The Role of Conserved Residues in the DEDDh Motif : the Proton-Transfer Mechanism of HIV-1 RNase H

Lade...
Vorschaubild
Dateien
Duerr_2-1ie7z8e5kjs2f3.pdf
Duerr_2-1ie7z8e5kjs2f3.pdfGröße: 941.46 KBDownloads: 184
Datum
2021
Autor:innen
Bohuszewicz, Olga
Berta, Dénes
Suardiaz, Reynier
Jambrina, Pablo G.
Shao, Yihan
Rosta, Edina
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
ACS Catalysis. ACS Publications. 2021, 11(13), pp. 7915-7927. eISSN 2155-5435. Available under: doi: 10.1021/acscatal.1c01493
Zusammenfassung

RNase H is a prototypical example for two-metal-ion catalysis in enzymes. An RNase H activity cleaving the ribonucleic acid (RNA) backbone of a DNA/RNA hybrid is present not only in important drug targets, such as the HIV-1 reverse transcriptase, but also in many other nucleases, such as Homo sapiens (Hs) and Escherichia coli (Ec) RNase H or, notably, in enzymes that are part of the CRISPR gene editing molecular machinery. Despite its importance, the reaction mechanism uncovering the proton-transfer events is not yet understood. In particular, it is not known, which group is the proton donor for the leaving group. Moreover, several different proton acceptors were proposed, and the exact identity of the proton acceptor is also elusive. Here, we revisit the mechanism for RNAse H, whereby we find that the highly conserved Glu residue of the DDE motif acts as a proton donor via a mechanism further stabilized by the 2′O atom of the sugar. Additionally, we also describe an alternative proton-transfer mechanism via a conserved catalytic His residue to deprotonate the attacking water molecule. Furthermore, our quantum mechanics/molecular mechanics (QM/MM) calculations combining Hamiltonian replica exchange with a finite-temperature string method provide an accurate free-energy profile for the reaction catalyzed by the HIV-1 RNase H. Our reported pathway is consistent with kinetic data obtained for mutant HIV-1, Hs, and Ec RNase H, with the calculated pKa values of the DEDD residues and with crystallographic studies. The overall reaction barrier of ∼19 kcal mol–1, encountered in the phosphate-cleavage step, matches the slow experimental rate of ∼1–100 min–1. Additionally, using molecular dynamics (MD) calculations, we sample the recently identified binding site for a third transient divalent metal ion in the vicinity of the scissile phosphate in the product complex. Our results account for the experimental observation of a third metal ion facilitating product release in an Aquifex aeolicus RNase III crystal structure and the Bh RNase H in crystallo reaction. Taken together, we provide a molecular mechanism of the nuclease catalytic reaction that is likely common for the broad family of two-metal-ion catalytic phosphate-cleaving enzymes with a DDE motif.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690DÜRR, Simon Leonard, Olga BOHUSZEWICZ, Dénes BERTA, Reynier SUARDIAZ, Pablo G. JAMBRINA, Christine PETER, Yihan SHAO, Edina ROSTA, 2021. The Role of Conserved Residues in the DEDDh Motif : the Proton-Transfer Mechanism of HIV-1 RNase H. In: ACS Catalysis. ACS Publications. 2021, 11(13), pp. 7915-7927. eISSN 2155-5435. Available under: doi: 10.1021/acscatal.1c01493
BibTex
@article{Durr2021Conse-54440,
  year={2021},
  doi={10.1021/acscatal.1c01493},
  title={The Role of Conserved Residues in the DEDDh Motif : the Proton-Transfer Mechanism of HIV-1 RNase H},
  number={13},
  volume={11},
  journal={ACS Catalysis},
  pages={7915--7927},
  author={Dürr, Simon Leonard and Bohuszewicz, Olga and Berta, Dénes and Suardiaz, Reynier and Jambrina, Pablo G. and Peter, Christine and Shao, Yihan and Rosta, Edina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54440">
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Rosta, Edina</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-29T08:20:16Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54440/1/Duerr_2-1ie7z8e5kjs2f3.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>The Role of Conserved Residues in the DEDDh Motif : the Proton-Transfer Mechanism of HIV-1 RNase H</dcterms:title>
    <dc:creator>Shao, Yihan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54440"/>
    <dc:contributor>Dürr, Simon Leonard</dc:contributor>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Bohuszewicz, Olga</dc:creator>
    <dc:creator>Dürr, Simon Leonard</dc:creator>
    <dc:contributor>Bohuszewicz, Olga</dc:contributor>
    <dc:creator>Jambrina, Pablo G.</dc:creator>
    <dc:creator>Suardiaz, Reynier</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">RNase H is a prototypical example for two-metal-ion catalysis in enzymes. An RNase H activity cleaving the ribonucleic acid (RNA) backbone of a DNA/RNA hybrid is present not only in important drug targets, such as the HIV-1 reverse transcriptase, but also in many other nucleases, such as Homo sapiens (Hs) and Escherichia coli (Ec) RNase H or, notably, in enzymes that are part of the CRISPR gene editing molecular machinery. Despite its importance, the reaction mechanism uncovering the proton-transfer events is not yet understood. In particular, it is not known, which group is the proton donor for the leaving group. Moreover, several different proton acceptors were proposed, and the exact identity of the proton acceptor is also elusive. Here, we revisit the mechanism for RNAse H, whereby we find that the highly conserved Glu residue of the DDE motif acts as a proton donor via a mechanism further stabilized by the 2′O atom of the sugar. Additionally, we also describe an alternative proton-transfer mechanism via a conserved catalytic His residue to deprotonate the attacking water molecule. Furthermore, our quantum mechanics/molecular mechanics (QM/MM) calculations combining Hamiltonian replica exchange with a finite-temperature string method provide an accurate free-energy profile for the reaction catalyzed by the HIV-1 RNase H. Our reported pathway is consistent with kinetic data obtained for mutant HIV-1, Hs, and Ec RNase H, with the calculated pK&lt;sub&gt;a&lt;/sub&gt; values of the DEDD residues and with crystallographic studies. The overall reaction barrier of ∼19 kcal mol&lt;sup&gt;–1&lt;/sup&gt;, encountered in the phosphate-cleavage step, matches the slow experimental rate of ∼1–100 min&lt;sup&gt;–1&lt;/sup&gt;. Additionally, using molecular dynamics (MD) calculations, we sample the recently identified binding site for a third transient divalent metal ion in the vicinity of the scissile phosphate in the product complex. Our results account for the experimental observation of a third metal ion facilitating product release in an Aquifex aeolicus RNase III crystal structure and the Bh RNase H in crystallo reaction. Taken together, we provide a molecular mechanism of the nuclease catalytic reaction that is likely common for the broad family of two-metal-ion catalytic phosphate-cleaving enzymes with a DDE motif.</dcterms:abstract>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54440/1/Duerr_2-1ie7z8e5kjs2f3.pdf"/>
    <dc:creator>Berta, Dénes</dc:creator>
    <dc:creator>Peter, Christine</dc:creator>
    <dc:contributor>Jambrina, Pablo G.</dc:contributor>
    <dc:contributor>Berta, Dénes</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-07-29T08:20:16Z</dcterms:available>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Suardiaz, Reynier</dc:contributor>
    <dc:contributor>Shao, Yihan</dc:contributor>
    <dc:contributor>Rosta, Edina</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Nein
Diese Publikation teilen