From Multi-fluorinated DNA Polymerases to Insights into DNA Synthesis by NMR spectroscopy

Lade...
Vorschaubild
Dateien
DissHolzbergerBastian.pdf
DissHolzbergerBastian.pdfGröße: 19.11 MBDownloads: 316
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The 20 canonical amino acids comprise a range of different properties and side chain functionalities that are used to assemble polypeptides, proteins and enzymes in a combinatorial fashion. Researchers are using this defined amino acid pool to create proteins and enzymes with new properties or modified functions and to study biological processes. The use of artificial or non-canonical amino acids offers the possibility to modify proteins beyond this restricted pool of the 20 canonical amino acids. The addition of amino acids with new functionalities to the existing repertoire allows the generation of proteins with novel compositions enhancing their chemical and biological diversity. Nowadays, different methods provide the possibility to selectively and efficiently introduce various new building blocks into target proteins. Among these methods, the most efficient ones utilize the natural protein translation machinery for the introduction of non-canonical amino acids in proteins in vivo.[2-15] Directed reprogramming of protein translation pathways based on the substrate tolerance of the natural components allows the genetic encoding of non-canonical amino acids in bacteria, yeast, and mammalian cells.[2-15] Aside from methods to site-specifically introduce non-canonical amino acids at single positions,[2-5, 22] natural amino acids can be globally replaced by non-canonical analogs by selective pressure incorporation (SPI).[9, 26, 27] This offers the possibility to modify the overall physical and chemical properties of target proteins. By using auxotrophic host cells that are unable to biosynthesize the specific natural amino acid, the appropriate sense-codons can be reassigned by adding a desired amino acid analog. This leads to the overall replacement of the specific natural amino acid in a residue-specific manner.

However, non-canonical amino acid engineering has been only very sparsely exploited to modify and to study DNA polymerases,[121] although these molecular machines are an interesting target in many respects. Engineered DNA polymerases are used in biotechnological applications for the amplification, detection, and analysis of nucleic acids and are thereby constantly subject to new requirements.[98, 99] Additionally, DNA polymerases catalyze all DNA synthesis in nature and therefore actively contribute to the fidelity and accuracy of genome replication.[83-88] Thus, there is great interest in developing DNA polymerases with characteristics that can not be found under the natural occurring enzymes and in methods to study the enzymatic mechanisms of DNA polymerases in more detail.



The first part of this work deals with the general applicability of non-canonical amino acids to create DNA polymerases with novel compositions. For this purpose, the 32 proline and separately the 13 methionine residues of the thermophilic KlenTaq DNA polymerase, which is composed of 540 amino acids in total (>60 kDa), were replaced throughout the entire enzyme by the fluorinated analogs 4 fluoroproline (4 FPro) and 6,6,6 trifluoro-methione (TFM), respectively. Trifluorinated analogs of the hydrophobic amino acids isoleucine, leucine, valine, and methionine are generally known to modify the properties of peptides and proteins due to the increased hyrophobicity of their side chains compared to their natural counterparts.[10, 53, 55] However, in particular TFM has been only introduced in a few globular proteins, so far.[55, 60-63] 4-FPro has been shown in the past to be very potent in modifying biophysical properties of peptides and proteins such as conformations, folding, and stability.[31-33, 44, 45, 55, 70-81] This has been mainly attributed to the conformational preferences of the two diastereomers (4R)- and (4S)-FPro and the formation of new interactions between fluorine atoms and adjacent amino acids. Nevertheless, the reasons for the complex effects of 4 FPro on globular proteins are still under discussion.

By using the SPI method, the methionine and separately the proline residues could be almost quantitatively replaced by TFM and (4R)-FPro yielding the highly fluorinated DNA polymerases TFM-KlenTaq and (4R)-FPro-KlenTaq. Interestingly, efforts towards the recombinant expression of KlenTaq DNA polymerase in presence of (4S)-FPro failed as protein yields declined dramatically. By performing numerous functional studies on TFM- and (4R)-FPro-KlenTaq, it turned out that enzymatic properties like activity, sensitivity, and fidelity of the fluorinated enzymes are almost unaltered in comparison to the wild-type properties. However, both fluorinated enzymes show reduced half-lives at 95 °C compared to the wild-type KlenTaq DNA polymerase. Nevertheless, TFM- and (4R)-FPro-KlenTaq are both still highly active and thermophilic DNA polymerases that can be used for biotechnological applications. Thus, the KlenTaq DNA polymerase is apparently able to tolerate fluorinated amino acids at multiple positions without markedly losing enzymatic activity. These findings are the prerequisite for further investigations, such as the directed evolution of DNA polymerases with new characteristics utilizing an expanded amino acid repertoire.

To elucidate the molecular reasons for the loss of thermostability of TFM-KlenTaq, mutational studies were carried out. On the one hand, six methionines were replaced by natural alanine instead of TFM to decrease the overall impact of the non-canonical amino acid TFM. Furthermore, three additional KlenTaq variants that bear instead of the 13 methionine residues 13 isoleucines, leucines, and alanines, respectively, were generated and investigated concerning their activity and stability. In doing so, it became apparent that the hydrophobic methionine side chains significantly contribute to the stabilization of KlenTaq DNA polymerase as all investigated variants show loss in thermostability. In addition to the hydrophobic potential of the side chains, also steric demands turned out to be critical for the altered stabilities upon replacing KlenTaq´s methionine residues. The non-canonical amino acid TFM was best suited to replace methionine as TFM-KlenTaq is the only variant that is still stable and active enough to maintain PCR activity.

To gain detailed insight into the structure of the multi-fluorinated (4R)-FPro-KlenTaq DNA polymerase in comparison to the wild-type enzyme, attempts to solve the overall structures of the enzymes by X ray crystallography were performed. In close collaboration with Samra Obeid and the Welte and the Diederichs groups of the University of Konstanz, (4R)-FPro-KlenTaq and the wild-type enzyme could be crystallized in ternary complex with DNA and a bound nucleotide. The structures were solved at resolutions of 1.9 (wild type) and 2.4 Å ((4R) FPro), respectively, and revealed that the substitution of proline with (4R)-FPro did neither affect neighbored amino acid conformations nor the overall structure of the DNA polymerase. The decrease in thermostability upon (4R)-FPro introduction can be explained by considering different effects in a combined fashion: the consequences of (4R)-FPro’s specific conformational preferences, the newly established interactions of fluorine atoms in their microenvironments, the dispersion of fluorine atoms over buried and exposed positions, and the modified surface of (4R)-FPro-KlenTaq DNA polymerase. Interestingly, the introduction of (4R)-FPro appeared to enhance the crystallization competence of the KlenTaq DNA polymerase in comparison to the wild-type protein. This might be caused by decreased local conformational heterogeneities and the fluorinated surface of (4R)-FPro-KlenTaq that displays also new crystal contacts of fluorine atoms to symmetry-related KlenTaq molecules.



Since directed enzyme evolution has been shown in the past to be a promising method to develop DNA polymerases with altered or new properties,[99-106] non-canonical protein engineering was combined with directed evolution to generate (4R)-FPro-KlenTaq variants with altered properties. To the best of my knowledge, directed evolution has so far not been applied to DNA polymerase engineering in combination with the use of non-canonical amino acids. A small DNA polymerase library was generated by diversifying the KlenTaq gene by random mutagenesis[154] as a proof of concept. KlenTaq variants were then expressed under SPI of (4R)-FPro in multi-well plates and screened by real-time PCR in 384-well format using E. coli lysates. Doing so, active variants could be identified in high-throughput. In subsequent screening steps, (4R)-FPro-KlenTaq variants were selected that showed primer extension activity in absence of dATP and thereby an increased substrate tolerance as mismatch incorporation has to be performed. Finally, two promising variants were expressed in large-scale and purified to verify the altered properties. In functional studies it turned out that these (4R)-FPro-KlenTaq variants show in fact an increased substrate spectrum. Both variants were more efficient in bypassing DNA lesions and more active in reverse transcription in comparison to (4R)-FPro-KlenTaq.

Thus, I could show that directed DNA polymerase evolution applying non-canonical amino acids can be used to create DNA polymerase variants with altered characteristics and a non-canonical composition. This may open up new possibilities for non-canonical enzyme engineering.



Finally, the successful introduction of non-canonical amino acids at multiple sites of KlenTaq DNA polymerase was exploited to study DNA synthesis by nuclear magnetic resonance (NMR) spectroscopy. As DNA polymerases actively contribute to the fidelity of DNA replication by discriminating against incorrect nucleotides, the mechanisms of DNA polymerases have been studied by various methods in the past.[88, 92, 93] However, NMR has only rarely been used to investigate substrate binding and conformational changes of DNA polymerases during the catalytic cycle of DNA synthesis.[135-138]

In this work, TFM-KlenTaq DNA polymerase turned out to be well suited for studying the enzyme by 19F NMR. Additionally, a KlenTaq DNA polymerase was generated that displays [methyl-13C]methionine instead of natural methionine to investigate the DNA polymerase by two-dimensional 1H,13C NMR techniques. As KlenTaq´s methionine residues are located in both, the rigid palm, which participates in substrate binding and catalysis, and the flexible fingers domain that contributes to active site formation, methionine amino acids were well suited to monitor alterations during enzymatic catalysis.

By tracking the resonances of the bioorthogonal NMR-active nuclei 13C and 19F, it was possible to specifically study local and global changes within the enzyme upon addition of different substrate combinations. In summary, DNA binding, nucleotide recognition and the conformational changes associated with active site closure could be detected by 19F NMR and 1H,13C-HSQC. Distinct differences in the NMR spectra of KlenTaq DNA polymerase were observed when encountering mismatching or abasic template sites in comparison to matched states. This indicates that the enzyme cycles through distinct paths in case of correct or incorrect nucleotide binding. Along with the observed differences in local dynamics or conformational heterogeneities, this might further explain how DNA polymerases achieve their high selectivity during DNA synthesis.

Taken together, NMR turned out to be a potent method to study DNA polymerase mechanisms in solution. Further comparative studies along these lines should provide additional insight into these processes. First, the residual substrate combinations of match and mismatch states could be examined to further confirm the existing results. Furthermore, investigations of DNA lesions such as oxidized nucleobases and substrate combinations that are hardly accessible by crystallographic approaches would be of special interest.

Zusammenfassung in einer weiteren Sprache

Die 20 kanonischen Aminosäuren bilden eine begrenzte Auswahl an verschiedenen Eigenschaften und Funktionalitäten, aus denen sich Polypeptide, Proteine und Enzyme kombinatorisch zusammensetzen. Die Forschung macht sich diesen festgelegten Fundus an unterschiedlichen Aminosäuren zu Nutze, um Proteine und Enzyme mit neuen Eigenschaften und Funktionen zu erzeugen und um biologische Prozesse zu untersuchen. Die Verwendung von artifiziellen oder nicht-kanonischen Aminosäuren ermöglicht es allerdings, Proteine jenseits dieser begrenzten Auswahl der 20 kanonischen Aminosäuren zu verändern. Die Erweiterung des natürlichen Repertoires mit neuen Funktionalitäten eröffnet dabei die Möglichkeit, Proteine mit neuen Zusammensetzungen zu generieren, die ihre natürlichen Pendants in chemischer und biologischer Vielfalt übertreffen. Inzwischen ist es möglich, die unterschiedlichsten neuen Bausteine zielgerichtet und effizient in Proteine zu integrieren. Die leistungsstärksten Methoden bedienen sich dabei der natürlichen Mechanismen der Proteintranslation, um nicht-kanonische Aminosäuren in vivo umzusetzen.[2-15] Die zielgerichtete Neuprogrammierung der Proteintranslation nutzt somit den Spielraum, den die natürlichen Komponenten gegenüber veränderten Substraten zeigen. Damit wurde es ermöglicht, nicht-kanonische Aminosäuren in Bakterien, Hefen und Säugetierzellen genetisch zu kodieren.[2-15] Neben Methoden zum positionsspezifischen Einbau von nicht-kanonischen Aminosäuren an einzelnen Stellen innerhalb eines Proteins,[2-5, 22] kann eine bestimmte natürliche Aminosäure auch allumfassend durch ein nicht-kanonisches Analogon ersetzt werden. Die Methode der selective pressure incorporation (SPI) ermöglicht es damit, die globalen physikalischen und chemischen Eigenschaften von Zielproteinen zu verändern.[9, 26, 27] Unter der Verwendung von auxotrophen Wirtszellen, die nicht in der Lage sind, eine bestimmte Aminosäure selbst herzustellen, können die dazugehörigen sense-codons einer nicht-kanonischen Aminosäure, die dem natürlichen Analogon in Größe und Form ähnlich sein muss, zugewiesen werden. Dies führt schlussendlich zum vollständigen Austausch der entsprechenden natürlichen Aminosäure an allen vorgegebenen Positionen.

Bisher wurden die Methoden zum Einbau nicht-kanonischer Aminosäuren allerdings nur sehr spärlich angewandt, um DNA-Polymerasen zu verändern und zu erforschen.[121] Diese molekularen Maschinen stellen allerdings in mehrerlei Hinsicht interessante Ziele für diese Verfahren dar. So werden DNA-Polymerasen stetig in biotechnologischen Anwendungen für die Vervielfältigung, Detektion und Analyse von Nukleinsäuren eingesetzt und unterliegen damit ständig neuen Anforderungen.[98, 99] Des Weiteren katalysieren DNA-Polymerasen die Synthese der DNA und tragen somit zur Genauigkeit der genomischen Replikation bei.[83-88] Somit herrscht sowohl großes Interesse an der Entwicklung von DNA-Polymerasen mit Eigenschaften, die nicht unter den natürlich vorkommenden Enzymen gefunden werden können, aber auch an Methoden, die detaillierte Studien der enzymatischen Mechanismen einer DNA-Polymerase ermöglichen.



Der erste Teil der vorliegenden Arbeit beschäftigt sich mit der allgemeinen Fragestellung, inwieweit nicht-kanonische Aminosäuren für das Erstellen von DNA-Polymerasen mit neuartiger Zusammensetzung geeignet sind. Hierfür wurden entweder die 32 Prolin- oder die 13 Methionin-Aminosäuren separat voneinander in der thermophilen DNA-Polymerase KlenTaq, die im Gesamten aus 540 Aminosäuren besteht (>60 kDa), vollständig durch die fluorierten Analoga 4-Fluorprolin (4 FPro) bzw. 6,6,6 Trifluormethionin (TFM) ersetzt. Trifluorierte Analoga der hydrophoben Aminosäuren Isoleucin, Leucin, Valin und Methionin verändern die Eigenschaften von Peptiden und Proteinen bekanntermaßen durch die erhöhte Hydrophobizität ihrer Seitenketten.[10, 53, 55] Allerdings wurde insbesondere TFM bisher nur in wenige globuläre Proteine eingebracht.[55, 60-63] 4-FPro hat sich dagegen als sehr wirkungsvoll bezüglich Veränderungen in biophysikalischen Eigenschaften von Proteinen erwiesen. Modifikationen in der Konformation, Faltung und Stabilität solcher 4-FPro-haltiger Proteine wurden dabei überwiegend auf die veränderten, konformationellen Präferenzen der zwei Diastereomere (4R)- und (4S)-FPro und der Ausbildung neuer Wechsel-wirkungen zwischen Fluoratomen und benachbarten Aminosäuren zurückgeführt.[31-33, 44, 45, 55, 70-81] Dennoch sind die exakten Gründe für die komplexen Auswirkungen von 4-FPro auf Proteine noch weitestgehend ungeklärt.

In dieser Arbeit konnten die beiden Aminosäuren Methionin bzw. Prolin der KlenTaq DNA-Polymerase mit Hilfe der SPI-Methode nahezu quantitativ durch TFM bzw. (4R)-FPro ersetzt werden. Somit entstanden die beiden hochfluorierten Enzyme TFM-KlenTaq und (4R)-FPro-KlenTaq. Interessanterweise führten Bemühungen, die rekombinante KlenTaq DNA-Polymerase in Gegenwart von (4S)-FPro zu exprimieren, nicht zum Erfolg, da der Ertrag an Protein drastisch abnahm. In zahlreichen funktionalen Untersuchungen zeigte sich jedoch, dass enzymatische Eigenschaften wie Aktivität, Sensitivität und Genauigkeit der fluorierten Enzyme TFM- und (4R)-FPro-KlenTaq nahezu unverändert zu den Wildtyp-Eigenschaften blieben. Allerdings zeigen die beiden fluorierten Enzyme kürzere Halbwertszeiten bei 95 °C als die Wildtyp-KlenTaq DNA-Polymerase. Nichtsdestotrotz sind TFM- und (4R)-FPro-KlenTaq immer noch hochaktive und thermophile DNA-Polymerasen, die für biotechnologische Anwendungen verwendet werden könnten. Die KlenTaq DNA-Polymerase ist damit augenscheinlich in der Lage, fluorierte Aminosäuren selbst an mehreren Positionen im Protein zu akzeptieren, ohne wesentliche Einbußen in der enzymatischen Aktivität aufzuweisen.

Um die molekularen Gründe hinter den Verlusten an Thermostabilität der TFM-KlenTaq DNA-Polymerase näher zu untersuchen, wurden Mutationsstudien durchgeführt. Einerseits wurden sechs der 13 Methionin-Aminosäuren der KlenTaq DNA-Polymerase durch Alanin anstelle von TFM ersetzt um die Auswirkung der nicht-kanonischen Aminosäure TFM im Gesamten zu schmälern. Des Weiteren wurden drei zusätzliche KlenTaq-Varianten generiert, die anstelle der 13 Methionin-Aminosäuren 13 Isoleucine, Leucine bzw. Alanine tragen. Die Analyse der resultierenden Aktivitäten und Stabilitäten dieser Varianten ließen den Schluss zu, dass die hydrophoben Methionin-Seitenketten wesentlich zur Stabilisierung der KlenTaq DNA-Polymerase beitragen, da alle untersuchten Varianten deutlich an Thermostabilität verloren. Neben der Hydrophobizität spielen dabei auch sterische Anforderungen an die Seitenkette eine entscheidende Rolle hinsichtlich der veränderten Stabilitäten beim Austausch der Methionin-Aminosäuren. Das nicht-kanonische TFM erwies sich am Besten geeignet um Methionin zu ersetzen ohne drastische Stabilitätseinbußen mit sich zu bringen. Die TFM-KlenTaq stellte die einzige dieser Varianten dar, die ausreichend stabil und aktiv war, um unverändert PCR-aktiv zu sein.
Um detaillierte Einblicke in die Struktur der hochfluorierten (4R)-FPro-KlenTaq DNA Polymerase im Vergleich zum Wildtyp-Enzym zu gewinnen, wurde versucht die Strukturen mit Hilfe der Röntgenstrukturanalyse zu lösen. In enger Zusammenarbeit mit Samra Obeid und den Arbeitsgruppen Welte und Diederichs der Universität Konstanz konnten (4R)-FPro-KlenTaq und das Wildtyp-Enzym im ternären Komplex mit DNA und gebundenem Nukleotid kristallisiert werden. Die Strukturen konnten mit Auflösungen von 1.9 (Wildtyp) bzw. 2.4 Å gelöst werden. Der Austausch von Prolin durch (4R)-FPro hatte dabei weder eine Auswirkung auf die Konformationen benachbarter Aminosäuren noch auf die Gesamtstruktur der DNA-Polymerase. Die verringerte Thermostabilität durch den Einbau von (4R)-FPro kann dabei durch eine Kombination mehrerer Effekte erklärt werden: Durch die Auswirkungen der spezifischen konformationellen Präferenzen von (4R)-FPro, die neu entstandenen Wechselwirkungen der Fluoratome zu benachbarten Aminosäuren, die Verteilung der Fluoratome sowohl auf völlig ins Protein integrierte als auch auf stark exponierte Stellen und durch die veränderte Oberflächenbeschaffenheit der (4R)-FPro-KlenTaq DNA-Polymerase. Interessanterweise erschien der Einbau von (4R)-FPro den Kristallisationsdrang der KlenTaq DNA-Polymerase im Vergleich zum entsprechenden Wildtyp-Protein zu erhöhen. Dieser Effekt lässt sich sehr wahrscheinlich auf verminderte lokale Heterogenitäten und die fluorierte Oberfläche der (4R)-FPro-KlenTaq zurückführen, die dank der Fluoratome auch zusätzliche Kristallkontakte zu symmetrieverwandten KlenTaq-Molekülen ausbilden kann.



Basierend auf den Ergebnissen der (4R)-FPro-KlenTaq DNA-Polymerase wurde die Entwicklung nicht-kanonischer Proteine mit der gerichteten Evolution kombiniert, da sich die gerichtete Enzymevolution in der Vergangenheit als viel versprechende Methode zur Ausbildung von DNA-Polymerasen mit veränderten oder neuartigen Eigenschaften etabliert hat.[99-106] Nach meinen Wissensstand wurde allerdings die gerichtete Evolution bislang nicht in Kombination mit nicht-kanonischen Aminosäuren zur Entwicklung von neuartigen DNA-Polymerasen eingesetzt.

Zur Untersuchung der generellen Machbarkeit einer solchen Kombination wurde das KlenTaq-Gen mit Hilfe zufallsbasierter Mutagenese randomisiert und eine kleine DNA-Polymerasen-Bibliothek erstellt.[154] Die Expression der KlenTaq-Varianten wurde dann unter SPI von (4R)-FPro in multi-well-Platten durchgeführt und das Durchmustern der Varianten erfolgte basierend auf E. coli-Zelllysaten durch Echtzeit-PCR im 384er-Format. Auf diese Weise konnten aktive Varianten im Hochdurchsatz identifiziert werden. In sich anschließenden Durchmusterungsschritten wurden (4R)-FPro-KlenTaq-Varianten ausgewählt, die ein erhöhtes Substratspektrum aufwiesen. Abschließend wurden die zwei interessantesten Varianten im größeren Maßstab exprimiert und aufgereinigt, um die veränderten Eigenschaften zu verifizieren. In funktionalen Studien stellte sich schließlich heraus, dass die (4R)-FPro-KlenTaq-Varianten tatsächlich eine erhöhte Effizienz beim Überlesen von DNA-Schäden und bei der Reversen Transkription zeigen. Dies spiegelt das erhöhte Substratspektrum der DNA-Polymerasen wider und zeigt, dass die gerichtete Evolution unter Verwendung nicht-kanonischer Aminosäuren angewandt werden kann, um Varianten von DNA-Polymerasen mit veränderten Merkmalen und einer nicht-kanonischen Zusammensetzung zu erzeugen. Das sollte neue Möglichkeiten zur nicht-kanonischen Entwicklung von Enzymen eröffnen.



Abschließend wurde der erfolgreiche, mehrfache Einbau nicht-kanonischer Aminosäuren in die KlenTaq DNA-Polymerase ausgenutzt, um die DNA-Synthese mit Hilfe der Kernspinresonanz- (NMR) Spektroskopie zu untersuchen. Da DNA-Polymerasen aktiv gegen fehlgebundene Nukleotide und DNA-Schäden diskriminieren, tragen sie direkt zur Genauigkeit der DNA-Synthese bei. Deshalb wurden die Mechanismen der DNA-Synthese bereits mit Hilfe verschiedener Methoden untersucht.[88, 92, 93] Allerdings wurde die NMR-Spektroskopie bislang nur selten genutzt um Substratbindung und Konformations-änderungen von DNA-Polymerasen während des Katalysezykluses der DNA-Synthese näher zu verfolgen.[135-138]

In dieser Arbeit erwies sich die DNA-Polymerase TFM-KlenTaq als äußerst geeignet für 19F NMR Studien. Zusätzlich wurde eine KlenTaq DNA-Polymerase hergestellt, die [Methyl-13C]Methionin anstelle von natürlichem Methionin aufweist, um die DNA-Polymerase auch mit Hilfe zweidimensionaler 1H,13C NMR Methoden zu untersuchen. Die Methionin-Aminosäuren der KlenTaq DNA-Polymerase sind dabei sehr gut geeignet, um Veränderungen während der DNA-Synthese zu verfolgen, da sie sowohl in der starren „Handflächen“-Domäne positioniert sind, die an Substratbindung und enzymatischer Katalyse beteiligt ist, als auch im Bereich der flexiblen „Finger“-Domäne vorzufinden sind, welche zur Ausbildung des aktiven Zentrums beiträgt.

Folgte man dabei basierend auf den bioorthogonalen Spinlabeln Kohlenstoff-13 und Fluor 19 den resultierenden Resonanzsignalen, konnten lokale und globale Veränderungen des Enzyms bei Zugabe verschiedener Substrate beobachtet werden. Zusammenfassend war es möglich die Bindung von DNA, das Erfassen von Nukleotiden und die Konformationsänderungen zur Bildung des aktiven Zentrums mit Hilfe von 19F NMR und 1H,13C-HSQC zu detektieren. Die KlenTaq DNA-Polymerase zeigte dabei deutliche Unterschiede in den NMR-Spektren sofern im Templat gegenüber dem eintretenden Nukleotid fehlpaarende Nukleobasen oder abasische Stellen anstelle von korrekt-paarenden Nukleobasen vorlagen. Diese Differenzen deuten darauf hin, dass bei der enzymatischen Katalyse in Abhängigkeit von korrekt oder fehlerhaft gebundenen Nukleotiden andere Synthesewege durchlaufen werden. Zusammen mit den beobachteten Unterschieden hinsichtlich lokaler Dynamik bzw. konformationeller Heterogenität könnte dies eine zusätzliche Erklärung sein wie DNA-Polymerasen die hohen Selektivitäten während der DNA-Synthese erlangen.

Die NMR-Spektroskopie erwies sich somit als äußerst viel versprechende Methode zur Untersuchung von DNA-Polymerase-Mechanismen in Lösung. Weitere vergleichende Studien in dieser Richtung sollten zusätzliche Einblicke in diese Prozesse ermöglichen. So könnten die verbliebenen Zustände mit korrekt- und fehlgepaarten Nukleotiden untersucht werden, um die bisherigen Ergebnisse weiter zu bestätigen. Darüber hinaus wären Studien zu DNA-Schäden wie oxidierten Nukleobasen und von Substratkombi-nationen, die nur schwer mittels kristallographischer Methoden zugänglich sind, von besonderem Interesse.

Fachgebiet (DDC)
500 Naturwissenschaften
Schlagwörter
Protein engineering, Non-canonical amino acids, Fluorinated amino acids, DNA polymerases, NMR spectroscopy, DNA synthesis
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HOLZBERGER, Bastian, 2012. From Multi-fluorinated DNA Polymerases to Insights into DNA Synthesis by NMR spectroscopy [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Holzberger2012Multi-20589,
  year={2012},
  title={From Multi-fluorinated DNA Polymerases to Insights into DNA Synthesis by NMR spectroscopy},
  author={Holzberger, Bastian},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20589">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">The 20 canonical amino acids comprise a range of different properties and side chain functionalities that are used to assemble polypeptides, proteins and enzymes in a combinatorial fashion. Researchers are using this defined amino acid pool to create proteins and enzymes with new properties or modified functions and to study biological processes. The use of artificial or non-canonical amino acids offers the possibility to modify proteins beyond this restricted pool of the 20 canonical amino acids. The addition of amino acids with new functionalities to the existing repertoire allows the generation of proteins with novel compositions enhancing their chemical and biological diversity. Nowadays, different methods provide the possibility to selectively and efficiently introduce various new building blocks into target proteins. Among these methods, the most efficient ones utilize the natural protein translation machinery for the introduction of non-canonical amino acids in proteins in vivo.[2-15] Directed reprogramming of protein translation pathways based on the substrate tolerance of the natural components allows the genetic encoding of non-canonical amino acids in bacteria, yeast, and mammalian cells.[2-15] Aside from methods to site-specifically introduce non-canonical amino acids at single positions,[2-5, 22] natural amino acids can be globally replaced by non-canonical analogs by selective pressure incorporation (SPI).[9, 26, 27] This offers the possibility to modify the overall physical and chemical properties of target proteins. By using auxotrophic host cells that are unable to biosynthesize the specific natural amino acid, the appropriate sense-codons can be reassigned by adding a desired amino acid analog. This leads to the overall replacement of the specific natural amino acid in a residue-specific manner.&lt;br /&gt;&lt;br /&gt;However, non-canonical amino acid engineering has been only very sparsely exploited to modify and to study DNA polymerases,[121] although these molecular machines are an interesting target in many respects. Engineered DNA polymerases are used in biotechnological applications for the amplification, detection, and analysis of nucleic acids and are thereby constantly subject to new requirements.[98, 99] Additionally, DNA polymerases catalyze all DNA synthesis in nature and therefore actively contribute to the fidelity and accuracy of genome replication.[83-88] Thus, there is great interest in developing DNA polymerases with characteristics that can not be found under the natural occurring enzymes and in methods to study the enzymatic mechanisms of DNA polymerases in more detail.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;The first part of this work deals with the general applicability of non-canonical amino acids to create DNA polymerases with novel compositions. For this purpose, the 32 proline and separately the 13 methionine residues of the thermophilic KlenTaq DNA polymerase, which is composed of 540 amino acids in total (&gt;60 kDa), were replaced throughout the entire enzyme by the fluorinated analogs 4 fluoroproline (4 FPro) and 6,6,6 trifluoro-methione (TFM), respectively. Trifluorinated analogs of the hydrophobic amino acids isoleucine, leucine, valine, and methionine are generally known to modify the properties of peptides and proteins due to the increased hyrophobicity of their side chains compared to their natural counterparts.[10, 53, 55] However, in particular TFM has been only introduced in a few globular proteins, so far.[55, 60-63] 4-FPro has been shown in the past to be very potent in modifying biophysical properties of peptides and proteins such as conformations, folding, and stability.[31-33, 44, 45, 55, 70-81] This has been mainly attributed to the conformational preferences of the two diastereomers (4R)- and (4S)-FPro and the formation of new interactions between fluorine atoms and adjacent amino acids. Nevertheless, the reasons for the complex effects of 4 FPro on globular proteins are still under discussion.&lt;br /&gt;&lt;br /&gt;By using the SPI method, the methionine and separately the proline residues could be almost quantitatively replaced by TFM and (4R)-FPro yielding the highly fluorinated DNA polymerases TFM-KlenTaq and (4R)-FPro-KlenTaq. Interestingly, efforts towards the recombinant expression of KlenTaq DNA polymerase in presence of (4S)-FPro failed as protein yields declined dramatically. By performing numerous functional studies on TFM- and (4R)-FPro-KlenTaq, it turned out that enzymatic properties like activity, sensitivity, and fidelity of the fluorinated enzymes are almost unaltered in comparison to the wild-type properties. However, both fluorinated enzymes show reduced half-lives at 95 °C compared to the wild-type KlenTaq DNA polymerase. Nevertheless, TFM- and (4R)-FPro-KlenTaq are both still highly active and thermophilic DNA polymerases that can be used for biotechnological applications. Thus, the KlenTaq DNA polymerase is apparently able to tolerate fluorinated amino acids at multiple positions without markedly losing enzymatic activity. These findings are the prerequisite for further investigations, such as the directed evolution of DNA polymerases with new characteristics utilizing an expanded amino acid repertoire.&lt;br /&gt;&lt;br /&gt;To elucidate the molecular reasons for the loss of thermostability of TFM-KlenTaq, mutational studies were carried out. On the one hand, six methionines were replaced by natural alanine instead of TFM to decrease the overall impact of the non-canonical amino acid TFM. Furthermore, three additional KlenTaq variants that bear instead of the 13 methionine residues 13 isoleucines, leucines, and alanines, respectively, were generated and investigated concerning their activity and stability. In doing so, it became apparent that the hydrophobic methionine side chains significantly contribute to the stabilization of KlenTaq DNA polymerase as all investigated variants show loss in thermostability. In addition to the hydrophobic potential of the side chains, also steric demands turned out to be critical for the altered stabilities upon replacing KlenTaq´s methionine residues. The non-canonical amino acid TFM was best suited to replace methionine as TFM-KlenTaq is the only variant that is still stable and active enough to maintain PCR activity.&lt;br /&gt;&lt;br /&gt;To gain detailed insight into the structure of the multi-fluorinated (4R)-FPro-KlenTaq DNA polymerase in comparison to the wild-type enzyme, attempts to solve the overall structures of the enzymes by X ray crystallography were performed. In close collaboration with Samra Obeid and the Welte and the Diederichs groups of the University of Konstanz, (4R)-FPro-KlenTaq and the wild-type enzyme could be crystallized in ternary complex with DNA and a bound nucleotide. The structures were solved at resolutions of 1.9 (wild type) and 2.4 Å ((4R) FPro), respectively, and revealed that the substitution of proline with (4R)-FPro did neither affect neighbored amino acid conformations nor the overall structure of the DNA polymerase. The decrease in thermostability upon (4R)-FPro introduction can be explained by considering different effects in a combined fashion: the consequences of (4R)-FPro’s specific conformational preferences, the newly established interactions of fluorine atoms in their microenvironments, the dispersion of fluorine atoms over buried and exposed positions, and the modified surface of (4R)-FPro-KlenTaq DNA polymerase. Interestingly, the introduction of (4R)-FPro appeared to enhance the crystallization competence of the KlenTaq DNA polymerase in comparison to the wild-type protein. This might be caused by decreased local conformational heterogeneities and the fluorinated surface of (4R)-FPro-KlenTaq that displays also new crystal contacts of fluorine atoms to symmetry-related KlenTaq molecules.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Since directed enzyme evolution has been shown in the past to be a promising method to develop DNA polymerases with altered or new properties,[99-106] non-canonical protein engineering was combined with directed evolution to generate (4R)-FPro-KlenTaq variants with altered properties. To the best of my knowledge, directed evolution has so far not been applied to DNA polymerase engineering in combination with the use of non-canonical amino acids. A small DNA polymerase library was generated by diversifying the KlenTaq gene by random mutagenesis[154] as a proof of concept. KlenTaq variants were then expressed under SPI of (4R)-FPro in multi-well plates and screened by real-time PCR in 384-well format using E. coli lysates. Doing so, active variants could be identified in high-throughput. In subsequent screening steps, (4R)-FPro-KlenTaq variants were selected that showed primer extension activity in absence of dATP and thereby an increased substrate tolerance as mismatch incorporation has to be performed. Finally, two promising variants were expressed in large-scale and purified to verify the altered properties. In functional studies it turned out that these (4R)-FPro-KlenTaq variants show in fact an increased substrate spectrum. Both variants were more efficient in bypassing DNA lesions and more active in reverse transcription in comparison to (4R)-FPro-KlenTaq.&lt;br /&gt;&lt;br /&gt;Thus, I could show that directed DNA polymerase evolution applying non-canonical amino acids can be used to create DNA polymerase variants with altered characteristics and a non-canonical composition. This may open up new possibilities for non-canonical enzyme engineering.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Finally, the successful introduction of non-canonical amino acids at multiple sites of KlenTaq DNA polymerase was exploited to study DNA synthesis by nuclear magnetic resonance (NMR) spectroscopy. As DNA polymerases actively contribute to the fidelity of DNA replication by discriminating against incorrect nucleotides, the mechanisms of DNA polymerases have been studied by various methods in the past.[88, 92, 93] However, NMR has only rarely been used to investigate substrate binding and conformational changes of DNA polymerases during the catalytic cycle of DNA synthesis.[135-138]&lt;br /&gt;&lt;br /&gt;In this work, TFM-KlenTaq DNA polymerase turned out to be well suited for studying the enzyme by 19F NMR. Additionally, a KlenTaq DNA polymerase was generated that displays [methyl-13C]methionine instead of natural methionine to investigate the DNA polymerase by two-dimensional 1H,13C NMR techniques. As KlenTaq´s methionine residues are located in both, the rigid palm, which participates in substrate binding and catalysis, and the flexible fingers domain that contributes to active site formation, methionine amino acids were well suited to monitor alterations during enzymatic catalysis.&lt;br /&gt;&lt;br /&gt;By tracking the resonances of the bioorthogonal NMR-active nuclei 13C and 19F, it was possible to specifically study local and global changes within the enzyme upon addition of different substrate combinations. In summary, DNA binding, nucleotide recognition and the conformational changes associated with active site closure could be detected by 19F NMR and 1H,13C-HSQC. Distinct differences in the NMR spectra of KlenTaq DNA polymerase were observed when encountering mismatching or abasic template sites in comparison to matched states. This indicates that the enzyme cycles through distinct paths in case of correct or incorrect nucleotide binding. Along with the observed differences in local dynamics or conformational heterogeneities, this might further explain how DNA polymerases achieve their high selectivity during DNA synthesis.&lt;br /&gt;&lt;br /&gt;Taken together, NMR turned out to be a potent method to study DNA polymerase mechanisms in solution. Further comparative studies along these lines should provide additional insight into these processes. First, the residual substrate combinations of match and mismatch states could be examined to further confirm the existing results. Furthermore, investigations of DNA lesions such as oxidized nucleobases and substrate combinations that are hardly accessible by crystallographic approaches would be of special interest.</dcterms:abstract>
    <dc:creator>Holzberger, Bastian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20589/1/DissHolzbergerBastian.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-10-05T07:19:03Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Holzberger, Bastian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20589/1/DissHolzbergerBastian.pdf"/>
    <dcterms:title>From Multi-fluorinated DNA Polymerases to Insights into DNA Synthesis by NMR spectroscopy</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-10-05T07:19:03Z</dcterms:available>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20589"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
August 6, 2012
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen