Structural identification and quantification of β-amyloid polypeptide-ligand interactions using affinity-mass spectrometric methods

Lade...
Vorschaubild
Dateien
Dissertation_Paraschiv.pdf
Dissertation_Paraschiv.pdfGröße: 5.49 MBDownloads: 708
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

One of the main characteristics of Alzheimer’s Disease (AD) is the accumulation of extracellular plaques containing aggregates of neurotoxic β-amyloid (Aβ) peptides, derived from amyloid precursor protein (APP). A major goal of this thesis was the identification of the Aβ- epitope structure recognized by (a) single chain antibodies isolated from Llama Glama after immunization with Aβ(1-40); (b) human Cystatin C protein. Mass spectrometry has been developed in the last years as a powerful technique for the analysis of protein structures and biomolecular interactions. High mass accuracy and sensitivity, short analysis time and low sample consumption are important features of the mass spectrometric protein analysis. To obtain information on protein mixtures and to identify the structure of the molecular recognition domains, several affinity- based methods have been employed in combination with mass spectrometry. These approaches include chromatographic and electrophoretic separations, proteolytic degradation and mutations of specific amino acids. For the identification of molecular antigen recognition structures, highly efficient methods of mass spectrometry coupled with proteolytic epitope excision and extraction were developed in our laboratory. Using this methodology, the Aβ-plaque-specific epitope was identified in a previous study as the N-terminal sequence Aβ(4-10), which is also accessible in Aβ oligomers. Recently, the epitope recognized by Aβ-autoantibodies from human serum was identified as Aβ(21-37) and was shown to inhibit fibril formation.



In the first part of the thesis, single chain llama anti-Aβ antibodies were characterized by SDS-PAGE and mass spectrometry. Antibodies in Camelidae (camels and llamas) are called “heavy-chain” antibodies, because the light chain and the first domain of the constant region (CH1) of the heavy chain are missing. Camelid VHHs display similar functional characteristics with respect to specificity and affinity, comparable to classical antibodies, and have favourable properties for biophysical studies, e.g. small size and high solubility and stability. To investigate whether a single chain llama antibody may function as a microantibody, the amino acid sequence was analyzed and the CDR- regions were determined according to Kabat rules. Consequently, CDR3 was selected as a potential candidate. The CDR3 peptide was synthesized by solid phase peptide synthesis, purified by HPLC and analyzed by mass spectrometry.



In the second part of the thesis, the Aβ-epitope recognized by single chain llama anti-Aβ antibodies was identified. Mass spectrometric analysis was combined with proteolytic excision and extraction approaches previously developed in our laboratory. For the epitope excision and extraction experiments, affinity columns were prepared by immobilizing the antibodies on NHS-activated Sepharose. For protein digestion trypsin, chymotrypsin, LysC and GluC-proteases were employed and the proteolytic mixtures subjected to MALDI-TOF-MS. The epitope excision and extraction, followed by mass spectrometric analysis, provided direct information on the epitope recognized by single chain llama anti-Aβ antibodies. The results revealed an epitope located in the mid-to-C-terminal part of Aβ(1-40), Aβ(17-28). The secondary structure of the identified Aβ(17-28) epitope was determined by CD spectroscopy. Comparative binding studies of single chain llama anti-Aβ antibodies with the epitope were performed by ELISA. To determine the functional epitope (amino acids within Aβ(17-28), which are essential for binding the single chain llama anti-Aβ antibodies), site-directed alanine mutated Aβ(17-28) peptides were synthesized. Selective identification of the affinity preserving mutant peptides was achieved by comparative ELISA studies.



In the third part of the dissertation, affinity- mass spectrometric methods were applied for the investigation of the specific interactions between Aβ-peptides and single chain llama anti-Aβ antibodies. Furthermore, the interaction between CDR3 peptide of a single chain llama anti-Aβ antibody and Aβ(1-40) was assessed by affinity- mass spectrometry. For the affinity studies, the single chain antibodies were immobilized on NHS-activated Sepharose. Aβ(1-40) and Aβ(17-28) were dissolved in PBS and exposed to the single chain llama antibody columns, while CDR3 peptide was added on Cys-Aβ(1-40) column. The unbound peptides were removed, the columns were washed several times and then the antigen-antibody complex was dissociated under acidic conditions. The supernatant, washing and elution fractions were collected and analyzed by mass spectrometry. Affinity binding studies were also performed using surface acoustic wave (SAW) biosensor, which is sensitive to mass loadings and viscosity changes. The method was applied to different antigen-antibodies systems. The antigens were covalently immobilized on the surface of the biosensor chip. The dissociation constants of the interactions between the single chain antibodies, Aβ(1-40) and Aβ(17-28) (KD) were found to be in the nanomolar range.



A fourth part of the dissertation was focused on the identification and characterization of the interaction structures between Aβ(1-40) and human Cystatin C (HCC) using an affinity- mass spectrometric approach, CD spectroscopy, ELISA and SAW biosensor. The results of the proteolytic excision and extraction in combination with mass spectrometry showed that the HCC biding site was located in the central region of Aβ(1-40), within residues (17-28), while the Aβ-binding site was located in the C-terminal part within L2 loop and β5 strand of wt HCC, within residues (101-117). The C-terminal binding epitope enables the interaction between L2-β5 part of wt HCC with Aβ peptide with the without any restriction. The binding specificities and affinities of the epitopes were analyzed by ELISA. Thus, comparative ELISA studies were performed with the Aβ(17-28) epitope and wt HCC, as well as with the C-terminal HCC peptides (HCC(93-120), HCC(101-117), HCC(101-114) fragments), which were identified by epitope excision mass spectrometry. The specific interaction between HCC(93-120) or HCC(101-117) fragments and Aβ(17-28) epitopes was shown by direct high resolution ESI- mass spectrometry.



In the last part of the thesis, in vitro characterization of Aβ(1-40) aggregation products employing gel electrophoresis, Dot blot and Thioflavin assay was performed. Furthermore, the inhibition of Aβ(1-40) oligomer formation by HCC fragments was investigated using the Thioflavin assay. In vitro aggregation of synthetic and recombinant Aβ(1-40) was carried out by dissolving the sample in trifluoroethanol (TFE), hexafluoroisopropanol (HFIP) and NaOH and followed by incubation at 37 °C in PBS for 0, 2, 4 and 7 days. The formation of oligomers and protofibrils was monitored by 1D-Tris-Tricine polyacrylamide gel electrophoresis, which indicated the presence of trimers, tetramers and protofibrils. The Thioflavin assay showed that in both experiments with previous solubilisation of the samples in NaOH or HFIP the aggregation rate was higher for recombinant Aβ(1-40) than for synthetic Aβ(1-40). The inhibition of Aβ(1-40) aggregation was carried out using different ratios between Aβ and HCC(93-120) or HCC(101-117) and analyzed by Thioflavin T assay. Using a two fold molar excess of HCC(93-120), Aβ(1-40) showed a significant decrease of aggregation rate after 4 days. Using a 1:0.5 Aβ(1-40) : HCC(101-117) molar ratio, a decrease in the fluorescence intensity was observed, due to a partial inhibition of Aβ- aggregation.



The results obtained in the present work showed that single chain antibodies and human Cystatin C protein recognize the middle domain of Aβ-peptide, which can be applied to design new epitope conjugates. The interaction of HCC with Aβ may be an important neuroprotective mechanism in brain and may attenuate the oligomerisation of Aβ and play a regulating role in Aβ amyloidogenesis. Furthermore, the identification of the binding site in HCC should be of importance for aggregation studies of Aβ peptide and new oligomerisation inhibitors may be designed based on the HCC-epitope. In vivo preliminary studies showed that HCC(101-117) does in fact react with Aβ species and might have therefore a therapeutical utility in humans. It seems somehow a paradox that the interaction of two potentially amyloidogenic molecules might provide a lead to control or inhibit neuropathological changes in amyloidogenic diseases.

Zusammenfassung in einer weiteren Sprache

Die Akkumulierung von extrazellularen Plaques mit dem neurotoxischen β-amyloid (Aβ) Peptid des Alzheimer-Amyloid-Vorläuferproteins APP als Hauptbestandteil ist ein Charakteristikum der Alzheimerschen Krankheit (AD). Ein Hauptziel dieser Arbeit war die Identifizierung der Aβ-Epitop-Strukturen von (a) single chain Antikörpern aus Llama-Glama nach Immunisierung mit Aβ(1-40); (b) des humanen Aβ-Inhibitoren Cystatin C Proteins. Die Massenspektrometrie hat sich in den letzten Jahren als leistungsfähige analytische Methode zur Analyse von Proteinstrukturen und biomolekularen Wechselwirkungen entwickelt. Hohe Massengenauigkeit und Empfindlichkeit, kurze Analysenzeiten und geringer Substanzenbedarf sind Hauptmerkmale der massenspektrometrischen Proteinanalytik. Eine Reihe von Methoden in Kombination mit der Massenspektrometrie wurde zur Analyse komplexer Proteingemische und Strukturaufklärung molekularer Erkennungsdomänen entwickelt. Hierzu gehören chromatographische und elektrophoretische Trennmethoden, proteolytischer Abbau und spezifische chemische Modifizierung. Für die Identifizierung von molekularen Strukturen der Antigen-Erkennung wurden proteolytische Excisions- und Extraktions-Methoden in Kombination mit Massenspektrometrie entwickelt. In einer früheren Arbeit konnte mit dieser Methode das Aβ-Plaque-spezifische Epitop als N-terminale Sequenz Aβ(4-10) identifiziert werden. Vor kurzem wurde das Epitop Aβ(21-37), das durch den Aβ-Autoantikörper aus menschlichem Serum erkannt wird, identifiziert und es konnte eine Hemmung der Fibrillenbildung gezeigt werden.



Im ersten Teil der Arbeit wurden Llama-anti-Aβ-Antikörper mittels SDS-PAGE und Massenspektrometrie charakterisiert. Antikörper in Camelidae (Kamele und Lamas) werden auch "heavy-chain" Antikörper genannt, weil die leichte Kette und die erste Domäne der konstanten Region (CH1) der schweren Kette fehlen. Camelid VHHs zeigen bezüglich ihre Spezifität und Affinität ähnliche funktionelle Eigenschaften wie klassische Antikörper. Ferner eignen sie sich aufgrund z. B. ihrer geringen Gröβe, sowie guten Löslichkeit und Stabilität hervorragend für biophysykalische Untersuchungen. Um festzustellen, ob ein Llama-Antikörper auch als Mikroantikörper einsetzbar ist, wurde die Aminosäure-Sequenz analysiert, und die CDR-Regionen wurden entsprechend den Kabat-Regeln bestimmt. Dadurch wurde CDR3 als potenzieller Kandidat ausgewählt. Das CDR3-Peptid wurde mittels Festphasen-Peptidsynthese synthetisiert, durch HPLC gereinigt und mittels Massenspektrometrie charakterisiert.



Im zweiten Teil der Arbeit wurden der Aβ-spezifischen Epitop des Lama Anti-Aβ Antikörpern unter Anwendung der in unserer Arbeitsgruppe entwickelten proteolytischen Excisions- und Extraktions-Methoden in Kombination mit Massenspektrometrie identifiziert. Durch Epitop-Excision und –Extraktion durch Verwendung verschiedener Proteasen (Trypsin, α-Chymotrypsin, LysC und GluC proteases) und MALDI-TOF-MS konnte die Epitop-Feinstruktur Aβ(17-28) identifiziert werden. Affinitätsuntersuchungen (ELISA) mit synthetischen, biotinylierten Aβ-Peptiden bestätigen die Bindungsspezifität des Epitops. Zur Charakterisierung der funktionellen Bedeutung der einzelnen Aminosäuren wurden spezifische Mutagenesen (Alanin scan) des synthetischen Aβ(17-28)-Peptids durchgeführt. Die Affinitätsbestimmung der Aβ-Peptidmutanten erfolgte durch vergleichende ELISA- Bindungsstudien.



Im dritten Teil der Dissertation wurden Affinitäts-massenspektrometrische Methoden für Untersuchung der spezifischen Wechselwirkungen zwischen Aβ-Peptide und Lama-anti-Aβ-Antikörpern angewendet. Darüber hinaus wurde die Wechselwirkung zwischen CDR3-Peptid aus Lama Anti-Aβ-Antikörper und Aβ (1-40) durch Affinitäts-Massenspektrometrie bestimmt. Für die Affinitätsstudien wurden die Lama-Antikörper auf NHS-aktivierter Sepharose immobilisiert. Aβ(1-40) und Aβ(17-28) wurden in PBS gelöst, auf die Lama-Antikörpern Säulen aufgetragen und inkubiert. Für das CDR3 Peptid wurde analog eine Cys-Aβ(1-40) Säule verwendet. Die ungebundenen Peptide wurden durch mehrfache Waschschritte entfernt, und anschlieβend wurde der Antikörper-Antigen-Komplex unter sauren Bedingungen dissoziiert und eluiert. Die jeweiligen Wasch- und Elution-Fraktionen wurden gesammelt und mittels Massenspektrometrie analysiert. Affinität- Bindungsstudien wurden auch mit einem SAW-Biosensor durchgeführt. Die SAW- Methode wurde auf verschiedene Antigen-Antikörper-Systeme angewendet. Die Antigene wurden auf der Oberfläche des Biosensorchips immobilisiert. Die bestimmten Dissoziation-Konstanten KD zwischen Lama-Antikörper und Aβ(1-40) und Aβ(17-28) befinden sich im nanomolaren Bereich.



Im vierten Teil der Dissertation wurden die Wechselwirkungsstrukturen zwischen Aβ(1-40) und humanem Cystatin C (HCC) mittels Affinitäts-Massenspektrometrie, ELISA, CD-Spektroskopie und SAW Biosensor identifiziert und charakterisiert. Die Ergebnisse der proteolytischen Exzision und Extraktion in Kombination mit Massenspektrometrie zeigten, dass die HCC Bindungsstelle im mittleren Bereich von Aβ(1-40) innerhalb der Aminosäuresequenz (17-28) angeordnet ist, während sich die Aβ-Bindungsstelle im C-terminalen Teil HCC(101-117) befindet. Die Bindungsspezifitäten und Affinitäten der Epitope wurden mittels ELISA analysiert. So wurden vergleichende ELISA-Studien mit dem Aβ(17-28)-Epitop und wt HCC, sowie mit den C-terminalen Peptiden HCC (HCC(93-120), HCC(101-117) und HCC(101-114) durchgeführt, die durch Epitop-Exzision Massenspektrometrie identifiziert wurden. Die spezifische Wechselwirkung zwischen HCC(93-120) und HCC(101-117), mit dem Aβ(17-28) Epitop wurde durch direkte hochauflösende ESI-Massenspektrometrie gezeigt.



Im letzten Teil der Arbeit wurden Aggregationsprodukte von Aβ(1-40) in vitro mittels Gelelektrophorese, Dot-Blot und Thioflavin T-Assay charakterisiert. Auβerdem wurde die Hemmung der Aβ(1-40) Oligomerenbildung durch HCC Fragmente mit der Thioflavin-T Methode untersucht. Die in vitro Aggregation von synthetischem und rekombinantem Aβ(1-40) wurde durch lösen in TFE, HFIP und NaOH und anschlieβender Inkubation bei 37 °C in Phosphat- Puffer über 7 Tage verfolgt. Die Bildung von Oligomeren und Protofibrillen wurde durch 1D-Gelelektrophorese kontrolliert, die die Anwesenheit von Trimeren, Tetrameren und Protofibrillen zeigte. Der Thioflavin-T Assay zeigte, dass in beiden Versuchen mit Solubilisierung der Proben in NaOH oder HFIP die Aggregationsrate für rekombinantes Aβ(1-40) im Gegensatz zu synthetischem Aβ(1-40) erhöht war. Die Hemmung der Aβ(1-40) Aggregation wurde unter Verwendung verschiedener Konzentrationen von Aβ und HCC(93-120) sowie HCC(101-117) mittels Thioflavin-T Assay analysiert. Mit einem zweifachen Überschuss von HCC(93-120) zeigte Aβ(1-40) eine signifikante Verringerung der Aggregationsrate.



Die Ergebnisse in der vorliegenden Arbeit zeigten, dass Lama-Antikörper und humanes Cystatin C-Protein eine mittlere Domäne des Aβ-Peptids erkennen. Dieses Erbgebniss bietet eine gute Grundlage, um neue Epitop-Konjugate zu entwickeln. Die Interaktion von HCC und Aβ könnte ein wichtiger neuroprotektiver Mechanismus sein und die Bildung von Aβ-Oligomeren verringern, und eine wichtige regulierende Rolle in der Aβ-Amyloidogenese spielen. Basierend auf dem HCC-Epitop könnten weitere Aggregationsuntersuchungen von Aβ-Peptid sowie Entwicklungen von neuen Inhibitoren gegen die Oligomerenbildung von groβer Bedeutung sein. Erste Studien in vivo zeigen, dass HCC(101-117) tatsächlich mit Aβ-Spezies reagiert und daher von therapeutischem Nutzen sein konnte.

Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690PARASCHIV, Gabriela-Ioana, 2012. Structural identification and quantification of β-amyloid polypeptide-ligand interactions using affinity-mass spectrometric methods [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Paraschiv2012Struc-20151,
  year={2012},
  title={Structural identification and quantification of β-amyloid polypeptide-ligand interactions using affinity-mass spectrometric methods},
  author={Paraschiv, Gabriela-Ioana},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20151">
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Paraschiv, Gabriela-Ioana</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-20T06:27:35Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">One of the main characteristics of Alzheimer’s Disease (AD) is the accumulation of extracellular plaques containing aggregates of neurotoxic β-amyloid (Aβ) peptides, derived from amyloid precursor protein (APP). A major goal of this thesis was the identification of the Aβ- epitope structure recognized by (a) single chain antibodies isolated from Llama Glama after immunization with Aβ(1-40); (b) human Cystatin C protein. Mass spectrometry has been developed in the last years as a powerful technique for the analysis of protein structures and biomolecular interactions. High mass accuracy and sensitivity, short analysis time and low sample consumption are important features of the mass spectrometric protein analysis. To obtain information on protein mixtures and to identify the structure of the molecular recognition domains, several affinity- based methods have been employed in combination with mass spectrometry. These approaches include chromatographic and electrophoretic separations, proteolytic degradation and mutations of specific amino acids. For the identification of molecular antigen recognition structures, highly efficient methods of mass spectrometry coupled with proteolytic epitope excision and extraction were developed in our laboratory. Using this methodology, the Aβ-plaque-specific epitope was identified in a previous study as the N-terminal sequence Aβ(4-10), which is also accessible in Aβ oligomers. Recently, the epitope recognized by Aβ-autoantibodies from human serum was identified as Aβ(21-37) and was shown to inhibit fibril formation.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In the first part of the thesis, single chain llama anti-Aβ antibodies were characterized by SDS-PAGE and mass spectrometry. Antibodies in Camelidae (camels and llamas) are called “heavy-chain” antibodies, because the light chain and the first domain of the constant region (CH1) of the heavy chain are missing. Camelid VHHs display similar functional characteristics with respect to specificity and affinity, comparable to classical antibodies, and have favourable properties for biophysical studies, e.g. small size and high solubility and stability. To investigate whether a single chain llama antibody may function as a microantibody, the amino acid sequence was analyzed and the CDR- regions were determined according to Kabat rules. Consequently, CDR3 was selected as a potential candidate. The CDR3 peptide was synthesized by solid phase peptide synthesis, purified by HPLC and analyzed by mass spectrometry.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In the second part of the thesis, the Aβ-epitope recognized by single chain llama anti-Aβ antibodies was identified. Mass spectrometric analysis was combined with proteolytic excision and extraction approaches previously developed in our laboratory. For the epitope excision and extraction experiments, affinity columns were prepared by immobilizing the antibodies on NHS-activated Sepharose. For protein digestion trypsin, chymotrypsin, LysC and GluC-proteases were employed and the proteolytic mixtures subjected to MALDI-TOF-MS. The epitope excision and extraction, followed by mass spectrometric analysis, provided direct information on the epitope recognized by single chain llama anti-Aβ antibodies. The results revealed an epitope located in the mid-to-C-terminal part of Aβ(1-40), Aβ(17-28). The secondary structure of the identified Aβ(17-28) epitope was determined by CD spectroscopy. Comparative binding studies of single chain llama anti-Aβ antibodies with the epitope were performed by ELISA. To determine the functional epitope (amino acids within Aβ(17-28), which are essential for binding the single chain llama anti-Aβ antibodies), site-directed alanine mutated Aβ(17-28) peptides were synthesized. Selective identification of the affinity preserving mutant peptides was achieved by comparative ELISA studies.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In the third part of the dissertation, affinity- mass spectrometric methods were applied for the investigation of the specific interactions between Aβ-peptides and single chain llama anti-Aβ antibodies. Furthermore, the interaction between CDR3 peptide of a single chain llama anti-Aβ antibody and Aβ(1-40) was assessed by affinity- mass spectrometry. For the affinity studies, the single chain antibodies were immobilized on NHS-activated Sepharose. Aβ(1-40) and Aβ(17-28) were dissolved in PBS and exposed to the single chain llama antibody columns, while CDR3 peptide was added on Cys-Aβ(1-40) column. The unbound peptides were removed, the columns were washed several times and then the antigen-antibody complex was dissociated under acidic conditions. The supernatant, washing and elution fractions were collected and analyzed by mass spectrometry. Affinity binding studies were also performed using surface acoustic wave (SAW) biosensor, which is sensitive to mass loadings and viscosity changes. The method was applied to different antigen-antibodies systems. The antigens were covalently immobilized on the surface of the biosensor chip. The dissociation constants of the interactions between the single chain antibodies, Aβ(1-40) and Aβ(17-28) (KD) were found to be in the nanomolar range.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;A fourth part of the dissertation was focused on the identification and characterization of the interaction structures between Aβ(1-40) and human Cystatin C (HCC) using an affinity- mass spectrometric approach, CD spectroscopy, ELISA and SAW biosensor. The results of the proteolytic excision and extraction in combination with mass spectrometry showed that the HCC biding site was located in the central region of Aβ(1-40), within residues (17-28), while the Aβ-binding site was located in the C-terminal part within L2 loop and β5 strand of wt HCC, within residues (101-117). The C-terminal binding epitope enables the interaction between L2-β5 part of wt HCC with Aβ peptide with the without any restriction. The binding specificities and affinities of the epitopes were analyzed by ELISA. Thus, comparative ELISA studies were performed with the Aβ(17-28) epitope and wt HCC, as well as with the C-terminal HCC peptides (HCC(93-120), HCC(101-117), HCC(101-114) fragments), which were identified by epitope excision mass spectrometry. The specific interaction between HCC(93-120) or HCC(101-117) fragments and Aβ(17-28) epitopes was shown by direct high resolution ESI- mass spectrometry.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In the last part of the thesis, in vitro characterization of Aβ(1-40) aggregation products employing gel electrophoresis, Dot blot and Thioflavin assay was performed. Furthermore, the inhibition of Aβ(1-40) oligomer formation by HCC fragments was investigated using the Thioflavin assay. In vitro aggregation of synthetic and recombinant Aβ(1-40) was carried out by dissolving the sample in trifluoroethanol (TFE), hexafluoroisopropanol (HFIP) and NaOH and followed by incubation at 37 °C in PBS for 0, 2, 4 and 7 days. The formation of oligomers and protofibrils was monitored by 1D-Tris-Tricine polyacrylamide gel electrophoresis, which indicated the presence of trimers, tetramers and protofibrils. The Thioflavin assay showed that in both experiments with previous solubilisation of the samples in NaOH or HFIP the aggregation rate was higher for recombinant Aβ(1-40) than for synthetic Aβ(1-40). The inhibition of Aβ(1-40) aggregation was carried out using different ratios between Aβ and HCC(93-120) or HCC(101-117) and analyzed by Thioflavin T assay. Using a two fold molar excess of HCC(93-120), Aβ(1-40) showed a significant decrease of aggregation rate after 4 days. Using a 1:0.5 Aβ(1-40) : HCC(101-117) molar ratio, a decrease in the fluorescence intensity was observed, due to a partial inhibition of Aβ- aggregation.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;The results obtained in the present work showed that single chain antibodies and human Cystatin C protein recognize the middle domain of Aβ-peptide, which can be applied to design new epitope conjugates. The interaction of HCC with Aβ may be an important neuroprotective mechanism in brain and may attenuate the oligomerisation of Aβ and play a regulating role in Aβ amyloidogenesis. Furthermore, the identification of the binding site in HCC should be of importance for aggregation studies of Aβ peptide and new oligomerisation inhibitors may be designed based on the HCC-epitope. In vivo preliminary studies showed that HCC(101-117) does in fact react with Aβ species and might have therefore a therapeutical utility in humans. It seems somehow a paradox that the interaction of two potentially amyloidogenic molecules might provide a lead to control or inhibit neuropathological changes in amyloidogenic diseases.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20151/2/Dissertation_Paraschiv.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20151"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20151/2/Dissertation_Paraschiv.pdf"/>
    <dc:contributor>Paraschiv, Gabriela-Ioana</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-20T06:27:35Z</dc:date>
    <dcterms:title>Structural identification and quantification of β-amyloid polypeptide-ligand interactions using affinity-mass spectrometric methods</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
August 1, 2012
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen