A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing

Ache JM, Dürr V (2015)
PLoS Computational Biology 11(7): e1004263.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Forschungsgruppe
Monitoring real-time real-world interaction in an identified neuron
Abstract / Bemerkung
Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway.
Erscheinungsjahr
2015
Zeitschriftentitel
PLoS Computational Biology
Band
11
Ausgabe
7
Art.-Nr.
e1004263
ISSN
1553-734X
eISSN
1553-7358
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2716435

Zitieren

Ache JM, Dürr V. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Computational Biology. 2015;11(7): e1004263.
Ache, J. M., & Dürr, V. (2015). A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Computational Biology, 11(7), e1004263. doi:10.1371/journal.pcbi.1004263
Ache, Jan Marek, and Dürr, Volker. 2015. “A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing”. PLoS Computational Biology 11 (7): e1004263.
Ache, J. M., and Dürr, V. (2015). A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Computational Biology 11:e1004263.
Ache, J.M., & Dürr, V., 2015. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Computational Biology, 11(7): e1004263.
J.M. Ache and V. Dürr, “A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing”, PLoS Computational Biology, vol. 11, 2015, : e1004263.
Ache, J.M., Dürr, V.: A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing. PLoS Computational Biology. 11, : e1004263 (2015).
Ache, Jan Marek, and Dürr, Volker. “A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing”. PLoS Computational Biology 11.7 (2015): e1004263.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:29Z
MD5 Prüfsumme
c78004dc30e316eaf60cd322a8ca4395


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Neural Circuitry for Target Selection and Action Selection in Animal Behavior.
Hoke KL, Hebets EA, Shizuka D., Integr Comp Biol 57(4), 2017
PMID: 29048534

35 References

Daten bereitgestellt von Europe PubMed Central.

'Where' and 'what' in the whisker sensorimotor system.
Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641667
Antennal movements and mechanoreception: neurobiology of active tactile sensors
AUTHOR UNKNOWN, 2005
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction.
Gonzalez-Bellido PT, Peng H, Yang J, Georgopoulos AP, Olberg RM., Proc. Natl. Acad. Sci. U.S.A. 110(2), 2012
PMID: 23213224
Task-level control of rapid wall following in the American cockroach.
Cowan NJ, Lee J, Full RJ., J. Exp. Biol. 209(Pt 9), 2006
PMID: 16621943
Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
Kozlov AK, Kardamakis AA, Hellgren Kotaleski J, Grillner S., Proc. Natl. Acad. Sci. U.S.A. 111(9), 2014
PMID: 24550483
Stick insect antennae
AUTHOR UNKNOWN, 2014
Mechanosensory feedback in walking: From joint control to locomotor patterns.
Buschges A, Gruhn M., Advances in insect physiology. 34(), 2008
PMID: IND44011216
The responses of trochanteral hair plate sensilla in the cockroach to periodic and random displacements
AUTHOR UNKNOWN, 1976
Central drive and proprioceptive control of antennal movements in the walking stick insect.
Krause AF, Winkler A, Durr V., J. Physiol. Paris 107(1-2), 2012
PMID: 22728470

AUTHOR UNKNOWN, 0
Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.
Ritzmann RE, Ridgel AL, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(4), 2008
PMID: 18180927

AUTHOR UNKNOWN, 1985
Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
Nishino H, Nishikawa M, Yokohari F, Mizunami M., J. Comp. Neurol. 493(2), 2005
PMID: 16255033
Emerging principles governing the operation of neural networks.
Getting PA., Annu. Rev. Neurosci. 12(), 1989
PMID: 2648949
Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network.
Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J, Gueron S., J. Neurosci. 15(1 Pt 1), 1995
PMID: 7823140
The Exoskeleton and Insect Proprioception .1. Responses of Tibial Campaniform Sensilla to External and Muscle-Generated Forces in the American Cockroach, Periplaneta americana
AUTHOR UNKNOWN, 1981
Chordotonal organs of insects
AUTHOR UNKNOWN, 1998
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26158851
PubMed | Europe PMC

Suchen in

Google Scholar