Contrast-Independent Biologically Inspired Motion Detection

Babies B, Lindemann JP, Egelhaaf M, Möller R (2011)
Sensors 11(12): 3303-3326.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Optic flow, i.e., retinal image movement resulting from ego-motion, is a crucial source of information used for obstacle avoidance and course control in flying insects. Optic flow analysis may prove promising for mobile robotics although it is currently not among the standard techniques. Insects have developed a computationally cheap analysis mechanism for image motion. Detailed computational models, the so-called elementary motion detectors (EMDs), describe motion detection in insects. However, the technical application of EMDs is complicated by the strong effect of local pattern contrast on their motion response. Here we present augmented versions of an EMD, the (s)cc-EMDs, which normalise their responses for contrast and there by reduce the sensitivity to contrast changes. Thus, velocity changes of moving natural images are reflected more reliably in the detect or response. The (s)cc-EMDs can easily be implemented in hardware and software and can be a valuable novel visual motion sensor for mobile robots.
Stichworte
image motion; motion detection; image contrast; natural images; bioinspiration
Erscheinungsjahr
2011
Zeitschriftentitel
Sensors
Band
11
Ausgabe
12
Seite(n)
3303-3326
ISSN
1424-8220
eISSN
1424-8220
Page URI
https://pub.uni-bielefeld.de/record/2049435

Zitieren

Babies B, Lindemann JP, Egelhaaf M, Möller R. Contrast-Independent Biologically Inspired Motion Detection. Sensors. 2011;11(12):3303-3326.
Babies, B., Lindemann, J. P., Egelhaaf, M., & Möller, R. (2011). Contrast-Independent Biologically Inspired Motion Detection. Sensors, 11(12), 3303-3326. https://doi.org/10.3390/s110303303
Babies, Birthe, Lindemann, Jens Peter, Egelhaaf, Martin, and Möller, Ralf. 2011. “Contrast-Independent Biologically Inspired Motion Detection”. Sensors 11 (12): 3303-3326.
Babies, B., Lindemann, J. P., Egelhaaf, M., and Möller, R. (2011). Contrast-Independent Biologically Inspired Motion Detection. Sensors 11, 3303-3326.
Babies, B., et al., 2011. Contrast-Independent Biologically Inspired Motion Detection. Sensors, 11(12), p 3303-3326.
B. Babies, et al., “Contrast-Independent Biologically Inspired Motion Detection”, Sensors, vol. 11, 2011, pp. 3303-3326.
Babies, B., Lindemann, J.P., Egelhaaf, M., Möller, R.: Contrast-Independent Biologically Inspired Motion Detection. Sensors. 11, 3303-3326 (2011).
Babies, Birthe, Lindemann, Jens Peter, Egelhaaf, Martin, and Möller, Ralf. “Contrast-Independent Biologically Inspired Motion Detection”. Sensors 11.12 (2011): 3303-3326.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:31Z
MD5 Prüfsumme
5b2b78a3250c668e4cc55b0f56ba9b86


4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Odometry for ground moving agents by optic flow recorded with optical mouse chips.
Dahmen H, Mallot HA., Sensors (Basel) 14(11), 2014
PMID: 25384010
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890

33 References

Daten bereitgestellt von Europe PubMed Central.

Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100
Performance of optical flow techniques
Barron JL, Fleet DJ, Beauchemin SS, Burkitt TA., 1994
Optical flow estimation
Fleet DJ, Weiss Y., 2006

Miles FA, Wallman J., 1993

Lappe M., 2000
The neural computation of visual motion information
Egelhaaf M., 2006
Neural networks in the cockpit of the fly
Borst A, Haag J., 2002
Detecting visual motion: Theory and models
Borst A, Egelhaaf M., 1993
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Insect motion vision
Egelhaaf M., 2009
Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly
Egelhaaf M, Reichardt W., 1987
Implementation of wide-field integration of optic flow for autonomous quadrotor navigation
Conroy J, Gremillion G, Ranganathan B, Humbert JS., 2009
Vision-based control of near-obstacle flight
Beyeler A, Zufferey JC, Floreano D., 2009
Behavior-oriented vision for biomimetic flight control
Neumann T, Bülthoff H., 2002
An analog VLSI model of the fly elementary motion detector
Harrison RR, Koch C., 1998
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Saturation in a wide-field, directionally selective movement detection system in fly vision.
Lenting BP, Mastebroek HA, Zaagman WH., Vision Res. 24(10), 1984
PMID: 6523754
Accuracy of velocity estimation by Reichardt correlators
Dror RO, O’Carroll DC, Laughlin SB., 2001
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vor-zeichenauswertung bei der Bewegungsperzeption des Rüsselk¨afers Chlorophanus
Hassenstein B, Reichardt W., 1956
Movement detection in arthropods
Egelhaaf M, Borst A., 1993
Elaborated Reichardt detectors.
van Santen JP, Sperling G., J Opt Soc Am A 2(2), 1985
PMID: 3973763
Spatiotemporal energy models for the perception of motion.
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Contrast in complex images.
Peli E., J Opt Soc Am A 7(10), 1990
PMID: 2231113

Alpaydin E., 2004
Intrinsic properties of biological motion detectors prevent the optomotor system from getting unstable
Warzecha AK, Egelhaaf M., 1996
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22163800
PubMed | Europe PMC

Suchen in

Google Scholar