Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>

Venkanna D, Südfeld C, Baier T, Homburg SV, Patel A, Wobbe L, Kruse O (2017)
Frontiers in Plant Science 8: 1347.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.95 MB
Abstract / Bemerkung
The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 (sor1) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1, indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1, which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii. Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be successfully used to further increase hydrogen yields of the high hydrogen-producing mutant stm6, demonstrating that IFR1 is a promising target for genetic engineering approaches aiming at an increased hydrogen production capacity of C. reinhardtii cells.
Erscheinungsjahr
2017
Zeitschriftentitel
Frontiers in Plant Science
Band
8
Art.-Nr.
1347
ISSN
1664-462X
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2913216

Zitieren

Venkanna D, Südfeld C, Baier T, et al. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>. Frontiers in Plant Science. 2017;8: 1347.
Venkanna, D., Südfeld, C., Baier, T., Homburg, S. V., Patel, A., Wobbe, L., & Kruse, O. (2017). Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>. Frontiers in Plant Science, 8, 1347. doi:10.3389/fpls.2017.01347
Venkanna, Deepak, Südfeld, Christian, Baier, Thomas, Homburg, Sarah Vanessa, Patel, Anant, Wobbe, Lutz, and Kruse, Olaf. 2017. “Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>”. Frontiers in Plant Science 8: 1347.
Venkanna, D., Südfeld, C., Baier, T., Homburg, S. V., Patel, A., Wobbe, L., and Kruse, O. (2017). Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>. Frontiers in Plant Science 8:1347.
Venkanna, D., et al., 2017. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>. Frontiers in Plant Science, 8: 1347.
D. Venkanna, et al., “Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>”, Frontiers in Plant Science, vol. 8, 2017, : 1347.
Venkanna, D., Südfeld, C., Baier, T., Homburg, S.V., Patel, A., Wobbe, L., Kruse, O.: Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>. Frontiers in Plant Science. 8, : 1347 (2017).
Venkanna, Deepak, Südfeld, Christian, Baier, Thomas, Homburg, Sarah Vanessa, Patel, Anant, Wobbe, Lutz, and Kruse, Olaf. “Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in <i>Chlamydomonas reinhardtii</i>”. Frontiers in Plant Science 8 (2017): 1347.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:50Z
MD5 Prüfsumme
98d3ca7af42111370946dde299bab9c3


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Modeling and Simulating the Aerobic Carbon Metabolism of a Green Microalga Using Petri Nets and New Concepts of VANESA.
Brinkrolf C, Henke NA, Ochel L, Pucker B, Kruse O, Lutter P., J Integr Bioinform 15(3), 2018
PMID: 30218605
Biomass from microalgae: the potential of domestication towards sustainable biofactories.
Benedetti M, Vecchi V, Barera S, Dall'Osto L., Microb Cell Fact 17(1), 2018
PMID: 30414618

80 References

Daten bereitgestellt von Europe PubMed Central.

Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression.
Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ., J. Bacteriol. 180(7), 1998
PMID: 9537404
Antioxidant potential phytochemicals from methanol extract of Chlorella vulgaris and Chlamydomonas reinhardtii.
Annamalai J., Nallamuthu T.., 2014
The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells.
Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M., Biochim. Biophys. Acta 1607(2-3), 2003
PMID: 14670605
Lethal hydroxyl radical production in paraquat-treated plants.
Babbs CF, Pham JA, Coolbaugh RC., Plant Physiol. 90(4), 1989
PMID: 16666920
Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide.
Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inze D., J. Biol. Chem. 270(44), 1995
PMID: 7592828
Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships.
Bhatia C, Oerum S, Bray J, Kavanagh KL, Shafqat N, Yue W, Oppermann U., Chem. Biol. Interact. 234(), 2014
PMID: 25526675
Biogenesis of flavonoids in Chlamydomonas eugametos.
BIRCH AJ, DONOVAN FW, MOEWUS F., Nature 172(4385), 1953
PMID: 13111225
Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes.
Blaby IK, Blaby-Haas CE, Perez-Perez ME, Schmollinger S, Fitz-Gibbon S, Lemaire SD, Merchant SS., Plant J. 84(5), 2015
PMID: 26473430
Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism.
Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G., Plant Physiol. 151(2), 2009
PMID: 19700559
Biosynthesis of pterocarpan phytoalexins in Trifolium pratense.
Dewick P.., 1977
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O., J. Biol. Chem. 285(39), 2010
PMID: 20581114
Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production.
Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O., J. Biotechnol. 131(1), 2007
PMID: 17624461
Engineering photosynthetic organisms for the production of biohydrogen.
Dubini A, Ghirardi ML., Photosyn. Res. 123(3), 2014
PMID: 24671643
Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1.
Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH., Plant Cell 24(5), 2012
PMID: 22634760
Critical residues for structure and catalysis in short-chain dehydrogenases/reductases.
Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jornvall H, Oppermann U., J. Biol. Chem. 277(28), 2002
PMID: 11976334
SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii.
Fischer BB, Ledford HK, Wakao S, Huang SG, Casero D, Pellegrini M, Merchant SS, Koller A, Eggen RI, Niyogi KK., Proc. Natl. Acad. Sci. U.S.A. 109(20), 2012
PMID: 22529359
FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE.
Gaffron H, Rubin J., J. Gen. Physiol. 26(2), 1942
PMID: 19873339
Oxygen sensitivity of algal H2- production.
Ghirardi ML, Togasaki RK, Seibert M., Appl. Biochem. Biotechnol. 63-65(), 1997
PMID: 18576077
RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival.
Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR., Plant Cell 22(6), 2010
PMID: 20587772
Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.
Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M., New Phytol. 190(2), 2011
PMID: 21563367

Harris E.., 1989
Expression patterns of an isoflavone reductase-like gene and its possible roles in secondary metabolism in Ginkgo biloba.
Hua C, Linling L, Feng X, Yan W, Honghui Y, Conghua W, Shaobing W, Zhiqin L, Juan H, Yuping W, Shuiyuan C, Fuliang C., Plant Cell Rep. 32(5), 2013
PMID: 23459862
Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum.
Jaeger D, Hubner W, Huser T, Mussgnug JH, Kruse O., J. Biotechnol. 249(), 2017
PMID: 28302588
Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species
Kim SG, Kim ST, Wang Y, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY., Physiol Plant 138(1), 2010
PMID: IND44298267
A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor.
Kim ST, Cho KS, Kim SG, Kang SY, Kang KY., Mol. Cells 16(2), 2003
PMID: 14651265
High-frequency nuclear transformation of Chlamydomonas reinhardtii.
Kindle KL., Proc. Natl. Acad. Sci. U.S.A. 87(3), 1990
PMID: 2105499
Regulation of sulfate assimilation by nitrogen in Arabidopsis.
Koprivova A, Suter M, den Camp RO, Brunold C, Kopriva S., Plant Physiol. 122(3), 2000
PMID: 10712537
Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius.
Kremers GJ, Goedhart J, van Munster EB, Gadella TW Jr., Biochemistry 45(21), 2006
PMID: 16716067
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118
Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit.
Lauersen KJ, Kruse O, Mussgnug JH., Appl. Microbiol. Biotechnol. 99(8), 2015
PMID: 25586579
The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV irradiation.
Lers A, Burd S, Lomaniec E, Droby S, Chalutz E., Plant Mol. Biol. 36(6), 1998
PMID: 9520276
Structure and reaction mechanism of basil eugenol synthase.
Louie GV, Baiga TJ, Bowman ME, Koeduka T, Taylor JH, Spassova SM, Pichersky E, Noel JP., PLoS ONE 2(10), 2007
PMID: 17912370
Hydrogenases.
Lubitz W, Ogata H, Rudiger O, Reijerse E., Chem. Rev. 114(8), 2014
PMID: 24655035
Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls.
Mano J, Belles-Boix E, Babiychuk E, Inze D, Torii Y, Hiraoka E, Takimoto K, Slooten L, Asada K, Kushnir S., Plant Physiol. 139(4), 2005
PMID: 16299173
Chlorophyll fluorescence--a practical guide.
Maxwell K, Johnson GN., J. Exp. Bot. 51(345), 2000
PMID: 10938857
Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii.
May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhoh O, Weckwerth W, Walther D., Genetics 179(1), 2008
PMID: 18493048
Evidence for a dual function of the herbicide-binding D1 protein in photosystem II.
Metz J., Pakrasi H., Seibert M., Arntzer C.., 1986
Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.
Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C., Plant Physiol. 154(4), 2010
PMID: 20935180
Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.
Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park H, Hilsenbeck JL, Davin LB, Lewis NG, Kang C, Lewis NG., J. Biol. Chem. 278(50), 2003
PMID: 13129921
Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii.
Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D., Plant J. 58(1), 2009
PMID: 19054357
Oxylipins: structurally diverse metabolites from fatty acid oxidation.
Mosblech A, Feussner I, Heilmann I., Plant Physiol. Biochem. 47(6), 2008
PMID: 19167233
The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns.
Moummou H, Kallberg Y, Tonfack LB, Persson B, van der Rest B., BMC Plant Biol. 12(), 2012
PMID: 23167570
Reactive electrophilic oxylipins: pattern recognition and signalling.
Mueller MJ, Berger S., Phytochemistry 70(13-14), 2009
PMID: 19555983
Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors.
Muench M, Hsin CH, Ferber E, Berger S, Mueller MJ., J. Exp. Bot. 67(21), 2016
PMID: 27811081
Generation of Chlamydomonas strains that efficiently express nuclear transgenes.
Neupert J, Karcher D, Bock R., Plant J. 57(6), 2008
PMID: 19036032
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS ONE 6(12), 2011
PMID: 22242116

AUTHOR UNKNOWN, 2011
The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative.
Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, Jornvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U., Chem. Biol. Interact. 178(1-3), 2008
PMID: 19027726
Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs).
Persson B, Kallberg Y, Oppermann U, Jornvall H., Chem. Biol. Interact. 143-144(), 2003
PMID: 12604213
A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.
Petrucco S, Bolchi A, Foroni C, Percudani R, Rossi GL, Ottonello S., Plant Cell 8(1), 1996
PMID: 8597660
Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein).
Roach T, Baur T, Stoggl W, Krieger-Liszkay A., Physiol Plant 161(1), 2017
PMID: 28326554
Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).
Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S., Plant Cell Physiol. 56(5), 2015
PMID: 25647328
The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii.
Schonfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O., J. Biol. Chem. 279(48), 2004
PMID: 15448140
Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco.
Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T., Plant Mol. Biol. 50(3), 2002
PMID: 12369619
PredAlgo: a new subcellular localization prediction tool dedicated to green algae.
Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L., Mol. Biol. Evol. 29(12), 2012
PMID: 22826458
New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.
Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O., Plant Biotechnol. J. 11(6), 2013
PMID: 23551401
Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas.
Uhmeyer A, Cecchin M, Ballottari M, Wobbe L., Plant Physiol. 174(3), 2017
PMID: 28500267
Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation.
Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B., Proc. Natl. Acad. Sci. U.S.A. 89(4), 1992
PMID: 11607279
Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii.
Volgusheva A, Styring S, Mamedov F., Proc. Natl. Acad. Sci. U.S.A. 110(18), 2013
PMID: 23589846
Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii.
Volgusheva AA, Zagidullin VE, Antal TK, Korvatovsky BN, Krendeleva TE, Paschenko VZ, Rubin AB., Biochim. Biophys. Acta 1767(6), 2007
PMID: 17543273
The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii.
Wykoff DD, Davies JP, Melis A, Grossman AR., Plant Physiol. 117(1), 1998
PMID: 9576782
NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants.
Yamauchi Y, Hasegawa A, Taninaka A, Mizutani M, Sugimoto Y., J. Biol. Chem. 286(9), 2010
PMID: 21169366
Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression.
Yamauchi Y, Kunishima M, Mizutani M, Sugimoto Y., Sci Rep 5(), 2015
PMID: 25619826
AlgaePath: comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae.
Zheng HQ, Chiang-Hsieh YF, Chien CH, Hsu BK, Liu TL, Chen CN, Chang WC., BMC Genomics 15(), 2014
PMID: 24628857
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28824682
PubMed | Europe PMC

Suchen in

Google Scholar