The molecular impacts of abiotic stress factors on photosynthesis in cyanobacteria and higher plants

Lade...
Vorschaubild
Dateien
Diss_Lohscheider_2010.pdf
Diss_Lohscheider_2010.pdfGröße: 4.65 MBDownloads: 1243
Datum
2010
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Der Einfluß abiotischer Streßfaktoren auf die Photosynthese in Cyanobakterien und höheren Pflanzen auf molekularer Ebene
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

During photosynthesis, the physical energy of sunlight is used for the production of biomass, consuming atmospheric CO2 and water and at the same time releasing molecular oxygen. This process is tightly regulated and its efficiency is strongly dependent on external abiotic and biotic factors influencing the status of the photosynthetic machinery, and thus, all downstream molecular processes. Light plays a central role because variations of light intensity and quality are frequent in most habitats. This causes the requirement of acclimation mechanisms in the photosynthetic cells in order to guarantee optimal activity of physiological processes. Photosynthetic organisms have developed a variety of cellular and molecular mechanisms to acclimate to conditions when light is limiting as well as to avoid or repair damage caused by high light (HL) intensities. At HL intensities, reactive oxygen species (ROS) are generated during photosynthesis, which lead to damage of cellular components. On the molecular level, photosynthetic organisms can prevent this photooxidative damage by adjusting the size of their light-harvesting antennae, by effective repair mechanisms of damaged cell components, by direct detoxification of ROS via protective molecules or enzymatic radical scavenging systems, and by the induction of light stress proteins. The family of early light-induced proteins (ELIP) has been described to be involved in protection against photooxidative damage in cyanobacteria and photosynthetic eukaryotes. They presumably act as quenchers of excess light energy. Although the stress-enhanced proteins (SEP) represent the dominant members of the ELIP family in Arabidopsis thaliana, they are not well studied yet. Therefore in this study, mRNA data concerning the expression patterns of SEPs in different organs as well as during the plant s life cycle were verified on the protein level. In order to determine the role of SEPs in photoprotection, localisation studies of these proteins inside the cell were performed for selected SEP members. The results revealed association of all investigated SEPs with photosystem II (PSII). For studies of the physiological functions of SEPs in higher plants, mutant and transgenic A. thaliana lines were identified and used in light stress experiments. While mutants with reduced amounts of SEP3a did not show significant differences as compared to wild type plants, sep3a over-expressor mutant lines developed a circular chlorosis of the leaf rosette, in which chlorophyll fluorescence parameters were altered. This implied a function of SEPs in stabilisation of PSII and/or a role in pigment biosynthesis. Apart from induction of ELIPs under high light (HL) conditions, the arrangement of the photosystems antenna is changed and photodamaged proteins are exchanged by newly-synthesised copies. In a process called state transition, mobile parts of the PSII antenna become phosphorylated and migrate to PSI to balance energy fluxes between the two photosystems. In this study, novel light-regulated phosphorylation sites are described. Moreover, nitrations at the D1 protein were discovered, which might act as degradation signal of the damaged PSII reaction centres. Furthermore, the impact of light stress on different cyanobacteria was analysed. It could be shown that the vertical distribution of closely related Synechococcus isolates from Lake Constance is influenced by their genetically fixed mechanisms for stress protection. While phycocyanin-rich strains isolated from the water surface were stress resistant, phycoerythrin-rich isolates from deeper water areas of the littoral zone displayed a reduction in pigment and protein concentrations after HL exposure. In contrast, analysis of the marine cyanobacterium Trichodesmium erythraeum exposed to HL and low light conditions indeed revealed a reduction of pigment concentrations and increased growth rates. This indicates effective acclimation mechanisms in Trichodesmium reflecting the environmental variations in the natural habitat. Apart from variations in the light regime, nutrient availability strongly influences the photosynthetic capacity of cyanobacteria, algae and higher plants. Obviously, macronutrients like phosphorus, nitrogen and carbon are important for cellular biomass production and are usually the factors limiting plant growth. However, micronutrients may also be limiting because they act as important cofactors necessary for general function or regulation of proteins. In the oceans, cyanobacterial and algal growth is strongly limited by the availability of iron, which is an essential cofactor in proteins involved in photosynthetic reactions and cellular respiration as well as in the enzyme nitrogenase which is responsible for the fixation of atmospheric nitrogen. The effects of iron limitation on the marine filamentous cyanobacterium Trichodesmium were studied by showing it s impact on photosynthesis and nitrogen fixation.

Zusammenfassung in einer weiteren Sprache

Während der Photosynthese wird die physikalische Energie der Sonnenstrahlung für die Produktion von Biomasse verwendet, wobei Wasser und atmosphärisches Kohlenstoffdioxid verbraucht werden und molekularer Sauerstoff freigesetzt wird. Dieser Prozess ist strikt reguliert, und seine Effizienz ist stark abhängig von externen biotischen und abiotischen Faktoren, welche den Status der photosynthetischen Maschinerie und dadurch auch alle nachfolgenden molekularen Prozesse beeinflussen. Fluktuationen in Lichtintensität und qualität sind dabei häufig in fast allen Habitaten. Deshalb benötigen photosynthetische Zellen Akklimationsmechanismen, um eine möglichst optimale Funktionsweise aller physiologischen Prozesse zu gewährleisten. Bei hohen Lichtintensitäten werden während der Photosynthese Sauerstoffradikale ( reactive oxygen species , ROS) gebildet, deren Akkumulation zur Schädigung der meisten zellulären Komponenten führt. Auf molekularer Ebene können photosynthetisch aktive Organismen diese photooxidativen Schäden vermeiden, indem sie die Größe ihrer lichtsammelnden Antennenkomplexe anpassen, durch effektive Reparaturmechanismen, durch direkte Entgiftung von ROS über protektive Moleküle oder durch enzymatische Radikalentgiftungssysteme sowie durch die Induktion von Lichtstressproteinen. Die early light stress-induced proteins (ELIPs) wurden in dieser Hinsicht mit dem Schutz der Photosysteme vor photooxidativen Schäden in photosynthetischen Organismen in Verbindung gebracht. Im Modellorganismus Arabidopsis thaliana sind die so genannten stress-enhanced proteins (SEPs) die Hauptvertreter der ELIP-Familie, jedoch ist nur wenig über sie bekannt. Aus diesem Grund wurden vorhandene Daten über organ- und altersspezifische mRNA-Expression auf Proteinebene verifiziert. Um die photoprotektive Wirkung der SEPs näher aufzuklären, wurden Lokalisierungsstudien zu einigen Vertretern der SEPs durchgeführt, welche Colokalisation mit Photosystem II (PSII) ergaben. Zur weitergehenden Analyse der physiologischen Funktion der SEPs in A. thaliana wurden Mutanten- und transgene Pflanzenlinien erzeugt und Stressexperimente unterzogen. Während Mutanten mit reduzierten Mengen an SEP3a kaum Unterschiede zu Wildtyppflanzen zeigten, traten bei SEP3a-überexprimierenden Pflanzen kreisförmige Chlorosen der Blattrosette auf, in denen die Chlorophyllfluoreszenzparameter verändert waren, was für eine Funktion in der Stabilisierung des Photosystems und/oder der Pigmentbiosynthese spricht. Zusätzlich zur Induktion der ELIPs wird unter Starklichteinfluss die Struktur der lichtsammelnden Antennen der Photosysteme verändert und geschädigte Proteine werden durch neusynthetisierte Kopien ersetzt. In der so genannten state transition kommt es zu einer pH-abhängigen Phosphorylierung mobiler Anteile der Antennen von PSII, die zum PSI diffundieren, um den Energiefluss zwischen den Photosystemen auszubalancieren. In dieser Arbeit werden neue Phosphorylierungsstellen beschrieben, die lichtabhängig reguliert sind. Zudem wurden Nitrierungen am D1-Protein entdeckt, die als neues Signal für den Abbau des geschädigten PSII-Reaktionszentrums dienen können. Des Weiteren wurde der Einfluss von Lichtstress auf verschiedene Cyanobakterien untersucht. Es konnte gezeigt werden, dass die Verteilung nah verwandter benthischer Synechococcus-Isolate aus dem Bodensee von ihren genetisch festgelegten Schutzmechanismen beeinflusst wird. Während phycocyaninreiche Stämme von der Wasseroberfläche starklichtresistent waren, zeigte sich bereits nach kurzer Starklichtexposition ein Rückgang im Pigment- und Proteingehalt in phycoerythrinreichen Isolaten aus größeren Wassertiefen. Im Gegensatz dazu ergaben Untersuchungen des marinen Cyanobakteriums Trichodesmium erythraeum unter Stark- und Schwachlichtbedingungen zwar eine Reduktion des Pigmentgehaltes unter Starklicht, aber erhöhte Wachstumsraten. Dies spricht für effektive Akklimationsmechanismen in Trichodesmium, die die starken Schwankungen im natürlichen Habitat widerspiegeln. Neben den Fluktuationen in den Lichtbedingungen wird die photosynthetische Kapazität von photosynthetischen Organismen sehr stark von der Nährstoffverfügbarkeit beeinflusst. Hier sind es natürlich hauptsächlich die Makronährstoffe wie Phosphat, Stickstoff und Kohlenstoff, die aufgrund ihrer Wichtigkeit für die zelluläre Biomasseproduktion das pflanzliche Wachstum limitieren. Allerdings wird in den Ozeanen das Wachstum von Cyanobakterien und Algen hauptsächlich durch die geringe Konzentration an verfügbarem Eisen eingeschränkt, welches als elementarer Cofaktor vieler Proteine mit Funktionen in der Photosynthese oder der zellulären Respiration dient. Zudem benötigt das Enzym Nitrogenase Eisen, um in Cyanobakterien atmosphärischen Stickstoff fixieren zu können. Deshalb wurden die Effekte der Eisenlimitierung auf Photosynthese und Stickstofffixierung im marinen filamentösen Cyanobakterium Trichodesmium exemplarisch untersucht.

Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Arabidopsis thaliana, abiotischer Stress, Photoprotektion, Chloroplast, Lichtstress, Arabidopsis thaliana, cyanobacteria, light stress, photoprotection, chloroplast
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LOHSCHEIDER, Jens, 2010. The molecular impacts of abiotic stress factors on photosynthesis in cyanobacteria and higher plants [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Lohscheider2010molec-8524,
  year={2010},
  title={The molecular impacts of abiotic stress factors on photosynthesis in cyanobacteria and higher plants},
  author={Lohscheider, Jens},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8524">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:44:23Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:alternative>Der Einfluß abiotischer Streßfaktoren auf die Photosynthese in Cyanobakterien und höheren Pflanzen auf molekularer Ebene</dcterms:alternative>
    <dc:creator>Lohscheider, Jens</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8524"/>
    <dcterms:issued>2010</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>The molecular impacts of abiotic stress factors on photosynthesis in cyanobacteria and higher plants</dcterms:title>
    <dcterms:abstract xml:lang="eng">During photosynthesis, the physical energy of sunlight is used for the production of biomass, consuming atmospheric CO2 and water and at the same time releasing molecular oxygen. This process is tightly regulated and its efficiency is strongly dependent on external abiotic and biotic factors influencing the status of the photosynthetic machinery, and thus, all downstream molecular processes. Light plays a central role because variations of light intensity and quality are frequent in most habitats. This causes the requirement of acclimation mechanisms in the photosynthetic cells in order to guarantee optimal activity of physiological processes. Photosynthetic organisms have developed a variety of cellular and molecular mechanisms to acclimate to conditions when light is limiting as well as to avoid or repair damage caused by high light (HL) intensities. At HL intensities, reactive oxygen species (ROS) are generated during photosynthesis, which lead to damage of cellular components. On the molecular level, photosynthetic organisms can prevent this photooxidative damage by adjusting the size of their light-harvesting antennae, by effective repair mechanisms of damaged cell components, by direct detoxification of ROS via protective molecules or enzymatic radical scavenging systems, and by the induction of light stress proteins. The family of early light-induced proteins (ELIP) has been described to be involved in protection against photooxidative damage in cyanobacteria and photosynthetic eukaryotes. They presumably act as quenchers of excess light energy. Although the stress-enhanced proteins (SEP) represent the dominant members of the ELIP family in Arabidopsis thaliana, they are not well studied yet. Therefore in this study, mRNA data concerning the expression patterns of SEPs in different organs as well as during the plant s life cycle were verified on the protein level. In order to determine the role of SEPs in photoprotection, localisation studies of these proteins inside the cell were performed for selected SEP members. The results revealed association of all investigated SEPs with photosystem II (PSII). For studies of the physiological functions of SEPs in higher plants, mutant and transgenic A. thaliana lines were identified and used in light stress experiments. While mutants with reduced amounts of SEP3a did not show significant differences as compared to wild type plants, sep3a over-expressor mutant lines developed a circular chlorosis of the leaf rosette, in which chlorophyll fluorescence parameters were altered. This implied a function of SEPs in stabilisation of PSII and/or a role in pigment biosynthesis. Apart from induction of ELIPs under high light (HL) conditions, the arrangement of the photosystems  antenna is changed and photodamaged proteins are exchanged by newly-synthesised copies. In a process called state transition, mobile parts of the PSII antenna become phosphorylated and migrate to PSI to balance energy fluxes between the two photosystems. In this study, novel light-regulated phosphorylation sites are described. Moreover, nitrations at the D1 protein were discovered, which might act as degradation signal of the damaged PSII reaction centres. Furthermore, the impact of light stress on different cyanobacteria was analysed. It could be shown that the vertical distribution of closely related Synechococcus isolates from Lake Constance is influenced by their genetically fixed mechanisms for stress protection. While phycocyanin-rich strains isolated from the water surface were stress resistant, phycoerythrin-rich isolates from deeper water areas of the littoral zone displayed a reduction in pigment and protein concentrations after HL exposure. In contrast, analysis of the marine cyanobacterium Trichodesmium erythraeum exposed to HL and low light conditions indeed revealed a reduction of pigment concentrations and increased growth rates. This indicates effective acclimation mechanisms in Trichodesmium reflecting the environmental variations in the natural habitat. Apart from variations in the light regime, nutrient availability strongly influences the photosynthetic capacity of cyanobacteria, algae and higher plants. Obviously, macronutrients like phosphorus, nitrogen and carbon are important for cellular biomass production and are usually the factors limiting plant growth. However, micronutrients may also be limiting because they act as important cofactors necessary for general function or regulation of proteins. In the oceans, cyanobacterial and algal growth is strongly limited by the availability of iron, which is an essential cofactor in proteins involved in photosynthetic reactions and cellular respiration as well as in the enzyme nitrogenase which is responsible for the fixation of atmospheric nitrogen. The effects of iron limitation on the marine filamentous cyanobacterium Trichodesmium were studied by showing it s impact on photosynthesis and nitrogen fixation.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8524/1/Diss_Lohscheider_2010.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8524/1/Diss_Lohscheider_2010.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Lohscheider, Jens</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-31T22:25:05Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
August 20, 2010
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen