc42 [28]. In our numerical simulations we obtain about 67% of all Cdc42
on the plasma membrane and about 33% on internal membranes.
To further test the impact of actin-mediated recycling on polarization in ∆rdi1 cells,
we investigate the sensitivity of changes in rates of exocytosis and endocytosis. From
Figure 6.8 we see that a decreased rate of endocytosis reduces the amount of Cdc42
in the final cluster. Similarly, a lower rate of exocytosis negatively influences polarity
establishment. Indeed, it has been shown that a reduction of endocytosis results
in less efficient polarization in ∆rdi1 cells. Furthermore, the blocking of exocytosis
leads to a failure of polarization in cells lacking Rdi1 [28]. Interestingly, compared
to control cells, cluster formation is much more sensitive to changes in parameters
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(a) (b)

Figure 6.14.: Computational results showing two transient peaks. (a) Without a cytosolic
exchange and with an increaed transport feedback (dc = 0.01, c0 = 0.5) two transient peaks are
obtained. (b) A reduced hydrolysis rate (k−

1 ) can result in transient multiple peaks that finally
merge together (dc = 0.01).

that control the transport process.
A particular feature of yeast cells is their capability to simultaneously polarize at

multiple sites of the membrane. As a consequence, the cell can form several buds.
Since ∆rdi1 cells are prone to form more that one cluster, it has been suggested that
GDI-mediated exchange is required to prevent overexpression of Cdc42. This allows
the yeast cell to generate a unique Cdc42-GTP cluster that initiates downstream
processes like reorganization of actin at a desired position. Hence, the single cluster
formation due to GDI-mediated exchange prevents the development of multiple buds
at several places on the membrane [28,48].
Under other circumstances, yeast cells are also able to form multiple caps. For
example overexpression of Bem1 or a reduced hydrolysis rate of Cdc42 induced
by the depletion of the GAP Bem2 can initiate several Cdc42-GTP clusters. In
biological experiments nearly one-tenth of ∆bem2 cells formed two buds due to
an increased Cdc42 activity. Furthermore, in ∆bem2 strains, the overexpression of
Cdc24 leading to an increased Cdc42 activity induced a significant rise in the number
of cells generating multiple polarization sites [28,38]. Since such overexpression did
not generate double buds in control cells, it is assumed that the actin-mediated
pathway is susceptible to changes in the Cdc42 activity. In this case there is the
possibility that actin bundles nucleate at two (or more) distant sites on the plasma
membrane which then promotes the emergence of multiple caps [28,96].

In order to test if the system (6.12a)-(6.12n) generates multiple clusters under
certain conditions, we perform simulations where we simultaneously excite two sites
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(a) (b) (c)

(d) (e) (f)

Figure 6.15.: Computational results of the model considering transport from and to
internal membranes. Cdc42-GTP cluster formation in the two-dimensional case is shown. (a)
Cdc42-GTP concentration at the plasma membrane after t = 1200s. (b) The distribution of
cytosolic Cdc42. (c) Illustration of the outward directed velocity field determined by the potential
function Φa(x, t). (d) Illustration of the inward directed velocity field determined by the potential
function Φr(x, t). Visualization of the distribution of (e) inward and (f) outward flowing vesicles
containing Cdc42-GTP.
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(a) (b)

Figure 6.16.: Comparison of polarization in different mutant cells. Two-dimensional
simulations of the pathological cases. (a) The complex model given by equations (6.11a)-(6.11v)
is able to reproduce the experimentally observed pathological cases. (b) The reduced system of
equations (6.12a)-(6.12n) shows similar results.

of the cell with a transient stimulus. Figure 6.14 shows the results for different in
silico experiments. We never obtain two stable clusters. Neither a lack of cytosolic
exchange nor a reduced hydrolysis rate leads to a pattern with two stable peaks.
Overexpression of Bem1 reflected by an intense increase of the GEF recruitment
rate k3 is also not sufficient to achieve a pattern with two caps. However, we see
that compared to the system simulating control cells, the transient stimuli in these
cases induce two clusters which persist much longer.

6.4. Model comparison
Up to now, we restrict ourselves to system (6.12a)-(6.12n) that simulates vesicle
movement through the cell without consideration of detachment from, and attachment
to internal components or membranes. That this does not alter the results is shown
in Figures 6.16 and 6.15. Using the same parameters for molecule reactions, we take
transport parameters given in Table 6.3. The two-dimensional results of (6.11a)-
(6.11v) are very similar to those presented before. Considering actin-mediated
transport, the system is capable to reproduce pathological cases within similar value
ranges. However, our simulations show that this is only the case if changes from
and to internal compartments are relatively fast. For parameters e3 and e4 ≪ 1, the
exchange of internal molecules is so low that the system fails to polarize.
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6.5. Discussion

In this chapter we derived a set of partial differential equations which was sufficient
to describe the polarization mechanism induced by parallel pathways including
Bem1, Rdi1, Cla4, and actin. Our simulations have demonstrated that the presented
approach robustly induces only one stable cluster. For the simulation of vesicle traf-
ficking we used a completely different and new approach. We modeled the actin cable
movement by a capacity (Cdc42-GTP) dependent diffusion process. This approach
has the advantage of simulating the actin cable movement on the plasma membrane
as a density. Dependent on this density, the system generates a velocity field that
controls internal delivery of further Cdc42 to the plasma membrane.
By this consideration of actin-mediated transport, our model was able to reproduce
polarity observed in different mutant cells. We showed that this transport is required
to ensure symmetry breaking if key proteins like Bem1 or Rdi1 are knocked out.
In this case, the feedback mechanism due to vesicle trafficking to the polar cap
could compensate a reduced concentration of Cdc42-GTP. These results support the
assumption that under certain conditions vesicle trafficking indeed could reinforce
the Cdc42 cluster formation to guarantee polarity.
But also, based on the choice of parameters, our results have shown that transport
could disturb cell polarization, even if the actin feedback is not strong enough.
However, inhomogeneous diffusion of membrane-bound Cdc42-GTP could counter
against this perturbation (data not shown). These findings correspond to experi-
ments which have demonstrated that non-uniform membrane diffusion can maintain
actin-mediated cell polarization [83].
Summarized, our results suggest that whether actin transport enhances polarization
depends on the velocity of moving vesicles as well as the feedback for actin cable
nucleation. Furthermore, the ratio between exocytic and endocytic fluxes determines
how internal transport affects the polar cluster formation and its stability. We found
that the amount of internal Cdc42 plays a subordinated role. These outcomes suggest
that actin transport could have different roles in distinct cell types and cell cycles.
For example, our model predicts that the inhibition of endocytosis or the overex-
pression of exocytosis in ∆rdi1 cells would impede polarization.
Besides a continuous approach for the trafficking machinery, a new aspect of our
model is that it does not only rely on a Bem1-mediated feedback mechanism. We
based our system on several different pathways shown to contribute to robust polarity.
Therefore, we did not explicitly simulate Bem1. We only distinguished between an
active membrane-bound and a cytosolic form of Cdc24. In our reaction-diffusion-
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advection system, the membrane association of the GEF was based on the assumption
that it either binds to Rsr1 or to Bem1. Since both proteins interact with Cdc42, we
supposed that the GEF membrane association indirectly depends on Cdc42. This is
in contrast to the system presented in [48] which incorporates Bem1. Another new
aspect of our approach is that we hypothesized that the GDI-mediated exchange
can be achieved by Cla4 and hence indirectly via Cdc42-GTP. For instance, in [48]
the GDI pathway is only based on a GEF-mediated Cdc42-GDI disruption. Hence,
the omission of Bem1 would destroy the local GEF activation as well as the GDI
pathway. This implies that even under consideration of vesicle trafficking, the system
presented there would fail to simulate polarity. Contrarily to this, our model is able
to reflect polarization in ∆bem1 mutant cells.
However, which proteins or effectors are involved in the GDI pathway is still unknown
and has to be determined. Our results have demonstrated that Cla4 could control
this process. However, parameter studies have also shown that a complete disruption
(k2 = 0) would prevent polarization. Since ∆cla4 cells are still able to form a polar
Cdc42-GTP cluster, our model suggests that GDI-disruption could be achieved by
two parallel mechanisms, a GEF-mediated displacement proposed by [28,48] and a
Cla4-mediated disruption.
Interestingly, biological studies have shown that Cdc24-Cla4 fusion could rescue
polarity in cells lacking Bem1. Hence, we assume that in this case localized Cdc24
activates Cdc42 that in turn interacts with Cla4. The PAK kinase then disrupts
the binding between Cdc42 and its GDI Rdi1 at the incipient bud, leading to a
recruitment of further Cdc42 from the cytosol to the localized cluster. This Cla4-
mediated mechanism proposed by our model would be accompanied by several so
far unknown phenotypes which could be verified experimentally. For example, one
prediction of our model is that ∆bem1 ∆cla4 double mutants would fail to polarize.
Furthermore, Cla4 would be localized at the incipient bud-site even in the absence
of Bem1. Another outcome of our simulations is that a treatment of ∆cla4 cells with
LatA would impede symmetry breaking.
That Cla4 could play a more essential role in polarity establishment is also suggested
by experiments investigating the impact of Cla4-mediated phosphorylation. Our
parameter studies have shown that this mechanism indeed buffers the total Cdc42-
GTP concentration at the polar site. In agreement with biological experiments, we
observe highly increased amounts of Cdc42-GTP at the plasma membrane. However,
only a few studies have focused on the contribution of Cla4 in the step of polarity
establishment. Whether Cla4 could indeed play a more crucial role in the achievement
of polarity as previously supposed has to be determined.
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7 | Derivation of a generic bulk-
surface reaction-diffusion-ad-
vection system

In the last chapter we have numerically studied a coupled system of bulk-surface
reaction-diffusion-advection equations. Based on this complex model, in this chapter
we are aiming to derive a generic model that can be studied analytically and applied to
other cell geometries. Therefore, we first reduce the full model to get a system which
is easier to handle. Following this, we perform a non-dimensionalization and deduce
a generic approach. This generic system can be used to simulate transport-mediated
cell polarization for different cell geometries and varying functions representing
protein kinetics, e.g. for those found in the literature. Here, we study the Wave-
Pinning system proposed by Mori et al. [61] (WP) as well as the system proposed
by Goryachev and Pokhilko [32] (GOR) and compare the results with those
from this thesis.

7.1. Model reduction
The reduction of complex and large models to their minimal functional form helps to
unravel the covered fundamental features of complex reaction mechanisms. Since we
are aiming to study our full system for the main processes that lead to polarization,
we further reduce the complex approach derived in the last chapter.
For sake of simplicity, we start by a restriction of our model to one bulk (Ω) and
one surface domain (Γ := ∂Ω) and neglect that actin cables do not cross the nucleus
or other perinuclear components. Furthermore, we suppose that the activation of
inactive Cdc42, which reaches the plasma membrane by exocytosis, occurs very fast.
This allows us to restrict transport to one component representing vesicles containing
active Cdc42. Finally, we assume that the complex formation of Cdc42 with its
GEF Cdc24 and the protein Bem1 quickly reaches a steady state. This means that
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the Cdc24 attachment and detachment events are in equilibrium. Mathematically,
considering (6.12c), this is equivalent to

∂tGB = (k+
3 + k3CT )GF − (k−

3 + k4CT )GB = 0

and hence

GF = (k−
3 + k4CT )GB

(k+
3 + k3CT ) .

Using the conservation law

G0 = GB + cGF ,

where c := |Ω|
|Γ| and [c] = µm, it follows

G0 =GB + c


k−

3 + k4CT

k+
3 + k3CT


GB =


1 + c(k−

3 + k4CT )
k+

3 + k3CT


GB

=

k+

3 + ck−
3 + (k3 + ck4)CT

k+
3 + k3CT


GB,

so that

GB =


k+
3 + k3CT

k+
3 + ck−

3 + (k3 + ck4)CT


G0.

We define

k1GB :=

K+

3 +K3CT

K−
3 +K4CT


, (7.1)

where

K+
3 := k1k

+
3 G0; K3 := k1k3G0; K−

3 := k+
3 + ck−

3 ; K4 := k3 + ck4;

[K+
3 ] = [K−

3 ] = µm

s
; [K3] = [K4] = µm3

s
.

With (7.1) and the additional assumptions mentioned above, on Γ the equations
(6.12a)-(6.12n) reduce to

∂tCT =

k+

1 +

K+

3 +K3CT

K−
3 +K4CT


CD − k−

1 CT + e1 · CT V (7.2)

− e2 ·


1 − A

Amax


· CT + ∇ΓC1

· (Dm∇ΓC1
CT ),



7 Derivation of a generic bulk-surface reaction-diffusion-advection system 125

∂tCD =k−
1 CT −


k+

1 +

K+

3 +K3CT

K−
3 +K4CT


+ k−

2


CD (7.3)

+ (k+
2 + k2CT )CI + ∇ΓC1

· (Dm∇ΓC1
CD),

∂tA =∇ΓC
·

DA∇ΓC

A

c(CT ))

. (7.4)

On Γ the flux conditions are then given by

−Dc∇CI · n⃗ =(k+
2 + k2CT )CI − k−

2 CD, (7.5)

−(Dv∇CT V − CT V ∇Φ) · n⃗ =e1 · CT V − e2 ·


1 − A

Amax


· CT , (7.6)

∇Φ · n⃗ =j(A). (7.7)

On Ω it holds that

∂tCT V =∇ · (Dv∇CT V ) − ∇ · (CT V ∇Φ), (7.8)
∂tCI =∇ · (Dc∇CI), (7.9)

0 =∆Φ − αΦ. (7.10)

As a result, we obtain a simpler system of bulk-surface reaction-diffusion-advection
equations for the GTPase cycle. It takes the form of a reaction-diffusion process on
the membrane coupled to a diffusion and an advection process in the interior of the
cell.

7.2. Non-dimensionalization

After the model reduction we proceed with a non-dimensionalization. This technique
targets the elimination of units implied by the reaction kinetics and diffusion
coefficients. For the PDE system given by (7.2)-(7.10), where j(A) = c · A and
c(CT ) = v · CT , we obtain

[k+
1 ] = [k−

1 ] = [k−
2 ] = [k−

3 ] = [e2] = 1
s

; [k+
2 ] = [k+

3 ] = [e2] = [K−
3 ] = [K+

3 ] = µm

s
;

[k1] = [k4] = µm2

s
; [k1] = [k2] = [k3] = [K3] = [K4] = [c] = µm3

s
; [α] = 1

µm2

[v] = µm2; [Dm] = [Dc] = [Dv] = [Φ] = µm2

s
.
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In order to derive a non-dimensional model that contains equations for unknowns

u concentration of active membrane-bound GTPase,
v concentration of inactive membrane-bound GTPase,
w concentration of membrane-attached actin cables,
U concentration of internal membrane-bound GTPase,
V concentration of cytosolic GDI-bound GTPase,

it is reasonable to introduce a typical length R > 0, where [R] = µm. We define the
following dimensionless spatial and time coordinates

x̃ := 1
R
x; τ := Dm

R2 t.

Let R = √
γI denote the unit length, where γ > 0 and I = 1µm. The transformed

domains are then given by Ω̃ := {x̃ ∈ R3 : Rx̃ ∈ Ω} and Γ̃ := ∂Ω̃. Furthermore, we
derive the time interval Ĩ := {τ ∈ R : R2τ

Dm
∈ I} and introduce the non-dimensional

variables

u := CT

Ctot

, v := CD

Ctot

, w := A

Ctot

, U := R · CT V

Ctot

, V := R · CI

Ctot

, ϕ := Φ
Dm

as well as dimensionless parameters

k̃1 := k+
1 I2

Dm

, k̃2 := k−
1 I2

Dm

, k̃3 := k+
2 I2

DmR
, k̃4 := k−

2 I2

Dm

, k̃5 := k2CtotI2

DmR
,

a1 := K+
3 I2

K−
3 Dm

, a2 := K3CtotI2

K−
3 Dm

, a3 := K4Ctot

K−
3

, ẽ1 := e1I2

DmR
, ẽ2 := e2I2

Dm

,

Du := Dv

Dm

, Dv := Dc

Dm

, dw := DA

Dm

, ṽ = v · Ctot, α̃ := R2 · α, c̃ := cRCtot

Dm

.

Here, Ctot describes the total mass of the GTPase which is given by initial conditions.
Due to mass conservation, this is a constant value. Note that [Ctot] = 1

µm2 and
Ctot = CT + CD + c · CI + c · CT V , where c := |Ω|

|Γ| . Applying these definitions, the
system (7.2)-(7.10) in its non-dimensional form on Γ̃ × Ĩ reads

∂τu =∆Γu+ γ

k̃1 +


a1 + a2u

1 + a3u


v − k̃2u+ ẽ1U − ẽ2


1 − w

wmax


u

,

∂τv =dv∆Γv + γ(−

k̃1 +


a1 + a2u

1 + a3u


v − k̃2u+ (k̃3 + k̃5u)V − k̃4v


,

∂τw =dw∆Γ(w · c(u)−1).
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In Ω̃ × Ĩ we have

∂τU =Du∆U − ∇ · (U∇ϕ),
∂τV =Dv∆V,

0 =∆ϕ− α̃ϕ,

and the flux conditions on Ω̃ × Ĩ change to

−(Du∇U − U∇ϕ) · n⃗ =γ

ẽ1U − ẽ2


1 − w

wmax


u

,

−Dv∇V · n⃗ =γ

(k̃3 + k̃5u)V − k̃4v


,

∇ϕ · n⃗ =c̃ · w.

For the sake of clarity, we drop all tildes and replace τ by t.
On Γ × I we obtain

∂tu =∆Γu+ γ

k1 +


a1 + a2u

1 + a3u


v − k2u+ e1U − e2


1 − w

wmax


u

,

∂tv =dv∆Γv + γ(−

k1 +


a1 + a2u

1 + a3u


v − k2u+ (k3 + k5u)V − k4v


,

∂tw =dw∆Γ(w · c(u)−1).

In Ω × I it holds that

∂tU =Du∆U − ∇ · (U∇ϕ),
∂tV =Dv∆V,

0 =∆ϕ− αϕ,

and the coupling boundary conditions on Γ × I read

−(Du∇U − U∇ϕ) · n⃗ =γ

e1U − e2


1 − w

wmax


u

,

−Dv∇V · n⃗ =γ ((k3 + k5u)V − k4v) ,
∇ϕ · n⃗ =c · w.

For initial conditions at time t = 0, given by

U(·, 0) = U0, V (·, 0) = V0, u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0,

ϕ(·, 0) = ϕ0, U0, V0, ϕ0 : Ω → R, u0, v0, w0 : Γ → R,
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this system has a solution (u, v, w, U, V ).

7.3. The generic coupled bulk-surface reaction-
diffusion-advection system

With the preliminaries presented in Sections 7.1 and 7.2, we are now able to formulate
the generic reaction-diffusion-advection system. We will always consider a stationary
bulk domain Ω and its compact hypersurface Γ := ∂Ω. We denote by n⃗ the outer
normal on the smooth, closed surface Γ. The tangential gradient on the surface Γ is
described by ∇Γ. This implies that the Laplace-Beltrami operator on Γ is given by
the tangential divergence of the tangential gradient, that is ∆Γ.
Let u, v : Γ × I → R be smooth functions denoting the chemical concentrations
or species that react and diffuse on Γ in a fixed time interval I := [0, T ] ⊂ R. For
substances that actively move or diffuse through the domain Ω, we respectively
introduce smooth functions U, V : Ω × I → R. To proceed, a smooth function
w : Γ × I → R represents the component which regulates the transport gradient. In
our case, this function describes the density of actin cable ends on the surface Γ. We
formulate the generic non-dimensional coupled-reaction-diffusion-advection system
as follows:

∂tu =∆Γu+ γ(f(u, v) + h(u,w, U)) on Γ × I, (7.11)
∂tv =dv∆Γv + γ(−f(u, v) + g(u, v, V )) on Γ × I, (7.12)
∂tw =dw∆Γ(w · c(u)−1) on Γ × I, (7.13)
∂tU =Du∆U − ∇ · (v⃗U) in Ω × I, (7.14)
∂tV =Dv∆V in Ω × I, (7.15)

with coupling boundary conditions

−(Du∇U − v⃗U) · n⃗ =γh(u,w, U) on Γ × I, (7.16)
−Dv∇V · n⃗ =γg(u, v, V ) on Γ × I, (7.17)

and initial conditions at time t = 0

U(·, 0) = U0, V (·, 0) = V0, u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0,

U0, V0 : Ω → R, u0, v0, w0 : Γ → R.
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Here, the non-linear functions f and g respectively represent activation and in-
activation of the species. The function h describes adsorption and desorption of
molecules and v⃗ is the bulk velocity field. The parameters Du and Dv denote the
non-dimensional bulk diffusion coefficients and dv, dw > 0 the surface diffusion coef-
ficients, which are assumed to be constant. The non-dimensional parameter γ > 0
relates to the spatial scale of the cell.
Note that this formulation implies conservation of mass. This means that with dσ
denoting the integration with respect to the surface area measure and M the total
mass, the system satisfies the condition

∂tM = d

dt


Ω
[U(x, t) + V (x, t)]dx+


Γ
[u(x, t) + v(x, t) + w(x, t)]dσ(x)


= 0.

To determine the velocity field v⃗ we use the Poisson equation for a potential function
ϕ, given by

0 = ∆ϕ− αϕ in Ω × I,

and calculate ∇ϕ = v⃗, with boundary and initial conditions

∇ϕ · n⃗ = j(w), ϕ(·, 0) = ϕ0, ϕ0 : Ω → R.

The function j(w) thereby describes the outflow depending on the concentration of
w.

7.3.1. Numerical results

The generic approach for cell polarization presented above allows us to investigate
this process under consideration of distinct functions simulating protein kinetics.
Together with the possible application to different geometries, it serves as an exem-
plary model to study transport-mediated polarity in different cell types. We start to
compare the following two systems simulating cell polarization in yeast cells.

Our approach:
As a first example we consider the non-dimensionalized and reduced system presented
in Section 7.1. This system differentiates between one active membrane-bound, one
inactive membrane-bound, and a cytosolic state. The functions are given by

f(u, v) :=

k1 +


a1 + a2u

1 + a3u


v − k2u, (7.18)
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g(u, v, V ) := (k3 + k5u)V − k4v. (7.19)

The bulk-surface model of Rätz and Röger:
In [72] the authors already have investigated a bulk-surface GTPase model that is
based on two membrane-bound states and one cytosolic form. This model simulates
the GTPase cycle on the full geometry. It uses the following functions representing
the reaction kinetics:

f(u, v) :=

a1 + (a3 − a1)

u

a2 + u


v − a4

u

a5 + u
, (7.20)

g(u, v, V ) := a6V (1 − (u+ v))+ − a−6v. (7.21)

In order to test whether transport has similar influence on cell polarity in both
systems, we again consider the function

h(u,w, U) := e1U − e2


1 − δ(w) w

wmax


u, (7.22)

where 
Γ
w dσ(x) ≥ wmax > 0 (7.23)

and

δ(w) :=

 1 if wmax ≥ w,

0 else.
(7.24)

To compute the formation of actin cable ends, we again assume a linear feedback on
the active membrane-bound form u and set c(u) = v · u. Similarly, the boundary
conditions for the potential function linearly depend on w so that j(w) = b · w.
To numerically simulate system (7.11)-(7.17) with functions (7.18)-(7.19) we calculate
the non-dimensional parameters derived in this section. It is noteworthy that we
have to adjust k3 and k4 to obtain polarity (see Table 7.1). This fact may arise from
the simplifications done for the model reduction. For the non-dimensional kinetics
given by equations (7.20)-(7.21) parameters are adapted from [72] (see Table 7.1).
Since we assume equal diffusion constants on the surface, in both cases it holds that
dv = 1.
For the model derived in this work, we consider initial concentrations u0 = 0.004,
v0 = 0.196, w0 = 0.002, U0 = 1.504 and V0 = 0.9024. To compute the model proposed
in [72], we choose u0 = 0.002, v0 = 0.002, w0 = 0.01, U0 = 5.0994 and V0 = 0.05.
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In all simulations we disturb the initial homogeneous state either by random noise
or located stimuli. Therefore, we use expressions (6.16) and (6.17) with respective
non-dimensional parameters.

The cell shape influences transport-driven cell polarization

Although this thesis is mainly concerned with polarization in yeast cells, this pattern
formation process is of particular importance for distinct cell types with different
shapes. Furthermore, in many of these cells, active transport of molecules plays a
significant role. For example, in the fission yeast, neurons, and the Caenorhabditis
elegans zygote microtubules may mediate the transport of important regulators of
cell polarization and in this way ensure its correct location [57,80,89].
In order to understand the influence of the cell shape on the polarization behavior,
we start to simulate both systems for different three-dimensional model geometries.
We employ a random signal to excite the cell from its uniform state. The results
are shown in Figures 7.2-7.4. In all cases we obtain an enhanced peak of the non-
dimensional concentration u, albeit the effect is much less intensive for the model
proposed by Rätz and Röger [72]. We further call this model the RR system.
For the model derived in this thesis, we see that transport-mediated polarization is
much accelerated in cells that are non-spherical. In this case, the gradient increases
or decreases with the length or broadness of the shape respectively. This is in contrast
to the model derived in [72]. Starting with an initial random perturbation, in an
elliptic or rod-shaped cell this system initially tends to form a central pattern so
that the transport-mediated feedback anchors this spatial location. As a result, the
process takes much more longer until it achieves the final pattern. From Figure 7.6
we see that, for a sufficiently strong transport feedback, this local anchoring may
even be strong enough to maintain two transient peaks. It is shown that two equal
stimuli initially generate two peaks at each end of the rod-shaped cell. Whereas
without transport these two patches are not stable, in the presence of a sufficiently
strong transport feedback, two stable peaks are obtained.
With regard to the polarity direction, for our model we obtain that transport may
change the spatial location of the polarized patch. This becomes particularly obvious
in Figure 7.5 which shows polarity in a cell that features a small bud. In this case,
we excite the cell from its homogeneous state by a signal comprising of two stimuli
S1 and S2 of the same intensity. The signals are imposed on opposite sides of the
cell surface, one located at the protrusion. Depending on whether we incorporate
transport or not, this excitation leads to different patterns. Whereas the implemen-
tation of active movement promotes the formation of a peak at the bud, without
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consideration of an active transport mechanism, u clusters at the opposite side.

Figure 7.1.: Illustration of a cell
that fails to polarize due to trans-
port. A simulation of the system de-
rived in [72] including transport with
reduced feedback, i.e. b = 5, is shown.
The endocytic rate is so low that the
cell tends to form a homogeneous state.

The influence of protrusions on diffusion-driven
polarization in a cell has already been studied
in [31]. Their results have shown that protru-
sions locally limit molecule aggregations. Dif-
fusive transport into the protrusion is slightly
hindered so that the cytosolic concentration de-
creases faster in this region. As a result, the clus-
ter emerges at another location. Interestingly,
our results demonstrate that for sufficiently high
rates of active molecule transport, this kind of
’bottle neck’ can be negotiated. As a result, the
cluster forms at the protrusion.
However, how far molecule delivery influences
cluster formation depends on the interplay be-
tween transport and reaction kinetics. For instance, even in the presence of active
molecule transport, the RR system generates a patch at the opposed side of the
protrusion.
Another aspect are parameter choices. As already demonstrated in Chapter 6.3,
depending on the rates and feedback strength, the transport process presented in
this thesis can either enhance or disturb polarity. In some cases, this feedback may
perturb the system so strongly that it is no longer capable of polarization. This is
shown in Figure 7.1. For a reduced rate of the transport gradient control rate b, the
RR system fail to form a polarized patch.

The influence of internal components on cell polarization

Cells contain many different cell components of distinct shape and size like for
instance the nucleus, the Golgi, or the endoplasmic reticulum. All these structures
serve as a kind of diffusion and transport barrier within the cell. In this way,
the spatial position of organelles can influence signaling pathways, including the
accumulation of polarization molecules.
How internal barriers control diffusion-driven cell polarization has already been
investigated in [31]. The results have demonstrated that the cluster formation close
to organelles is very unlikely. Diffusion-driven polarization mostly occurred in the
neighborhood of large organelles, but not behind them. The local accumulation of
substances at the opposite side of protrusions or in regions with low curvature is
more likely [31].
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Model Param. Value Description
This dv 1.0 diffusion coefficient of the inactive membrane-bound species
work dw 27.78 diffusion coefficient of the actin cables

Dv 305.5 diffusion coefficient of the cytosolic component
Du 0.278 diffusion coefficient of the internal component
γ 15.6 spatial scale factor
k1 0.056 basal activation rate
k2 27.78 basal inactivation rate
k3 0.025 basal membrane attachment rate
k4 13.89 basal membrane detachment rate
k5 10.77 feedback-mediated membrane attachment rate
a1 19.41 GEF-mediated activation rate
a2 59.42 GEF-mediated feedback activation
a3 2.23 negative feedback/ inactivation rate

wmax 0.0163 rate controlling local endocytosis
e1 0.703 rate of exocytosis
e2 8.33 rate of endocytosis
b 27.78 transport gradient control rate
v 1.53 capacity function control rate
α 419.94 potential flow control rate
u0 0.004 initial concentration of the active membrane-bound species
v0 0.196 initial concentration of the inactive membrane-bound species
w0 0.002 initial concentration of the actin cable density
U0 1.504 initial concentration of the internal component
V0 0.902 initial concentration of the cytosolic component

Rätz & dv 1.0 diffusion coefficient of the inactive membrane-bound species
Röger [72] dw 1.0 diffusion coefficient of the actin cables

Dv 100 diffusion coefficient of the cytosolic component
Du 0.01 diffusion coefficient of the internal component
γ 400 spatial scale factor
a1 0.02 rate regulating activation
a2 20 rate regulating activation
a3 160 feedback activation rate
a4 1 control rate for inactivation
a5 0.5 control rate for inactivation
a6 0.36 rate regulating membrane attachment

a−6 5 rate regulating membrane detachment
wmax 0.02 rate controlling local endocytosis

e1 0.1 rate of exocytosis
e2 0.2 rate of endocytosis
b 25.5 transport gradient control rate
v 5.1 capacity function control rate
α 0.4 potential flow control rate
u0 0.002 initial concentration of the active membrane-bound species
v0 0.002 initial concentration of the inactive membrane-bound species
w0 0.01 initial concentration of the actin cable density
U0 5.099 initial concentration of the internal component
V0 0.05 initial concentration of the cytosolic component

Table 7.1.: Overview over parameters used for computations of the generic system.
Variables and constants used for numerical simulations of the non-dimensionalized system (7.11)-
(7.17) considering reaction kinetics derived in this work as well as using the functions proposed by
Rätz and Röger [72] are shown.
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This work:

Γ:
(h = 0)

(h ̸= 0)

Rätz and Röger [72]:

Γ:
(h = 0)

(h ̸= 0)

Figure 7.2.: Numerical simulations of the generic system using distinct kinetic func-
tions applied to a sphere. Simulations of the model derived in this thesis and of the RR system
are shown. Solutions of both models with and without an impact of the proposed active molecule
transport are illustrated. A spatial noise signal applied to the initial uniform state u0 results in
both cases in cluster formation. The polarization process in time is shown.
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This work:

Γ:
(h = 0)

(h ̸= 0)

Rätz and Röger [72]:

Γ:
(h = 0)

(h ̸= 0)

Figure 7.3.: Numerical simulations of the generic system using distinct kinetic func-
tions applied to an ellipse. Comparison of pattern formation with and without the proposed
transport mechanism. Simulations of the system derived in this work and in [72] are shown.
Excitation of the initial homogeneous state u0 by a spatial noise signal induces pattern formation.
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This work:

Γ:
(h = 0)

(h ̸= 0)

Rätz and Röger [72]:

Γ:
(h = 0)

(h ̸= 0)

Figure 7.4.: Numerical simulations of the generic system using distinct kinetic func-
tions applied to a rod-shaped cell. Cell polarization with and without the proposed transport
mechanism are visualized. A spatial noise signal applied to the initial uniform state u0 leads to
polarization. Simulations are shown for the model presented in this work as well as for the RR
system.
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This work:

Γ:
(h = 0)

(h ̸= 0)

Rätz and Röger [72]:

Γ:
(h = 0)

(h ̸= 0)

Figure 7.5.: Numerical simulations of the generic system using distinct kinetic func-
tions applied to a cell with a protrusion. Comparison of pattern formation with and without
the proposed transport mechanism. Simulations are shown for our system and the RR system. Both
models are excited for ∆t = 0.69 with two equal stimuli with s1 = 0.1 and s2 = 0.001 respectively.
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Rätz and Röger [72]:

Γ:
(h = 0)

(h ̸= 0)

Figure 7.6.: Comparison of the impact of transport on cell polarity in a rod-shaped
cell. Simulations are shown for the model derived in [72] with and without the proposed transport
mechanism. The cell is exposed to two equal stimuli S1 and S2 located at both ends for ∆t = 0.69.
For a sufficiently strong transport feedback (e2 = 2, wmax = 0.025), the pattern is characterized by
two stable peaks.

In order to investigate whether active transport alters the results, we perform similar
computational experiments. We consider the two-dimensional case, where the cell
is characterized by a circle. Organelles are modeled by elliptic or circular shapes
placed in the cell interior. The results are shown in Figure 7.8. Again, we excite the
cell from its homogeneous state by a signal comprising two stimuli S1 and S2 of the
same intensity. Whereas one signal is located near the organelles, the other is placed
at the opposite side.
Without consideration of transport effects, we obtain similar results as presented
in [31]. The organelles near the surface negatively affect cluster formation at this
site. Contrarily, we see that under consideration of active molecule transport, the
polar cluster forms behind the internal component. In this case, organelles support
a nearby spatial location of the polarity patch.
As mentioned before, protrusions positively influence transport-mediated polarization
too. This raises the question of how polarity behaves in cells exhibiting both a complex
shape and internal barriers. Figure 7.9 illustrates this interplay. It becomes clear
that since protrusions as well as diffusion barriers can promote polarization, the
localization of organelles next to protrusions strongly enhances polarity. Conversely,
we see that an opposed position leads to a competing situation. As long as the
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Figure 7.7.: Computational results showing the influence of non-uniform membrane
diffusion on trafficking-mediated cell polarity. The cell, whose geometry is shown in the
left figure, is excited with a local transient stimulus S1 of strength s1 = 0.2 for ∆t = 0.69. The
parameters are chosen as follows: a = 4, η = 0.3, w = 0.66. The middle image illustrates how a
reduced transport feedback (b = 0.1) negatively influences polarity. The right diagram demonstrates
how non-uniform diffusion ensures sustained polarization.

organelle is sufficiently far away from the surface and centrally located, the cluster
still forms at the bud. In contrast, when the organelle is placed near the membrane,
but opposed to the protrusion, we obtain polarization behind the organelle. Only a
very strong stimulus at the protrusion reverses the outcome. This is demonstrated
by the last computational experiment illustrated in Figure 7.9, where the cell is
excited at the bud tip with a signal S1 of strength s1 = 0.33.

The influence of inhomogeneous diffusion

We already mentioned that during cell polarization, the polar cap of budding yeast
cells is characterized by microdomains. Here, regions determined by fast diffusing
molecules alternate with locations showing slower diffusion. It has been suggested
that these membrane microdomains, which also imply co-located exocytosis and
endocytosis, play a critical role in vesicular trafficking-mediated cell polarity by
temporally sustaining cell polarization [83].
In order to analyze the influence of non-uniform diffusion on transport-mediated
polarity, for u we introduce the spatially inhomogeneous diffusion coefficient

du(x) =

du − η(1 − cos(a · s(x⃗) · π)), if dist(x⃗S1 , x⃗) < w,

du, otherwise.
(7.25)

Here, s(x⃗) denotes the arc length measured from x⃗S1 to x⃗ multiplied by 1 or −1,
depending on their positional relation. The parameter a denotes an arbitrary am-
plitude and η ≤ du describes a scale factor that determines the maximal reduction
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of diffusion. The value of w serves to define a certain region with inhomogeneous
diffusion.
In Figure 7.7 computational results of the generic system with and without inho-
mogeneous diffusion under consideration of a strongly decreased transport feedback
are compared. It can be seen that a 10 times reduced transport feedback leads
to a significant decrease in the local concentration of u. Furthermore, in this case
diffusion-driven polarity dominates the system so that a local transient stimulus in
the neighborhood of an organelle results in a peak at the opposing side. In addition,
we obtain that the local cluster induced by a transient stimulus can not only be
sustained but also be enhanced by non-uniform diffusion of the active membrane-
bound component. These results make clear that membrane microdomains may not
only play an important role in sustaining polarization but also in spatially directing
cluster formation.
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This work
(S1 = S2)

h = 0: h ̸= 0:

Figure 7.8.: Illustration of the influence of internal barriers on cell polarization. Compu-
tational results of our non-dimensional model with and without transport are presented. Organelles
which are represented by circles or ellipses are placed at distinct positions in the cell. Computations
with two equal stimuli exciting the initial uniform state u0 with s1 = s2 = 0.2 for ∆t = 0.69 are
shown.
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This work
(S1 = S2)

h = 0: h ̸= 0:

Figure 7.9.: Comparison of the influence of organelles as well as the cell shape
on diffusion- and transport-mediated polarization. Numerical simulations of our non-
dimensional model with and without transport are presented. A large organelle which is represented
by an ellipse is placed at distinct positions in a cell exhibiting a small protrusion. Simulations
with two equal stimuli exciting the initial uniform state u0 with s1 = s2 = 0.2 for ∆t = 0.69 are
illustrated. Cluster formation either occurs behind the organelle or, if the barrier is sufficiently far
away from the surface, at the protrusion. Only a high stimulus s1 = 0.33 can reverse this feature
(bottom computation).
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7.3.2. Applications of models from the literature

In the following, we simulate the generic system using well known reaction kinetics
from literature [32, 61]. Note that these models are usually based on a single active-
inactive pair.

The Wave-Pinning model:
In Chapter 3.6 we introduced the Wave-Pinning model which is based on only one
active membrane-bound form (u) and one inactive cytosolic state (V ) of the GTPase.
It uses the bilinear function

fWP(u, V ) := V


k0 + γu2

K2 + u2


− δu

to describe the kinetic mechanisms of activation and inactivation as an exchange be-
tween the plasma membrane and the cytosol. We considered this model to exemplify
a coupled bulk-surface system. In the course of this introduction, we have already
shown pattern formation for the reaction-diffusion system.

The Goryachev model:
We already mentioned that a system of eight reaction-diffusion equations presented
in [32] lay the foundation for many following models for cell polarization. The
approach introduced there simulates kinetics between the GTPase Cdc42 and its
GEF Cdc24 to analyze polarization in yeast cells. Based on this complex system,
the authors finally deduced a two component model. This describes the interplay
between an active membrane-bound substance (u) and an inactive cytosolic state
(V ) by the kinetic function

fGOR(u, V ) := αEcu
2V + βEcuV − γu,

Ec = E0
c

1 +


Ω g(u)dA.

Note that the functions fWP and fGOR are given in its dimensional form. Thus, to
investigate both approaches for transport-mediated polarity, consider the minimal
system

∂tu = du∆Γu+ f(u, V ) + h(u,w, U) on Γ × I, (7.26)
∂tw =dw∆Γ(w · c(u)−1) on Γ × I, (7.27)
∂tU =Du∆U − ∇ · (v⃗U) in Ω × I, (7.28)
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WP (h = 0):

Γ:

Ω:

WP (h ̸= 0):

Γ:

Ω:

Figure 7.10.: Numerical simulations of the WP system. Computational results of the WP
system applied to a sphere with radius 3µm are illustrated. Calculations are shown for the model
with and without consideration of active molecule transport. A transient spatial perturbation
represented by a local stimulus s1 = 0.03µm/s leads to polarization.
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WP (S1 = S2) h = 0: h ̸= 0:

Figure 7.11.: Comparison of the influence of internal barriers on diffusion- and
transport-mediated polarization calculated with the WP system. Circles and ellipses are
placed at different positions in the cell to represent organelles that serve as transport barriers.
Depending on the localization of organelles, two equal stimuli s1 = s2 = 0.01µm/s for ∆t = 10s
lead to different patterns.
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WP (S1 = S2) h = 0: h ̸= 0:

Figure 7.12.: Investigation of the influence of internal barriers and the cell shape
on diffusion- and transport-mediated polarization calculated with the WP system.
Computational results computed for the WP system with and without transport are shown. An
ellipse represents an organelle in a cell with a protrusion. Two equal stimuli s1 = s2 = 0.01µm/s
are applied at the bud and its opposite side for ∆t = 10s. Depending on the position of the internal
barrier, peaks with distinct shapes are obtained.
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Model Parameter Value Unit Description
GOR f(u, V ) µmµM/s flux density between the membrane and cytosol

& h(u, w, U) µmµM/s flux density defined by transport mechanisms
WP w0 0.01 µmµM initial concentration/ density of actin cables

V0 0.05 µM initial concentration of the inactive cytosolic species
du 0.015 µ2m/s diffusion coefficient of the membrane-bound species
dw 1.0 µm2/s diffusion coefficient of the actin cables
Du 3.0 µm2/s diffusion coefficient of the cytosolic species
Dv 0.01 µm2/s diffusion coefficient of the internal species
e1 0.1 µm/s exocytic rate
e2 0.3 1/s endocytic rate
b 0.3 µ2m/s transport gradient control rate
v 1.0 µmµM control rate for capacity function

WP u0 0.026 µmµM initial concentration of the membrane-bound species
U0 0.2 µM initial concentration of the internal component
k0 0.067 µm/s basal activation rate
δ 1.0 1/s basal inactivation rate
γ 1.0 µm/s maximal rate of auto-activation of u
K 0.1 µmµM concentration of u resulting in half-maximal rate of

auto-activation
wmax 0.03 µmµM rate regulating local endocytosis

GOR u0 0.054 µmµM initial concentration of the membrane-bound species
U0 0.2 µM initial concentration of the internal component
α 3.3 µm−1µM−2s−1 positive feedback activation
β 0.67 µM−2s−1 noncooperative membrane binding
γ 0.017 1/s basal membrane detachment rate

Ec 0.1 - membrane-bound GEF complex
wmax 0.02 µmµM rate regulating local endocytosis

Table 7.2.: Parameters used for numerical simulations of the WP and GOR system.
Parameters related to the transport scheme are estimated to show properties of actin-mediated cell
polarization.

∂tV =Dv∆V in Ω × I, (7.29)

with coupling boundary conditions

−(Du∇U − v⃗U) · n⃗ =h(u,w, U) on Γ × I, (7.30)
−Dv∇V · n⃗ =f(u, V ) on Γ × I, (7.31)

and initial conditions at time t = 0

U(·, 0) = U0, V (·, 0) = V0, u(·, 0) = u0, w(·, 0) = w0,

U0, V0 : Ω → R, u0, w0 : Γ → R.

Here, f is either replaced by fWP or fGOR. Note that these functions involve mea-
sured units. For h we choose again (7.22), albeit in its dimensional formula. In all
computational simulations we use parameters given by Table 7.2.
The numerical simulations of (7.26)-(7.31) considering the WP and GOR kinetic
functions are very similar to those shown by the non-dimensionalized system pre-
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(a) (b)

Figure 7.13.: Computational results of the GOR and WP system using distinct rates
of endocytosis. (a) Related to the WP system the rate of endocytosis determines the width
of the polarized patch. (b) The endocytic rate determines the intensity of the polarized patch
resulting from the GOR system.

sented in this thesis as well as the enhanced system of Rätz and Röger [72]. From
Figure 7.10 and 7.14 we obtain that active molecule transport implemented with
parameters given by Table 7.2 induces an accelerated and increased polarization
process.
Interestingly, whereas for the GOR system we see a raised maximal molecule number
within the cap, active molecule transport rather broadens the polar cluster resulting
from the WP mechanism (see Figure 7.13).
For numerical experiments with different cell types containing internal barriers, we
see again that organelles and the cell shape strongly influences the spatial organisa-
tion. But there are small differences between the results calculated by our or the
GOR model and those computed with the kinetics of the WP system. For the latter,
the double-sides stimulation of a cell containing an organelle that is nearly centrally
arranged leads to the development of two stable peaks. Equally, in a cell exhibiting
a small protrusion active molecule transport promotes the formation of two longer
lasting peaks. Without this mechanism the cluster at the protrusion reduces over
time until it finally disappears.



7 Derivation of a generic bulk-surface reaction-diffusion-advection system 149

GOR (h = 0):

Γ:

Ω:

GOR (h ̸= 0):

Γ:

Ω:

Figure 7.14.: Computational results of the GOR system applied to a sphere. Numerical
simulations of the GOR system with and without the derived transport feedback are shown. The
cell is characterized by a sphere with radius 3µm. A spatial perturbation represented by a local
stimulus s1 = 0.03µm/s for ∆t = 100s induces cluster formation of u.
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GOR (S1 = S2) h = 0: h ̸= 0:

Figure 7.15.: Computational results of the GOR system considering distinct diffusion
barriers. To investigate the influence of internal barriers on diffusion- and transport-mediated
polarization, numerical simulations of the GOR system using distinct geometries are compared.
Circles and ellipses are placed at distinct positions in the cell to model organelles that serve
as transport barriers. Two equal stimuli S1 and S2 with s1 = s2 = 0.03µm/s are imposed for
∆t = 100s behind the organelle and at its opposite side.
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GOR (S1 = S2) h = 0: h ̸= 0:

Figure 7.16.: Investigation of the GOR system for the influence of internal barriers
and cell shape on polarization. Simulations of the GOR system without and with the derived
transport mechanism using a cell with protrusion are illustrated. An ellipse is placed at different
positions to reflect an internal barrier. Two equal stimuli S1 and S2 with s1 = s2 = 0.03µm/s are
imposed for ∆t = 100s at opposite sides, one located at the bud. Different patterns are obtained.
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7.4. Linear stability analysis

In the last section we have introduced a generic system for polarization based
on reaction-diffusion-advection equations. We performed simulations for different
geometries and functions modeling reaction kinetics. The results have demonstrated
that coupling of reaction and diffusion together with active transport is able to
generate robust polarization.
Here, we present a stability analysis of the generic system to determine conditions
required for pattern formation. Therefore, we further restrict ourselves to the case
Ω := B1(0) and Γ := ∂B = S2. Moreover, for sake of convenience, we assume that
the internal pool is sufficiently large and that the rate of transport indirectly depends
on the amount of w on Γ.
The system (7.11)-(7.17) then reduces to

∂tu =∆Γu+ γ(f(u, v) + h(u,w, U)) on Γ × I, (7.32)
∂tv =dv∆Γv + γ(−f(u, v) + g(u, v, V )) on Γ × I, (7.33)
∂tw =dw∆Γ(w · c(u)−1) on Γ × I, (7.34)
∂tU =Du∆U in Ω × I, (7.35)
∂tV =Dv∆V in Ω × I, (7.36)

with Robin-type boundary conditions

−Du∇U · n⃗ =γh(u,w, U) on Γ × I, (7.37)
−Dv∇V · n⃗ =γg(u, v, V ) on Γ × I, (7.38)

and initial conditions at time t = 0

U(·, 0) = U0, V (·, 0) = V0, u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0,

U0, V0 : Ω → R, u0, v0, w0 : Γ → R.

Note that we consider Du ≫ 1 to ensure a well mixed internal pool.
Let s := (u, v, w, U, V )T be the vector of concentrations/densities u, v, w, U, V and
s∗ := (u∗, v∗, w∗, U∗, V∗) ∈ R5

+ be the spatial homogeneous steady state, that is

f(u∗, v∗) = 0,
g(u∗, v∗, V∗) = 0,
h(u∗, w∗, V∗) = 0.
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Since we are interested in pattern formation, our aim is now to investigate the
stability of the system (7.32)-(7.38) at stationary states. Throughout, we will follow
the approach presented in [72]. However, different to their analysis, due to the
implemented transport mechanism, we consider a system with five PDEs. This
makes the analysis much more costly and sophisticated.
As in [72], we are concerned with the GTPase cycle. This implies that we can
interpret f as an activation rate and g as the flux describing membrane attachment
and detachment of the GTPase. This interpretation of natural conditions can be
expressed by the following inequalities

∂vf ≥ 0, ∂vg ≤ 0, ∂vg ≤ ∂ug.

Furthermore, by interpreting the function h as the flux induced by de- and adsorption
of the substances (here exocytosis and endocytosis) at the membrane, we can assume
the condition

∂Uh ≥ 0.

Following the proceeding presented in [72], with notations

fu := ∂uf(u∗, v∗), fv := ∂vf(u∗, v∗),
gu := ∂ug(u∗, v∗, V∗), gv := ∂vg(u∗, v∗, V∗), gV := ∂V g(u∗, v∗, V∗),
hu := ∂uh(u∗, w∗, U∗), hw := ∂wh(u∗, w∗, U∗), hU := ∂Uh(u∗, w∗, U∗),

we suppose that in its equilibrium (u∗, v∗, w∗, U∗, V∗) the functions satisfy the strict
inequalities

fv > 0, gv < 0, gV > 0, hU > 0. (7.39)

Since we are interested in the stability behavior of steady states, we use preliminaries
presented in Section 3.2 and perform a stability analysis of the system (7.32)-(7.38).
Therefore, we have to linearize the equations at its steady state. For a better analysis
and to eliminate the inconvenient term w · c(u)−1 in (7.34), as a starting point we
apply the substitution w̃ := w

c(u) .
The system (7.32)-(7.38) then reads

∂tu =∆Γu+ γ(f(u, v) + h(u, c(u) · w̃, U)) on Γ × I, (7.40)
∂tv =dv∆Γv + γ(−f(u, v) + g(u, v, V )) on Γ × I, (7.41)

c(u) · ∂tw̃ =dw∆γw̃ on Γ × I, (7.42)
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∂tU =Du∆U in Ω × I, (7.43)
∂tV =Dv∆V in Ω × I, (7.44)

where the Robin-type boundary conditions are now given by

−Du∇U · n⃗ =γh(u, c(u) · w̃, U) on Γ × I, (7.45)
−Dv∇V · n⃗ =γg(u, v, V ) on Γ × I. (7.46)

To obtain the linearization at (u∗, v∗, w̃∗, U∗, V∗), system (7.40)-(7.46) can be written
in matrix form x′ = Fx, where x := (u, v, w̃, U, V ). The entries of F are given by the
right-hand sides of the original system. With w̃∗ = w∗

c(u∗) , on Γ × I, the linearization
is then given by x′ = JFx, where JF denotes the derivative of F with respect to
(u, v, w̃, U, V ).
On Γ × I we have

∂tu = ∆Γu+ γ((fu + hu + cuw̃hw)u+ fvv + c(u∗)hww̃ + hUU), (7.47)
∂tv = dv∆Γv + γ((−fu + gu)u+ (−fv + gv)v + gV V ), (7.48)

c(u)∂tw̃ = dw∆w̃. (7.49)

In Ω × I it holds that

∂tU = Du∆U, (7.50)
∂tV = Dv∆V, (7.51)

and for the flux conditions we finally obtain

−Du∇U · n⃗ = γ(huu+ cuw̃hwu+ c(u∗)hww̃ + hUU), (7.52)
−Dv∇V · n⃗ = γ(guu+ gvv + gV V ). (7.53)

To determine stability conditions for the system (7.32)-(7.38), we utilize the features
of spherical harmonics (see Appendix B). Consider the following ansatz for the
solution of the linearized system (7.47)-(7.53)

u(p, t) =


l∈N0,m∈Z,|m|≤l

ulm(t)φlm(p),

v(p, t) =


l∈N0,m∈Z,|m|≤l

vlm(t)φlm(p),

w̃(p, t) =


l∈N0,m∈Z,|m|≤l

w̃lm(t)φlm(p),
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U(p, t) =


l∈N0,m∈Z,|m|≤l

Ulm(t)ψlm(r)φlm(p),

V (p, t) =


l∈N0,m∈Z,|m|≤l

Vlm(t)χlm(r)φlm(p),

with ulm, vlm, w̃lm, Ulm : R → R, Vlm : R → R, ψlm : [0, 1] → R, χlm : [0, 1] → R, p ∈
Γ, 0 ≤ r ≤ 1, and the orthonormal basis {φlm}l∈N0,m∈Z,|m|≤l of L2(Γ). Then, the
Laplace operator can be represented as

−∆Γφlm = l(l + 1)φlm on Γ.

As a result, the L2(Γ) scalar product with φlm leads to the linearized system

u′
lm = − (l + 1)ulm + γ ((fu + hu + cuw̃∗hw)ulm + fvvlm) (7.54)

+ γ (c(u∗)hww̃lm + hUψlm(1)Ulm) ,
v′

lm = − dv(l + 1)vlm + γ (−fu + gu)ulm + (−fv + gv)vlm) (7.55)
+ γgV ψlm(1)Vlm,

c(u)w̃′
lm = − dwl(l + 1)w̃lm, (7.56)

U ′
lm(t)ψ(r) =DuUlm(t)


ψ′′

lm(r) + 2
r
ψ′

lm(r) − 1
r2 l(l + 1)ψlm(r)


, (7.57)

V ′
lm(t)χ(r) =DvVlm(t)


χ′′

lm(r) + 2
r
χ′

lm(r) − 1
r2 l(l + 1)χlm(r)


, (7.58)

−DvUlmψlm(1) =γ((hu + cuw̃∗hw)ulm + c(u∗)hww̃lm + hUψlm(1)Ulm), (7.59)
−DvVlmχlm(1) =γ(guulm + gvvlm + gV χlm(1)Vlm). (7.60)

We further acquire

Ulm(t) = B̄lme
λlmt, B̄lm ∈ R, λlm ∈ R,

Vlm(t) = B̄lme
µlmt, B̄lm ∈ R, µlm ∈ R,

whereby Ulm, Vlm does nowhere vanish or is identically zero.
We first consider the case Ulm, Vlm ̸= 0. Then, using U ′

lm = λlmUlm and V ′
lm = µlmVlm

we obtain from (7.57) and (7.58)

0 = r2ψ′′
lm(r) + 2rψ′

lm(r) −

l(l + 1) + λlm

Du

r2

ψlm(r), (7.61)

0 = r2χ′′
lm(r) + 2rχ′

lm(r) −

l(l + 1) + µlm

Dv

r2

χlm(r). (7.62)
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In the case λlm, µlm = 0 it is easy to recalculate that we have

ψlm(r) = αlmr
l,

χlm(r) = βlmr
l,

with αlm, βlm ∈ R. By contrast, for λlm, µlm > 0, equations (7.61) and (7.62) are
modified versions of Bessel differential equations whose solutions are defined by
Bessel functions of first kind. Hence, using the respective modified Bessel functions
Jl+ 1

2
, we derive

ψ(r) = αlmξl

λlm

Du

r

 , α ∈ R,

χ(r) = βlmξl


µlm

Dv

r


, β ∈ R,

where

ξl =

π

2r Jl+ 1
2
(r).

We then finally deduce the ODE system

u′
lm = (−l(l + 1) + γfu)ulm + γfvvlm −Duψ

′
lm(1)Ulm, (7.63)

v′
lm = −γfuulm − (dvl(l + 1) + γfv)vlm −Dvχ

′
lm(1)Vlm, (7.64)

c(u)w̃′
lm = −dwl(l + 1)w̃lm, (7.65)

U ′
lm = λlmUlm, (7.66)

V ′
lm = µlmVlm, (7.67)

coupled to two algebraic equations given by

0 = γ(hu + cuw̃∗hw)ulm + c(u∗)hww̃lm) + (γhUψlm(1) +Duψ
′
lm(1))Ulm,

0 = γ(guulm + gvvlm) + (γgV χlm(1) +Dvχ
′
lm(1))Vlm.

We define

x′
lm :=



u′
lm

v′
lm

c(u)w̃′
lm

U ′
lm

V ′
lm


, xlm :=



ulm

vlm

w̃lm

Ulm

Vlm


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and

JF :=

−l(l + 1) + γfu γfv 0 −Duψ
′
lm(1) 0

−γfu −dvl(l + 1) − γfv 0 0 −Dvχ
′
lm(1)

0 0 −dwl(l + 1) 0 0
γ(hu + cuw̃∗hw) 0 γc(u∗)hw ξ 0

γgu γgv 0 0 η


,

where

ξ := γhUψlm(1) +Duψ
′
lm(1) + λlm,

η := γgV χlm(1) +Dvχ
′
lm(1) + µlm.

Writing
x′

lm = JFxlm,

the stability analysis reduces to an analysis of the eigenvalues of the matrix JF . To
determine stability conditions we have to consider the eigenvalue problem

|JF − λI| = 0.

Straightforward calculation of the determinant by considering the respective minors
leads to

|JF − λI| = [−dwl(l + 1) − λ] · |J̃|,

where

J̃ :=


−l(l + 1) + γfu − λ γfv −Duψ

′
lm(1) 0

−γfu −dvl(l + 1) − γfv − λ 0 −Dvχ
′
lm(1)

γ(hu + cuw̃∗hw) 0 ξ − λ 0
γgu γgv 0 η − λ

 .

Thus, we directly see that −dwl(l + 1) is an eigenvalue of the system. Since dw > 0,
the first eigenvalue is always less than zero. To find a positive eigenvalue, it remains
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to consider the eigenvalues of the remaining matrix, that is


−l(l + 1) + γfu − λ γfv −Duψ
′
lm(1) 0

−γfu −dvl(l + 1) − γfv − λ 0 −Dvχ
′
lm(1)

γ(hu + cuw̃∗hw) 0 ξ − λ 0
γgu γgv 0 η − λ


.

It holds that

|J̃| = (η − λ) ·


−l(l + 1) + γfu − λ γfv −Duψ

′
lm(1)

−γfu −dvl(l + 1) − γfv − λ 0
γ(hu + cuw̃∗hw) 0 ξ − λ



−Dvχ
′
lm(1) ·


−l(l + 1) + γfu − λ γfv −Duψ

′
lm(1)

γ(hu + cuw̃∗hw) 0 ξ − λ

γgu γgv 0



= (η − λ) · (ξ − λ)

−l(l + 1) + γfu − λ γfv

−γfu −dvl(l + 1) − γfv − λ



− (η − λ) ·Duψ
′
lm(1)

 −γfu −dvl(l + 1) − γfv − λ

γ(hu + cuw̃∗hw) 0



+ (ξ − λ) ·Dvχ
′
lm(1) ·

−l(l + 1) + γfu − λ γfv

γgu γgv



+Dvχ
′
lm(1) ·Duψ

′
lm(1) ·

γ(hu + cuw̃∗hw) 0
γgu γgv

 .
We define the characteristic polynomial

Pl(λ) :=
(γgV χlm(1) +Dvχ

′
lm(1) + µlm − λ) · (γhUψlm(1) +Duψ

′
lm(1) + λlm − λ) · pl,1(λ)

+ (γhUψlm(1) +Duψ
′
lm(1) + µlm − λ) ·Duψ

′
lm(1) · pl,2(λ)

+ (γgV χlm(1) +Dvχ
′
lm(1) + λlm − λ) ·Dvχ

′
lm(1) · pl,3(λ)

+Duψ
′
lm(1) ·Dvχ

′
lm(1) · pl,4(λ), (7.68)
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where

pl,1(λ) := λ2 + [(dv + 1)(l + 1)l + (−fu + fv)γ]λ+ dvl
2(l + 1)2

+ γ(l(l + 1))(−dfu + fv),
pl,2(λ) := [−l(l + 1) + γfu − λ] γgv − γ2fvgu,

pl,3(λ) := [−dvl(l + 1) − γfv − λ] γ(hu + cuw̃∗hw),
pl,4(λ) := γ2gv(hu + cuw̃∗hu).

The eigenvalues are now given by the zeros of polynomial (7.68). Hence, from (7.63)-
(7.67), as long as Ulm, Vlm ̸= 0, we acquire that an eigenvalue λ with Re(λ) > 0
exists if and only if first λ = λlm = µlm ∈ R+

0 and additionally with

κDu,l(λ) := Duψ
′
lm(1)

ψlm(1) = Du


rξ′

l(r)
ξl(r)

 
r=


λ
Du

, (7.69)

κDv ,l(λ) := Dvχ
′
lm(1)

χlm(1) = Dv


rξ′

l(r)
ξl(r)

 
r=


λ
Dv

(7.70)

λlm fulfils the condition

Pl(λlm) := (γgV + κDv ,l(λlm)) · (γhU + κDu,l(λlm)) · pl,1(λlm)
+ (γhU + κDu,l) · κDv ,l · pl,2(λlm)
+ (γgV + κDv ,l) · κDu,l · pl,3(λlm)

+ κDu,l · κDv ,l · pl,4(λlm) != 0.

Proposition 7.1. In (u∗, v∗, w∗, U∗, V∗) the system (7.32)-(7.38) is stable against
spatially homogeneous perturbations in the variables u, v, and w if the following
condition is satisfied:

1
3(fugvhU − fvguhU − gV hufv) + gV hU(fv − fu) > 0. (7.71)

In this case

fv − fu > hu, hu < 0

holds.
If either U = 0 or V = 0 the conditions are as follows:
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• Case U = 0:

1
3(fugv − fvgu) + gV (fv − fu) > 0. (7.72)

In this case

fv > fu

holds.

• Case V = 0:

hU(fv − fu) − 1
3fvhu > 0. (7.73)

In this case

hu < 0

holds.

Proof. We first consider the case l = 0. Furthermore, we assume that U00, V00 ̸= 0.
Note that in this case w is always constant and w = w0. This also implies hw = 0.
Then the characteristic polynomial (7.68) reduces to

P0(λ) =(γgV + κDv ,l(λ)) · (γhU + κDu,l(λ)) ·

λ2 + (−fu + fv)γλ


+ (γhU + κDu,l(λ)) · κDv ,l(λ) ·


γ2fugv − λγgv − γ2fvgu


+ (γgV + κDv ,l(λ)) · κDu,l(λ) ·


−γ2fvhu − λγhu


+ κDu,l(λ) · κDv ,l(λ) · γ2gvhu.

To obtain that the system is asymptotically stable in (u∗, v∗, w∗, U∗, V∗), we require
that all eigenvalues are negative. This means that P0(λ) has no zeros in [0,∞).
We rewrite

κDu,0(λ) = Du


rξ′

l(r)
ξl(r)

 
r=


λ
Du

= λκ̃

 λ

Du

 ,
κDv ,0(λ) = Dv


rξ′

l(r)
ξl(r)

 
r=


λ
Dv

= λκ̃

 λ

Dv

 ,
κ̃(r) := ξ′

0(r)
rξ0(r)

.
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For λ > 0 equation P0(λ) = 0 is equivalent to

0 =
γgV + λκ̃

 λ

Dv

 ·

γhU + λκ̃

 λ

Du

 · (λ2 + (−fu + fv)γλ)

+
γhU + λκ̃

 λ

Du

 · λκ̃

 λ

Dv

 · (γ2fugv − λγgv − γ2fvgu)

+
γgV + λκ̃

 λ

Dv

 · λκ̃

 λ

Du

 · (−γ2fvhu − λγhu)

+ λ2κ̃

 λ

Du

 · κ̃

 λ

Dv

 · γ2gv(hu)

(:λ>0)=
γgV + λκ̃

 λ

Dv

 ·

γhU + λκ̃

 λ

Du

 · (λ+ (−fu + fv)γ)

+
γhU + λκ̃

 λ

Du

 · κ̃

 λ

Dv

 · (γ2fugv − γ2fvgu − λγgv)

+
γgV + λκ̃

 λ

Dv

 · κ̃

 λ

Du

 · (−γ2fvhu − γλhu)

+ λκ̃

 λ

Du

 · κ̃

 λ

Dv

 · γ2gvhu := P̃0(λ).

For λ = 0 it holds P0(0) = 0. Since w is in this case simply a constant and w = w0,
the linearized system reduces to

0 =(fu + hu)u+ fvv + hUU, (7.74)
0 =(−fu + gu)u+ (−fv + gv)v + gV V, (7.75)

0 =4π(u+ v) + 4π
3 (U + V ), (7.76)

where u, v, U, V are constant. Addition of (7.74) and (7.75) yields

0 = guu+ gvv + gV V + huu+ hUU. (7.77)

With the stationary equations for U and V we obtain

0 =guu+ gvv + gV V,

0 =huu+ hUU.
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Thus, we get

hu = −hUU

u
,

and hence, since u, U , and hU > 0, it holds that hu < 0. Furthermore, together with
(7.75) we have

0 = fuu+ fvv ⇐⇒ u = −fv

fu

v,

so that

V = 1
gV


gufv

fu

− gv


v, U =


3fv

fu

− 3 − 1
gV


gufv

fu

− gv


v.

By substitution of these relations into (7.77) and straightforward calculations, as
the first condition, we obtain that this system has a non-trivial solution if

0 = 1
3(fugvhU − fvguhU − gV hufv) + gV hU(fv − fu). (7.78)

With (7.71) and the relation gv ≤ gu we further deduce that

0 < 1
3(fugvhU − fvguhU − gV hufv) + gV hU(fv − fu)

≤ 1
3(fugvhU − fvgvhU − gV hufv) + gV hU(fv − fu)

= (fv − fu)(gV hU − 1
3gvhU) − 1

3fvgV hu

= (fv − fu − hu)(gV hU − 1
3gvhU + 1

3fvgV ) + hu(gV hU − 1
3gvhU)

≤ (fv − fu − hu)(gV hU − 1
3gvhU + 1

3fvgV ).

Together with (7.39) this yields fv − fu > hu.
Let us now consider the case λ ∈ (0,∞). From [72] we know that

lim
r→0

κ̃(r) = 1
3 , lim

r→∞
κ̃(r) = 0. (7.79)

Since we suppose gV , hU > 0, together with (7.79), we obtain that limλ→∞ P̃0(λ) =
+∞. Furthermore, it holds that

lim
λ→0

P̃0(λ) = gV hU(fv − fu) + 1
3(fugvhU − fvguhU − fvgV hu). (7.80)
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In other words, (7.78), (7.80), and w̃∗ = w∗
c(u∗) imply that for λ > 0, if the conditions

from Proposition 7.1 are satisfied, the characteristic polynomial has no change of
sign. This inequality is necessary for the stability of the homogeneous steady state.
To investigate if this term is also sufficient to exclude an eigenvalue λ with Reλ > 0,
we recheck

P̃0(λ) =
γgV + λκ̃

 λ

Dv

 ·

γhU + λκ̃

 λ

Du

 · [λ+ γ(fv − fu)]

+
γhU + λκ̃

 λ

Du

 · κ̃

 λ

Dv

 ·

γ2gvfu − γ2fvhu − λγgv



+
γgV + λκ̃

 λ

Dv

 · κ̃

 λ

Du

 ·

−γ2fvhu − γhu



+ λκ̃

 λ

Du

 · κ̃

 λ

Dv

 · γ2gvhu

≥

γgV + λκ̃

 λ

Dv

 ·

γhU + λκ̃

 λ

Du

 · [γ(fv − fu)]

+
γhU + λκ̃

 λ

Du

 · κ̃

 λ

Dv

 ·

γ2gvfu − γ2fvhu



+
γgV + λκ̃

 λ

Dv

 · κ̃

 λ

Du

 ·

−γ2fvhu



for λ > 0, gvhu > 0, gv < 0, and hu < 0. Thus, we have to distinguish two cases.
First, consider

fugv − fvgu < 0 or fv − fu < 0.

Since κ̃ is decreasing and κ̃ ≤ 1
3 , on [0,∞) we have the downward estimation

P̃0(λ) > γ2
1
3(fugvhU − fvguhU − fvgV hu) + gV hU(fv − fu)


≥ 0.

For the case

fugv − fvgu > 0, fv − fu > 0,

we directly conclude that P̃0(λ) > 0 and prove the assertion for the full system.

In order to investigate the system for stability conditions in the absence of some
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species, we proceed with the special cases Vlm, Ulm = 0.
Case Ulm = 0: The system is overdetermined and it holds that µlm = 0. Furthermore,
we obtain

0 = γ(huulm + hwwlm) + (γhUψlm(1) +Duψ
′
lm(1))Ulm

= huulm + hwwlm

and hence

u′
lm = (−l(l + 1) + γfu)ulm + γfvvlm.

Moreover, for Ulm = 0 the characteristic polynomial reduces to

G0(λ) := γgV (λ2 + (−fu + fv)γλ) + κDv ,0(λ)(λ2 + (−fu + fv)γλ)
− κDv ,0(λ)(γgvλ− γ2(fugv − fvgu)).

The stability conditions for this case have already been discussed and the proof can
be found in [72].
Case Vlm = 0: The system is again overdetermined and the matrix has an eigenvalue
λlm = 0. Moreover, it holds that

0 = γ(guulm + gvvlm) + (γgV χlm(1) +Dvχ
′
lm(1))Vlm

= γguulm + γgvvlm

so that for (7.64) we obtain

v′
lm = γfu

gv

gu

vlm − (dvl(l + 1) + γfv)vlm.

This implies that any eigenvalue λ corresponding to the linearized system is given by

λ = γ


fugv

gu

− fv


− dvl(l + 1).

For l = 0 we require that all eigenvalues have negative real parts. We claim that

fugv

gu

− fv < 0.

Furthermore, the characteristic polynomial reduces to

H0(λ) := −Duψ
′
lm(1) · [γ2fvhu + λγhu] + (γhUψlm(1) +Duψ

′
lm(1)) · λγ(−fu + fv).
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Since hU > 0, fv > 0, and hu < 0 we deduce that limλ→∞ H0(λ) = +∞. Using (7.69)
and (7.67) we further calculate

H̃0(λ) = −κ̃

 λ

Du

 · [γ2fvhu + λγhu] +
γhU + λκ̃

 λ

Du

 · γ(fv − fu).

To prevent that H̃0 has only negative eigenvalues, meaning it does not change its
sign for λ ∈ [0,∞), consider

lim
λ→0

H̃0(λ) = γ2hU(fv − fu) − 1
3γ

2fvhu.

This is fulfilled even if

0 < hU(fv − fu) − 1
3fvhu.

Summarized, the derived conditions ensure that H̃0 has only negative eigenvalues.

We next determine under which conditions small spatial perturbations from the
homogeneous steady state (u∗, v∗, w∗, U∗, V∗) induce instabilities.

Theorem 7.2. Assume that the system (7.32)-(7.38) satisfies the condition (7.71).
If in (u∗, v∗, w∗, U∗, V∗) further holds that

(γgV +Dvl) · (γhU +Dul) · [dvl
2(l + 1)2 + γl(l + 1)(−dvfu + fv)] (7.81)

+ (γhU +Dul) ·Dul[−l(l + 1)γgv + γ2(fugv − fvgu)]

− (γgV +Dvl) ·Dvl


γhw


w∗cu

c(u∗)


+ γhu


· (dvl(l + 1) + γfv)



+DuDvl
2

γhw


w∗cu

c(u∗)


+ γhu


· γgv


< 0,

then the system is linearly asymptotically unstable in (u∗, v∗, w∗, U∗, V∗).

Remark 7.1. In the case of Ulm = 0 the system is asymptotically unstable in
(u∗, v∗, w∗, U∗, V∗) if it fulfils the condition (7.72) and furthermore

(γgV +Dvl) · [dvl
2(l + 1)2 + γl(l + 1)(−dvfu + fv)]

−Dvl · [−l(l + 1)γgv + γ2(fugv − fvgu)] < 0. (7.82)

If Vlm = 0 and (7.73) is satisfied, then the instability condition is given by

(γhU +Dul) · [dvl
2(l + 1)2 + γl(l + 1)(−dvfu + fv)]
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−Dul ·

γhw


w∗cu

c(u∗)


+ γhu


· (dvl(l + 1) + γfv)


< 0. (7.83)

Proof. Again, we first consider the case Ulm, Vlm ̸= 0. Since we claim that the system
becomes unstable in the presence of diffusion, we require that the characteristic
polynomial has a positive zero λlm. As already mentioned, from (7.63)-(7.67), as
long as Ulm, Vlm ̸= 0, we acquire that an eigenvalue λ with Re(λ) > 0 exists if and
only if first λ = λlm = µlm ∈ R+

0 and additionally with (7.69) and (7.70) λlm fulfils
the condition

Pl(λlm) = (γgV + κDv ,l(λlm)) · (γhU + κDu,l(λlm)) · pl,1(λlm)
+ (γhU + κDu,l(λlm)) · κDv ,l · pl,2(λlm)
+ (γgV + κDv ,l(λlm)) · κDu,l · pl,3(λlm)
+ κDu,l(λlm) · κDv ,l(λlm) · pl,4(λlm) = 0.

From [72] we know that

lim
λ→0

κDu,l(λ) =Du


rξ′

l(r)
ξl(r)

 
r=


λ
Du

= Dul,

lim
λ→0

κDv ,l(λ) =Dv


rξ′

l(r)
ξl(r)

 
r=


λ
Dv

= Dvl,

lim
λ→∞

κDu,l(λ) = + ∞,

lim
λ→∞

κDv ,l(λ) = + ∞.

This implies that

lim
λ→∞

Pl(λ) = + ∞.

For Pl(λ) in order to change its sign, we finally examine limλ→0 Pl(λ) and get the
condition (7.81) which is sufficient to ensure a positive zero of Pl(λ).
Similarly, consider

Gl(µlm) := (gV + κDv ,l(µlm)) · pl,1(µlm) − κDv ,l(µlm) · pl,2(µlm).

and

Hl(λlm) := (hU + κDu,l(λlm)) · pl,1(λlm) + κDu,l(λlm) · pl,3(λlm).
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Then, (7.82) and (7.83) follow directly with the same argumentation.

Corollary 7.3. Assume that the system (7.32)-(7.38) satisfies the condition (7.71)
and either Du or Dv are chosen sufficiently large. Then, the instability condition
(7.81) is satisfied if the following conditions hold:

• Case 1:

C1 := fugv − fvgu − fvhu −

cuw∗

c(u∗)


fvhw + gvhu +


cuw∗

c(u∗)


gvhw ≥ 0,

C2 := dvfu − fv + gv + dvhu + dv


cuw∗

c(u∗)


hw > 0,

Q := C2
1 − 4dvC2 > 0,

and for

r± = 1
2dv

(C2 ±

Q)

exists an l ∈ N with

r− <
l(l + 1)
γ

< r+.

• Case 2:

C1 := fugv − fvgu − fvhu −

cuw∗

c(u∗)


fvhw + gvhu +


cuw∗

c(u∗)


gvhw < 0

and with r+ as defined above exists an l ∈ N with

l(l + 1)
γ

< r+.

Remark 7.2. If Ulm = 0 and the system fulfils condition (7.72), then the instability
condition (7.82) holds for sufficiently large Dv if the following conditions are satisfied:

• Case 1:

C1 := fugv − fvgu ≥ 0,
C2 := dvfu − fv + gv > 0,

Q := C2
1 − 4dvC2 > 0,
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and for

r± = 1
2dv

(C2 ±

Q)

exists an l ∈ N with

r− <
l(l + 1)
γ

< r+.

• Case 2:

C1 := fugv − fvgu < 0

and with r+ as defined above exists an l ∈ N with

l(l + 1)
γ

< r+.

Remark 7.3. If Vlm = 0 and the system fulfils condition (7.73), then the instability
condition (7.83) holds for sufficiently large Du if the following condition is satisfied

• Case 1:

C1 := −fv


hu +


w∗cu

c(u∗)


hw


≥ 0,

C2 := dvfu − fv + dvhu + dv


w∗cu

c(u∗)


hw > 0,

Q := C2
1 − 4dvC2 > 0,

and for

r± = 1
2dv

(C2 ±

Q)

exists an l ∈ N with

r− <
l(l + 1)
γ

< r+.

• Case 2:

C1 := −fv


hu +


w∗cu

c(u∗)


hw


< 0



7 Derivation of a generic bulk-surface reaction-diffusion-advection system 169

and with r+ as defined above exists an l ∈ N with

l(l + 1)
γ

< r+.

Proof. We first restrict ourselves to Ulm, Vlm ̸= 0 and the case Du ≫ 1 as well as
Dv ≫ 1. In order to achieve an instability, we consider (7.81) and narrow down to
the coefficient of Du ·Dv which is given by

ϵ =dvl
2(l + 1)2 + γl(l + 1)(−dvfu + fv) + (−l(l + 1)γgv) + γ2(fugv − fvgu)

−

γhw


w∗cu

c(u∗)


+ γhu


· (dvl(l + 1) + γfv)


+

γhw


w∗cu

c(u∗)


+ γhu


· γgv



=dvl
2(l + 1)2 + γl(l + 1)


−dvfu + fv − gv − dvhu − dv


cuw∗

c(u∗)


hw



+ γ2

fugv − fvgu − fvhu −


cuw∗

c(u∗)


fvhw + gvhu +


cuw∗

c(u∗)


gvhw


.

We define

ϵ̃ := d2
vl

2(l + 1) − dvγl(l + 1)C1 + γ2dvC2

whose roots are given by

r± = C2

2dv

±

 C2

2dv

2
− C1.

In order to satisfy condition (7.81) and to obtain an instability, we now require e < 0.
First, assume C1 ≥ 0 and C2 > 0. Then, e represents a right displaced upward open
parabola which intersects the positive axis at points r±. Thus, with l ∈ N to ensure
e < 0 we have to satisfy the conditions of Case 1. By contrast, if C1 is negative, the
parabola is shifted to the left and we directly prove Case 2 to obtain e < 0.
We further consider Du ≫ 1 as well as the case Du ≈ 1. Since we suppose that
Dv ≫ 1, as before, we observe that either Dule or Dvle becomes dominant in (7.81).
This implies that an instability exists for sufficiently large Du or Dv.
Finally, with the same argumentation as before, the analysis of the coefficient Du in
(7.82) as well as Dv in (7.83) deduce Remark 7.2 and 7.3 (for the case U = 0 see
also [72]).
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7.4.1. Numerical results

In the following, we confirm the results of the linear stability analysis performed in
the last section. We numerically solve system (7.32)-(7.38) for the different cases to
investigate its behavior. In all computations we use functions f, g as given in (7.18)
and (7.19) respectively. To simulate transport via exocytosis and endocytosis, with
(7.23) and (7.24) we define

h(u,w, U) := e1wU − e2


1 − δ(w) w

wmax


u.

We consider the same initial concentrations as before and use parameters given in
Table 7.1.

Figure 7.17.: Computational results
demonstrating the influence of the
diffusion constant for actin cable
movement on the polarization pro-
cess. The development of the maximum
of u in time is shown. Computations with
different rates for dw are compared.

Note that due to the modification of h and the
nearly homogeneous distribution of U , we have
to rescale e1 and e2 to obtain similar results
as for the system where molecules are trans-
ported via advection. For simulations of the
RR system we use e1 = 15.0 and e2 = 0.2. To
prevent that transport dominates the system
behavior, for our system we have to reduce
the rate of endocytosis by the factor 2. The
rate of exocytosis is chosen such that we obtain
similar ratios between internal and membrane
components as before. We set e1 = 84.3 and
e2 = 4.167.
The most interesting outcome of the stability
analysis is the fact that the conditions deter-
mining instability are completely independent of the diffusion parameter dw. This
implies that the only requirement on dw is that it must be non-zero. In this case,
the capacity function c(u) determines whether the system is stable against small
perturbations or not. We further call this capacity-driven instability.

Figure 7.17 shows the development of u in time for distinct values of dw. We
see that even for large changes of dw, provided that dw ≠ 0, the system is always
unstable and tends to form a polarized patch. It becomes clear that the capacity
function c(u) as well as w∗ determine the stability behavior. The constant dw only
changes the temporal dynamic of polarization (see Figure 7.17). For reduced rates,
the maximum value of u is reached much later. It can be shown that even for dw ≪ 1
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(a) U and V ̸= 0 (b) V = 0 (c) U = 0

Figure 7.18.: Numerical simulations of the generic system showing distinct cases of
instability. Computational results of system (7.32)-(7.38) showing distinct cases of instability
(e1 = 84.3, e2 = 4.167). (a) The internal as well as cytosolic component is non-zero. A small
initial perturbation leads to an instability inducing a polarized patch. (b) Without the cytosolic
component a capacity-driven instability causes peak formation. (c) Even if the internal component
is zero, the cell is still able to become unstable.

(a) (b) (c)

Figure 7.19.: Numerical simulations of the generic system showing capacity-driven
instability. Computational results of the system (7.32)-(7.38) with drastically reduced diffusion
constant DV = 1. Even with similar rates of cytosolic and membrane diffusion the cell is able to
polarize by transport. (a) Concentration u after time t = 10 (h ̸= 0). (b) Concentration V after
time t = 10 (h ̸= 0). (c) Temporal development of u.
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(a) U and V ̸= 0 (b) V = 0 (c) U = 0

Figure 7.20.: Numerical simulations of the RR model showing distinct cases of insta-
bility. Computational results of system (7.32)-(7.38) using kinetic function of the RRsystem
showing distinct cases of instability (e1 = 15, e2 = 0.2). (a) The internal as well as cytosolic
component is non-zero. A small initial perturbation leads to an instability inducing a polarized
patch. (b) Without the cytosolic component a capacity-driven instability causes peak formation.
(c) Even if the internal component is zero, the cell is still able to become unstable.

(a) (b) (c)

Figure 7.21.: Numerical simulations of the RR model showing capacity-driven insta-
bility for equal membrane and cytosolic diffusion constants. Computational results with
drastically reduced diffusion constant DV = 1 are shown for the system with and without con-
sideration of transport. (a) Concentration u after time t = 20 and in the absence of a transport
feedback (h = 0). (b) Concentration u after time t = 20 (h ̸= 0). (c) Concentration V after time
t = 20 (h ̸= 0).
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the system is still able to form a polarized patch, albeit after a very long time
(t > 30).
Another result of the stability analysis is the fact that we may observe polarization,
even if V = 0 or U = 0. From Figures 7.18 and 7.20 we see that both systems, our
non-dimensionalized and the RR model, are able to represent these cases. Even in
the absence of a cytosolic exchange or a transport mechanism, the system becomes
unstable and forms a polarized cluster.
At this point, it should be emphasized that regarding the intensity and shape of
the polarized cluster, the subsequent process of cluster emergence calculated with
the presented non-dimensionalized approach shows clear differences to the results
computed with the complex model presented in Chapter 6.1. On the one hand this
might be the result of the model reduction. This procedure induced the elimination
of a local activating component. On the other hand, the simplification by assuming a
well mixed internal pool to eliminate the advection term could influence the results.
But the conditions for instability provide further predictions. The requirement
Du ≫ 1 yields that Dv must not be very large to ensure an instability. We have
seen that even in the case Dv ≈ 1 the instability conditions may be satisfied. Our
numerical simulations confirm these results. Figure 7.19 illustrates capacity-driven
polarization for the system (7.32)-(7.38) where Dv = 1.
Similar results are obtained by numerical simulations of the RR system (see Figure
7.21). Whereas equal surface and bulk diffusion coefficients have impeded pattern
formation in the original system without transport (see [72]), the enhanced system
is still able to polarize. Interestingly, in this case the system tends to form two
polarized clusters.

7.5. Discussion

In this chapter we have introduced a generic system for the simulation of transport-
mediated cell polarization. We performed numerical simulations with distinct cell
geometries.
The results have shown that vesicular transport may not only influence the robust-
ness, the shape, and the intensity of the polar cluster but also its spatial location.
Particularly in cells with complex shapes we observed different patterns between
simulations with and without active molecule transport. Here, protrusions and
narrower domains differently affected symmetry breaking. Whereas complex shapes
rather inhibit diffusion-driven symmetry-breaking, transport-mediated polarization
can be enhanced under these circumstances.
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However, cells are able to robustly polarize at sites of complex protrusions. For
example, the tip of the future axon is strongly polarized during neuronal development.
These findings suggest that, especially in non-spherical cells, active transport may
be required to ensure the correct location of the polarized patch. For instance, for
the system presented in [72] applied to a rod-shaped cell, symmetry breaking was
characterized by a central circle of active molecules round the cell. Under considera-
tion of an active transport mechanism however, depending on the strength of the
transport feedback, the peak either formed at one end or at both ends of the cell.
Indeed, biological experiments have demonstrated that the unicellular rod-shaped
fission yeast shows bipolar growth due to polarized transport of growth components
along actin cables to sites of cortical polarity. With a disturbed transport machinery,
cortical polarity is established at incorrect sites, resulting in bent or ’T’-shaped
cells [80].
Contrarily, simulations of the generic model presented here as well as the GOR
system always resulted in a pattern characterized by one stable polarized patch.
We assume that these systems exhibit a stronger feedback of auto-amplification
enhancing the competition between two clusters. At this point it is noteworthy that
it was much more difficult to find parameter regimes simulating transport feedback
for the system derived in [72]. We assume that this was due to the fact that this
system in general seems to be more sensitive to parameter changes.
Another difference in the RR model and our or the GOR system was the spatial
location of the polarized patch in a cell exhibiting a small protrusion. Whereas our
model resulted in a polarized peak at the bud-site, the system proposed by Rätz
and Röger led to a cluster at the opposite side. This may result from the reaction
kinetics. The function g representing cytosolic exchange in the RR model includes
a negative feedback. Increased rates of the membrane-bound species lead to its
membrane detachment. Contrarily, the other models investigated in this work are
based on positive feedback activation. The inactivation is always linear. We assume
that the negative mechanism in the RR model may counteract the positive transport
feedback. Or conversely, the transport may increase the negative feedback. As a
result, the polarized patch is obtained in regions where diffusion is less hindered.
This could also explain why the initial cluster at sites with low curvature lasts much
longer with than without delivery.
Interestingly, for the WP model we obtained that transport rather broadens than
raises the polarized patch. The phenomenon of WP is explained by a traveling wave
that moves through the domain and suddenly stops. The duration and distance of
wave propagation thereby depends on the bi-linearity and mass conservation of the
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system. It is a direct result of the integral over kinetic functions (see [61] for more
details). Depending on the choice of parameters, the included transport scheme now
changes not only the steady states but also the wave speed and the integral that
determines the time point when the wave stops. For larger rates of endocytosis, the
active membrane-bound component decreases so that the integral quickly becomes
zero. In this way, the transport mechanism is also able to induce two transient
polarized clusters.
Another outcome of the computational results presented in this chapter is the distinct
role of organelles. Whereas internal barriers inhibit diffusion-driven polarization
behind them, active transport is able to overcome this negative feedback to facilitate
polarity next to organelles. The influence of internal components on the direction
of cluster formation has already been shown by biological experiments. To give
an example, studies with the fission yeast have demonstrated that the position of
the interphase nucleus dictates the future site of cell division [20]. These findings
together with our results emphasize that it is of particular importance to consider
spatial aspects in the mathematical study of cell polarization. As a consequence,
to investigate such biological processes in greater detail, the application of more
complex mathematical models, including coupling bulk-surface PDEs, must take on
greater significance.
Unfortunately, with growing complexity the analysis of mathematical models be-
comes increasingly challenging. To enable a linear stability analysis, we continued
with a reduction of the generic approach given by reaction-diffusion-advection equa-
tions to a minimal coupled bulk-surface reaction-diffusion-transport system. The
stability analysis has shown that the reduced generic system is able to generate
spatial patterns under certain conditions. These conditions confirm that the transport
process derived in this work can increase the robustness of the system. The reason is
that two distinct mechanisms act in parallel to generate symmetry breaking. These
can explain polarization in ∆rdi1 and LatA-treated cells. The first one relates to
a classical Turing instability which requires a large difference in the cytosolic and
membrane diffusion coefficient. Even if there is no transport of molecules from and to
an internal compartment, this mechanism is able to achieve polarization. Since this
case has already been analyzed in detail, at this point, we refer the reader to [72].
The second mechanism is based on a capacity function that regulates the concentra-
tion of the component driving transport. Under certain conditions, this mechanism
can induce symmetry breaking, even if the cytosolic exchange is blocked. Hence, this
case explains symmetry breaking in cells lacking the cytosolic component. In this case,
provided that dw ̸= 0, the capacity function c(u) together with the homogeneous
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state of w entirely determines the stability behavior.
By the performance of numerical simulations we finally confirmed the results of the
stability analysis and demonstrated that our model as well as the enhanced model
of Rätz and Röger are able to show the different cases derived. Furthermore,
we have shown that this capacity-driven instability also generates pattern when
the cytosolic and membrane diffusion rates are equal. For that reason, and since
the diffusion constant dw has no essential impact on the stability of the system, we
assert that this instability mechanism distinguishes from the Turing-type instability.



8 | A stochastic approach to vesic-
ular trafficking-mediated cell
polarity

Up to know, we have always considered a continuous approach regarding the transport
control factor, in our case actin cables. We used a continuous function to describe
its density on the membrane, albeit actin cables are discrete and countable. In this
chapter we will construct a stochastic model for the movement of actin cable ends on
the plasma membrane. In terms of this derivation, we make use of Brownian motion
which is of fundamental importance for a random walk on the surface and solve a
stochastic differential equation (SDE). For further details we refer the reader to [55].

8.1. Brownian motion on a surface

The modeling of particle movement on the circle or the sphere is a challenging
question. Here, we use a popular method to calculate the movement of particles
or molecules on the sphere Sn, n = {1, 2} and follow the formal results described
in [39]. The method presented there is based on the generation of random walk on a
surface or a line approximated by a tangent plane or tangent line respectively. The
results determined on this tangent are then projected back to the original geometry.
Consider the SDE

dX = a(X)dt+


2D(X)B, X(0) = X0.

with diffusion matrix D(X) and drift field a(X). The motion on a curve or a sphere
can now be approximated by the motion on the tangential line or plane projected
back to the sphere or curve respectively. Consider Brownian motion X(t) on a
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surface  and its planar projection X̃(t). It is

X(t+ ∆t) = X̃(t+ ∆t) + λ(∆t)n(X(t)), (8.1)

where n(X(t)) denotes the normal to the tangent and λ(∆t) ∈ R. With the radius
of the cell λ(∆t) can be calculated by

∥X(t+ ∆t)∥ = ∥X̃(t+ ∆t) + λ(∆t)n(X(t))∥ = r. (8.2)

Thus, the transport mechanism can be implemented as follows.
Starting with a set of evenly distributed points X(0) on the circle or sphere with
radius r, for each time step t

1. Compute standard Brownian motion B in R or R2 respectively,

2. Determine the orthogonal projection X̃(t+ ∆t),

3. Calculate n(X(t)) as well as λ(∆t) using (8.2), and

4. Use (8.1) to compute X(t+ ∆t).

We will shortly explain the proceeding for standard Brownian motion without drift
on a circle and a sphere.

8.1.1. The two-dimensional case

To simulate standard Brownian motion X = (x(t), y(t)) at time t on a circle  := S1

with radius r, it is useful to define the tangent line l at the point (x, y). For x, y ∈ R
it holds that l = {(xl, yl) : yl = y + tanα(xl − x),−r ≤ x ≤ r} with y = f(x)
and tanα = f ′(x). For standard Brownian motion b(t) in R the movement on the
tangent line is given as

x̃(t+ ∆t) = x+ cosα


2D(X)∆b, ỹ(t+ ∆t) = y + sinα


2D(X)∆b.

Here, α can be calculated using the equation of a circle f(x) = ±


(r2 − x2) = y

which implies f ′(x) = ± 1
2
√

r2−x2 . Then, dependent on the gradient of the tangent
line it is α = ± arctan(f ′(x)).

8.1.2. The three-dimensional case

Let  be the surface of the sphere S2 := {x ∈ R3 : ∥x∥ = r}. To construct a
projection of a diffusion process from this surface onto a plane we need an explicit
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(a) (b)

Figure 8.1.: Schematic representation of the calculation procedure for standard Brow-
nian motion on a surface using the tangent plane. (a) The orthogonal projection of X̃(t+∆t)
onto the circle C in the direction n(X(t)) defines standard Brownian motion on C. (b) In 3D
the standard Brownian motion on a sphere is calculated using an orthogonal projection from the
tangent plane at a point P of X(t) stretched by the vectors eϕ and eθ.

representation with a sufficiently smooth function defined in a planar domain D
in the (x, y) plane. By considering the spherical coordinate system and a fixed
orthonormal frame (i, j, k), where k is the unit vector in z direction, we have

X(t) = x(t)i + y(t)j + z(t)k, z(t) = f(x(t), y(t)).

In spherical coordinates the points of a sphere with radius r are determined by

x = r sin(θ) cos(ϕ),
y = r sin(θ) sin(ϕ),
z = r cos(θ),

where r ∈ [0,∞), θ ∈ [0, π], ϕ ∈ [0, 2π). The tangent plane  at X(t) ∈  is then
defined by the orthonormal frame (see Figure 8.1)

ϵϕ =


− sin(ϕ)
cos(ϕ)

0

 eθ =


cos(θ) cos(ϕ)
cos(θ) sin(ϕ)

− sin(θ)

 ϵr =


sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (8.3)
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For the Brownian motion X(t+ ∆t) ∈  the orthogonal projection

X̃(t+ ∆t) = x̃(t+ ∆t)i + ỹ(t+ ∆t)j + z̃(t+ ∆t)k

onto  with the tangential vectors eϕ, eθ of (8.3) is then given by

X̃(t+ ∆t) = X(t) + ∆s1i + ∆s2j + ∆s3k,

where

∆s1 := cos(θ) cos(ϕ)


2D(X)∆b1 − sin(ϕ)


2D(X)∆b2,

∆s2 := cos(θ) sin(ϕ)


2D(X)∆b1 + cos(θ)


2D(X)∆b2,

∆s3 := − sin(θ)


2D(X)∆b1,

and the functions b1(t), b2(t) are independent Brownian motions in R.

8.2. Derivation of the stochastic model

Let X(t) be a set of points X1(t), ..., XN(t) characterizing the positions of actin
cables on the surface Γ at time t. Further, let U [u+ v+ V ] be a non-local functional
determining the internal pool U by

U [u+ v + V ] = M − c


Γ
(u+ v)dσ −


Ω
V dx. (8.4)

Then, we can incorporate the above results by writing the following reaction-diffusion
system

∂tu =∆Γu+ γ(f(u, v) + h(u, U)) on Γ × I, (8.5)
∂tv =dv∆Γv + γ(−f(u, v) + g(u, v, V )) on Γ × I, (8.6)
∂tV =Dv∆V in Ω × I, (8.7)

with coupling boundary condition

−Dv∇V · n⃗ =γg(u, v, V ) on Γ × I. (8.8)

Denoting with d the thickness of an actin cable or alternatively an arbitrary value
determining the radius of a defined area around an actin cable, the transport can
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now be calculated by the function

h(u, U) = e1G(x)U − δende2u

where

δend =

 0 for dist(x,Xi(t)) < d,

1 else,

is a standard Dirac delta function and G(x) is the Gaussian function of the form

G(x) = 1√
2π
e−Cd2

.

This system is coupled to the non-local functional U defined by (8.4). In other words,
molecules are deposited in a bell-shaped distribution around the site of nucleation.
Simultaneously, particles are removed from the surface proportional to the amount
of the active form anywhere else.
Note that throughout we have considered a PDE of the form

∂t = dw∆Γ


u

c(u)


.

where the diffusion process is inhomogeneous. Consider

dw∆Γ


u

c(u)


= dw∇Γ


∇Γ


1
c(u)


· w + 1

c(u) · ∇Γw


.

Then, we use the SDE

dX = a(X)dt+


2D(X)dB (8.9)

to simulate the movement of actin cables on the surface. Here, D(X) contains the
values dw

c(u) and a(X) consists of − cu

c(u)2 calculated at the respective points of X. The
SDE is solved in parallel to the PDEs (8.5)-(8.8) using the proceeding described
above. To calculate the drift vector on the tangent, we use a vector projection on
the unit vectors of the tangent space.
Note that, depending on the local curvature of the surface, the projection usually
implies a change in the diffusion and drift tensor that can be calculated considering
the functions describing the surface. We refer the reader to [37] for further details.
Here, we assume that the jump distance of cables is very short. Furthermore, smaller
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inner time steps are used to solve the SDE. This allows us to simply assume that
the local curvature does not significantly influence the results so that we can neglect
such terms.

8.3. Numerical results

To investigate whether the simplification to simulate actin cables as a density qual-
itatively distort the results, we proceed with numerical simulations of the system
(8.4)-(8.8) coupled to the SDE (8.9).
Figures 8.2 (a)-(c) show numerical simulations for a circle using distinct numbers
of cables. We see that that the results are very similar to those observed with
the continuous system presented in the previous chapter. Under consideration of a
transport mechanism we see that the maximum value of u is increased compared to
simulations without molecule delivery. Starting with a small perturbation on the
initial homogeneous state, the system tends to form an inhomogeneous pattern. Due
to this, the randomly located cables move towards regions with higher concentration
of the active substance. Its local accumulation in turn leads to a further increase
of u such that the motion of cables slows down. In Figures 8.2 (a)-(c) we see that
finally almost all cables are localized at the polarized patch.
Interestingly, the number of cables does not significantly influence the outcome.
Even for few cables, we obtain sustained polarity albeit with less intensity. With
increasing number, the rise of u is more uniform and the final pattern is reached a
little faster.
Figure 8.2 (d) demonstrates polarization in a cell where molecules cannot exchange
between the plasma membrane and the cytosol. We see that initially the total amount
of u is strongly increased throughout the surface. This leads to a reduced cable
movement and an decelerated polarization process. In some cases, when multiple
cables randomly accumulate at distinct sites of the cell surface, we also may obtain
the emergence of multiple caps (see Figure 8.2 (e)).
Figure 8.3 shows three-dimensional computational results. Again, we see that trans-
port via capacity-driven actin cables can support sustained polarization. With
appropriate rates simulating exocytosis and endocytosis, transport via cables rein-
forces cluster formation, independent of how many cables are considered. However,
compared to the results computed for the continuous approach derived in the last
chapter, we obtain a broader polarized patch. Furthermore, due to cable motion,
the final cluster is much more dynamic and slightly changes its shape.
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(a) (b)

(c) (d)

(e)

Figure 8.2.: Computational results of the stochastic approach in 2D. Numerical results
are shown for the stochastic approach using (a) 6, (b) 10 and (c) 50 discrete points. Cable positions
are illustrated by points. The gray curve shows the final peak without consideration of transport.
(d) and (e) Transport-mediated polarization in cells lacking the cytosolic exchange. Computational
results using 10 cables are illustrated.



184 8 A stochastic approach to vesicular trafficking-mediated cell polarity

(a) (b)

(c) (d)

Figure 8.3.: Computational results of the stochastic ap-
proach in 3D. Numerical results are shown for the stochastic
approach using 50 and 10 discrete points respectively. (a) and
(c) The concentration of u after t = 3.5 is shown. (b) and (d)
Cable positions are illustrated by black simplices.

param. value
k1 0.056
k2 27.78
k3 0.025
k4 13.89
k5 10.77
a1 19.41
a2 59.42
a3 2.23
γ 15.6
dt 1.0 × 10−8

dv 1.0
dw 1.0
Dv 305.5
v 1.56
e1 0.1
e2 0.3
d 0.2
C 25.0

Table 8.1.: Parameters
used to simulate the
stochastic approach.

8.4. Discussion
In this chapter we have presented a stochastic approach for the actin cable movement
along the surface. We used a SDE to simulate Brownian motion of discrete points
that represent actin cable ends. In order to apply this approach to a circle or a
sphere, we used an orthogonal projection to the tangent at each point. Linked to
the reaction-diffusion processes, this approach led to a system of PDEs coupled to a
SDE. We performed numerical simulations in 2D and 3D and compared the results
to those calculated with the complete continuous model.
The computational experiments have demonstrated that the simulation for cable
nucleation as a capacity-driven diffusion process using Brownian motion with drift
effectively reflects biological findings.
We have shown that just like the continuous approach, this system is able to achieve
sustained transport-driven polarization, even in the case when cytosolic exchange
is blocked. In this regard, the number of actin cables is almost irrelevant. The
determining factors for enhanced polarization are again the rates of exocytosis and
endocytosis as well as the feedback for cable accumulation.
But there are also slight differences between the results achieved by the continuous
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approach and those simulated with the stochastic model. For instance, the inter-
mediate states between the initial perturbation of the homogeneous state and the
final inhomogeneous pattern distinguish. Due to the approximation of cables with
a density, the continuous system grows very uniformly. In this way, the density of
cables has a similar shape function to those of the active substance. The correlation
between local cable nucleation and its subsequent delivery, which in turn anchors the
cables, are less visible in this case. The results presented above have demonstrated
that this coherence can be simulated much better with the stochastic than with the
continuous model. In 2D as well as 3D, the results of the stochastic approach show
a much more unequally distributed component u during the process of polarization.
Since actin cables are modeled discretely, the molecules reaching the surface accu-
mulate in spots. These patches start to grow until they merge together.
Relating to the simulation of ∆rdi1 cells, this means that this model is more suitable
to simulate polarization characterized by two clusters. The increased total rate of
active membrane-bound molecules in this case causes a decelerated motion of cables
per se, increasing the probability of multiple peaks.
Interestingly, as opposed to the results of the model proposed by Layton et
al. [52], this also implies that increased rates of exocytosis rather disturb symmetry
breaking. In this case, the local concentration near actin cables grows too strongly
inducing a competition between multiple small peaks. This behavior then disturbs
the reaction-diffusion system so strongly that the cell may form multiple peaks or
even fail to polarize. Biological experiments with cells exhibiting strongly enhanced
rates of exocytosis could provide a deeper understanding.
Although we obtained minor differences between the results of the stochastic and
the continuous approach, all things considered, the results have shown that the
process of pattern formation occurs simultaneously in both systems. The continuous
model and the stochastic approach yield very similar results. Thus, the numerical
simulations have demonstrated that it is sufficient to represent this stochastic process
by a continuous approach as presented in this work. The advantage of this continuous
model however is that it is much easier to analyze. Furthermore, it is much more
flexible. For instance, as presented in the last section, the continuous model allows
to investigate spatial effects like internal barriers or the cell shape.
For the stochastic approach we used a well mixed internal compartment. The sim-
ulation of active molecule movement through the cell would require the modeling
of each cable within the cell interior. This would imply further equations for cable
assembly. As a result, the computational experiments as well as the analysis would
become much more challenging.





9 | Summary and outlook

The ability of cells to polarize is a fundamental feature of almost all cells and crucial
for different cell processes.
This study started out focusing on polarization of budding yeast cells and the estab-
lishment of the initial polarized state when the key regulator Cdc42 accumulates
at one site of the cell. In the course of this, an introduction into the biological
processes involved in yeast cell polarization, followed by a short review of the most
important related mathematical models published, is given. Together with biological
experiments, these models brought insights into molecular mechanisms underlying
cell polarization. Based on distinct mathematical methods, the approaches discussed
could either confirm or contradict biological observations. In most cases, the systems,
which are more or less detailed and analyzable, confine oneself to single aspects of
cell polarity. This work exposed advantages and disadvantages and gave an overview
of its most important findings.
The model review has demonstrated the contribution of different pathways to sym-
metry breaking. The goal of this work was to develop a model that incorporates all
these various feedbacks known to be important for cell polarization. Moreover, a
continuous rather than a stochastic approach was supposed to simulate the vesicle
trafficking process. Since the influence of transport effects on the process of polar-
ization is controversially discussed, this work mainly focused on the possibility of a
stable polar cluster formation as a result of coupling reaction-diffusion and transport
mechanisms. To consider spatial aspects, the model simulated the full geometry
of the cell. On this basis, a continuous reaction-diffusion-advection system that
incorporates different pathways known to contribute to cell polarity was derived.
The numerical results have shown that this approach features previously experimen-
tally observed phenotypes all of which have been modeled by different systems. It
simulates the full process of polarity emergence, including actin cable formation.
As a result, it has been shown that vesicular trafficking can have distinct influence
on cell polarization. For a sufficiently strong feedback vesicular delivery is able
to reinforce and to maintain cluster formation. Contrarily, an insufficiently strong
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feedback can result in an unpolarized cell. Biological experiments investigating cells
lacking endocytosis or mutants exhibiting highly increased exocytosis could help
gain a deeper understanding about the impact of vesicular trafficking.
Another interesting finding of this work is the role of Cla4 in the polarization process.
The results have indicated that this protein could play a more critical role in the
establishment of polarity than presumed. This implies several, so far unknown,
phenotypes that can biologically be examined.
In order to analyze the underlying processes in detail, this work proceeded with a
subsequent model reduction and a non-dimensionalization of the complex model for
yeast cell polarization. This brought out a general system of coupled bulk-surface
reaction-diffusion-advection equations that serves as an exemplary model to study
transport-mediated polarization in distinct cell types.
By means of computational simulations using distinct functions from the litera-
ture the generic model has shown how active transport cannot only enhance and
sustain polarization but also change the polarization behavior. The results have
demonstrated that the cell shape as well as internal barriers influence the spatial
location of the polarity cluster. These findings have emphasized the importance of
considering spatial aspects in cell polarization. Since simple one-dimensional models
are incapable of simulating such factors, it became clear that the application and
study of coupled bulk-surface systems for cell polarity is particularly decisive. The
model presented in this work considers these spatial effects.
Another aspect is the interplay between reaction kinetics and local delivery. The find-
ings of our work suggested that negative feedbacks can be enhanced by a transport
process. Thus, to understand the role of vesicular trafficking on symmetry breaking,
it is necessary to consider distinct signaling pathways. Depending on the currently
dominating feedback different patterns may emerge. The influence of inhomogeneous
diffusion should also not be neglected. We have shown that this mechanism can
change the polarity direction as well.
But the model presented here allows much more enhanced investigations. For exam-
ple, it would be interesting to study the behavior of transport-driven polarization
in cells exhibiting microdomains characterized by distinct rates of exocytosis and
endocytosis. Another aspect that could be of great interest would be time-dependent
parameters. In this way, how the system behaves when signaling pathways change
its strength or even stop affecting reactions could be investigated.
To get a deeper knowledge into the mechanisms driving pattern formation in the
system presented here, the work proceeded with a linear stability analysis of the
generic approach. This led to the derivation of stability and instability conditions.
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By this analytic study, we determined a Turing-instability and a capacity-driven
instability. Whereas the first one explains polarity in LatA-treated cells, the second
mechanism is able to explain symmetry breaking in ∆rdi1 cells. By computational
simulations the analytical results were finally confirmed numerically.
To conclude this work, the last chapter dealt with a stochastic approach to the actin
cable motion which drives the transport feedback in the continuous model. The
stochastic model intended to show that the simulation of actin cables as a density
is quite possible. Although this simplification implies the loss of most certainly
phenotypes, such as cells with multiple clusters, it is much more flexible and easier
to handle. Because of its manageability, our generic model could, for example, serve
as a basis for the computational study of transport-driven polarization in cells with
moving domains which is still open and subject to further work.





A | Chemical reactions

In this thesis we are mainly concerned with the modeling of (bio)chemical reactions
of proteins and molecules. To understand how to translate such reactions into partial
differential equations, some very basic ideas are collected. For more details we refer
to [40] and [62]. Consider a very simple irreversible reaction with a reaction rate k

A+B
k→ C.

Let a = [A], b = [B], and c = [C] be the concentrations of the species A,B,C. Let
r1 further be the probability of collisions between the molecules and r2ab∆t an
approximation for the number of collisions in ∆t. Assuming that the concentration
of the molecules A and B changes in time due to their collisions and its probability,
the change of c can be described by

∆c = kab∆t,

where k = r1r2. For ∆t → 0 this yields the so-called Law of mass action

dc

dt
= kab.

For a reversible reaction of the form

A+B
k+

⇌
k−
C

with the reaction rates k+ and k−, this results in the corresponding ODE system

da

dt
= −k+ab+ k−c,

db

dt
= −k+ab+ k−c,

dc

dt
= k+ab− k−c.
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Note that we assumed that the split-up of C is proportional to c.
Considering n simultaneously interacting concentrations ui of species Ui and its r
chemical reactions, we can set up a general reaction system. For

n
i=1

gijUi
kj→

n
i=1

rijUi, j = 1, ..., r,

the ODEs for the ui are given by

dui

dt
=

r
j=1

(rij − gij)fj(t, u(t)), i = 1, ..., n. (A.1)

gij and rij describe the gain and loss of the molecule numbers ui in reaction j. They
are the so-called stoichiometric coefficients. fj, given by

fj(t, u) = kj

s
l=1

(ul)glj ,

is the rate function which corresponds to the speed of reaction j with respective
reaction rate kj.
With u = (u1, ..., un)T , the stoichiometric matrix S = (rij − gij) ∈ Rn×r, and
f(t, u) = (fj(t, u)) ∈ Rr the equations A.1 can also be written in matrix form

du

dt
= Sf(t, u(t)).
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Since numerical problems and approximations for problems over spheres have in-
creased continuously over the last years, the study of spherical harmonics became
increasingly important for solving problems in the sciences. These are specific func-
tions defined on the sphere. Classical spherical harmonics on the three-dimensional
unit sphere can be seen as extensions of trigonometric functions on the unit circle.
Thereby, Laplace’s spherical harmonics are a special set of spherical harmonics.
These functions form an orthogonal system. In the following by finding functions
that are harmonic in spherical coordinates, we derive the eigenvalue equation for
the Laplace equation which is used in Section 7.4. For further details we refer the
reader to [4].
With r ∈ R+, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π, in spherical coordinates the Laplace equation
can be written as

∆ = ∇2 = 1
r2

∂

∂r


r2∂u

∂r


+ 1
r2 sin2 φ

∂2u

∂θ2 + 1
r2 sinφ

∂

∂φ


sinφ∂u

∂φ


= 0.

Using a separation of the solution by its radial and angular components of the form
u(r, φ, θ) = Rl(r)Ylm(φ, θ), it holds that

∇2 = 1
r2

∂

∂r


r2 (RlYlm)

∂r


+ 1
r2 sin2 φ

∂2(RlYlm)
∂θ2 + 1

r2 sinφ
∂

∂φ


sinφ∂(RlYlm)

∂φ



=Ylm

r2
∂

∂r


r2∂R

∂r


+ Rl

r2 sin2 φ

∂2Ylm

∂θ2 + Rl

r2 sinφ
∂

∂φ


sinφ∂Ylm

∂φ



= 1
Rl

∂

∂r


r2∂Rl

∂r


+ 1
Ylm sin2 φ

∂2Ylm

∂θ2 + 1
Ylm sinφ

∂

∂φ


sinφ∂Ylm

∂φ



=Ylm(φ, θ)∆rRl(r) + Rl(r)
r2 ∆φ,θYlm(φ, θ)

=∆Rl(r)Ylm(φ, θ) = 0.
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Now, each of this components must be equal to a constant. Thus, we can define

l(l + 1) := 1
R

d

dr


r2dR

dr


, (B.1)

−l(l + 1) := 1
Y sin2 φ

∂2Y

∂θ2 + 1
Y sinφ

∂

∂φ


sinφ∂Y

∂φ


. (B.2)

Because l could be any constant, we can now consider the multiplication of equation
(B.2) with Y sin2 φ that is given by

∂2Y

∂θ2 + sinφ ∂

∂φ


sinφ∂Y

∂φ


.

With this notations the eigenvalue equation finally reads
∂2

∂φ
+ cosφ

sin θ
∂

∂φ
+ 1

sin2 φ

∂2

∂θ2


Ylm(φ, θ) = −l(l + 1)Ylm(φ, θ).
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actin Actin is a structure protein found in essentially all eukaryotic cells. It forms
microfilaments and participates in many important cellular processes, including
cell division and cell movement. It is also involved in the assembly of the
cytoskeleton.

axon The axon is the long threadlike extension of a nerve cell that conducts nerve
impulses from the cell body.

cytosol The liquid found inside cells is called cytosol or cytoplasmic matrix. It is
separated into compartments by membranes.

dendrite Dendrites are any of the short branched threadlike extensions of a nerve
cell which conduct impulses towards the cell body.

depolymerization Depolymerization is the reverse mechanism of the polymerization
and describes the process of converting a polymer into a monomer or a mixture
of monomers.

endoplasmic reticulum The endoplasmic reticulum which can be found in eukary-
otic cells describes a type of organelle. It is a membrane network of tubules,
vesicles, and cisternae found throughout the cell.

endosome In cell biology, an endosome describes a membrane-bound compartment
of the endocytic membrane transport pathway originating from the trans Golgi
membrane.

eukaryotic cell Eukaryotes are cells that contain a nucleus and other organelles
enclosed within membranes. Eukaryotic organisms may be unicellular, or
multicellular.
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filament In biology, a long chain of proteins, such as those found in hair, muscle, or
in flagella, is termed filament.

filopodia Filopodia are slender cytoplasmic projections that extend beyond the
leading edge of lamellipodia in migrating cells.

formin Formins are a group of proteins that are involved in the polymerization of
actin and associate with the fast-growing end (barbed end) of actin filaments.

Golgi The Golgi apparatus or simply the Golgi is an organelle found in most
eukaryotic cells. The Golgi apparatus packages proteins into membrane-bound
vesicles inside the cell before the vesicles are sent to their destination.

in vitro Biological processes that occur in a laboratory vessel or other controlled
experimental environment rather than within a living organism or natural
setting are called in vitro.

in vivo in vivo describes processes that occur within a living organism or natural
setting.

lipid A lipid is generally considered to be any molecule that is insoluble in water and
soluble in organic solvents. Biological lipids are a group of naturally occurring
molecules that include fats, waxes, sterols, and others.

microtubule Microtubules are filamentous intracellular structures that together
with other protein filaments maintain cell shape by its role in cytoskeletal
assembly.

phosphorylation In biochemistry phosphorylation describes the reversible addition
of a phosphoryl group to a molecule, especially to proteins.

plasma membrane The plasma membrane or cell membrane is a biological mem-
brane (separating layer) which separates the interior milieu of a cell from the
outside environment.

polymerization Polymerization is the process whereby monomer molecules combine
chemically to form polymer chains or a large network molecule.

proliferation Cell proliferation is the process that results in an increase of the
number of cells. It is defined by the balance between cell divisions and cell loss
through cell death or differentiation. Cell proliferation is increased in tumours.
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septin Septins are a group of GTP-binding proteins found primarily in eukaryotic
cells.

vesicle Vesicles are small structures within a cell. They form naturally during the
processes of exocytosis and consists of fluid enclosed by a lipid bilayer.





D | Notation and symbols

Abbreviations and Notations

Notation Description
DOF degree of freedom
DUNE Distributed and Unified Numerics Environment
EOC Experimental Order of Convergence
FEM Finite Element Method
FVM Finite Volume Method
GAP GTPase activating protein
GDI GTPase dissociation inhibitor
GDP guanosine diphosphate
GEF guanine nucleotide exchange factor
GOR system proposed by Goryachev and Pokhilko

[32]
GTP guanosine triphosphate
LatA latrunculin A
MOL method of lines
ODE ordinary differential equation
PCP planar cell polarity
PDE partial differential equation
RR system proposed by Rätz and Röger [72]
SDE stochastic differential equation
WP Wave-Pinning system proposed by Mori et al.

[61]

Mathematical Symbols

Symbols Description
∇Γ Surface gradient
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Symbols Description
∆Γ Laplace-Beltrami operator
[ · ] Jump of a function
∥ · ∥ Operator norm, or Sobolev norm
E Reference element
FTk

Transformation from a reference element to Tk

Γ Surface, boundary ∂Ω of a domain Ω
ΓD Dirichlet boundary, part of ∂Ω of a domain Ω
ΓN Neumann boundary, part of ∂Ω of a domain Ω
J Flux function
L1

loc The set of locally integrable functions
n⃗ Outward pointing normal unit vector
Ω Domain Ω ⊆ Rd

∂Ω Boundary of a domain Ω
Pk Space of polynomial functions of degree k
Th Triangulation (mesh) of a domain
Tk Element in a mesh
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