Do high-frequency financial data help forecast oil prices? The MIDAS touch at work : [version november 20, 2013]
- The substantial variation in the real price of oil since 2003 has renewed interest in the question of how to forecast monthly and quarterly oil prices. There also has been increased interest in the link between financial markets and oil markets, including the question of whether financial market information helps forecast the real price of oil in physical markets. An obvious advantage of financial data in forecasting oil prices is their availability in real time on a daily or weekly basis. We investigate whether mixed-frequency models may be used to take advantage of these rich data sets. We show that, among a range of alternative high-frequency predictors, especially changes in U.S. crude oil inventories produce substantial and statistically significant real-time improvements in forecast accuracy. The preferred MIDAS model reduces the MSPE by as much as 16 percent compared with the no-change forecast and has statistically significant directional accuracy as high as 82 percent. This MIDAS forecast also is more accurate than a mixed-frequency realtime VAR forecast, but not systematically more accurate than the corresponding forecast based on monthly inventories. We conclude that typically not much is lost by ignoring high-frequency financial data in forecasting the monthly real price of oil.
Author: | Christiane BaumeisterORCiDGND, Pierre Guérin, Lutz KilianGND |
---|---|
URN: | urn:nbn:de:hebis:30:3-324998 |
Parent Title (German): | Center for Financial Studies (Frankfurt am Main): CFS working paper series ; No. 2013,22 |
Series (Serial Number): | CFS working paper series (2013, 22) |
Publisher: | Center for Financial Studies |
Place of publication: | Frankfurt, M. |
Document Type: | Working Paper |
Language: | English |
Year of Completion: | 2013 |
Year of first Publication: | 2013 |
Publishing Institution: | Universitätsbibliothek Johann Christian Senckenberg |
Release Date: | 2013/12/16 |
Tag: | forecasts; mixed frequency; oil price; real-time data |
Issue: | version november 20, 2013 |
HeBIS-PPN: | 349976821 |
Institutes: | Wissenschaftliche Zentren und koordinierte Programme / Center for Financial Studies (CFS) |
Dewey Decimal Classification: | 3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft |
JEL-Classification: | C Mathematical and Quantitative Methods / C5 Econometric Modeling / C53 Forecasting and Other Model Applications |
Sammlungen: | Universitätspublikationen |
Licence (German): | Deutsches Urheberrecht |