Nuclear Spin Phenomena in Optically Active Semiconductor Quantum Dots

Lade...
Vorschaubild
Dateien
Hildmann_269285.pdf
Hildmann_269285.pdfGröße: 5.31 MBDownloads: 158
Datum
2014
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Kernspin-Effekte in optisch aktiven Halbleiter-Quantenpunkten
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The motivating background for this thesis lies in the recent development in
the coherent optical control of electron spin states in semiconductor quan-
tum dots. One possible and attractive application for these achievements is a
physical implementation of a quantum computer based on spin qubits (quan-
tum bit) in quantum dots. However, one of the obstacles in building such
quantum computer is decoherence caused by the interaction of the electron
spins with nuclear spins of the host material. In this thesis we theoretically
investigate the effects caused by the hyperfine interaction in optically active
semiconductor quantum dots.


In Chapter 2 we assume optically induced rotations of single electron spins in
semiconductor quantum dots. The optical control of the electron spin states
is considered to be conducted by means of Raman type optical transitions
between electron spin states. We investigate the influence of nuclear spins
on the performance of the single-qubit gates by incorporating the additional
effect of the Overhauser field into the electron spin dynamics. To calculate
the errors caused by the hyperfine interaction, we determine average fidelities
of rotations around characteristic axes in the Bloch sphere in the presence
of nuclear spins analytically with perturbation theory up to second order in
the Overhauser field. By applying numerical averaging over the nuclear field
distribution we find the average fidelity to the arbitrary orders of the hyper-
fine interaction.


In Chapter 3 we investigate the dynamics of spin qubits interacting by means
of an optical cavity. The qubits are represented by a single electron spin each
confined to a quantum dot. Knowing that electron spins in III-V semiconduc-
tor quantum dots are affected by the decoherence due to the hyperfine inter-
action with nuclear spins, we find that the interaction between two qubits is
consequently influenced by the Overhauser field. Assuming an unpolarizied
nuclear ensemble, we investigate the fidelities for two-qubit gates depending
on the Overhauser field. We include the hyperfine interaction perturbatively
to second order in our analytical results, and to arbitrary precision numeri
cally.


Quantum dots can be used not only as physical systems for qubits, but also
as sources for entangled photons. In chapter 4 we consider an emission of
entangled photons by spontaneous decay of the biexciton state to the ground
state. Due to electron-hole exchange interaction, the intermediate excitonic
states have a finite fine structure splitting. The electron spins of the excitons
also interact via hyperfine interaction with the nuclear spins. We study the
temporal and fine structure splitting dependance of the coherence measures
considering the effect of the nuclear magnetic field. We find that the hy
perfine interaction contributes considerably to the reduction of the photon
coherence.


One of the possibilities to minimize the decoherence effects of the hyperfine
interaction is to polarize the nuclear spins to 100%. However, up to date it
was not possible to reach such degree of the nuclear polarization in experi-
ments. In a recent experiment by Chekhovich et al. it was shown that high
nuclear spin polarization can be achieved in self-assembled quantum dots by
exploiting an optically forbidden transition between a heavy hole and a trion
state. A fully polarized state in this case was predicted by a classical rate
equation, but could not be obtained experimentally. Therefore we theoret-
ically investigate this problem with the help of a quantum master equation
in Chapter 5, and we show that a fully polarized state cannot be achieved
due to formation of a nuclear dark state. Moreover, we demonstrate that
the maximal degree of polarization depends on the form of the electron wave
function inside of the quantum dot.

Zusammenfassung in einer weiteren Sprache

Diese Doktorarbeit ist motiviert durch die raschen Fortschritten in der ko-
härenten optischen Kontrolle von Elektronenspins in Halbleiter-Quanten-
punkten. Von dem experimentellen Standpunkt her stellen die Halbleiter-
Quantenpunkte ein geeignetes physikalisches System für die Realisierung
von Qubits (quantenmechanische Bits) dar, die eine Grundlage für einen
Quantenrechner bilden. Allerdings ist der Elektronenspin-Zustand wegen der
Wechselwirkung mit den Kernspins der Gitteratome der Dekohärenz unter-
worfen. Gegenstand dieser Arbeit sind theoretische Untersuchungen zu Ef-
fekte in optisch aktiven Halbleiter-Quantenpunkten, die durch die Hyperfein-
Wechselwirkung zwischen den Kernspins und dem Elektronenspin verursacht
werden.


In Kapitel 2 werden optisch erzeugte Rotationen des Elektronspins in Halb-
leiter-Quantenpunkten betrachtet. Es wird angenommen, dass die optis-
che Kontrolle von den Elektronenspin-Zuständen durch optische Raman-
Übergänge realisiert ist. Der Einfluss der Kernspins auf die Ausführung der
Einzelqubit-Gatter wird durch Einbeziehung des Overhauser-Feldes in die
Elektronenspin-Dynamik untersucht. Um die durch die Hyperfein-Wechsel-
wirkung entstehenden Fehler zu berechnen, wird die durchschnittliche Güte
(gemittelt über die statistische Verteilung für das Kernspinfeld) der Ro-
tationen um charakteristische Achsen in der Bloch-Kugel mit Anrechnung
von den Kernspin-Effekten bestimmt. Die durchschnittliche Güte wird bis
zur zweiten Ordnung des Overhauser-Feldes mit Hilfe der Störungstheorie
berechnet. Zusätzlich wird die durchschnittliche Güte in beliebiger Ord-
nung in der Hyperfein-Wechselwirkung durch numerische Mitteln über die
Verteilung der Kernspins erhalten.


In Kapitel 3 wird die Dynamik von zwei Spin-Qubits betrachtet, die mit Hilfe
eines optischen Resonator wechselwirken. Da es bekannt ist, dass die Elektro-
nenspins in III-V Halbleiter-Quantenpunkten durch die Dekohärenz aufgrund
der Hyperfein-Wechselwirkung mit Kernspins beeinflusst sind, wird es unter-
sucht, wie die Wechselwirkung zwischen zwei Qubits durch das Overhauser-
Feld geändert wird. Unter der Annahme, dass die Kernspins nicht polarisiert
sind, wird die Güte der Zweiqubit-Gatter in Abhängigkeit vom Overhauser-
Feld berechnet. Die Ergebnisse für die durchschnittliche Güte werden bis
zur zweiten Ordnung der Hyperfein-Wechselwirkung unter Verwendung der
Störungstheorie und exakt durch numerische Mitteln erhalten.


Quantenpunkte können nicht nur als geeignete physikalische Systeme für
Qubits verwendet werden, sondern sind auch Quellen für verschränkte Pho-
tonen. In Kapitel 4 wird die Erzeugung von verschänkten Photonen durch
spontane Emission beim Zerfall eines Biexzitons betrachtet. Wegen der Aus-
tauschwechselwirkung zwischen dem Elektron und dem Loch sind die Zwis-
chenzustände, die Exzitonen, nicht mehr energetisch entartet. Ausserdem
wechselwirken die Elektronenspins aus den Exzitonen mit Kernspins. Die
Photonenkohärenz wird als Funktion der Zeit und der Feinstrukturaufspal-
tung unter Berücksichtigung des Einflusses vom Kernspinfeld untersucht.

Die
Ergebnisse weisen eine wesentliche Reduzierung der Photonenkohärenz we
gen der Hyperfein-Wechselwirkung auf.


Eine der Möglichkeiten die Dekohärenzeffekte zu minimieren, die durch die
Hyperfein-Wechselwirkung verursacht werden, ist die Kernspins bis zu 100%
zu polarisieren. Jedoch war es noch nicht möglich so eine hohe Kernspinpolar
isation in Quantenpunkten experimentell zu erreichen. Eine beachtlich hohe
Kernspinpolarisation wurde im Experiment von Chekhovich et al. beobachtet,
die durch spinverbotene optische Übergänge zwischen einem schweren Loch
and dem Trion-Zustand erzielt wurde. Ein komplett polarisierter Kern
spinzustand wurde durch die Ratengleichung für diesen Experiment voraus
gesagt, aber konnten nicht erreicht werden.

Deshalb wird diese Fragestellung
theoretisch in Kapitel 5 mit Hilfe der quantenmechanischen Mastergleichung
untersucht. Es wird gezeigen, dass ein komplett polarisierter Zustand wegen
der Formation eines Dunkelzustands nicht erreicht werden kann. Ausserdem
ergibt sich eine Abhängigkeit der Höhe der Sättigung der Kernspinpolarisa
tion von der Form der Elektronenwellenfunktion im Quantenpunkt.

Fachgebiet (DDC)
530 Physik
Schlagwörter
nuclear spins in quantum dots, fidelity of unitary operation, biexciton cascade
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690HILDMANN, Julia, 2014. Nuclear Spin Phenomena in Optically Active Semiconductor Quantum Dots [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Hildmann2014Nucle-26928,
  year={2014},
  title={Nuclear Spin Phenomena in Optically Active Semiconductor Quantum Dots},
  author={Hildmann, Julia},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26928">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26928/1/Hildmann_269285.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26928/1/Hildmann_269285.pdf"/>
    <dc:creator>Hildmann, Julia</dc:creator>
    <dc:contributor>Hildmann, Julia</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-17T09:18:53Z</dcterms:available>
    <dcterms:alternative>Kernspin-Effekte in optisch aktiven Halbleiter-Quantenpunkten</dcterms:alternative>
    <dcterms:issued>2014</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26928"/>
    <dcterms:abstract xml:lang="eng">The motivating background for this thesis lies in the recent development in&lt;br /&gt;the coherent optical control of electron spin states in semiconductor quan-&lt;br /&gt;tum dots. One possible and attractive application for these achievements is a&lt;br /&gt;physical implementation of a quantum computer based on spin qubits (quan-&lt;br /&gt;tum bit) in quantum dots. However, one of the obstacles in building such&lt;br /&gt;quantum computer is decoherence caused by the interaction of the electron&lt;br /&gt;spins with nuclear spins of the host material. In this thesis we theoretically&lt;br /&gt;investigate the effects caused by the hyperfine interaction in optically active&lt;br /&gt;semiconductor quantum dots.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In Chapter 2 we assume optically induced rotations of single electron spins in&lt;br /&gt;semiconductor quantum dots. The optical control of the electron spin states&lt;br /&gt;is considered to be conducted by means of Raman type optical transitions&lt;br /&gt;between electron spin states. We investigate the influence of nuclear spins&lt;br /&gt;on the performance of the single-qubit gates by incorporating the additional&lt;br /&gt;effect of the Overhauser field into the electron spin dynamics. To calculate&lt;br /&gt;the errors caused by the hyperfine interaction, we determine average fidelities&lt;br /&gt;of rotations around characteristic axes in the Bloch sphere in the presence&lt;br /&gt;of nuclear spins analytically with perturbation theory up to second order in&lt;br /&gt;the Overhauser field. By applying numerical averaging over the nuclear field&lt;br /&gt;distribution we find the average fidelity to the arbitrary orders of the hyper-&lt;br /&gt;fine interaction.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In Chapter 3 we investigate the dynamics of spin qubits interacting by means&lt;br /&gt;of an optical cavity. The qubits are represented by a single electron spin each&lt;br /&gt;confined to a quantum dot. Knowing that electron spins in III-V semiconduc-&lt;br /&gt;tor quantum dots are affected by the decoherence due to the hyperfine inter-&lt;br /&gt;action with nuclear spins, we find that the interaction between two qubits is&lt;br /&gt;consequently influenced by the Overhauser field. Assuming an unpolarizied&lt;br /&gt;nuclear ensemble, we investigate the fidelities for two-qubit gates depending&lt;br /&gt;on the Overhauser field. We include the hyperfine interaction perturbatively&lt;br /&gt;to second order in our analytical results, and to arbitrary precision numeri&lt;br /&gt;cally.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Quantum dots can be used not only as physical systems for qubits, but also&lt;br /&gt;as sources for entangled photons. In chapter 4 we consider an emission of&lt;br /&gt;entangled photons by spontaneous decay of the biexciton state to the ground&lt;br /&gt;state. Due to electron-hole exchange interaction, the intermediate excitonic&lt;br /&gt;states have a finite fine structure splitting. The electron spins of the excitons&lt;br /&gt;also interact via hyperfine interaction with the nuclear spins. We study the&lt;br /&gt;temporal and fine structure splitting dependance of the coherence measures&lt;br /&gt;considering the effect of the nuclear magnetic field. We find that the hy&lt;br /&gt;perfine interaction contributes considerably to the reduction of the photon&lt;br /&gt;coherence.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;One of the possibilities to minimize the decoherence effects of the hyperfine&lt;br /&gt;interaction is to polarize the nuclear spins to 100%. However, up to date it&lt;br /&gt;was not possible to reach such degree of the nuclear polarization in experi-&lt;br /&gt;ments. In a recent experiment by Chekhovich et al. it was shown that high&lt;br /&gt;nuclear spin polarization can be achieved in self-assembled quantum dots by&lt;br /&gt;exploiting an optically forbidden transition between a heavy hole and a trion&lt;br /&gt;state. A fully polarized state in this case was predicted by a classical rate&lt;br /&gt;equation, but could not be obtained experimentally. Therefore we theoret-&lt;br /&gt;ically investigate this problem with the help of a quantum master equation&lt;br /&gt;in Chapter 5, and we show that a fully polarized state cannot be achieved&lt;br /&gt;due to formation of a nuclear dark state. Moreover, we demonstrate that&lt;br /&gt;the maximal degree of polarization depends on the form of the electron wave&lt;br /&gt;function inside of the quantum dot.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Nuclear Spin Phenomena in Optically Active Semiconductor Quantum Dots</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-17T09:18:53Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
February 28, 2014
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen